WO2017098986A1 - 研磨材スラリーの再生方法 - Google Patents
研磨材スラリーの再生方法 Download PDFInfo
- Publication number
- WO2017098986A1 WO2017098986A1 PCT/JP2016/085679 JP2016085679W WO2017098986A1 WO 2017098986 A1 WO2017098986 A1 WO 2017098986A1 JP 2016085679 W JP2016085679 W JP 2016085679W WO 2017098986 A1 WO2017098986 A1 WO 2017098986A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- abrasive
- abrasive slurry
- polishing
- additive
- slurry
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B57/00—Devices for feeding, applying, grading or recovering grinding, polishing or lapping agents
- B24B57/02—Devices for feeding, applying, grading or recovering grinding, polishing or lapping agents for feeding of fluid, sprayed, pulverised, or liquefied grinding, polishing or lapping agents
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09G—POLISHING COMPOSITIONS; SKI WAXES
- C09G1/00—Polishing compositions
- C09G1/02—Polishing compositions containing abrasives or grinding agents
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09G—POLISHING COMPOSITIONS; SKI WAXES
- C09G1/00—Polishing compositions
- C09G1/04—Aqueous dispersions
Definitions
- the present invention relates to a method for regenerating an abrasive slurry.
- the present invention relates to a method for regenerating an abrasive slurry that can efficiently regenerate an abrasive slurry having a high polishing rate.
- abrasive slurries are usually discarded after being used for a certain period of time because the polishing rate decreases as the content of objects to be polished such as fine glass pieces in the abrasive slurry increases by polishing. ing.
- the main elements constituting the abrasive particles contained in the abrasive slurry include rare metals obtained from minerals that are produced in Japan at a low yield or not at all.
- the material is an important material that is partly a valuable resource that relies on imports, is often expensive in terms of material price, and is also used in large quantities as abrasive particles. For this reason, after recovering the abrasive slurry used in the polishing process, it is strongly desired to effectively use the valuable material by regenerating and using it as a recycled abrasive slurry.
- the abrasive slurry together with abrasive particles (also referred to as abrasive grains) as the main component, the dispersibility, cleanability and abrasiveness of the abrasive particles during polishing are improved, and the polishing rate is increased.
- additives such as a stabilizer and a cleaning agent (hereinafter, an additive having an ability to increase the polishing rate is also referred to as additive A).
- the abrasive slurry contains additives such as antibacterial agents, preservatives, and antifreeze agents.
- additive B includes one having a function of reducing the polishing rate (hereinafter, the additive having the ability to reduce the polishing rate is also referred to as additive B).
- Additive B is an unnecessary material from the viewpoint of maintaining and improving the polishing rate in a recycled abrasive slurry that is often used immediately after regeneration.
- the additive A may be removed by the regeneration process, or the additive B may remain in the recycled abrasive slurry. For this reason, in order to obtain a regenerated abrasive slurry having a high polishing rate, it is necessary to add the additive A again or remove the additive B after the regenerating step, and the abrasive slurry having a high polishing rate. It was difficult to efficiently obtain
- the present invention has been made in view of the above problems and situations, and a problem to be solved is to provide a method for regenerating an abrasive slurry capable of efficiently regenerating an abrasive slurry having a high polishing rate. .
- an abrasive slurry containing abrasive particles and a plurality of additives is used, and a coating mainly composed of silicon oxide is used.
- An abrasive slurry regeneration method for reclaiming a recovered abrasive slurry recovered after polishing an abrasive is an additive having a molecular weight of 500 or more among the additives contained in the recovered abrasive slurry, and abrasive particles It has been found that an abrasive slurry having a high polishing rate can be efficiently regenerated by having a regeneration step of recovering the additive adsorbed on the abrasive particles together with the abrasive particles, and the present invention has been achieved. That is, the subject concerning this invention is solved by the following means.
- An abrasive slurry containing abrasive particles and an abrasive slurry containing a plurality of additives is used to polish an object whose main component is silicon oxide, and then regenerates the recovered recovered abrasive slurry.
- a playback method While maintaining the abrasive concentration (% by mass) within the range of 0.2 to 3000% with respect to the abrasive concentration (% by mass) of the unused abrasive slurry when used for polishing the object to be polished.
- regeneration method of the abrasive slurry which can reproduce
- the expression mechanism or action mechanism of the effect of the present invention is not clear, but is presumed as follows. Whether or not the additive is adsorbed to the abrasive particles depends on the ratio of the hydrophobic group and the hydrophilic group, the van der Waals force, the pH of the abrasive slurry, the abrasive concentration, the concentration of the object to be polished, etc. Dependent.
- additives contained in the recovered abrasive slurry many additives having a function of reducing the polishing rate are those having a molecular weight of less than 500 or difficult to adsorb on the abrasive particles due to the above conditions, and the polishing rate Many additives having a function of improving the molecular weight are those having a molecular weight of 500 or more or easily adsorbed to the abrasive particles depending on the above conditions.
- the abrasive concentration (% by mass) is 0.2% with respect to the abrasive concentration (% by mass) of the unused abrasive slurry when used for polishing the workpiece.
- Maintaining the content within the range of ⁇ 3000% makes it easy to recover the additive having a molecular weight of 500 or more and the additive adsorbed on the abrasive particles among the additives contained in the recovered abrasive slurry. Can do. This is because when the abrasive concentration is 0.2% or more, the amount of the solvent (mainly water) in the abrasive slurry is prevented from increasing excessively, and the pH of the abrasive slurry is within a predetermined range. And the desorption of the additive adsorbed on the abrasive particles can be suppressed.
- the abrasive concentration to 3000% or less, the viscosity of the abrasive slurry can be kept low, the amount of loss of adhesion to the inside of the container or the apparatus in which the regeneration process is performed, and the recovery rate Can be improved.
- an additive having a molecular weight of 500 or more and an additive adsorbed on the abrasive particles By recovering the agent together with the abrasive particles, it is possible to efficiently obtain an abrasive slurry mainly containing the abrasive particles and the additive A with a high recovery rate. Moreover, since the obtained abrasive slurry mainly contains abrasive particles and additive A, according to the above method, an abrasive slurry having a high polishing rate can be obtained.
- Schematic configuration diagram of a polishing machine according to the present embodiment Schematic showing an example of a process for obtaining recycled abrasive slurry from recovered abrasive slurry
- Schematic configuration diagram of the filter device according to the present embodiment Schematic showing the constituent material of the abrasive slurry at each stage from the unused abrasive slurry to obtaining the recycled abrasive slurry
- the method for regenerating an abrasive slurry of the present invention was recovered after polishing an object to be polished mainly composed of silicon oxide using an abrasive slurry containing abrasive particles and a plurality of additives.
- the abrasive concentration (% by mass) is 1 with respect to the abrasive concentration (% by mass) of the unused abrasive slurry when used for polishing the workpiece. It is preferable to carry out the regeneration step while maintaining within the range of ⁇ 3000%. Thereby, the number of defects at the time of grinding
- the abrasive concentration (mass%) with respect to the abrasive concentration (mass%) of the unused abrasive slurry when used for polishing the object to be polished It is preferable to carry out the regeneration step while maintaining within a range of 0.2 to 1000%. Thereby, the viscosity of the abrasive slurry can be set to a more appropriate range, and the abrasive recovery rate can be improved.
- the abrasive concentration (mass%) with respect to the abrasive concentration (mass%) of the unused abrasive slurry when used for polishing the object to be polished It is preferable to carry out the regeneration step while maintaining within a range of 1 to 1000%. Thereby, the number of defects when polishing using the obtained recycled abrasive slurry can be reduced, and the abrasive recovery rate can be improved.
- ⁇ is used to mean that the numerical values described before and after it are included as the lower limit value and the upper limit value.
- the method for regenerating an abrasive slurry of the present invention was recovered after polishing an object to be polished mainly composed of silicon oxide using an abrasive slurry containing abrasive particles and a plurality of additives.
- a method of reclaiming abrasive slurry for reclaiming recovered abrasive slurry wherein the abrasive concentration (mass%) relative to the abrasive concentration (mass%) of an unused abrasive slurry when used for polishing an object to be polished %)
- the abrasive concentration (mass%) relative to the abrasive concentration (mass%) of an unused abrasive slurry when used for polishing an object to be polished %) Within the range of 0.2 to 3000%, among the additives contained in the recovered abrasive slurry, an additive having a molecular weight of 500 or more, and an additive adsorbed on the abrasive particles, Is recovered along with the abrasive particles.
- the object to be polished containing silicon oxide as a main component refers to an object to be polished containing 50% by mass or more of silicon oxide.
- the additive adsorbed on the abrasive particles is collected together with the abrasive particles regardless of the molecular weight.
- FIG. 1 is a schematic configuration diagram of a polishing machine according to the present embodiment.
- the polishing step is generally composed of a plurality of processes such as preparation of an abrasive slurry, polishing, and cleaning of a polishing part.
- a polishing machine 1 shown in FIG. 1 has a polishing surface plate 2 to which a polishing cloth F made of nonwoven fabric, synthetic resin foam, synthetic leather, or the like is attached.
- the polishing surface plate 2 is configured to be rotatable. ing.
- polishing surface plate 2 and the holding tool H are pressed against the polishing surface plate 2 with a predetermined pressing force N by using the rotatable holding tool H on the workpiece 3 mainly composed of silicon oxide. Rotate.
- the slurry 4 prepared in advance is supplied from the slurry nozzle 5 via the pump D1. Polishing abrasive slurry after being used for 4 (spent abrasive slurry) is stored in a slurry tank T 1 through the channel 6, repeatedly circulates between the polishing machine 1 and the slurry tank T 1.
- washing water 7 stored in the cleaning water storage tank T 2 to clean the polishing machine 1 and the object to be polished 3 by spraying the polishing portion from the washing water ejecting nozzle 8.
- Cleaning solution 10 containing abrasive particles after washing is through the pump D2, is stored in the cleaning liquid storage tank T 3 through the channel 9.
- the cleaning liquid reservoir T 3 is a tank for storing the cleaning liquid 10 after it has been used in the washing (rinsing).
- the cleaning liquid reservoir T 3 in order to prevent precipitation, such as abrasive particles, agglomeration, is agitated by the constant agitation blade (not shown).
- the cleaning liquid 10 containing abrasive grains is stored in the cleaning liquid storage tank T 3, together with the abrasive particles, scraped from the workpiece 3
- the glass component derived from the object to be polished (particles to be polished), the fragments of the polishing cloth F, and the like are contained.
- abrasive slurry Preparation of abrasive slurry Additive A having the ability to add and disperse abrasive particles in a concentration range of 0.5 to 40% by mass with respect to a solvent such as water, and further increase the polishing rate, Then, an additive B having an ability to reduce the polishing rate is added to prepare an unused abrasive slurry.
- This abrasive slurry is circulated and supplied to the polishing machine 1 as shown in FIG.
- the abrasive particles particles having an average particle size of several tens of nm to several ⁇ m are used.
- polishing pad F abrasive cloth F
- the workpiece 3 are brought into contact with each other, and the polishing slurry F is supplied under pressure while supplying the abrasive slurry 4 to the contact surface. And the workpiece 3 are moved relative to each other.
- the abrasive slurry recovery step is a step of recovering the used abrasive slurry.
- abrasive slurry with the washing water used in the cleaning operation is stored in the cleaning liquid storage tank T 3 (rinse slurry). Another is discarded after being given the number of manipulations using a abrasive slurry reserved in the slurry tank T 1 (Life end slurry).
- the abrasive slurry recovery step one or both of the rinse slurry and the life end slurry are recovered.
- the recovered abrasive slurry (recovered abrasive slurry) generally contains abrasive particles in the range of 0.1 to 20% by mass.
- the recovered abrasive slurry recovered after polishing the object to be polished is subjected to various treatments to regenerate the recovered abrasive slurry into an abrasive slurry that can be used for polishing (regenerated abrasive slurry). It is a process.
- As the regeneration step at least an additive having a molecular weight of 500 or more among the additives contained in the recovered abrasive slurry and an additive that collects the additive adsorbed on the abrasive particles together with the abrasive particles What is necessary is just to include the removal process.
- regeneration process contains a foreign material removal process, a to-be-polished material melt
- the abrasive concentration refers to the concentration (% by mass) of abrasive particles in the abrasive slurry.
- the abrasive concentration (% by mass) is 0.2 to 3000 with respect to the abrasive concentration (% by mass) of the unused abrasive slurry when used for polishing an object to be polished.
- Various processes are performed while maintaining within the range of%.
- the abrasive concentration at 0.2% or more, it is possible to suppress an excessive increase in the amount of solvent in the recovered abrasive slurry, the pH of the recovered abrasive slurry can be within a predetermined range, and additive A Can be prevented from hydrolysis.
- desorption of the additive A adsorbed on the abrasive particles can be suppressed, and the additive A can be efficiently recovered.
- the abrasive concentration is preferably maintained within the range of 1 to 3000%, more preferably within the range of 0.2 to 1000%, and preferably within the range of 1 to 1000%. Particularly preferred.
- the abrasive concentration of the unused abrasive slurry when used for polishing an object to be polished is a concentration required when the unused abrasive slurry is used for the first polishing step.
- This is the concentration of the abrasive after the adjustment, which is the concentration of the abrasive immediately before starting the polishing process.
- the abrasive slurry stored in the slurry tank T 1 has an abrasive concentration at a timing just before the slurry nozzle 5 starts to be supplied onto the polishing surface plate 2, and the abrasive slurry It shall do not include those flows into the slurry tank T 1 through the channel 6.
- FIG. 2 is a schematic diagram showing an example of a process for obtaining a recycled abrasive slurry from the recovered abrasive slurry.
- FIG. 3 is a schematic configuration diagram showing the filter filtration device 20 used in the regeneration process according to the present invention.
- the recovered abrasive slurry obtained in the abrasive slurry recovering step includes the abrasive slurry used in the polishing step, cleaning water, abrasive cloth, polishing pad debris, and the like.
- foreign matter removing step foreign matter such as abrasive cloth and polishing pad debris is removed using a filter having a pore diameter of 20 to 100 ⁇ m.
- the to-be-polished object dissolution treatment is a treatment for dissolving the to-be-polished object contained in the abrasive slurry in a solvent such as water.
- the abrasive concentration (% by mass) is 0. 0% with respect to the abrasive concentration (% by mass) of the unused abrasive slurry when used for polishing the object to be polished. It is performed so that it is maintained within the range of 2 to 3000%.
- the recovered abrasive slurry 22 from which foreign matter has been removed by foreign matter removal processing is put into a tank 21 of a filter filtration device 20 equipped with a temperature control unit.
- a solvent is added to the recovered abrasive slurry 22 in the tank 21 and stirred by a stirrer 25 equipped with a motor M to dissolve the object to be polished.
- the main component is water.
- the recovered abrasive slurry is also preferably heated in the tank 21 and particularly preferably in the range of 40 to 90 ° C.
- the recovered abrasive slurry may be filtered after dissolving the object to be polished, in addition to the additive removal process described later.
- the filtrate containing the object to be polished and a part of the solvent may be separated from the recovered abrasive slurry, and the object to be polished may be removed from the recovered abrasive slurry.
- additive removal treatment Next, in order to remove an additive unnecessary for polishing, an additive removal process is performed in which the recovered abrasive slurry in which the polishing target component is dissolved by the polishing target dissolution process is filtered using the filter 26.
- the additive removal treatment has an abrasive concentration (% by mass) of 0.2 with respect to the abrasive concentration (% by mass) of the unused abrasive slurry when used for polishing an object to be polished. It is performed so that it is maintained within a range of ⁇ 3000%.
- filtration is performed under the condition that the additive having a molecular weight of 500 or more and the additive adsorbed on the abrasive particles can be recovered together with the abrasive particles. Do. Thereby, the filtrate containing the additive having a molecular weight of less than 500, a part of the solvent, and the component to be polished dissolved in a part of the solvent can be separated from the recovered abrasive slurry.
- the filtrate separated from the recovered abrasive slurry is discharged out of the system by opening the on-off valve 27.
- the additive B mainly has a molecular weight of less than 500 and is hardly adsorbed to the abrasive particles, most of the additive B is removed from the recovered abrasive slurry by the additive removal treatment.
- the additive A mainly has a molecular weight of 500 or more or is adsorbed on the abrasive particles, it is hardly removed by the additive removal treatment.
- an additive A having an original molecular weight of 500 or more and having a molecular weight of less than 500 due to decomposition or the like is removed from the recovered abrasive slurry by the additive removal process, but is decomposed or the like. Is preferably removed from the recovered abrasive slurry because the ability to increase the polishing rate is reduced.
- the filter 26 For example, a hollow fiber filter, a metal filter, a bobbin filter, a ceramic filter, a roll type polypropylene filter, etc. can be used.
- a ceramic filter for example, a ceramic filter manufactured by TAMI, France, a ceramic filter manufactured by Noritake, a ceramic filter manufactured by NGK (for example, Ceralek DPF, Cefilt, etc.) is preferably used.
- an additive removal process before performing the said object to be polished, and to separate the filtrate containing an additive having a molecular weight of less than 500 and a part of the solvent, and then to perform the object to be polished. .
- the additive removal treatment is not limited to filtration as long as the additive having a molecular weight of 500 or more and the additive adsorbed on the abrasive particles can be recovered together with the abrasive particles. Also good.
- the same amount of water as the filtrate separated from the recovered abrasive slurry is added in the additive removal treatment, and the operation of performing filtration again is repeated, and a continuous filtration treatment for removing unnecessary additives and objects to be polished is performed.
- the abrasive concentration (% by mass) is 0. 0% with respect to the abrasive concentration (% by mass) of the unused abrasive slurry when used for polishing an object to be polished. It is performed so that it is maintained within the range of 2 to 3000%.
- the above-mentioned polishing object dissolution treatment and additive removal treatment are continuously performed over a predetermined time.
- the three-way valve 24 is switched to the discharge side, and the additive-removed abrasive slurry is discharged out of the system and recovered.
- dissolution process and an additive removal process by continuous filtration process should just be suitably set according to the structure of the filter filtration apparatus 20, the component of collection
- the concentration of additive B in the additive-removed abrasive slurry is removed within a range of 0.2 to 50% with respect to the concentration of unused abrasive slurry when used for polishing an object to be polished. It is preferable to reduce the concentration.
- the content of each additive in the abrasive slurry can be quantified using, for example, high performance liquid chromatography (HPLC).
- HPLC high performance liquid chromatography
- an abrasive concentration adjusting process for adjusting the abrasive concentration is performed on the additive-removed abrasive slurry obtained through the continuous filtration process.
- the abrasive concentration adjustment treatment is performed such that the abrasive concentration (% by mass) is relative to the abrasive concentration (% by mass) of the unused abrasive slurry when used for polishing an object to be polished. It is performed so that it is maintained within the range of 0.2 to 3000%.
- the abrasive concentration is adjusted by concentrating by filtration or diluting by adding water or the like.
- the regeneration process is performed as described above.
- an additive replenishment step is performed in which a replenishment amount of additive A to be replenished is set with respect to the additive-removed abrasive slurry obtained in the regeneration step, and the set replenishment amount of the additive is replenished. Also good.
- the additive necessary for the abrasive slurry can be recovered together with the abrasive particles, so that the additive replenishing step may be performed as necessary.
- the electrical conductivity of the additive-removed abrasive slurry is measured, a replenishment amount to be added is set according to the measured value, and the set replenishment amount of the additive is removed from the additive-removed abrasive material.
- Add to slurry As the replenishment amount of the additive A, the value of the electrical conductivity of the abrasive slurry finally obtained after being regenerated is the value of the electrical conductivity of the unused abrasive slurry when used for polishing the object to be polished. It is preferable that the value is set to be in the range of 0.05 to 100 times the value of.
- the electrical conductivity can be measured by, for example, an electrical conductivity meter (ES-51 manufactured by Kamo Horiba, Ltd.), an electrical conductivity meter (CM-30G manufactured by Toa DK Corporation), a Lacom Tester handy type conductivity meter CyberScan CON110. (As One Co., Ltd.), a compact electric conductivity meter LAQUATwin B-771 (manufactured by Kamo-Horiba Co., Ltd.), etc.
- the replenishment amount of the additive A at this time is within a concentration range of 0.1 to 50 times the concentration of the additive A in the unused abrasive slurry when used for polishing the object to be polished. It is preferable to set to.
- the replenishment amount of the additive A is preferably set so that the concentration of the additive A is in the range of 0.002 to 1.0% by mass when the abrasive concentration is 1.0% by mass.
- FIG. 4 is a schematic diagram showing the constituent material of the abrasive slurry at each stage from the above-described unused abrasive slurry to obtaining a recycled abrasive slurry.
- an unused abrasive slurry 31 when used for polishing an object to be polished, includes a liquid medium Dm (mainly water), main material abrasive particles (abrasive grains) PM, and a polishing rate.
- An additive A 1 having an increasing ability and an additive B having an ability to decrease the polishing rate are contained.
- As additive B a preservative, an antibacterial agent, or the like is used to ensure storage stability and the like in a period from the preparation of the abrasive slurry to the use in the polishing step.
- an abrasive slurry recovery process is performed to recover the recovered abrasive slurry 32.
- the recovered abrasive slurry 32 contains an object to be polished S that is a polished residue generated in the polishing step.
- the regeneration process is performed on the recovered abrasive slurry 32.
- the regeneration process includes an object dissolution process and an additive removal process, but further includes one or more of the above foreign substance removal process, continuous filtration process, and abrasive concentration adjustment process. It is good as a thing.
- the abrasive concentration (% by mass) is 0.2 to 3000% with respect to the abrasive concentration (% by mass) of the unused abrasive slurry when used for polishing an object to be polished. It is preferable to perform various treatments so as to be maintained within the range.
- an object to be polished is dissolved to dissolve the object to be polished S, and an additive is removed from the recovered abrasive slurry 33 in which the object to be polished S is dissolved using the filter filtration device 20 shown in FIG. Process.
- the additive removal treatment is performed under the condition that the additive having a molecular weight of 500 or more and the additive adsorbed on the abrasive particles can be recovered together with the abrasive particles.
- the filtrate 34 containing additive B are separated, and the additive A 1 is recovered with the abrasive particles PM, additives-removed abrasive slurry 35 as a reproduced abrasive slurry can get.
- the additive A 1 may be recovered while adsorbed on the abrasive particles PM, or may be recovered alone.
- the component having a molecular weight of less than 500 due to decomposition or the like in the additive A 1 is included in the filtrate 34 together with the additive B.
- the filtrate 34 may contain slightly, the additive-removed abrasive slurry 35 additive B may be contained slightly.
- the additive-removed abrasive slurry 35 has a high polishing rate because the content of the additive B is reduced, and the additive A is not required to be supplemented because the additive A remains. Therefore, according to the method for regenerating an abrasive slurry of the present invention, it is possible to efficiently regenerate an abrasive slurry having a high polishing rate.
- the additive-removed abrasive slurry 35 may be subjected to an additive replenishing step, and the resulting additive-supplemented abrasive slurry 36 is used as a recycled abrasive. It may be a slurry.
- the additive A 2 may be the same as or different from the additive A 1 .
- Abrasive particles Generally, as an abrasive slurry used for polishing optical glass, semiconductor substrates, etc., fine particles such as bengara ( ⁇ Fe 2 O 3 ), cerium oxide, aluminum oxide, manganese oxide, zirconium oxide or colloidal silica are used as water or oil. A slurry is used that is dispersed in a slurry.
- the method for regenerating an abrasive slurry according to the present invention is a physical action and a chemical action in order to obtain a sufficient processing speed while maintaining flatness with high accuracy in polishing of the surface of a semiconductor substrate and glass. It is preferable to apply to an abrasive slurry that can be applied to chemical mechanical polishing (CMP).
- CMP chemical mechanical polishing
- the abrasive particles contained in the abrasive slurry are preferably selected from, for example, cerium oxide, diamond, boron nitride, silicon carbide, alumina, alumina zirconia, and zirconium oxide.
- examples of the diamond abrasive include synthetic diamond and natural diamond.
- the boron nitride-based abrasive is an abrasive having hardness next to diamond, and examples thereof include cubic boron nitride BN (for example, manufactured by Showa Denko KK).
- Examples of the silicon carbide-based abrasive include silicon carbide, green silicon carbide, and black silicon carbide.
- Examples of the alumina-based abrasive include, besides alumina, brown alumina, white alumina, light red alumina, pulverized alumina, or alumina zirconia-based abrasive.
- zirconium oxide include BR series zirconium oxide for abrasives manufactured by Daiichi Rare Element Chemical Co., Ltd.
- the abrasive particles used in the present invention are not particularly limited with respect to their components and shapes, and those commercially available as abrasive particles can be used.
- a homogenizer, an ultrasonic disperser, a wet ball mill, or the like can be used in addition to a dispersion treatment using a normal stirrer.
- the average particle size of the abrasive particles in the abrasive slurry thus prepared is preferably in the range of 0.01 to 1.0 ⁇ m. If the average particle size of the abrasive particles is 0.01 ⁇ m or more, a high polishing rate can be obtained, and if it is 1.0 ⁇ m or less, the occurrence of scratches on the surface of the object to be polished during polishing can be prevented. Can do.
- the additive contained in the abrasive slurry according to the present invention is roughly classified into an additive A having an ability to increase the polishing rate and an additive B having an ability to reduce the polishing rate.
- an additive having an ability to increase the polishing rate and “an additive having an ability to decrease the polishing rate” are defined as compounds satisfying the conditions specified below.
- the polishing rate 1 is measured according to the following method using a reference abrasive slurry 1 in which only abrasive particles are dispersed in water at a concentration of 1.0 mass%.
- the surface to be polished is polished with a polishing cloth while supplying the abrasive slurry 1 to the surface to be polished using the polishing machine shown in FIG.
- polishing was performed by circulatingly supplying the abrasive slurry 1 at a flow rate of 5 L / min.
- a glass substrate having a thickness of 65 mm was used as an object to be polished, and a polyurethane cloth was used as the polishing cloth.
- the polishing pressure on the polished surface was 9.8 kPa (100 g / cm 2 ), the rotation speed of the polishing tester was set to 100 min ⁇ 1 (rpm), and polishing was performed for 30 minutes.
- the thickness before and after polishing was measured with a Nikon Digimicro (MF501), and the polishing amount ( ⁇ m) per minute was calculated from the thickness displacement.
- an abrasive slurry 2 to be measured containing 0.02% by mass of additive A or additive B to be measured and 1.0% by mass of abrasive particles is prepared, and the same method as described above is used. The polishing rate 2 is measured.
- polishing rate ratio (polishing rate 2 / polishing rate 1) is obtained from each of the obtained polishing rates. If the polishing rate ratio is less than 1.00, the additive is an additive capable of reducing the polishing rate. If the polishing rate ratio is 1.02 or more, it is defined as an additive having an ability to increase the polishing rate. As an additive capable of increasing the polishing rate, the polishing rate ratio is preferably 1.05 or more, more preferably 1.10 or more.
- the additive A applicable to the present invention is an additive having a function of increasing the polishing efficiency.
- Dispersant examples include a water-soluble anionic dispersant, a water-soluble cationic dispersant, a water-soluble nonionic (nonionic) dispersant, and a water-soluble amphoteric (betaine) dispersant.
- a dispersant which is a polymer compound containing an ammonium acrylate salt as a polymerization component is preferred.
- polyacrylic acid ammonium, a copolymer of acrylic acid amide and ammonium acrylate, and the like can be mentioned.
- two or more of the above dispersants may be used in combination in the abrasive slurry according to the present invention.
- at least one polymer dispersant containing ammonium acrylate salt as a copolymerization component, a water-soluble anionic dispersant, a water-soluble nonionic dispersant, a water-soluble cationic dispersant, and a water-soluble amphoteric dispersion At least one kind selected from agents may be used in combination.
- the content of alkali metals such as sodium ions or potassium ions in the dispersant is preferably suppressed to 10 ppm or less.
- the amount of the dispersant added is determined from the relationship between the dispersibility of the abrasive particles in the abrasive slurry and the sedimentation prevention, and the relationship between the polishing scratches and the added amount of the dispersant.
- a range of 0.01 to 2.0 parts by mass is preferable with respect to 100 parts by mass.
- the molecular weight of the dispersant is preferably in the range of 500 to 50,000, more preferably 1000 to 10,000. If the molecular weight of the dispersant is 500 or more, a sufficient polishing rate can be obtained when polishing a silicon oxide film or silicon nitride film as an object to be polished.
- the molecular weight of the dispersant is 50000 or less, polishing is performed. The viscosity increase of the material slurry can be suppressed, and the storage stability can be ensured.
- the preferable molecular weight of the dispersant is a weight average molecular weight.
- anionic dispersant examples include lauryl sulfate triethanolamine, ammonium lauryl sulfate, polyoxyethylene alkyl ether sulfate triethanolamine, and polycarboxylic acid type polymer dispersant.
- polycarboxylic acid type polymer dispersants include polymers of carboxylic acid monomers having unsaturated double bonds such as acrylic acid, methacrylic acid, maleic acid, fumaric acid, and itaconic acid, and unsaturated double bonds. And a copolymer of a carboxylic acid monomer having a monomer and another monomer having an unsaturated double bond, and an ammonium salt or an amine salt thereof.
- cationic dispersant examples include primary to tertiary aliphatic amines, tetraalkylammonium, trialkylbenzylammonium alkylpyridinium, 2-alkyl-1-alkyl-1-hydroxyethylimidazolinium, N, N -Dialkylmorpholinium, polyethylene polyamine fatty acid amide, urea condensate of polyethylene polyamine fatty acid amide, quaternary ammonium of urea condensate of polyethylene polyamine fatty acid amide, and salts thereof.
- Nonionic dispersants include, for example, polyoxyethylene lauryl ether, polyoxyethylene cetyl ether, polyoxyethylene stearyl ether, polyoxyethylene oleyl ether, polyoxyethylene higher alcohol ether, polyoxyethylene octylphenyl ether, polyoxyethylene Nonylphenyl ether, polyoxyalkylene alkyl ether, polyoxyethylene derivative, polyoxyethylene sorbitan monolaurate, polyoxyethylene sorbitan monopalmitate, polyoxyethylene sorbitan monostearate, polyoxyethylene sorbitan tristearate, polyoxyethylene Sorbitan monooleate, polyoxyethylene sorbitan trioleate, polyoxytetraoleate Tylene sorbite, polyethylene glycol monolaurate, polyethylene glycol monostearate, polyethylene glycol distearate, polyethylene glycol monooleate, polyoxyethylene alkylamine, polyoxyethylene hydrogenated castor oil, 2-hydroxyethyl me
- betaine dispersant examples include N, N-dimethyl-N-alkyl-N-carboxymethylammonium betaine, N, N, N-trialkyl-N-sulfoalkylene ammonium betaine, N, N-dialkyl-N, N-bispolyoxyethyleneammonium sulfate betaine, betaines such as 2-alkyl-1-carboxymethyl-1-hydroxyethylimidazolinium betaine; aminocarboxylic acids such as N, N-dialkylaminoalkylenecarboxylate Can be mentioned.
- polishing rate selection ratio improver In the abrasive slurry according to the present invention, when the object to be polished contains silicon nitride, a polishing rate selection ratio improver can be applied as the additive A.
- the improvement of the polishing rate selection ratio in the present invention means that the polishing rate ratio (hereinafter also referred to as the selection ratio) of the silicon nitride film (Si 3 N 4 ) with respect to the polishing rate of the silicon oxide film (SiO 2 ) is improved. To do.
- the polishing rate selection ratio improver is preferably an organic cationic compound from the viewpoint of improving the ratio of the polishing rate of the silicon nitride film to the polishing rate of the silicon oxide film.
- organic cationic compound those containing a nitrogen atom are preferable, and compounds having an amino group or a quaternary ammonium group are more preferable.
- the molecular weight of the organic cationic compound is preferably in the range of 500 to 50,000, more preferably in the range of 1000 to 10,000, from the viewpoint of water solubility.
- the compound having an amino group may contain one or more amino groups in one molecule, and the number thereof is preferably 1 to 20, more preferably 1 to 10, more preferably 1 to 1, from the viewpoint of water solubility. 5, most preferably 1-3.
- the ratio of the number of carbon atoms and the number of nitrogen atoms (C / N ratio) contained in one molecule of the compound having an amino group is preferably 1 to 20, more preferably 1 to 10, and still more preferably from the viewpoint of water solubility. 1-6, most preferably 1-4. However, ethanolamine compounds are excluded.
- polishing rate selection ratio improver examples include, for example, JP-A No. 2002-114967, JP-A No. 2002-118082, JP-A No. 2002-201462, JP-A No. 2004-269577, Monoamines such as primary amines, secondary amines or tertiary amines, polyamines, amines having an OH group, amines having an ether group, nitrogen atoms described in JP-A-2004-273547 Examples thereof include a heterocyclic compound to be contained or a compound having a quaternary ammonium group.
- ethylamine, propylamine, isopropylamine, butylamine and ethylenediamine are particularly preferred.
- cleaning soap In the present invention, it is preferable to use a cleaning agent as one of the additives A, and it is particularly preferable to use an alcohol compound as the cleaning agent.
- those having a molecular weight of less than 500 are adsorbed to the abrasive particles by a hydrophobic group such as an alkyl group in the abrasive slurry, and can therefore be recovered together with the abrasive particles in the regeneration step.
- the additive B is an additive for imparting storage stability and the like during the period from the preparation of the abrasive slurry to the use in the polishing step, and the ability to reduce the polishing rate. Therefore, since the regenerated abrasive slurry is often used immediately, the additive B becomes an unnecessary component.
- a compound corresponding to the additive B mainly, an antiseptic, an antibacterial agent, a rust inhibitor and the like can be mentioned.
- preservatives examples include benzalkonium chloride, benzethonium chloride, 1,2-benzisothiazolin-3-one, (5-chloro) 2-methyl-4-isothiazolin-3-one, hydrogen peroxide, hypochlorous acid An acid etc. are mentioned.
- antibacterial agent examples include quaternary ammonium salt type antibacterial agents such as tetramethylammonium chloride, tetraethylammonium chloride, tetramethylammonium hydroxide, and tetraethylammonium hydroxide.
- rust inhibitor examples include ethanolamine compounds such as N, N-diethylethanolamine, N, N-dimethylethanolamine, and aminoethylethanolamine.
- Preparation of Recycled Abrasive Slurry 101 (Preparation of unused abrasive slurry) The following abrasive particles and each additive were added to pure water and then dispersed using a homogenizer to prepare 10 kg of an abrasive slurry having a CeO 2 concentration (abrasive concentration) of 4000 ppm by mass. This was used as an unused abrasive slurry.
- the CeO 2 concentration was measured by ICP emission spectroscopy (inductively coupled plasma emission spectroscopy). Hereinafter, the CeO 2 concentration was measured in the same manner.
- Abrasive particles Cerium oxide abrasive 40.0g
- Additive A polyacrylic acid ammonium salt (PAA, dispersant, molecular weight: 8000) 0.6 g
- Additive A 2-ethylhexanol (cleaning agent, molecular weight: 130) 0.2g
- Additive B Hypochlorous acid (preservative, molecular weight: 52) 0.1 g
- polishing target surface was polished with a polishing cloth while supplying the prepared unused abrasive slurry to the polishing target surface using the polishing machine shown in FIG. Polishing was performed by circulatingly supplying the abrasive slurry at a flow rate of 5 L / min.
- a 65 mm ⁇ glass substrate was used as the object to be polished, and a polishing cloth made of polyurethane was used.
- the polishing pressure on the polished surface was 9.8 kPa (100 g / cm 2 ), the rotation speed of the polishing tester was set to 100 min ⁇ 1 (rpm), and polishing was performed for 30 minutes.
- the thickness before and after polishing was measured with Nikon Digimicro (MF501), the polishing amount per minute ( ⁇ m) was calculated from the thickness displacement, and the polishing rate ( ⁇ m / min) was measured. did. Pure water was used as cleaning water for cleaning the polishing section.
- the abrasive slurry used in the polishing step was recovered together with cleaning water, and this was used as a recovered abrasive slurry.
- the CeO 2 concentration of the recovered abrasive slurry was 950 ppm by mass, and the recovered amount was 20 kg.
- Recycled Abrasive Slurry 102 In the preparation of the regenerated abrasive slurry 101, pure water was added so that the CeO 2 concentration was 40 ppm by mass in the workpiece dissolution treatment, and the filtration time was 4.99 hours in the additive removal treatment. Recycled abrasive slurry 102 was prepared in the same manner except that 949 L was removed. The composition of the obtained recycled abrasive slurry 102 is shown in Table 1.
- Recycled Abrasive Slurry 103 In the preparation of the recycled abrasive slurry 101, pure water is added so that the CeO 2 concentration is 400 mass ppm in the polishing object dissolution treatment, and the filtration time is 0.5 hours in the additive removal treatment. Recycled abrasive slurry 103 was prepared in the same manner except that 94 L was removed. The composition of the obtained recycled abrasive slurry 103 is shown in Table 1.
- Recycled Abrasive Slurry 104 In the preparation of the recycled abrasive slurry 101, pure water was added so that the CeO 2 concentration was 12 ppm by mass in the polishing object dissolution treatment, and the filtration time was 16.63 hours in the additive removal treatment. Recycled abrasive slurry 104 was prepared in the same manner except that 3165 L was removed. The composition of the obtained recycled abrasive slurry 104 is shown in Table 1.
- Recycled Abrasive Slurry 105 In the preparation of the regenerated abrasive slurry 101, pure water was added so that the CeO 2 concentration was 40 ppm by mass in the workpiece dissolution treatment, and the filtration time was 4.99 hours in the additive removal treatment. Recycled abrasive slurry 105 was prepared in the same manner except that 949 L was removed. The composition of the obtained recycled abrasive slurry 105 is shown in Table 1.
- Recycled Abrasive Slurry 106 In the preparation of the recycled abrasive slurry 101, pure water is added so that the CeO 2 concentration is 400 mass ppm in the polishing object dissolution treatment, and the filtration time is 0.49 hours in the additive removal treatment. Recycled abrasive slurry 106 was prepared in the same manner except that 94 L was removed. The composition of the obtained recycled abrasive slurry 106 is shown in Table 1.
- Recycled Abrasive Slurry 108 In the preparation of the regenerated abrasive slurry 101, pure water was added so that the CeO 2 concentration was 40 ppm by mass in the workpiece dissolution treatment, and the filtration time was 4.99 hours in the additive removal treatment. Recycled abrasive slurry 108 was prepared in the same manner except that 949 L was removed. The composition of the obtained recycled abrasive slurry 108 is shown in Table 1.
- Recycled Abrasive Slurry 109 In the preparation of the recycled abrasive slurry 101, pure water is added so that the CeO 2 concentration is 400 mass ppm in the polishing object dissolution treatment, and the filtration time is 0.5 hours in the additive removal treatment. Recycled abrasive slurry 109 was prepared in the same manner except that 94 L was removed. The composition of the obtained recycled abrasive slurry 109 is shown in Table 1.
- Recycled Abrasive Slurry 110 In the preparation of the recycled abrasive slurry 101, pure water was added so that the CeO 2 concentration was 12 mass ppm in the polishing object dissolution treatment, and the filtration time was 16.59 hours in the additive removal treatment. Recycled abrasive slurry 110 was prepared in the same manner except that 3157 L was removed. The composition of the obtained recycled abrasive slurry 110 is shown in Table 1.
- Recycled Abrasive Slurry 111 In the preparation of the recycled abrasive slurry 101, pure water was added so that the CeO 2 concentration was 40 ppm by mass in the polishing object dissolution treatment, and the filtration time was 4.95 hours in the additive removal treatment. Recycled abrasive slurry 111 was prepared in the same manner except that 941 L was removed. The composition of the obtained recycled abrasive slurry 111 is shown in Table 1.
- Recycled Abrasive Slurry 114 In the preparation of the recycled abrasive slurry 101, pure water was added so that the CeO 2 concentration was 40 mass ppm in the polishing object dissolution treatment, and the filtration time was 4.99 hours in the additive removal treatment. Recycled abrasive slurry 114 was prepared in the same manner except that 950 L was removed. The composition of the obtained recycled abrasive slurry 114 is shown in Table 1.
- Recycled Abrasive Slurry 115 In the preparation of the recycled abrasive slurry 101, pure water was added so that the CeO 2 concentration was 400 mass ppm in the polishing object dissolution treatment, and the filtration time was 0.5 hours in the additive removal treatment. Recycled abrasive slurry 115 was prepared in the same manner except that 95 L was removed. The composition of the obtained recycled abrasive slurry 115 is shown in Table 1.
- ⁇ 0.9 or more ⁇ : 0.5 or more and less than 0.9 ⁇ : less than 0.5
- the abrasive concentration is maintained within the range of 0.2 to 3000% with respect to the abrasive concentration of the unused abrasive slurry when used for polishing an object to be polished.
- the regenerated abrasive slurry of the present invention obtained by performing a regeneration step of recovering the additive having a molecular weight of 500 or more and the additive adsorbed on the abrasive particles was compared with the abrasive slurry of the comparative example.
- the recovery rate of the abrasive particles (CeO 2 ) is high, the polishing rate is excellent, and the number of defects is also reduced.
- an abrasive slurry having a high polishing rate can be efficiently regenerated.
- the loss of the recovered abrasive slurry was increased because the abrasive concentration in the regeneration process exceeded 3000% with respect to the abrasive concentration of the unused abrasive slurry. And the recovery rate of abrasive particles is low.
- the recovered amount of the additive A was obtained because the abrasive concentration in the regeneration process was less than 0.2% with respect to the abrasive concentration of the unused abrasive slurry. As a result, the polishing rate is low.
- the present invention is suitable for providing a method for regenerating an abrasive slurry capable of efficiently regenerating an abrasive slurry having a high polishing rate.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Grinding-Machine Dressing And Accessory Apparatuses (AREA)
- Mechanical Treatment Of Semiconductor (AREA)
- Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
Abstract
本発明の課題は、研磨速度の高い研磨材スラリーを効率的に再生することができる研磨材スラリーの再生方法を提供することである。当該研磨材スラリーの再生方法は、研磨材粒子と、複数種の添加剤とを含有する研磨材スラリーを用いて、酸化ケイ素を主成分とする被研磨物を研磨した後、回収された回収研磨材スラリーを再生する研磨材スラリーの再生方法であって、被研磨物の研磨に用いられるときの未使用の研磨材スラリーの研磨材濃度(質量%)に対して、研磨材濃度(質量%)を0.2~3000%の範囲内に維持しながら、回収研磨材スラリーに含有される添加剤のうち、分子量が500以上の添加剤と、研磨材粒子に吸着している添加剤とを、研磨材粒子とともに回収する再生工程を有することを特徴とする。
Description
本発明は、研磨材スラリーの再生方法に関する。特に、研磨速度の高い研磨材スラリーを効率的に再生することができる研磨材スラリーの再生方法に関する。
近年、ガラスディスク、水晶ウエハ及び液晶パネル等の用途としてガラス材料の使用頻度が増大しており、これらガラス材料の表面は鏡面状に研磨されていることが必須であることが多い。その研磨方法としては、研磨パッド等の研磨部材とガラス材料との間に研磨材スラリーを介在させた状態で当該ガラス材料の研磨を行うCMP(Chemical Mechanical Polishing:化学機械研磨)技術が一般に採用されている。
これらの研磨材スラリーは、研磨を行うことにより研磨材スラリー中の微細なガラス片等の被研磨物の含有量が多くなると、研磨速度が低下するため、通常は一定期間使用した後、廃棄されている。
研磨材スラリーに含有される研磨材粒子を構成している主要元素の中には、日本国内では産出量が少ない、あるいは全く産出しない鉱物から得られるレアメタルも含まれる。当該材料は、一部では輸入に頼っている貴重な資源であり、かつ材料価格としても高価なものが多く、更に研磨材粒子としての使用量も多い重要な材料である。このため、研磨工程で使用された研磨材スラリーを回収した後、再生して再生研磨材スラリーとして利用することにより、貴重な材料を有効利用することが強く望まれている。
そこで、例えば、回収した研磨材スラリーから被研磨物由来の成分を除去すべく、被研磨物由来の成分を溶解させるために分散剤や電解質を添加し、研磨材スラリーを再生する方法が開示されている(例えば、特許文献1及び2参照。)。
ここで、研磨材スラリーには、主成分である研磨材粒子(砥粒ともいう。)とともに、研磨時の研磨材粒子の分散性、洗浄性及び研磨性等を向上させ研磨速度を高める目的で、安定剤及び洗浄剤等の添加剤(以下、研磨速度の上昇能を有する添加剤を、添加剤Aともいう。)が含有される場合がある。また、製造されてから実際に研磨に使用されるまでの保管や輸送時の安定性維持の観点から、研磨材スラリーには抗菌剤、防腐剤及び凍結防止剤等の添加剤が含有される場合があり(例えば、特許文献3及び4参照。)、当該添加剤には研磨速度を低下させる機能を有するものも含まれる(以下、研磨速度の低下能を有する添加剤を、添加剤Bともいう。)。添加剤Bは、再生後、直ちに使用されるケースが多い再生研磨材スラリーにおいては、研磨速度を維持・向上させるという観点からは不要の材料となる。
しかしながら、上記特許文献1及び2に記載の技術によれば、再生工程によって添加剤Aが除去されたり、再生研磨材スラリーに添加剤Bが残留していたりする場合がある。このため、研磨速度の高い再生研磨材スラリーを得るためには、再生工程後に添加剤Aを再度添加したり、添加剤Bを除去したりする工程が必要であり、研磨速度の高い研磨材スラリーを効率良く得ることが困難であった。
本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、研磨速度の高い研磨材スラリーを効率的に再生することができる研磨材スラリーの再生方法を提供することである。
本発明に係る上記課題を解決すべく、上記問題の原因等について検討した結果、研磨材粒子と、複数種の添加剤とを含有する研磨材スラリーを用いて、酸化ケイ素を主成分とする被研磨物を研磨した後、回収された回収研磨材スラリーを再生する研磨材スラリーの再生方法が、回収研磨材スラリーに含有される添加剤のうち、分子量が500以上の添加剤と、研磨材粒子に吸着している添加剤とを研磨材粒子とともに回収する再生工程を有することで、研磨速度の高い研磨材スラリーを効率的に再生できることを見いだし、本発明に至った。
すなわち、本発明に係る課題は、以下の手段により解決される。
すなわち、本発明に係る課題は、以下の手段により解決される。
1.研磨材粒子と、複数種の添加剤とを含有する研磨材スラリーを用いて、酸化ケイ素を主成分とする被研磨物を研磨した後、回収された回収研磨材スラリーを再生する研磨材スラリーの再生方法であって、
前記被研磨物の研磨に用いられるときの未使用の研磨材スラリーの研磨材濃度(質量%)に対して、研磨材濃度(質量%)を0.2~3000%の範囲内に維持しながら、前記回収研磨材スラリーに含有される添加剤のうち、分子量が500以上の添加剤と、前記研磨材粒子に吸着している添加剤とを、前記研磨材粒子とともに回収する再生工程を有することを特徴とする研磨材スラリーの再生方法。
前記被研磨物の研磨に用いられるときの未使用の研磨材スラリーの研磨材濃度(質量%)に対して、研磨材濃度(質量%)を0.2~3000%の範囲内に維持しながら、前記回収研磨材スラリーに含有される添加剤のうち、分子量が500以上の添加剤と、前記研磨材粒子に吸着している添加剤とを、前記研磨材粒子とともに回収する再生工程を有することを特徴とする研磨材スラリーの再生方法。
2.前記被研磨物の研磨に用いられるときの未使用の研磨材スラリーの研磨材濃度(質量%)に対して、研磨材濃度(質量%)を1~3000%の範囲内に維持しながら、前記再生工程を行うことを特徴とする第1項に記載の研磨材スラリーの再生方法。
3.前記被研磨物の研磨に用いられるときの未使用の研磨材スラリーの研磨材濃度(質量%)に対して、研磨材濃度(質量%)を0.2~1000%の範囲内に維持しながら、前記再生工程を行うことを特徴とする第1項に記載の研磨材スラリーの再生方法。
4.前記被研磨物の研磨に用いられるときの未使用の研磨材スラリーの研磨材濃度(質量%)に対して、研磨材濃度(質量%)を1~1000%の範囲内に維持しながら、前記再生工程を行うことを特徴とする第1項から第3項までのいずれか一項に記載の研磨材スラリーの再生方法。
本発明によれば、研磨速度の高い研磨材スラリーを効率的に再生することができる研磨材スラリーの再生方法を提供することができる。
本発明の効果の発現機構ないし作用機構については、明確になっていないが、以下のように推察している。
添加剤が研磨材粒子に吸着するか否かは、当該添加剤が有する疎水基及び親水基の比率や、ファンデルワールス力、研磨材スラリーのpH、研磨材濃度及び被研磨物の濃度等に依存する。
また、回収研磨材スラリーに含有される添加剤のうち、研磨速度を低下させる機能を有する添加剤は、分子量500未満であるか又は上記条件により研磨材粒子に吸着しにくいものが多く、研磨速度を向上させる機能を有する添加剤は、分子量500以上であるか又は上記条件により研磨材粒子に吸着しやすいものが多い。
本発明では、再生行程を行う際に、被研磨物の研磨に用いられるときの未使用の研磨材スラリーの研磨材濃度(質量%)に対して、研磨材濃度(質量%)を0.2~3000%の範囲内に維持することで、回収研磨材スラリーに含有される添加剤のうち分子量が500以上の添加剤と、研磨材粒子に吸着している添加剤とを回収しやすくすることができる。
これは、上記研磨材濃度を0.2%以上とすることで、研磨材スラリー中の溶媒(主に、水。)の量が増大しすぎることを抑制し、研磨材スラリーのpHを所定範囲内とすることができ、研磨材粒子に吸着した添加剤の脱離を抑制できる。また、溶媒量の増大が抑制されることで、添加剤が加水分解等して当該添加剤の親水基及び疎水基のバランスが崩れることを抑制でき、研磨材粒子に吸着した添加剤の脱離を抑制できる。
一方、上記研磨材濃度を3000%以下とすることで、研磨材スラリーの粘度を低く保つことができ、再生工程が行われる容器又は装置等の内部への付着ロス量を低減して、回収率を向上させることができる。
このため、再生工程中の研磨材濃度を上記範囲内に維持しながら、回収研磨材スラリーに含有される添加剤のうち、分子量が500以上の添加剤と、研磨材粒子に吸着している添加剤とを研磨材粒子とともに回収することで、研磨材粒子及び添加剤Aを主に含有する研磨材スラリーを高い回収率で効率良く得ることができる。また、得られた研磨材スラリーは、研磨材粒子及び添加剤Aを主に含有するため、上記方法によれば、研磨速度の高い研磨材スラリーを得ることができる。
本発明の効果の発現機構ないし作用機構については、明確になっていないが、以下のように推察している。
添加剤が研磨材粒子に吸着するか否かは、当該添加剤が有する疎水基及び親水基の比率や、ファンデルワールス力、研磨材スラリーのpH、研磨材濃度及び被研磨物の濃度等に依存する。
また、回収研磨材スラリーに含有される添加剤のうち、研磨速度を低下させる機能を有する添加剤は、分子量500未満であるか又は上記条件により研磨材粒子に吸着しにくいものが多く、研磨速度を向上させる機能を有する添加剤は、分子量500以上であるか又は上記条件により研磨材粒子に吸着しやすいものが多い。
本発明では、再生行程を行う際に、被研磨物の研磨に用いられるときの未使用の研磨材スラリーの研磨材濃度(質量%)に対して、研磨材濃度(質量%)を0.2~3000%の範囲内に維持することで、回収研磨材スラリーに含有される添加剤のうち分子量が500以上の添加剤と、研磨材粒子に吸着している添加剤とを回収しやすくすることができる。
これは、上記研磨材濃度を0.2%以上とすることで、研磨材スラリー中の溶媒(主に、水。)の量が増大しすぎることを抑制し、研磨材スラリーのpHを所定範囲内とすることができ、研磨材粒子に吸着した添加剤の脱離を抑制できる。また、溶媒量の増大が抑制されることで、添加剤が加水分解等して当該添加剤の親水基及び疎水基のバランスが崩れることを抑制でき、研磨材粒子に吸着した添加剤の脱離を抑制できる。
一方、上記研磨材濃度を3000%以下とすることで、研磨材スラリーの粘度を低く保つことができ、再生工程が行われる容器又は装置等の内部への付着ロス量を低減して、回収率を向上させることができる。
このため、再生工程中の研磨材濃度を上記範囲内に維持しながら、回収研磨材スラリーに含有される添加剤のうち、分子量が500以上の添加剤と、研磨材粒子に吸着している添加剤とを研磨材粒子とともに回収することで、研磨材粒子及び添加剤Aを主に含有する研磨材スラリーを高い回収率で効率良く得ることができる。また、得られた研磨材スラリーは、研磨材粒子及び添加剤Aを主に含有するため、上記方法によれば、研磨速度の高い研磨材スラリーを得ることができる。
本発明の研磨材スラリーの再生方法は、研磨材粒子と、複数種の添加剤とを含有する研磨材スラリーを用いて、酸化ケイ素を主成分とする被研磨物を研磨した後、回収された回収研磨材スラリーを再生する研磨材スラリーの再生方法であって、前記被研磨物の研磨に用いられるときの未使用の研磨材スラリーの研磨材濃度(質量%)に対して、研磨材濃度(質量%)を0.2~3000%の範囲内に維持しながら、前記回収研磨材スラリーに含有される添加剤のうち、分子量が500以上の添加剤と、前記研磨材粒子に吸着している添加剤とを、前記研磨材粒子とともに回収する再生工程を有することを特徴とする。この特徴は、各請求項に共通する又は対応する技術的特徴である。
本発明の研磨材スラリーの再生方法においては、前記被研磨物の研磨に用いられるときの未使用の研磨材スラリーの研磨材濃度(質量%)に対して、研磨材濃度(質量%)を1~3000%の範囲内に維持しながら、前記再生工程を行うことが好ましい。これにより、得られた再生研磨材スラリーを用いて研磨した際の欠陥数を低減できる。
また、本発明の研磨材スラリーの再生方法においては、前記被研磨物の研磨に用いられるときの未使用の研磨材スラリーの研磨材濃度(質量%)に対して、研磨材濃度(質量%)を0.2~1000%の範囲内に維持しながら、前記再生工程を行うことが好ましい。これにより、研磨材スラリーの粘度をより適切な範囲とすることができ、研磨材回収率を向上させることができる。
また、本発明の研磨材スラリーの再生方法においては、前記被研磨物の研磨に用いられるときの未使用の研磨材スラリーの研磨材濃度(質量%)に対して、研磨材濃度(質量%)を1~1000%の範囲内に維持しながら、前記再生工程を行うことが好ましい。これにより、得られた再生研磨材スラリーを用いて研磨した際の欠陥数を低減できるとともに、研磨材回収率を向上させることができる。
本発明の研磨材スラリーの再生方法においては、前記被研磨物の研磨に用いられるときの未使用の研磨材スラリーの研磨材濃度(質量%)に対して、研磨材濃度(質量%)を1~3000%の範囲内に維持しながら、前記再生工程を行うことが好ましい。これにより、得られた再生研磨材スラリーを用いて研磨した際の欠陥数を低減できる。
また、本発明の研磨材スラリーの再生方法においては、前記被研磨物の研磨に用いられるときの未使用の研磨材スラリーの研磨材濃度(質量%)に対して、研磨材濃度(質量%)を0.2~1000%の範囲内に維持しながら、前記再生工程を行うことが好ましい。これにより、研磨材スラリーの粘度をより適切な範囲とすることができ、研磨材回収率を向上させることができる。
また、本発明の研磨材スラリーの再生方法においては、前記被研磨物の研磨に用いられるときの未使用の研磨材スラリーの研磨材濃度(質量%)に対して、研磨材濃度(質量%)を1~1000%の範囲内に維持しながら、前記再生工程を行うことが好ましい。これにより、得られた再生研磨材スラリーを用いて研磨した際の欠陥数を低減できるとともに、研磨材回収率を向上させることができる。
以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、本発明において示す「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。
《研磨材スラリーの再生方法の概要》
本発明の研磨材スラリーの再生方法は、研磨材粒子と、複数種の添加剤とを含有する研磨材スラリーを用いて、酸化ケイ素を主成分とする被研磨物を研磨した後、回収された回収研磨材スラリーを再生する研磨材スラリーの再生方法であって、被研磨物の研磨に用いられるときの未使用の研磨材スラリーの研磨材濃度(質量%)に対して、研磨材濃度(質量%)を0.2~3000%の範囲内に維持しながら、回収研磨材スラリーに含有される添加剤のうち、分子量が500以上の添加剤と、研磨材粒子に吸着している添加剤とを、研磨材粒子とともに回収する再生工程を有する。
本発明の研磨材スラリーの再生方法は、研磨材粒子と、複数種の添加剤とを含有する研磨材スラリーを用いて、酸化ケイ素を主成分とする被研磨物を研磨した後、回収された回収研磨材スラリーを再生する研磨材スラリーの再生方法であって、被研磨物の研磨に用いられるときの未使用の研磨材スラリーの研磨材濃度(質量%)に対して、研磨材濃度(質量%)を0.2~3000%の範囲内に維持しながら、回収研磨材スラリーに含有される添加剤のうち、分子量が500以上の添加剤と、研磨材粒子に吸着している添加剤とを、研磨材粒子とともに回収する再生工程を有する。
ここで、酸化ケイ素を主成分とする被研磨物とは、酸化ケイ素を50質量%以上含む被研磨物であることをいう。
また、本発明に係る再生工程においては、研磨材粒子に吸着している添加剤については、分子量がいずれであっても研磨材粒子とともに回収するものとする。
また、本発明に係る再生工程においては、研磨材粒子に吸着している添加剤については、分子量がいずれであっても研磨材粒子とともに回収するものとする。
《再生研磨材スラリーの調製フロー》
〔研磨工程〕
まず、図1を参照して、被研磨物を研磨する研磨工程について説明する。研磨工程の後に、研磨材粒子等を含有する回収研磨材スラリーを得る。
図1は、本実施形態に係る研磨機の概略構成図である。
〔研磨工程〕
まず、図1を参照して、被研磨物を研磨する研磨工程について説明する。研磨工程の後に、研磨材粒子等を含有する回収研磨材スラリーを得る。
図1は、本実施形態に係る研磨機の概略構成図である。
ガラスレンズの研磨を例にとると、研磨工程は、研磨材スラリーの調製、研磨加工及び研磨部の洗浄等の複数の処理で構成されているのが一般的である。
図1に示す研磨機1は、不織布、合成樹脂発泡体又は合成皮革等から構成される研磨布Fを貼付した研磨定盤2を有しており、この研磨定盤2は回転可能に構成されている。
研磨作業時には、酸化ケイ素を主成分とする被研磨物3を、回転可能な保持具Hを用いて、所定の押圧力Nで上記研磨定盤2に押し付けながら、研磨定盤2と保持具Hを回転させる。同時に、スラリーノズル5から、ポンプD1を介してあらかじめ調製した研磨材スラリー4を供給する。研磨工程に使用された後の研磨材スラリー4(使用済み研磨材スラリー)は、流路6を通じてスラリー槽T1に貯留され、研磨機1とスラリー槽T1との間を繰り返し循環する。
また、必要に応じて、洗浄水貯蔵槽T2に貯留された洗浄水7を、洗浄水噴射ノズル8より研磨部に吹き付けて研磨機1及び被研磨物3の洗浄を行う。洗浄後の研磨材粒子を含む洗浄液10(使用済み研磨材スラリー)は、ポンプD2を介し、流路9を通じて洗浄液貯蔵槽T3に貯留される。
この洗浄液貯蔵槽T3は、洗浄(リンス)で使用された後の洗浄液10を貯留するための槽である。この洗浄液貯蔵槽T3内は、研磨材粒子等の沈殿、凝集を防止するため、常時撹拌羽根(図示略)によって撹拌される。
また、研磨により生じ、スラリー槽T1に貯留される研磨材スラリー4と、洗浄液貯蔵槽T3に貯留される研磨材粒子を含む洗浄液10は、研磨材粒子とともに、被研磨物3より削り取られた被研磨物由来のガラス成分(被研磨物粒子)や、研磨布Fの破片等を含有した状態になっている。
以下、研磨工程における具体的な処理について説明する。
以下、研磨工程における具体的な処理について説明する。
(1)研磨材スラリーの調製
研磨材粒子を水等の溶媒に対して0.5~40質量%の濃度範囲となるように添加、分散させ、更に研磨速度の上昇能を有する添加剤A、及び研磨速度の低下能を有する添加剤Bを添加して、未使用の研磨材スラリーを調製する。この研磨材スラリーは、研磨機1に対して、図1で示したように循環供給して使用される。研磨材粒子は、平均粒子径が数十nmから数μmの大きさの粒子が使用される。
研磨材粒子を水等の溶媒に対して0.5~40質量%の濃度範囲となるように添加、分散させ、更に研磨速度の上昇能を有する添加剤A、及び研磨速度の低下能を有する添加剤Bを添加して、未使用の研磨材スラリーを調製する。この研磨材スラリーは、研磨機1に対して、図1で示したように循環供給して使用される。研磨材粒子は、平均粒子径が数十nmから数μmの大きさの粒子が使用される。
(2)研磨加工
図1に示すように、研磨パッド(研磨布F)と被研磨物3を接触させ、接触面に対して研磨材スラリー4を供給しながら、加圧条件下で研磨布Fと被研磨物3とを相対運動させる。
図1に示すように、研磨パッド(研磨布F)と被研磨物3を接触させ、接触面に対して研磨材スラリー4を供給しながら、加圧条件下で研磨布Fと被研磨物3とを相対運動させる。
(3)研磨部の洗浄
研磨された直後の被研磨物3及び研磨機1には大量の研磨材粒子が付着している。そのため、研磨した後に研磨材スラリーの代わりに洗浄水7として例えば純水を供給し、被研磨物3及び研磨機1に付着した研磨材粒子の洗浄が行われる。この際に、研磨材粒子を含む洗浄液10は流路9に排出される。
研磨された直後の被研磨物3及び研磨機1には大量の研磨材粒子が付着している。そのため、研磨した後に研磨材スラリーの代わりに洗浄水7として例えば純水を供給し、被研磨物3及び研磨機1に付着した研磨材粒子の洗浄が行われる。この際に、研磨材粒子を含む洗浄液10は流路9に排出される。
この洗浄操作で、一定量の研磨材粒子が流路9に排出されるため、系内の研磨材粒子の量が減少する。この減少分を補うために、スラリー槽T1に対して新たな研磨材スラリーを追加する。追加のタイミングとしては1回の加工毎に追加を行っても良いし、一定回数の加工毎に追加を行っても良い。
〔研磨材スラリー回収工程〕
研磨材スラリー回収工程は、使用済み研磨材スラリーを回収する工程である。
研磨材スラリー回収工程は、使用済み研磨材スラリーを回収する工程である。
使用済み研磨材スラリーには、主として次の2種類がある。一つは、洗浄操作で使用された洗浄水とともに洗浄液貯蔵槽T3に貯蔵されている研磨材スラリー(リンススラリー)である。もう一つは、一定加工回数使用された後に廃棄される、スラリー槽T1に貯留されている研磨材スラリー(ライフエンドスラリー)である。
したがって、研磨材スラリー回収工程では、リンススラリーとライフエンドスラリーの片方又は両方を回収する。
なお、回収された研磨材スラリー(回収研磨材スラリー)には、おおむね0.1~20質量%の範囲で研磨材粒子が含まれる。
〔再生工程〕
再生工程は、被研磨物の研磨後に回収された回収研磨材スラリーに対して、各種処理を施して回収研磨材スラリーを研磨に使用可能な状態の研磨材スラリー(再生研磨材スラリー)に再生する工程である。
再生工程としては、少なくとも、回収研磨材スラリーに含有される添加剤のうち、分子量が500以上の添加剤と、研磨材粒子に吸着している添加剤とを、研磨材粒子とともに回収する添加剤除去処理を含んでいれば良い。また、再生工程は、必要に応じて、異物除去処理、被研磨物溶解処理、連続濾過処理及び研磨材濃度調整処理等を含むことが好ましい。本発明において研磨材濃度とは、研磨材スラリーにおける研磨材粒子の濃度(質量%)をいう。
再生工程は、被研磨物の研磨後に回収された回収研磨材スラリーに対して、各種処理を施して回収研磨材スラリーを研磨に使用可能な状態の研磨材スラリー(再生研磨材スラリー)に再生する工程である。
再生工程としては、少なくとも、回収研磨材スラリーに含有される添加剤のうち、分子量が500以上の添加剤と、研磨材粒子に吸着している添加剤とを、研磨材粒子とともに回収する添加剤除去処理を含んでいれば良い。また、再生工程は、必要に応じて、異物除去処理、被研磨物溶解処理、連続濾過処理及び研磨材濃度調整処理等を含むことが好ましい。本発明において研磨材濃度とは、研磨材スラリーにおける研磨材粒子の濃度(質量%)をいう。
本発明に係る再生工程においては、被研磨物の研磨に用いられるときの未使用の研磨材スラリーの研磨材濃度(質量%)に対して、研磨材濃度(質量%)を0.2~3000%の範囲内に維持しながら、各種処理を行う。研磨材濃度を0.2%以上に維持することにより、回収研磨材スラリー中の溶媒量が増大しすぎることを抑制し、当該回収研磨材スラリーのpHを所定範囲内にできるとともに、添加剤Aの加水分解等を抑制できる。このため、研磨材粒子に吸着した添加剤Aの脱離を抑制でき、添加剤Aを効率良く回収することができる。研磨材濃度を3000%以下に維持することにより、回収研磨材スラリーの粘度を低く保つことができ、再生工程が行われる容器や装置等の内部への付着ロス量を低減できる。
更に、上記研磨材濃度を、1~3000%の範囲内に維持することが好ましく、0.2~1000%の範囲内に維持することが好ましく、1~1000%の範囲内に維持することが特に好ましい。
更に、上記研磨材濃度を、1~3000%の範囲内に維持することが好ましく、0.2~1000%の範囲内に維持することが好ましく、1~1000%の範囲内に維持することが特に好ましい。
ここで、本発明において、被研磨物の研磨に用いられるときの未使用の研磨材スラリーの研磨材濃度とは、未使用の研磨材スラリーが初めて研磨工程に使用される際に必要な濃度に調整された後の研磨材濃度であって、研磨工程を開始する直前のタイミングの研磨材濃度をいう。例えば、図1に示す例では、スラリー槽T1に貯留された研磨材スラリーがスラリーノズル5から研磨定盤2上に供給され始める直前のタイミングの研磨材濃度であって、当該研磨材スラリーには流路6を通じてスラリー槽T1に流入されるものは含まれないものとする。
図2及び図3を参照して、本発明に係る再生工程について詳細に説明する。
図2は、回収研磨材スラリーから再生研磨材スラリーを得るための工程の一例を示す概略図である。図3は、本発明に係る再生工程に用いられるフィルター濾過装置20を示す概略構成図である。
図2は、回収研磨材スラリーから再生研磨材スラリーを得るための工程の一例を示す概略図である。図3は、本発明に係る再生工程に用いられるフィルター濾過装置20を示す概略構成図である。
(1.異物除去処理)
研磨材スラリー回収工程で得られた回収研磨材スラリーには、研磨工程で使用された研磨材スラリー、洗浄水及び研磨布や研磨パッドの破片等が含まれる。
異物除去工程では、孔径20~100μmのフィルターを使用して、研磨布や研磨パッドの破片等の異物を除去する。
研磨材スラリー回収工程で得られた回収研磨材スラリーには、研磨工程で使用された研磨材スラリー、洗浄水及び研磨布や研磨パッドの破片等が含まれる。
異物除去工程では、孔径20~100μmのフィルターを使用して、研磨布や研磨パッドの破片等の異物を除去する。
(2.被研磨物溶解処理)
次いで、被研磨物溶解処理を行う。被研磨物溶解処理は、研磨材スラリーに含有される被研磨物を水等の溶媒に溶解させる処理である。被研磨物溶解処理は、上記したように、被研磨物の研磨に用いられるときの未使用の研磨材スラリーの研磨材濃度(質量%)に対して、研磨材濃度(質量%)が0.2~3000%の範囲内に維持されるように行う。
次いで、被研磨物溶解処理を行う。被研磨物溶解処理は、研磨材スラリーに含有される被研磨物を水等の溶媒に溶解させる処理である。被研磨物溶解処理は、上記したように、被研磨物の研磨に用いられるときの未使用の研磨材スラリーの研磨材濃度(質量%)に対して、研磨材濃度(質量%)が0.2~3000%の範囲内に維持されるように行う。
具体的には、例えば図3に示すように、異物除去処理により異物を除去した回収研磨材スラリー22を、温度調節部を備え付けたフィルター濾過装置20のタンク21内に投入する。
次いで、タンク21内の回収研磨材スラリー22に溶媒を添加し、モーターMを備えた撹拌機25により撹拌して、被研磨物を溶解させる。添加する溶媒としては、主成分は水である。
回収研磨材スラリーは、タンク21内で加温することも好ましく、40~90℃の範囲内に加温することが特に好ましい。
上記したように、溶媒を添加し、場合によっては加温することにより、被研磨物成分の溶解が進み、一方で研磨材粒子は溶媒に溶解しないため、後述する添加剤除去処理にてフィルターにより分離することができる。
なお、被研磨物溶解処理においては、被研磨物を溶解させた後、後述する添加剤除去処理とは別に回収研磨材スラリーを濾過するものとしても良い。これにより、回収研磨材スラリーから、被研磨物と溶媒の一部とを含む濾液を分離して、回収研磨材スラリーから被研磨物を除くものとしても良い。
(3.添加剤除去処理)
次に、研磨に不要な添加剤を除去すべく、被研磨物溶解処理によって被研磨物成分を溶解させた回収研磨材スラリーを、濾過フィルター26を用いて濾過する添加剤除去処理を行う。添加剤除去処理は、上記したように、被研磨物の研磨に用いられるときの未使用の研磨材スラリーの研磨材濃度(質量%)に対して、研磨材濃度(質量%)が0.2~3000%の範囲内に維持されるように行う。
次に、研磨に不要な添加剤を除去すべく、被研磨物溶解処理によって被研磨物成分を溶解させた回収研磨材スラリーを、濾過フィルター26を用いて濾過する添加剤除去処理を行う。添加剤除去処理は、上記したように、被研磨物の研磨に用いられるときの未使用の研磨材スラリーの研磨材濃度(質量%)に対して、研磨材濃度(質量%)が0.2~3000%の範囲内に維持されるように行う。
具体的には、回収研磨材スラリーに含有される添加剤のうち、分子量が500以上の添加剤と、研磨材粒子に吸着している添加剤とを、研磨材粒子とともに回収できる条件で濾過を行う。これにより、分子量が500未満の添加剤と、溶媒の一部と、当該溶媒の一部に溶解した被研磨物成分とを含む濾液を、回収研磨材スラリーから分離できる。回収研磨材スラリーから分離された当該濾液は、開閉弁27が開放されることで系外へ排出される。
添加剤Bは、主に分子量が500未満であり、かつ研磨材粒子に吸着しにくいため、添加剤除去処理により大部分が回収研磨材スラリーから除かれる。
一方、添加剤Aは、主に分子量が500以上であるか、又は、研磨材粒子に吸着しているものが多いため、添加剤除去処理でほとんど除去されない。また、添加剤Aのうち元々の分子量が500以上であって分解等により分子量が500未満になったものは、添加剤除去処理により回収研磨材スラリーから除かれるが、分解等している場合には研磨速度の上昇能が低下しているため回収研磨材スラリーから除かれることの方が好ましい。
一方、添加剤Aは、主に分子量が500以上であるか、又は、研磨材粒子に吸着しているものが多いため、添加剤除去処理でほとんど除去されない。また、添加剤Aのうち元々の分子量が500以上であって分解等により分子量が500未満になったものは、添加剤除去処理により回収研磨材スラリーから除かれるが、分解等している場合には研磨速度の上昇能が低下しているため回収研磨材スラリーから除かれることの方が好ましい。
濾過フィルター26としては、特に制限はなく、例えば、中空糸フィルター、金属フィルター、糸巻フィルター、セラミックフィルター、ロール型ポリプロピレン製フィルター等を用いることができる。
セラミックフィルターとしては、例えば、フランスTAMI社製のセラミックフィルター、ノリタケ社製セラミックフィルター、日本ガイシ社製セラミックフィルター(例えば、セラレックDPF、セフィルト等)等が好ましく用いられる。
セラミックフィルターとしては、例えば、フランスTAMI社製のセラミックフィルター、ノリタケ社製セラミックフィルター、日本ガイシ社製セラミックフィルター(例えば、セラレックDPF、セフィルト等)等が好ましく用いられる。
なお、上記被研磨物溶解処理を行う前に添加剤除去処理を行い、分子量が500未満の添加剤と溶媒の一部とを含む濾液を分離させた後に被研磨物溶解処理を行うことも好ましい。当該被研磨物溶解処理後の回収研磨材スラリーを濾過等することで、効率的に被研磨物を除去することができる。
また、添加剤除去処理は、分子量が500以上の添加剤と、研磨材粒子に吸着している添加剤とを、研磨材粒子とともに回収できれば濾過に限られるものではなく、遠心分離等であっても良い。
また、添加剤除去処理は、分子量が500以上の添加剤と、研磨材粒子に吸着している添加剤とを、研磨材粒子とともに回収できれば濾過に限られるものではなく、遠心分離等であっても良い。
(4.連続濾過処理)
次に、上記添加剤除去処理にて回収研磨材スラリーから分離された濾液と同量の水を加え、再度濾過を行う操作を繰り返し、不要な添加剤及び被研磨物を除去する連続濾過処理を行う。また、連続濾過処理は、上記したように、被研磨物の研磨に用いられるときの未使用の研磨材スラリーの研磨材濃度(質量%)に対して、研磨材濃度(質量%)が0.2~3000%の範囲内に維持されるように行う。
次に、上記添加剤除去処理にて回収研磨材スラリーから分離された濾液と同量の水を加え、再度濾過を行う操作を繰り返し、不要な添加剤及び被研磨物を除去する連続濾過処理を行う。また、連続濾過処理は、上記したように、被研磨物の研磨に用いられるときの未使用の研磨材スラリーの研磨材濃度(質量%)に対して、研磨材濃度(質量%)が0.2~3000%の範囲内に維持されるように行う。
具体的には、回収研磨材スラリーを、循環用配管23を経由して循環させながら、上記被研磨物溶解処理と添加剤除去処理とを所定の時間をかけて連続的に行う。回収研磨材スラリー中の添加剤Bの濃度が所定の濃度まで低下した段階で、三方弁24を排出側に切り替えて、添加剤除去済み研磨材スラリーを系外に排出して回収する。なお、連続濾過処理にて被研磨物溶解処理及び添加剤除去処理を行う時間や回数は、フィルター濾過装置20の構成や回収研磨材スラリーの成分等に応じて適宜設定されていれば良い。
添加剤除去済み研磨材スラリーにおける添加剤Bの濃度としては、被研磨物の研磨に用いられるときの未使用の研磨材スラリーの濃度に対して、0.2~50%の範囲内まで除去して低濃度化することが好ましい。
本発明において、研磨材スラリー中における各添加剤の含有量は、例えば、高速液体クロマトグラフィー(HPLC)を用いて、定量することができる。
(5.研磨材濃度調整処理)
次に、連続濾過処理を経て得られた添加剤除去済み研磨材スラリーに対して研磨材濃度を調整する研磨材濃度調整処理を行う。また、研磨材濃度調整処理は、上記したように、被研磨物の研磨に用いられるときの未使用の研磨材スラリーの研磨材濃度(質量%)に対して、研磨材濃度(質量%)が0.2~3000%の範囲内に維持されるように行う。
次に、連続濾過処理を経て得られた添加剤除去済み研磨材スラリーに対して研磨材濃度を調整する研磨材濃度調整処理を行う。また、研磨材濃度調整処理は、上記したように、被研磨物の研磨に用いられるときの未使用の研磨材スラリーの研磨材濃度(質量%)に対して、研磨材濃度(質量%)が0.2~3000%の範囲内に維持されるように行う。
具体的には、濾過等により濃縮させる、又は水の添加等により希釈させることで、研磨材濃度を調整する。
以上のようにして、再生工程を行う。
以上のようにして、再生工程を行う。
〔添加剤補充工程〕
次いで、上記再生工程で得られた添加剤除去済み研磨材スラリーに対し、補充すべき添加剤Aの補充量を設定し、設定した補充量の添加剤を補充する添加剤補充工程を行うものとしても良い。本発明の研磨材スラリーの再生方法によれば、研磨材スラリーに必要な添加剤は研磨材粒子とともに回収することができるため、添加剤補充工程は必要に応じて行えば良い。
次いで、上記再生工程で得られた添加剤除去済み研磨材スラリーに対し、補充すべき添加剤Aの補充量を設定し、設定した補充量の添加剤を補充する添加剤補充工程を行うものとしても良い。本発明の研磨材スラリーの再生方法によれば、研磨材スラリーに必要な添加剤は研磨材粒子とともに回収することができるため、添加剤補充工程は必要に応じて行えば良い。
具体的には、添加剤除去済み研磨材スラリーの電気伝導度を測定し、その測定値に応じて追加する補充量を設定し、設定された補充量の添加剤を上記添加剤除去済み研磨材スラリーに添加する。添加剤Aの補充量としては、再生されて最終的に得られる研磨材スラリーの電気伝導度の値が、被研磨物の研磨に用いられるときの未使用の研磨材スラリーの電気伝導度の値の0.05~100倍の範囲内となるような値に設定されることが好ましい。
電気伝導度の測定は、例えば、電気伝導率計(株式会社 堀場製作所製ES-51)、電気伝導率計(東亜ディーケーケー株式会社製CM-30G)、ラコムテスターハンディータイプの導電率計 CyberScan CON110(アズワン株式会社)、コンパクト電気伝導率計 LAQUAtwin B-771(株式会社 堀場製作所製)等を用い、サンプル液を25℃に温調して測定して求めることができる。
この時の添加剤Aの補充量としては、被研磨物の研磨に用いられるときの未使用の研磨材スラリーの添加剤Aの濃度に対し、0.1~50倍の濃度範囲内となるように設定されることが好ましい。
例えば、被研磨物の研磨に用いられるときの未使用の研磨材スラリーにおいて研磨材濃度が1.0質量%、添加剤Aの濃度が0.02質量%である場合、再生研磨材スラリーとしては、研磨材濃度を1.0質量%としたとき、添加剤Aの濃度が0.002~1.0質量%の範囲となるように、添加剤Aの補充量が設定されることが好ましい。
《研磨材スラリーの再生フローと各工程における構成材料の収支バランス》
図4は、上記説明した未使用の研磨材スラリーから再生研磨材スラリーを得るまでの各段階における研磨材スラリーの構成材料を示した概略図である。
図4は、上記説明した未使用の研磨材スラリーから再生研磨材スラリーを得るまでの各段階における研磨材スラリーの構成材料を示した概略図である。
まず、被研磨物の研磨に用いられるとき、未使用の研磨材スラリー31中には、液媒体Dm(主には、水)、主要材料である研磨材粒子(砥粒)PM、研磨速度の上昇能を有する添加剤A1、及び、研磨速度の低下能を有する添加剤Bが含有されている。添加剤Bとしては、研磨材スラリーが調製されてから研磨工程で使用されるまでの期間における保存安定性等を確保するための防腐剤や抗菌剤等が用いられている。
この未使用の研磨材スラリー31を用いて研磨工程を行った後、研磨材スラリー回収工程を行い、回収研磨材スラリー32を回収する。この回収研磨材スラリー32には、未使用の研磨材スラリー31の構成材料に加えて、研磨工程で生じた研磨済残渣である被研磨物S等を含有している。
この回収研磨材スラリー32に対して再生工程を行う。図4に示す例では、再生工程が被研磨物溶解処理及び添加剤除去処理を含むものとしているが、上記異物除去処理、連続濾過処理及び研磨材濃度調整処理のうちの一つ以上を更に含むものとしても良い。なお、再生工程においては、被研磨物の研磨に用いられるときの未使用の研磨材スラリーの研磨材濃度(質量%)に対して、研磨材濃度(質量%)が0.2~3000%の範囲内に維持されるように各種処理を行うことが好ましい。
次に、被研磨物溶解処理を行って被研磨物Sを溶解させ、図3に示すフィルター濾過装置20を用いて、被研磨物Sを溶解させた回収研磨材スラリー33に対して添加剤除去処理を行う。添加剤除去処理は、上記したように、分子量500以上の添加剤と、研磨材粒子に吸着している添加剤とを、研磨材粒子とともに回収できる条件で行われる。これにより、回収研磨材スラリー33から、添加剤Bを含む濾液34が分離され、かつ添加剤A1が研磨材粒子PMとともに回収されて、再生研磨材スラリーとして添加剤除去済み研磨材スラリー35が得られる。このとき、添加剤A1は、研磨材粒子PMに吸着された状態で回収されても良いし、単独で回収されても良い。また、図示していないが、添加剤A1のうち分解等により分子量が500未満となった成分は、添加剤Bとともに濾液34に含まれる。
なお、図示していないが、濾液34には添加剤A1が僅かに含まれていても良いし、添加剤除去済み研磨材スラリー35には添加剤Bが僅かに含まれていても良い。
なお、図示していないが、濾液34には添加剤A1が僅かに含まれていても良いし、添加剤除去済み研磨材スラリー35には添加剤Bが僅かに含まれていても良い。
添加剤除去済み研磨材スラリー35は、添加剤Bの含有量が低減されているため研磨速度が高く、添加剤Aが残留しているため添加剤Aの補充工程が必須ではない。したがって、本発明の研磨材スラリーの再生方法によれば、研磨速度の高い研磨材スラリーを効率的に再生することが可能である。
なお、必須ではないものの、図4に示すように添加剤除去済み研磨材スラリー35に対して添加剤補充工程を行うものとしても良く、得られた添加剤補充済み研磨材スラリー36を再生研磨材スラリーとしても良い。添加剤補充工程では、被研磨物の研磨に用いられるときの未使用の研磨材スラリー31の添加剤A1の濃度に対して、添加剤A(添加剤A1及びA2を含む。)の濃度が10~5000%の範囲内となるように、添加剤A2を補充することが好ましい。なお、添加剤A2は、添加剤A1と同一であっても良いし異なっていても良い。
《研磨材スラリーの構成材料》
次いで、本発明に係る研磨材スラリーの主要構成材料の詳細について説明する。
次いで、本発明に係る研磨材スラリーの主要構成材料の詳細について説明する。
[研磨材粒子]
一般に、光学ガラスや半導体基板等の研磨に用いられる研磨材スラリーとしては、例えば、ベンガラ(αFe2O3)、酸化セリウム、酸化アルミニウム、酸化マンガン、酸化ジルコニウム又はコロイダルシリカ等の微粒子を水や油に分散させてスラリー状にしたものが用いられている。
一般に、光学ガラスや半導体基板等の研磨に用いられる研磨材スラリーとしては、例えば、ベンガラ(αFe2O3)、酸化セリウム、酸化アルミニウム、酸化マンガン、酸化ジルコニウム又はコロイダルシリカ等の微粒子を水や油に分散させてスラリー状にしたものが用いられている。
本発明の研磨材スラリーの再生方法は、半導体基板の表面やガラスの研磨加工において、高精度に平坦性を維持しつつ、十分な加工速度を得るために、物理的な作用と化学的な作用の両方で研磨を行う、化学機械研磨(CMP)への適用が可能な研磨材スラリーに適用することが好ましい。当該研磨材スラリーに含有される研磨材粒子としては、例えば、酸化セリウム、ダイヤモンド、窒化ホウ素、炭化ケイ素、アルミナ、アルミナジルコニア及び酸化ジルコニウムから選ばれることが好ましい。
本発明に係る研磨材粒子として、ダイヤモンド系研磨材としては、例えば、合成ダイヤモンド又は天然ダイヤモンド等が挙げられる。窒化ホウ素系研磨材としては、ダイヤモンドに次ぐ硬度を有する研磨材であり、例えば、立方晶窒化ホウ素BN(例えば、昭和電工社製)等が挙げられる。炭化ケイ素系研磨材としては、例えば、炭化ケイ素、緑色炭化ケイ素又は黒色炭化ケイ素等を挙げることができる。アルミナ系研磨材としては、アルミナの他に、例えば、褐色アルミナ、白色アルミナ、淡紅色アルミナ、解砕型アルミナ又はアルミナジルコニア系研磨材等を挙げることができる。酸化ジルコニウムとしては、例えば、第一稀元素化学工業社製の研磨材用のBRシリーズ酸化ジルコニウム等を挙げることができる。
本発明に使用される研磨材粒子は、その成分及び形状に関しては、特に限定はなく、一般的に研磨材粒子として市販されているものを使用することができる。
研磨材粒子を水中に分散させる方法としては、通常の撹拌機による分散処理の他にホモジナイザー、超音波分散機、湿式ボールミルなどを用いることができる。こうして作製された研磨材スラリー中の研磨材粒子の平均粒径は、0.01~1.0μmの範囲内であることが好ましい。研磨材粒子の平均粒径が0.01μm以上であれば、高い研磨速度を得ることができ、1.0μm以下であれば、研磨時の被研磨物表面のすり傷等の発生を防止することができる。
[添加剤]
本発明に係る研磨材スラリーが含有する添加剤は、研磨速度の上昇能を有する添加剤Aと、研磨速度の低下能を有する添加剤Bとに大別される。
本発明に係る研磨材スラリーが含有する添加剤は、研磨速度の上昇能を有する添加剤Aと、研磨速度の低下能を有する添加剤Bとに大別される。
本発明でいう「研磨速度の上昇能を有する添加剤」、及び「研磨速度の低下能を有する添加剤」とは、以下に規定する条件を満たす化合物であると定義する。
まず、研磨材粒子のみを1.0質量%の濃度で水に分散した基準の研磨材スラリー1を用いて、下記の方法に従って、研磨速度1を測定する。
図1に記載の研磨機を用い、研磨材スラリー1を、研磨対象面に供給しながら、研磨対象面を研磨布で研磨する。研磨試験においては、研磨材スラリー1を5L/minの流量で循環供給させて研磨加工を行った。研磨対象物として、厚さ65mmのガラス基板を使用し、研磨布は、ポリウレタン製の物を使用した。研磨面に対する研磨時の圧力は、9.8kPa(100g/cm2)とし、研磨試験機の回転速度は100min-1(rpm)に設定し、30分間研磨加工を行った。研磨前後の厚さをNikon Digimicro(MF501)にて測定し、厚さ変位から1分間当たりの研磨量(μm)を算出し、これを研磨速度1とした。
次いで、測定対象の添加剤A又は添加剤Bを0.02質量%、研磨材粒子を1.0質量%の濃度で含有する測定対象の研磨材スラリー2を調製し、上記と同様の方法で研磨速度2を測定する。
次いで、得られた各研磨速度より、研磨速度比(研磨速度2/研磨速度1)を求め、研磨速度比が1.00未満であれば、添加剤は研磨速度の低下能を有する添加剤とし、研磨速度比が1.02以上であれば、研磨速度の上昇能を有する添加剤と定義する。研磨速度の上昇能を有する添加剤としては、好ましくは研磨速度比が1.05以上であり、更に好ましくは1.10以上である。
〔添加剤A:研磨速度の上昇能を有する添加剤〕
本発明に適用可能な添加剤Aは、研磨効率を上昇させる機能を備えた添加剤であり、主には、
(1)研磨材粒子の分散安定性を向上する分散剤、
(2)Si3N4膜の研磨速度に対するSiO2膜の研磨速度を向上させるSiO2/Si3N4膜選択比向上剤、
(3)洗浄性向上効果を有する洗浄剤、
等を挙げることができる。
本発明に適用可能な添加剤Aは、研磨効率を上昇させる機能を備えた添加剤であり、主には、
(1)研磨材粒子の分散安定性を向上する分散剤、
(2)Si3N4膜の研磨速度に対するSiO2膜の研磨速度を向上させるSiO2/Si3N4膜選択比向上剤、
(3)洗浄性向上効果を有する洗浄剤、
等を挙げることができる。
以下、本発明に適用可能な添加剤Aの代表的な化合物を列挙するが、ここで例示する化合物のみに限定されるものではない。
(分散剤)
分散剤としては、例えば、水溶性陰イオン性分散剤、水溶性陽イオン性分散剤、水溶性非イオン性(ノニオン性)分散剤又は水溶性両性(ベタイン性)分散剤等が挙げられ、共重合成分としてアクリル酸アンモニウム塩を含む高分子化合物である分散剤が好ましい。例えば、ポリアクリル酸アンモニウム、アクリル酸アミドとアクリル酸アンモニウムとの共重合体等が挙げられる。
分散剤としては、例えば、水溶性陰イオン性分散剤、水溶性陽イオン性分散剤、水溶性非イオン性(ノニオン性)分散剤又は水溶性両性(ベタイン性)分散剤等が挙げられ、共重合成分としてアクリル酸アンモニウム塩を含む高分子化合物である分散剤が好ましい。例えば、ポリアクリル酸アンモニウム、アクリル酸アミドとアクリル酸アンモニウムとの共重合体等が挙げられる。
また、本発明に係る研磨材スラリーには、上記分散剤が2種以上併用されていても良い。例えば、共重合成分としてアクリル酸アンモニウム塩を含む高分子分散剤の少なくとも1種類と、水溶性陰イオン性分散剤、水溶性非イオン性分散剤、水溶性陽イオン性分散剤及び水溶性両性分散剤から選ばれる少なくとも1種類とが併用されていても良い。
研磨材スラリーが半導体素子の製造に係る研磨に使用される場合には、分散剤中のナトリウムイオン又はカリウムイオン等のアルカリ金属の含有率は10ppm以下に抑えることが好ましい。
分散剤の添加量は、研磨材スラリー中の研磨材粒子の分散性及び沈降防止、更に研磨傷と分散剤添加量との関係から、例えば、研磨材粒子が酸化セリウムである場合、酸化セリウム粒子100質量部に対して、0.01~2.0質量部の範囲内が好ましい。分散剤の分子量は、500~50000の範囲内が好ましく、1000~10000がより好ましい。分散剤の分子量が500以上であれば、被研磨物として酸化ケイ素膜又は窒化ケイ素膜を研磨するときに、十分な研磨速度を得ることができ、分散剤の分子量が50000以下であれば、研磨材スラリーの粘度上昇を抑制し、保存安定性を確保することができる。なお、分散剤が、分子量10000以上の高分子である場合には、上記分散剤の好ましい分子量は重量平均分子量であるものとする。
〈陰イオン性分散剤〉
陰イオン性分散剤としては、例えば、ラウリル硫酸トリエタノールアミン、ラウリル硫酸アンモニウム、ポリオキシエチレンアルキルエーテル硫酸トリエタノールアミン、ポリカルボン酸型高分子分散剤等が挙げられる。
陰イオン性分散剤としては、例えば、ラウリル硫酸トリエタノールアミン、ラウリル硫酸アンモニウム、ポリオキシエチレンアルキルエーテル硫酸トリエタノールアミン、ポリカルボン酸型高分子分散剤等が挙げられる。
ポリカルボン酸型高分子分散剤としては、例えば、アクリル酸、メタクリル酸、マレイン酸、フマル酸、イタコン酸等の不飽和二重結合を有するカルボン酸単量体の重合体、不飽和二重結合を有するカルボン酸単量体と他の不飽和二重結合を有する単量体との共重合体、及びそれらのアンモニウム塩やアミン塩などが挙げられる。
〈陽イオン性分散剤〉
陽イオン性分散剤としては、例えば、第一~第三級脂肪族アミン、テトラアルキルアンモニウム、トリアルキルベンジルアンモニウムアルキルピリジニウム、2-アルキル-1-アルキル-1-ヒドロキシエチルイミダゾリニウム、N,N-ジアルキルモルホリニウム、ポリエチレンポリアミン脂肪酸アミド、ポリエチレンポリアミン脂肪酸アミドの尿素縮合物、ポリエチレンポリアミン脂肪酸アミドの尿素縮合物の第四級アンモニウム及びこれらの塩等が挙げられる。
陽イオン性分散剤としては、例えば、第一~第三級脂肪族アミン、テトラアルキルアンモニウム、トリアルキルベンジルアンモニウムアルキルピリジニウム、2-アルキル-1-アルキル-1-ヒドロキシエチルイミダゾリニウム、N,N-ジアルキルモルホリニウム、ポリエチレンポリアミン脂肪酸アミド、ポリエチレンポリアミン脂肪酸アミドの尿素縮合物、ポリエチレンポリアミン脂肪酸アミドの尿素縮合物の第四級アンモニウム及びこれらの塩等が挙げられる。
〈ノニオン性分散剤〉
ノニオン性分散剤としては、例えば、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンセチルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレン高級アルコールエーテル、ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンノニルフェニルエーテル、ポリオキシアルキレンアルキルエーテル、ポリオキシエチレン誘導体、ポリオキシエチレンソルビタンモノラウレート、ポリオキシエチレンソルビタンモノパルミテート、ポリオキシエチレンソルビタンモノステアレート、ポリオキシエチレンソルビタントリステアレート、ポリオキシエチレンソルビタンモノオレエート、ポリオキシエチレンソルビタントリオレエート、テトラオレイン酸ポリオキシエチレンソルビット、ポリエチレングリコールモノラウレート、ポリエチレングリコールモノステアレート、ポリエチレングリコールジステアレート、ポリエチレングリコールモノオレエート、ポリオキシエチレンアルキルアミン、ポリオキシエチレン硬化ヒマシ油、2-ヒドロキシエチルメタクリレート、アルキルアルカノールアミド等が挙げられる。
ノニオン性分散剤としては、例えば、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンセチルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレン高級アルコールエーテル、ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンノニルフェニルエーテル、ポリオキシアルキレンアルキルエーテル、ポリオキシエチレン誘導体、ポリオキシエチレンソルビタンモノラウレート、ポリオキシエチレンソルビタンモノパルミテート、ポリオキシエチレンソルビタンモノステアレート、ポリオキシエチレンソルビタントリステアレート、ポリオキシエチレンソルビタンモノオレエート、ポリオキシエチレンソルビタントリオレエート、テトラオレイン酸ポリオキシエチレンソルビット、ポリエチレングリコールモノラウレート、ポリエチレングリコールモノステアレート、ポリエチレングリコールジステアレート、ポリエチレングリコールモノオレエート、ポリオキシエチレンアルキルアミン、ポリオキシエチレン硬化ヒマシ油、2-ヒドロキシエチルメタクリレート、アルキルアルカノールアミド等が挙げられる。
〈ベタイン性分散剤〉
ベタイン性分散剤としては、例えば、N,N-ジメチル-N-アルキル-N-カルボキシメチルアンモニウムベタイン、N,N,N-トリアルキル-N-スルホアルキレンアンモニウムベタイン、N,N-ジアルキル-N,N-ビスポリオキシエチレンアンモニウム硫酸エステルベタイン、2-アルキル-1-カルボキシメチル-1-ヒドロキシエチルイミダゾリニウムベタインなどのベタイン類;N,N-ジアルキルアミノアルキレンカルボン酸塩などのアミノカルボン酸類等が挙げられる。
ベタイン性分散剤としては、例えば、N,N-ジメチル-N-アルキル-N-カルボキシメチルアンモニウムベタイン、N,N,N-トリアルキル-N-スルホアルキレンアンモニウムベタイン、N,N-ジアルキル-N,N-ビスポリオキシエチレンアンモニウム硫酸エステルベタイン、2-アルキル-1-カルボキシメチル-1-ヒドロキシエチルイミダゾリニウムベタインなどのベタイン類;N,N-ジアルキルアミノアルキレンカルボン酸塩などのアミノカルボン酸類等が挙げられる。
(研磨速度選択比向上剤)
本発明に係る研磨材スラリーにおいては、被研磨物に窒化ケイ素が含有される場合には、添加剤Aとして研磨速度選択比向上剤を適用することができる。
本発明でいう研磨速度選択比向上とは、酸化ケイ素膜(SiO2)の研磨速度に対する窒化ケイ素膜(Si3N4)の研磨速度比(以下、選択比ともいう)を向上させることを意味する。
本発明に係る研磨材スラリーにおいては、被研磨物に窒化ケイ素が含有される場合には、添加剤Aとして研磨速度選択比向上剤を適用することができる。
本発明でいう研磨速度選択比向上とは、酸化ケイ素膜(SiO2)の研磨速度に対する窒化ケイ素膜(Si3N4)の研磨速度比(以下、選択比ともいう)を向上させることを意味する。
本発明においては、研磨速度選択比向上剤としては、酸化ケイ素膜の研磨速度に対する窒化ケイ素膜の研磨速度の比を向上させることができる観点から、有機カチオン系化合物が好ましい。
有機カチオン系化合物としては、窒素原子を含有するものが好ましく、更にアミノ基や第四級アンモニウム基を有する化合物が好ましい。有機カチオン系化合物の分子量は、水溶性の観点から、500~50000の範囲内が好ましく、1000~10000の範囲内がより好ましい。
アミノ基を有する化合物は1分子中に1個以上のアミノ基を含有していれば良く、その数は水溶性の観点から1~20が好ましく、より好ましくは1~10、更に好ましくは1~5、最も好ましくは1~3である。アミノ基を有する化合物の1分子に含まれる炭素原子数と窒素原子数との比(C/N比)は、水溶性の観点から1~20が好ましく、より好ましくは1~10、更に好ましくは1~6、最も好ましくは1~4である。ただし、エタノールアミン系化合物は除く。
各研磨速度選択比向上剤の具体的な化合物としては、例えば、特開2002-114967号公報、特開2002-118082号公報、特開2002-201462号公報、特開2004-269577号公報、特開2004-273547号公報等に記載されている、第一級アミン、第二級アミン若しくは第三級アミン等のモノアミン、多価アミン、OH基を有するアミン、エーテル基を有するアミン、窒素原子を含有する複素環化合物、又は第四級アンモニウム基を有する化合物が挙げられる。
これらの中では、エチルアミン、プロピルアミン、イソプロピルアミン、ブチルアミン及びエチレンジアミンが特に好ましい。
(洗浄剤)
本発明において、添加剤Aの一つとして、洗浄剤を用いることが好ましく、特に、アルコール系化合物を洗浄剤として用いることが好ましい。
本発明において、添加剤Aの一つとして、洗浄剤を用いることが好ましく、特に、アルコール系化合物を洗浄剤として用いることが好ましい。
本発明に適用可能な洗浄剤であるアルコール系化合物としては、例えば、1-プロパノール、2-プロパノール、2-プロピン-1-オール、アリルアルコール、エチレンシアノヒドリン、1-ブタノール、2-ブタノール、(S)-(+)-2-ブタノール、2-メチル-1-プロパノール、t-ブチルアルコール、パーフルオロ-t-ブチルアルコール、クロチルアルコール、1-ペンタノール、2,2-ジメチル-1-プロパノール、2-メチル-2-ブタノール、3-メチル-1-ブタノール、S-アミルアルコール、1-ヘキサノール、4-ヒドロキシ-4-メチル-2-ペンタノン、4-メチル-2-ペンタノール、シクロヘキサノール、DL-3-ヘキシルアルコール、1-ヘプタノール、2-エチルヘキシルアルコール、(S)-(+)-2-オクタノール、1-オクタノール、DL-3-オクチルアルコール、2-ヒドロキシベンジルアルコール、2-ニトロベンジルアルコール、3,5-ジヒドロキシベンジルアルコール、3,5-ジニトロベンジルアルコール、3-フルオロベンジルアルコール、3-ヒドロキシベンジルアルコール、4-フルオロベンジルアルコール、4-ヒドロキシベンジルアルコール、ベンジルアルコール、m-(トリフルオロメチル)ベンジルアルコール、m-アミノベンジルアルコール、m-ニトロベンジルアルコール、o-アミノベンジルアルコール、o-ヒドロキシベンジルアルコール、p-ヒドロキシベンジルアルコール、p-ニトロベンジルアルコール、2-(p-フルオロフェニル)エタノール、2-アミノフェネチルアルコール、2-メトキシベンジルアルコール、2-メチル-3-ニトロベンジルアルコール、2-メチルベンジルアルコール、2-ニトロフェネチルアルコール、2-フェニルエタノール、3,4-ジメチルベンジルアルコール、3-メチル-2-ニトロベンジルアルコール、3-メチル-4-ニトロベンジルアルコール、3-メチルベンジルアルコール、4-フルオロフェネチルアルコール、4-ヒドロキシ-3-メトキシベンジルアルコール、4-メトキシベンジルアルコール、4-メチル-3-ニトロベンジルアルコール、5-メチル-2-ニトロベンジルアルコール、DL-α-ヒドロキシエチルベンゼン、o-(トリフルオロメチル)ベンジルアルコール、p-(トリフルオロメチル)ベンジルアルコール、p-アミノフェネチルアルコール、p-ヒドロキシフェニルエタノール、p-メチルベンジルアルコール及びS-フェネチルアルコール等のアルコール;4-メチルフェノール、4-エチルフェノール及び4-プロピルフェノール等のフェノール等を挙げることができる。これらのうち分子量500未満のものは、研磨材スラリー中ではアルキル基等の疎水性基等により研磨材粒子に吸着するため、上記再生工程にて研磨材粒子とともに回収することが可能である。
〔添加剤B:研磨速度の低下能を有する添加剤〕
添加剤Bは、前述のとおり、研磨材スラリーを調製し、研磨工程で使用するまでの期間で、保存安定性等を付与するための添加剤であり、研磨速度の低下能を有する。したがって、再生された研磨材スラリーは直ちに使用されるケースが多いことから、添加剤Bは不要な成分となる。
添加剤Bに該当する化合物としては、主には、防腐剤、抗菌剤又は防錆剤等を挙げることができる。
添加剤Bは、前述のとおり、研磨材スラリーを調製し、研磨工程で使用するまでの期間で、保存安定性等を付与するための添加剤であり、研磨速度の低下能を有する。したがって、再生された研磨材スラリーは直ちに使用されるケースが多いことから、添加剤Bは不要な成分となる。
添加剤Bに該当する化合物としては、主には、防腐剤、抗菌剤又は防錆剤等を挙げることができる。
(防腐剤)
防腐剤としては、例えば、ベンザルコニウムクロライド、ベンゼトニウムクロライド、1,2-ベンズイソチアゾリン-3-オン、(5-クロロ)2-メチル-4-イソチアゾリン-3-オン、過酸化水素、次亜塩素酸等が挙げられる。
防腐剤としては、例えば、ベンザルコニウムクロライド、ベンゼトニウムクロライド、1,2-ベンズイソチアゾリン-3-オン、(5-クロロ)2-メチル-4-イソチアゾリン-3-オン、過酸化水素、次亜塩素酸等が挙げられる。
(抗菌剤)
抗菌剤としては、四級アンモニウム塩型抗菌剤を挙げることができ、例えば、テトラメチルアンモニウムクロライド、テトラエチルアンモニウムクロライド、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド等を挙げることができる。
抗菌剤としては、四級アンモニウム塩型抗菌剤を挙げることができ、例えば、テトラメチルアンモニウムクロライド、テトラエチルアンモニウムクロライド、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド等を挙げることができる。
(防錆剤)
防錆剤としては、例えば、N,N-ジエチルエタノールアミン、N,N-ジメチルエタノールアミン、アミノエチルエタノールアミン等のエタノールアミン系化合物が挙げられる。
防錆剤としては、例えば、N,N-ジエチルエタノールアミン、N,N-ジメチルエタノールアミン、アミノエチルエタノールアミン等のエタノールアミン系化合物が挙げられる。
以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「%」の表示を用いるが、特に断りがない限り「質量%」を表す。
《再生研磨材スラリー101の調製》
(未使用の研磨材スラリーの調製)
純水に、下記研磨材粒子及び各添加剤を添加した後、ホモジナイザーを用いて分散して、CeO2濃度(研磨材濃度)が4000質量ppmの研磨材スラリーを10kg調製した。これを未使用の研磨材スラリーとした。CeO2濃度はICP発光分光分析(誘導結合プラズマ発光分光分析)により測定した。以下、CeO2濃度は同様にして測定した。
(未使用の研磨材スラリーの調製)
純水に、下記研磨材粒子及び各添加剤を添加した後、ホモジナイザーを用いて分散して、CeO2濃度(研磨材濃度)が4000質量ppmの研磨材スラリーを10kg調製した。これを未使用の研磨材スラリーとした。CeO2濃度はICP発光分光分析(誘導結合プラズマ発光分光分析)により測定した。以下、CeO2濃度は同様にして測定した。
研磨材粒子:酸化セリウム研磨材 40.0g
添加剤A:ポリアクリル酸アンモニウム塩(PAA、分散剤、分子量:8000) 0.6g
添加剤A:2-エチルヘキサノール(洗浄剤、分子量:130)
0.2g
添加剤B:次亜塩素酸(防腐剤、分子量:52) 0.1g
添加剤A:ポリアクリル酸アンモニウム塩(PAA、分散剤、分子量:8000) 0.6g
添加剤A:2-エチルヘキサノール(洗浄剤、分子量:130)
0.2g
添加剤B:次亜塩素酸(防腐剤、分子量:52) 0.1g
(研磨工程)
上記調製した未使用の研磨材スラリーを、図1に記載の研磨機を用い、研磨対象面に供給しながら、研磨対象面を研磨布で研磨した。研磨材スラリーを5L/minの流量で循環供給させて研磨加工を行った。研磨対象物として、65mmΦのガラス基板を使用し、研磨布は、ポリウレタン製のものを使用した。研磨面に対する研磨時の圧力は、9.8kPa(100g/cm2)とし、研磨試験機の回転速度は100min-1(rpm)に設定し、30分間研磨加工を行った。研磨前後の厚さをNikon Digimicro(MF501)にて測定し、厚さ変位から1分間当たりの研磨量(μm)を算出して研磨速度(μm/分)を測定し、これを1.00とした。研磨部を洗浄する洗浄水としては純水を使用した。
上記調製した未使用の研磨材スラリーを、図1に記載の研磨機を用い、研磨対象面に供給しながら、研磨対象面を研磨布で研磨した。研磨材スラリーを5L/minの流量で循環供給させて研磨加工を行った。研磨対象物として、65mmΦのガラス基板を使用し、研磨布は、ポリウレタン製のものを使用した。研磨面に対する研磨時の圧力は、9.8kPa(100g/cm2)とし、研磨試験機の回転速度は100min-1(rpm)に設定し、30分間研磨加工を行った。研磨前後の厚さをNikon Digimicro(MF501)にて測定し、厚さ変位から1分間当たりの研磨量(μm)を算出して研磨速度(μm/分)を測定し、これを1.00とした。研磨部を洗浄する洗浄水としては純水を使用した。
(研磨材スラリー回収工程)
上記研磨工程に使用した研磨材スラリーを洗浄水とともに回収し、これを回収研磨材スラリーとした。回収研磨材スラリーのCeO2濃度は950質量ppmであり、回収量は20kgであった。
上記研磨工程に使用した研磨材スラリーを洗浄水とともに回収し、これを回収研磨材スラリーとした。回収研磨材スラリーのCeO2濃度は950質量ppmであり、回収量は20kgであった。
(再生工程:異物除去処理)
回収研磨材スラリーに対して、孔径45μmの中空糸フィルターを使用して、異物除去処理を行った。
回収研磨材スラリーに対して、孔径45μmの中空糸フィルターを使用して、異物除去処理を行った。
(再生工程:被研磨物溶解処理)
異物除去処理により異物を除去した回収研磨材スラリーを、撹拌機を備え付けたタンク内に投入し、当該タンク内に溶媒として純水を添加してCeO2濃度を12質量ppmに調整した。
異物除去処理により異物を除去した回収研磨材スラリーを、撹拌機を備え付けたタンク内に投入し、当該タンク内に溶媒として純水を添加してCeO2濃度を12質量ppmに調整した。
(再生工程:添加剤除去処理)
次に、撹拌した回収研磨材スラリーを濾過フィルター(ノリタケ社製セラミックフィルター、孔径0.2μm)を用いて、濾液の流速を200L/hとして16.63時間濾過することで純水を3166L除去し、CeO2濃度が107018質量ppmの添加剤除去済み研磨材スラリーを0.27kg得た。これを再生研磨材スラリー101とした。添加剤除去処理の前後で研磨材粒子の回収率は75%であった。
次に、撹拌した回収研磨材スラリーを濾過フィルター(ノリタケ社製セラミックフィルター、孔径0.2μm)を用いて、濾液の流速を200L/hとして16.63時間濾過することで純水を3166L除去し、CeO2濃度が107018質量ppmの添加剤除去済み研磨材スラリーを0.27kg得た。これを再生研磨材スラリー101とした。添加剤除去処理の前後で研磨材粒子の回収率は75%であった。
《再生研磨材スラリー102の調製》
上記再生研磨材スラリー101の調製において、被研磨物溶解処理にてCeO2濃度が40質量ppmとなるように純水を添加し、添加剤除去処理にて濾過時間を4.99時間として純水を949L除去した以外は同様にして、再生研磨材スラリー102を調製した。得られた再生研磨材スラリー102の組成を表1に示す。
上記再生研磨材スラリー101の調製において、被研磨物溶解処理にてCeO2濃度が40質量ppmとなるように純水を添加し、添加剤除去処理にて濾過時間を4.99時間として純水を949L除去した以外は同様にして、再生研磨材スラリー102を調製した。得られた再生研磨材スラリー102の組成を表1に示す。
《再生研磨材スラリー103の調製》
上記再生研磨材スラリー101の調製において、被研磨物溶解処理にてCeO2濃度が400質量ppmとなるように純水を添加し、添加剤除去処理にて濾過時間を0.5時間として純水を94L除去した以外は同様にして、再生研磨材スラリー103を調製した。得られた再生研磨材スラリー103の組成を表1に示す。
上記再生研磨材スラリー101の調製において、被研磨物溶解処理にてCeO2濃度が400質量ppmとなるように純水を添加し、添加剤除去処理にて濾過時間を0.5時間として純水を94L除去した以外は同様にして、再生研磨材スラリー103を調製した。得られた再生研磨材スラリー103の組成を表1に示す。
《再生研磨材スラリー104の調製》
上記再生研磨材スラリー101の調製において、被研磨物溶解処理にてCeO2濃度が12質量ppmとなるように純水を添加し、添加剤除去処理にて濾過時間を16.63時間として純水を3165L除去した以外は同様にして、再生研磨材スラリー104を調製した。得られた再生研磨材スラリー104の組成を表1に示す。
上記再生研磨材スラリー101の調製において、被研磨物溶解処理にてCeO2濃度が12質量ppmとなるように純水を添加し、添加剤除去処理にて濾過時間を16.63時間として純水を3165L除去した以外は同様にして、再生研磨材スラリー104を調製した。得られた再生研磨材スラリー104の組成を表1に示す。
《再生研磨材スラリー105の調製》
上記再生研磨材スラリー101の調製において、被研磨物溶解処理にてCeO2濃度が40質量ppmとなるように純水を添加し、添加剤除去処理にて濾過時間を4.99時間として純水を949L除去した以外は同様にして、再生研磨材スラリー105を調製した。得られた再生研磨材スラリー105の組成を表1に示す。
上記再生研磨材スラリー101の調製において、被研磨物溶解処理にてCeO2濃度が40質量ppmとなるように純水を添加し、添加剤除去処理にて濾過時間を4.99時間として純水を949L除去した以外は同様にして、再生研磨材スラリー105を調製した。得られた再生研磨材スラリー105の組成を表1に示す。
《再生研磨材スラリー106の調製》
上記再生研磨材スラリー101の調製において、被研磨物溶解処理にてCeO2濃度が400質量ppmとなるように純水を添加し、添加剤除去処理にて濾過時間を0.49時間として純水を94L除去した以外は同様にして、再生研磨材スラリー106を調製した。得られた再生研磨材スラリー106の組成を表1に示す。
上記再生研磨材スラリー101の調製において、被研磨物溶解処理にてCeO2濃度が400質量ppmとなるように純水を添加し、添加剤除去処理にて濾過時間を0.49時間として純水を94L除去した以外は同様にして、再生研磨材スラリー106を調製した。得られた再生研磨材スラリー106の組成を表1に示す。
《再生研磨材スラリー107の調製》
上記再生研磨材スラリー101の調製において、被研磨物溶解処理にてCeO2濃度が12質量ppmとなるように純水を添加し、添加剤除去処理にて濾過時間を16.63時間として純水を3166L除去した以外は同様にして、再生研磨材スラリー107を調製した。得られた再生研磨材スラリー107の組成を表1に示す。
上記再生研磨材スラリー101の調製において、被研磨物溶解処理にてCeO2濃度が12質量ppmとなるように純水を添加し、添加剤除去処理にて濾過時間を16.63時間として純水を3166L除去した以外は同様にして、再生研磨材スラリー107を調製した。得られた再生研磨材スラリー107の組成を表1に示す。
《再生研磨材スラリー108の調製》
上記再生研磨材スラリー101の調製において、被研磨物溶解処理にてCeO2濃度が40質量ppmとなるように純水を添加し、添加剤除去処理にて濾過時間を4.99時間として純水を949L除去した以外は同様にして、再生研磨材スラリー108を調製した。得られた再生研磨材スラリー108の組成を表1に示す。
上記再生研磨材スラリー101の調製において、被研磨物溶解処理にてCeO2濃度が40質量ppmとなるように純水を添加し、添加剤除去処理にて濾過時間を4.99時間として純水を949L除去した以外は同様にして、再生研磨材スラリー108を調製した。得られた再生研磨材スラリー108の組成を表1に示す。
《再生研磨材スラリー109の調製》
上記再生研磨材スラリー101の調製において、被研磨物溶解処理にてCeO2濃度が400質量ppmとなるように純水を添加し、添加剤除去処理にて濾過時間を0.5時間として純水を94L除去した以外は同様にして、再生研磨材スラリー109を調製した。得られた再生研磨材スラリー109の組成を表1に示す。
上記再生研磨材スラリー101の調製において、被研磨物溶解処理にてCeO2濃度が400質量ppmとなるように純水を添加し、添加剤除去処理にて濾過時間を0.5時間として純水を94L除去した以外は同様にして、再生研磨材スラリー109を調製した。得られた再生研磨材スラリー109の組成を表1に示す。
《再生研磨材スラリー110の調製》
上記再生研磨材スラリー101の調製において、被研磨物溶解処理にてCeO2濃度を12質量ppmとなるように純水を添加し、添加剤除去処理にて濾過時間を16.59時間として純水を3157L除去した以外は同様にして、再生研磨材スラリー110を調製した。得られた再生研磨材スラリー110の組成を表1に示す。
上記再生研磨材スラリー101の調製において、被研磨物溶解処理にてCeO2濃度を12質量ppmとなるように純水を添加し、添加剤除去処理にて濾過時間を16.59時間として純水を3157L除去した以外は同様にして、再生研磨材スラリー110を調製した。得られた再生研磨材スラリー110の組成を表1に示す。
《再生研磨材スラリー111の調製》
上記再生研磨材スラリー101の調製において、被研磨物溶解処理にてCeO2濃度を40質量ppmとなるように純水を添加し、添加剤除去処理にて濾過時間を4.95時間として純水を941L除去した以外は同様にして、再生研磨材スラリー111を調製した。得られた再生研磨材スラリー111の組成を表1に示す。
上記再生研磨材スラリー101の調製において、被研磨物溶解処理にてCeO2濃度を40質量ppmとなるように純水を添加し、添加剤除去処理にて濾過時間を4.95時間として純水を941L除去した以外は同様にして、再生研磨材スラリー111を調製した。得られた再生研磨材スラリー111の組成を表1に示す。
《再生研磨材スラリー112の調製》
上記再生研磨材スラリー101の調製において、被研磨物溶解処理にてCeO2濃度を400質量ppmとなるように純水を添加し、添加剤除去処理にて濾過時間を0.45時間として純水を86L除去した以外は同様にして、再生研磨材スラリー112を調製した。得られた再生研磨材スラリー112の組成を表1に示す。
上記再生研磨材スラリー101の調製において、被研磨物溶解処理にてCeO2濃度を400質量ppmとなるように純水を添加し、添加剤除去処理にて濾過時間を0.45時間として純水を86L除去した以外は同様にして、再生研磨材スラリー112を調製した。得られた再生研磨材スラリー112の組成を表1に示す。
《再生研磨材スラリー113の調製》
上記再生研磨材スラリー101の調製において、被研磨物溶解処理にてCeO2濃度を12質量ppmとなるように純水を添加し、添加剤除去処理にて濾過時間を16.63時間として純水を3166L除去した以外は同様にして、再生研磨材スラリー113を調製した。得られた再生研磨材スラリー113の組成を表1に示す。
上記再生研磨材スラリー101の調製において、被研磨物溶解処理にてCeO2濃度を12質量ppmとなるように純水を添加し、添加剤除去処理にて濾過時間を16.63時間として純水を3166L除去した以外は同様にして、再生研磨材スラリー113を調製した。得られた再生研磨材スラリー113の組成を表1に示す。
《再生研磨材スラリー114の調製》
上記再生研磨材スラリー101の調製において、被研磨物溶解処理にてCeO2濃度を40質量ppmとなるように純水を添加し、添加剤除去処理にて濾過時間を4.99時間として純水を950L除去した以外は同様にして、再生研磨材スラリー114を調製した。得られた再生研磨材スラリー114の組成を表1に示す。
上記再生研磨材スラリー101の調製において、被研磨物溶解処理にてCeO2濃度を40質量ppmとなるように純水を添加し、添加剤除去処理にて濾過時間を4.99時間として純水を950L除去した以外は同様にして、再生研磨材スラリー114を調製した。得られた再生研磨材スラリー114の組成を表1に示す。
《再生研磨材スラリー115の調製》
上記再生研磨材スラリー101の調製において、被研磨物溶解処理にてCeO2濃度を400質量ppmとなるように純水を添加し、添加剤除去処理にて濾過時間を0.5時間として純水を95L除去した以外は同様にして、再生研磨材スラリー115を調製した。得られた再生研磨材スラリー115の組成を表1に示す。
上記再生研磨材スラリー101の調製において、被研磨物溶解処理にてCeO2濃度を400質量ppmとなるように純水を添加し、添加剤除去処理にて濾過時間を0.5時間として純水を95L除去した以外は同様にして、再生研磨材スラリー115を調製した。得られた再生研磨材スラリー115の組成を表1に示す。
《再生研磨材スラリー116の調製》
上記再生研磨材スラリー101の調製において、被研磨物溶解処理にてCeO2濃度を4質量ppmとなるように純水を添加し、添加剤除去処理にて濾過時間を49.9時間として純水を9499L除去した以外は同様にして、再生研磨材スラリー116を調製した。得られた再生研磨材スラリー116の組成を表1に示す。
上記再生研磨材スラリー101の調製において、被研磨物溶解処理にてCeO2濃度を4質量ppmとなるように純水を添加し、添加剤除去処理にて濾過時間を49.9時間として純水を9499L除去した以外は同様にして、再生研磨材スラリー116を調製した。得られた再生研磨材スラリー116の組成を表1に示す。
《再生研磨材スラリー101~116の評価》
上記調製した各再生研磨材スラリーについて、下記の評価を行った。評価結果を表2に示す。
上記調製した各再生研磨材スラリーについて、下記の評価を行った。評価結果を表2に示す。
(1)添加剤除去処理前後の研磨材スラリーに含有される成分の定量
添加剤除去処理前の回収研磨材スラリー及び添加剤除去処理後に得られる再生研磨材スラリーにおける、純水、CeO2、PAA、2-エチルヘキサノール、次亜塩素酸及びSiO2(被研磨物)の各成分を、(株)島津製作所社製の高速液体クロマトグラフィー(HPLC)を用いて定量した。また、添加剤除去処理前後で研磨材粒子(CeO2)の回収率を算出した。
添加剤除去処理前の回収研磨材スラリー及び添加剤除去処理後に得られる再生研磨材スラリーにおける、純水、CeO2、PAA、2-エチルヘキサノール、次亜塩素酸及びSiO2(被研磨物)の各成分を、(株)島津製作所社製の高速液体クロマトグラフィー(HPLC)を用いて定量した。また、添加剤除去処理前後で研磨材粒子(CeO2)の回収率を算出した。
(2)研磨速度の評価
調製した各再生研磨材スラリーを用いて、上記未使用の研磨材スラリーを用いた研磨工程と同様の操作を行い、研磨速度(μm/分)を測定した。得られた研磨速度から、上記未使用の研磨材スラリーを用いて研磨工程を行った場合の研磨速度を1.00としたときの相対値を求め、下記基準に従って評価した。
調製した各再生研磨材スラリーを用いて、上記未使用の研磨材スラリーを用いた研磨工程と同様の操作を行い、研磨速度(μm/分)を測定した。得られた研磨速度から、上記未使用の研磨材スラリーを用いて研磨工程を行った場合の研磨速度を1.00としたときの相対値を求め、下記基準に従って評価した。
○:0.9以上
△:0.5以上0.9未満
×:0.5未満
△:0.5以上0.9未満
×:0.5未満
(3)欠陥数の測定
調製した各再生研磨材スラリーを用いて、上記未使用の研磨材スラリーを用いた研磨工程と同様の操作を行った後、水銀灯の光源下で被研磨物表面を外観検査装置(オリンパスAL2000、オリンパス(株))で詳細に観察し、長さ0.2~1.0μmの凹凸の数を測定し、これを欠陥の数とした。被研磨物表面のうち欠陥の数を測定した範囲の面積から、単位面積当たりの欠陥数を算出した。その値を表2に示す。
調製した各再生研磨材スラリーを用いて、上記未使用の研磨材スラリーを用いた研磨工程と同様の操作を行った後、水銀灯の光源下で被研磨物表面を外観検査装置(オリンパスAL2000、オリンパス(株))で詳細に観察し、長さ0.2~1.0μmの凹凸の数を測定し、これを欠陥の数とした。被研磨物表面のうち欠陥の数を測定した範囲の面積から、単位面積当たりの欠陥数を算出した。その値を表2に示す。
表1及び表2から明らかなように、被研磨物の研磨に用いられるときの未使用の研磨材スラリーの研磨材濃度に対して、研磨材濃度を0.2~3000%の範囲内に維持しながら、分子量が500以上の添加剤と研磨材粒子に吸着している添加剤とを回収する再生工程を行って得られた本発明の再生研磨材スラリーは、比較例の研磨材スラリーと比較して研磨材粒子(CeO2)の回収率が高く、研磨速度に優れ、欠陥数も低減している。したがって、本発明の研磨材スラリーの再生方法によれば、研磨速度の高い研磨材スラリーを効率的に再生することができるといえる。
また、比較例の再生研磨材スラリー113~115においては、未使用の研磨材スラリーの研磨材濃度に対する、再生工程中の研磨材濃度が3000%超となったことで、回収研磨材スラリーのロスが多くなり、研磨材粒子の回収率が低い値になっている。また、比較例の再生研磨材スラリー116においては、未使用の研磨材スラリーの研磨材濃度に対する、再生工程中の研磨材濃度が0.2%未満となったことで、添加剤Aの回収量が低減し、研磨速度が低い値となっている。
また、比較例の再生研磨材スラリー113~115においては、未使用の研磨材スラリーの研磨材濃度に対する、再生工程中の研磨材濃度が3000%超となったことで、回収研磨材スラリーのロスが多くなり、研磨材粒子の回収率が低い値になっている。また、比較例の再生研磨材スラリー116においては、未使用の研磨材スラリーの研磨材濃度に対する、再生工程中の研磨材濃度が0.2%未満となったことで、添加剤Aの回収量が低減し、研磨速度が低い値となっている。
以上のように、本発明は、研磨速度の高い研磨材スラリーを効率的に再生することができる研磨材スラリーの再生方法を提供することに適している。
1 研磨機
2 研磨定盤
3 被研磨物
4 研磨材スラリー
5 スラリーノズル
6 流路
7 洗浄水
8 洗浄水噴射ノズル
9 流路
10 洗浄液
20 フィルター濾過装置
21 タンク
22 回収研磨材スラリー
23 循環用配管
24 三方弁
25 撹拌機
26 濾過フィルター
27 開閉弁
D1、D2 ポンプ
F 研磨布
M モーター
H 保持具
T1 スラリー槽
T2 洗浄水貯蔵槽
T3 洗浄液貯蔵槽
2 研磨定盤
3 被研磨物
4 研磨材スラリー
5 スラリーノズル
6 流路
7 洗浄水
8 洗浄水噴射ノズル
9 流路
10 洗浄液
20 フィルター濾過装置
21 タンク
22 回収研磨材スラリー
23 循環用配管
24 三方弁
25 撹拌機
26 濾過フィルター
27 開閉弁
D1、D2 ポンプ
F 研磨布
M モーター
H 保持具
T1 スラリー槽
T2 洗浄水貯蔵槽
T3 洗浄液貯蔵槽
Claims (4)
- 研磨材粒子と、複数種の添加剤とを含有する研磨材スラリーを用いて、酸化ケイ素を主成分とする被研磨物を研磨した後、回収された回収研磨材スラリーを再生する研磨材スラリーの再生方法であって、
前記被研磨物の研磨に用いられるときの未使用の研磨材スラリーの研磨材濃度(質量%)に対して、研磨材濃度(質量%)を0.2~3000%の範囲内に維持しながら、前記回収研磨材スラリーに含有される添加剤のうち、分子量が500以上の添加剤と、前記研磨材粒子に吸着している添加剤とを、前記研磨材粒子とともに回収する再生工程を有することを特徴とする研磨材スラリーの再生方法。 - 前記被研磨物の研磨に用いられるときの未使用の研磨材スラリーの研磨材濃度(質量%)に対して、研磨材濃度(質量%)を1~3000%の範囲内に維持しながら、前記再生工程を行うことを特徴とする請求項1に記載の研磨材スラリーの再生方法。
- 前記被研磨物の研磨に用いられるときの未使用の研磨材スラリーの研磨材濃度(質量%)に対して、研磨材濃度(質量%)を0.2~1000%の範囲内に維持しながら、前記再生工程を行うことを特徴とする請求項1に記載の研磨材スラリーの再生方法。
- 前記被研磨物の研磨に用いられるときの未使用の研磨材スラリーの研磨材濃度(質量%)に対して、研磨材濃度(質量%)を1~1000%の範囲内に維持しながら、前記再生工程を行うことを特徴とする請求項1から請求項3までのいずれか一項に記載の研磨材スラリーの再生方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017555033A JP6806085B2 (ja) | 2015-12-09 | 2016-12-01 | 研磨材スラリーの再生方法 |
CN201680071266.2A CN108367410B (zh) | 2015-12-09 | 2016-12-01 | 研磨材料淤浆的再生方法 |
EP16872884.8A EP3388195B1 (en) | 2015-12-09 | 2016-12-01 | Method for regenerating abrasive slurry |
US15/775,128 US11458590B2 (en) | 2015-12-09 | 2016-12-01 | Abrasive slurry regeneration method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015239870 | 2015-12-09 | ||
JP2015-239870 | 2015-12-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017098986A1 true WO2017098986A1 (ja) | 2017-06-15 |
Family
ID=59013112
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/085679 WO2017098986A1 (ja) | 2015-12-09 | 2016-12-01 | 研磨材スラリーの再生方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US11458590B2 (ja) |
EP (1) | EP3388195B1 (ja) |
JP (1) | JP6806085B2 (ja) |
CN (1) | CN108367410B (ja) |
WO (1) | WO2017098986A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108641603A (zh) * | 2018-06-05 | 2018-10-12 | 永嘉立豪环保科技有限公司 | 一种抛光粉回收工艺 |
JP2020088022A (ja) * | 2018-11-19 | 2020-06-04 | 株式会社Mfcテクノロジー | Cmpスラリー再生方法 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06254764A (ja) | 1993-03-03 | 1994-09-13 | Asahi Glass Co Ltd | 研磨液の再生方法 |
JP2002114967A (ja) | 2000-10-10 | 2002-04-16 | Kao Corp | 研磨液組成物 |
JP2002118082A (ja) | 2000-10-10 | 2002-04-19 | Kao Corp | 研磨液組成物 |
JP2002201462A (ja) | 2000-10-23 | 2002-07-19 | Kao Corp | 研磨液組成物 |
JP2003205460A (ja) | 2002-01-15 | 2003-07-22 | Speedfam Co Ltd | 酸化セリウム系研磨剤再生方法 |
JP2004273547A (ja) | 2003-03-05 | 2004-09-30 | Kao Corp | 研磨速度選択比向上剤 |
JP2004269577A (ja) | 2003-03-05 | 2004-09-30 | Kao Corp | 研磨速度選択比向上剤 |
WO2013099143A1 (ja) * | 2011-12-28 | 2013-07-04 | コニカミノルタ株式会社 | 研磨剤の製造方法 |
JP2013222863A (ja) | 2012-04-17 | 2013-10-28 | Kao Corp | シリコンウェーハ用研磨液組成物 |
JP5843036B1 (ja) * | 2015-06-23 | 2016-01-13 | コニカミノルタ株式会社 | 再生研磨材スラリーの調製方法 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003113370A (ja) * | 2001-07-30 | 2003-04-18 | Toshiba Corp | 化学的機械的研磨用スラリー、半導体装置の製造方法、半導体装置の製造装置、及び化学的機械的研磨用スラリーの取り扱い方法 |
JP2003136406A (ja) * | 2001-10-25 | 2003-05-14 | Speedfam Co Ltd | 研磨剤リサイクル方法及び同システム |
TWI314950B (en) * | 2001-10-31 | 2009-09-21 | Hitachi Chemical Co Ltd | Polishing slurry and polishing method |
KR101245276B1 (ko) * | 2010-03-12 | 2013-03-19 | 주식회사 엘지화학 | 산화세륨 연마재의 재생 방법 |
KR101250376B1 (ko) * | 2011-11-30 | 2013-04-05 | 오씨아이 주식회사 | 원심분리 및 멤브레인을 이용한 태양전지용 웨이퍼 폐슬러리의 고효율 재생방법 및 재생시스템 |
CN104010770B (zh) * | 2011-12-22 | 2017-07-21 | 柯尼卡美能达株式会社 | 研磨材料再生方法及再生研磨材料 |
US9701878B2 (en) * | 2012-02-16 | 2017-07-11 | Konica Minolta, Inc. | Abrasive regeneration method |
US9802337B2 (en) * | 2012-02-17 | 2017-10-31 | Konica Minolta, Inc. | Abrasive regeneration method |
JP5957292B2 (ja) * | 2012-05-18 | 2016-07-27 | 株式会社フジミインコーポレーテッド | 研磨用組成物並びにそれを用いた研磨方法及び基板の製造方法 |
-
2016
- 2016-12-01 JP JP2017555033A patent/JP6806085B2/ja active Active
- 2016-12-01 CN CN201680071266.2A patent/CN108367410B/zh active Active
- 2016-12-01 US US15/775,128 patent/US11458590B2/en active Active
- 2016-12-01 EP EP16872884.8A patent/EP3388195B1/en active Active
- 2016-12-01 WO PCT/JP2016/085679 patent/WO2017098986A1/ja active Application Filing
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06254764A (ja) | 1993-03-03 | 1994-09-13 | Asahi Glass Co Ltd | 研磨液の再生方法 |
JP2002114967A (ja) | 2000-10-10 | 2002-04-16 | Kao Corp | 研磨液組成物 |
JP2002118082A (ja) | 2000-10-10 | 2002-04-19 | Kao Corp | 研磨液組成物 |
JP2002201462A (ja) | 2000-10-23 | 2002-07-19 | Kao Corp | 研磨液組成物 |
JP2003205460A (ja) | 2002-01-15 | 2003-07-22 | Speedfam Co Ltd | 酸化セリウム系研磨剤再生方法 |
JP2004273547A (ja) | 2003-03-05 | 2004-09-30 | Kao Corp | 研磨速度選択比向上剤 |
JP2004269577A (ja) | 2003-03-05 | 2004-09-30 | Kao Corp | 研磨速度選択比向上剤 |
WO2013099143A1 (ja) * | 2011-12-28 | 2013-07-04 | コニカミノルタ株式会社 | 研磨剤の製造方法 |
JP2013222863A (ja) | 2012-04-17 | 2013-10-28 | Kao Corp | シリコンウェーハ用研磨液組成物 |
JP5843036B1 (ja) * | 2015-06-23 | 2016-01-13 | コニカミノルタ株式会社 | 再生研磨材スラリーの調製方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3388195A4 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108641603A (zh) * | 2018-06-05 | 2018-10-12 | 永嘉立豪环保科技有限公司 | 一种抛光粉回收工艺 |
JP2020088022A (ja) * | 2018-11-19 | 2020-06-04 | 株式会社Mfcテクノロジー | Cmpスラリー再生方法 |
JP7244896B2 (ja) | 2018-11-19 | 2023-03-23 | 株式会社Mfcテクノロジー | Cmpスラリー再生方法 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2017098986A1 (ja) | 2018-09-27 |
EP3388195A4 (en) | 2018-12-05 |
CN108367410A (zh) | 2018-08-03 |
CN108367410B (zh) | 2019-11-01 |
EP3388195A1 (en) | 2018-10-17 |
US11458590B2 (en) | 2022-10-04 |
EP3388195B1 (en) | 2022-05-04 |
JP6806085B2 (ja) | 2021-01-06 |
US20180339399A1 (en) | 2018-11-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5843036B1 (ja) | 再生研磨材スラリーの調製方法 | |
JP5251861B2 (ja) | 合成石英ガラス基板の製造方法 | |
WO2002067309A1 (fr) | Pate a polir et procede de polissage d'un substrat | |
TWI440712B (zh) | 垂直磁性記錄方式硬碟基板用水系清潔劑組合物 | |
WO2012161270A1 (ja) | 洗浄剤およびガラス基板の洗浄方法 | |
JP4243307B2 (ja) | ガラス基板の加工方法及びガラス基板加工用リンス剤組成物 | |
JP6110681B2 (ja) | 研磨用組成物、研磨用組成物製造方法および研磨物製造方法 | |
JP2017101248A (ja) | 研磨用組成物、研磨用組成物製造方法および研磨物製造方法 | |
JP6806085B2 (ja) | 研磨材スラリーの再生方法 | |
JP4808394B2 (ja) | 研磨用組成物 | |
TW201840839A (zh) | 表面處理組成物及其製造方法,以及使用表面處理組成物之表面處理方法及半導體基板之製造方法 | |
JP6292119B2 (ja) | 研磨材再生方法 | |
US5935869A (en) | Method of planarizing semiconductor wafers | |
JP6086725B2 (ja) | シリコンウェーハ用研磨液組成物 | |
JPWO2017061109A1 (ja) | 磁気ディスク用研磨材及び磁気ディスクの製造方法 | |
KR20160032680A (ko) | 연마 슬러리의 재생 방법, 기판의 제조 방법 | |
CN111944431A (zh) | 一种晶片研磨油及其制备方法 | |
JP2004182800A (ja) | リンス剤組成物 | |
JP2022172678A (ja) | 再生研磨剤スラリーの調製方法及び研磨剤スラリー | |
JP2016175138A (ja) | 研磨材の回収方法 | |
KR20240047493A (ko) | 화학적 평탄화를 위한 도구들 | |
JP2023061348A (ja) | 研磨剤スラリーの再生方法及び研磨剤スラリーの再生システム | |
WO2022202688A1 (ja) | 研磨方法および半導体基板の製造方法、ならびに研磨用組成物セット | |
JP2005317809A (ja) | 銅研磨用研磨布洗浄液およびそれを用いる洗浄方法 | |
JP2001138236A (ja) | 研磨材の回収装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16872884 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15775128 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 2017555033 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |