JP2016037441A - 単結晶の製造方法 - Google Patents

単結晶の製造方法 Download PDF

Info

Publication number
JP2016037441A
JP2016037441A JP2015108803A JP2015108803A JP2016037441A JP 2016037441 A JP2016037441 A JP 2016037441A JP 2015108803 A JP2015108803 A JP 2015108803A JP 2015108803 A JP2015108803 A JP 2015108803A JP 2016037441 A JP2016037441 A JP 2016037441A
Authority
JP
Japan
Prior art keywords
single crystal
crucible
wall portion
auxiliary heating
material powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015108803A
Other languages
English (en)
Inventor
俊策 上田
Shunsaku Ueta
俊策 上田
勉 堀
Tsutomu Hori
勉 堀
松島 彰
Akira Matsushima
彰 松島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2015108803A priority Critical patent/JP2016037441A/ja
Priority to US14/818,337 priority patent/US9777401B2/en
Publication of JP2016037441A publication Critical patent/JP2016037441A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • C30B23/06Heating of the deposition chamber, the substrate or the materials to be evaporated
    • C30B23/066Heating of the material to be evaporated
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

【課題】単結晶の成長速度を増大させることを可能とする単結晶の製造方法を提供する。【解決手段】単結晶53の製造方法は、坩堝1内に原料粉末52および種結晶51を配置する工程と、種結晶51上に単結晶53を成長させる工程と、を備える。坩堝1は、周壁部11と、底壁部12と、蓋部13と、を含む。原料粉末52および種結晶51を配置する工程では、底壁部12の内面12Aに接触するように原料粉末52が配置され、保持部14に保持されるように種結晶51が配置される。単結晶53を成長させる工程では、周壁部11が外周側から誘導加熱にて加熱される。そして、単結晶53を成長させる工程では、底壁部12の外面12Bに接するように空間61を形成するスペーサー31上に坩堝1が載置され、空間61を挟んで底壁部12の外面12Bに対向するように配置された補助加熱部材81が誘導加熱にて加熱される。【選択図】図1

Description

本発明は単結晶の製造方法に関し、より特定的には原料粉末を昇華させて種結晶上に再結晶させることにより、当該種結晶上に単結晶を成長させる単結晶の製造方法に関するものである。
坩堝内において原料粉末を昇華させて種結晶上に再結晶させる方法(昇華法)により、炭化珪素などの単結晶を製造することができる。具体的には、坩堝内に原料粉末および種結晶を配置し、誘導加熱によって坩堝を加熱することにより、原料粉末を昇華させて種結晶上に再結晶させる方法が知られている(たとえば、特許文献1および2参照)。
特開平9−48688号公報 特開2013−35705号公報
上記特許文献に開示された単結晶の製造方法では、坩堝の周壁部が加熱される。そのため、坩堝の周壁部から離れた領域(径方向中央付近)に位置する原料粉末の温度が十分に上昇しない。その結果、当該領域の原料粉末が十分に昇華せず、単結晶の成長速度が小さくなるという問題が生じる。
そこで、単結晶の成長速度を増大させることを可能とする単結晶の製造方法を提供することを目的の1つとする。
本発明に従った単結晶の製造方法は、坩堝内に原料粉末および種結晶を配置する工程と、原料粉末を昇華させて種結晶上に再結晶させることにより、種結晶上に単結晶を成長させる工程と、を備える。上記坩堝は、筒状の形状を有する周壁部と、周壁部に接続され、周壁部の一方の開口を閉塞する底壁部と、周壁部に接続され、周壁部の他方の開口を閉塞し、上記種結晶を保持すべき保持部を有する蓋部と、を含む。原料粉末および種結晶を配置する工程では、上記底壁部の内面に接触するように上記原料粉末が配置されるとともに、上記蓋部の上記保持部に保持されるように上記種結晶が配置される。単結晶を成長させる工程では、上記周壁部が外周側から誘導加熱にて加熱されることにより、上記原料粉末が昇華する。そして、単結晶を成長させる工程では、上記底壁部の外面に接するように空間を形成するスペーサー上に上記坩堝が載置されるとともに、上記空間を挟んで上記底壁部の上記外面に対向するように配置された補助加熱部材が誘導加熱にて加熱される。
上記単結晶の製造方法によれば、単結晶の成長速度を増大させることを可能とする単結晶の製造方法を提供することができる。
実施の形態1における単結晶の製造装置の構造を示す概略断面図である。 単結晶の製造方法の概略を示すフローチャートである。 実施の形態2における単結晶の製造装置の構造を示す概略断面図である。 実施の形態3における単結晶の製造装置の構造を示す概略断面図である。 実施の形態4における単結晶の製造装置の構造を示す概略断面図である。 実施の形態5における単結晶の製造装置の構造を示す概略断面図である。 実施の形態6における単結晶の製造装置の構造を示す概略断面図である。
[本願発明の実施形態の説明]
最初に本願発明の実施態様を列記して説明する。本願の単結晶の製造方法は、坩堝内に原料粉末および種結晶を配置する工程と、原料粉末を昇華させて種結晶上に再結晶させることにより、種結晶上に単結晶を成長させる工程と、を備える。上記坩堝は、筒状の形状を有する周壁部と、周壁部に接続され、周壁部の一方の開口を閉塞する底壁部と、周壁部に接続され、周壁部の他方の開口を閉塞し、上記種結晶を保持すべき保持部を有する蓋部と、を含む。原料粉末および種結晶を配置する工程では、上記底壁部の内面に接触するように上記原料粉末が配置されるとともに、上記蓋部の上記保持部に保持されるように上記種結晶が配置される。単結晶を成長させる工程では、上記周壁部が外周側から誘導加熱にて加熱されることにより、上記原料粉末が昇華する。そして、単結晶を成長させる工程では、上記底壁部の外面に接するように空間を形成するスペーサー上に上記坩堝が載置されるとともに、上記空間を挟んで上記底壁部の上記外面に対向するように配置された補助加熱部材が誘導加熱にて加熱される。
坩堝の外周側から誘導加熱により周壁部を加熱して原料粉末を昇華させる場合、坩堝内において径方向に温度差が生じる。具体的には、加熱される周壁部に近い領域の温度が高くなり、周壁部から離れた領域、すなわち中央軸に近い領域の温度が低くなる。その結果、中央軸に近い領域に位置する原料粉末の昇華が十分に進行せず、単結晶の成長速度が小さくなる。これに対し、本願の単結晶の製造方法では、坩堝の底壁部の外面に接するように空間を形成するスペーサー上に坩堝が載置されるとともに、スペーサーにより形成された当該空間を挟んで底壁部の外面に対向するように配置された補助加熱部材が誘導加熱により加熱される。これにより、誘導加熱によって加熱された補助加熱部材からの輻射熱により、坩堝の底壁部が加熱される。そのため、中央軸に近い領域の温度が、補助加熱部材を採用しない場合に比べて高くなる。その結果、中央軸に近い領域に位置する原料粉末の昇華が十分に進行し、単結晶の成長速度が大きくなる。このように、本願の単結晶の製造方法によれば、単結晶の成長速度を増大させることができる。
上記単結晶の製造方法において、上記単結晶を成長させる工程では、上記スペーサーは筒状の形状を有し、当該スペーサーの内周面に取り囲まれた領域が上記底壁部の外面に接するように形成される空間となってもよい。このようにすることにより、上記底壁部の外面に接するように形成される空間から外部へと熱が流出することが抑制され、中央軸に近い領域に位置する原料粉末をより確実に加熱することが可能となる。
上記単結晶の製造方法において、上記補助加熱部材はグラファイトからなっていてもよい。耐熱性が高く、かつ誘導加熱により加熱することが可能なグラファイトは、補助加熱部材を構成する材料として好適である。
上記単結晶の製造方法において、上記スペーサーはグラファイトからなっていてもよい。このようにすることにより、スペーサーも誘導加熱により加熱される。そのため、スペーサーからの輻射熱により坩堝の底壁部が加熱される。その結果、中央軸に近い領域に位置する原料粉末の昇華が十分に進行し、単結晶の成長速度が大きくなる。
上記単結晶の製造方法において、補助加熱部材には、上記底壁部の外面に対向する領域に、補助加熱部材よりも輻射率が小さいコーティング層が形成されていてもよい。このようにすることにより、コーティング層において光が反射される割合が大きくなり、坩堝の底壁部が効率よく加熱される。
上記単結晶の製造方法において、上記コーティング層は、補助加熱部材において底壁部の外面に面し、底壁部の中心と補助加熱部材の中心とを通る中央軸を取り囲む領域である中央領域上に形成され、補助加熱部材において底壁部の外面に面し、上記中央領域を取り囲む領域である外周領域は上記コーティング層を介することなく上記空間に接していてもよい。このように、中央軸に近い領域に限定してコーティング層を形成することにより、中央軸に近い領域に位置する原料粉末の昇華をより確実に進行させることができる。
上記単結晶の製造方法において、上記坩堝内に上記原料粉末および上記種結晶を配置する工程では、炭化珪素からなる上記原料粉末および上記種結晶が上記坩堝内に配置され、上記種結晶上に上記単結晶を成長させる工程では、上記種結晶上に炭化珪素からなる上記単結晶を成長させてもよい。このようにすることにより、炭化珪素単結晶を効率よく製造することが可能となる。
