JP5880429B2 - 炭化珪素半導体装置の製造方法 - Google Patents

炭化珪素半導体装置の製造方法 Download PDF

Info

Publication number
JP5880429B2
JP5880429B2 JP2012504431A JP2012504431A JP5880429B2 JP 5880429 B2 JP5880429 B2 JP 5880429B2 JP 2012504431 A JP2012504431 A JP 2012504431A JP 2012504431 A JP2012504431 A JP 2012504431A JP 5880429 B2 JP5880429 B2 JP 5880429B2
Authority
JP
Japan
Prior art keywords
film
heat treatment
insulating film
silicon carbide
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012504431A
Other languages
English (en)
Other versions
JPWO2011111627A1 (ja
Inventor
透 日吉
透 日吉
増田 健良
健良 増田
和田 圭司
圭司 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2012504431A priority Critical patent/JP5880429B2/ja
Publication of JPWO2011111627A1 publication Critical patent/JPWO2011111627A1/ja
Application granted granted Critical
Publication of JP5880429B2 publication Critical patent/JP5880429B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/0445Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
    • H01L21/048Making electrodes
    • H01L21/049Conductor-insulator-semiconductor electrodes, e.g. MIS contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/8213Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using SiC technology
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/511Insulating materials associated therewith with a compositional variation, e.g. multilayer structures
    • H01L29/513Insulating materials associated therewith with a compositional variation, e.g. multilayer structures the variation being perpendicular to the channel plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/518Insulating materials associated therewith the insulating material containing nitrogen, e.g. nitride, oxynitride, nitrogen-doped material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/6606Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/66068Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/92Capacitors having potential barriers
    • H01L29/94Metal-insulator-semiconductors, e.g. MOS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • H01L29/045Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes by their particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Formation Of Insulating Films (AREA)
  • Electrodes Of Semiconductors (AREA)

