JP5858050B2 - 研磨材再生方法 - Google Patents

研磨材再生方法 Download PDF

Info

Publication number
JP5858050B2
JP5858050B2 JP2013550205A JP2013550205A JP5858050B2 JP 5858050 B2 JP5858050 B2 JP 5858050B2 JP 2013550205 A JP2013550205 A JP 2013550205A JP 2013550205 A JP2013550205 A JP 2013550205A JP 5858050 B2 JP5858050 B2 JP 5858050B2
Authority
JP
Japan
Prior art keywords
abrasive
slurry
cerium oxide
recovered
polishing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013550205A
Other languages
English (en)
Other versions
JPWO2013094399A1 (ja
Inventor
高橋 篤
篤 高橋
佑樹 永井
佑樹 永井
前澤 明弘
明弘 前澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2013550205A priority Critical patent/JP5858050B2/ja
Publication of JPWO2013094399A1 publication Critical patent/JPWO2013094399A1/ja
Application granted granted Critical
Publication of JP5858050B2 publication Critical patent/JP5858050B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B57/00Devices for feeding, applying, grading or recovering grinding, polishing or lapping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B57/00Devices for feeding, applying, grading or recovering grinding, polishing or lapping agents
    • B24B57/02Devices for feeding, applying, grading or recovering grinding, polishing or lapping agents for feeding of fluid, sprayed, pulverised, or liquefied grinding, polishing or lapping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • B28D5/0058Accessories specially adapted for use with machines for fine working of gems, jewels, crystals, e.g. of semiconductor material
    • B28D5/007Use, recovery or regeneration of abrasive mediums
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K23/00Use of substances as emulsifying, wetting, dispersing, or foam-producing agents
    • C09K23/002Inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1409Abrasive particles per se
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/12Nature of the water, waste water, sewage or sludge to be treated from the silicate or ceramic industries, e.g. waste waters from cement or glass factories
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/34Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32
    • C02F2103/346Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from semiconductor processing, e.g. waste water from polishing of wafers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Inorganic Chemistry (AREA)
  • Grinding-Machine Dressing And Accessory Apparatuses (AREA)
  • Treatment Of Sludge (AREA)
  • Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)
  • Mixers With Rotating Receptacles And Mixers With Vibration Mechanisms (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Description

本発明は、酸化セリウムを含有する使用済みの研磨材から酸化セリウムを回収し、これを再生酸化セリウム含有研磨材として再利用するための研磨材再生方法に関する。
ケイ素を主成分とする被研磨物(例えば、光学ガラス、情報記録媒体用ガラス基板、半導体シリコン基板等)を仕上工程で精密研磨する研磨材としては、従来、酸化セリウムを主成分とし、これに酸化ランタン、酸化ネオジム、酸化プラセオジムなどが加わった希土類元素酸化物が使用されている。
一般に、研磨材の主構成元素である希土類元素、特に、酸化セリウムは、日本国内では産出しない鉱物から得られるため、輸入に頼っている資源である。この酸化セリウムを含有する研磨材は、硬度が高い微粒子であるため、光学レンズや半導体シリコン基板及び液晶画面のガラス板など、電子部品関係の光学研磨材として大量に使用されている重要な資源であり、その再利用が強く望まれている資源の一つである。また、光学研磨用の研磨材は、上述の酸化セリウムを主成分として、ナトリウムやクロムなどの金属元素や、イットリウムやデシプロシウムなど希土類元素の微粒子を含んでいる場合もあり、単純な方法による廃棄は、環境上強く禁止されている。そのため、研磨に使用した後の酸化セリウムを含む廃液については、無公害化処理が強く望まれており、酸化セリウムを含有する光学研磨材廃液の資源の再利用技術は、無公害化の目的においても重要である。
一般に、各種の産業分野において生じる懸濁微粒子を含む廃水の処理方法としては、中和剤や無機凝集剤、高分子凝集剤等を用いて懸濁微粒子を凝集分離し、処理水は放流し、凝集分離した汚泥は廃棄処分されているのが現状である。
また、酸化セリウムを含む研磨材は、研磨工程において大量に使用する上、廃液中には被研磨成分(例えば、研磨した光学ガラス屑等)も共存し、研磨材と被研磨成分とを効率的に分離することが困難であるため、現状では、上記のように、研磨材廃液は、使用後は廃棄されており、環境負荷の面や廃棄コストの面からも問題を抱えている。
したがって、近年、研磨材の主構成元素を効率よく回収して、希少材料である希土類元素の再資源化を図ることが重要な問題となっている。
研磨材成分の回収の方法に関しては、例えば、特許文献1には、酸化セリウム系研磨材を含有するガラス用研磨液の使用済み研磨材に対して、電解質を添加して、50℃で2時間保温することにより、研磨された基体由来の成分(Si成分又はAl成分)を溶解させるとともに、研磨材を沈降分離させ、固液分離する方法が開示されている。特許文献1に記載の方法では、電解質物質としては、水酸化アルカリ金属、炭酸アルカリ金属、アルカリ金属塩、及びアンモニウム塩を使用している。
また、特許文献2には、酸化セリウムを主成分とするガラス用研磨液の使用済み研磨材に対し、ポリ塩化アルミニウムと高分子凝集剤とを添加して使用済み研磨材の固形分を凝集した後、脱水処理して脱水ケーキ状の研磨廃棄物を得て、その研磨廃棄物を、水酸化ナトリウム又は水酸化カリウムの水溶液に混合し、可溶性の不純物を溶解した後、固液分離により、研磨材を回収する方法が開示されている。更に、特許文献3には、使用済み研磨材に対して、硫酸を加えて加熱処理することにより、レアアースやレアメタルを溶解し、スラリー中のシリカ等の凝集物と分離除去する方法が開示されている。
また、特許文献4には、コロイダルシリカ系の研磨材を回収する方法として、CMP(化学機械研磨)廃液に対し、マグネシウムイオンの存在下で、アルカリ添加してpH値を10以上に調整することにより凝集処理して固液分離した後、固形分をpH調整槽でpH値を9以下に調整してマグネシウムイオンを溶出させて、研磨材を回収する方法が開示されている。さらに、非特許文献1では、上記説明した金属の回収技術に関する総説がされている。
しかしながら、上記特許文献1〜4に開示されている方法では、回収される研磨材の純度が十分でないために、回収された研磨材は高精度な研磨には適さないものであった。
また、上記特許文献4の方法では、酸化セリウムを主成分とする研磨材を用いて、ケイ素を主成分とするガラス等を研磨対象とする場合、使用済みの研磨材が含まれる研磨材スラリーのpHが10以上の条件で塩化マグネシウム等の添加剤を加えると、研磨材成分がガラス等とともに凝集してしまい、得られる再生研磨材の純度の低下につながる。その理由は、pHが10を超える範囲では、ケイ素を主成分とする研磨対象由来の成分(ガラス等)の凝集性が高まり、添加剤の添加により研磨材成分よりも容易に凝集するためであると考えられる。
特許文献5では、使用済み回収液を凍結させることにより酸化セリウムの二次粒子を再生し、その後水を除去することによる再生酸化セリウム研磨材の製造方法が記載されている。しかしながら、特許文献5に記載されている方法では、凍結のための大掛かりな設備等が必要となり初期投資が非常に大きなものとなる。
特開平06−254764号公報 特開平11−90825号公報 特開平11−50168号公報 特開2000−254659号公報 特開2010−214515号公報
金属資源レポート 45頁 2010.11
本発明は、上記問題に鑑みてなされたものであり、その解決課題は、酸化セリウムを主成分とする使用済み研磨材から、効率的な方法で酸化セリウムを回収し、その後、簡易な方法で再生研磨材を得ることができる研磨材再生方法を提供することである。
本発明者らは、上記課題に鑑み鋭意検討を行った結果、酸化セリウムを含有する使用済みの研磨材から、酸化セリウム研磨材を再生する研磨材再生方法として、研磨機から排出される研磨材スラリーをスラリー回収工程Aで回収した後、該回収した研磨材スラリーに対し、無機塩として2価のアルカリ土類金属塩であるマグネシウム塩を添加することにより、研磨材のみを凝集させ、非研磨材、例えば、光学ガラス等の研磨屑であるシリカ粒子等は凝集させない条件で、それぞれの比重差を利用して、該研磨材のみを母液より分離濃縮(分離濃縮工程B)し、次いで、該分離濃縮した研磨材を回収する研磨材回収工程Cを経て酸化セリウムを含有する研磨材を再生する研磨材再生方法により、酸化セリウムを主成分とする使用済み研磨材から、効率的に酸化セリウムのみを回収し、その後、簡易な方法で再生研磨材を得ることができる研磨材再生方法を実現することができることを見出し、本発明にいたった次第である。
すなわち、本発明の上記課題は、下記の手段により解決される。
1.ケイ素が主成分である被研磨物を研磨した、酸化セリウム研磨材を含有する使用済み研磨材スラリーから、酸化セリウム研磨材を再生する研磨材再生方法であって、
研磨機から排出される研磨材スラリーを回収するスラリー回収工程Aと、
該回収した研磨材スラリーに対し、無機塩としてマグネシウム塩を添加し、母液の25℃換算のpH値が6.5以上、10.0未満の条件で研磨材を被研磨物由来成分から分離して凝集させ、該研磨材を母液より分離して濃縮する分離濃縮工程Bと、
該分離して濃縮した研磨材を回収する研磨材回収工程Cと、
を経て、酸化セリウムを含有する研磨材を再生することを特徴とする研磨材再生方法。
2.更に、前記研磨材回収工程Cの後に、回収した前記研磨材の粒子径を調整する粒子径制御工程Dを有することを特徴とする第1項に記載の研磨材再生方法。
3.前記スラリー回収工程Aは、洗浄水を含む研磨材スラリー1と使用済みの研磨材スラリー2とを回収することを特徴とする第1項又は第2項に記載の研磨材再生方法。
4.前記スラリー回収工程Aで回収した研磨材スラリー1と研磨材スラリー2とを混合した後、前記分離濃縮工程B及び研磨材回収工程Cで処理することを特徴とする第3項に記載の研磨材再生方法。
5.前記スラリー回収工程Aで回収した研磨材スラリー1と研磨材スラリー2とを、それぞれ独立して前記分離濃縮工程B及び研磨材回収工程Cで処理することを特徴とする第3項に記載の研磨材再生方法。
6.前記研磨材回収工程Cにおける研磨材を回収する方法が、自然沈降によるデカンテーション分離法であることを特徴とする第1項から第5項までのいずれか一項に記載の研磨材再生方法。
7.前記粒子径制御工程Dは、回収した研磨材溶液に分散剤を添加した後、超音波分散機又はビーズミル型分散機を用いて分散することにより、再生研磨材の粒子径を制御することを特徴とする第2項から第6項までのいずれか一項に記載の研磨材再生方法。
8.前記粒子径制御工程Dで用いる分散機が、超音波分散機であることを特徴とする第7項に記載の研磨材再生方法。
9.前記分散剤が、ポリカルボン酸系高分子分散剤であることを特徴とする第7項又は第8項に記載の研磨材再生方法。
本発明の上記手段により、酸化セリウムを主成分とする使用済み研磨材から、効率的な方法で酸化セリウムを回収し、その後簡易な方法で再生研磨材を得ることができる研磨材再生方法が提供できる。
本発明において上記のような効果を発揮する理由は、全て明確にはなっていないが、以下の様に推察している。
本発明の作用効果の特徴点は、使用済み研磨材を含むスラリーから、研磨材の主成分である酸化セリウムのみを高濃度で回収する技術が、単に酸化セリウムを回収するだけではなく、回収の際の純度を高くし、さらに回収後の再生を容易としている点にある。
その技術的思想は、酸化セリウムと、無機塩として2価のアルカリ土類金属塩であるマグネシウム塩との特異的な相性に起因していると推定している。使用済み研磨材に比重の大きい凝集剤を添加して固体成分として分離した後、酸化セリウムを精製して再生することは一般によく行われていることである。その際、固体成分として回収される酸化セリウムあるいは酸化セリウムを含む研磨材スラリーには、ガラス研磨による被研磨材であるガラス成分、例えば、二酸化ケイ素粒子も含まれる。このガラス成分を分離するためは、更に、種々の精製工程が必要となってくる。
しかしながら、本発明の研磨材再生方法においては、2価のアルカリ土類金属塩としてマグネシウム塩が酸化セリウムのみと選択的な相互作用により凝集し、非研磨材であるガラス成分はほとんど凝集させることがなく、効率的に両者を分離することができることを見出した。この性質が、酸化セリウムのみを高純度で分離することができ、その後の精製工程が必要ないという、それ以降の工程を簡略化できる効果を生じている。
本発明においては、研磨材スラリー1を含む母液のpHとして、マグネシウム塩を添加した後から凝集物を分離するまで、従来の方法とは異なり、pH調整剤を添加しない状態で、一定のpH条件、マグネシウム塩添加時のpH以下に維持することが必要である。ここでいうマグネシウム塩添加時のpHとは、マグネシウム塩の添加が終了した直後のpHのことをいう。
また、回収に使用されたマグネシウム塩の一部は、酸化セリウム粒子に吸着し、再生酸化セリウム含有研磨材に残留することとなるが、酸化セリウムとの特異な結合をしているため、その後の研磨材としての使用において酸化セリウムの微粒子化を抑制するという効果も有することが判明した。
本発明の研磨材再生方法の基本的な工程フローの一例を示す模式図 本発明の研磨材再生方法における分離濃縮工程B及び研磨材回収工程Cのフォローの一例を示した概略図 超音波分散機を用いた粒子径制御工程Dの一例を示す模式図
本実施形態の研磨材再生方法は、酸化セリウムを含有する使用済みの研磨材から、酸化セリウム研磨材を再生する研磨材再生方法であって、1)研磨機から排出される研磨材スラリーを回収するスラリー回収工程Aと、2)該回収した研磨材スラリーに対し、無機塩としてマグネシウム塩を添加し、母液の25℃換算のpH値が6.5以上10.0未満の条件で研磨材のみを凝集させ、非研磨材を凝集させない状態で、該研磨材を母液より分離して濃縮する分離濃縮工程Bと、3)該分離して濃縮した研磨材を回収する研磨材回収工程Cと、を経て酸化セリウムを含有する研磨材を再生することを特徴とする。
更に、前記研磨材回収工程Cの後に、回収した前記研磨材の粒子径を調整する粒子径制御工程Dを有することが好ましい態様である。また、前記スラリー回収工程Aでは、研磨機から排出される洗浄水を含む研磨材スラリー1と使用済み研磨材スラリー2とを回収すること、前記スラリー回収工程Aで回収した研磨材スラリー1と研磨材スラリー2とを混合して母液として調製した後、前記分離濃縮工程B及び研磨材回収工程Cで処理すること、あるいは、前記スラリー回収工程Aで回収した研磨材スラリー1と研磨材スラリー2とを、それぞれ独立して前記分離濃縮工程B及び研磨材回収工程Cで処理することが好ましい。また、前記研磨材回収工程Cにおける研磨材を回収する方法が、自然沈降によるデカンテーション分離法であることが好ましい。更に、前記粒子径制御工程Dが、回収した研磨材溶液に分散剤を添加した後、超音波分散機又はビーズミル型分散機を用いて分散することにより、再生研磨材の粒子径を制御することが好ましい。また、前記粒子径制御工程Dで用いる分散機が、超音波分散機であること、前記分散剤が、ポリカルボン酸系高分子分散剤であることが、本発明の効果をより発現することができる観点から好ましい。
以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、以下の説明において示す「〜」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。
《研磨材再生方法》
はじめに、本実施形態の研磨材再生方法の工程フローについて、図を用いて説明する。
図1は、本実施形態の研磨材再生方法の基本的な工程フローの一例を示す模式図である。
図1に示した研磨工程においては、研磨装置1は、不織布、合成樹脂発泡体、合成皮革などから構成される研磨布Fを貼付した研磨定盤2を有しており、この研磨定盤2は回転可能となっている。研磨作業時には、被研磨物(例えば、ガラス)3を所定の押圧力で上記研磨定盤2に押し付けながら、研磨定盤2を回転させる。同時に、スラリーノズル5から、ポンプを介して酸化セリウムを含む研磨材液4(研磨材スラリー2)を供給する。酸化セリウムを含む研磨材液4は、流路6を通じてスラリー槽Tに貯留され、研磨装置1とスラリー槽Tとの間を繰り返し循環する。
また、研磨装置1を洗浄するための洗浄水7は、洗浄水貯蔵槽Tに貯留されており、洗浄水噴射ノズル8より、研磨部に吹き付けて洗浄を行い、研磨材を含む洗浄液10(研磨材スラリー1)は、ポンプを介し、流路9を通じて、洗浄液貯蔵槽Tに貯留される。この洗浄液貯蔵槽Tは、洗浄(リンス)で使用された後の洗浄水を貯留するための槽であり、沈殿、凝集を防止するため、常時攪拌羽根によって攪拌されている。
上記研磨工程で生じたスラリー槽Tに貯留され、循環して使用された研磨材液4(研磨材スラリー2)と、洗浄液貯蔵槽Tに貯留された洗浄液10(研磨材スラリー1)は、共に、研磨材である酸化セリウム粒子と共に、研磨工程1で研磨された被研磨物(例えば、ガラス)3より削り取られた非研磨材を含有した状態になっている。
次いで、この研磨材液4(研磨材スラリー2)と洗浄液10(研磨材スラリー1)は、両者を混合液、あるいはそれぞれ個別の液として、回収される。この工程を、スラリー回収工程Aと称す。
次いで、スラリー回収工程Aで回収された研磨材液4(研磨材スラリー2)と洗浄液10(研磨材スラリー1)の混合液、あるいはそれぞれの単独液(以降、これらの液を母液と称す)に対し、特に、pH調整剤を添加しない状態で無機塩として2価のアルカリ土類金属塩を添加し、研磨材のみを凝集させ、非研磨材(例えば、ガラス粉等)を凝集させない状態で、該研磨材のみを母液より分離して濃縮する(分離濃縮工程B)。
次に、分離操作は、強制的な分離手段は適用せずに、自然沈降による固液分離を行う。このようにして母液を、非研磨材等を含む上澄み液と、下部に沈殿した酸化セリウムを含む濃縮物とに分離した後、デンカンテーション法、例えば、釜を傾斜させて、上澄み液を排液する、あるいは、排液パイプを分離した釜内の上澄み液と濃縮物の界面近くまで挿入し、上澄み液のみを、釜外に排出して、研磨材を回収する(研磨材回収工程C)。
次いで、分離した酸化セリウムを含む濃縮物では、酸化セリウム粒子が無機塩により凝集体(二次粒子)を形成しているため、独立した一次粒子に近い状態まで解きほぐすため、水及び分散剤を添加し、分散装置を用いて、所望の粒子径まで分散する(粒子径制御工程D)。
以上のようにして、高品位の再生研磨材を、簡易な方法で得ることができる。
次いで、本実施形態の研磨材再生方法及び構成技術の詳細について説明する。
〔研磨材〕
一般に、光学ガラスや半導体基板等の研磨材としては、ベンガラ(αFe)、酸化セリウム、酸化アルミニウム、酸化マンガン、酸化ジルコニウム、コロイダルシリカ等の微粒子を水や油に分散させてスラリー状にしたものが用いられているが、本発明においては、半導体基板の表面やガラスの研磨加工において、高精度に平坦性を維持しつつ、十分な加工速度を得るために、物理的な作用と化学的な作用の両方で研磨を行う、化学機械研磨(CMP)に適用が可能な酸化セリウムを主成分とする研磨材を用いる。
研磨材として使用される酸化セリウムは、純粋な酸化セリウムよりは、バストネサイトと呼ばれる、希土類元素を多く含んだ鉱石を焼成した後、粉砕したものが多く利用されている。酸化セリウムが主成分ではあるが、その他成分として、ランタンやネオジウム、プラセオジウム等の希土類元素を含有し、酸化物以外にフッ化物等が含まれることもある。
本発明に使用される酸化セリウムは、その成分及び形状に関しては、特に限定はなく、一般的に研磨材として市販されているものを使用することができ、酸化セリウム含有量が50質量%以上である場合に、効果が大きく好ましい。
〔研磨工程〕
研磨材としては、下記に示すような使用形態(研磨工程)を有し、本発明はこのように使用された使用済み研磨材からの再生研磨材を効率的に再生する研磨材再生方法である。
ガラス基板の研磨を例にとると、前記図1で説明したように、研磨工程は、研磨材スラリーの調製、研磨加工及び洗浄で一連の工程を構成していることが一般的である。
(1)研磨材スラリーの調製
酸化セリウムを主成分とする研磨材の粉体を、水等の溶媒に対して1〜40質量%になるように添加、分散して研磨材スラリーを調製する。この研磨材スラリーを研磨機に対して循環供給して使用する。研磨材として使用される酸化セリウム微粒子は、平均粒子径が数十nmから数μmの大きさの粒子が使用される。
分散剤等を添加することにより、酸化セリウム粒子の凝集を防止するとともに、撹拌機等を用いて常時撹拌して分散状態を維持することが好ましい。一般には、研磨機の横に研磨材スラリー用のタンクを設置し、撹拌機等を使用して常時分散状態を維持し、供給用ポンプを使用して研磨機に循環供給する方法を採用することが好ましい。
(2)研磨
図1に示すように、研磨パット(研磨布)とガラス基板を接触させ、接触面に対して研磨材スラリーを供給しながら、加圧条件下でパットとガラスを相対運動させて、ガラス基板を研磨する。
(3)洗浄
研磨された直後のガラス基板及び研磨機には大量の研磨材が付着している。そのため、図1で説明したように、研磨した後に研磨材スラリーの代わりに水等を供給し、ガラス基板及び研磨機に付着した研磨材の洗浄が行われる。この際に、研磨材を含む洗浄液は系外に排出される。
この洗浄操作で、一定量の研磨材が系外に排出されるため、系内の研磨材量が減少する。この減少分を補うために、スラリー槽Tに対して新たな研磨材スラリーを追加する。追加の方法は1回の加工毎に追加を行っても良いし、一定加工毎に追加を行っても良いが、溶媒に対して十分に分散された状態の研磨材を供給することが望ましい。
〔使用済みの研磨材スラリー〕
本発明でいう使用済み研磨材スラリーとは、研磨機及び研磨材スラリー用タンクからなる系の外部に排出される研磨材スラリーであって、主として以下に示す二種類ある。
一つ目は洗浄工程で排出される洗浄液を含む研磨材スラリー1(リンススラリー)であり、二つ目は一定加工回数使用された後に廃棄される、スラリー槽Tに貯留されている使用済みの研磨材スラリー2(ライフエンド)である。本発明では、それぞれ研磨材スラリー1、研磨材スラリー2と称す。なお、本発明は、研磨材スラリー1及び2の両方に適用することが好ましいが、どちらか一方にのみ適用してもよい。
洗浄水を含む研磨材スラリー1の特徴として、以下の2点が挙げられる。
1)洗浄時に排出されるために洗浄水が大量に流入し、タンク内のスラリーと比較して研磨材濃度が低下している。
2)研磨布等に付着しているガラス成分も、洗浄時にこの研磨材スラリー1中に流入する。
一方使用済みの研磨材スラリー2の特徴としては、新品の研磨材スラリーと比較してガラス成分濃度が高くなっていることが挙げられる。
〔再生酸化セリウム含有研磨材の研磨材再生工程〕
本発明において、研磨材を再生し、再生酸化セリウム含有研磨材を製造する研磨材再生方法は、図1で概要を説明したように、概ねスラリー回収工程A、分離濃縮工程B、研磨材回収工程C、粒子径制御工程Dの4つの工程から構成されている。
(1:スラリー回収工程A)
研磨機及びスラリー用タンクからなる系から排出される研磨材スラリーを回収する工程である。回収する研磨材スラリーには、前記洗浄水を含む研磨材スラリー1と使用済みの研磨材スラリー2の2種類が含まれる。
一般に回収した研磨材スラリーには、0.1〜40質量%の範囲内で酸化セリウム研磨材が含まれる。
スラリーは回収された後、直ちに分離工程に進めても良いし、一定量を回収するまで貯蔵しても良いが、いずれの場合も回収されたスラリーは常時撹拌し、分散状態を維持することが好ましい。
本発明においては、スラリー回収工程Aで回収した研磨材スラリー1と研磨材スラリー2とを混合して母液を調製した後、以降の分離濃縮工程B及び研磨材回収工程Cで処理する方法であっても、あるいはスラリー回収工程Aで回収した研磨材スラリー1と研磨材スラリー2とを、それぞれ独立した母液として、以降の分離濃縮工程B及び研磨材回収工程Cで処理してもよい。
(2:分離濃縮工程B)
回収した使用済み研磨材スラリーは、被研磨物由来のガラス成分を混入している。また、洗浄水の混入により濃度が低下している。研磨加工に再度使用するためには、ガラス成分の分離と、研磨材成分の濃縮を行う必要がある。
本発明における分離濃縮工程Bは、スラリー回収工程Aで回収した研磨材スラリー(母液)に対して、無機塩として2価のアルカリ土類金属塩であるマグネシウム塩を添加し、母液の25℃換算のpH値が6.5以上10.0未満の条件で研磨材のみを凝集させ、非研磨材を凝集させない状態で、該研磨材を母液より分離して濃縮する。これにより、酸化セリウムを主成分とする研磨材成分のみを凝集沈殿させた後、ガラス成分がほとんど上澄みに存在させて凝集物を分離する事で、酸化セリウム成分とガラス成分との分離と、研磨材スラリーの濃縮を同時に行うことが可能となった工程である。
具体的な操作について、図2を用いて説明する。
図2は、本発明の研磨材再生方法における分離濃縮工程B及び研磨材回収工程Cのフォローの一例を示した概略図である。
工程(B−1)として前工程であるスラリー回収工程Aで回収した研磨材スラリー(母液)13を、攪拌機15を備えた調整釜14に投入する、次いで、工程(B−2)において、研磨材スラリー(母液)13に対し、攪拌しながら、無機塩として2価のアルカリ土類金属塩であるマグネシウム塩を、添加容器16より添加し、母液の25℃換算のpH値が6.5以上10.0未満の条件とする。次いで、工程(B−3)で、無機塩の添加により、研磨材スラリー(母液)13中に含まれる酸化セリウム粒子のみが凝集し、底部に沈降し、凝集体18を形成する。酸化セリウムが分離沈降した上澄み液17には、ガラス等の非研磨材が含有され、ここで、研磨材と非研磨材とが分離される。
〈2価のアルカリ土類金属塩〉
本発明においては、酸化セリウムの凝集に用いる無機塩が、2価のアルカリ土類金属塩であることを特徴とする。
本発明に係るアルカリ土類金属塩としては、例えば、カルシウム塩、バリウム塩、ベリリウム塩、マグネシウム塩等を挙げることができるが、その中でも、本発明の効果をより発現することができる観点から、マグネシウム塩であることが好ましい。
本発明に適用可能なマグネシウム塩としては、電解質として機能するものであれば限定はないが、水への溶解性が高い点から、塩化マグネシウム、臭化マグネシウム、ヨウ化マグネシウム、硫酸マグネシウム、酢酸マグネシウムなどが好ましく、溶液のpH変化が小さく、沈降した研磨材及び廃液の処理が容易である点から、塩化マグネシウム及び硫酸マグネシウムが特に好ましい。
〈2価のアルカリ土類金属塩の添加方法〉
2価のアルカリ土類金属塩であるマグネシウム塩の添加方法を説明する。
a)マグネシウム塩の濃度
添加するマグネシウム塩は、粉体を回収スラリーに直接供給しても良いし、水等の溶媒に溶解させてから研磨材スラリーに添加してもよいが、研磨材スラリーに添加した後に均一な状態になるように、溶媒に溶解させた状態で添加することが好ましい。
好ましい濃度は、0.5〜50質量%の水溶液とすることである。系のpH変動を抑え、ガラス成分との分離を効率化するためには、10〜40質量%であることがより好ましい。
b)マグネシウム塩の添加温度
マグネシウム塩を添加する際の温度は、回収した研磨材スラリーが凍結する温度以上であって、90℃までの範囲で有れば適宜選択することができるが、ガラス成分との分離を効率的に行う観点からは、10〜40℃の温度範囲内であることが好ましく、15〜35℃の温度範囲内であることがより好ましい。
c)マグネシウム塩の添加速度
マグネシウム塩を添加する速度は、回収した研磨材スラリー中でのマグネシウム濃度が一度に変化せず、均一になるように添加することが好ましい。1分間当たりの添加量が全添加量の20質量%以下であることが好ましく、10質量%以下であることがより好ましい。
d)マグネシウム塩添加時のpH値
本発明の技術的な特徴は、分離濃縮工程Bでマグネシウム塩を添加し、母液の25℃換算のpH値が、6.5以上、10.0未満の条件で分離濃縮を行うことを特徴とする。一般に、回収した研磨材スラリーのpH値はガラス成分のためややアルカリ性を示し、8〜10未満であるので、予め回収した研磨材スラリーのpH値を調整する必要はない。
本発明においては、pH値は25℃において、ラコムテスター卓上型PHメーター(アズワン(株)製 pH1500)を使用して測定した値を用いる。
本発明においては、マグネシウム塩を添加し、その後該凝集物を分離するまでマグネシウム塩添加時のpH値以下に維持する。ここでいうマグネシウム塩添加時のpH値とは、マグネシウム塩の添加が終了した直後のpH値のことをいう。
沈殿した凝集物を分離するまで、マグネシウム添加時のpH値以下を維持する。具体的には、25℃換算pH値として6.5以上、10.0未満で維持する。pH値として10未満とすることで、廃液に含まれるガラス成分の凝集を防ぐことができるため、回収の際の酸化セリウムの純度を高くすることができ好ましい。
マグネシウム塩添加時のpH値の下限は、pH調整剤による純度低下や操作性などから、6.5以上である。
e)マグネシウム塩添加後の撹拌
マグネシウム塩を添加した後、少なくとも10分以上撹拌を継続することが好ましく、より好ましくは30分以上である。マグネシウム塩を添加すると同時に研磨材粒子の凝集が開始されるが、撹拌状態を維持することで凝集状態が系全体で均一となり凝集物の粒度分布が狭くなり、その後の分離が容易となる。
(3:研磨材回収工程C)
図2に示すように、分離濃縮工程Bで、ガラス成分を含む上澄み液17と酸化セリウム粒子を含む凝集体18に分離した後、凝集体18を回収する。
a)研磨材凝集物の分離の方法
マグネシウム塩の添加により凝集した研磨材の凝集体と上澄み液とを分離する方法としては、一般的な凝集物の分離方法をいずれも採用することができる。すなわち、自然沈降を行って上澄みだけを分離することができ、また遠心分離機等の物理的な方法を行うこともできる。再生酸化セリウム含有研磨材の純度の点から、自然沈降を行うことが好ましい。
この状態では上澄み液が分離されていることから、回収スラリーと比較して比重が増加し、濃縮されていることとなる。このスラリーには、回収されたスラリー以上の濃度の酸化セリウムが含有されている。
凝集した研磨材の凝集体と上澄み液とを分離する方法の一例としては、図2において、工程(B−3)で示したように、自然沈降により、非研磨材等を含む上澄み液17と、下部に沈殿した酸化セリウムを含む濃縮物18とに分離した後、工程(C−1)として、排液パイプ19を釜14内の上澄み液17と凝集体18の界面近くまで挿入し、上澄み液17のみを、ポンプ20を用いて、釜外に排出して、工程(C−2)で研磨材を含有する濃縮物18を回収する。
(4:粒子径制御工程D)
本発明の研磨材再生方法においては、上記各工程を経て回収した使用済みの酸化セリウムを再利用するため、最終工程として、酸化セリウム粒子の粒子径分布を調整する。
マグネシウム塩等を用いて、酸化セリウム粒子を凝集して回収した凝集体は、そのままの状態では、二次粒子としての塊状であり、再利用するために、凝集した粒子を解して、単独粒子状態(一次粒子)にする再分散を施すため、最後に、粒子径制御工程Dを組み入れることが好ましい。
この粒子径制御工程Dは、分離濃縮工程で得られた凝集した研磨材成分を再分散させて、処理前の研磨材スラリーと同等の粒度分布になるように調整する工程である。
凝集した研磨材粒子を再分散させる方法としては、a)水を添加し、処理液中のマグネシウムイオン濃度を低下させる方法、b)金属分離剤(分散剤ともいう)を添加することで研磨材に付着するマグネシウムイオン濃度を低下させる方法、及びc)分散機等を使用して、凝集した研磨材粒子を解砕する方法がある。
これらの方法は、それぞれ単独で使用しても良いし、組み合わせて使用しても良いが、a)、b)及びc)の内いずれか二つを組み合わせる方法が好ましく、a)、b)及びc)を全て組み合わせて行う方法がより好ましい。
水を添加する場合その量は、濃縮したスラリーの体積によって適宜選択され、一般的には濃縮したスラリーの5〜50体積%であり、好ましくは10〜40体積%である。
金属分離剤(分散剤)としては、カルボキシル基を有するポリカルボン酸系高分子分散剤が好ましく挙げられ、特にアクリル酸−マレイン酸の共重合であることが好ましい。具体的な金属分離剤(分散剤)としては、リティーA550(ライオン(株)製)等が挙げられる。金属分離剤(分散剤)の添加量としては、濃縮したスラリーに対して0.01〜5体積%である。
また、分散機としては、超音波分散機、サンドミルやビーズミルなどの媒体攪拌ミルが適用可能であり、特には、超音波分散機を用いることが好ましい。
また、超音波分散機としては、例えば、(株)エスエムテー、(株)ギンセン、タイテック(株)、BRANSON社、Kinematica社、(株)日本精機製作所等から市販されており、(株)エスエムテーUDU−1、UH−600MC、(株)ギンセンGSD600CVP、(株)日本精機製作所 RUS600TCVP等を使用することができる。超音波の周波数は、特に限定されない。
機械的撹拌及び超音波分散を同時並行的に行う循環方式の装置としては、(株)エスエムテーUDU−1、UH−600MC、(株)ギンセン GSD600RCVP、GSD1200RCVP、(株)日本精機製作所 RUS600TCVP等を挙げることができるが、これに限ったものでない。
図3は、超音波分散機を用いた粒子径制御工程Dの一例を示す模式図である。
図3に示すように、調整釜21に、上記研磨材回収工程Cで調製した凝集体を、例えば、a)水を添加し、処理液中のマグネシウムイオン濃度を低下させ酸化セシウム分散液22を調製釜21に貯留した後、攪拌機15で攪拌しながら、23よりb)の金属分離剤(高分子分散剤)を添加した後、ポンプ20を介して、流路24を経由して、超音波分散機26で分散処理が施され、凝集した酸化セリウム粒子が解きほぐされる。次いで、その下流側に設けた粒子径測定装置27にて、分散後の酸化セリウム粒子の粒子径分布をモニターし、酸化セリウム分散液22の粒子径分布が所望の条件に到達したことを確認した後は、三方弁25を操作し、酸化セリウム分散液22を、流路29を経て、再生研磨材として得ることができる。
この工程で得られる粒度分布としては、経時変動が少なく、1日経過後の粒度変動が少ないものが望ましい。
〔再生酸化セリウム含有研磨材〕
本発明においては、上記粒子径制御工程Dを経て得られる最終的な酸化セリウム含有研磨材は、粒度分布の経時変動が小さく、回収した時の濃度より高く、マグネシウムの含有量としては、0.0005〜0.08質量%の範囲であることが好ましく、その他の物質の含有量は1.0質量%以下であることが好ましい。
本発明の研磨材再生方法により得られる再生研磨材は、微量のマグネシウム塩等の2価のアルカリ土類金属塩を含むが、使用過程における微粒子化を抑制し、新品と同等の研磨性能を有する。
以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「%」の表示を用いるが、特に断りがない限り「質量%」を表す。
《再生研磨材の調製》
〔再生研磨材1の調製:本発明〕
以下の製造工程にしたがって、再生研磨材1を調製した。なお、特に断りがない限りは、研磨材再生工程は、基本的には、25℃、55%RHの条件下で行った。このとき、溶液等の温度も25℃である。
1)スラリー回収工程A
図1に記載の研磨工程で、ハードディスク用ガラス基板の研磨加工を行った後、洗浄水を含む研磨材スラリー1を210リットル、使用済み研磨材を含む研磨材スラリー2を30リットル回収し、回収スラリー液として240リットルとした。この回収スラリー液は比重1.03であり、8.5kgの酸化セリウムが含まれている。
2)分離濃縮工程B
次いで、この回収スラリー液を酸化セリウムが沈降しない程度に撹拌しながら、塩化マグネシウム10質量%水溶液2.5リットルを10分間かけて添加した。塩化マグネシウムを添加した直後の25℃換算のpH値は8.60であった。
3)研磨材回収工程C
上記の状態で30分撹拌を継続した後、1.5時間静置し、自然沈降法により、上澄み液17と凝集物18とを沈降・分離した。1.5時間後、図2の工程(C−1)に従って、排水ポンプ20を用いて、上澄み液17を排出して、図2の工程(C−2)に示すように凝集物18を分離回収した。回収した凝集物は60リットルであった。
4)粒子径制御工程D(分散工程)
分離した凝集物に水12リットルを添加した。さらに、金属分離剤(高分子分散剤)としてポリティーA550(ライオン(株)製)を300g添加し、30分撹拌した後、図3に示す工程で、超音波分散機を用いて、凝集物を分散して解きほぐした。
分散終了後、10ミクロンのメンブランフィルターで濾過を行って、再生酸化セリウムを含有する再生研磨材1を得た。酸化セリウム濃度は、8.7質量%で、粒度(D90<2.0μm)、マグネシウム含有量は0.03質量%であった。
〔再生研磨材2の調製:本発明〕
上記再生研磨材1の調製において、2)分離濃縮工程Bで用いた無機塩を、塩化マグネシウムに代えて、硫酸マグネシウムを用いた以外は同様にして、再生研磨材2を得た。
〔再生研磨材3の調製:本発明〕
上記再生研磨材1の調製において、4)粒子径制御工程D(分散工程)で、分散機として超音波分散機に代えて、ビーズミル型分散機を用いた以外は同様にして、再生研磨材3を得た。
〔再生研磨材4の調製:比較例〕
上記再生研磨材1の調製において、2)分離濃縮工程Bで用いた無機塩を、塩化マグネシウムに代えて、炭酸カリウムを用いた以外は同様にして、再生研磨材4を得た。
〔再生研磨材5の調製:比較例〕
上記再生研磨材1の調製において、2)分離濃縮工程Bで無機塩として塩化マグネシウムを添加した後、回収スラリー液のpH値を、水酸化カリウムを用いて10.10に調整した以外は同様にして、再生研磨材5を得た。
〔再生研磨材6の調製:比較例〕
上記再生研磨材1の調製において、2)分離濃縮工程Bで無機塩として塩化マグネシウムを添加した後、回収スラリー液のpH値を、水酸化カリウムを用いて10.80に調整した以外は同様にして、再生研磨材6を得た。
〔再生研磨材7の調製:本発明〕
上記再生研磨材1の調製において、2)分離濃縮工程Bで無機塩として塩化マグネシウム10質量%水溶液の代わりに硫酸マグネシウム25質量%水溶液を使用し、10ミクロンメンブランフィルターを通す前に、インライン超音波分散機(Hielscher製 UIP2000)を通した以外は同様にして、再生研磨材7を得た。
再生研磨材7における酸化セリウム濃度は9.0質量%、粒度は(D90<2.0μm)、マグネシウム含有量は0.04質量%であった。酸化セリウムの回収率は83%であった。
〔再生研磨材8〜11の調製:比較例〕
上記再生研磨材1の調製において、2)分離濃縮工程Bで用いた無機塩を、塩化マグネシウムに代えて、塩化ナトリウム(再生研磨材8)、硫酸ナトリウム(再生研磨材9)、塩化カリウム(再生研磨材10)、塩化カルシウム(再生研磨材11)を同条件で使用したが、塩化ナトリウム、硫酸ナトリウムを添加し30分撹拌を続け、そののち1.5時間静置しても凝集が起こらず、また、塩化カリウム、塩化カルシウムは凝集速度が遅く、更にガラス成分と共に凝集してしまい、ガラス成分を分離することはできなかった。
《再生研磨材の評価》
〔再生研磨材の純度評価:ガラス成分との分離能の評価〕
上記再生研磨材1〜6の調製において、2)分離濃縮工程Bの無機塩を添加する前の回収スラリー液と、各無機塩を添加して、静置して分離した後の上澄み液のそれぞれをサンプリングし、下記の方法に従って、ICP発光分光プラズマ分析装置により成分分析を行った。未処理の回収スラリー液に対して、セリウム濃度が減少し、かつケイ素濃度が変化していなければ、分離時に、酸化セリウム粒子のみが沈降し、非研磨材であるガラス粒子は沈降せずに、上澄み液中にとどまっていることを示し、セリウム濃度及びケイ素濃度が共に、未処理の回収スラリー液に対して低下していれば、沈殿物中に酸化セリウム粒子と共にガラス粒子も沈降し、効率的に両者を分離することができなかったことを示す。
(ICP発光分光プラズマによる成分分析)
上記分離した各上澄み液に対して、ICP発光分光プラズマにより、セリウム成分、ガラス成分(Si成分)の濃度を測定し、未処理(添加剤無し)の使用済みスラリーと比較した。具体的には、下記の手順に従って行った。
〈試料液Aの調製〉
(a)試料(未処理の回収スラリー液、上澄み液)を、スターラーなどで撹拌しながら1ml採取した
(b)原子吸光用フッ化水素酸を5ml加えた
(c)超音波分散してシリカを溶出させた
(d)室温で30分静置した
(e)超純水で、総量を50mlに仕上げた
以上の手順に従って調製した各検体液を、試料液Aと称する。
〈Si及びMgの定量〉
(a)試料液Aをメンブレンフィルター(親水性PTFE)で濾過した
(b)濾液を誘導結合プラズマ発光分光分析装置(ICP−AES)で測定した
(c)Siは標準添加法、Mgはマトリクスマッチングの検量線法により定量した。
〈セリウムの定量〉
(a)試料液Aをよく分散し、5ml採取した
(b)高純度硫酸を5ml加え、溶解させた
(c)超純水で50mlに仕上げた
(d)超純水で適宜希釈しICP−AESで測定した
(e)マトリクスマッチングの検量線法により、セリウムを定量した。
〈ICP発光分光プラズマ装置〉
エスアイアイナノテクノロジー社製のICP−AESを使用した。
以上により得られた解析結果を、表1に示す。
Figure 0005858050
表1に記載の結果より明らかなように、本発明の研磨材再生方法は、比較の研磨材再生方法に対し、沈殿分離工程での酸化セリウム(研磨材)と、ガラス成分(非研磨材)との分離性に優れ、高純度の再生研磨材を得ることができる。
本発明の研磨材再生方法は、効率的な方法で酸化セリウムを回収し、その後、簡易な方法で再生研磨材を得ることができ、光学ガラスや水晶発振子等の仕上工程において使用されている精密研磨に用いられている研磨材の再生方法として好適に利用できる。
1 研磨装置
2 研磨定盤
3 被研磨物
4 研磨材液
5 スラリーノズル
7 洗浄水
8 洗浄水噴射ノズル
10 研磨材を含む洗浄液
13 研磨材スラリー(母液)
14、21 調整釜
15 攪拌機
16 添加容器
17 上澄み液
18 凝集体
19 排液パイプ
20 ポンプ
25 三方弁
26 超音波分散機
27 粒子径測定装置
F 研磨布
スラリー槽
洗浄水貯蔵槽
洗浄液貯蔵槽

Claims (9)

  1. ケイ素が主成分である被研磨物を研磨した、酸化セリウム研磨材を含有する使用済み研磨材スラリーから、酸化セリウム研磨材を再生する研磨材再生方法であって、
    研磨機から排出される研磨材スラリーを回収するスラリー回収工程Aと、
    該回収した研磨材スラリーに対し、無機塩としてマグネシウム塩を添加し、母液の25℃換算のpH値が6.5以上、10.0未満の条件で研磨材を被研磨物由来成分から分離して凝集させ、該研磨材を母液より分離して濃縮する分離濃縮工程Bと、
    該分離して濃縮した研磨材を回収する研磨材回収工程Cと、
    を経て、酸化セリウムを含有する研磨材を再生することを特徴とする研磨材再生方法。
  2. 更に、前記研磨材回収工程Cの後に、回収した前記研磨材の粒子径を調整する粒子径制御工程Dを有することを特徴とする請求項1に記載の研磨材再生方法。
  3. 前記スラリー回収工程Aは、洗浄水を含む研磨材スラリー1と使用済みの研磨材スラリー2とを回収することを特徴とする請求項1又は請求項2に記載の研磨材再生方法。
  4. 前記スラリー回収工程Aで回収した研磨材スラリー1と研磨材スラリー2とを混合した後、前記分離濃縮工程B及び研磨材回収工程Cで処理することを特徴とする請求項3に記載の研磨材再生方法。
  5. 前記スラリー回収工程Aで回収した研磨材スラリー1と研磨材スラリー2とを、それぞれ独立して前記分離濃縮工程B及び研磨材回収工程Cで処理することを特徴とする請求項3に記載の研磨材再生方法。
  6. 前記研磨材回収工程Cにおける研磨材を回収する方法が、自然沈降によるデカンテーション分離法であることを特徴とする請求項2から請求項5までのいずれか一項に記載の研磨材再生方法。
  7. 前記粒子径制御工程Dは、回収した研磨材溶液に分散剤を添加した後、超音波分散機又はビーズミル型分散機を用いて分散することにより、再生研磨材の粒子径を制御することを特徴とする請求項1から請求項6までのいずれか一項に記載の研磨材再生方法。
  8. 前記粒子径制御工程Dで用いる分散機が、超音波分散機であることを特徴とする請求項7に記載の研磨材再生方法。
  9. 前記分散剤が、ポリカルボン酸系高分子分散剤であることを特徴とする請求項7又は請求項8に記載の研磨材再生方法。
JP2013550205A 2011-12-22 2012-12-05 研磨材再生方法 Active JP5858050B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013550205A JP5858050B2 (ja) 2011-12-22 2012-12-05 研磨材再生方法

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2011282037 2011-12-22
JP2011282037 2011-12-22
JP2011282041 2011-12-22
JP2011282041 2011-12-22
JP2013550205A JP5858050B2 (ja) 2011-12-22 2012-12-05 研磨材再生方法
PCT/JP2012/081463 WO2013094399A1 (ja) 2011-12-22 2012-12-05 研磨材再生方法及び再生研磨材

Publications (2)

Publication Number Publication Date
JPWO2013094399A1 JPWO2013094399A1 (ja) 2015-04-27
JP5858050B2 true JP5858050B2 (ja) 2016-02-10

Family

ID=48668298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013550205A Active JP5858050B2 (ja) 2011-12-22 2012-12-05 研磨材再生方法

Country Status (9)

Country Link
US (1) US9796894B2 (ja)
EP (1) EP2796243B1 (ja)
JP (1) JP5858050B2 (ja)
KR (1) KR20140102697A (ja)
CN (1) CN104010770B (ja)
MY (1) MY177685A (ja)
PH (1) PH12014501375B1 (ja)
SG (1) SG11201403191PA (ja)
WO (1) WO2013094399A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013099666A1 (ja) * 2011-12-27 2015-05-07 コニカミノルタ株式会社 研磨材分離方法及び再生研磨材

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013132713A (ja) * 2011-12-26 2013-07-08 Tosoh Corp 循環再使用研磨剤スラリー中からの異物分離除去方法と異物分離除去装置
SG11201404446VA (en) * 2012-02-16 2014-11-27 Konica Minolta Inc Abrasive regeneration method
EP2815846B1 (en) * 2012-02-17 2018-09-26 Konica Minolta, Inc. Abrasive regeneration method
JP6372059B2 (ja) * 2013-08-08 2018-08-15 コニカミノルタ株式会社 セリウム砥粒の回収方法
JP6172030B2 (ja) * 2014-04-03 2017-08-02 信越半導体株式会社 ワークの切断方法及び加工液
DE102014015549A1 (de) * 2014-10-22 2016-04-28 Thyssenkrupp Ag Mahlanlage zum Zerkleinern von Mahlgut sowie Verfahren zum Zerkleinern von Mahlgut
JP6233296B2 (ja) * 2014-12-26 2017-11-22 株式会社Sumco 砥粒の評価方法、および、シリコンウェーハの製造方法
WO2017098986A1 (ja) * 2015-12-09 2017-06-15 コニカミノルタ株式会社 研磨材スラリーの再生方法
CN107652898A (zh) * 2017-08-31 2018-02-02 安徽青花坊瓷业股份有限公司 一种日用陶瓷餐具振动抛光用研磨材料
KR102670426B1 (ko) * 2020-01-15 2024-06-03 오씨아이 주식회사 흄드 실리카로부터 단일 응집체를 분리 및 포집하는 방법 및 단일 응집체의 형상 분류 방법
JP2022172678A (ja) * 2021-05-06 2022-11-17 コニカミノルタ株式会社 再生研磨剤スラリーの調製方法及び研磨剤スラリー
CN113304664B (zh) * 2021-05-31 2023-09-05 广州兰德环保资源科技有限公司 一种通过高频超声波作用和层流沉降优化的乳化装置
US11938586B2 (en) * 2021-08-27 2024-03-26 Taiwan Semiconductor Manufacturing Company Ltd. Slurry monitoring device, CMP system and method of in-line monitoring a slurry
CN115282692B (zh) * 2022-07-19 2024-03-08 江阴萃科智能制造技术有限公司 一种磨抛设备研磨液过滤循环方法

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1997114A (en) * 1930-09-29 1935-04-09 Martin Michael James Filtration and clarification of water
US2816824A (en) * 1953-12-28 1957-12-17 Corning Glass Works Cerium oxide polishing composition
US4419246A (en) * 1982-09-30 1983-12-06 E. I. Du Pont De Nemours & Co. Removal of heavy metal ions
JPH06254764A (ja) 1993-03-03 1994-09-13 Asahi Glass Co Ltd 研磨液の再生方法
US5593339A (en) * 1993-08-12 1997-01-14 Church & Dwight Co., Inc. Slurry cleaning process
JP3249373B2 (ja) * 1996-02-21 2002-01-21 信越半導体株式会社 水溶性スラリー廃液の再利用システム
US5664990A (en) 1996-07-29 1997-09-09 Integrated Process Equipment Corp. Slurry recycling in CMP apparatus
CA2263241C (en) * 1996-09-30 2004-11-16 Masato Yoshida Cerium oxide abrasive and method of abrading substrates
JPH1110540A (ja) * 1997-06-23 1999-01-19 Speedfam Co Ltd Cmp装置のスラリリサイクルシステム及びその方法
JPH1150168A (ja) 1997-07-31 1999-02-23 Canon Inc 光学ガラス汚泥からレアアースメタル成分を回収する方法
JP3134189B2 (ja) 1997-09-18 2001-02-13 福島県 研磨材の回収方法
JP3426149B2 (ja) * 1998-12-25 2003-07-14 富士通株式会社 半導体製造における研磨廃液再利用方法及び再利用装置
JP2002534564A (ja) * 1999-01-15 2002-10-15 ナルコ ケミカル カンパニー 半導体廃水から金属イオンを沈殿させ、同時にマイクロフィルターの運転を向上させる組成物および方法
JP4168520B2 (ja) * 1999-03-12 2008-10-22 栗田工業株式会社 Cmp排液の処理方法
JP3316484B2 (ja) * 1999-05-27 2002-08-19 三洋電機株式会社 半導体装置の製造方法
US6746309B2 (en) * 1999-05-27 2004-06-08 Sanyo Electric Co., Ltd. Method of fabricating a semiconductor device
DE19960380C2 (de) * 1999-12-14 2002-05-29 Fraunhofer Ges Forschung Verfahren zum Fraktionieren einer Zerspanungssuspension
JP2001308043A (ja) * 2000-04-26 2001-11-02 Hitachi Chem Co Ltd Cmp研磨剤及び基板の研磨方法
SG115439A1 (en) 2001-12-28 2005-10-28 Jetsis Int Pte Ltd Method and apparatus for abrasive recycling and waste separation system
JP3557197B2 (ja) * 2002-05-17 2004-08-25 三洋電機株式会社 コロイド溶液の濾過方法
JP2004306210A (ja) * 2003-04-08 2004-11-04 Speedfam Co Ltd ガラス研磨における排出水中の酸化セリウム系研磨剤と水を再利用するための処理方法とその処理装置
WO2005090511A1 (ja) * 2004-03-19 2005-09-29 Tytemn Corporation 研磨用組成物および研磨方法
JP5012026B2 (ja) * 2004-11-08 2012-08-29 旭硝子株式会社 CeO2微粒子の製造方法
ITRM20050329A1 (it) 2005-06-24 2006-12-25 Guido Fragiacomo Procedimento per il trattamento di sospensioni abrasive esauste per il recupero delle loro componenti riciclabili e relativo impianto.
JP4729428B2 (ja) 2006-04-07 2011-07-20 Agcセイミケミカル株式会社 セリウム系研磨剤の再生方法
JP2010167551A (ja) * 2008-12-26 2010-08-05 Nomura Micro Sci Co Ltd 使用済みスラリーの再生方法
JP2010214515A (ja) 2009-03-16 2010-09-30 Fukushima Univ ガラス研磨材の製造方法
US20110070811A1 (en) * 2009-03-25 2011-03-24 Applied Materials, Inc. Point of use recycling system for cmp slurry
JP5511261B2 (ja) 2009-08-19 2014-06-04 宇部マテリアルズ株式会社 分級装置
KR101245276B1 (ko) * 2010-03-12 2013-03-19 주식회사 엘지화학 산화세륨 연마재의 재생 방법
US20140144846A1 (en) * 2012-11-26 2014-05-29 Memc Singapore, Pte. Ltd (Uen200614797D) Methods For The Recycling of Wire-Saw Cutting Fluid

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013099666A1 (ja) * 2011-12-27 2015-05-07 コニカミノルタ株式会社 研磨材分離方法及び再生研磨材

Also Published As

Publication number Publication date
SG11201403191PA (en) 2014-08-28
JPWO2013094399A1 (ja) 2015-04-27
US9796894B2 (en) 2017-10-24
CN104010770B (zh) 2017-07-21
WO2013094399A1 (ja) 2013-06-27
KR20140102697A (ko) 2014-08-22
EP2796243A4 (en) 2015-09-09
MY177685A (en) 2020-09-23
EP2796243B1 (en) 2017-05-17
US20140331567A1 (en) 2014-11-13
PH12014501375A1 (en) 2014-09-22
PH12014501375B1 (en) 2014-09-22
EP2796243A1 (en) 2014-10-29
CN104010770A (zh) 2014-08-27

Similar Documents

Publication Publication Date Title
JP5858050B2 (ja) 研磨材再生方法
JP6107668B2 (ja) 研磨材再生方法
JP6107669B2 (ja) 研磨材再生方法
JP6406010B2 (ja) 研磨材再生方法
JP6044551B2 (ja) 研磨材分離方法
JP6292119B2 (ja) 研磨材再生方法
WO2019181498A1 (ja) 研磨剤リサイクル処理システム及び研磨剤回収・再生方法
JP2023061348A (ja) 研磨剤スラリーの再生方法及び研磨剤スラリーの再生システム
CN115305056A (zh) 再生研磨剂浆料的制备方法和研磨剂浆料
CN115990838A (zh) 研磨剂浆料的再生方法及研磨剂浆料的再生系统

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150724

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20150724

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20150817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151130

R150 Certificate of patent or registration of utility model

Ref document number: 5858050

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150