上記単結晶の製造方法において、上記坩堝の内径は110mm以上であってもよい。坩堝の内径が110mm以上にまで大きくなると、坩堝内の径方向における温度差が許容範囲を超えて大きくなり、中央軸付近の原料粉末が十分に昇華しないことによる単結晶の成長速度の低下が顕著となる。このような場合でも、上記補助加熱部材を採用する上記単結晶の製造方法によれば、高い単結晶の成長速度を確保することが可能となる。
上記単結晶の製造方法において、補助加熱部材には貫通孔が形成されていてもよい。種結晶上に単結晶を成長させる工程では、坩堝の温度が当該貫通孔を通して放射温度計により測定されてもよい。このようにすることにより、種結晶上に単結晶を成長させる工程において坩堝の温度を容易に把握することができる。
[本願発明の実施形態の詳細]
(実施の形態1)
次に、本発明にかかる単結晶の製造方法の一実施の形態である実施の形態1を、炭化珪素の単結晶が製造される場合を例に、以下に図面を参照しつつ説明する。なお、以下の図面において同一または相当する部分には同一の参照番号を付しその説明は繰返さない。
図1を参照して、本実施の形態における単結晶の製造装置は、坩堝1と、スペーサー31と、補助加熱部材としての補助加熱板81と、断熱部材21,22,23と、放射温度計71,72と、誘導加熱コイル74とを備えている。
坩堝1は、誘導加熱により加熱可能な材料、たとえばグラファイトからなっている。坩堝1は、筒状の形状を有する周壁部11と、周壁部11に接続され、周壁部11の一方の開口を閉塞する底壁部12と、周壁部11に接続され、周壁部11の他方の開口を閉塞し、種結晶51を保持すべき保持部14を有する蓋部13とを含む。本実施の形態において、周壁部11は、中空円筒状の形状を有している。周壁部11の内径、すなわち坩堝1の内径は、たとえば110mm以上である。底壁部12は、円盤状の形状を有している。周壁部11と底壁部12とは、一体に形成されている。
蓋部13は、周壁部11に対して着脱自在となっている。蓋部13の外周に形成された蓋部結合面13Aと周壁部11の内周に形成された周壁部結合面11Aとが接触することにより、蓋部13は周壁部11に対して固定される。蓋部結合面13Aおよび周壁部結合面11Aには、たとえばらせん状のねじ溝が形成されていてもよい。蓋部13の一方の主面には、当該主面の中央部から突出する保持部14が形成されている。蓋部13を周壁部11に取り付けた状態において、保持部14は、中央軸αを含むように位置する。保持部14の先端には、種結晶を保持する保持面14Aが形成されている。
スペーサー31は、たとえば成形断熱材からなっている。スペーサー31は、たとえば炭素を主成分とし、その密度は0.25g/cm以下である。スペーサー31は、中空円筒状の形状を有している。スペーサー31の外径は、坩堝1の外径とほぼ同一である。坩堝1の底壁部12の外面12Bとスペーサー31の第1の端面33とが接触するように、坩堝1はスペーサー31上に載置される。これにより、坩堝1の底壁部12の外面12Bに接するように空間61が形成される。すなわち、スペーサー31の内周面に取り囲まれた領域が、底壁部12の外面12Bに接するように形成される空間61となっている。坩堝1がスペーサー31上に載置された状態において、坩堝1の周壁部11の外面11Bとスペーサー31の外周面とは同一の円筒面に沿って配置される。スペーサー31の内径は、たとえば外径よりも10mm以上60mm以下小さい。
補助加熱板81は、空間61を挟んで底壁部12の外面12Bに対向するように配置される。より具体的には、補助加熱板81は、円盤状の形状を有している。そして、補助加熱板81の第1の主面82上に、上記スペーサー31が載置される。すなわち、補助加熱板81の第1の主面82とスペーサー31の第2の端面34とが接触する。スペーサー31の外周面と補助加熱板81の外周面とは同一の円筒面に沿って配置される。補助加熱板81は、誘導加熱可能な材料、具体的にはたとえばグラファイトからなっている。補助加熱板81の密度は、たとえば1.6g/cm以上である。
断熱部材21,22,23は、たとえば成形断熱材からなっている。断熱部材21,22,23は、たとえば炭素を主成分とし、その密度は0.25g/cm以下である。断熱部材22は、円盤状の形状を有している。断熱部材22の第1の主面22Bに補助加熱板81の第2の主面88が接触するように、補助加熱板81が断熱部材22上に載置される。断熱部材21は、中空円筒状の形状を有している。断熱部材21は、スペーサー31の外周面、補助加熱板81の外周面および坩堝1の周壁部11の外面11Bを全域にわたって覆うように配置される。断熱部材23は、坩堝1の蓋部13の外面を覆うように蓋部13の外面上に配置される。スペーサー31、補助加熱板81および坩堝1は、断熱部材21,22,23によって取り囲まれる。
断熱部材22において中央軸αを含む領域には、断熱部材22を厚み方向に貫通する貫通孔22Aが形成されている。また、補助加熱板81の中央軸αを含む領域には、補助加熱板81を厚み方向に貫通する貫通孔85が形成されている。そして、この貫通孔22Aおよび貫通孔85を通して坩堝1の底壁部12と向かい合うように、放射温度計71が配置される。放射温度計71により、底壁部12の温度が測定され、原料粉末52の温度が把握される。一方、断熱部材23において中央軸αを含む領域には、断熱部材23を厚み方向に貫通する貫通孔23Aが形成されている。そして、この貫通孔23Aを通して坩堝1の蓋部13と向かい合うように、放射温度計72が配置される。放射温度計72により、蓋部13の温度が測定され、種結晶51の温度が把握される。
誘導加熱コイル74は、断熱部材21に覆われた坩堝1の周壁部11の外面11B側をらせん状に取り囲むように配置される。誘導加熱コイル74は、電源(図示しない)に接続される。誘導加熱コイル74に取り囲まれた領域内に、断熱部材21,22,23に覆われたスペーサー31、補助加熱板81および坩堝1が配置される。
次に、上記単結晶の製造装置を用いた炭化珪素単結晶の製造方法を説明する。図2を参照して、本実施の形態における炭化珪素単結晶の製造方法では、まず工程(S10)として原料粉末配置工程が実施される。この工程(S10)では、図1を参照して、坩堝1の底壁部12の内面12A上に接触するように原料粉末52が配置される。具体的には、蓋部13を取り外した状態で、坩堝1内に原料粉末52を配置する。
次に、工程(S20)として種結晶配置工程が実施される。この工程(S20)では、保持部14に種結晶51が配置される。具体的には、たとえば周壁部11から取り外された蓋部13の保持部14に、種結晶51を貼り付ける。種結晶51は、保持部14の保持面14Aに貼り付けられる。次に、蓋部13を周壁部11に取り付ける。これにより、種結晶51は、中央軸αと交差する領域に配置される。上記工程(S10)〜(S20)により、坩堝1内に原料粉末52および種結晶51が配置される。
次に、工程(S30)として昇華−再結晶工程が実施される。この工程(S30)では、原料粉末52を昇華させて種結晶51上に再結晶させることにより、種結晶51上に単結晶53を成長させる。具体的には、たとえば原料粉末52および種結晶51が内部に配置された坩堝1、スペーサー31、および補助加熱板81を上述のように積み重ねた状態で断熱部材21,22,23により覆う。そして、断熱部材21,22,23により覆われた坩堝1、スペーサー31および補助加熱板81を、図1に示すように誘導加熱コイル74に取り囲まれた領域に配置する。そして、誘導加熱コイル74に高周波電流を流すと、周壁部11、底壁部12および補助加熱板81が誘導加熱により加熱される。このとき、周壁部11が最もよく加熱される。底壁部12では中央軸αに近づくに従って誘導加熱により加熱される温度が低下する。一方、誘導加熱された補助加熱板81からの輻射熱により底壁部12は加熱される。すなわち、底壁部12は、誘導加熱によって加熱されるだけでなく、補助加熱板81からの輻射熱によっても加熱される。これにより、炭化珪素の粉末である原料粉末52が昇華し、気体状態の炭化珪素である原料気体が生成する。この原料気体は、種結晶51上に供給される。その結果、種結晶51上で原料気体が再結晶し、種結晶51上に炭化珪素の単結晶53が形成される。そして、この状態が維持されることにより、単結晶53は中央軸αに沿った方向に成長する。そして、予め設定された加熱時間が経過することにより加熱が終了し、工程(S30)が完了する。
次に、工程(S40)として単結晶採取工程が実施される。この工程(S40)では、工程(S30)において坩堝1内に成長した単結晶が、坩堝1から取り出される。具体的には、工程(S30)における加熱終了後、誘導加熱コイル74に取り囲まれた領域から坩堝1が取り出される。その後、坩堝1の蓋部13が取り外される。そして、蓋部13から単結晶53が採取される。以上の工程により、本実施の形態における単結晶の製造方法は完了する。採取された単結晶は、たとえばスライスされて基板に加工され、半導体装置の製造などに使用される。
ここで、上述のように、本実施の形態における単結晶の製造方法では、スペーサー31により形成された空間61を挟んで底壁部12の外面12Bに対向するように配置された補助加熱板81が誘導加熱により加熱される。これにより、補助加熱板81からの輻射熱により、坩堝1の底壁部12が加熱される。そのため、中央軸αに近い領域の温度が、補助加熱板81を採用しない場合に比べて高くなる。その結果、中央軸αに近い領域に位置する原料粉末52の昇華が十分に進行し、単結晶53の成長速度が大きくなる。このように、本実施の形態の単結晶の製造方法によれば、単結晶53の成長速度を増大させることができる。
(実施の形態2)
次に、他の実施の形態である実施の形態2について説明する。実施の形態2における単結晶の製造方法は、実施の形態1の場合と基本的には同様に実施され、同様の効果を奏する。しかし、実施の形態2における単結晶の製造方法は、スペーサー31および補助加熱板81の構成において、実施の形態1とは異なっている。
具体的には、図3および図1を参照して、実施の形態2のスペーサー31は、グラファイトからなっている。スペーサー31の密度は、たとえば1.6g/cm以上である。また、実施の形態2の補助加熱板81は、外周面がスペーサー31の内周面32に対向するように、より具体的には外周面がスペーサー31の内周面32の内周面に全周にわたって接触するように配置されている。スペーサー31の第2の端面34と補助加熱板81の第2の主面88とが同一平面を構成するように、スペーサー31および補助加熱板81が配置されている。
スペーサー31がグラファイトからなることにより、工程(S30)において誘導加熱によりスペーサー31が加熱される。そのため、スペーサー31からの輻射熱により、坩堝1の底壁部12が加熱される。その結果、中央軸αに近い領域に位置する原料粉末52の昇華が一層十分に進行し、単結晶53の成長速度が大きくなる。
(実施の形態3)
次に、他の実施の形態である実施の形態3について説明する。実施の形態3における単結晶の製造方法は、実施の形態1の場合と基本的には同様に実施され、同様の効果を奏する。しかし、実施の形態3における単結晶の製造方法は、補助加熱板81の構成において、実施の形態1とは異なっている。
具体的には、図4および図1を参照して、実施の形態3の補助加熱板81には、底壁部12の外面12Bに対向する領域に、補助加熱板81よりも輻射率が小さいコーティング層89が形成されている。コーティング層89は、補助加熱板81において底壁部12の外面12Bに面し、底壁部12の中心と補助加熱板81の中心とを通る仮想的な軸である中央軸αを取り囲む領域である中央領域83上に形成されている。一方、補助加熱板81において底壁部12の外面12Bに面し、中央領域83を取り囲む領域である外周領域84はコーティング層89を介することなく空間61に接している。すなわち、コーティング層89は、中央領域83上にのみ形成され、外周領域84上には形成されない。換言すると、コーティング層89は、中央軸αに近い領域にのみ形成されている。コーティング層89を構成する材料としては、たとえばTaC、TaC、ZrC、NbC、NbC、TiC、MoC、MoC、WCなどを採用することができる。
コーティング層89が補助加熱板81上に形成されることにより、コーティング層89において光が反射される割合が大きくなり、坩堝1の底壁部12が効率よく加熱される。特に、本実施の形態では、コーティング層89が中央軸αに近い領域にのみ形成されているため、中央軸αに近い領域に位置する原料粉末52の昇華をより確実に進行させることができる。
(実施の形態4)
次に、他の実施の形態である実施の形態4について説明する。実施の形態4における単結晶の製造方法は、実施の形態2の場合と基本的には同様に実施され、同様の効果を奏する。しかし、実施の形態4における単結晶の製造方法は、誘導加熱コイル74と坩堝1等との位置関係において、実施の形態2とは異なっている。
具体的には、図5および図3を参照して、実施の形態4においては、坩堝1、スペーサー31および補助加熱板81が誘導加熱コイル74に取り囲まれるように配置される。別の観点から説明すると、坩堝1、スペーサー31および補助加熱板81が、誘導加熱コイル74に取り囲まれる空間の内部に配置される。
坩堝1、スペーサー31および補助加熱板81の全てが誘導加熱コイル74に取り囲まれることにより、工程(S30)において坩堝1、スペーサー31および補助加熱板81の全体がより確実に加熱される。その結果、中央軸αに近い領域に位置する原料粉末52の昇華が一層十分に進行し、単結晶53の成長速度が大きくなる。
(実施の形態5)
次に、他の実施の形態である実施の形態5について説明する。実施の形態5における単結晶の製造方法は、実施の形態4の場合と基本的には同様に実施され、同様の効果を奏する。しかし、実施の形態5における単結晶の製造方法は、誘導加熱コイル74の構成において、実施の形態4とは異なっている。
図6および図5を参照して、実施の形態5においては、中央軸αに沿った方向において誘導加熱コイル74のピッチが変化している。より具体的には、中央軸αに沿った方向において坩堝1に対応する領域Aに位置する誘導コイル74のピッチはPであり、スペーサー31および補助加熱板81に対応する領域Bに位置する誘導コイル74のピッチはPである。ピッチPとピッチPとは異なっている。ピッチPは、たとえばピッチPよりも大きい。
中央軸αに沿った方向においてピッチが変化する誘導加熱コイル74を採用することにより、坩堝1、スペーサー31および補助加熱板81のそれぞれを適切かつ異なった温度に加熱することが容易となる。たとえば、坩堝1を、スペーサー31および補助加熱板81よりも高い温度に加熱することが容易となる。このように坩堝1、スペーサー31および補助加熱板81のそれぞれを適切な温度に加熱することにより、単結晶53の成長速度を一層大きくすることが容易となる。
(実施の形態6)
次に、他の実施の形態である実施の形態6について説明する。実施の形態6における単結晶の製造方法は、実施の形態4の場合と基本的には同様に実施され、同様の効果を奏する。しかし、実施の形態6における単結晶の製造方法は、誘導加熱コイルの構成および制御方法において、実施の形態4とは異なっている。
図7および図5を参照して、実施の形態6においては、中央軸αに沿った方向において誘導加熱コイルが分断されており、分断された誘導加熱コイルがそれぞれ独立に制御される。より具体的には、本実施の形態における誘導加熱コイルは、中央軸αに沿った方向において坩堝1に対応する領域Aに位置する誘導加熱コイル74Aと、スペーサー31および補助加熱板81に対応する領域Bに位置する誘導加熱コイル74Bとを含む。誘導加熱コイル74Aと、誘導加熱コイル74Bとは、独立に制御される。
このような誘導加熱コイルの構成および制御方法を採用することにより、坩堝1、スペーサー31および補助加熱板81のそれぞれを適切かつ異なった温度に加熱することが容易となる。たとえば、坩堝1を、スペーサー31および補助加熱板81よりも高い温度に加熱することが容易となる。このように坩堝1、スペーサー31および補助加熱板81のそれぞれを適切な温度に加熱することにより、単結晶53の成長速度を一層大きくすることが容易となる。
なお、上記実施の形態における単結晶の製造装置の構成は採用可能な構成の一例であって、これらに限られるものではない。したがって、たとえば上記実施の形態1〜6において説明した構造を適宜組み合わせた構造を採用してもよい。また、上記実施の形態においては、炭化珪素からなる単結晶が製造される場合について説明したが、本願の単結晶の製造方法により、昇華法によって作製可能な他の単結晶、たとえば窒化アルミニウムからなる単結晶を製造することも可能である。また、上記実施の形態においては、補助加熱部材(補助加熱板81)を構成する誘導加熱可能な材料の一例としてカーボン(グラファイト)が採用される場合について説明したが、補助加熱部材を構成する材料として採用可能な材料はこれに限られず、TaC、TaC、ZrC、NbC、NbC、TiC、MoC、MoC、WCなど、誘導加熱可能であり、かつ耐熱性に優れた種々の材料を採用することができる。
補助加熱部材を採用することによる効果を確認する実験を行った。実験の手順は以下の通りである。
実施の形態1および2と同様の構造を有する単結晶の製造装置を準備し、炭化珪素からなる単結晶を成長させた(実施例Aおよび実施例B)。坩堝1の外径は140mm、内径は110mm、底壁部12の厚みは20mmとした。補助加熱板81として、厚み5mmのグラファイト製の円盤を採用した。また、実施例Aでは、外径140mm、内径80mm、高さ50mmの中空円筒形状を有する成形断熱材製のスペーサー31を採用した。一方、実施例Bでは、これに代えて実施例Aの場合と同形状のグラファイト製のスペーサー31を採用した。そして、坩堝1内に実施の形態1および2と同様に炭化珪素からなる種結晶51および原料粉末52を配置し、誘導加熱コイル74に電流を流すことで原料粉末52を2000℃〜2400℃に加熱し、100時間保持することにより炭化珪素からなる単結晶53を成長させた。
また、同様の構造を有する坩堝を準備し、同様に種結晶および原料粉末を配置した。そして、坩堝の全面を断熱部材により覆ったうえで(特許文献1の図4参照)原料粉末を加熱し、同様に単結晶を成長させた(比較例A)。また、同様の構造を有する坩堝を準備し、同様に種結晶および原料粉末を配置した。そして、坩堝をグラファイト製の円筒部材上に載置し、坩堝および円筒部材を断熱部材により覆ったうえで(特許文献2の図1参照)原料粉末を加熱し、同様に単結晶を成長させた(比較例B)。実施例および比較例における単結晶の平均成長速度(中央軸α方向における1時間あたりの単結晶の高さの増加量)を表1に示す。
Figure 2016037441
表1を参照して、実施例Aおよび実施例Bの平均成長速度は、比較例Aおよび比較例Bに比べて明確に増大している。これは、実施例Aおよび実施例Bにおいては、補助加熱板81が採用されることにより、中央軸αに近い領域に位置する原料粉末52の温度が上昇し、原料粉末52の昇華が十分に進行したためであると考えられる。
実施の形態4、5および6と同様の構造を有する単結晶の製造装置を準備し、炭化珪素からなる単結晶を成長させた(実施例C、実施例Dおよび実施例E)。坩堝1、スペーサー31および補助加熱板81の構成は、上記実施例1における実施例Bと同様である。そして、上記実施例1の場合と同様に炭化珪素からなる単結晶53を成長させた。実施例C、DおよびEにおける単結晶の平均成長速度を、上記比較例Bと比較して表2に示す。
Figure 2016037441
表2を参照して、実施例C、実施例Dおよび実施例Eは、いずれも比較例Bに比べて平均成長速度が増大している。このことから、補助加熱板81が採用されることによる効果が確認される。また、実施例C、実施例Dおよび実施例Eは、上記実施例AおよびBと比べた場合でも、平均成長速度が大きい。このことから、坩堝1、スペーサー31および補助加熱板81の全てを誘導加熱コイル74によって取り囲む構成を採用することにより、単結晶53の成長速度の増大が達成可能であることが分かる。さらに、実施例Cに比べて、実施例Dおよび実施例Eの平均成長速度が増大している。このことから、坩堝1、スペーサー31および補助加熱板81のそれぞれを適切な温度に加熱することにより、単結晶53の成長速度を一層大きくできることが確認される。
今回開示された実施の形態および実施例はすべての点で例示であって、どのような面からも制限的なものではないと理解されるべきである。本発明の範囲は上記した説明ではなく、特許請求の範囲によって規定され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
本願の単結晶の製造方法は、高い成長速度が求められる単結晶の製造方法に、特に有利に適用され得る。
1 坩堝
11 周壁部
11A 周壁部結合面
11B 外面
12 底壁部
12A 内面
12B 外面
13 蓋部
13A 蓋部結合面
14 保持部
14A 保持面
21 断熱部材
22 断熱部材
22A 貫通孔
22B 第1の主面
23 断熱部材
23A 貫通孔
31 スペーサー
32 内周面
33 第1の端面
34 第2の端面
51 種結晶
52 原料粉末
53 単結晶
61 空間
71 放射温度計
72 放射温度計
74,74A,74B 誘導加熱コイル
81 補助加熱板
82 第1の主面
83 中央領域
84 外周領域
85 貫通孔
88 第2の主面
89 コーティング層

Claims (9)

  1. 坩堝内に原料粉末および種結晶を配置する工程と、
    前記原料粉末を昇華させて前記種結晶上に再結晶させることにより、前記種結晶上に単結晶を成長させる工程と、を備え、
    前記坩堝は、
    筒状の形状を有する周壁部と、
    前記周壁部に接続され、前記周壁部の一方の開口を閉塞する底壁部と、
    前記周壁部に接続され、前記周壁部の他方の開口を閉塞し、前記種結晶を保持すべき保持部を有する蓋部と、を含み、
    前記原料粉末および前記種結晶を配置する工程では、前記底壁部の内面に接触するように前記原料粉末が配置されるとともに、前記蓋部の前記保持部に保持されるように前記種結晶が配置され、
    前記単結晶を成長させる工程では、前記周壁部が外周側から誘導加熱にて加熱されることにより、前記原料粉末が昇華し、
    前記単結晶を成長させる工程では、前記底壁部の外面に接するように空間を形成するスペーサー上に前記坩堝が載置されるとともに、前記空間を挟んで前記底壁部の前記外面に対向するように配置された補助加熱部材が誘導加熱にて加熱される、単結晶の製造方法。
  2. 前記単結晶を成長させる工程では、前記スペーサーは筒状の形状を有し、前記スペーサーの内周面に取り囲まれた領域が前記底壁部の前記外面に接するように形成される前記空間となる、請求項1に記載の単結晶の製造方法。
  3. 前記補助加熱部材はグラファイトからなる、請求項1または2に記載の単結晶の製造方法。
  4. 前記スペーサーはグラファイトからなる、請求項1〜3のいずれか1項に記載の単結晶の製造方法。
  5. 前記補助加熱部材には、前記底壁部の前記外面に対向する領域に、前記補助加熱部材よりも輻射率が小さいコーティング層が形成されている、請求項1〜4のいずれか1項に記載の単結晶の製造方法。
  6. 前記コーティング層は、前記補助加熱部材において前記底壁部の前記外面に面し、前記底壁部の中心と前記補助加熱部材の中心とを通る中央軸を取り囲む領域である中央領域上に形成され、
    前記補助加熱部材において前記底壁部の前記外面に面し、前記中央領域を取り囲む領域である外周領域は前記コーティング層を介することなく前記空間に接している、請求項5に記載の単結晶の製造方法。
  7. 前記坩堝内に前記原料粉末および前記種結晶を配置する工程では、炭化珪素からなる前記原料粉末および前記種結晶が前記坩堝内に配置され、
    前記種結晶上に前記単結晶を成長させる工程では、前記種結晶上に炭化珪素からなる前記単結晶を成長させる、請求項1〜6のいずれか1項に記載の単結晶の製造方法。
  8. 前記坩堝の内径は110mm以上である、請求項1〜7のいずれか1項に記載の単結晶の製造方法。
  9. 前記補助加熱部材には貫通孔が形成されており、
    前記種結晶上に前記単結晶を成長させる工程では、前記坩堝の温度が前記貫通孔を通して放射温度計により測定される、請求項1〜8のいずれか1項に記載の単結晶の製造方法。
JP2015108803A 2014-08-08 2015-05-28 単結晶の製造方法 Pending JP2016037441A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015108803A JP2016037441A (ja) 2014-08-08 2015-05-28 単結晶の製造方法
US14/818,337 US9777401B2 (en) 2014-08-08 2015-08-05 Method for producing single crystal

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014162130 2014-08-08
JP2014162130 2014-08-08
JP2015108803A JP2016037441A (ja) 2014-08-08 2015-05-28 単結晶の製造方法

Publications (1)

Publication Number Publication Date
JP2016037441A true JP2016037441A (ja) 2016-03-22

Family

ID=55266980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015108803A Pending JP2016037441A (ja) 2014-08-08 2015-05-28 単結晶の製造方法

Country Status (2)

Country Link
US (1) US9777401B2 (ja)
JP (1) JP2016037441A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200130284A (ko) * 2018-03-16 2020-11-18 신에쯔 한도타이 가부시키가이샤 탄화규소 단결정의 제조방법 및 제조장치
JP2021070622A (ja) * 2019-10-29 2021-05-06 エスケイシー・カンパニー・リミテッドSkc Co., Ltd. 炭化珪素ウエハ及び炭化珪素ウエハの製造方法
JP2021138597A (ja) * 2020-02-28 2021-09-16 エスケイシー・カンパニー・リミテッドSkc Co., Ltd. ウエハ、エピタキシャルウエハ及びその製造方法
JP2021187727A (ja) * 2020-05-29 2021-12-13 エスケイシー・カンパニー・リミテッドSkc Co., Ltd. ウエハの製造方法、エピタキシャルウエハの製造方法、これによって製造されたウエハ及びエピタキシャルウエハ

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11856678B2 (en) * 2019-10-29 2023-12-26 Senic Inc. Method of measuring a graphite article, apparatus for a measurement, and ingot growing system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011011926A (ja) * 2009-06-30 2011-01-20 Denso Corp 炭化珪素単結晶の製造装置
JP2012206876A (ja) * 2011-03-29 2012-10-25 Shin Etsu Handotai Co Ltd SiC成長装置
JP2013075793A (ja) * 2011-09-30 2013-04-25 Fujikura Ltd 単結晶の製造装置、および単結晶の製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL246971A (ja) * 1959-01-02 1900-01-01
JP3491402B2 (ja) 1995-08-07 2004-01-26 株式会社デンソー 単結晶製造方法及びその単結晶製造装置
JP2007230846A (ja) * 2006-03-03 2007-09-13 Matsushita Electric Ind Co Ltd 単結晶製造装置用坩堝
US7449065B1 (en) * 2006-12-02 2008-11-11 Ohio Aerospace Institute Method for the growth of large low-defect single crystals
JP5630400B2 (ja) 2011-08-05 2014-11-26 三菱電機株式会社 単結晶の製造装置及び製造方法
JP2013216549A (ja) * 2012-04-11 2013-10-24 Bridgestone Corp 炭化珪素単結晶の製造装置及び炭化珪素単結晶の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011011926A (ja) * 2009-06-30 2011-01-20 Denso Corp 炭化珪素単結晶の製造装置
JP2012206876A (ja) * 2011-03-29 2012-10-25 Shin Etsu Handotai Co Ltd SiC成長装置
JP2013075793A (ja) * 2011-09-30 2013-04-25 Fujikura Ltd 単結晶の製造装置、および単結晶の製造方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200130284A (ko) * 2018-03-16 2020-11-18 신에쯔 한도타이 가부시키가이샤 탄화규소 단결정의 제조방법 및 제조장치
KR102670425B1 (ko) * 2018-03-16 2024-05-30 신에쯔 한도타이 가부시키가이샤 탄화규소 단결정의 제조방법 및 제조장치
JP2021070622A (ja) * 2019-10-29 2021-05-06 エスケイシー・カンパニー・リミテッドSkc Co., Ltd. 炭化珪素ウエハ及び炭化珪素ウエハの製造方法
JP7042995B2 (ja) 2019-10-29 2022-03-29 セニック・インコーポレイテッド 炭化珪素ウエハ及び炭化珪素ウエハの製造方法
US11708644B2 (en) 2019-10-29 2023-07-25 Senic Inc. Method for preparing SiC ingot, method for preparing SiC wafer and the SiC wafer prepared therefrom
JP2021138597A (ja) * 2020-02-28 2021-09-16 エスケイシー・カンパニー・リミテッドSkc Co., Ltd. ウエハ、エピタキシャルウエハ及びその製造方法
JP7213558B2 (ja) 2020-02-28 2023-01-27 セニック・インコーポレイテッド ウエハ、エピタキシャルウエハ及びその製造方法
JP2021187727A (ja) * 2020-05-29 2021-12-13 エスケイシー・カンパニー・リミテッドSkc Co., Ltd. ウエハの製造方法、エピタキシャルウエハの製造方法、これによって製造されたウエハ及びエピタキシャルウエハ
JP7023543B2 (ja) 2020-05-29 2022-02-22 セニック・インコーポレイテッド ウエハの製造方法、エピタキシャルウエハの製造方法、これによって製造されたウエハ及びエピタキシャルウエハ
US11939698B2 (en) 2020-05-29 2024-03-26 Senic Inc. Wafer manufacturing method, epitaxial wafer manufacturing method, and wafer and epitaxial wafer manufactured thereby

Also Published As

Publication number Publication date
US20160040317A1 (en) 2016-02-11
US9777401B2 (en) 2017-10-03

Similar Documents

Publication Publication Date Title
JP2016037441A (ja) 単結晶の製造方法
JP7018816B2 (ja) 坩堝及びSiC単結晶成長装置
JP5892209B2 (ja) 単結晶の製造方法
JP6111873B2 (ja) 炭化珪素単結晶インゴットの製造方法
JP5925319B2 (ja) SiC単結晶の製造装置及びSiC単結晶の製造方法
US9890470B2 (en) Seed crystal holder for growing a crystal by a solution method
JP2013212952A (ja) 炭化珪素単結晶の製造方法
KR20130124024A (ko) 대구경 단결정 성장장치 및 이를 이용하는 성장방법
JP6015397B2 (ja) 炭化珪素単結晶の製造方法及びその製造装置
JP2016117624A (ja) 坩堝
KR20130014272A (ko) 잉곳 제조 장치
US20200181797A1 (en) Crystal growing apparatus and crucible
JP6697847B2 (ja) 断熱構造体
JP7494468B2 (ja) 坩堝および単結晶製造装置
JP2020015642A (ja) 結晶成長装置
TW583354B (en) Method for producing amorphous SiC wafer
JP7452276B2 (ja) 単結晶製造装置及びSiC単結晶の製造方法
JP2013216549A (ja) 炭化珪素単結晶の製造装置及び炭化珪素単結晶の製造方法
JP2007308355A (ja) 炭化ケイ素単結晶の製造装置及びその製造方法
JP2018168051A (ja) 炭化珪素単結晶インゴットの製造装置及び炭化珪素単結晶インゴットの製造方法
JP2018030734A (ja) 坩堝
JP2020093974A (ja) 結晶成長装置及び坩堝
KR101886271B1 (ko) 잉곳 제조 장치 및 잉곳 제조 방법
US11453959B2 (en) Crystal growth apparatus including heater with multiple regions and crystal growth method therefor
JP6394124B2 (ja) 坩堝および単結晶の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180629

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190122