Description

この発明は、炭化珪素半導体装置およびその製造方法に関し、より特定的には、優れた電気的特性を示す炭化珪素半導体装置およびその製造方法に関する。
現在、珪素に代わる半導体材料として炭化珪素を用いた半導体装置の研究開発が活発に行われている。炭化珪素半導体装置の中でも、特にMOSFETが注目されている(たとえば、特開2009−158933号公報(以下、特許文献1と呼ぶ)参照)。特許文献1では、炭化珪素基板の表面に炭化珪素からなるエピタキシャル膜を形成した後、当該エピタキシャル膜の表面に酸化膜を形成している。その後、窒素含有雰囲気中でのアニール処理を行ない、さらにアルゴンガスを雰囲気として用いたアニール処理を行なっている。特許文献1では、このような処理を行なうことで、エピタキシャル膜と酸化膜との境界部での界面準位密度を低減でき、結果的にエピタキシャル膜でのキャリア移動度を増大させることができる、としている。
特開2009−158933号公報
しかし、特許文献1で開示された方法を用いて形成される半導体装置におけるキャリア移動度などの電気的特性については、炭化珪素の物理特性から考えてさらに向上させることが可能であると考えられる。また、半導体装置の性能向上という観点からも、炭化珪素半導体装置のさらなる電気的特性の改善が望まれている。
この発明は、上記のような課題を解決するために成されたものであり、この発明の目的は、チャネル移動度のような電気的特性の優れた炭化珪素半導体装置およびその製造方法を提供することである。
発明者は、炭化珪素からなる半導体膜と酸化膜との界面近傍における界面準位密度の低減を図るため、様々なプロセスについて研究を進め、本発明を完成するに至った。すなわち、炭化珪素からなる半導体装置と酸化膜との界面近傍での界面準位密度を低減する手法として、先行文献1に開示されているように、窒素含有雰囲気中での熱処理を行なった後、さらに不活性ガス中でのポスト熱処理を行なうことで、ある程度の界面準位密度の低減は実現できるが、さらにポスト熱処理の条件を検討した結果、ポスト熱処理での熱処理温度を、窒素含有雰囲気中での熱処理温度より高くすることで、さらに上記界面近傍での界面準位密度を低減できるという新たな知見を見出した。このような知見に基づいて、この発明に従った炭化珪素半導体装置の製造方法は、炭化珪素からなる半導体膜を準備する工程と、半導体膜の表面上に酸化膜を形成する工程と、酸化膜が形成された半導体膜を、窒素を含有する雰囲気中で熱処理する工程と、熱処理する工程の後、酸化膜が形成された半導体膜を、不活性ガスを含む雰囲気中でポスト熱処理する工程とを備える。ポスト熱処理する工程での熱処理温度は、熱処理する工程での熱処理温度越え、酸化膜の融点未満であって、1200℃以上1400℃以下である。
また、この発明に従った炭化珪素半導体装置の製造方法は、炭化珪素からなる半導体膜を準備する工程と、半導体膜の表面上に絶縁膜を形成する工程と、絶縁膜が形成された半導体膜を、窒素を含有する雰囲気中で熱処理する工程と、熱処理する工程の後、絶縁膜が形成された半導体膜を、ポスト熱処理する工程とを備える。ポスト熱処理する工程での熱処理温度は、熱処理する工程での熱処理温度越え、絶縁膜の融点未満であって、1200℃以上1400℃以下である。
また、この発明に従った炭化珪素半導体装置の製造方法は、炭化珪素からなる半導体膜を準備する工程と、半導体膜の表面上に、堆積法により絶縁膜を形成する工程と、絶縁膜が形成された半導体膜を、ポスト熱処理する工程とを備える。ポスト熱処理する工程での熱処理温度は、絶縁膜を形成する工程での理温度越え、絶縁膜の融点未満であって、1200℃以上1400℃以下である。
このようにすれば、ポスト熱処理する工程での熱処理温度が、窒素を含有する雰囲気(窒素含有雰囲気)中での熱処理における熱処理温度以下である場合より、半導体膜と酸化膜(絶縁膜)との界面における界面準位密度を低減することができる。この結果、半導体膜と酸化膜との界面(半導体膜と絶縁膜との界面)におけるキャリアのチャネル移動度を向上させることができるので、電気的特性の優れた炭化珪素半導体装置を得ることができる。なお、このような本発明の効果が得られる技術的な理由は正確には解明されていないが、(窒素含有雰囲気)中での熱処理(第1の熱処理)により半導体膜と酸化膜(絶縁膜)との界面に導入された窒素のうち、未結合手を終端していない窒素がポスト熱処理(第2の熱処理)により再活性化され、未結合手の終端が促進される、といった機構が考えられる。また、上記界面に存在する炭素(C)原子は、未結合手の起源の1つであると推測されているが、上記第2の熱処理によって当該炭素原子の拡散が促進される、という機構も考えられる。
なお、ポスト熱処理(第2の熱処理)の熱処理温度の下限を上記第1の熱処理の熱処理温度としたのは、当該第1の熱処理の熱処理温度を超えた温度で第2の熱処理を行なうことで、従来の方法と対比して界面準位密度の低減がより明確になるためである。また、ポスト熱処理の熱処理温度の上限を酸化膜(絶縁膜)の融点未満としたのは、当該ポスト熱処理により酸化膜または絶縁膜が溶融することを防止するためである。なお、酸化膜または絶縁膜としてたとえばシリコン酸化膜を用いる場合、当該シリコン酸化膜(SiO)の融点は約1610℃(1883K)である(株式会社アルバック編、「新版 真空ハンドブック」、オーム社、平成14年、p.113 石英ガラス(SiO)の融点を参照)。そして、シリコン酸化膜の溶融を確実に防止するという観点からは、たとえばポスト熱処理の熱処理温度の上限を1500℃程度(SiO2の軟化点は約1500℃である(株式会社アルバック編、「新版 真空ハンドブック」、オーム社、平成14年、p.114 石英ガラス(SiO2)の軟化温度を参照)とすることが好ましい。
この発明に従った炭化珪素半導体装置は、上記炭化珪素半導体装置の製造方法を用いて製造されたものである。このようにして得られた炭化珪素半導体装置は、半導体膜と酸化膜または絶縁膜との界面近傍における界面準位密度が低減されていることから、たとえば上記酸化膜または絶縁膜をゲート絶縁膜として利用する炭化珪素半導体装置では、デバイス素子オン抵抗におけるチャネル抵抗成分の割合を低減できる。この結果、高耐圧かつ低損失な炭化珪素半導体装置を実現できる。
本発明によれば、界面準位密度の低減された、電気的特性の優れた炭化珪素半導体装置を得ることができる。
本発明による半導体装置の実施の形態1を示す断面模式図である。 図1に示した半導体装置の製造方法を説明するためのフローチャートである。 図2に示した半導体装置の製造方法における窒素アニール工程およびポスト熱処理工程でのヒートパターンを示すグラフである。 図2に示した製造方法の工程を説明するための断面模式図である。 図2に示した製造方法の工程を説明するための断面模式図である。 本発明による半導体装置の実施の形態2を示す断面模式図である。 図6に示した半導体装置の製造方法を説明するための断面模式図である。 図6に示した半導体装置の製造方法を説明するための断面模式図である。 図6に示した半導体装置の実施の形態2の第1の変形例を示す断面模式図である。 図6に示した半導体装置の実施の形態2の第2の変形例を示す断面模式図である。 図6に示した半導体装置の実施の形態2の第3の変形例を示す断面模式図である。 本発明による半導体装置の実施の形態3を示す断面模式図である。 図12に示した半導体装置の製造方法を説明するためのフローチャートである。 実験のため準備した試料の平面模式図である。 図14の線分XV−XVにおける断面模式図である。 試料の製造方法における熱処理のヒートパターンを示すグラフである。 界面準位密度と伝導帯を基準とした場合のエネルギーとの関係を示すグラフである。
以下、図面に基づいて本発明の実施の形態を説明する。なお、以下の図面において同一または相当する部分には同一の参照番号を付しその説明は繰返さない。
(実施の形態1)
図1を参照して、本発明による半導体装置の実施の形態1を説明する。
図1に示した半導体装置1は、炭化珪素半導体装置としての横型のMOSFET(Metal−Oxide−Semiconductor Field−effect Transistor)であって、炭化珪素(SiC)からなる基板2と、この基板2上に形成された炭化珪素からなるエピタキシャル層3と、このエピタキシャル層3上に形成された炭化珪素からなるp型層4と、p型層4の表面に間隔を隔てて形成されたn+領域5、6と、このn+領域5、6の間のチャネル領域上に位置するゲート絶縁膜としての酸化膜8と、この酸化膜8上に形成されたゲート電極10と、n+領域5、6のそれぞれの上に形成されたソース電極11およびドレイン電極12とを備える。基板2は、SiCからなり任意の面方位およびオフ角を有する基板を用いることができる。たとえば、基板2として、面方位{0001}に対するオフ角が約53°程度である{03−38}面を主表面とする基板を用いることができる。基板2はn型の導電性不純物を含む。
基板2上に形成された炭化珪素からなるエピタキシャル層3は、アンドープ層である。このエピタキシャル層3上に形成されたp型層4には、p型を示す導電性不純物が含有されている。また、n+領域5、6には、n型を示す導電性不純物が注入されている。そして、このp型層4およびn+領域5、6を覆うように酸化膜7、8が形成されている。この酸化膜7、8にはn+領域5、6上に位置する領域に開口部が形成されている。当該開口部の内部において、n+領域5、6のそれぞれに電気的に接続されたソース電極11およびドレイン電極12が形成されている。そして、ゲート絶縁膜として作用する酸化膜8上にゲート電極10が配置されている。n+領域5、6の間の距離であるチャネル長Lgは、たとえば100μm程度とすることができる。また、チャネル幅は上記チャネル長Lgのたとえば2倍程度(200μm程度)とすることができる。
図1に示した半導体装置においては、後述するように窒素アニール処理の後のポスト熱処理工程での熱処理温度を、窒素アニール処理の熱処理温度より高くすることにより、半導体層としてのp型層4と酸化膜8との界面での界面準位密度が十分低減されている。この窒素を含む雰囲気は、たとえば窒素酸化物が用いられ、具体的にはNO(一酸化窒素)ガスまたはN2O(一酸化二窒素)が用いられる。この結果、チャネル長Lgを有するチャネル領域(p型層4におけるn+領域5、6の間の領域)での移動度(チャネル移動度)を十分大きな値とすることができる。
これは以下のような理由によると考えられる。すなわち、酸化膜8と半導体層であるp型層4との界面において、酸化膜8を熱酸化などによって形成した場合に界面準位が多く形成される。そして、そのままではチャネル領域におけるチャネル移動度が理論値に比べて極めて小さくなる。この問題に対し、上述のように当該酸化膜8とp型層4との界面領域に後述する窒素アニールによって窒素原子を導入し、さらにポスト熱処理工程を実施することによって、窒素アニールにより導入された窒素原子を再活性化して未結合手の終端を促進する。また、当該界面から、ポスト熱処理によって未結合手の起因となる炭素原子を拡散し、当該炭素原子の界面での密度を低減する。この結果、上述した界面準位の影響を低減してチャネル移動度を向上させることができると考えられる。なお、上述したゲート絶縁膜としての酸化膜8に代えて、シリコン窒化膜などの窒化膜や、シリコン酸窒化膜などの任意の絶縁膜を用いてもよい。
次に、図2〜図5を参照して、本発明による半導体装置の実施の形態1の製造方法を説明する。
まず、図2に示すように、基板準備工程(S10)を実施する。この工程においては、たとえば、基板2として4H−SiCのn型基板を準備する。また、準備する基板の主表面の面方位については任意の面方位を採用できる。たとえば、(0001)面から所定のオフ角(たとえば8°以下程度)だけ傾斜した面を主表面とした基板を用いてもよいし、また、たとえば面方位{03−38}面を主表面とする導電型がn型の炭化珪素基板を基板2として準備してもよい。このような{03−38}面を主表面とする基板は、たとえば(0001)面を主表面とするインゴットから{03−38}面が主表面として露出するように基板を切出すといった手法により得ることができる。
次に、エピタキシャル層形成工程(S20)を実施する。具体的には、基板2上にアンドープの炭化珪素エピタキシャル層3(図1参照)を形成する。
次に、注入工程(S25)を実施する。具体的には、まずエピタキシャル層3にp型の導電性を示す導電性不純物(たとえばアルミニウム(Al))を注入することにより、p型層4(図1参照)を形成する。次にn型の導電型を示す不純物を注入することにより、n+領域5、6(図1参照)を形成する。このn型を示す導電性不純物としては、たとえばリン(P)を用いることができる。このn+領域5、6を形成する場合、従来周知の任意の方法を利用することができる。たとえば、酸化膜をp型層4の上部表面を覆うように形成した後、フォトリソグラフィおよびエッチングによってn+領域5、6が形成されるべき領域の平面形状パターンと同じ平面形状パターンを有する開口部を当該酸化膜に形成する。さらに、このパターンが形成された酸化膜をマスクとして導電性不純物を注入する。このようにして、上述したn+領域5、6を形成することができる。
この後、注入した不純物を活性化するための活性化アニール処理を行なう。この活性化アニール処理としては、たとえば加熱温度を1700℃、加熱時間を30分とする条件を用いてもよい。
次に、図2に示すように、ゲート絶縁膜形成工程(S30)を実施する。具体的には、p型層4およびn+領域5、6の上部表面を犠牲酸化処理した後、ゲート絶縁膜としての酸化膜7を図4に示すように形成する。酸化膜7の厚みとしては、たとえば40nmという値を用いることができる。酸化膜7の形成方法としては、たとえば熱酸化を用いてもよい。熱酸化処理の条件としては、たとえば酸化温度を1100℃以上1400℃以下、雰囲気として酸素含有雰囲気または希釈酸素雰囲気を用いてもよい。熱酸化処理の時間は、形成する酸化膜7の膜厚に応じて任意に決定される。なお、ゲート絶縁膜形成工程(S30)を実施する前に、p型層4およびn+領域5、6の上部表面を洗浄してもよい(酸化前洗浄工程を実施してもよい)。当該洗浄において用いる洗浄方法は、従来周知の任意の洗浄方法を用いることができる。
また、上記ゲート絶縁膜として、酸化膜7に代えてシリコン窒化膜やシリコン酸窒化膜などを形成してもよい。また、ゲート絶縁膜の形成方法としては、上記のような熱酸化法以外の方法を用いてもよい。たとえば、ゲート絶縁膜となるべき膜(酸化膜や窒化膜、あるいは酸窒化膜など)をCVD法などの堆積法を用いて形成してもよい。また、堆積法を用いて形成したゲート絶縁膜をアニール処理してもよい。また、当該アニール処理における加熱温度は、上記膜を堆積した工程での処理温度より高くすることが好ましい。また、当該アニール処理における雰囲気としては、不活性ガスを含む雰囲気、あるいは水素(H)、水(H0)、オキシ塩化リン(POCl)、一酸化窒素(NO)、一酸化二窒素(NO)からなる群から選択される少なくとも1つを含む雰囲気を用いることができる。
次に、図2に示すように窒素アニール工程(S40)を実施する。具体的には、雰囲気ガスとして一酸化窒素(NO)ガスまたは一酸化二窒素(N2O)ガスを用い、熱処理を行なう。この熱処理の条件としては、たとえば加熱温度を1100℃以上1300℃以下、加熱時間をたとえば1時間程度とする条件を用いることができる。この結果、酸化膜7とp型層4およびn+領域5、6との界面領域に窒素原子を導入することができる。なお、この窒素アニール工程(S40)を実施せずに、後述するポスト熱処理工程(S50)を実施してもよい。
次に、図2に示すように、ポスト熱処理工程(S50)を実施する。具体的には、雰囲気ガスとして不活性ガスを用い、熱処理を行なう。雰囲気ガスとしては、任意の不活性ガスを用いることができるが、たとえばアルゴン(Ar)ガスや窒素ガス(N2)を雰囲気ガスとして用いることができる。また、ポスト熱処理(S50)における雰囲気は、上記のような不活性ガス雰囲気に代えて、水素(H)、水(HO)、オキシ塩化リン(POCl)、一酸化窒素(NO)、一酸化二窒素(NO)からなる群から選択される少なくとも1つを含む雰囲気(たとえば上記いずれか1つを不活性ガスで希釈したガス雰囲気)を用いてもよい。上記雰囲気ガスは、酸化膜7と炭化珪素との界面における未結合手を終端する効果を有する。また、ゲート絶縁膜形成工程(S30)において、ゲート絶縁膜として堆積法を用いて酸化膜7や他の絶縁膜を形成した場合、ポスト熱処理工程(S50)を実施する前に、酸素雰囲気中に当該ゲート絶縁膜となるべき膜が形成された基板を配置して熱処理してもよい。この熱処理では、ゲート絶縁膜となるべき膜下に位置する炭化珪素の少なくとも一部を酸化する。
ここで、ポスト熱処理工程(S50)の熱処理温度は、図3に示すように、窒素アニール工程(S40)での熱処理温度より高くする。図3に示したグラフにおいて、横軸は処理時間(単位:分)を示し、縦軸は温度(熱処理温度、単位:℃)を示す。図3に示すように、本発明による半導体装置の製造方法では、ポスト熱処理工程(加熱時間:b)での熱処理温度(T2)が、窒素アニール工程(加熱時間:a)での熱処理温度(T1)より高くなっている。たとえば、窒素アニール工程での熱処理温度(T1)が1100℃である場合、ポスト熱処理工程での熱処理温度(T2)を1100℃越え1500℃以下、より好ましくは1200℃以上1400℃以下にすることができる。また、ゲート絶縁膜形成工程(S30)において、ゲート絶縁膜として堆積法を用いて酸化膜7や他の絶縁膜を形成した場合、ポスト熱処理工程(S50)における熱処理温度は上記堆積法における処理温度より高くし、かつ、形成されたゲート絶縁膜の融点未満であることが好ましい。
なお、上記工程(S30)〜工程(S50)は連続して実施してもよいが、これらの工程を不連続に実施してもよい(各工程の間にインターバル時間を置いてもよい)。また、上記酸化膜7上に、上部絶縁膜としての第2の絶縁膜を形成してもよい。たとえば、堆積法を用いて酸化膜や窒化膜などを形成してもよい。たとえば、第2の絶縁膜として、SiN、SiON、HfO、ZrO、Ta、La、シリケイト(ZrAl)、アルミネート(HfAl)、HfAlO、TiO、Al、AlON、AlN、Siなどを含む膜を形成してもよい。また、上記第2の絶縁膜上に、さらに酸化膜や窒化膜などの第3の絶縁膜を形成してもよい。これらの第2および/または第3絶縁膜は、工程(S30)において形成してもよいが、工程(S40)、あるいは工程(S50)の後に形成してもよい。また、工程(S30)において、酸化膜7に代えて、積層構造の絶縁膜を形成してもよい。たとえば、基板側から酸化膜/窒化膜/酸化膜というように積層されたONO膜を形成してもよい。
次に、図2に示すように電極形成工程(S60)を実施する。具体的には、フォトリソグラフィ法により酸化膜7上にパターンを有するレジスト膜を形成する。このレジスト膜をマスクとして用いて、酸化膜7を部分的に除去することにより、n+領域5、6の上に位置する領域に開口部15を形成する。この開口部15の内部に、図5に示すようにソース電極11およびドレイン電極12となるべき導電体膜を形成する。この導電体膜は、上述したレジスト膜を残存させたまま形成する。その後、上述したレジスト膜を除去し、酸化膜7上に位置する導電体膜をレジスト膜とともに除去(リフトオフ)することにより、図5に示すようにソース電極11およびドレイン電極12を形成することができる。なお、このときソース電極11およびドレイン電極12の間に位置する酸化膜8(図4に示した酸化膜7の一部)は形成される半導体装置のゲート絶縁膜となる。
この後、さらにゲート絶縁膜として作用する酸化膜8上にゲート電極10(図1参照)を形成する。このゲート電極10の形成方法としては、以下のような方法を用いることができる。たとえば、予め酸化膜8上の領域に位置する開口パターンを有するレジスト膜を形成し、当該レジスト膜の全面を覆うようにゲート電極を構成する導電体膜を形成する。そして、レジスト膜を除去することによって、ゲート電極となるべき導電体膜の部分以外の導電体膜を除去(リフトオフ)する。この結果、図1に示すようにゲート電極10が形成される。このようにして、図1に示すような半導体装置を得ることができる。
(実施の形態2)
図6を参照して、本発明による半導体装置の実施の形態2を説明する。
図6を参照して、本発明による半導体装置1は、縦型DiMOSFET(Double Implanted MOSFET)であって、基板2、バッファ層21、耐圧保持層22、p領域23、n+領域24、p+領域25、酸化膜26、ソース電極11および上部ソース電極27、ゲート電極10および基板2の裏面側に形成されたドレイン電極12を備える。具体的には、導電型がnの炭化珪素からなる基板2の表面上に、炭化珪素からなるバッファ層21が形成されている。このバッファ層21は導電型がn型であり、その厚みはたとえば0.5μmである。また、バッファ層におけるn型の導電性不純物の濃度はたとえば5×1017cm-3とすることができる。このバッファ層21上には耐圧保持層22が形成されている。この耐圧保持層22は、導電型がn型の炭化珪素からなり、たとえばその厚みは10μmである。また、耐圧保持層22におけるn型の導電性不純物の濃度としては、5×1015cm-3という値を用いることができる。
この耐圧保持層22の表面には、導電型がp型であるp領域23が互いに間隔を隔てて形成されている。p領域23の内部においては、p領域23の表面層にn+領域24が形成されている。また、このn+領域24に隣接する位置には、p+領域25が形成されている。一方のp領域23におけるn+領域24上から、p領域23、2つのp領域23の間において露出する耐圧保持層22、他方のp領域23および当該他方のp領域23におけるn+領域24上にまで延在するように、酸化膜26が形成されている。酸化膜26上にはゲート電極10が形成されている。また、n+領域24およびp+領域25上にはソース電極11が形成されている。このソース電極11上には上部ソース電極27が形成されている。そして、基板2において、バッファ層21が形成された側の表面とは反対側の裏面にドレイン電極12が形成されている。
酸化膜26と、半導体層としてのn+領域24、p+領域25、p領域23および耐圧保持層22との界面領域(たとえば当該界面から10nm以内の領域)においては、後述する窒素アニール工程により窒素原子が導入され、またポスト熱処理工程によって当該窒素原子により未結合手の終端が促進されるとともに、炭素原子の当該界面領域外への拡散が促進されることから、界面準位密度が十分に低減されている。このようにすれば、特に酸化膜26下のチャネル領域(酸化膜26に接する部分であって、n+領域24と耐圧保持層22との間のp領域23の部分)の移動度を図1に示した半導体装置の場合と同様に向上させることができる。
次に、図2、図7および図8を参照して、図6に示した半導体装置の製造方法を説明する。
まず、図2に示した半導体装置の製造方法と同様に、基板準備工程(S10)を実施する。ここでは、本発明の実施の形態1における半導体装置の製造方法と同様に任意の面方位の炭化珪素基板を準備できるが、たとえば基板として、{03−38}面が主表面となった炭化珪素からなる基板2(図6参照)を準備する。また、この基板2としては、たとえば導電型がn型であり、基板抵抗が0.02Ωcmといった基板を用いてもよい。
次に、エピタキシャル層形成工程(S20)を実施する。具体的には、基板2の表面上にバッファ層21(図6参照)を形成する。バッファ層としては、導電型がn型の炭化珪素からなり、たとえばその厚みが0.5μmのエピタキシャル層を形成する。バッファ層21における導電型不純物の濃度は、たとえば5×1017cm-3といった値を用いることができる。そして、このバッファ層21上に耐圧保持層22(図6参照)を形成する。この耐圧保持層22としては、導電型がn型の炭化珪素からなる層をエピタキシャル成長法によって形成する。この耐圧保持層22の厚みとしては、たとえば10μmといった値を用いることができる。また、この耐圧保持層22におけるn型の導電性不純物の濃度としては、たとえば5×1015cm-3といった値を用いることができる。
次に、図2に示した工程と同様に注入工程(S25)を実施する。具体的には、フォトリソグラフィおよびエッチングを用いて形成した酸化膜をマスクとして用いて、導電型がp型の不純物を耐圧保持層22に注入することにより、p領域23(図6参照)を形成する。また、用いた酸化膜を除去した後、再度新たなパターンを有する酸化膜を、フォトリソグラフィおよびエッチングを用いて形成する。そして、当該酸化膜をマスクとして、n型の導電性不純物を所定の領域に注入することにより、n+領域24(図6参照)を形成する。また、同様の手法を用いて、導電型がp型の導電性不純物を注入することにより、p+領域25(図6参照)を形成する。
このような注入工程の後、活性化アニール処理を行なう。この活性化アニール処理としては、たとえばアルゴンガスを雰囲気ガスとして用いて、加熱温度1700℃、加熱時間30分といった条件を用いることができる。
次に、図2に示した工程と同様にゲート絶縁膜形成工程(S30)を実施する。具体的には、図7に示すように、耐圧保持層22、p領域23、n+領域24、p+領域25上を覆うように酸化膜26を形成する。この酸化膜26を形成するための条件としては、たとえばドライ酸化(熱酸化)を行なってもよい。このドライ酸化の条件としては、加熱温度を1200℃、加熱時間を30分といった条件を用いることができる。なお、上述した本実施の形態2および先に説明した実施の形態1のいずれにおいても、ゲート絶縁膜形成工程(S30)での酸化膜の形成方法としては、すでに述べたように熱酸化に限らず任意の方法(たとえばCVD法など)を用いてもよい。
その後、図2に示した工程と同様に窒素アニール工程(S40)を実施する。具体的には、雰囲気ガスを一酸化窒素(NO)として、アニール処理を行なう。アニール処理の温度条件としては、たとえば加熱温度を1100℃、加熱時間を120分とする。この結果、酸化膜26と下層の耐圧保持層22、p領域23、n+領域24、p+領域25との間の界面近傍に窒素原子が導入される。
その後、図2に示した工程と同様にポスト熱処理工程(S50)を実施する。具体的には、不活性ガス(たとえばアルゴン(Ar)ガス)を雰囲気ガスとして用いたアニール処理を行なう。たとえば、アルゴンガスを雰囲気ガスとして用いて、加熱温度を1100℃超え1500℃以下、より好ましくは1200℃以上1400℃以下、加熱時間を60分といった条件を用いてもよい。このポスト熱処理工程(S50)では、熱処理温度を窒素アニール工程(S40)での熱処理温度より高くする。
次に、図2に示した工程と同様に電極形成工程(S60)を実施する。具体的には、酸化膜26上にフォトリソグラフィ法を用いてパターンを有するレジスト膜を形成する。当該レジスト膜をマスクとして用いて、n+領域24およびp+領域25上に位置する酸化膜の部分をエッチングにより除去する。この後、レジスト膜上および当該酸化膜26において形成された開口部内部においてn+領域24およびp+領域25と接触するように金属などの導電体膜を形成する。その後、レジスト膜を除去することにより、当該レジスト膜上に位置していた導電体膜を除去(リフトオフ)する。ここで、導電体としては、たとえばニッケル(Ni)を用いることができる。この結果、図6に示すように、ソース電極11およびドレイン電極12を得ることができる。なお、ここでアロイ化のための熱処理を行なうことが好ましい。具体的には、たとえば雰囲気ガスとして不活性ガスであるアルゴン(Ar)ガスを用い、加熱温度を950℃、加熱時間を2分といった熱処理(アロイ化処理)を行なう。
その後、ソース電極11上に上部ソース電極27(図6参照)を形成する。また、基板2の裏面上にドレイン電極12(図8参照)を形成する。このようにして、図6に示す半導体装置を得ることができる。
次に、図9〜図11を参照して、図6に示した半導体装置の変形例を説明する。
図9を参照して、本発明による半導体装置の実施の形態2の第1の変形例は、基本的には図6に示した半導体装置と同様の構成を備えるが、ゲート絶縁膜の構成が図6に示した半導体装置とは異なる。すなわち、図9に示した半導体装置では、ゲート絶縁膜が熱酸化により形成された絶縁膜ではなく、CVD法などの堆積法を用いて形成された絶縁膜36となっている。この堆積法により形成された絶縁膜36としては、酸化膜(たとえばシリコン酸化膜など)や窒化膜(たとえばシリコン窒化膜など)、あるいは酸窒化膜(たとえばシリコン酸窒化膜など)を用いてもよい。なお、図9においては、ソース電極11の膜厚は絶縁膜36の膜厚とほぼ同じになっているが、ソース電極11の膜厚は絶縁膜36の膜厚より厚くなっていてもよく、また絶縁膜36の膜厚より薄くなっていてもよい。このような構成によっても、図6に示した半導体装置と同様の効果を得ることができる。
また、図9に示した半導体装置の製造方法は、基本的には図6に示した半導体装置の製造方法と同様であるが、図7に示したゲート絶縁膜形成工程(S30)における成膜方法が異なっている。すなわち、図6に示した半導体装置の製造方法と同様に、図2の工程(S10)〜(S25)を実施した後、ゲート絶縁膜形成工程(S30)として堆積法を用いて絶縁膜36を形成する。その後、図2の工程(S40)〜工程(S60)を実施することにより、図9に示した半導体装置を得ることができる。
図10に示した半導体装置は、本発明による半導体装置の実施の形態2の第2の変形例であって、基本的には図6に示した半導体装置と同様の構成を備える。ただし、図10に示した半導体装置は、ゲート絶縁膜の構成が図6に示した半導体装置とは異なる。すなわち、図10に示した半導体装置では、ゲート絶縁膜が積層構造を有している。具体的には、図10に示した半導体装置におけるゲート絶縁膜は、第1の絶縁膜46と、当該第1の絶縁膜46上に形成された第2の絶縁膜56とからなる。
第1の絶縁膜46としては、図6に示した半導体装置における酸化膜26と同様に熱酸化により形成された酸化膜や、堆積法により形成された酸化膜あるいは窒化膜など、任意の絶縁膜を用いることができる。また、第2の絶縁膜56としては、任意の絶縁膜を用いることができるが、堆積法を用いて形成された絶縁膜を用いることが好ましい。たとえば、第2の絶縁膜56として、堆積法により形成された酸化膜(たとえばシリコン酸化膜など)や窒化膜(たとえばシリコン窒化膜など)、あるいは酸窒化膜(たとえばシリコン酸窒化膜など)を用いることが好ましい。なお、図10においては、ソース電極11の膜厚は第1の絶縁膜46の膜厚とほぼ同じになっているが、ソース電極11の膜厚は第1の絶縁膜46の膜厚より厚くなっていてもよく、また第1の絶縁膜46の膜厚より薄くなっていてもよい。このような構成によっても、図6に示した半導体装置と同様の効果を得ることができる。
また、図10に示した半導体装置の製造方法は、基本的には図6に示した半導体装置の製造方法と同様であるが、図7に示したゲート絶縁膜形成工程(S30)の内容が異なっている。すなわち、図6に示した半導体装置の製造方法と同様に、図2の工程(S10)〜(S25)を実施した後、ゲート絶縁膜形成工程(S30)として第1の絶縁膜46を形成し、その後第1の絶縁膜46上に第2の絶縁膜56を形成する。第1の絶縁膜46の形成方法としては、熱酸化法や堆積法など、任意の方法を用いることができる。また、第2の絶縁膜56の形成方法としては、たとえば堆積法を用いることができる。その後、図2の工程(S40)〜工程(S60)を実施することにより、図10に示した半導体装置を得ることができる。
図11に示した半導体装置は、本発明による半導体装置の実施の形態2の第3の変形例であって、基本的には図6に示した半導体装置と同様の構成を備える。ただし、図11に示した半導体装置は、ゲート絶縁膜の構成が図6に示した半導体装置とは異なる。すなわち、図11に示した半導体装置では、ゲート絶縁膜が3層構造からなる積層構造を有している。具体的には、図11に示した半導体装置におけるゲート絶縁膜は、第1の絶縁膜46と、当該第1の絶縁膜46上に形成された第2の絶縁膜56と、第2の絶縁膜56上に形成された第3の絶縁膜66とからなる。
第1の絶縁膜46としては、図6に示した半導体装置における酸化膜26と同様に熱酸化により形成された酸化膜や、堆積法により形成された酸化膜あるいは窒化膜など、任意の絶縁膜を用いることができる。また、第2の絶縁膜56としては、任意の絶縁膜を用いることができるが、堆積法を用いて形成された絶縁膜を用いることが好ましい。たとえば、第2の絶縁膜56として、堆積法により形成された酸化膜(たとえばシリコン酸化膜など)や窒化膜(たとえばシリコン窒化膜など)、あるいは酸窒化膜(たとえばシリコン酸窒化膜など)を用いることが好ましい。また、第2の絶縁膜56としては、シリコン酸化膜以外の絶縁膜(たとえばシリコン窒化膜など)を用いることがより好ましい。さらに、第3の絶縁膜66として、堆積法により形成された絶縁膜を用いてもよい。たとえば、第3の絶縁膜66として、堆積法により形成された酸化膜(たとえばシリコン酸化膜)を用いることが好ましい。また、図11では3層構造からなるゲート絶縁膜を開示しているが、ゲート絶縁膜として4層以上の積層構造を有する絶縁膜を用いてもよい。なお、図11においては、ソース電極11の膜厚は第1の絶縁膜46および第2の絶縁膜56の合計膜厚より薄く、かつ第1の絶縁膜46の膜厚より厚くなっているが、ソース電極11の膜厚は第1の絶縁膜46の膜厚以下となっていてもいし、また第1の絶縁膜46および第2の絶縁膜56の合計膜厚より厚くなっていてもよい。このような構成によっても、図6に示した半導体装置と同様の効果を得ることができる。
また、図11に示した半導体装置の製造方法は、基本的には図6に示した半導体装置の製造方法と同様であるが、図7に示したゲート絶縁膜形成工程(S30)の内容が異なっている。すなわち、図6に示した半導体装置の製造方法と同様に、図2の工程(S10)〜(S25)を実施した後、ゲート絶縁膜形成工程(S30)として第1の絶縁膜46を形成し、その後第1の絶縁膜46上に第2の絶縁膜56を形成し、さらに第2の絶縁膜56上に第3の絶縁膜66を形成する。第1の絶縁膜46の形成方法としては、熱酸化法や堆積法など、任意の方法を用いることができる。また、第2の絶縁膜56の形成方法としては、たとえば堆積法を用いることができる。また、第3の絶縁膜66の形成方法としては、たとえば熱酸化法や堆積法を用いることができる。その後、図2の工程(S40)〜工程(S60)を実施することにより、図11に示した半導体装置を得ることができる。
なお、上述した図9〜図11に示した半導体装置1におけるゲート絶縁膜の構成は、図1に示した半導体装置1に適用できる。具体的には、図1に示した酸化膜8に代えて、図9〜図11に示した絶縁膜36または第1〜第3の絶縁膜46、56、66のいずれかを適用することができる。
(実施の形態3)
図12を参照して、本発明による半導体装置の実施の形態3を説明する。
図12を参照して、半導体装置1はMOSキャパシタであって、炭化珪素(SiC)からなる基板2と、この基板2上に形成された炭化珪素からなるエピタキシャル層3と、エピタキシャル層3の表面に形成された酸化膜7と、酸化膜7上に形成された電極9とを備える。基板2の裏面(エピタキシャル層3が形成された表面とは反対側に位置する裏面)には、図示しない他の電極が形成されてもよい。酸化膜7としては、たとえばSiOなどのシリコン酸化膜を用いることができる。また、電極9の材料としては任意の導電体を用いることができるが、たとえばアルミニウムなどの金属を用いることができる。このようなMOSキャパシタを用いて、酸化膜7とエピタキシャル層3との界面近傍における界面準位密度をたとえばhigh−low法などを用いて測定することができる。
そして、図12に示した半導体装置1は、後述するように本発明による製造方法を適用して製造されているため、エピタキシャル層3と酸化膜7との界面近傍における界面準位密度が十分低減されている。なお、図12に示した半導体装置1における酸化膜7に代えて、図9〜図11に示した絶縁膜36または第1〜第3の絶縁膜46、56、66のいずれかを適用してもよい。
次に、図13を参照して、図12に示した半導体装置1の製造方法を説明する。
まず、図13に示すように、基板準備工程(S10)を実施する。この工程においては、図2に示した基板準備工程(S10)と同様に、任意の面方位の炭化珪素からなる基板を準備する。
次に、図13に示すように、エピタキシャル層形成工程(S20)を実施する。具体的には、基板2上にアンドープの炭化珪素エピタキシャル層3(図12参照)を形成する。
次に、図13に示すように、絶縁膜形成工程(S35)を実施する。具体的には、エピタキシャル層3の上部表面を犠牲酸化処理した後、酸化膜7(図12参照)を形成する。酸化膜7の形成方法としては、たとえば熱酸化を用いてもよい。熱酸化処理の条件としては、たとえば酸化温度を1100℃以上1400℃以下、雰囲気として酸素含有雰囲気または希釈酸素雰囲気を用いてもよい。熱酸化処理の時間は、形成する酸化膜7の膜厚に応じて任意に決定される。なお、絶縁膜形成工程(S35)を実施する前に、エピタキシャル層3の上部表面を洗浄してもよい(酸化前洗浄工程を実施してもよい)。当該洗浄において用いる洗浄方法は、従来周知の任意の洗浄方法を用いることができる。また、絶縁膜形成工程(S35)において堆積法など任意の成膜方法を用いてもよい。さらに、酸化膜7に代えて図9〜図11に示した絶縁膜36または第1〜第3の絶縁膜46、56、66のいずれかを形成する場合には、図9〜図11において説明した成膜方法を用いることができる。
次に、図13に示すように窒素アニール工程(S40)を実施する。具体的には、雰囲気ガスとして一酸化窒素(NO)ガスを用い、熱処理を行なう。この熱処理の条件としては、たとえば加熱温度を1100℃以上1300℃以下、加熱時間をたとえば1時間程度とする条件を用いることができる。この結果、酸化膜7とエピタキシャル層3との界面領域に窒素原子を導入することができる。
次に、図13に示すように、ポスト熱処理工程(S50)を実施する。具体的には、雰囲気ガスとして不活性ガスを用い、熱処理を行なう。雰囲気ガスとしては、図2に示したポスト熱処理工程(S50)と同様に、任意の不活性ガスを用いることができるが、たとえばアルゴン(Ar)ガスを雰囲気ガスとして用いることができる。
ここで、ポスト熱処理工程(S50)の熱処理温度は、窒素アニール工程(S40)での熱処理温度より高くする。たとえば、窒素アニール工程(S40)での熱処理温度が1100℃である場合、ポスト熱処理工程(S50)での熱処理温度を1100℃越え1500℃以下、より好ましくは1200℃以上1400℃以下にすることができる。
次に、図13に示すように電極形成工程(S60)を実施する。具体的には、酸化膜7上に電極9(図12参照)を形成する。この電極9の形成方法としては、以下のような方法を用いることができる。たとえば、予め酸化膜7上の領域に位置する開口パターンを有するレジスト膜を形成し、当該レジスト膜の全面を覆うように電極9を構成する導電体膜を形成する。そして、レジスト膜を除去することによって、電極9となるべき導電体膜の部分以外の導電体膜を除去(リフトオフ)する。この結果、図12に示すように電極9が形成される。このようにして、図12に示すような半導体装置を得ることができる。
ここで、上述した実施の形態と一部重複する部分もあるが、本発明の特徴的な構成を列挙する。
この発明に従った炭化珪素半導体装置の製造方法は、炭化珪素からなる半導体膜(図1のp型層4、図6、図9〜図11のp領域23、図12および図15のエピタキシャル層3)を準備する工程(エピタキシャル層形成工程(S20))と、半導体膜の表面上に酸化膜7、8または絶縁膜36または第1〜第3の絶縁膜46、56、66を形成する工程(図2のゲート絶縁膜形成工程(S30)または図13の絶縁膜形成工程(S35))と、酸化膜または絶縁膜が形成された半導体膜を、窒素を含有する雰囲気中で熱処理する工程(窒素アニール工程(S40))と、熱処理する工程の後、酸化膜が形成された半導体膜を、不活性ガスを含む雰囲気中でポスト熱処理する工程(ポスト熱処理工程(S50))とを備える。ポスト熱処理する工程(S50)での熱処理温度(図3の温度T2)は、熱処理する工程(窒素アニール工程(S40))での熱処理温度(図3の温度T1)越え、酸化膜7、8の融点未満である。
この発明に従った炭化珪素半導体装置の製造方法は、炭化珪素からなる半導体膜(図1のp型層4、図6のp領域23、図12および図15のエピタキシャル層3)を準備する工程(エピタキシャル層形成工程(S20))と、半導体膜の表面上に絶縁膜(酸化膜7、8または絶縁膜36または第1〜第3の絶縁膜46、56、66)を形成する工程(図2のゲート絶縁膜形成工程(S30)または図13の絶縁膜形成工程(S35))と、絶縁膜が形成された半導体膜を、窒素を含有する雰囲気中で熱処理する工程(窒素アニール工程(S40))と、熱処理する工程の後、絶縁膜が形成された半導体膜を、ポスト熱処理する工程(ポスト熱処理工程(S50))とを備える。ポスト熱処理工程(S50)での熱処理温度(図3の温度T2)は、熱処理する工程での熱処理温度(図3の温度T1)越え、絶縁膜の融点未満である。
また、この発明に従った炭化珪素半導体装置の製造方法は、炭化珪素からなる半導体膜(図1のp型層4、図6のp領域23、図12および図15のエピタキシャル層3)を準備する工程(エピタキシャル層形成工程(S20))と、半導体膜の表面上に、堆積法により絶縁膜(酸化膜7、8または絶縁膜36または第1〜第3の絶縁膜46、56、66)を形成する工程(図2のゲート絶縁膜形成工程(S30)または図13の絶縁膜形成工程(S35))と、絶縁膜が形成された半導体膜を、ポスト熱処理する工程(ポスト熱処理工程(S50))とを備える。ポスト熱処理する工程での熱処理温度は、絶縁膜を形成する工程(S30)での処理温度越え、絶縁膜の融点未満である。
上記炭化珪素半導体装置の製造方法において、ポスト熱処理工程(S50)を実施する雰囲気は、不活性ガス雰囲気、および、水素(H)、水(HO)、オキシ塩化リン(POCl)、一酸化窒素(NO)、一酸化二窒素(NO)からなる群から選択される少なくとも1つを含む雰囲気のいずれかであってもよい。
このようにすれば、ポスト熱処理工程(S50)での熱処理温度が、窒素を含有する雰囲気(窒素含有雰囲気)中での窒素アニール工程(S40)における熱処理温度以下である場合より、半導体膜(図1のp型層4、図6のp領域23、図12および図15のエピタキシャル層3)と酸化膜7、8または絶縁膜36または第1の絶縁膜46との界面における界面準位密度を低減することができる。この結果、半導体膜でのキャリア移動度を向上させることができるので、キャリア移動度などの電気的特性の優れた炭化珪素半導体装置(半導体装置1)を得ることができる。
上記炭化珪素半導体装置の製造方法において、ポスト熱処理工程(S50)での熱処理温度は、1100℃以上1500℃以下であってもよい。また、酸化膜7、8または絶縁膜36または第1の絶縁膜46はシリコン酸化膜であることが好ましい。この場合、界面準位密度の低減効果をより確実に得ることができる。なお、ポスト熱処理工程(S50)での熱処理温度(第2熱処理での熱処理温度)の下限を1100℃としたのは、第2熱処理での熱処理温度を当該温度以上にすることで、第1熱処理としての窒素アニール工程(S40)によって上記界面に導入された窒素が未結合手を終端することや、上記界面において未結合手の起源となっている原子(たとえば炭素原子)を当該界面から拡散させることを十分に促進できるためである。また、第2熱処理での熱処理温度(図3の温度T2)の上限を1500℃としたのは、当該温度以下であれば、一般的な酸化膜の軟化を抑制できるので、半導体装置1の破損といった問題の発生を抑制できるからである。なお、酸化膜7、8としてシリコン酸化膜を用いる場合、当該シリコン酸化膜の軟化点はほぼ1500℃程度である。
上記炭化珪素半導体装置の製造方法において、絶縁膜形成工程(S30)と、窒素アニール工程(S40)と、ポスト熱処理工程(S50)とは図16などに示すように連続して実施されてもよい。また、ゲート絶縁膜形成工程(S30)とポスト熱処理工程(S50)とを連続して実施してもよい。ここで、窒素アニール工程(S40)の後に一旦半導体膜および絶縁膜(酸化膜7、8または絶縁膜36または第1〜第3の絶縁膜46、56、66)の温度を低下させて、その後ポスト熱処理工程(S50)を実施するために半導体膜および絶縁膜を昇温すると、サーマルショックによって絶縁膜に亀裂などの不良が発生する可能性がある。そこで、上述のように窒素アニール工程(S40)とポスト熱処理工程(S50)とを連続して実施すると、そのようなサーマルショックの発生を抑制できる。この結果、絶縁膜(酸化膜7、8または絶縁膜36または第1〜第3の絶縁膜46、56、66)での亀裂の発生といった不良の発生を抑制できる。
上記炭化珪素半導体装置の製造方法において、酸化膜を形成する工程または絶縁膜(酸化膜7、8または絶縁膜36または第1〜第3の絶縁膜46、56、66)を形成する工程(ゲート絶縁膜形成工程(S30))では、熱酸化法により酸化膜を形成してもよい。この場合、ゲート絶縁膜として膜質のすぐれた酸化膜を形成できる。
上記炭化珪素半導体装置の製造方法において、酸化膜を形成する工程または絶縁膜を形成する工程(ゲート絶縁膜形成工程(S30))は、半導体膜の表面上に酸化膜または絶縁膜(酸化膜7、8または絶縁膜36または第1〜第3の絶縁膜46、56、66)となるべき膜を堆積法により形成する工程を含んでいてもよい。このような堆積法によりゲート絶縁膜となるべき膜を形成すれば、当該ゲート絶縁膜の材質の選択の自由度を大きくできる。
上記炭化珪素半導体装置の製造方法は、酸化膜または絶縁膜(酸化膜7、8または絶縁膜36または第1〜第3の絶縁膜46、56、66)となるべき膜を堆積法により形成する工程(ゲート絶縁膜形成工程(S30))の後であって、ポスト熱処理する工程(ポスト熱処理工程(S50))の前に、酸化膜または絶縁膜となるべき膜が形成された半導体膜を酸素含有雰囲気中において加熱する工程をさらに備えていてもよい。この結果、酸化膜が形成された炭化珪素からなる半導体膜において酸化膜または絶縁膜となるべき膜が形成された表面側を酸化することができる。したがって、酸素含有雰囲気が堆積絶縁膜(たとえば堆積酸化膜)中を拡散し、炭化珪素表面に到着することで炭化珪素表面は酸化され、より良質な絶縁膜(たとえば堆積酸化膜)と炭化珪素との界面を得ることができる。また、窒素含有雰囲気(たとえばNOやNO)や水素含有雰囲気を用いることで、堆積絶縁膜(たとえば堆積酸化膜)と炭化珪素との界面に窒素または水素を導入し、未結合手を終端する効果も期待できる。これらの効果により、界面準位密度を低減することができる。
上記炭化珪素半導体装置の製造方法は、酸化膜上または絶縁膜(酸化膜7、8または絶縁膜36または第1の絶縁膜46)上に上部絶縁膜(第2の絶縁膜56および3の絶縁膜66)を形成する工程をさらに備えていてもよい。このような構成の炭化珪素半導体装置においても、本発明の上述した効果を得る事ができる。
この発明に従った炭化珪素半導体装置(図1、図6、図9〜図12、図15に示す半導体装置1)は、上記炭化珪素半導体装置の製造方法を用いて製造されたものである。このようにして得られた半導体装置1は、半導体膜(図1のp型層4、図6、図9〜図11のp領域23、図12および図15のエピタキシャル層3)と絶縁膜(酸化膜7、8または絶縁膜36または第1の絶縁膜46)との界面近傍における界面準位密度が低減されていることから、半導体と絶縁膜(たとえば酸化膜)との界面において従来より高いチャネル移動度を実現できる。そのため、たとえば上記酸化膜7、8または絶縁膜36または第1〜第3の絶縁膜46、56、66をゲート絶縁膜として利用する半導体装置1では、デバイス素子オン抵抗におけるチャネル抵抗成分の割合を低減できる。この結果、高耐圧かつ低損失な半導体装置1を実現できる。なお、酸化膜としては酸窒化層を用いてもよい。
(実施例)
本発明の効果を確認するため、以下のような実験を行なった。
(試料の準備)
試料の形状:
図14および図15を参照して、準備した試料を説明する。
図14を参照して、試料の平面形状は四角形状であり、縦方向の長さL1および横方向の長さL2ともに15mm〜20mmとした。また、図14に示すように、試料の断面構造は、基本的に図12に示した半導体装置に類似する。具体的には、基板2として導電型がn型であり、主表面の面方位が{03−38}面である炭化珪素基板を用い、当該基板2の主表面上に炭化珪素からなる導電型がn型のエピタキシャル層3を形成している。基板2の厚みは400μmとし、導電型がn型のドーパントの濃度は1×1019cm-3である。ドーパントとしては窒素(N)を用いた。また、エピタキシャル層3の厚みは10μmとした。エピタキシャル層3でのドーパントとしては窒素を用い、当該ドーパント濃度は1×1016cm-3である。
そして、エピタキシャル層3上に酸化膜7としてシリコン酸化膜(SiO2)を形成した。酸化膜7の厚みは45nm〜50nmである。当該酸化膜7の上に、図14に示すように複数の電極9をマトリックス状に配置した。電極9の平面形状は円形状であり、その直径は400μm、隣接する電極9間の距離Pは300μmとした。また、電極9の材料としてはアルミニウム(Al)を用い、その厚みは300nmとした。そして、基板2の裏面には電極として銀ペースト30を配置した。
試料の製造方法:
基本的に、図13に示した半導体装置の製造方法と同様の方法により試料を作製した。なお、試料は後述する3種類の実験条件それぞれに2個(つまり合計6個)準備した。具体的には、基板準備工程(S10)では主表面が{03−38}面の炭化珪素基板を準備した。エピタキシャル層形成工程(S20)では、エピタキシャル成長法を用いて、ドーパントとして窒素を含有する炭化珪素からなるエピタキシャル層3を形成した。そして、絶縁膜形成工程(S35)では、エピタキシャル層3の表面を洗浄(酸化前洗浄)してから、熱酸化処理を行なった。熱酸化処理の条件としては、図16に示すように、加熱温度1200℃、熱処理時間(図16の時点t1から時点t2までの時間)を50分とした。ここで、図16の横軸は時間(t)(単位:分)を、また縦軸は温度(T)(加熱温度、単位:℃)を示す。図16から分かるように、熱酸化処理での加熱温度まで、昇温速度を5℃/分(min)という条件で加熱している(ただし、この昇温速度はさらに下げても上げても良い)。また、図16の上部には、各時間帯での雰囲気ガスの種類を記載している。たとえば、時点t1までの熱処理時の雰囲気ガスは窒素ガス(Nガス)であり、時点t1から時点t2までの熱処理時の雰囲気ガスは酸素ガス(Oガス)であり、時点t2から時点t3までの雰囲気ガスはアルゴンガス(Arガス)である。また、時点t3から時点t4までの熱処理時の雰囲気ガスは一酸化窒素ガス(NOガス)であり、時点t4以降の熱処理時の雰囲気ガスはアルゴンガスである。
次に、窒素アニール工程(S40)では、上述した熱酸化処理の直後に一酸化窒素(NO)ガスを雰囲気ガスとして用い、熱処理温度を1100℃、加熱時間(図16での時点t3から時点t4までの時間)を120分として熱処理を行なった。
そして、上述の窒素アニール工程(S40)までは、すべての試料について共通した条件を用いる一方、以下に説明するポスト熱処理工程(S50)については、3つの条件(条件A〜条件C)で試料の製造を行なった。なお、各条件ごとに試料は2つづつ処理している。
まず、条件A(比較例)として、図16のグラフAで示すように、ポスト熱処理工程(S50)ではアルゴンガスを雰囲気ガスとして用いて、熱処理温度を1100℃(窒素アニール工程(S40)と同様の熱処理温度)として熱処理を行なった。このときの熱処理時間(図16の時点t4から時点t5までの時間)は60分とした。
また、条件B(実施例1)として、図16のグラフBで示すように、ポスト熱処理工程(S50)ではアルゴンガスを雰囲気ガスとして用いて、熱処理温度を1200℃(窒素アニール工程(S40)の熱処理温度より高い温度)として熱処理を行なった。このときの熱処理時間(図16の時点t6から時点t7までの時間)は60分とした。
また、条件C(実施例2)として、図16のグラフCで示すように、ポスト熱処理工程(S50)ではアルゴンガスを雰囲気ガスとして用いて、熱処理温度を1300℃(窒素アニール工程(S40)の熱処理温度より高い温度)として熱処理を行なった。このときの熱処理時間(図16の時点t8から時点t9までの時間)は60分とした。その後、各試料とも毎分5℃という降温速度で冷却した。
次に、すべての試料について、電極形成工程(S60)を実施した。具体的には、リフトオフ法を用いて、アルミニウムからなる複数の電極9を酸化膜7上に形成した。また、基板2の裏面には図15に示すように銀ペースト30を配置した。このようにして、図14および図15に示した試料(MOSキャパシタ)を得た。
(実験方法)
各試料について、エピタキシャル層3と酸化膜7との界面(MOS界面)の界面準位を評価した。具体的には、容量−電圧特性(CV特性)を測定した。なお、高周波CV測定は測定周波数を1MHzとした。また、低周波CV測定は、QuasistaticCV測定法により行なった。なお、MOS界面の半導体側(エピタキシャル層3側)に形成される空乏層による容量Cについては、ポアソン方程式を解くことにより求めた。このとき、反転状態は考慮せず、深い空乏状態を仮定した。
また、上記実施例および比較例の試料について、特許文献1に開示されている方法と同様のHigh−Low法を用いて界面準位密度を算出した。
(結果)
図17を参照して、上記実験の結果を説明する。
図17では、縦軸が界面準位密度Dit(単位:cm-2eV-1)を示し、横軸が伝導帯を基準としたエネルギーの値(Ec−E(単位:eV))を示している。また、上述したポスト熱処理工程(S50)での条件A、条件B、条件Cごとに結果が示されている。
図17から分かるように、ポスト熱処理工程(S50)での熱処理温度が、窒素アニール工程(S40)での熱処理温度より高くなっている条件Bおよび条件C(実施例1および実施例2)の方が、ポスト熱処理工程(S50)での熱処理温度と窒素アニール工程(S40)での熱処理温度とが同じである条件A(比較例)より界面準位密度が低下していることがわかる。また、条件Bと条件Cとを比較すると、ポスト熱処理工程(S50)での熱処理温度がより高い方が、界面準位密度が低下していることもわかる。実施例の試料では、ほぼすべてのエネルギー領域で、界面準位密度が1×1012(単位:cm-2eV-1)未満となっている。
今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
本発明は、MOSFETやDiMOSFETなど、炭化珪素からなる半導体層に絶縁膜が接触して形成さる炭化珪素半導体装置に有利に適用される。
1 半導体装置、2 基板、3 エピタキシャル層、4 p型層、5,6,24 n+領域、7,8,26 酸化膜、9 電極、10 ゲート電極、11 ソース電極、12 ドレイン電極、15 開口部、21 バッファ層、22 耐圧保持層、23 p領域、25 p+領域、27 上部ソース電極、30 銀ペースト、36 絶縁膜、46 第1の絶縁膜、56 第2の絶縁膜、66 第3の絶縁膜。

Claims (18)

  1. 炭化珪素からなる半導体膜(3、4、23)を準備する工程(S20)と、
    前記半導体膜(3、4、23)の表面上に酸化膜(7、8)を形成する工程(S30、S35)と、
    前記酸化膜(7、8)が形成された前記半導体膜(3、4、23)を、窒素を含有する雰囲気中で熱処理する工程(S40)と、
    前記熱処理する工程の後、前記酸化膜が形成された前記半導体膜を、不活性ガスを含む雰囲気中でポスト熱処理する工程(S50)とを備え、
    前記熱処理する工程(S40)での熱処理温度(T1)は、1100℃以上1300℃以下であり、
    前記ポスト熱処理する工程(S50)での熱処理温度(T2)は、前記熱処理する工程(S40)での熱処理温度(T1)越え、前記酸化膜(7、8)の融点未満であって、1200℃以上1400℃以下である、炭化珪素半導体装置の製造方法。
  2. 前記熱処理する工程(S40)と、前記ポスト熱処理する工程(S50)とは連続して実施される、請求項1に記載の炭化珪素半導体装置の製造方法。
  3. 前記酸化膜(7、8)を形成する工程(S30)では、熱酸化法により前記酸化膜(7、8)を形成する、請求項1に記載の炭化珪素半導体装置の製造方法。
  4. 前記酸化膜(7、8)を形成する工程(S30)は、前記半導体膜(3、4、23)の表面上に前記酸化膜(7、8)となるべき膜を堆積法により形成する工程を含む、請求項1に記載の炭化珪素半導体装置の製造方法。
  5. 前記酸化膜(7、8)となるべき膜を堆積法により形成する工程の後であって、前記ポスト熱処理する工程(S50)の前に、前記酸化膜(7、8)となるべき膜が形成された前記半導体膜(3、4、23)を酸素含有雰囲気中において加熱する工程をさらに備える、請求項4に記載の炭化珪素半導体装置の製造方法。
  6. 前記酸化膜(7、8)上に上部絶縁膜を形成する工程をさらに備える、請求項1に記載の炭化珪素半導体装置の製造方法。
  7. 炭化珪素からなる半導体膜(3、4、23)を準備する工程(S20)と、
    前記半導体膜(3、4、23)の表面上に絶縁膜(7、8、36、46、56、66)を形成する工程(S30)と、
    前記絶縁膜(7、8、36、46、56、66)が形成された前記半導体膜(3、4、23)を、窒素を含有する雰囲気中で熱処理する工程(S40)と、
    前記熱処理する工程(S40)の後、前記絶縁膜(7、8、36、46、56、66)が形成された前記半導体膜(3、4、23)を、ポスト熱処理する工程(S50)とを備え、
    前記熱処理する工程(S40)での熱処理温度(T1)は、1100℃以上1300℃以下であり、
    前記ポスト熱処理する工程(S50)での熱処理温度(T2)は、前記熱処理する工程(S40)での熱処理温度(T1)越え、前記絶縁膜(7、8、36、46、56、66)の融点未満であって、1200℃以上1400℃以下である、炭化珪素半導体装置の製造方法。
  8. 前記ポスト熱処理する工程(S50)を実施する雰囲気は、不活性ガス雰囲気、および、水素、水、オキシ塩化リン、一酸化窒素、一酸化二窒素からなる群から選択される少なくとも1つを含む雰囲気のいずれかである、請求項7に記載の炭化珪素半導体装置の製造方法。
  9. 前記絶縁膜(7、8、36、46、56、66)を形成する工程(S30)から前記ポスト熱処理する工程(S50)までは連続して実施される、請求項7に記載の炭化珪素半導体装置の製造方法。
  10. 前記絶縁膜(7、8、36、46、56、66)を形成する工程(S30)では、熱酸化法により前記絶縁膜(7、8、36、46、56、66)を形成する、請求項7に記載の炭化珪素半導体装置の製造方法。
  11. 前記半導体膜(3、4、23)の表面上に絶縁膜(7、8、36、46、56、66)を形成する工程(S30)は、前記半導体膜(3、4、23)の表面上に絶縁膜(7、8、36、46、56、66)となるべき膜を堆積法により形成する工程を含む、請求項7に記載の炭化珪素半導体装置の製造方法。
  12. 前記絶縁膜(7、8、36、46、56、66)となるべき膜を堆積法により形成する工程の後であって、前記ポスト熱処理する工程(S50)の前に、前記絶縁膜(7、8、36、46、56、66)となるべき膜が形成された前記半導体膜(3、4、23)を酸素含有雰囲気中において加熱する工程をさらに備える、請求項11に記載の炭化珪素半導体装置の製造方法。
  13. 前記絶縁膜(7、8、36、46)上に上部絶縁膜(56、66)を形成する工程をさらに備える、請求項7に記載の炭化珪素半導体装置の製造方法。
  14. 炭化珪素からなる半導体膜(3、4、23)を準備する工程と(S20)、
    前記半導体膜(3、4、23)の表面上に、堆積法により絶縁膜(7、8、36、46、56、66)を形成する工程(S30)と、
    前記絶縁膜(7、8、36、46、56、66)が形成された前記半導体膜(3、4、23)を、窒素を含有する雰囲気中で熱処理する工程(S40)と、
    前記熱処理する工程(S40)の後、前記絶縁膜(7、8、36、46、56、66)が形成された前記半導体膜(3、4、23)を、ポスト熱処理する工程(S50)とを備え、
    前記熱処理する工程(S40)での熱処理温度(T1)は、1100℃以上1300℃以下であり、
    前記ポスト熱処理する工程(S50)での熱処理温度(T2)は、前記絶縁膜(7、8、36、46、56、66)を形成する工程(S30)での処理温度越え、前記絶縁膜(7、8、36、46、56、66)の融点未満であって、1200℃以上1400℃以下である、炭化珪素半導体装置の製造方法。
  15. 前記ポスト熱処理する工程(S50)を実施する雰囲気は、不活性ガス雰囲気、および、水素、水、オキシ塩化リン、一酸化窒素、一酸化二窒素からなる群から選択される少なくとも1つを含む雰囲気のいずれかである、請求項14に記載の炭化珪素半導体装置の製造方法。
  16. 前記絶縁膜(7、8、36、46、56、66)を形成する工程(S30)から前記ポスト熱処理する工程(S50)までは連続して実施される、請求項14に記載の炭化珪素半導体装置の製造方法。
  17. 前記絶縁膜(7、8、36、46、56、66)を形成する工程(S30)の後であって、前記ポスト熱処理する工程(S50)の前に、前記絶縁膜(7、8、36、46、56、66)となるべき膜が形成された前記半導体膜(3、4、23)を酸素含有雰囲気中において加熱する工程をさらに備える、請求項14に記載の炭化珪素半導体装置の製造方法。
  18. 前記絶縁膜(7、8、36、46)上に上部絶縁膜(56、66)を形成する工程をさらに備える、請求項14に記載の炭化珪素半導体装置の製造方法。
JP2012504431A 2010-03-12 2011-03-04 炭化珪素半導体装置の製造方法 Expired - Fee Related JP5880429B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012504431A JP5880429B2 (ja) 2010-03-12 2011-03-04 炭化珪素半導体装置の製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010055910 2010-03-12
JP2010055910 2010-03-12
JP2012504431A JP5880429B2 (ja) 2010-03-12 2011-03-04 炭化珪素半導体装置の製造方法
PCT/JP2011/055093 WO2011111627A1 (ja) 2010-03-12 2011-03-04 炭化珪素半導体装置およびその製造方法

Publications (2)

Publication Number Publication Date
JPWO2011111627A1 JPWO2011111627A1 (ja) 2013-06-27
JP5880429B2 true JP5880429B2 (ja) 2016-03-09

Family

ID=44563430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012504431A Expired - Fee Related JP5880429B2 (ja) 2010-03-12 2011-03-04 炭化珪素半導体装置の製造方法

Country Status (8)

Country Link
US (1) US9012335B2 (ja)
EP (2) EP2546867A4 (ja)
JP (1) JP5880429B2 (ja)
KR (1) KR20130045834A (ja)
CN (1) CN102804349B (ja)
CA (1) CA2786238A1 (ja)
TW (1) TW201145400A (ja)
WO (1) WO2011111627A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10749001B2 (en) 2017-12-06 2020-08-18 Fuji Electric Co., Ltd. Method of evaluating insulated-gate semiconductor device

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012038919A (ja) * 2010-08-06 2012-02-23 Mitsubishi Electric Corp 炭化珪素半導体装置の製造方法
JP5687220B2 (ja) * 2012-01-20 2015-03-18 三菱電機株式会社 炭化珪素半導体装置の製造方法
JP6068042B2 (ja) * 2012-08-07 2017-01-25 住友電気工業株式会社 炭化珪素半導体装置およびその製造方法
JP5811969B2 (ja) * 2012-08-27 2015-11-11 住友電気工業株式会社 炭化珪素半導体装置の製造方法
US9570570B2 (en) 2013-07-17 2017-02-14 Cree, Inc. Enhanced gate dielectric for a field effect device with a trenched gate
JP6300262B2 (ja) * 2013-09-18 2018-03-28 株式会社東芝 半導体装置及びその製造方法
JP6270667B2 (ja) * 2014-08-28 2018-01-31 三菱電機株式会社 半導体装置及びその製造方法
WO2016071990A1 (ja) 2014-11-06 2016-05-12 三菱電機株式会社 炭化珪素半導体装置およびその製造方法
CN106611700B (zh) * 2015-10-21 2019-07-12 国网智能电网研究院 一种碳化硅表面氧化膜的制备方法
CN106611705B (zh) * 2015-10-21 2019-07-12 国网智能电网研究院 一种碳化硅表面低界面态氧化层的制备方法
CN106611696B (zh) * 2015-10-21 2019-07-12 国网智能电网研究院 一种碳化硅表面氧化膜的制备方法
CN105405749B (zh) * 2015-11-02 2019-05-10 株洲南车时代电气股份有限公司 一种刻蚀碳化硅的方法
GB201613051D0 (en) 2016-07-28 2016-09-14 Landa Labs (2012) Ltd Applying an electrical conductor to a substrate
CN106057683B (zh) * 2016-08-16 2019-10-11 上海华虹宏力半导体制造有限公司 改善rfldmos击穿电压的工艺方法
JP6844176B2 (ja) * 2016-09-29 2021-03-17 富士電機株式会社 炭化珪素半導体装置および炭化珪素半導体装置の製造方法
US20180233574A1 (en) * 2017-02-10 2018-08-16 Purdue Research Foundation Silicon carbide power transistor apparatus and method of producing same
JP6805074B2 (ja) * 2017-05-12 2020-12-23 株式会社東芝 半導体装置の製造方法
JP6896672B2 (ja) * 2018-03-21 2021-06-30 株式会社東芝 半導体装置及びその製造方法
CN111326573A (zh) * 2018-12-14 2020-06-23 深圳比亚迪微电子有限公司 场效应晶体管及制备方法、电子设备
CN113035691B (zh) * 2021-02-28 2024-06-04 大连理工大学 提高碳化硅mosfet器件稳定性和可靠性的两步氧化后退火工艺

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003086792A (ja) * 2001-09-10 2003-03-20 National Institute Of Advanced Industrial & Technology 半導体装置の作製法
JP2008147365A (ja) * 2006-12-08 2008-06-26 Tohoku Univ 半導体装置および半導体装置の製造方法
JP2008244455A (ja) * 2007-02-28 2008-10-09 Denso Corp 炭化珪素半導体装置およびその製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6911707B2 (en) * 1998-12-09 2005-06-28 Advanced Micro Devices, Inc. Ultrathin high-K gate dielectric with favorable interface properties for improved semiconductor device performance
JP3551909B2 (ja) * 1999-11-18 2004-08-11 株式会社デンソー 炭化珪素半導体装置の製造方法
US6610366B2 (en) 2000-10-03 2003-08-26 Cree, Inc. Method of N2O annealing an oxide layer on a silicon carbide layer
CN1599961A (zh) * 2001-11-30 2005-03-23 松下电器产业株式会社 半导体装置及其制造方法
US7402472B2 (en) * 2005-02-25 2008-07-22 Freescale Semiconductor, Inc. Method of making a nitrided gate dielectric
JP5524443B2 (ja) * 2006-03-24 2014-06-18 ピーエスフォー ルクスコ エスエイアールエル 半導体装置及びその製造方法
JP5307381B2 (ja) 2007-11-12 2013-10-02 Hoya株式会社 半導体素子ならびに半導体素子製造法
JP5157843B2 (ja) 2007-12-04 2013-03-06 住友電気工業株式会社 炭化ケイ素半導体装置およびその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003086792A (ja) * 2001-09-10 2003-03-20 National Institute Of Advanced Industrial & Technology 半導体装置の作製法
JP2008147365A (ja) * 2006-12-08 2008-06-26 Tohoku Univ 半導体装置および半導体装置の製造方法
JP2008244455A (ja) * 2007-02-28 2008-10-09 Denso Corp 炭化珪素半導体装置およびその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10749001B2 (en) 2017-12-06 2020-08-18 Fuji Electric Co., Ltd. Method of evaluating insulated-gate semiconductor device

Also Published As

Publication number Publication date
EP2546867A4 (en) 2014-07-09
KR20130045834A (ko) 2013-05-06
CN102804349A (zh) 2012-11-28
CA2786238A1 (en) 2011-09-15
TW201145400A (en) 2011-12-16
EP2546867A1 (en) 2013-01-16
JPWO2011111627A1 (ja) 2013-06-27
US9012335B2 (en) 2015-04-21
EP3223300A1 (en) 2017-09-27
US20120286291A1 (en) 2012-11-15
CN102804349B (zh) 2015-07-29
WO2011111627A1 (ja) 2011-09-15

Similar Documents

Publication Publication Date Title
JP5880429B2 (ja) 炭化珪素半導体装置の製造方法
JP4647211B2 (ja) 半導体装置及びその製造方法
JP4935741B2 (ja) 炭化珪素半導体装置の製造方法
CN105940498B (zh) 碳化硅半导体装置的制造方法及碳化硅半导体装置
JP5811969B2 (ja) 炭化珪素半導体装置の製造方法
KR20100100585A (ko) 반도체 장치의 제조 방법 및 반도체 장치
WO2014046073A1 (ja) 炭化珪素半導体装置およびその製造方法
JPWO2012131898A1 (ja) 炭化珪素半導体装置
US8524585B2 (en) Method of manufacturing semiconductor device
JPWO2011089687A1 (ja) 炭化ケイ素半導体装置およびその製造方法
JP2005136386A5 (ja)
WO2015045628A1 (ja) 炭化珪素半導体装置の製造方法
JP2009043880A (ja) 炭化珪素半導体装置の製造方法および炭化珪素半導体装置
US20120231618A1 (en) Method of manufacturing semiconductor device
JP5564781B2 (ja) 炭化ケイ素半導体装置およびその製造方法
US8802552B2 (en) Method for manufacturing semiconductor device
JP2016012677A (ja) 炭化珪素半導体装置の製造方法および炭化珪素半導体装置
JP2003100657A (ja) 半導体装置の製造方法
JP5439856B2 (ja) 絶縁ゲート型電界効果トランジスタ
JP2023013100A (ja) 炭化珪素半導体装置の製造方法および炭化珪素半導体装置
JP5825418B2 (ja) 炭化珪素半導体装置の製造方法
JP2021044355A (ja) 半導体装置および半導体装置の製造方法
JP2017168603A (ja) 炭化珪素半導体素子および炭化珪素半導体素子の製造方法
JP2010027638A (ja) 半導体装置の製造方法および半導体装置
JP2013232563A (ja) 炭化珪素半導体装置の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151027

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160118

R150 Certificate of patent or registration of utility model

Ref document number: 5880429

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees