WO2022202688A1 - 研磨方法および半導体基板の製造方法、ならびに研磨用組成物セット - Google Patents

研磨方法および半導体基板の製造方法、ならびに研磨用組成物セット Download PDF

Info

Publication number
WO2022202688A1
WO2022202688A1 PCT/JP2022/012724 JP2022012724W WO2022202688A1 WO 2022202688 A1 WO2022202688 A1 WO 2022202688A1 JP 2022012724 W JP2022012724 W JP 2022012724W WO 2022202688 A1 WO2022202688 A1 WO 2022202688A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing
mass
water
polishing composition
soluble polymer
Prior art date
Application number
PCT/JP2022/012724
Other languages
English (en)
French (fr)
Inventor
大輝 市坪
公亮 土屋
Original Assignee
株式会社フジミインコーポレーテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジミインコーポレーテッド filed Critical 株式会社フジミインコーポレーテッド
Priority to JP2023509138A priority Critical patent/JPWO2022202688A1/ja
Priority to EP22775475.1A priority patent/EP4317337A1/en
Priority to KR1020237028075A priority patent/KR20230162925A/ko
Priority to CN202280024860.1A priority patent/CN117063267A/zh
Publication of WO2022202688A1 publication Critical patent/WO2022202688A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02008Multistep processes
    • H01L21/0201Specific process step
    • H01L21/02024Mirror polishing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/042Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • C09K3/1463Aqueous liquid suspensions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02043Cleaning before device manufacture, i.e. Begin-Of-Line process
    • H01L21/02052Wet cleaning only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30625With simultaneous mechanical treatment, e.g. mechanico-chemical polishing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process

Definitions

  • the present invention relates to a polishing method, a semiconductor substrate manufacturing method, and a polishing composition set.
  • the surfaces of semiconductor substrates such as silicon wafers and other substrates used as components of semiconductor products are generally finished to a high-quality mirror surface through a lapping process (rough polishing process) and a polishing process (precise polishing process).
  • a polishing method in the polishing step a chemical mechanical polishing method (CMP method) using a polishing slurry containing abrasive grains in a liquid is widely adopted.
  • This polishing method is based on the combined action of the mechanical polishing action of the abrasive grains and the chemical polishing action of the components other than the abrasive grains contained in the liquid. It is known that a mirror surface having properties such as properties can be obtained.
  • Japanese Unexamined Patent Application Publication No. 2017-183478 discloses a final polishing process, a pre-polishing process one step before the final polishing process, and a pre-polishing process positioned between the final polishing process and the pre-polishing process.
  • a method for polishing a silicon wafer is disclosed, which includes a rinsing step for rinsing the silicon wafer after the step as a continuous step.
  • the pre-polishing composition is added so that the hydrophilic parameter of the rinsing agent used for rinsing the silicon wafer in the rinsing step is smaller than the hydrophilic parameter of the pre-polishing composition used in the pre-polishing step. and rinse agents are selected.
  • This document also discloses that, according to this method, it is possible to reduce haze and microdefects in a silicon wafer after polishing, thereby realizing a polished surface of high quality.
  • An object of the present invention is to provide means for reducing surface defects of a substrate after polishing in order to meet such demands.
  • a method of polishing a substrate comprising: The polishing method includes a polishing step, The polishing step includes polishing the substrate by rotating the polishing platen while supplying a polishing composition to the contact surface between the substrate and a polishing pad attached to the polishing platen.
  • the two or more polishing stages are a polishing stage 1 for polishing using a polishing composition S1 on a polishing platen; After the polishing stage 1, a polishing stage 2 for polishing using the polishing composition S2 on the same polishing platen as the polishing stage 1,
  • the polishing composition S1 contains abrasive grains 1, water, and a water-soluble polymer having an abrasive grain adsorption parameter of 5 or more calculated by the following procedures (1) to (4),
  • the polishing composition S2 contains abrasive grains 2, water, and a water-soluble polymer having an abrasive grain adsorption parameter of less than 5, and a water-soluble highly water-soluble polymer having an abrasive grain adsorption parameter of 5 or more.
  • Polishing method (1) 0.08% by mass of colloidal silica having an average primary particle size of 25 nm and an average secondary particle size of 50 nm, 0.004% by mass of the water-soluble polymer to be measured, and 0.005% by mass of ammonia.
  • the test liquid L was centrifuged at a rotation speed of 26000 rpm for 30 minutes to separate the sediment and the supernatant, and then the TOC value of the supernatant was measured and obtained.
  • the TOC value be the total organic carbon concentration W 1 of the water-soluble polymer to be measured contained in the supernatant.
  • a polishing composition set used in a method for polishing a substrate includes a polishing step, The polishing step includes polishing the substrate by rotating the polishing platen while supplying a polishing composition to the contact surface between the substrate and a polishing pad attached to the polishing platen.
  • an object S1 It contains abrasive grains 2, water, and a water-soluble polymer having an abrasive grain adsorption parameter of less than 5, and the water-soluble polymer having an abrasive grain adsorption parameter of 5 or more is 0.005% by mass or more.
  • a polishing composition S2 used in the polishing stage 2 which does not contain at a content of A polishing composition set comprising: (1) 0.08% by mass of colloidal silica having an average primary particle size of 25 nm and an average secondary particle size of 50 nm, 0.004% by mass of the water-soluble polymer to be measured, and 0.005% by mass of ammonia.
  • (meth)acrylic acid is a generic term for acrylic acid and methacrylic acid.
  • other compounds containing (meta) are collective names for compounds having "meta” in their names and compounds not having "meta” in their names.
  • One aspect of the present invention is a substrate polishing method, comprising:
  • the polishing method includes a polishing step,
  • the polishing step includes polishing the substrate by rotating the polishing platen while supplying a polishing composition to the contact surface between the substrate and a polishing pad attached to the polishing platen.
  • the two or more polishing stages are a polishing stage 1 for polishing using a polishing composition S1 on a polishing platen; After the polishing stage 1, a polishing stage 2 for polishing using the polishing composition S2 on the same polishing platen as the polishing stage 1,
  • the polishing composition S1 contains abrasive grains 1, water, and a water-soluble polymer having an abrasive grain adsorption parameter of 5 or more calculated by the procedures (1) to (4) described later
  • the polishing composition S2 contains abrasive grains 2, water, and a water-soluble polymer having an abrasive grain adsorption parameter of less than 5, and a water-soluble highly water-soluble polymer having an abrasive grain adsorption parameter of 5 or more.
  • a water-soluble polymer having a large abrasive grain adsorption parameter is likely to be adsorbed to silica or the like.
  • polishing stage 1 a substrate is polished using a polishing composition containing a water-soluble polymer having a large abrasive adsorption parameter.
  • the water-soluble polymer having a large abrasive particle adsorption parameter adsorbs to the abrasive particles and the substrate to protect the substrate. Therefore, in the polishing stage 1, the substrate can be processed while suppressing damage to the substrate.
  • the substrate is polished using a polishing composition containing a water-soluble polymer having a small abrasive adsorption parameter.
  • the water-soluble polymer having a small abrasive grain adsorption parameter does not adsorb to the abrasive grains so much, and acts to remove the abrasive grains remaining on the substrate. Therefore, in the polishing stage 2, the substrate can be cleaned satisfactorily.
  • the substrate obtained after polishing using the polishing method according to the present invention is less damaged, and the number of abrasive grains remaining on the substrate is less, so surface defects are remarkably reduced. It should be noted that the above mechanism is based on speculation, and its correctness or wrongness does not affect the technical scope of the present invention.
  • a substrate polishing method includes a polishing step, wherein the polishing step is performed while supplying a polishing composition to a contact surface between the substrate and a polishing pad attached to a polishing platen.
  • polishing process The polishing step included in the polishing method according to one embodiment of the present invention will be described below.
  • a polishing apparatus used in a polishing process according to an embodiment of the present invention and polishing conditions that can be employed in polishing stage 1 and polishing stage 2 will be described.
  • the polishing apparatus is not particularly limited, for example, a holding tool (holder) for holding a substrate having an object to be polished and a motor capable of changing the rotation speed are attached, and a polishing pad (abrasive cloth) is attached.
  • a general polishing apparatus having an attachable polishing platen can be used.
  • a single-sided polishing machine or a double-sided polishing machine can be used.
  • Commercially available polishing machines are not particularly limited, but examples of single-sided polishing machines include a single-wafer polishing machine, model "PNX 332B" manufactured by Okamoto Machine Tool Works Co., Ltd., and the like.
  • a holder called a template is used to hold the object to be polished, and a polishing surface plate to which a polishing pad (abrasive cloth) is attached is placed on one side of the object to be polished.
  • a polishing pad abrasive cloth
  • a holder called a carrier is used to hold the object to be polished, and a polishing surface plate to which a polishing pad (abrasive cloth) is attached is placed on both sides of the object to be polished. Both sides of the object to be polished are polished by pressing them against both surfaces of the object to be polished, and rotating the polishing surface plates on both sides while supplying the polishing composition.
  • the polishing composition is supplied to the contact surface between the substrate and the polishing pad attached to the polishing platen, and the substrate is polished by rotating the polishing platen. It will happen.
  • the polishing in the polishing process may be single-sided polishing or double-sided polishing, but single-sided polishing is preferred.
  • polishing pad a general non-woven fabric type, polyurethane type, suede type, etc. can be used without any particular restrictions.
  • the polishing pad may be grooved so that the polishing composition can be accumulated therein.
  • Commercially available polishing pads are not particularly limited, but examples of non-woven fabric types include product name "FP55” manufactured by Fujibo Ehime Co., Ltd., and suede types include product name "POLYPAS275NX" manufactured by Fujibo Ehime Co., Ltd. be done.
  • the polishing conditions the preferred range differs depending on the purpose of polishing in each polishing stage. Therefore, the polishing conditions are not particularly limited, and appropriate conditions can be adopted according to the purpose of polishing in each polishing stage.
  • Polishing is preferably performed by rotating a platen (polishing surface plate), and more preferably by relatively moving (for example, rotating) the substrate and the platen (polishing surface plate).
  • the platen (polishing surface plate) rotation speed and the head (carrier, template) rotation speed are not particularly limited, but are each independently preferably 10 rpm (0.17 s ⁇ 1 ) or more and 100 rpm (1.67 s ⁇ 1 ) or less. more preferably 20 rpm (0.33 s -1 ) or more and 60 rpm (1 s -1 ) or less, and still more preferably 25 rpm (0.42 s -1 ) or more and 55 rpm (0.92 s -1 ) or less. Within these ranges, surface defects occurring on the polished surface of the substrate are further reduced, and production efficiency is further improved. Also, the platen (polishing surface plate) rotation speed and the head (carrier, template) rotation speed may be the same or different.
  • the substrate is usually pressurized by a surface plate.
  • the pressure (polishing load) at this time is not particularly limited, but is preferably 5 kPa or more and 30 kPa or less, more preferably 10 kPa or more and 25 kPa or less. Within this range, surface defects occurring on the polished surface of the substrate are further reduced, and production efficiency is further improved.
  • Each polishing composition may be in a concentrated form before being supplied to the object to be polished.
  • the concentrated form is the form of a concentrated liquid of the polishing composition, and can also be grasped as a stock solution of the polishing composition.
  • a polishing composition in such a concentrated form is advantageous from the viewpoint of convenience in production, distribution, storage, etc., cost reduction, and the like.
  • the concentration ratio is not particularly limited, and can be, for example, about 2 to 100 times in terms of volume, usually about 5 to 50 times, for example, about 10 to 40 times.
  • Such a concentrated liquid can be diluted at a desired timing to prepare a polishing composition, and can be used in a mode of supplying the polishing composition to an object to be polished. Dilution can be performed, for example, by adding water to the concentrate and mixing.
  • the supply rate of the polishing composition is not particularly limited because it can be appropriately selected according to the size of the polishing surface plate, but it is preferable that the supply amount is enough to cover the entire polishing object. Considering economy, the supply rate of the polishing composition is more preferably 0.1 L/min or more and 5 L/min or less, and still more preferably 0.2 L/min or more and 2 L/min or less. Within this range, surface defects occurring on the polished surface of the substrate are further reduced, and production efficiency is further improved.
  • the method of supplying the polishing composition is also not particularly limited, and a method of continuously supplying it with a pump or the like (overflow) may be adopted.
  • the temperature at which the polishing composition is held in the polishing apparatus is not particularly limited, but from the viewpoint of the stability of the polishing rate and the effect of reducing surface defects occurring on the polished surface of the substrate, the temperature is preferably 15° C. or higher and 40° C. or lower. It is preferably 18° C. or higher and 25° C. or lower, more preferably.
  • the polishing composition is recovered after being used for polishing the object to be polished, and after adjusting the composition by adding each component that can be contained in the polishing composition as necessary, May be reused for polishing.
  • the polishing process may further include other polishing stages as necessary, and preferably further includes other polishing stages.
  • the positions of the polishing stage 1 and the polishing stage 2 are not particularly limited. More preferably, the previous polishing stage, polishing stage 2, is the final polishing stage.
  • the number of polishing stages included in the polishing process is preferably 2 or more and 10 or less, more preferably 3 or more and 6 or less.
  • the substrate is polished on the same polishing platen.
  • the polishing process includes other polishing stages in addition to polishing stage 1 and polishing stage 2, the substrate is polished on the same polishing surface plate as polishing stage 1 and polishing stage 2 in the other polishing stages. and may be polished on a polishing platen different from polishing stage 1 and polishing stage 2, but in other polishing stages the substrate is polished on a polishing platen different from polishing stage 1 and polishing stage 2. It is preferably polished.
  • the polishing stage 1 is a polishing stage for final polishing
  • the polishing stage 2 is a polishing stage for rinsing polishing.
  • a polishing stage that performs final polishing refers to a polishing stage that finely polishes a substrate that has been roughly polished by a polishing stage that performs pre-polishing such as preliminary polishing.
  • the polishing stage for performing rinse polishing includes the frictional force (physical action) of the polishing pad and the polishing composition (rinse polishing composition) performed on a polishing surface plate (platen) to which a polishing pad is attached. represents a polishing stage that removes residues on the surface of a polished object by the action of . Therefore, the polishing composition S2 is preferably a rinse polishing composition.
  • the polishing process further comprises polishing stage 1, polishing stage 2, and one or more other polishing stages arranged before polishing stage 1, Further, the polishing stage 1 is a polishing stage one stage before the final polishing stage and performs final polishing, and the polishing stage 2 is a final polishing stage and is a polishing stage which performs rinse polishing. .
  • the relationship between the polishing time in polishing stage 1 and the polishing time in polishing stage 2 is not particularly limited, but the polishing time in polishing stage 2 is preferably shorter than the polishing time in polishing stage 1. In this case, surface defects occurring on the polished surface of the substrate are further reduced.
  • the polishing time in polishing stage 1 is not particularly limited, but is preferably longer than 80 seconds, more preferably 100 seconds or longer, and still more preferably 150 seconds or longer. Within these ranges, surface defects occurring on the polished surface of the substrate are further reduced.
  • the polishing time of the polishing stage 1 is not particularly limited, but is preferably 500 seconds or less, more preferably 300 seconds or less, and still more preferably 250 seconds or less. Within these ranges, production efficiency is improved.
  • the polishing time of the polishing stage 2 is not particularly limited, but is preferably 1 second or longer, more preferably 3 seconds or longer, and still more preferably 5 seconds or longer. Within these ranges, surface defects occurring on the polished surface of the substrate are further reduced.
  • the polishing time of the polishing stage 2 is not particularly limited, but is preferably 80 seconds or less, more preferably 60 seconds or less, and still more preferably 40 seconds or less. Within these ranges, production efficiency is further improved.
  • polishing apparatus and polishing conditions are merely examples, and may be outside the above range, and the settings can be changed as appropriate.
  • a polishing method according to an embodiment of the present invention may further include other steps.
  • Other steps include, for example, a washing step.
  • the cleaning process may be provided before, during, or after the polishing process. However, in the cleaning process, it is preferable to perform cleaning treatment of the substrate in the cleaning process after the polishing process.
  • the cleaning method in the cleaning step is not particularly limited, but as a preferred example, a first cleaning tank containing a cleaning liquid and a second cleaning tank containing a cleaning liquid are prepared, and the substrate polished in the polishing step is cleaned. , immersing in a first washing tank, then immersing in a second washing tank, and repeating these immersions as necessary.
  • the immersion time in the first cleaning bath (in the case of immersing multiple times, the immersion time per time) is not particularly limited, but may be, for example, 1 minute or more and 10 minutes or less.
  • the immersion time in the second cleaning tank (in the case of immersing a plurality of times, the immersion time per time) is not particularly limited, but may be 1 minute or more and 30 minutes or less.
  • the cleaning liquid in the second cleaning tank is ultrapure water at 25°C.
  • the immersion in the cleaning liquid may be performed while the ultrasonic oscillator is in operation.
  • the temperature of the cleaning liquid is not particularly limited, but is preferably in the range of 40° C. or higher and 80° C. or lower. After washing, it is preferable to dry the substrate using a known drying device such as a spin dryer.
  • polishing composition S1 and the polishing composition S2 used in the polishing method according to one embodiment of the present invention will be described.
  • polishing composition S1 and the polishing composition S2 included in a polishing composition set according to another aspect of the present invention, which will be described later, will be described.
  • Polishing composition S1 and polishing composition S2 contain abrasive grains.
  • the abrasive grains contained in the polishing composition S1 are referred to as abrasive grains 1
  • the abrasive grains contained in the polishing composition S2 are referred to as abrasive grains 2.
  • the abrasive grains 1 serve to physically polish the surface of the substrate.
  • the abrasive grains 2 serve to physically reduce residues on the surface of the substrate.
  • the abrasive grains are not particularly limited, but examples include inorganic particles, organic particles, and organic-inorganic composite particles.
  • the inorganic particles are not particularly limited, but particles (oxide particles ), particles made of nitrides such as silicon nitride and boron nitride (nitride particles), particles made of carbides such as silicon carbide and boron carbide (carbide particles), particles made of diamond, carbonates such as calcium carbonate and barium carbonate and particles made of.
  • Specific examples of organic particles include, but are not particularly limited to, particles made of polymethyl methacrylate (PMMA). Also included are particles containing one or more of the substances listed above. Among these, silica is preferred.
  • abrasive grains 1 and abrasive grains 2 are preferably silica.
  • silica include colloidal silica, fumed silica, sol-gel silica, and the like. Among these, colloidal silica or fumed silica is preferred, and colloidal silica is more preferred, from the viewpoint of further reducing surface defects occurring on the polished surface of the substrate.
  • Abrasive grains 1 and abrasive grains 2 preferably contain at least one selected from the group consisting of the above-mentioned grains.
  • the average primary particle size of the abrasive grains is not particularly limited, it is preferably 1 nm or more, more preferably 5 nm or more, even more preferably 10 nm or more, and particularly preferably 20 nm or more. Within these ranges, the polishing rate is improved.
  • the average primary particle size of the abrasive grains is not particularly limited, but is preferably 100 nm or less, more preferably 70 nm or less, even more preferably 50 nm or less, and particularly preferably 30 nm or less. Within these ranges, surface defects occurring on the polished surface of the substrate are further reduced.
  • the value of the average primary particle size of abrasive grains is calculated from the specific surface area measured by the BET method, for example.
  • the specific surface area of abrasive grains can be measured using, for example, "FlowSorb II 2300" manufactured by Micromeritex.
  • Examples of preferable ranges of the average primary particle size of abrasive grains include, but are not limited to, 1 nm to 100 nm, 5 nm to 70 nm, 10 nm to 50 nm, and 20 nm to 30 nm.
  • the relationship between the average primary particle diameter of the abrasive grains 1 and the average primary particle diameter of the abrasive grains 2 is not particularly limited, but the average primary particle diameter of the abrasive grains 2 should be equal to or less than the average primary particle diameter of the abrasive grains 1. is preferred.
  • the ratio of the average primary particle size of the abrasive grains 2 to the average primary particle size of the abrasive grains 1 is not particularly limited, but is preferably 0. 0.1 or more and 1 or less, more preferably 0.4 or more and 1 or less, still more preferably 0.8 or more and 1 or less, and particularly preferably 1. In these cases, surface defects occurring on the polished surface of the substrate can be further reduced.
  • the average secondary particle size of the abrasive grains is not particularly limited, it is preferably 10 nm or more, more preferably 20 nm or more, and still more preferably 30 nm or more. Within these ranges, the polishing rate is improved.
  • the average secondary particle size of the abrasive grains is not particularly limited, but is preferably 200 nm or less, more preferably 150 nm or less, and still more preferably 100 nm or less. Within these ranges, surface defects occurring on the polished surface of the substrate are further reduced.
  • the value of the average secondary particle size of abrasive grains can be measured, for example, by a dynamic light scattering method using model "UPA-UT151" manufactured by Nikkiso Co., Ltd.
  • Preferred examples of the range of the average secondary particle size of abrasive grains include, but are not limited to, 10 nm to 200 nm, 20 nm to 150 nm, 30 nm to 100 nm, and the like.
  • the average degree of association of abrasive grains is not particularly limited, it is preferably 1.2 or more, more preferably 1.4 or more, and still more preferably 1.5 or more.
  • the average degree of association represents a value obtained by dividing the average secondary particle size of abrasive grains by the average primary particle size. Within these ranges, the polishing rate is further improved.
  • the average degree of association of abrasive grains is not particularly limited, but is preferably 4 or less, more preferably 3.5 or less, and still more preferably 3 or less. Within these ranges, surface defects occurring on the polished surface of the substrate are further reduced.
  • Preferred examples of the degree of association of abrasive grains include, but are not limited to, 1.2 to 4, 1.4 to 3.5, 1.5 to 3, and the like.
  • Abrasive grains may be commercially available or synthetic. Moreover, one type of abrasive grains may be used alone, or two or more types may be used in combination.
  • the concentration of the abrasive grains 1 in the polishing composition S1 is not particularly limited, but is preferably 0.001% by mass or more, more preferably 0.01% by mass or more, relative to the total mass of the polishing composition S1. and more preferably 0.05% by mass or more. Within these ranges, the polishing rate is improved.
  • the concentration of the abrasive grains 1 in the polishing composition S1 is not particularly limited, but is preferably 3% by mass or less, more preferably 1% by mass or less, relative to the total mass of the polishing composition S1. , more preferably 0.5% by mass or less, still more preferably 0.1% by mass or less, and particularly preferably 0.08% by mass or less. Within these ranges, surface defects occurring on the polished surface of the substrate are further reduced.
  • Examples of the preferred concentration range of the abrasive grains 1 in the polishing composition S1 include 0.001% by mass or more and 3% by mass or less, or 0.01% by mass or more and 1% by mass with respect to the total mass of the polishing composition S1. % or less, 0.05 mass % or more and 0.5 mass % or less, 0.05 mass % or more and 0.1 mass % or less, 0.05 mass % or more and 0.08 mass % or less, etc., but are limited to these not.
  • the concentration of the abrasive grains 2 in the polishing composition S2 is not particularly limited, but is preferably 0.001% by mass or more, more preferably 0.01% by mass or more, relative to the total mass of the polishing composition S2. is. Within these ranges, the polishing rate is improved.
  • the concentration of the abrasive grains 2 in the polishing composition S2 is not particularly limited, but is preferably 3% by mass or less, more preferably 1% by mass or less, relative to the total mass of the polishing composition S2. , more preferably 0.5% by mass or less, still more preferably 0.1% by mass or less, and particularly preferably 0.08% by mass or less. Within these ranges, surface defects occurring on the polished surface of the substrate are further reduced.
  • Examples of the preferred concentration of the abrasive grains 2 in the polishing composition S2 are 0.001% by mass or more and 3% by mass or less, or 0.01% by mass or more and 1% by mass or less with respect to the total mass of the polishing composition S2. , 0.01 mass % or more and 0.5 mass % or less, 0.01 mass % or more and 0.1 mass % or less, 0.01 mass % or more and 0.08 mass % or less, and the like, but are not limited thereto.
  • the concentration of the abrasive grains 1 in the polishing composition S1 is 0.001% by mass or more and 3% by mass or less with respect to the total mass of the polishing composition S1.
  • the concentration of the abrasive grains 2 in the polishing composition S2 is 0.001% by mass or more and 3% by mass or less with respect to the total mass of the polishing composition S2.
  • the relationship between the concentration of the abrasive grains 2 in the polishing composition S2 and the concentration of the abrasive grains 1 in the polishing composition S1 is not particularly limited. It is preferably equal to or less than the concentration of the abrasive grains 1 in the object S1.
  • the ratio of the concentration of the abrasive grains 2 in the polishing composition S2 to the concentration of the abrasive grains 1 in the polishing composition S1 is not particularly limited, but is preferably 0.1 or more and 1 or less, more preferably 0.4 or more and 1 or less. In these cases, surface defects occurring on the polished surface of the substrate can be further reduced.
  • the ratio can be, for example, 0.8 or more and 1 or less, and can be 1, for example.
  • Polishing composition S1 and polishing composition S2 contain a water-soluble polymer.
  • water-soluble means that the solubility in water (25° C.) is 1 g/100 mL or more
  • polymer means a compound having a weight average molecular weight of 1,000 or more. show.
  • the weight average molecular weight can be measured in terms of polyoxyethylene by gel permeation chromatography (GPC). Specifically, a value measured by the method described in Examples can be employed.
  • the polishing composition S1 has an abrasive adsorption parameter (also referred to simply as “abrasive adsorption parameter” in this specification) calculated by the procedures (1) to (4) described later. Contains macromolecules. Further, the polishing composition S1 preferably further contains a water-soluble polymer having an abrasive adsorption parameter of less than 5. Moreover, the polishing composition S2 contains a water-soluble polymer having an abrasive adsorption parameter of less than 5. Moreover, the polishing composition S2 does not contain a water-soluble polymer having an abrasive adsorption parameter of 5 or more at a content (concentration) of 0.005% by mass or more.
  • the concentration of the water-soluble polymer having an abrasive adsorption parameter of 5 or more in the polishing composition S2 is less than 0.005% by mass (relative to the total mass of the polishing composition S2, less than 0.005% by mass ).
  • a water-soluble polymer having an abrasive grain adsorption parameter of 5 or more functions to protect the surface of the abrasive grains.
  • a water-soluble polymer with an abrasive adsorption parameter of less than 5 serves to reduce residue on the surface of the substrate.
  • Abrasive adsorption parameters of water-soluble polymers can be calculated by the following procedures (1) to (4): (1) Colloidal silica (PL-2 manufactured by Fuso Chemical Industry Co., Ltd., average primary particle size 25 nm, average secondary particle size 50 nm) 0.08% by mass, water-soluble polymer to be measured 0.004% by mass and Prepare a test solution L containing ammonia at a concentration of 0.005% by mass and the balance being water; (2) The total organic carbon concentration (TOC value) of the test liquid L is measured, and the obtained TOC value is used as the total organic carbon concentration W 0 [mass ppm] of the water-soluble polymer to be measured contained in the test liquid L.
  • Colloidal silica PL-2 manufactured by Fuso Chemical Industry Co., Ltd., average primary particle size 25 nm, average secondary particle size 50 nm
  • TOC value total organic carbon concentration
  • the carbon concentration W 1 [mass ppm] can be evaluated using, for example, a total organic carbon meter TOC-L manufactured by Shimadzu Corporation.
  • the colloidal silica will settle due to the centrifugation of the test liquid L.
  • the water-soluble polymer contained in the supernatant after the centrifugal separation of the test liquid L is considered to be mainly the portion of the entire water-soluble polymer that does not adsorb to colloidal silica.
  • the abrasive adsorption parameter is not particularly limited, but is usually 0 or more. Moreover, although the abrasive grain adsorption parameter is not particularly limited, it is preferably 2 or less. Within these ranges, surface defects occurring on the polished surface of the substrate are further reduced.
  • the abrasive adsorption parameter is not particularly limited, but is preferably 60 or greater. Within these ranges, surface defects occurring on the polished surface of the substrate are further reduced.
  • the abrasive grain adsorption parameter is not particularly limited, it is usually 100 or less.
  • the water-soluble polymer used in the present invention is not particularly limited, but includes, for example, a polymer having at least one functional group selected from the group consisting of cationic groups, anionic groups and nonionic groups in the molecule. .
  • the water-soluble polymer having an abrasive grain adsorption parameter of 5 or more is not particularly limited, but is preferably a cellulose derivative, a polymer having a partial structure containing nitrogen atoms in the molecule, or two or more hydroxyl groups in the molecule. and a polymer containing an unsubstituted polyoxyalkylene structure.
  • the water-soluble polymer having an abrasive adsorption parameter of 5 or more contained in the polishing composition S1 preferably contains at least one selected from the group consisting of these compounds.
  • Cellulose derivatives are not particularly limited, but include, for example, hydroxyethylcellulose, hydroxypropylcellulose, hydroxyethylmethylcellulose, hydroxypropylmethylcellulose, methylcellulose, ethylcellulose, ethylhydroxyethylcellulose, carboxymethylcellulose and the like.
  • Polymers having a partial structure containing a nitrogen atom in the molecule are not particularly limited, but examples include poly(meth)acrylamide, polyalkylaminoalkyl(meth)acrylamide, polyhydroxyalkyl(meth)acrylamide, poly N-( meth) acryloylmorpholine, poly-N-vinylpyrrolidone, copolymer containing poly-N-vinylpyrrolidone as part of its structure, poly-N-vinylimidazole, poly-N-vinylcarbazole, poly-N-vinylcaprolactam, poly-N-vinylcaprolactam as part of the structure, imine derivatives such as poly N-vinylpiperidine, polyamidine, polyethyleneimine, hydrophilized polyimide, various polyamino acids, and poly(N-acylalkyleneimine).
  • the polymer containing two or more hydroxy groups in the molecule and containing an unsubstituted polyoxyalkylene structure is not particularly limited, but examples include polyethylene oxide (PEO), polypropylene oxide (PPO), and polybutylene oxide (PBO). , a block copolymer of ethylene oxide (EO) and propylene oxide (PO), a random copolymer of EO and PO, and the like.
  • hydroxyethyl cellulose or poly-N-(meth)acryloylmorpholine is preferred, and poly-N-acryloylmorpholine is more preferred, from the viewpoint of further reducing surface defects occurring on the polished surface of the substrate.
  • the weight-average molecular weight of the water-soluble polymer having an abrasive adsorption parameter of 5 or more is not particularly limited, but is preferably 1,000 or more, more preferably 10,000 or more, and still more preferably 100,000 or more. and particularly preferably 200,000 or more.
  • the weight-average molecular weight of the water-soluble polymer having an abrasive adsorption parameter of 5 or more can be, for example, 300,000 or more.
  • the weight average molecular weight of the water-soluble polymer having an abrasive adsorption parameter of 5 or more is not particularly limited, but is preferably 2,000,000 or less, more preferably 1,500,000 or less, and further It is preferably 1,000,000 or less, particularly preferably 500,000 or less.
  • the weight average molecular weight of the water-soluble polymer having an abrasive adsorption parameter of 5 or more can be measured in terms of polyoxyethylene by gel permeation chromatography (GPC). A specific measuring method will be described in Examples. Examples of the weight average molecular weight of the water-soluble polymer having a preferable abrasive adsorption parameter of 5 or more include 1,000 or more and 2,000,000 or less, 10,000 or more and 1,500,000 or less, 100,000 or more and 1 ,000,000 or less, 200,000 or more and 500,000 or less, 300,000 or more and 500,000 or less, etc., but are not limited thereto.
  • the water-soluble polymer having an abrasive grain adsorption parameter of less than 5 is not particularly limited, but is preferably a polymer containing two or more hydroxy groups in the molecule and a substituted polyoxyalkylene structure in the molecule. Polymers containing two or more hydroxy groups and structural units derived from vinyl alcohol, polymers having an anionic group in the molecule, and the like can be mentioned.
  • the water-soluble polymer having an abrasive adsorption parameter of less than 5 contained in the polishing composition S2 preferably contains at least one selected from the group consisting of these compounds.
  • a hydroxy group is preferable as the substituent for substituting the polyoxyalkylene group.
  • the polymer containing two or more hydroxy groups in the molecule and containing a substituted polyoxyalkylene structure is not particularly limited, and examples thereof include polyglycerin.
  • a polymer containing two or more hydroxy groups in the molecule and containing a structural unit derived from vinyl alcohol the structural unit derived from vinyl alcohol is represented by a vinyl alcohol unit ( --CH.sub.2--CH(OH)--. (hereinafter also referred to as “VA unit”).
  • VA unit vinyl alcohol unit
  • polymers containing two or more hydroxy groups in the molecule and having structural units derived from vinyl alcohol, in addition to VA units have non-vinyl alcohol units (structural units derived from monomers other than vinyl alcohol, hereinafter “non- (also referred to as "VA unit”).
  • non-VA units include, but are not limited to, structural units derived from ethylene, vinyl acetate, vinyl propionate, vinyl hexanoate, 2-butenediol, and the like.
  • the polymer containing structural units derived from vinyl alcohol may contain only one type of non-VA unit, or may contain two or more types of non-VA units.
  • the ratio of the number of moles of VA units to the number of moles of all repeating units is not particularly limited, but is preferably 50%. or more, more preferably 65% or more, still more preferably 70% or more, and particularly preferably 75% or more (upper limit 100%).
  • All repeating units may consist essentially of VA units.
  • the degree of saponification of polyvinyl alcohol is not particularly limited, but is preferably 50 mol% or more, more preferably 65 mol% or more, still more preferably 70 mol% or more, and particularly preferably 75 mol% or more. (upper limit 100 mol%).
  • Polymers containing two or more hydroxy groups in the molecule and containing structural units derived from vinyl alcohol are not particularly limited, but examples include polyvinyl alcohol (PVA), acetalized polyvinyl alcohol, and vinyl alcohol/ethylene copolymers. , vinyl alcohol/butenediol copolymers, and the like.
  • the type of acetalization is not particularly limited, but examples include polyvinyl formal, polyvinyl acetoacetal, polyvinyl propyral, polyvinyl ethylal, and polyvinyl butyral. etc.
  • the degree of acetalization is not particularly limited, it is preferably 1 mol % or more and 50 mol % or less, more preferably 10 mol % or more and 45 mol % or less, and still more preferably 20 mol % or more and 40 mol % or less.
  • the polymer having an anionic group in the molecule is not particularly limited, but is preferably a polymer having a carboxy group or a salt group thereof in the molecule, a polymer having a sulfo group or a salt group thereof in the molecule, and the like. is mentioned. Specific examples include poly(meth)acrylic acid, poly(meth)acrylamidoalkylsulfonic acid, polyisoprene sulfonic acid, polyvinylsulfonic acid, polyallylsulfonic acid, polyisoamylenesulfonic acid, polystyrenesulfonic acid, salts thereof, and the like. is mentioned.
  • a polymer containing two or more hydroxy groups in the molecule and having a structural unit derived from vinyl alcohol is preferable from the viewpoint of further reducing surface defects that occur on the polished surface of the substrate.
  • Polyvinyl alcohol or acetalization Polyvinyl alcohol is more preferred, and acetalized polyvinyl alcohol is even more preferred.
  • the water-soluble polymer having an abrasive adsorption parameter of 5 or more includes a cellulose derivative, a polymer containing a partial structure containing a nitrogen atom in the molecule, and a
  • the water-soluble polymer which is at least one polymer selected from the group consisting of polymers containing an unsubstituted polyoxyalkylene structure and having an abrasive adsorption parameter of less than 5, comprises a molecule A polymer containing two or more hydroxy groups in the molecule and containing a substituted polyoxyalkylene structure, a polymer containing two or more hydroxy groups in the molecule and a structural unit derived from vinyl alcohol, and an anionic group in the molecule is at least one polymer selected from the group consisting of polymers containing
  • the weight-average molecular weight of the water-soluble polymer having an abrasive adsorption parameter of less than 5 is not particularly limited as long as it is 1,000 or more, preferably 2,000 or more, more preferably 5,000 or more, It is more preferably 9,000 or more, even more preferably 10,000 or more, and particularly preferably 12,000 or more.
  • the weight average molecular weight of the water-soluble polymer having an abrasive adsorption parameter of less than 5 is not particularly limited, but is preferably 2,000,000 or less, more preferably 1,000,000 or less, and further It is preferably 500,000 or less, still more preferably 100,000 or less, and particularly preferably 80,000 or less. Within these ranges, surface defects occurring on the polished surface of the substrate are further reduced.
  • the weight average molecular weight of the water-soluble polymer having an abrasive grain adsorption parameter of less than 5 can be, for example, 50,000 or less.
  • the weight average molecular weight of the water-soluble polymer having an abrasive adsorption parameter of less than 5 can be measured in terms of polyoxyethylene by gel permeation chromatography (GPC). A specific measuring method will be described in Examples. Examples of the range of the weight average molecular weight of the water-soluble polymer having a preferred abrasive adsorption parameter of less than 5 include 2,000 or more and 2,000,000 or less, 5,000 or more and 1,000,000 or less, 9,000 9,000 to 100,000, 9,000 to 80,000, 9,000 to 50,000, etc., but not limited thereto.
  • water-soluble polymer with an abrasive adsorption parameter of 5 or more and the water-soluble polymer with an abrasive adsorption parameter of less than 5 commercial products or synthetic products may be used. Further, the water-soluble polymer having an abrasive adsorption parameter of 5 or more and the water-soluble polymer having an abrasive adsorption parameter of less than 5 may be used singly or in combination of two or more. good too.
  • the concentration of the water-soluble polymer having an abrasive adsorption parameter of 5 or more in the polishing composition S1 is not particularly limited, but is preferably 0.0001% by mass or more with respect to the total mass of the polishing composition S1. , more preferably 0.001% by mass or more, still more preferably 0.003% by mass or more, and particularly preferably 0.004% by mass or more. Within these ranges, surface defects occurring on the polished surface of the substrate are further reduced. The reason for this is presumed to be that the effect of protecting the abrasive grains in the polishing stage 1 is further improved.
  • the concentration of the water-soluble polymer having an abrasive adsorption parameter of 5 or more in the polishing composition S1 is not particularly limited, but is preferably 1% by mass or less with respect to the total mass of the polishing composition S1. , more preferably 0.01% by mass or less. Within these ranges, surface defects occurring on the polished surface of the substrate are further reduced. The reason for this is presumed to be that less water-soluble polymers with an abrasive grain adsorption parameter of 5 or more remain after the polishing stage 1 .
  • the concentration of the water-soluble polymer having an abrasive adsorption parameter of 5 or more in the polishing composition S1 can be, for example, 0.008% by mass or less with respect to the total mass of the polishing composition S1. , for example, 0.005% by mass or less.
  • An example of the concentration range of the water-soluble polymer having an abrasive adsorption parameter of 5 or more in the preferred polishing composition S1 is 0.0001% by mass or more and 1% by mass with respect to the total mass of the polishing composition S1. 0.001% by mass or more and 0.01% by mass or less, 0.003% by mass or more and 0.008% by mass or less, 0.004% by mass or more and 0.005% by mass or less, and the like, but are not limited thereto. .
  • the concentration of the water-soluble polymer with an abrasive adsorption parameter of less than 5 in the polishing composition S1 is not particularly limited. is preferably 0.0001% by mass or more, more preferably 0.001% by mass or more, still more preferably 0.002% by mass or more, and particularly Preferably, it is 0.003% by mass or more. Within these ranges, surface defects occurring on the polished surface of the substrate are further reduced.
  • the reason for this is that the presence of water-soluble polymers with an abrasive grain adsorption parameter of less than 5 reduces the number of abrasive grains remaining after polishing stage 1 and water-soluble polymers with an abrasive grain adsorption parameter of 5 or more. It is assumed that there is.
  • the concentration of the water-soluble polymer having an abrasive adsorption parameter of less than 5 in the polishing composition S1 is not particularly limited, but is preferably 1% by mass or less with respect to the total mass of the polishing composition S1. , more preferably 0.01% by mass or less. Within these ranges, surface defects occurring on the polished surface of the substrate are further reduced.
  • the concentration of the water-soluble polymer having an abrasive adsorption parameter of less than 5 in the polishing composition S1 can be, for example, 0.008% by mass or less with respect to the total mass of the polishing composition S1. , for example, 0.005% by mass or less.
  • concentration range of the water-soluble polymer in which the abrasive grain adsorption parameter in the preferred polishing composition S1 is less than 5 is 0.0001% by mass or more and 1% by mass with respect to the total mass of the polishing composition S1. 0.001% by mass or more and 0.01% by mass or less, 0.002% by mass or more and 0.008% by mass or less, 0.003% by mass or more and 0.005% by mass or less, and the like, but are not limited thereto. .
  • the concentration of the water-soluble polymer in the polishing composition S1 (that is, the concentration of the water-soluble polymer having an abrasive adsorption parameter of 5 or more in the polishing composition S1 and the concentration of the water-soluble polymer having an abrasive adsorption parameter of 5 is not particularly limited, but is preferably 0.0001% by mass or more, more preferably 0.0001% by mass or more, based on the total mass of the polishing composition S1. 001% by mass or more, more preferably 0.003% by mass or more, and particularly preferably 0.004% by mass or more.
  • the concentration of the water-soluble polymer in the polishing composition S1 is not particularly limited, but is preferably 2% by mass or less, more preferably 0.02% by mass, relative to the total mass of the polishing composition S1. or less, more preferably 0.016% by mass or less, and particularly preferably 0.01% by mass or less. Within these ranges, surface defects occurring on the polished surface of the substrate are further reduced.
  • Preferred examples of the concentration of the water-soluble polymer in the polishing composition S1 are 0.0001% by mass or more and 2% by mass or less, or 0.001% by mass or more and 0.02% by mass, relative to the total mass of the polishing composition S1. % by mass or less, 0.003 mass % or more and 0.016 mass % or less, 0.004 mass % or more and 0.01 mass % or less, and the like, but are not limited thereto.
  • the concentration of the water-soluble polymer having an abrasive adsorption parameter of less than 5 in the polishing composition S2 is not particularly limited, but is preferably 0.0001% by mass or more relative to the total mass of the polishing composition S2. , more preferably 0.001% by mass or more, still more preferably 0.002% by mass or more, and particularly preferably 0.003% by mass or more. Within these ranges, surface defects occurring on the polished surface of the substrate are further reduced. The reason for this is presumed to be that the cleaning effect in the polishing stage 2, that is, the effect of reducing abrasive grains and water-soluble polymers is further improved.
  • the concentration of the water-soluble polymer having an abrasive adsorption parameter of less than 5 in the polishing composition S2 is not particularly limited, but is preferably 1% by mass or less with respect to the total mass of the polishing composition S2. , more preferably 0.01% by mass or less, and still more preferably 0.008% by mass or less. Within these ranges, surface defects occurring on the polished surface of the substrate are further reduced. The reason for this is presumed to be that less water-soluble polymer with an abrasive adsorption parameter of less than 5 remains after polishing stage 2 .
  • the concentration of the water-soluble polymer having an abrasive adsorption parameter of less than 5 in the polishing composition S2 can be, for example, 0.005% by mass or less with respect to the total mass of the polishing composition S2.
  • concentration of the water-soluble polymer having an abrasive adsorption parameter of less than 5 in the preferred polishing composition S2 include 0.0001% by mass or more and 1% by mass or less with respect to the total mass of the polishing composition S2, 0.001% by mass or more and 0.01% by mass or less, 0.002% by mass or more and 0.008% by mass or less, 0.003% by mass or more and 0.005% by mass or less, and the like, but are not limited thereto.
  • the polishing composition S2 does not contain a water-soluble polymer with an abrasive adsorption parameter of 5 or more at a content (concentration) of 0.005% by mass or more.
  • concentration of the water-soluble polymer having an abrasive adsorption parameter of 5 or more in the polishing composition S2 is less than 0.005% by mass (less than 0.005% by mass relative to the total mass of the polishing composition S2).
  • the polishing composition S2 preferably does not substantially contain a water-soluble polymer having an abrasive adsorption parameter of 5 or more, and preferably does not contain a water-soluble polymer having an abrasive adsorption parameter of 5 or greater. Most preferred.
  • the phrase that the polishing composition S2 "substantially does not contain a water-soluble polymer having an abrasive adsorption parameter of 5 or more” means that the total mass of the polishing composition S2 is It means that the concentration of the water-soluble polymer with a particle adsorption parameter of 5 or more is less than 0.0001% by mass. In this case, surface defects occurring on the polished surface of the substrate are further reduced. The reason for this is that less water-soluble polymers with an abrasive grain adsorption parameter of 5 or more remain after polishing stage 2, and the effect of removing abrasive grains and water-soluble polymers in polishing stage 2 is less likely to be hindered.
  • concentration of the water-soluble polymer having an abrasive adsorption parameter of 5 or more in the preferred polishing composition S2 is less than 0.0001% by mass with respect to the total mass of the polishing composition S2, and the abrasive adsorption parameter is 5 or more, but not limited to these.
  • the concentration of the water-soluble polymer in the polishing composition S2 (that is, the concentration of the water-soluble polymer having an abrasive adsorption parameter of 5 or more in the polishing composition S2 and the concentration of the water-soluble polymer having an abrasive adsorption parameter of 5 is not particularly limited, but is preferably 0.0001% by mass or more, more preferably 0.0001% by mass or more, based on the total mass of the polishing composition S2. 001% by mass or more, more preferably 0.002% by mass or more, and particularly preferably 0.003% by mass or more.
  • the concentration of the water-soluble polymer in the polishing composition S2 is not particularly limited, but is preferably 1% by mass or less, more preferably 0.01% by mass, relative to the total mass of the polishing composition S2. or less, more preferably 0.008% by mass or less, and particularly preferably 0.005% by mass or less. In these cases, surface defects occurring on the polished surface of the substrate are further reduced.
  • Preferred examples of the concentration of the water-soluble polymer in the polishing composition S2 are 0.0001% by mass or more and 1% by mass or less, or 0.001% by mass or more and 0.01% by mass, relative to the total mass of the polishing composition S2. % by mass or less, 0.002% by mass or more and 0.008% by mass or less, 0.003% by mass or more and 0.005% by mass or less, and the like, but are not limited thereto.
  • the concentration of the water-soluble polymer in the polishing composition S1 is 0.0001% by mass or more and 2% by mass or less with respect to the total mass of the polishing composition S1
  • the concentration of the water-soluble polymer in the polishing composition S2 is 0.0001% by mass or more and 1% by mass or less with respect to the total mass of the polishing composition S2.
  • the relationship between the concentration of the water-soluble polymer in the polishing composition S2 and the concentration of the water-soluble polymer in the polishing composition S1 is not particularly limited, but the concentration of the water-soluble polymer in the polishing composition S2 is It is preferably equal to or less than the concentration of the water-soluble polymer in the polishing composition S1.
  • the ratio of the concentration of the water-soluble polymer in the polishing composition S2 to the concentration of the water-soluble polymer in the polishing composition S1 is not particularly limited, but is preferably 0.1 or more and 1 or less, more preferably 0.2 or more and 0.95 or less. In these cases, surface defects occurring on the polished surface of the substrate can be further reduced. Further, the ratio can be, for example, 0.3 or more and 0.6 or less, and can be, for example, 0.4 or more and 0.5 or less.
  • Polishing composition S1 and polishing composition S2 may each independently further contain a basic compound. Moreover, it is more preferable that the polishing composition S1 and the polishing composition S2 further contain a basic compound. Depending on the type of substrate, the basic compound may act to chemically polish the substrate by giving a chemical action to the polishing surface of the substrate.
  • Examples of basic compounds include, but are not limited to, alkali metal or alkaline earth metal hydroxides or salts thereof, quaternary ammonium, ammonia, quaternary ammonium hydroxides or salts thereof, amines, and the like. .
  • alkali metals include, but are not limited to, potassium and sodium.
  • Alkaline earth metals include, but are not particularly limited to, calcium and the like.
  • Salts of alkali metals or alkaline earth metals are not particularly limited, but include, for example, carbonates, hydrogencarbonates, sulfates and acetates thereof.
  • Specific examples of alkali metal or alkaline earth metal hydroxides or salts thereof are not particularly limited, but include calcium hydroxide, potassium hydroxide, potassium carbonate, potassium hydrogen carbonate, potassium sulfate, potassium acetate, and potassium chloride. , sodium hydroxide, sodium hydrogen carbonate, sodium carbonate, calcium hydroxide and the like.
  • quaternary ammonium examples include, but are not limited to, tetramethylammonium, tetraethylammonium, tetrabutylammonium, and the like.
  • quaternary ammonium hydroxides or salts thereof include, but are not particularly limited to, tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrabutylammonium hydroxide, and the like.
  • amines include compounds having a structure represented by the following chemical formula (I), triethylenetetramine, anhydrous piperazine, piperazine hexahydrate, 1-(2-aminoethyl)piperazine, N-methylpiperazine, guanidine , azoles such as imidazole and triazole.
  • R 1 to R 3 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group, However, the case where all of R 1 to R 3 are hydrogen atoms is excluded.
  • R 1 to R 3 is a substituted alkyl group
  • the substituent contained in the substituted alkyl group is not particularly limited, but a hydroxy group and a substituted or unsubstituted amino group are preferred. , a hydroxy group, and an unsubstituted amino group are more preferred.
  • each of R 1 to R 3 is a substituted or unsubstituted alkyl group
  • the number of carbon atoms in the alkyl group is not particularly limited. However, 1 or more and 6 or less are preferable, 2 or more and 3 or less are more preferable, and 2 is particularly preferable.
  • amines include methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, triethylamine, ethylenediamine, monoethanolamine, diethanolamine, triethanolamine, N-( ⁇ -aminoethyl)ethanolamine, hexamethylenediamine, and diethylenetriamine. , triethylenetetramine, anhydrous piperazine, piperazine hexahydrate, 1-(2-aminoethyl)piperazine, N-methylpiperazine, guanidine, and azoles such as imidazole and triazole, but are not limited thereto.
  • the amine contained in polishing composition S1 and polishing composition S2 preferably contains at least one compound selected from the group consisting of these compounds.
  • the basic compound contained in the polishing composition S1 is more preferably quaternary ammonium, ammonia, quaternary ammonium hydroxide or a salt thereof, and more preferably ammore.
  • the basic compound contained in polishing composition S1 preferably contains at least one compound selected from the group consisting of these compounds.
  • the basic compound contained in the polishing composition S2 is more preferably ammonia or a compound having a structure represented by the above chemical formula (1), such as ammonia, methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, triethylamine, ethylenediamine.
  • the basic compound contained in the polishing composition S2 preferably contains at least one compound selected from the group consisting of these compounds.
  • a commercially available product or a synthetic product may be used as the basic compound.
  • a basic compound may be used individually by 1 type, and may be used in combination of 2 or more types.
  • the concentration of the basic compound in the polishing composition S1 is not particularly limited, but is preferably 0.0001% by mass or more, more preferably 0.001% by mass or more, relative to the total mass of the polishing composition S1. , more preferably 0.003% by mass or more, and particularly preferably 0.004% by mass or more. Within these ranges, the polishing rate is further improved.
  • the concentration of the basic compound in the polishing composition S1 is not particularly limited, but is preferably 1% by mass or less, more preferably 0.01% by mass or less, relative to the total mass of the polishing composition S1. , and more preferably 0.008% by mass or less. Within these ranges, surface defects occurring on the polished surface of the substrate are further reduced.
  • Preferred examples of the concentration of the basic compound in the polishing composition S1 are 0.0001% by mass or more and 1% by mass or less, or 0.001% by mass or more and 0.01% by mass, relative to the total mass of the polishing composition S1. % or less, 0.003 mass % or more and 0.008 mass % or less, 0.004 mass % or more and 0.008 mass % or less, and the like, but are not limited thereto.
  • the concentration of the basic compound in the polishing composition S2 is not particularly limited, but is preferably 0.0001% by mass or more, more preferably 0.0004% by mass or more, relative to the total mass of the polishing composition S2. is more preferably 0.0008% by mass or more, still more preferably 0.001% by mass or more, particularly preferably 0.003% by mass or more, and even more preferably 0.004% by mass or more is. Within these ranges, surface defects occurring on the polished surface of the substrate are further reduced.
  • the concentration of the basic compound in the polishing composition S2 is not particularly limited, but is preferably 1% by mass or less, more preferably 0.1% by mass or less, relative to the total mass of the polishing composition S2.
  • concentration of the basic compound in the polishing composition S1 are 0.0001% by mass or more and 1% by mass or less, 0.0004% by mass or more and 0.1% by mass, relative to the total mass of the polishing composition S1.
  • Polishing composition S1 and polishing composition S2 may each independently further contain a surfactant. Moreover, it is preferable that the polishing composition S1 and the polishing composition S2 further contain a surfactant.
  • the surfactant suppresses the roughness of the polished surface of the substrate and works to reduce surface defects.
  • the polishing composition contains a basic compound
  • chemical polishing with the basic compound tends to cause roughening of the polished surface of the substrate. Therefore, the combined use of a basic compound and a surfactant is particularly effective.
  • the surfactant is not particularly limited, but examples include nonionic surfactants, cationic surfactants, anionic surfactants, and the like. Among these, nonionic surfactants are preferred from the viewpoint of further reducing surface defects occurring on the polished surface of the substrate.
  • the nonionic surfactant is not particularly limited, but examples thereof include homopolymers of oxyalkylene, copolymers of multiple types of oxyalkylene, and polyoxyalkylene adducts.
  • Specific examples of polyoxyalkylene adducts are not particularly limited, but polyoxyalkylene alkyl ethers, polyoxyalkylene alkylphenyl ethers, polyoxyalkylene alkylamines, polyoxyalkylene fatty acid esters, and polyoxyalkylene glyceryl ether fatty acid esters. , polyoxyalkylene sorbitan fatty acid esters, and the like.
  • nonionic surfactants include, but are not limited to, polyoxyethylene propyl ether, polyoxyethylene butyl ether, polyoxyethylene pentyl ether, polyoxyethylene hexyl ether, polyoxyethylene octyl ether, polyoxyethylene-2.
  • polyoxyethylene nonyl ether polyoxyethylene decyl ether, polyoxyethylene isodecyl ether, polyoxyethylene tridecyl ether, polyoxyethylene lauryl ether, polyoxyethylene cetyl ether, polyoxyethylene stearyl ether, polyoxy Ethylene isostearyl ether, polyoxyethylene oleyl ether, polyoxyethylene phenyl ether, polyoxyethylene octylphenyl ether, polyoxyethylene nonylphenyl ether, polyoxyethylene dodecylphenyl ether, polyoxyethylene styrenated phenyl ether, polyoxyethylene lauryl Amine, polyoxyethylene stearylamine, polyoxyethylene oleylamine, polyoxyethylene stearylamide, polyoxyethylene oleylamide, polyoxyethylene monolaurate, polyoxyethylene monostearate, polyoxyethylene distearate, polyoxyethylene Monooleate, polyoxyethylene
  • polyoxyalkylene adducts and the like are preferable, polyoxyalkylene alkyl ethers are more preferable, polyoxyethylene alkyl ethers are further preferable, and polyoxyethylene from the viewpoint of further reducing surface defects occurring on the polished surface of the substrate. Decyl ether is particularly preferred.
  • the molecular weight of the surfactant is not particularly limited, it is preferably less than 1,000, more preferably less than 500, and even more preferably less than 400. As the molecular weight of the surfactant, it is preferable to adopt the molecular weight calculated from the chemical formula.
  • surfactants Commercially available products or synthetic products may be used as surfactants.
  • one type of surfactant may be used alone, or two or more types may be used in combination.
  • the surfactants contained in the polishing composition S1 and the polishing composition S2 each preferably contain a nonionic surfactant. Moreover, the nonionic surfactant contained in the polishing composition S1 and the polishing composition S2 preferably contains at least one selected from the group consisting of the above-mentioned compounds.
  • the concentration of the surfactant in the polishing composition S1 is not particularly limited, but is preferably 0.0001% by mass or more, more preferably 0.0002% by mass or more, relative to the total mass of the polishing composition S1. and more preferably 0.0004% by mass or more. Within these ranges, surface defects occurring on the polished surface of the substrate are further reduced. Moreover, the concentration of the surfactant in the polishing composition S1 can be, for example, 0.0006% by mass or more with respect to the total mass of the polishing composition S1. The concentration of the surfactant in the polishing composition S1 is not particularly limited, but is preferably 1% by mass or less, more preferably 0.01% by mass or less, relative to the total mass of the polishing composition S1.
  • the polishing rate is further improved.
  • Preferred examples of the concentration of the surfactant in the polishing composition S1 are 0.0001% by mass or more and 1% by mass or less, 0.0002% by mass or more and 0.01% by mass, relative to the total mass of the polishing composition S1. % or less, 0.0004 mass % or more and 0.001 mass % or less, 0.0004 mass % or more and 0.0008 mass % or less, and the like, but are not limited thereto.
  • the concentration of the surfactant in the polishing composition S2 is not particularly limited, but is preferably 0.0001% by mass or more, more preferably 0.0002% by mass or more, relative to the total mass of the polishing composition S2. and more preferably 0.0004% by mass or more. Within these ranges, surface defects occurring on the polished surface of the substrate are further reduced. Moreover, the concentration of the surfactant in the polishing composition S2 can be, for example, 0.0006% by mass or more with respect to the total mass of the polishing composition S2. The concentration of the surfactant in the polishing composition S2 is not particularly limited, but is preferably 1% by mass or less, more preferably 0.01% by mass or less, relative to the total mass of the polishing composition S2.
  • the polishing rate is further improved.
  • Preferred examples of the concentration of the surfactant in the polishing composition S2 are 0.0001% by mass or more and 1% by mass or less, 0.0002% by mass or more and 0.01% by mass, relative to the total mass of the polishing composition S2. % or less, 0.0004 mass % or more and 0.001 mass % or less, 0.0006 mass % or more and 0.0008 mass % or less, and the like, but are not limited thereto.
  • Polishing composition S1 and polishing composition S2 contain water as a dispersion medium.
  • the dispersion medium serves to disperse or dissolve each component.
  • the content of water in the dispersion medium is not particularly limited, but is preferably 50% by mass or more, more preferably 90% by mass or more, relative to the total mass of the dispersion medium, and may be water only. More preferred. From the viewpoint of preventing contamination of the object to be polished and inhibition of the action of other components, water containing as few impurities as possible is preferable. For example, water having a total content of transition metal ions of 100 mass ppb or less is preferable.
  • the purity of water can be increased by, for example, removal of impurity ions using an ion exchange resin, removal of foreign matter using a filter, distillation, or other operations.
  • water it is preferable to use, for example, deionized water (ion-exchanged water), pure water, ultrapure water, distilled water, or the like.
  • the polishing composition S1 and the polishing composition S2 may each further contain an organic solvent in addition to water as a dispersion medium when the dispersibility or solubility of each component can be improved.
  • the organic solvent is not particularly limited, and known organic solvents can be used.
  • an organic solvent may be used individually by 1 type, and may be used in combination of 2 or more types.
  • Polishing composition S1 and polishing composition S2 may each independently contain other components other than the components listed above within a range that does not impair the effects of the present invention.
  • Other components are not particularly limited, and include known components that can be used in polishing compositions and rinse polishing compositions. Specific examples include, but are not limited to, acids, chelating agents, preservatives, antifungal agents, dissolved gases, reducing agents, and the like.
  • the method for producing the polishing composition S1 includes mixing abrasive grains 1, a water-soluble polymer having an abrasive grain adsorption parameter of 5 or more, water, and other components added as necessary. is not particularly limited.
  • the method for producing the polishing composition S2 includes mixing abrasive grains 2, a water-soluble polymer having an abrasive grain adsorption parameter of less than 5, water, and other components added as necessary. If so, it is not particularly limited.
  • the mixing method for mixing each component is not particularly limited, and known methods can be used as appropriate.
  • the mixing temperature is not particularly limited, but is generally preferably 10° C. or higher and 40° C. or lower, and may be heated in order to increase the dissolution rate. Also, the mixing time is not particularly limited.
  • the substrate to be polished is not particularly limited, but is preferably a semiconductor substrate. From this, it can be said that another aspect of the present invention relates to a method for manufacturing a semiconductor substrate, which includes polishing a substrate by the above polishing method.
  • the substrate includes, for example, a substrate composed of a single layer, a substrate including a layer to be polished and other layers (for example, a support layer and other functional layers).
  • the substrate which is the object to be polished, is not particularly limited, but preferably contains a material having a silicon-silicon bond.
  • the material having a silicon-silicon bond is not particularly limited, but examples thereof include polysilicon, amorphous silicon, monocrystalline silicon, n-type doped monocrystalline silicon, p-type doped monocrystalline silicon, and Si-based alloys such as SiGe. be done.
  • single crystal silicon, n-type doped single crystal silicon, or p-type doped single crystal silicon is preferable from the viewpoint that the effect of the present invention can be obtained more significantly, and p-type doped single crystal silicon is preferable. is more preferable.
  • These materials having silicon-silicon bonds can be used alone or in combination of two or more.
  • the substrate is preferably a silicon substrate (silicon wafer).
  • a polishing composition set used in a method for polishing a substrate includes a polishing step, The polishing step includes polishing the substrate by rotating the polishing platen while supplying a polishing composition to the contact surface between the substrate and a polishing pad attached to the polishing platen.
  • the two or more polishing stages are a polishing stage 1 for polishing on a polishing surface plate; After the polishing stage 1, a polishing stage 2 that polishes on the same polishing platen as the polishing stage 1,
  • the polishing composition set includes A polishing composition used in the polishing stage 1, containing abrasive grains 1, water, and a water-soluble polymer having an abrasive grain adsorption parameter of 5 or more calculated by the following procedures (1) to (4).
  • an object S1 It contains abrasive grains 2, water, and a water-soluble polymer having an abrasive grain adsorption parameter of less than 5, and the water-soluble polymer having an abrasive grain adsorption parameter of 5 or more is 0.005% by mass or more.
  • polishing composition S2 used in the polishing stage 2;
  • a polishing composition set comprising: (1) 0.08% by mass of colloidal silica having an average primary particle size of 25 nm and an average secondary particle size of 50 nm, 0.004% by mass of the water-soluble polymer to be measured, and 0.005% by mass of ammonia.
  • the total organic carbon concentration (TOC value) of the test liquid L is measured, and the obtained TOC value is the total organic carbon concentration W 0 [mass of the water-soluble polymer to be measured contained in the test liquid L ppm], (3)
  • the test solution L is centrifuged at 26000 rpm for 30 minutes to separate the sediment and the supernatant, and then the TOC value of the supernatant is measured to obtain the TOC value.
  • polishing method The details of the polishing method are as explained above.
  • the details of the polishing step, other steps, polishing composition S1 and polishing composition S2, and the object to be polished are also as described above.
  • the polishing composition S1 is preferably a finish polishing composition, and the polishing composition S2 is preferably a rinse polishing composition.
  • the polishing composition set may further contain one or more other polishing compositions as necessary.
  • the polishing composition S1 is a final polishing composition
  • the polishing composition S2 is a rinse polishing composition
  • the other polishing composition is a pre-polishing composition or a final polishing composition.
  • the polishing composition S1 is a final polishing composition
  • the polishing composition S2 is a rinse polishing composition
  • the other polishing composition is a pre-polishing composition.
  • each polishing composition contained in the polishing composition set may be in a concentrated form.
  • the concentrated form is the form of a concentrated liquid of the polishing composition, and can also be grasped as a stock solution of the polishing composition.
  • the concentration ratio is not particularly limited, and can be, for example, about 2 to 100 times in terms of volume, usually about 5 to 50 times, for example, about 10 to 40 times.
  • Such a concentrated liquid can be diluted at a desired timing to prepare a polishing composition, and can be used in a mode of supplying the polishing composition to an object to be polished. Dilution can be performed, for example, by adding water to the concentrate and mixing.
  • Polishing compositions were each prepared by mixing the following materials in deionized water (DIW) to give the compositions shown in Tables 2 to 5 below.
  • DIW deionized water
  • Abrasive grain silica A colloidal silica, average primary particle size 35 nm by BET method, average secondary particle size 70 nm by dynamic light scattering method
  • Silica B colloidal silica, average primary particle size 25 nm by BET method, average secondary particle size 50 nm by dynamic light scattering method
  • Silica C colloidal silica, average primary particle size 15 nm by BET method, average secondary particle size 35 nm by dynamic light scattering method.
  • PVA polyvinyl alcohol (weight average molecular weight: 70,000, degree of saponification: 98 mol% or more)
  • Ac-PVA acetalized polyvinyl alcohol (weight average molecular weight: 13,000, type of acetalization: polyvinyl ethylal, degree of acetalization: 30 mol%)
  • Ac-PVA (2) acetalized polyvinyl alcohol (weight average molecular weight: 9,700, type of acetalization: polyvinyl ethylal, degree of acetalization: 24 mol%)
  • HEC hydroxyethyl cellulose (weight average molecular weight: 250,000)
  • PACMO Poly N-acryloylmorpholine (weight average molecular weight: 350,000).
  • Surfactant C10EO5 polyoxyethylene decyl ether ( C10H21O ( CH2CH2O )5H, molecular weight: 378).
  • Weight average molecular weight The weight average molecular weight of the water-soluble polymer was measured using the GPC method under the following conditions.
  • Abrasive adsorption parameters of the water-soluble polymer were calculated by the following procedures (1) to (4).
  • ⁇ Adsorption parameter evaluation conditions (1) Colloidal silica (PL-2 manufactured by Fuso Chemical Industry Co., Ltd., average primary particle size 25 nm, average secondary particle size 50 nm) 0.08% by mass, water-soluble polymer to be measured 0.004% by mass and A test solution L containing ammonia at a concentration of 0.005% by mass and the balance being water was prepared. (2) The total organic carbon concentration (TOC value) of the test liquid L is measured, and the obtained TOC value is used as the total organic carbon concentration W 0 [mass ppm] of the water-soluble polymer to be measured contained in the test liquid L.
  • TOC value total organic carbon concentration
  • test solution L is centrifuged at 26000 rpm for 30 minutes using Avanti HP-30I manufactured by Beckman Coulter, Inc. to separate the sediment and the supernatant.
  • the TOC value was measured, and the TOC value obtained was taken as the total organic carbon concentration W 1 [mass ppm] of the water-soluble polymer to be measured contained in the supernatant, (4)
  • the adsorption ratio of the water-soluble polymer to be measured was calculated by the following formula, and this value was used as the abrasive particle adsorption parameter.
  • the total organic carbon concentration W 0 [mass ppm] of the water-soluble polymer to be measured contained in the test liquid L, and the water-soluble polymer to be measured contained in the supernatant liquid after centrifugal separation of the test liquid L was evaluated using a total organic carbon meter TOC-L manufactured by Shimadzu Corporation.
  • abrasive grain adsorption parameters are shown in Tables 2 to 5 below.
  • a water-soluble polymer with an abrasive adsorption parameter of less than 5 is referred to as "water-soluble polymer X”
  • a water-soluble polymer with an abrasive adsorption parameter of 5 or more is referred to as "highly water-soluble Molecule Y”.
  • Silicon wafers were polished by a polishing method including a polishing process including each polishing stage shown in Table 1 below.
  • the polishing conditions in each polishing stage of the polishing methods according to the examples and comparative examples are shown below.
  • polishing composition obtained above was used as the final polishing composition used in the final polishing stage and the rinse polishing composition used in the rinse polishing stage. was used.
  • the compositions of the polishing compositions are shown in Tables 2-5 below.
  • Pre-polishing stage A single crystal silicon wafer (diameter: 300 mm, p-type, crystal orientation ⁇ 100>, COP-free) was subjected to the following pre-polishing composition on a polishing platen 1 of the following polishing apparatus using the following pre-polishing composition: One side was polished under polishing conditions.
  • Pre-polishing composition For deionized water (DIW) as a dispersion medium, for the total mass of the polishing composition, colloidal silica (abrasive grains, average primary particle size by BET method 35 nm, dynamic light scattering 0.6% by mass, 0.08% by mass of TMAH (tetramethylammonium hydroxide), and 0.0002% by mass of HEC (hydroxyethyl cellulose, weight average molecular weight 1,200,000). were thoroughly mixed to obtain a polishing composition.
  • DIW deionized water
  • colloidal silica abrasive grains, average primary particle size by BET method 35 nm, dynamic light scattering 0.6% by mass, 0.08% by mass of TMAH (tetramethylammonium hydroxide), and 0.0002% by mass of HEC (hydroxyethyl cellulose, weight average molecular weight 1,200,000).
  • Polishing device Sheet-fed polishing machine manufactured by Okamoto Machine Tool Co., Ltd., model "PNX 332B" Polishing load: 20kPa Surface plate rotation speed: 20 rpm Template rotation speed: 20 rpm Polishing pad: Product name “FP55” manufactured by Fujibo Ehime Co., Ltd. Supply rate of polishing composition: 1 L/min Temperature of polishing composition: 20°C Temperature of surface plate cooling water: 20°C.
  • polishing stage 1 polishing stage 1 according to the present invention
  • the single crystal silicon wafer polished by the pre-polishing stage is subjected to the polishing process using the final polishing composition shown in Tables 2 and 3 below, using the same polishing apparatus as that used in the pre-polishing stage.
  • a polishing platen 2 different from the platen 1 one side was polished under the following polishing conditions.
  • Polishing device Sheet-fed polishing machine manufactured by Okamoto Machine Tool Co., Ltd., model "PNX 332B" Polishing load: 20kPa Surface plate rotation speed: 52 rpm Template rotation speed: 50 rpm Polishing pad: Product name “POLYPAS (registered trademark) 275NX” manufactured by Fujibo Ehime Co., Ltd. Polishing liquid supply rate: 1.5 L/min Polishing liquid temperature: 20°C Temperature of surface plate cooling water: 20°C.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

本発明は、研磨後の基板の表面欠陥を低減しうる手段を提供する。本発明は、基板の研磨方法であって、前記研磨方法は、研磨工程を含み、前記研磨工程は、前記基板と、研磨定盤に取り付けられた研磨パッドとの接触面に研磨用組成物を供給しながら、前記研磨定盤を回転させることによって前記基板を研磨する、2以上の研磨段を含み、前記2以上の研磨段は、研磨定盤上で研磨用組成物S1を用いて研磨する研磨段1と、前記研磨段1の後、前記研磨段1と同一の研磨定盤上で研磨用組成物S2を用いて研磨する研磨段2と、を含み、前記研磨用組成物S1は、砥粒1と、水と、砥粒吸着パラメータが5以上である水溶性高分子とを含有し、前記研磨用組成物S2は、砥粒2と、水と、前記砥粒吸着パラメータが5未満である水溶性高分子とを含有し、かつ、前記砥粒吸着パラメータが5以上である水溶性高分子を0.005質量%以上の含有量で含有しない、研磨方法に関する。

Description

研磨方法および半導体基板の製造方法、ならびに研磨用組成物セット
 本発明は、研磨方法および半導体基板の製造方法、ならびに研磨用組成物セットに関する。
 半導体製品の構成要素等として用いられる、シリコンウェーハ等の半導体基板その他の基板の表面は、一般に、ラッピング工程(粗研磨工程)とポリシング工程(精密研磨工程)とを経て高品位の鏡面に仕上げられる。上記ポリシング工程における研磨方法としては、砥粒を液中に含有させた研磨スラリーによるケミカルメカニカルポリシング法(CMP法)が広く採用されている。この研磨方法は、砥粒による機械的研磨作用と、液中に含有される砥粒以外の成分による化学的研磨作用との複合作用によるものであり、かかる方法によると優れた平滑性および低欠陥性等を有する鏡面が得られることが知られている。
 また、コンピュータに使用されるULSI等の集積回路の高度集積化および高速化を実現するために、半導体デバイスのデザインルールの微細化は年々進んでいる。それに伴い、より微少な表面欠陥が半導体デバイスの性能に悪影響を与える事例が増えており、従来問題とされなかったナノオーダーの欠陥を管理することの重要性が高まっている。
 近年、シリコンウェーハ等の半導体基板その他の基板について、より高品位の表面が要求されるようになってきており、かかる要求に対応し得る研磨用組成物の検討が種々行われている。かような技術として、特開2017-183478号公報には、仕上げ研磨工程と、仕上げ研磨工程の1段階前の前研磨工程と、仕上げ研磨工程と前研磨工程との間に位置する、前研磨工程後のシリコンウェーハをリンスするリンス工程とを連続する工程として備える、シリコンウェーハの研磨方法が開示されている。当該方法では、前研磨工程で使用される前研磨用組成物の親水性パラメータよりも、リンス工程でシリコンウェーハのリンスに使用されるリンス剤の親水性パラメータが小さくなるよう、前研磨用組成物およびリンス剤が選択される。そして、当該文献には、当該方法によれば、研磨後のシリコンウェーハについて、ヘイズおよび微小欠陥を低減して高品位な被研磨面を実現可能であることが開示されている。
 近年、シリコンウェーハ等の半導体基板その他の基板について、表面欠陥の低減に関する要求レベルは上がっている。かような要求に答えるため、本発明は、研磨後の基板の表面欠陥を低減しうる手段を提供することを目的とする。
 本発明の上記課題は、以下の手段によって解決されうる:
 基板の研磨方法であって、
 前記研磨方法は、研磨工程を含み、
 前記研磨工程は、前記基板と、研磨定盤に取り付けられた研磨パッドとの接触面に研磨用組成物を供給しながら、前記研磨定盤を回転させることによって前記基板を研磨する、2以上の研磨段を含み、
 前記2以上の研磨段は、
 研磨定盤上で研磨用組成物S1を用いて研磨する研磨段1と、
 前記研磨段1の後、前記研磨段1と同一の研磨定盤上で研磨用組成物S2を用いて研磨する研磨段2と、を含み、
 前記研磨用組成物S1は、砥粒1と、水と、下記(1)~(4)の手順によって算出される砥粒吸着パラメータが5以上である水溶性高分子とを含有し、
 前記研磨用組成物S2は、砥粒2と、水と、前記砥粒吸着パラメータが5未満である水溶性高分子とを含有し、かつ、前記砥粒吸着パラメータが5以上である水溶性高分子を0.005質量%以上の含有量で含有しない、
研磨方法:
 (1)平均一次粒子径25nm、平均二次粒子径50nmであるコロイダルシリカを0.08質量%、測定対象の水溶性高分子を0.004質量%およびアンモニアを0.005質量%の濃度で含み、残部が水からなる試験液Lを用意する、
 (2)前記試験液Lの全有機炭素濃度(TOC値)を測定し、得られたTOC値を前記試験液Lに含まれる前記測定対象の水溶性高分子の全有機炭素濃度Wとする、
 (3)前記試験液Lに対して回転速度26000rpmで遠心分離処理を30分間行うことにより、沈降物と、上澄み液とに分離したあとに、前記上澄み液のTOC値を測定し、得られたTOC値を前記上澄み液に含まれる前記測定対象の水溶性高分子の全有機炭素濃度Wとする、
 (4)下記式により前記測定対象の水溶性高分子の吸着比を算出し、この値を砥粒吸着パラメータとする。
Figure JPOXMLDOC01-appb-M000003
 また、本発明の上記課題は、以下の手段によっても解決されうる:
 基板の研磨方法に使用される研磨用組成物セットであって、
 前記研磨方法は、研磨工程を含み、
 前記研磨工程は、前記基板と、研磨定盤に取り付けられた研磨パッドとの接触面に研磨用組成物を供給しながら、前記研磨定盤を回転させることによって前記基板を研磨する、2以上の研磨段を含み、
 前記2以上の研磨段は、
 研磨定盤上で研磨する研磨段1と、
 前記研磨段1の後、前記研磨段1と同一の研磨定盤上で研磨する研磨段2と、を含み、
 前記研磨用組成物セットは、
 砥粒1と、水と、下記(1)~(4)の手順によって算出される砥粒吸着パラメータが5以上である水溶性高分子とを含有する、前記研磨段1で用いられる研磨用組成物S1と、
 砥粒2と、水と、前記砥粒吸着パラメータが5未満である水溶性高分子とを含有し、かつ、前記砥粒吸着パラメータが5以上である水溶性高分子を0.005質量%以上の含有量で含有しない、前記研磨段2で用いられる研磨用組成物S2と、
を含む、研磨用組成物セット:
 (1)平均一次粒子径25nm、平均二次粒子径50nmであるコロイダルシリカを0.08質量%、測定対象の水溶性高分子を0.004質量%およびアンモニアを0.005質量%の濃度で含み、残部が水からなる試験液Lを用意する、
 (2)前記試験液Lの全有機炭素濃度(TOC値)を測定し、得られたTOC値を前記試験液Lに含まれる前記測定対象の水溶性高分子の全有機炭素濃度Wとする、
 (3)前記試験液Lに対して26000rpmで遠心分離処理を30分間行うことにより、沈降物と、上澄み液とに分離したあとに、前記上澄み液のTOC値を測定し、得られたTOC値を前記上澄み液に含まれる前記測定対象の水溶性高分子の全有機炭素濃度Wとする、
 (4)下記式により前記測定対象の水溶性高分子の吸着比を算出し、この値を砥粒吸着パラメータとする。
Figure JPOXMLDOC01-appb-M000004
 以下、本発明の実施の形態を説明する。なお、本発明は、以下の実施の形態のみには限定されない。また、特記しない限り、操作および物性等の測定は室温(20℃以上25℃以下の範囲)/相対湿度40%RH以上50%RH以下の条件で測定する。
 また、本明細書において、「(メタ)アクリル酸」とは、アクリル酸およびメタクリル酸の総称である。他の(メタ)を含む化合物等も同様に、名称中に「メタ」を有する化合物と「メタ」を有さない化合物の総称である。
 <研磨方法>
 本発明の一態様は、基板の研磨方法であって、
 前記研磨方法は、研磨工程を含み、
 前記研磨工程は、前記基板と、研磨定盤に取り付けられた研磨パッドとの接触面に研磨用組成物を供給しながら、前記研磨定盤を回転させることによって前記基板を研磨する、2以上の研磨段を含み、
 前記2以上の研磨段は、
 研磨定盤上で研磨用組成物S1を用いて研磨する研磨段1と、
 前記研磨段1の後、前記研磨段1と同一の研磨定盤上で研磨用組成物S2を用いて研磨する研磨段2と、を含み、
 前記研磨用組成物S1は、砥粒1と、水と、後述する(1)~(4)の手順によって算出される砥粒吸着パラメータが5以上である水溶性高分子とを含有し、
 前記研磨用組成物S2は、砥粒2と、水と、前記砥粒吸着パラメータが5未満である水溶性高分子とを含有し、かつ、前記砥粒吸着パラメータが5以上である水溶性高分子を0.005質量%以上の含有量で含有しない(すなわち、前記研磨用組成物S2における前記砥粒吸着パラメータが5以上である水溶性高分子の濃度が、前記研磨用組成物S2の総質量に対して、0.005質量%未満である)、研磨方法に関する。本態様によれば、研磨後の基板の表面欠陥を低減しうる手段の提供が可能となる。
 本発明者らは、本発明によって上記課題が解決されうるメカニズムを以下のように推測している。砥粒吸着パラメータが大きな水溶性高分子は、シリカ等への吸着が生じ易い。まず、研磨段1において、砥粒吸着パラメータが大きな水溶性高分子を含む研磨用組成物を使用して基板を研磨する。この際、砥粒吸着パラメータが大きな水溶性高分子は、砥粒や基板に吸着し、基板を保護する。このことから、研磨段1では、基板へのダメージを抑制しながら基板の加工を進めることができる。次いで、研磨段2において、砥粒吸着パラメータが小さい水溶性高分子を含む研磨用組成物を使用して基板を研磨する。この際、砥粒吸着パラメータが小さい水溶性高分子は、砥粒にあまり吸着せず、基板上に残存する砥粒を除去するよう作用する。このことから、研磨段2では、基板を良好に洗浄することができる。これらの結果、本発明に係る研磨方法を用いた研磨後に得られる基板は、ダメージが少なく、また、基板上に残存する砥粒も少ないことから、表面欠陥が顕著に低減されたものとなる。なお、上記メカニズムは推測に基づくものであり、その正誤が本発明の技術的範囲に影響を及ぼすものではない。
 本発明の一実施形態に係る基板の研磨方法は、研磨工程を含み、前記研磨工程は、前記基板と、研磨定盤に取り付けられた研磨パッドとの接触面に研磨用組成物を供給しながら、前記研磨定盤を回転させることによって前記基板を研磨する、2以上の研磨段を含み、前記2以上の研磨段は、研磨定盤上で研磨用組成物S1を用いて研磨する研磨段1と、上記の研磨段1の後、研磨段1と同一の研磨定盤上で研磨用組成物S2を用いて研磨する研磨段2とを含む。
 [研磨工程]
 以下、本発明の一実施形態に係る研磨方法に含まれる研磨工程について説明する。
 本発明の一実施形態に係る研磨工程において用いられる研磨装置、および研磨段1および研磨段2にて採用されうる研磨条件について説明する。
 研磨装置としては、特に制限されないが、例えば、研磨対象物を有する基板等を保持する保持具(ホルダー)と回転数を変更可能なモータ等とが取り付けてあり、研磨パッド(研磨布)を貼り付け可能な研磨定盤を有する一般的な研磨装置を用いることができる。例えば、片面研磨装置や、両面研磨装置を使用することができる。市販の研磨装置は、特に制限されないが、片面研磨装置としては、例えば、株式会社岡本工作機械製作所製の枚葉研磨機、型式「PNX 332B」等が挙げられる。
 片面研磨装置を用いて研磨対象物を研磨する場合には、テンプレートと呼ばれる保持具を用いて研磨対象物を保持し、研磨パッド(研磨布)が貼付された研磨定盤を研磨対象物の片面に押しつけて研磨用組成物を供給しながら研磨定盤を回転させることにより、研磨対象物の片面を研磨する。
 両面研磨装置を用いて研磨対象物を研磨する場合には、キャリアと呼ばれる保持具を用いて研磨対象物を保持し、研磨パッド(研磨布)が貼付された研磨定盤を研磨対象物の両側から研磨対象物の両面にそれぞれ押しつけて、研磨用組成物を供給しながら両側の研磨定盤を回転させることにより、研磨対象物の両面を研磨する。
 これらのような研磨装置を用いることで、基板と、研磨定盤に取り付けられた研磨パッドとの接触面に研磨用組成物が供給されて、研磨定盤を回転させることによって基板が研磨されることとなる。
 このように、研磨工程における研磨は、片面研磨および両面研磨のいずれであってもよいが、片面研磨であることが好ましい。
 研磨パッドとしては、一般的な不織布タイプ、ポリウレタンタイプ、スウェードタイプ等を特に制限なく使用することができる。研磨パッドには、研磨用組成物が溜まるような溝加工が施されているものを使用することもできる。市販の研磨パッドは、特に制限されないが、不織布タイプとしては、例えば、フジボウ愛媛株式会社製 製品名「FP55」等、スウェードタイプとしては、例えば、フジボウ愛媛株式会社製 製品名「POLYPAS275NX」等が挙げられる。
 研磨条件については、各研磨段における研磨の目的によってその好ましい範囲が異なることとなる。よって、研磨条件は、特に制限されず、各研磨段における研磨の目的に応じて適切な条件が採用されうる。
 研磨は、プラテン(研磨定盤)を回転させることによって行うことが好ましく、基板と、プラテン(研磨定盤)とを相対的に移動(例えば回転移動)させて行うことがより好ましい。プラテン(研磨定盤)回転数およびヘッド(キャリア、テンプレート)回転数は、特に制限されないが、それぞれ独立して、好ましくは10rpm(0.17s-1)以上100rpm(1.67s-1)以下であり、より好ましくは20rpm(0.33s-1)以上60rpm(1s-1)以下であり、さらに好ましくは25rpm(0.42s-1)以上55rpm(0.92s-1)以下である。これらの範囲であると、基板の研磨面に生じる表面欠陥がより低減するとともに、生産効率がより向上する。また、プラテン(研磨定盤)回転数およびヘッド(キャリア、テンプレート)回転数は、同じであってもよいし、異なっていてもよい。
 基板は、通常、定盤により加圧されている。この際の圧力(研磨荷重)は、特に制限されないが、好ましくは5kPa以上30kPa以下であり、より好ましくは10kPa以上25kPa以下である。この範囲であると、基板の研磨面に生じる表面欠陥がより低減するとともに、生産効率がより向上する。
 各研磨用組成物は、研磨対象物に供給される前には濃縮された形態であってもよい。濃縮された形態とは、研磨用組成物の濃縮液の形態であり、研磨用組成物の原液としても把握されうる。このように濃縮された形態の研磨用組成物は、製造、流通、保存等の際における利便性やコスト低減等の観点から有利である。濃縮倍率は特に限定されず、例えば、体積換算で2倍以上100倍以下程度とすることができ、通常は5倍以上50倍以下程度、例えば10倍以上40倍以下程度が適当である。このような濃縮液は、所望のタイミングで希釈して研磨用組成物を調製し、研磨用組成物を研磨対象物に供給する態様で使用することができる。希釈は、例えば、濃縮液に水を加えて混合することにより行うことができる。
 研磨用組成物の供給速度は、研磨定盤のサイズに応じて適宜選択することができるため特に制限されないが、研磨対象物全体が覆われる供給量であることが好ましい。経済性を考慮すると、研磨用組成物の供給速度は、より好ましくは0.1L/min以上5L/min以下であり、さらに好ましくは0.2L/min以上2L/min以下である。この範囲であると、基板の研磨面に生じる表面欠陥がより低減するとともに、生産効率がより向上する。
 研磨用組成物を供給する方法も特に制限されず、ポンプ等で連続的に供給する方法(掛け流し)を採用してもよい。
 研磨用組成物の研磨装置における保持温度としても特に制限はないが、研磨速度の安定性や、基板の研磨面に生じる表面欠陥の低減効果の観点から、15℃以上40℃以下であることが好ましく、18℃以上25℃以下がより好ましい。
 また、研磨用組成物は、研磨対象物の研磨に使用された後に回収し、必要に応じて研磨用組成物に含まれうる各成分を添加して組成を調整した上で、研磨対象物の研磨に再使用してもよい。
 研磨工程は、研磨段1および研磨段2に加えて、必要に応じて他の研磨段をさらに含んでもよく、他の研磨段をさらに含むことが好ましい。この際、研磨段1および研磨段2の位置は特に制限されないが、研磨段1は、研磨段2より1つ前の研磨段であることが好ましく、研磨段1は、最終研磨段より1つ前の研磨段であり、研磨段2は、最終研磨段であることがより好ましい。研磨工程に含まれる研磨段の数は、2以上10以下であることが好ましく、3以上6以下であることがより好ましい。
 研磨段1および研磨段2において、基板は、同一の研磨定盤上で研磨されることとなる。なお、研磨工程は、研磨段1および研磨段2に加えて他の研磨段を含む場合、他の研磨段において、基板は、研磨段1および研磨段2と同一の研磨定盤上で研磨されてもよく、研磨段1および研磨段2とは異なる研磨定盤上で研磨されてもよいが、他の研磨段において、基板は、研磨段1および研磨段2とは異なる研磨定盤上で研磨されることが好ましい。
 研磨段1および研磨段2は、どのような研磨を行う研磨段であるかは問わない。しかしながら、研磨段1は、仕上げ研磨を行う研磨段であり、研磨段2は、リンス研磨を行う研磨段であることが好ましい。仕上げ研磨を行う研磨段とは、予備研磨等の前研磨を行う研磨段によって大まかに研磨された基材をより繊細に研磨する研磨段を表す。また、リンス研磨を行う研磨段とは、研磨パッドが取り付けられた研磨定盤(プラテン)上で行われる、研磨パッドによる摩擦力(物理的作用)および研磨用組成物(リンス研磨用組成物)の作用により研磨済研磨対象物の表面上の残渣を除去する研磨段を表す。よって、研磨用組成物S2は、リンス研磨用組成物であることが好ましい。
 これらのことから、本発明の好ましい一実施形態において、研磨工程は、研磨段1と、研磨段2と、研磨段1の前に配置される1または2以上の他の研磨段をさらに含み、かつ、研磨段1は、最終研磨段より1つ前の研磨段であって、仕上げ研磨を行う研磨段であり、研磨段2は、最終研磨段であって、リンス研磨を行う研磨段である。
 研磨段1の研磨時間と、研磨段2の研磨時間との関係としては、特に制限されないが、研磨段2における研磨時間は、研磨段1における研磨時間よりも短いことが好ましい。この場合、基板の研磨面に生じる表面欠陥がより低減する。
 研磨段1の研磨時間は、特に制限されないが、好ましくは80秒超であり、より好ましくは100秒以上であり、さらに好ましくは150秒以上である。これらの範囲であると、基板の研磨面に生じる表面欠陥がより低減する。また、研磨段1の研磨時間は、特に制限されないが、好ましくは500秒以下であり、より好ましくは300秒以下であり、さらに好ましくは250秒以下である。これらの範囲であると生産効率が向上する。
 研磨段2の研磨時間は、特に制限されないが、好ましくは1秒以上であり、より好ましくは3秒以上であり、さらに好ましくは5秒以上である。これらの範囲であると、基板の研磨面に生じる表面欠陥がより低減する。また、研磨段2の研磨時間は、特に制限されないが、好ましくは80秒以下であり、より好ましくは60秒以下であり、さらに好ましくは40秒以下である。これらの範囲であると、生産効率がより向上する。
 上記の研磨装置および研磨条件に関しては単に一例を述べただけであり、上記の範囲を外れてもよいし、適宜設定を変更することもできる。
 [他の工程]
 本発明の一実施形態に係る研磨方法は、他の工程をさらに含んでいてもよい。他の工程としては、例えば、洗浄工程等が挙げられる。
 洗浄工程は、研磨工程の前、研磨工程中、研磨工程の後のいずれに設けられていてもよい。しかしながら、洗浄工程は、研磨工程の後、洗浄工程において基板の洗浄処理を行うことが好ましい。洗浄工程における洗浄方法としては、特に制限されないが、好ましい一例としては、洗浄液を入れた第1の洗浄槽と、洗浄液を入れた第2の洗浄槽を用意し、研磨工程で研磨された基板を、第1の洗浄槽に浸漬し、その後第2の洗浄槽に浸漬し、必要に応じてこれらの浸漬を繰り返す方法が挙げられる。第1の洗浄槽の浸漬時間(複数回浸漬する場合は、1回あたりの浸漬時間)は、特に制限されないが、例えば、1分以上10分以下等が挙げられる。また、第2の洗浄槽の浸漬時間(複数回浸漬する場合は、1回あたりの浸漬時間)は、特に制限されないが、1分以上30分以下等が挙げられる。洗浄液としては、特に制限されないが、例えば、純水や、NHOH(29質量%):H(31質量%):脱イオン水(DIW)=2:5.3:48(体積比)の液等が挙げられる。また、第1の洗浄槽の洗浄液がNHOH(29質量%):H(31質量%):脱イオン水(DIW)=2:5.3:48(体積比)の液であり、第2の洗浄槽の洗浄液が純水であることが好ましい。この際、第2の洗浄槽の洗浄液は、25℃の超純水であることがより好ましい。洗浄液への浸漬は、超音波発振器を作動させた状態で行ってもよい。また、洗浄液の温度は、特に制限されないが、40℃以上80℃以下の範囲とすることが好ましい。なお、洗浄後、スピンドライヤー等の公知の乾燥装置を用いて、基板を乾燥することが好ましい。
 [研磨用組成物]
 以下、本発明の一実施形態に係る研磨方法で使用される研磨用組成物S1および研磨用組成物S2について説明する。また、後述する本発明の他の一態様に係る研磨用組成物セットに含まれる研磨用組成物S1および研磨用組成物S2について説明する。
 (砥粒)
 研磨用組成物S1および研磨用組成物S2は、砥粒を含有する。本明細書において、研磨用組成物S1に含まれる砥粒を砥粒1と称し、研磨用組成物S2に含まれる砥粒を砥粒2と称する。砥粒1は、基板の表面を物理的に研磨する働きをする。砥粒2は、基板の表面の残渣を物理的に低減する働きをする。
 砥粒としては、特に制限されないが、例えば、無機粒子、有機粒子、および有機無機複合粒子が挙げられる。無機粒子の具体例としては、特に制限されないが、シリカ、アルミナ、酸化セリウム、酸化クロム、二酸化チタン、酸化ジルコニウム、酸化マグネシウム、二酸化マンガン、酸化亜鉛、ベンガラ等の酸化物からなる粒子(酸化物粒子)、窒化ケイ素、窒化ホウ素等の窒化物からなる粒子(窒化物粒子)、炭化ケイ素、炭化ホウ素等の炭化物からなる粒子(炭化物粒子)、ダイヤモンドからなる粒子、炭酸カルシウムや炭酸バリウム等の炭酸塩からなる粒子等が挙げられる。有機粒子の具体例としては、特に制限されないが、例えば、ポリメタクリル酸メチル(PMMA)からなる粒子等が挙げられる。また、上記挙げた物質の1または2以上を含む粒子等が挙げられる。これらの中でも、シリカが好ましい。すなわち、砥粒1および砥粒2は、好ましくはシリカである。シリカの具体例としては、コロイダルシリカ、フュームドシリカ、およびゾルゲル法シリカ等が挙げられる。これらの中でも、基板の研磨面に生じる表面欠陥をより低減させるとの観点から、コロイダルシリカまたはフュームドシリカが好ましく、コロイダルシリカがより好ましい。砥粒1および砥粒2は、それぞれ、上記で挙げた粒子からなる群より選択される少なくとも1種を含むことが好ましい。
 砥粒の平均一次粒子径は、特に制限されないが、好ましくは1nm以上であり、より好ましくは5nm以上であり、さらに好ましくは10nm以上であり、特に好ましくは20nm以上である。これらの範囲であると、研磨速度が向上する。また、砥粒の平均一次粒子径は、特に制限されないが、好ましくは、100nm以下であり、より好ましくは70nm以下であり、さらに好ましくは50nm以下であり、特に好ましくは、30nm以下である。これらの範囲であると、基板の研磨面に生じる表面欠陥がより低減する。砥粒の平均一次粒子径の値は、例えば、BET法により測定される比表面積から算出される。砥粒の比表面積の測定は、例えば、マイクロメリテックス社製の「FlowSorbII 2300」を用いて行うことができる。好ましい砥粒の平均一次粒子径の範囲の例としては、1nm以上100nm以下、5nm以上70nm以下、10nm以上50nm以下、20nm以上30nm以下等が挙げられるが、これらに限定されない。
 砥粒1の平均一次粒子径と、砥粒2の平均一次粒子径との関係は、特に制限されないが、砥粒2の平均一次粒子径は、砥粒1の平均一次粒子径以下であることが好ましい。また、砥粒1の平均一次粒子径に対する砥粒2の平均一次粒子径の比率(砥粒2の平均一次粒子径/砥粒1の平均一次粒子径)は、特に制限されないが、好ましくは0.1以上1以下であり、より好ましくは0.4以上1以下であり、さらに好ましくは0.8以上1以下であり、特に好ましくは1である。これらの場合、基板の研磨面に生じる表面欠陥をより低減させることができる。
 砥粒の平均二次粒子径は、特に制限されないが、好ましくは10nm以上であり、より好ましくは20nm以上であり、さらに好ましくは30nm以上である。これらの範囲であると、研磨速度が向上する。また、砥粒の平均二次粒子径は、特に制限されないが、好ましくは200nm以下であり、より好ましくは150nm以下であり、さらに好ましくは100nm以下である。これらの範囲であると、基板の研磨面に生じる表面欠陥がより低減する。砥粒の平均二次粒子径の値は、例えば、日機装株式会社製の型式「UPA-UT151」を用いた動的光散乱法により測定することができる。好ましい砥粒の平均二次粒子径の範囲の例としては、10nm以上200nm以下、20nm以上150nm以下、30nm以上100nm以下等が挙げられるが、これらに限定されない。
 砥粒の平均会合度は、特に制限されないが、好ましくは1.2以上であり、より好ましくは1.4以上であり、さらに好ましくは1.5以上である。本明細書において、平均会合度とは、砥粒の平均二次粒子径の値を平均一次粒子径の値で除することにより得られる値を表すものとする。これらの範囲であると、研磨速度がより向上する。また、砥粒の平均会合度は、特に制限されないが、好ましくは4以下であり、より好ましくは3.5以下であり、さらに好ましくは3以下である。これらの範囲であると、基板の研磨面に生じる表面欠陥がより低減する。好ましい砥粒の会合度の範囲の例としては、1.2以上4以下、1.4以上3.5以下、1.5以上3以下等が挙げられるが、これらに限定されない。
 砥粒は、市販品を用いても合成品を用いてもよい。また、砥粒は、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。
 研磨用組成物S1における砥粒1の濃度は、特に制限されないが、研磨用組成物S1の総質量に対して、好ましくは0.001質量%以上であり、より好ましくは0.01質量%以上であり、さらに好ましくは0.05質量%以上である。これらの範囲であると、研磨速度が向上する。また、研磨用組成物S1における砥粒1の濃度は、特に制限されないが、研磨用組成物S1の総質量に対して、好ましくは3質量%以下であり、より好ましくは1質量%以下であり、さらに好ましくは0.5質量%以下であり、よりさらに好ましくは0.1質量%以下であり、特に好ましくは0.08質量%以下である。これらの範囲であると、基板の研磨面に生じる表面欠陥がより低減する。好ましい研磨用組成物S1における砥粒1の濃度の範囲の例としては、研磨用組成物S1の総質量に対して、0.001質量%以上3質量%以下、0.01質量%以上1質量%以下、0.05質量%以上0.5質量%以下、0.05質量%以上0.1質量%以下、0.05質量%以上0.08質量%以下等が挙げられるが、これらに限定されない。
 研磨用組成物S2における砥粒2の濃度は、特に制限されないが、研磨用組成物S2の総質量に対して、好ましくは0.001質量%以上であり、より好ましくは0.01質量%以上である。これらの範囲であると、研磨速度が向上する。また、研磨用組成物S2における砥粒2の濃度は、特に制限されないが、研磨用組成物S2の総質量に対して、好ましくは3質量%以下であり、より好ましくは1質量%以下であり、さらに好ましくは0.5質量%以下であり、よりさらに好ましくは0.1質量%以下であり、特に好ましくは0.08質量%以下である。これらの範囲であると、基板の研磨面に生じる表面欠陥がより低減する。好ましい研磨用組成物S2における砥粒2の濃度の例としては、研磨用組成物S2の総質量に対して、0.001質量%以上3質量%以下、0.01質量%以上1質量%以下、0.01質量%以上0.5質量%以下、0.01質量%以上0.1質量%以下、0.01質量%以上0.08質量%以下等が挙げられるが、これらに限定されない。
 以上のことから、本発明の好ましい一実施形態において、研磨用組成物S1における砥粒1の濃度は、研磨用組成物S1の総質量に対して、0.001質量%以上3質量%以下であり、研磨用組成物S2における砥粒2の濃度は、研磨用組成物S2の総質量に対して、0.001質量%以上3質量%以下である。
 研磨用組成物S2における砥粒2の濃度と、研磨用組成物S1における砥粒1の濃度との関係は、特に制限されないが、研磨用組成物S2における砥粒2の濃度は、研磨用組成物S1における砥粒1の濃度以下であることが好ましい。また、研磨用組成物S1における砥粒1の濃度に対する研磨用組成物S2における砥粒2の濃度の比率(研磨用組成物S2における砥粒2の濃度/研磨用組成物S1における砥粒1の濃度)は、特に制限されないが、好ましくは0.1以上1以下であり、より好ましくは0.4以上1以下である。これらの場合、基板の研磨面に生じる表面欠陥をより低減させることができる。前記比率は、例えば、0.8以上1以下とすることができ、例えば、1とすることができる。
 (水溶性高分子)
 研磨用組成物S1および研磨用組成物S2は、水溶性高分子を含有する。本明細書において、「水溶性」とは、水(25℃)に対する溶解度が1g/100mL以上であることを意味し、「高分子」とは、重量平均分子量が1,000以上である化合物を表す。重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)によって、ポリオキシエチレン換算で測定することができる。具体的には、実施例に記載の方法により測定される値を採用することができる。
 研磨用組成物S1は、後述する(1)~(4)の手順によって算出される砥粒吸着パラメータ(本明細書において、単に「砥粒吸着パラメータ」とも称する。)が5以上である水溶性高分子を含有する。また、研磨用組成物S1は、砥粒吸着パラメータが5未満である水溶性高分子をさらに含有することが好ましい。また、研磨用組成物S2は、砥粒吸着パラメータが5未満である水溶性高分子を含有する。また、研磨用組成物S2は、砥粒吸着パラメータが5以上である水溶性高分子を0.005質量%以上の含有量(濃度)で含有しない。すなわち、研磨用組成物S2における砥粒吸着パラメータが5以上である水溶性高分子の濃度は、0.005質量%未満(研磨用組成物S2の総質量に対して、0.005質量%未満)である。砥粒吸着パラメータが5以上である水溶性高分子は、砥粒の表面を保護する働きをする。砥粒吸着パラメータが5未満である水溶性高分子は、基板の表面の残渣を低減する働きをする。
 水溶性高分子の砥粒吸着パラメータは、以下の(1)~(4)の手順によって算出することができる:
 (1)コロイダルシリカ(扶桑化学工業株式会社製 PL-2、平均一次粒子径25nm、平均二次粒子径50nm)を0.08質量%、測定対象の水溶性高分子を0.004質量%およびアンモニアを0.005質量%の濃度で含み、残部が水からなる試験液Lを用意する、
 (2)試験液Lの全有機炭素濃度(TOC値)を測定し、得られたTOC値を試験液Lに含まれる測定対象の水溶性高分子の全有機炭素濃度W[質量ppm]とする、
 (3)試験液Lに対して26000rpmで30分間、例えば、ベックマン・コールター株式会社製 Avanti HP-30I等の遠心分離機を用いて遠心分離処理を行うことにより、沈降物と、上澄み液とに分離したあとに、上澄み液のTOC値を測定し、得られたTOC値を上澄み液に含まれる測定対象の水溶性高分子の全有機炭素濃度W[質量ppm]とする、
 (4)下記式により測定対象の水溶性高分子の吸着比を算出し、この値を砥粒吸着パラメータとする。
Figure JPOXMLDOC01-appb-M000005
 試験液Lに含まれる測定対象の水溶性高分子の全有機炭素濃度W[質量ppm]、および試験液Lの遠心分離処理後の上澄み液に含まれる測定対象の水溶性高分子の全有機炭素濃度W[質量ppm]は、例えば、株式会社島津製作所製の全有機体炭素計TOC-Lを用いて評価することができる。
 なお、砥粒吸着パラメータの算出方法の詳細は実施例に記載する。
 試験液Lの遠心分離処理によって、コロイダルシリカは沈降すると考えられる。また、試験液Lの遠心分離処理後の上澄み液に含まれる水溶性高分子は、水溶性高分子全体のうち、主に、コロイダルシリカに吸着しない部分であると考えられる。
 砥粒吸着パラメータが大きくなるに従い、試験液Lの遠心分離処理後の上澄み液に含まれる水溶性高分子の量が小さくなり、コロイダルシリカに吸着する水溶性高分子の量が大きくなると考えられる。したがって、水溶性高分子の砥粒吸着パラメータが大きいほど、実際の研磨用組成物においても、水溶性高分子は、砥粒へ吸着し易くなり、その吸着量も大きくなると推測される。
 砥粒吸着パラメータが5未満である水溶性高分子について、砥粒吸着パラメータは、特に制限されないが、通常0以上である。また、砥粒吸着パラメータは、特に制限されないが、好ましくは2以下である。これらの範囲であると基板の研磨面に生じる表面欠陥がより低減する。
 砥粒吸着パラメータが5以上である水溶性高分子について、砥粒吸着パラメータは、特に制限されないが、好ましくは60以上である。これらの範囲であると、基板の研磨面に生じる表面欠陥がより低減する。また、砥粒吸着パラメータは、特に制限されないが、通常100以下である。
 本発明で用いられる水溶性高分子としては、特に制限されないが、例えば、分子中に、カチオン基、アニオン基およびノニオン基からなる群より選択される少なくとも一種の官能基を有する高分子が挙げられる。具体的には、分子中に水酸基(ヒドロキシ基)、カルボキシ基またはその塩の基、アシルオキシ基、スルホ基またはその塩の基、窒素原子を含む部分構造(例えば、アミド基、アミジノ基、イミノ基、イミド基、第四級窒素構造、環形成原子として窒素原子を含む複素環構造)、環形成原子として窒素原子以外のヘテロ原子を含む複素環構造、ビニル構造、ポリオキシアルキレン構造等を含む高分子等が挙げられる。
 砥粒吸着パラメータが5以上である水溶性高分子としては、特に制限されないが、好ましくは、セルロース誘導体、分子内に窒素原子を含む部分構造を有する高分子、分子内に2以上のヒドロキシ基を含み、非置換のポリオキシアルキレン構造を含む高分子等が挙げられる。研磨用組成物S1に含まれる砥粒吸着パラメータが5以上である水溶性高分子は、これらの化合物からなる群より選択される少なくとも1種を含むことが好ましい。
 セルロース誘導体としては、特に制限されないが、例えば、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシエチルメチルセルロース、ヒドロキシプロピルメチルセルロース、メチルセルロース、エチルセルロース、エチルヒドロキシエチルセルロース、カルボキシメチルセルロース等が挙げられる。
 分子内に窒素原子を含む部分構造を有する高分子としては、特に制限されないが、例えば、ポリ(メタ)アクリルアミド、ポリアルキルアミノアルキル(メタ)アクリルアミド、ポリヒドロキシアルキル(メタ)アクリルアミド、ポリN-(メタ)アクリロイルモルホリン、ポリN-ビニルピロリドン、ポリN-ビニルピロリドンを構造の一部に含む共重合体、ポリN-ビニルイミダゾール、ポリN-ビニルカルバゾール、ポリN-ビニルカプロラクタム、ポリN-ビニルカプロラクタムを構造の一部に含む共重合体、ポリN-ビニルピペリジン、ポリアミジン、ポリエチレンイミン、親水化ポリイミド、各種ポリアミノ酸、ポリ(N-アシルアルキレンイミン)等のイミン誘導体等が挙げられる。
 分子内に2以上のヒドロキシ基を含み、非置換のポリオキシアルキレン構造を含む高分子としては、特に制限されないが、例えば、ポリエチレンオキサイド(PEO)、ポリプロピレンオキサイド(PPO)、ポリブチレンオキサイド(PBO)、エチレンオキサイド(EO)とプロピレンオキサイド(PO)とのブロック共重合体、EOとPOとのランダム共重合体等が挙げられる。
 これらの中でも、基板の研磨面に生じる表面欠陥がより低減するとの観点から、ヒドロキシエチルセルロースまたはポリN-(メタ)アクリロイルモルホリンが好ましく、ポリN-アクリロイルモルホリンがより好ましい。
 砥粒吸着パラメータが5以上である水溶性高分子の重量平均分子量は、特に制限されないが、好ましくは1,000以上であり、より好ましくは10,000以上であり、さらに好ましくは100,000以上であり、特に好ましくは200,000以上である。砥粒吸着パラメータが5以上である水溶性高分子の重量平均分子量は、例えば、300,000以上とすることができる。また、砥粒吸着パラメータが5以上である水溶性高分子の重量平均分子量は、特に制限されないが、好ましくは2,000,000以下であり、より好ましくは1,500,000以下であり、さらに好ましくは1,000,000以下であり、特に好ましくは500,000以下である。これらの範囲であると、基板の研磨面に生じる表面欠陥がより低減する。砥粒吸着パラメータが5以上である水溶性高分子の重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)によって、ポリオキシエチレン換算にて測定することができる。なお、具体的な測定方法は実施例に記載する。好ましい砥粒吸着パラメータが5以上である水溶性高分子の重量平均分子量の例としては、1,000以上2,000,000以下、10,000以上1,500,000以下、100,000以上1,000,000以下、200,000以上500,000以下、300,000以上500,000以下等が挙げられるが、これらに限定されない。
 砥粒吸着パラメータが5未満である水溶性高分子としては、特に制限されないが、好ましくは、分子内に2以上のヒドロキシ基を含み、置換されたポリオキシアルキレン構造を含む高分子、分子内に2以上のヒドロキシ基を含み、ビニルアルコールに由来する構造単位を含む高分子、分子内にアニオン基を有する高分子等が挙げられる。研磨用組成物S2に含まれる砥粒吸着パラメータが5未満である水溶性高分子は、これらの化合物からなる群より選択される少なくとも1種を含むことが好ましい。
 分子内に2以上のヒドロキシ基を含み、置換されたポリオキシアルキレン構造を含む高分子において、ポリオキシアルキレン基を置換する置換基としては、ヒドロキシ基が好ましい。分子内に2以上のヒドロキシ基を含み、置換されたポリオキシアルキレン構造を含む高分子としては、特に制限されないが、例えば、ポリグリセリン等が挙げられる。
 分子内に2以上のヒドロキシ基を含み、ビニルアルコールに由来する構造単位を含む高分子において、ビニルアルコールに由来する構造単位とは、ビニルアルコール単位(-CH-CH(OH)-により表される構造部分;以下「VA単位」ともいう。)を表す。また、分子内に2以上のヒドロキシ基を含み、ビニルアルコールに由来する構造単位を有する高分子は、VA単位に加え、非ビニルアルコール単位(ビニルアルコール以外のモノマーに由来する構造単位、以下「非VA単位」ともいう。)を含む共重合体であってもよい。非VA単位の例としては、特に制限されず、エチレン、酢酸ビニル、プロピオン酸ビニル、ヘキサン酸ビニル、2-ブテンジオール等に由来する構造単位が挙げられる。ビニルアルコールに由来する構造単位を含むポリマーは、非VA単位を含む場合、一種類の非VA単位のみを含んでもよく、二種類以上の非VA単位を含んでもよい。分子内に2以上のヒドロキシ基を含み、ビニルアルコールに由来する構造単位を含む高分子において、全繰返し単位のモル数に占めるVA単位のモル数の割合は、特に制限されないが、好ましくは50%以上であり、より好ましくは65%以上であり、さらに好ましくは70%以上であり、特に好ましくは75%以上である(上限100%)。全繰返し単位が実質的にVA単位から構成されていてもよい。ポリビニルアルコールの鹸化度は、特に制限されないが、好ましくは50モル%以上であり、より好ましくは65モル%以上であり、さらに好ましくは70モル%以上であり、特に好ましくは75モル%以上である(上限100モル%)。分子内に2以上のヒドロキシ基を含み、ビニルアルコールに由来する構造単位を含む高分子としては、特に制限されないが、例えば、ポリビニルアルコール(PVA)、アセタール化ポリビニルアルコール、ビニルアルコール・エチレン共重合体、ビニルアルコール・ブテンジオール共重合体等が挙げられる。ビニルアルコールに由来する構造単位を含む高分子がアセタール化ポリビニルアルコールである場合、アセタール化の種類は、特に制限されないが、例えば、ポリビニルホルマール、ポリビニルアセトアセタール、ポリビニルプロピラール、ポリビニルエチラール、ポリビニルブチラール等が挙げられる。アセタール化度は、特に制限されないが、好ましくは1モル%以上50モル%以下、より好ましくは10モル%以上45モル%以下、さらに好ましくは20モル%以上40モル%以下である。
 分子内にアニオン基を有する高分子としては、特に制限されないが、好ましくは、分子内にカルボキシ基またはその塩の基を有する高分子、分子内にスルホ基またはその塩の基を有する高分子等が挙げられる。具体例としては、ポリ(メタ)アクリル酸、ポリ(メタ)アクリルアミドアルキルスルホン酸、ポリイソプレンスルホン酸、ポリビニルスルホン酸、ポリアリルスルホン酸、ポリイソアミレンスルホン酸、ポリスチレンスルホン酸、これらの塩等が挙げられる。
 これらの中でも、基板の研磨面に生じる表面欠陥がより低減するとの観点から、分子内に2以上のヒドロキシ基を含み、ビニルアルコールに由来する構造単位を有する高分子が好ましく、ポリビニルアルコールまたはアセタール化ポリビニルアルコールがより好ましく、アセタール化ポリビニルアルコールがさらに好ましい。
 これらのことから、本発明の好ましい一実施形態において、砥粒吸着パラメータが5以上である水溶性高分子は、セルロース誘導体、分子内に窒素原子を含む部分構造を含む高分子および分子内に2以上のヒドロキシ基を含み、非置換のポリオキシアルキレン構造を含む高分子からなる群より選択される少なくとも1種の高分子であり、砥粒吸着パラメータが5未満である水溶性高分子は、分子内に2以上のヒドロキシ基を含み、置換されたポリオキシアルキレン構造を含む高分子、分子内に2以上のヒドロキシ基を含み、ビニルアルコールに由来する構造単位を含む高分子および分子内にアニオン基を含む高分子からなる群より選択される少なくとも1種の高分子である。
 砥粒吸着パラメータが5未満である水溶性高分子の重量平均分子量は、1,000以上であれば特に制限されないが、好ましくは2,000以上であり、より好ましくは5,000以上であり、さらに好ましくは9,000以上であり、よりさらに好ましくは10,000以上であり、特に好ましくは、12,000以上である。また、砥粒吸着パラメータが5未満である水溶性高分子の重量平均分子量は、特に制限されないが、好ましくは2,000,000以下であり、より好ましくは1,000,000以下であり、さらに好ましくは500,000以下であり、よりさらに好ましくは100,000以下であり、特に好ましくは80,000以下である。これらの範囲であると、基板の研磨面に生じる表面欠陥がより低減する。また、砥粒吸着パラメータが5未満である水溶性高分子の重量平均分子量は、例えば、50,000以下とすることができる。砥粒吸着パラメータが5未満である水溶性高分子の重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)によって、ポリオキシエチレン換算にて測定することができる。なお、具体的な測定方法は実施例に記載する。好ましい砥粒吸着パラメータが5未満である水溶性高分子の重量平均分子量の範囲の例としては、2,000以上2,000,000以下、5,000以上1,000,000以下、9,000以上500,000以下、9,000以上100,000以下、9,000以上80,000以下、9,000以上50,000以下等が挙げられるが、これらに限定されない。
 砥粒吸着パラメータが5以上である水溶性高分子および砥粒吸着パラメータが5未満である水溶性高分子は、それぞれ、市販品を用いても合成品を用いてもよい。また、砥粒吸着パラメータが5以上である水溶性高分子および砥粒吸着パラメータが5未満である水溶性高分子は、それぞれ、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。
 研磨用組成物S1における砥粒吸着パラメータが5以上である水溶性高分子の濃度は、特に制限されないが、研磨用組成物S1の総質量に対して、好ましくは0.0001質量%以上であり、より好ましくは0.001質量%以上であり、さらに好ましくは0.003質量%以上であり、特に好ましくは0.004質量%以上である。これらの範囲であると、基板の研磨面に生じる表面欠陥がより低減する。この理由は、研磨段1における砥粒の保護効果がより向上するからであると推測される。また、研磨用組成物S1における砥粒吸着パラメータが5以上である水溶性高分子の濃度は、特に制限されないが、研磨用組成物S1の総質量に対して、好ましくは1質量%以下であり、より好ましくは0.01質量%以下である。これらの範囲であると、基板の研磨面に生じる表面欠陥がより低減する。この理由は、研磨段1の後に残存する砥粒吸着パラメータが5以上である水溶性高分子がより少なくなるからであると推測される。また、研磨用組成物S1における砥粒吸着パラメータが5以上である水溶性高分子の濃度は、研磨用組成物S1の総質量に対して、例えば、0.008質量%以下とすることができ、例えば、0.005質量%以下とすることができる。好ましい研磨用組成物S1における砥粒吸着パラメータが5以上である水溶性高分子の濃度の範囲の例としては、研磨用組成物S1の総質量に対して、0.0001質量%以上1質量%以下、0.001質量%以上0.01質量%以下、0.003質量%以上0.008質量%以下、0.004質量%以上0.005質量%以下等が挙げられるが、これらに限定されない。
 研磨用組成物S1が、砥粒吸着パラメータが5未満である水溶性高分子を含む場合、研磨用組成物S1における砥粒吸着パラメータが5未満である水溶性高分子の濃度は、特に制限されないが、研磨用組成物S1の総質量に対して、好ましくは0.0001質量%以上であり、より好ましくは0.001質量%以上であり、さらに好ましくは0.002質量%以上であり、特に好ましくは0.003質量%以上である。これらの範囲であると、基板の研磨面に生じる表面欠陥がより低減する。この理由は、砥粒吸着パラメータが5未満である水溶性高分子の存在によって、研磨段1の後に残存する砥粒や砥粒吸着パラメータが5以上である水溶性高分子がより少なくなるからであると推測される。また、研磨用組成物S1における砥粒吸着パラメータが5未満である水溶性高分子の濃度は、特に制限されないが、研磨用組成物S1の総質量に対して、好ましくは1質量%以下であり、より好ましくは0.01質量%以下である。これらの範囲であると、基板の研磨面に生じる表面欠陥がより低減する。この理由は、砥粒吸着パラメータが5未満である水溶性高分子による、研磨段1における砥粒や砥粒吸着パラメータが5以上である水溶性高分子の基板への吸着の阻害がより生じ難くなり、研磨段1における欠陥の除去効果がより良好に得られるからであると推測される。また、研磨用組成物S1における砥粒吸着パラメータが5未満である水溶性高分子の濃度は、研磨用組成物S1の総質量に対して、例えば、0.008質量%以下とすることができ、例えば、0.005質量%以下とすることができる。好ましい研磨用組成物S1における砥粒吸着パラメータが5未満である水溶性高分子の濃度の範囲の例としては、研磨用組成物S1の総質量に対して、0.0001質量%以上1質量%以下、0.001質量%以上0.01質量%以下、0.002質量%以上0.008質量%以下、0.003質量%以上0.005質量%以下等が挙げられるが、これらに限定されない。
 これらのことから、研磨用組成物S1における水溶性高分子の濃度(すなわち、研磨用組成物S1における、砥粒吸着パラメータが5以上である水溶性高分子の濃度と、砥粒吸着パラメータが5未満である水溶性高分子の濃度の合計、以下同じ)は、特に制限されないが、研磨用組成物S1の総質量に対して、好ましくは0.0001質量%以上であり、より好ましくは0.001質量%以上であり、さらに好ましくは0.003質量%以上であり、特に好ましくは0.004質量%以上である。また、研磨用組成物S1における水溶性高分子の濃度は、特に制限されないが、研磨用組成物S1の総質量に対して、好ましくは2質量%以下であり、より好ましくは0.02質量%以下であり、さらに好ましくは0.016質量%以下であり、特に好ましくは0.01質量%以下である。これらの範囲であると、基板の研磨面に生じる表面欠陥がより低減する。好ましい研磨用組成物S1における水溶性高分子の濃度の例としては、研磨用組成物S1の総質量に対して、0.0001質量%以上2質量%以下、0.001質量%以上0.02質量%以下、0.003質量%以上0.016質量%以下、0.004質量%以上0.01質量%以下等が挙げられるが、これらに限定されない。
 研磨用組成物S2における砥粒吸着パラメータが5未満である水溶性高分子の濃度は、特に制限されないが、研磨用組成物S2の総質量に対して、好ましくは0.0001質量%以上であり、より好ましくは0.001質量%以上であり、さらに好ましくは0.002質量%以上であり、特に好ましくは0.003質量%以上である。これらの範囲であると、基板の研磨面に生じる表面欠陥がより低減する。この理由は、研磨段2における洗浄効果、すなわち、砥粒や水溶性高分子の低減効果がより向上するからであると推測される。また、研磨用組成物S2における砥粒吸着パラメータが5未満である水溶性高分子の濃度は、特に制限されないが、研磨用組成物S2の総質量に対して、好ましくは1質量%以下であり、より好ましくは0.01質量%以下であり、さらに好ましくは0.008質量%以下である。これらの範囲であると、基板の研磨面に生じる表面欠陥がより低減する。この理由は、研磨段2の後に残存する砥粒吸着パラメータが5未満である水溶性高分子がより少なくなるからであると推測される。また、研磨用組成物S2における砥粒吸着パラメータが5未満である水溶性高分子の濃度は、研磨用組成物S2の総質量に対して、例えば、0.005質量%以下とすることができる。好ましい研磨用組成物S2における砥粒吸着パラメータが5未満である水溶性高分子の濃度の例としては、研磨用組成物S2の総質量に対して、0.0001質量%以上1質量%以下、0.001質量%以上0.01質量%以下、0.002質量%以上0.008質量%以下、0.003質量%以上0.005質量%以下等が挙げられるが、これらに限定されない。
 研磨用組成物S2は、砥粒吸着パラメータが5以上である水溶性高分子を0.005質量%以上の含有量(濃度)で含有しない。研磨用組成物S2における砥粒吸着パラメータが5以上である水溶性高分子の濃度は、0.005質量%未満(研磨用組成物S2の総質量に対して、0.005質量%未満)であれば特に制限されない。しかしながら、研磨用組成物S2は、砥粒吸着パラメータが5以上である水溶性高分子を実質的に含有しないことが好ましく、砥粒吸着パラメータが5以上である水溶性高分子を含有しないことが最も好ましい。なお、本明細書において、研磨用組成物S2が「砥粒吸着パラメータが5以上である水溶性高分子を実質的に含有しない」とは、研磨用組成物S2の総質量に対して、砥粒吸着パラメータが5以上である水溶性高分子の濃度が0.0001質量%未満であることを表す。この場合、基板の研磨面に生じる表面欠陥がより低減する。この理由は、研磨段2の後に残存する砥粒吸着パラメータが5以上である水溶性高分子がより少なくなり、また、研磨段2における砥粒や水溶性高分子の除去効果がより阻害され難くなり、研磨段2における砥粒や水溶性高分子の低減効果がより向上するからであると推測される。好ましい研磨用組成物S2における砥粒吸着パラメータが5以上である水溶性高分子の濃度の例としては、研磨用組成物S2の総質量に対して、0.0001質量%未満、砥粒吸着パラメータが5以上である水溶性高分子を含有しない等が挙げられるが、これらに限定されない。
 これらのことから、研磨用組成物S2における水溶性高分子の濃度(すなわち、研磨用組成物S2における、砥粒吸着パラメータが5以上である水溶性高分子の濃度と、砥粒吸着パラメータが5未満である水溶性高分子の濃度の合計、以下同じ)は、特に制限されないが、研磨用組成物S2の総質量に対して、好ましくは0.0001質量%以上であり、より好ましくは0.001質量%以上であり、さらに好ましくは0.002質量%以上であり、特に好ましくは0.003質量%以上である。また、研磨用組成物S2における水溶性高分子の濃度は、特に制限されないが、研磨用組成物S2の総質量に対して、好ましくは1質量%以下であり、より好ましくは0.01質量%以下であり、さらに好ましくは0.008質量%以下であり、特に好ましくは0.005質量%以下である。これらの場合、基板の研磨面に生じる表面欠陥がより低減する。好ましい研磨用組成物S2における水溶性高分子の濃度の例としては、研磨用組成物S2の総質量に対して、0.0001質量%以上1質量%以下、0.001質量%以上0.01質量%以下、0.002質量%以上0.008質量%以下、0.003質量%以上0.005質量%以下等が挙げられるが、これらに限定されない。
 よって、本発明の好ましい一実施形態において、研磨用組成物S1における水溶性高分子の濃度は、研磨用組成物S1の総質量に対して、0.0001質量%以上2質量%以下であり、研磨用組成物S2における水溶性高分子の濃度は、研磨用組成物S2の総質量に対して、0.0001質量%以上1質量%以下である。
 研磨用組成物S2における水溶性高分子の濃度と、研磨用組成物S1における水溶性高分子の濃度との関係は、特に制限されないが、研磨用組成物S2における水溶性高分子の濃度は、研磨用組成物S1における水溶性高分子の濃度以下であることが好ましい。また、研磨用組成物S1における水溶性高分子の濃度に対する研磨用組成物S2における水溶性高分子の濃度の比率(研磨用組成物S2における水溶性高分子の濃度/研磨用組成物S1における水溶性高分子の濃度)は、特に制限されないが、好ましくは0.1以上1以下であり、より好ましくは0.2以上0.95以下である。これらの場合、基板の研磨面に生じる表面欠陥をより低減させることができる。また、前記比率は、例えば、0.3以上0.6以下とすることができ、例えば、0.4以上0.5以下とすることができる。
 (塩基性化合物)
 研磨用組成物S1および研磨用組成物S2は、それぞれ独立して、塩基性化合物をさらに含有してもよい。また、研磨用組成物S1および研磨用組成物S2は、塩基性化合物をさらに含有することがより好ましい。塩基性化合物は、基板の種類によっては、基板の研磨面に対して化学的な作用を与えて、基板を化学的に研磨する働きをする場合がある。
 塩基性化合物としては、特に制限されないが、例えば、アルカリ金属またはアルカリ土類金属の水酸化物またはその塩、第四級アンモニウム、アンモニア、水酸化第四級アンモニウムまたはその塩、アミン等が挙げられる。
 アルカリ金属の具体例としては、特に制限されないが、カリウム、ナトリウム等が挙げられる。アルカリ土類金属としては、特に制限されないが、カルシウム等が挙げられる。アルカリ金属またはアルカリ土類金属の塩としては、特に制限されないが、例えば、これらの炭酸塩、炭酸水素塩、硫酸塩、酢酸塩等が挙げられる。アルカリ金属またはアルカリ土類金属の水酸化物またはその塩の具体例としては、特に制限されないが、例えば、水酸化カルシウム、水酸化カリウム、炭酸カリウム、炭酸水素カリウム、硫酸カリウム、酢酸カリウム、塩化カリウム、水酸化ナトリウム、炭酸水素ナトリウム、炭酸ナトリウム、水酸化カルシウム等が挙げられる。
 第四級アンモニウムの具体例としては、特に制限されないが、テトラメチルアンモニウム、テトラエチルアンモニウム、テトラブチルアンモニウム等が挙げられる。
 水酸化第四級アンモニウムまたはその塩の具体例としては、特に制限されないが、水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム、水酸化テトラブチルアンモニウム等が挙げられる。
 アミンの具体例としては、下記化学式(I)で表される構造を有する化合物、トリエチレンテトラミン、無水ピペラジン、ピペラジン六水和物、1-(2-アミノエチル)ピペラジン、N-メチルピペラジン、グアニジン、イミダゾールやトリアゾール等のアゾール類等が挙げられる。
Figure JPOXMLDOC01-appb-C000006
 上記化学式(I)において、R~Rは、それぞれ独立して、水素原子、置換されたまたは非置換のアルキル基である、
 ただし、R~Rの全てが水素原子である場合は除く。
 R~Rの各々が置換されたアルキル基である場合において、置換されたアルキル基に含まれる置換基としては、特に制限されないが、ヒドロキシ基、置換されたまたは非置換のアミノ基が好ましく、ヒドロキシ基、非置換のアミノ基がより好ましい。
 R~Rの各々が置換されたまたは非置換のアルキル基である場合において、アルキル基(置換されたアルキル基の場合、置換されていない状態のアルキル基)の炭素数は、特に制限されないが、1以上6以下が好ましく、2以上3以下がより好ましく、2が特に好ましい。
 アミンの好ましい具体例としては、メチルアミン、ジメチルアミン、トリメチルアミン、エチルアミン、ジエチルアミン、トリエチルアミン、エチレンジアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、N-(β-アミノエチル)エタノールアミン、ヘキサメチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、無水ピペラジン、ピペラジン六水和物、1-(2-アミノエチル)ピペラジン、N-メチルピペラジン、グアニジン、イミダゾールやトリアゾール等のアゾール類等が挙げられるが、これらに限定されない。研磨用組成物S1および研磨用組成物S2に含まれるアミンは、それぞれ、これらの化合物からなる群より選択される少なくとも1種の化合物を含むことが好ましい。
 これらの中でも、第四級アンモニウム、アンモニア、水酸化第四級アンモニウムまたはその塩、アミンが好ましい。研磨用組成物S1に含まれる塩基性化合物としては、第四級アンモニウム、アンモニア、水酸化第四級アンモニウムまたはその塩がより好ましく、アンモアがさらに好ましい。研磨用組成物S1に含まれる塩基性化合物は、これらの化合物からなる群より選択される少なくとも1種の化合物を含むことが好ましい。研磨用組成物S2に含まれる塩基性化合物としては、アンモニア、上記化学式(1)で表される構造を有する化合物がより好ましく、アンモニア、メチルアミン、ジメチルアミン、トリメチルアミン、エチルアミン、ジエチルアミン、トリエチルアミン、エチレンジアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、N-(β-アミノエチル)エタノールアミン、ヘキサメチレンジアミン、ジエチレントリアミンがさらに好ましく、アンモニア、トリメチルアミン、エチルアミン、ジエチルアミン、トリエチルアミン、トリエタノールアミンがさらに好ましく、トリメチルアミン、エチルアミン、ジエチルアミン、トリエチルアミン、トリエタノールアミンがさらに好ましく、トリメチルアミン、エチルアミン、トリエチルアミン、トリエタノールアミンがさらに好ましく、トリメチルアミン、エチルアミン、トリエチルアミンがさらに好ましく、エチルアミン、トリエチルアミンがさらに好ましく、トリエチルアミンが特に好ましい。研磨用組成物S2に含まれる塩基性化合物は、これらの化合物からなる群より選択される少なくとも1種の化合物を含むことが好ましい。
 塩基性化合物は、市販品を用いても合成品を用いてもよい。また、塩基性化合物は、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。
 研磨用組成物S1における塩基性化合物の濃度は、特に制限されないが、研磨用組成物S1の総質量に対して、好ましくは0.0001質量%以上であり、より好ましくは0.001質量%以上であり、さらに好ましくは0.003質量%以上であり、特に好ましくは0.004質量%以上である。これらの範囲であると、研磨速度がより向上する。研磨用組成物S1における塩基性化合物の濃度は、特に制限されないが、研磨用組成物S1の総質量に対して、好ましくは1質量%以下であり、より好ましくは0.01質量%以下であり、さらに好ましくは0.008質量%以下である。これらの範囲であると、基板の研磨面に生じる表面欠陥がより低減する。好ましい研磨用組成物S1における塩基性化合物の濃度の例としては、研磨用組成物S1の総質量に対して、0.0001質量%以上1質量%以下、0.001質量%以上0.01質量%以下、0.003質量%以上0.008質量%以下、0.004質量%以上0.008質量%以下等が挙げられるが、これらに限定されない。
 研磨用組成物S2における塩基性化合物の濃度は、特に制限されないが、研磨用組成物S2の総質量に対して、好ましくは0.0001質量%以上であり、より好ましくは0.0004質量%以上であり、さらに好ましくは0.0008質量%以上であり、よりさらに好ましくは0.001質量%以上であり、特に好ましくは0.003質量%以上であり、さらに特に好ましくは0.004質量%以上である。これらの範囲であると、基板の研磨面に生じる表面欠陥がより低減する。研磨用組成物S2における塩基性化合物の濃度は、特に制限されないが、研磨用組成物S2の総質量に対して、好ましくは1質量%以下であり、より好ましくは0.1質量%以下であり、さらに好ましくは0.01質量%以下であり、よりさらに好ましくは0.008質量%以下であり、特に好ましくは0.005質量%以下であり、さらに特に好ましくは0.003質量%以下である。これらの範囲であると、基板の研磨面に生じる表面欠陥がより低減する。好ましい研磨用組成物S1における塩基性化合物の濃度の例としては、研磨用組成物S1の総質量に対して、0.0001質量%以上1質量%以下、0.0004質量%以上0.1質量%以下、0.0008質量%以上0.01質量%以下、0.0008質量%以上0.008質量%以下、0.0008質量%以上0.005質量%以下、0.0008質量%以上0.003質量%以下等が挙げられるが、これらに限定されない。
 (界面活性剤)
 研磨用組成物S1および研磨用組成物S2は、それぞれ独立して、界面活性剤をさらに含有してもよい。また、研磨用組成物S1および研磨用組成物S2は、界面活性剤をさらに含有することが好ましい。界面活性剤は、基板の研磨面の荒れを抑制し、表面の欠陥を低減する働きをする。特に、研磨用組成物に塩基性化合物を含有させる場合には、塩基性化合物による化学的研磨によって基板の研磨面に荒れが生じ易くなる傾向となる。このため、塩基性化合物と界面活性剤との併用は特に有効である。
 界面活性剤としては、特に制限されないが、例えば、ノニオン性界面活性剤、カチオン性界面活性剤、アニオン性界面活性剤等が挙げられる。これらの中でも、基板の研磨面に生じる表面欠陥をより低減するとの観点から、ノニオン性界面活性剤が好ましい。
 ノニオン性界面活性剤としては、特に制限されないが、例えば、オキシアルキレンの単独重合体、複数の種類のオキシアルキレンの共重合体、ポリオキシアルキレン付加物等が挙げられる。なお、ポリオキシアルキレン付加物の具体例としては、特に制限されないが、ポリオキシアルキレンアルキルエーテル、ポリオキシアルキレンアルキルフェニルエーテル、ポリオキシアルキレンアルキルアミン、ポリオキシアルキレン脂肪酸エステル、ポリオキシアルキレングリセルエーテル脂肪酸エステル、ポリオキシアルキレンソルビタン脂肪酸エステル等が挙げられる。
 ノニオン性界面活性剤の具体例としては、特に制限されないが、ポリオキシエチレンプロピルエーテル、ポリオキシエチレンブチルエーテル、ポリオキシエチレンペンチルエーテル、ポリオキシエチレンヘキシルエーテル、ポリオキシエチレンオクチルエーテル、ポリオキシエチレン-2-エチルヘキシルエーテル、ポリオキシエチレンノニルエーテル、ポリオキシエチレンデシルエーテル、ポリオキシエチレンイソデシルエーテル、ポリオキシエチレントリデシルエーテル、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンセチルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンイソステアリルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンフェニルエーテル、ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンドデシルフェニルエーテル、ポリオキシエチレンスチレン化フェニルエーテル、ポリオキシエチレンラウリルアミン、ポリオキシエチレンステアリルアミン、ポリオキシエチレンオレイルアミン、ポリオキシエチレンステアリルアミド、ポリオキシエチレンオレイルアミド、ポリオキシエチレンモノラウリン酸エステル、ポリオキシエチレンモノステアリン酸エステル、ポリオキシエチレンジステアリン酸エステル、ポリオキシエチレンモノオレイン酸エステル、ポリオキシエチレンジオレイン酸エステル、モノラウリン酸ポリオキシエチレンソルビタン、モノパルチミン酸ポリオキシエチレンソルビタン、モノステアリン酸ポリオキシエチレンソルビタン、モノオレイン酸ポリオキシエチレンソルビタン、トリオレイン酸ポリオキシエチレンソルビタン、テトラオレイン酸ポリオキシエチレンソルビット、ポリオキシエチレンヒマシ油、ポリオキシエチレン硬化ヒマシ油等が挙げられる。
 これらの中でも、基板の研磨面に生じる表面欠陥をより低減するとの観点から、ポリオキシアルキレン付加物等が好ましく、ポリオキシアルキレンアルキルエーテルがより好ましく、ポリオキシエチレンアルキルエーテルがさらに好ましく、ポリオキシエチレンデシルエーテルが特に好ましい。
 界面活性剤の分子量は、特に制限されないが、好ましくは、1,000未満であり、より好ましくは500未満であり、さらに好ましくは400未満である。界面活性剤の分子量は、化学式から算出される分子量が採用されることが好ましい。
 界面活性剤は、市販品を用いても合成品を用いてもよい。また、界面活性剤は、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。
 研磨用組成物S1および研磨用組成物S2に含まれる界面活性剤は、それぞれ、ノニオン性界面活性剤を含むことが好ましい。また、研磨用組成物S1および研磨用組成物S2に含まれるノニオン界面活性剤としては、それぞれ、上記で挙げた化合物からなる群より選択される少なくとも1種を含むことが好ましい。
 研磨用組成物S1における界面活性剤の濃度は、特に制限されないが、研磨用組成物S1の総質量に対して、好ましくは0.0001質量%以上であり、より好ましくは0.0002質量%以上であり、さらに好ましくは0.0004質量%以上である。これらの範囲であると、基板の研磨面に生じる表面欠陥がより低減する。また、研磨用組成物S1における界面活性剤の濃度は、研磨用組成物S1の総質量に対して、例えば、0.0006質量%以上とすることができる。また、研磨用組成物S1における界面活性剤の濃度は、特に制限されないが、研磨用組成物S1の総質量に対して、好ましくは1質量%以下であり、より好ましくは0.01質量%以下であり、さらに好ましくは0.001質量%以下であり、特に好ましくは0.0008質量%以下である。これらの範囲であると、研磨速度がより向上する。好ましい研磨用組成物S1における界面活性剤の濃度の例としては、研磨用組成物S1の総質量に対して、0.0001質量%以上1質量%以下、0.0002質量%以上0.01質量%以下、0.0004質量%以上0.001質量%以下、0.0004質量%以上0.0008質量%以下等が挙げられるが、これらに限定されない。
 研磨用組成物S2における界面活性剤の濃度は、特に制限されないが、研磨用組成物S2の総質量に対して、好ましくは0.0001質量%以上であり、より好ましくは0.0002質量%以上であり、さらに好ましくは0.0004質量%以上である。これらの範囲であると、基板の研磨面に生じる表面欠陥がより低減する。また、研磨用組成物S2における界面活性剤の濃度は、研磨用組成物S2の総質量に対して、例えば、0.0006質量%以上とすることができる。また、研磨用組成物S2における界面活性剤の濃度は、特に制限されないが、研磨用組成物S2の総質量に対して、好ましくは1質量%以下であり、より好ましくは0.01質量%以下であり、さらに好ましくは0.001質量%以下であり、特に好ましくは0.0008質量%以下である。これらの範囲であると、研磨速度がより向上する。好ましい研磨用組成物S2における界面活性剤の濃度の例としては、研磨用組成物S2の総質量に対して、0.0001質量%以上1質量%以下、0.0002質量%以上0.01質量%以下、0.0004質量%以上0.001質量%以下、0.0006質量%以上0.0008質量%以下等が挙げられるが、これらに限定されない。
 (分散媒)
 研磨用組成物S1および研磨用組成物S2は、分散媒として水を含有する。分散媒は、各成分を分散または溶解させる働きをする。
 分散媒中の水の含有量は、特に制限されないが、分散媒の総質量に対して50質量%以上であることが好ましく、90質量%以上であることがより好ましく、水のみであることがさらに好ましい。水としては、研磨対象物の汚染や他の成分の作用を阻害することを防止するという観点から、不純物をできる限り含有しない水が好ましい。例えば、遷移金属イオンの合計含有量が100質量ppb以下である水が好ましい。ここで、水の純度は、例えば、イオン交換樹脂を用いる不純物イオンの除去、フィルタによる異物の除去、蒸留等の操作によって高めることができる。具体的には、水としては、例えば、脱イオン水(イオン交換水)、純水、超純水、蒸留水などを用いることが好ましい。
 研磨用組成物S1および研磨用組成物S2は、各成分の分散性または溶解性を向上させることができる場合、それぞれ、分散媒として、水に加えて有機溶媒をさらに含有していてもよい。有機溶媒としては、特に制限されず公知の有機溶媒を用いることができる。また、有機溶媒は、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。
 (他の成分)
 研磨用組成物S1および研磨用組成物S2は、それぞれ独立して、本発明の効果を阻害しない範囲で、上記挙げた成分以外の、他の成分をさらに含有していてもよい。他の成分としては、特に制限されず、研磨用組成物やリンス研磨用組成物に使用されうる公知の成分が挙げられる。具体例としては、特に制限されないが、酸、キレート剤、防腐剤、防カビ剤、溶存ガス、還元剤等が挙げられるが、これらに限定されるものではない。
 (研磨用組成物の製造方法)
 研磨用組成物S1の製造方法は、砥粒1、砥粒吸着パラメータが5以上である水溶性高分子、水および必要に応じて添加されるこれら以外の成分を混合することを含むものであれば、特に制限されない。また、研磨用組成物S2の製造方法は、砥粒2、砥粒吸着パラメータが5未満である水溶性高分子、水および必要に応じて添加されるこれら以外の成分を混合することを含むものであれば、特に制限されない。
 各成分を混合する際の混合方法は特に制限されず、公知の方法を適宜用いることができる。また混合温度は特に制限されないが、一般的には10℃以上40℃以下が好ましく、溶解速度を上げるために加熱してもよい。また、混合時間も特に制限されない。
 [研磨対象物]
 本発明の一実施形態に係る研磨方法において、研磨対象物である基板としては、特に制限されないが、好ましくは半導体基板である。これより、本発明のその他の一態様は、上記の研磨方法で基板を研磨することを含む、半導体基板の製造方法に関するとも言える。基板としては、例えば、単一層から構成される基板や、研磨対象となる層と、他の層(例えば、支持層や他の機能層)とを含む基板等が挙げられる。
 本発明の一実施形態に係る研磨方法において、研磨対象物である基板は、特に制限されないが、ケイ素-ケイ素結合を有する材料を含むことが好ましい。ケイ素-ケイ素結合を有する材料としては、特に制限されないが、例えば、ポリシリコン、アモルファスシリコン、単結晶シリコン、n型ドープ単結晶シリコン、p型ドープ単結晶シリコン、SiGe等のSi系合金等が挙げられる。これらの中でも、本発明の効果をより顕著に得ることができるとの観点から、単結晶シリコン、n型ドープ単結晶シリコンまたはp型ドープ単結晶シリコンであることが好ましく、p型ドープ単結晶シリコンであることがより好ましい。これらケイ素-ケイ素結合を有する材料は、単独でもまたは2種以上組み合わせても用いることができる。
 これらのことから、基板は、シリコン基板(シリコンウェーハ)であることが好ましい。
 <研磨用組成物セット>
 本発明の他の一態様は、
 基板の研磨方法に使用される研磨用組成物セットであって、
 前記研磨方法は、研磨工程を含み、
 前記研磨工程は、前記基板と、研磨定盤に取り付けられた研磨パッドとの接触面に研磨用組成物を供給しながら、前記研磨定盤を回転させることによって前記基板を研磨する、2以上の研磨段を含み、
 前記2以上の研磨段は、
 研磨定盤上で研磨する研磨段1と、
 前記研磨段1の後、前記研磨段1と同一の研磨定盤上で研磨する研磨段2と、を含み、
 前記研磨用組成物セットは、
 砥粒1と、水と、下記(1)~(4)の手順によって算出される砥粒吸着パラメータが5以上である水溶性高分子とを含有する、前記研磨段1で用いられる研磨用組成物S1と、
 砥粒2と、水と、前記砥粒吸着パラメータが5未満である水溶性高分子とを含有し、かつ、前記砥粒吸着パラメータが5以上である水溶性高分子を0.005質量%以上の含有量で含有しない(すなわち、研磨用組成物S2における前記砥粒吸着パラメータが5以上である水溶性高分子の濃度が、研磨用組成物S2の総質量に対して、0.005質量%未満である)、前記研磨段2で用いられる研磨用組成物S2と、
を含む、研磨用組成物セットに関する:
 (1)平均一次粒子径25nm、平均二次粒子径50nmであるコロイダルシリカを0.08質量%、測定対象の水溶性高分子を0.004質量%およびアンモニアを0.005質量%の濃度で含み、残部が水からなる試験液Lを用意する、
 (2)前記試験液Lの全有機炭素濃度(TOC値)を測定し、得られたTOC値を前記試験液Lに含まれる前記測定対象の水溶性高分子の全有機炭素濃度W[質量ppm]とする、
 (3)前記試験液Lに対して26000rpmで遠心分離処理を30分間行うことにより、沈降物と、上澄み液とに分離したあとに、前記上澄み液のTOC値を測定し、得られたTOC値を前記上澄み液に含まれる前記測定対象の水溶性高分子の全有機炭素濃度W[質量ppm]とする、
 (4)下記式により前記測定対象の水溶性高分子の吸着比を算出し、この値を砥粒吸着パラメータとする。
Figure JPOXMLDOC01-appb-M000007
 本態様によれば、研磨後の基板の表面欠陥を低減しうる手段の提供が可能となる。
 なお、研磨方法の詳細は、上記で説明した通りである。研磨工程、その他の工程、研磨用組成物S1および研磨用組成物S2、ならびに研磨対象物等の詳細もまた、上記で説明した通りである。
 研磨用組成物S1は仕上げ研磨用組成物であり、研磨用組成物S2はリンス研磨用組成物であることが好ましい。
 研磨用組成物セットは、研磨用組成物S1および研磨用組成物S2に加えて、必要に応じて1または2以上の他の研磨用組成物をさらに含んでいてもよい。この際、研磨用組成物S1は仕上げ研磨用組成物であり、研磨用組成物S2はリンス研磨用組成物であり、他の研磨用組成物は、前研磨用組成物または仕上げ研磨用組成物であることが好ましい。また、研磨用組成物S1は仕上げ研磨用組成物であり、研磨用組成物S2はリンス研磨用組成物であり、他の研磨用組成物は、前研磨用組成物であることがより好ましい。
 また、研磨用組成物セットに含まれる各研磨用組成物は、濃縮された形態であってもよい。濃縮された形態とは、研磨用組成物の濃縮液の形態であり、研磨用組成物の原液としても把握されうる。濃縮倍率は特に限定されず、例えば、体積換算で2倍以上100倍以下程度とすることができ、通常は5倍以上50倍以下程度、例えば10倍以上40倍以下程度が適当である。このような濃縮液は、所望のタイミングで希釈して研磨用組成物を調製し、研磨用組成物を研磨対象物に供給する態様で使用することができる。希釈は、例えば、濃縮液に水を加えて混合することにより行うことができる。
 本発明を、以下の実施例および比較例を用いてさらに詳細に説明する。ただし、本発明の技術的範囲が以下の実施例のみに制限されるわけではない。なお、特記しない限り、「%」および「部」は、それぞれ、「質量%」および「質量部」を意味する。
 <研磨用組成物>
 [研磨用組成物の調製]
 下記表2~下記表5に示される組成となるように、以下の材料を脱イオン水(DIW)中で混合することにより、研磨用組成物をそれぞれ調製した。
 ・砥粒
 シリカA:コロイダルシリカ、BET法による平均一次粒子径35nm、動的光散乱法による平均二次粒子径70nm、
 シリカB:コロイダルシリカ、BET法による平均一次粒子径25nm、動的光散乱法による平均二次粒子径50nm、
 シリカC:コロイダルシリカ、BET法による平均一次粒子径15nm、動的光散乱法による平均二次粒子径35nm。
 ・水溶性高分子
 PVA:ポリビニルアルコール(重量平均分子量:70,000、鹸化度98モル%以上)、
 Ac-PVA:アセタール化ポリビニルアルコール(重量平均分子量:13,000、アセタール化の種類:ポリビニルエチラール、アセタール化度:30モル%)、
 Ac-PVA(2):アセタール化ポリビニルアルコール(重量平均分子量:9,700、アセタール化の種類:ポリビニルエチラール、アセタール化度:24モル%)、
 HEC:ヒドロキシエチルセルロース(重量平均分子量:250,000)、
 PACMO:ポリN-アクリロイルモルホリン(重量平均分子量:350,000)。   
 ・塩基性化合物
 NH:アンモニア水(濃度29質量%、下記表2および下記表4に記載の値はアンモニア量換算)、
 トリエチルアミン、
 トリメチルアミン、
 ジエチルアミン、
 エチルアミン、
 トリエタノールアミン。
 ・界面活性剤
 C10EO5:ポリオキシエチレンデシルエーテル(C1021O(CHCHO)H、分子量:378)。
 [重量平均分子量]
 水溶性高分子の重量平均分子量は、GPC法を用いて以下の条件にて測定した。
 ≪重量平均分子量測定条件≫
 評価装置:HLC-8320GPC(東ソー株式会社)
 サンプル濃度:0.1質量%
 カラム:TSKgel GMPWXL
 検出器:示差屈折計
 溶離液:100mM 硝酸ナトリウム水溶液
 流速:1mL/分
 測定温度:40℃
 サンプル注入量:200μL
 (ポリオキシエチレン換算)。
 [砥粒吸着パラメータ]
 水溶性高分子の砥粒吸着パラメータは、下記(1)~(4)の手順によって算出した。   
 ≪吸着パラメータ評価条件≫
 (1)コロイダルシリカ(扶桑化学工業株式会社製 PL-2、平均一次粒子径25nm、平均二次粒子径50nm)を0.08質量%、測定対象の水溶性高分子を0.004質量%およびアンモニアを0.005質量%の濃度で含み、残部が水からなる試験液Lを用意した、
 (2)試験液Lの全有機炭素濃度(TOC値)を測定し、得られたTOC値を試験液Lに含まれる測定対象の水溶性高分子の全有機炭素濃度W[質量ppm]とした、
 (3)試験液Lに対して26000rpmで30分間、ベックマン・コールター株式会社製 Avanti HP-30Iを用いて遠心分離処理を行うことにより、沈降物と、上澄み液とに分離したあとに、上澄み液のTOC値を測定し、得られたTOC値を上澄み液に含まれる測定対象の水溶性高分子の全有機炭素濃度W[質量ppm]とした、
 (4)下記式により測定対象の水溶性高分子の吸着比を算出し、この値を砥粒吸着パラメータとした。
Figure JPOXMLDOC01-appb-M000008
 ここで、試験液Lに含まれる測定対象の水溶性高分子の全有機炭素濃度W[質量ppm]、および試験液Lの遠心分離処理後の上澄み液に含まれる測定対象の水溶性高分子の全有機炭素濃度W[質量ppm]は、株式会社島津製作所製の全有機体炭素計TOC-Lを用いて評価した。
 砥粒吸着パラメータの値は、下記表2~5に示す。なお、下記表2~5では、砥粒吸着パラメータが5未満である水溶性高分子を「水溶性高分子X」とし、砥粒吸着パラメータが5以上である水溶性高分子を「水溶性高分子Y」として記載した。
 <研磨方法>
 下記表1に記載の各研磨段を含む研磨工程を含む研磨方法によって、シリコンウェーハの研磨を行った。実施例および比較例に係る研磨方法の、各研磨段における研磨条件を下記に示す。
 また、実施例および比較例に係る各研磨方法について、仕上げ研磨段に用いる仕上げ研磨用組成物、およびリンス研磨段に用いるリンス研磨用組成物としては、それぞれ、上記で得られた研磨用組成物を用いた。研磨用組成物の組成は、下記表2~5に示す。
 [前研磨段]
 単結晶シリコンウェーハ(直径:300mm、p型、結晶方位<100>、COPフリー)を、下記の前研磨用組成物を用いて、下記の研磨装置の研磨定盤1上にて、下記に示す研磨条件で片面研磨した。
 ≪前研磨用組成物≫
 前研磨用組成物:分散媒としての脱イオン水(DIW)に対して、研磨用組成物の総質量に対して、コロイダルシリカ(砥粒、BET法による平均一次粒子径35nm、動的光散乱法による平均二次粒子径70nm)を0.6質量%、TMAH(水酸化テトラメチルアンモニウム)を0.08質量%、HEC(ヒドロキシエチルセルロース、重量平均分子量120万)を0.0002質量%となるよう混合して、研磨用組成物を得た。
 ≪前研磨段における研磨条件≫
 研磨装置:株式会社岡本工作機械製作所製の枚葉研磨機、型式「PNX 332B」
 研磨荷重:20kPa
 定盤回転数:20rpm
 テンプレート回転数:20rpm
 研磨パッド:フジボウ愛媛株式会社製 製品名「FP55」
 研磨用組成物の供給レート:1L/min
 研磨用組成物の温度:20℃
 定盤冷却水の温度:20℃。
 [仕上げ研磨段(本発明に係る研磨段1)]
 次いで、上記の前研磨段によって研磨された前記単結晶シリコンウェーハを、下記表2および下記表3に記載の仕上げ研磨用組成物を用いて、上記前研磨段と同じ研磨装置によって、上記研磨定盤1とは別の研磨定盤2上で、下記に示す研磨条件で片面研磨した。
 ≪仕上げ研磨段における研磨条件≫
 研磨装置:株式会社岡本工作機械製作所製の枚葉研磨機、型式「PNX 332B」
 研磨荷重:20kPa
 定盤回転数:52rpm
 テンプレート回転数:50rpm
 研磨パッド:フジボウ愛媛株式会社製 商品名「POLYPAS(登録商標)275NX」
 研磨液供給レート:1.5L/min
 研磨液の温度:20℃
 定盤冷却水の温度:20℃。
 [リンス研磨段(本発明に係る研磨段2)]
 そして、上記の仕上げ研磨段によって研磨された前記単結晶シリコンウェーハを、下記表4および下記表5に記載のリンス研磨用組成物を用いて、上記前研磨段、上記仕上げ研磨段と同じ研磨装置によって、上記仕上げ研磨段と同じ研磨定盤2上で、上記仕上げ研磨段における研磨条件と同様の研磨条件で片面研磨した。
 [洗浄]
 70℃に保持したNHOH(29質量%):H(31質量%):脱イオン水(DIW)=2:5.3:48(体積比)の洗浄液を入れた第1の洗浄槽と、25℃の超純水を入れた第2の洗浄槽を用意した。そして、上記のリンス研磨段によって研磨された前記単結晶シリコンウェーハを、第1の洗浄槽に6分浸漬し、その後超音波発信機を作動した状態で第2の洗浄槽に15分浸漬し、再び第1の洗浄槽に6分浸漬し、その後超音波発信機を作動した状態で第2の洗浄槽に16分浸漬してから乾燥させた。これにより、研磨後のシリコンウェーハを得た。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012

 
Figure JPOXMLDOC01-appb-T000013
 <評価>
 [研磨後シリコンウェーハの欠陥数]
 上記で得られた研磨後シリコンウェーハの欠陥数(個)を、まず、ケーエルエー・テンコール(KLA-TENCOR)株式会社製の光学検査機(ウェーハ検査装置) 「SURFSCAN SP5」を用いて、測定モード:DCモードによって評価した。この結果を、比較例2の欠陥数(個)を100%としたときの、比較例2の欠陥数に対する割合(%)として、下記表6に示す。
Figure JPOXMLDOC01-appb-T000014
 上記表1~表6の結果より、本発明に係る実施例1~10の研磨方法で研磨された基板は、欠陥数が顕著に少ないことが確認された。一方、本発明の範囲外である比較例1~4の研磨方法で研磨された基板は、本発明に係る実施例1~10の研磨方法で研磨された基板と比較して、欠陥数が大幅に多いことが確認された。
 本出願は、2021年3月26日に出願された日本特許出願番号2021-052791号に基づいており、その開示内容は、参照により全体として組み入れられている。

Claims (14)

  1.  基板の研磨方法であって、
     前記研磨方法は、研磨工程を含み、
     前記研磨工程は、前記基板と、研磨定盤に取り付けられた研磨パッドとの接触面に研磨用組成物を供給しながら、前記研磨定盤を回転させることによって前記基板を研磨する、2以上の研磨段を含み、
     前記2以上の研磨段は、
     研磨定盤上で研磨用組成物S1を用いて研磨する研磨段1と、
     前記研磨段1の後、前記研磨段1と同一の研磨定盤上で研磨用組成物S2を用いて研磨する研磨段2と、を含み、
     前記研磨用組成物S1は、砥粒1と、水と、下記(1)~(4)の手順によって算出される砥粒吸着パラメータが5以上である水溶性高分子とを含有し、
     前記研磨用組成物S2は、砥粒2と、水と、前記砥粒吸着パラメータが5未満である水溶性高分子とを含有し、かつ、前記砥粒吸着パラメータが5以上である水溶性高分子を0.005質量%以上の含有量で含有しない、
    研磨方法:
     (1)平均一次粒子径25nm、平均二次粒子径50nmであるコロイダルシリカを0.08質量%、測定対象の水溶性高分子を0.004質量%およびアンモニアを0.005質量%の濃度で含み、残部が水からなる試験液Lを用意する、
     (2)前記試験液Lの全有機炭素濃度(TOC値)を測定し、得られたTOC値を前記試験液Lに含まれる前記測定対象の水溶性高分子の全有機炭素濃度Wとする、
     (3)前記試験液Lに対して26000rpmで遠心分離処理を30分間行うことにより、沈降物と、上澄み液とに分離したあとに、前記上澄み液のTOC値を測定し、得られたTOC値を前記上澄み液に含まれる前記測定対象の水溶性高分子の全有機炭素濃度Wとする、
     (4)下記式により前記測定対象の水溶性高分子の吸着比を算出し、この値を砥粒吸着パラメータとする。
    Figure JPOXMLDOC01-appb-M000001
  2.  前記研磨用組成物S1における前記砥粒1の濃度は、前記研磨用組成物S1の総質量に対して、0.001質量%以上3質量%以下であり、
     前記研磨用組成物S2における前記砥粒2の濃度は、前記研磨用組成物S2の総質量に対して、0.001質量%以上3質量%以下である、
    請求項1に記載の研磨方法。
  3.  前記研磨用組成物S2における前記砥粒2の濃度は、前記研磨用組成物S1における前記砥粒1の濃度以下である、請求項1または2に記載の研磨方法。
  4.  前記砥粒2の平均一次粒子径は、前記砥粒1の平均一次粒子径以下である、請求項1~3のいずれか1項に記載の研磨方法。
  5.  前記砥粒1および前記砥粒2は、シリカである、請求項1~4のいずれか1項に記載の研磨方法。
  6.  前記研磨用組成物S1における水溶性高分子の濃度は、前記研磨用組成物S1の総質量に対して、0.0001質量%以上2質量%以下であり、
     前記研磨用組成物S2における水溶性高分子の濃度は、前記研磨用組成物S2の総質量に対して、0.0001質量%以上1質量%以下である、
    請求項1~5のいずれか1項に記載の研磨方法。
  7.  前記研磨用組成物S2における水溶性高分子の濃度は、前記研磨用組成物S1における水溶性高分子の濃度以下である、請求項1~6のいずれか1項に記載の研磨方法。
  8.  前記砥粒吸着パラメータが5以上である水溶性高分子は、セルロース誘導体、分子内に窒素原子を含む部分構造を含む高分子および分子内に2以上のヒドロキシ基を含み、非置換のポリオキシアルキレン構造を含む高分子からなる群より選択される少なくとも1種の高分子であり、
     前記砥粒吸着パラメータが5未満である水溶性高分子は、分子内に2以上のヒドロキシ基を含み、置換されたポリオキシアルキレン構造を含む高分子、分子内に2以上のヒドロキシ基を含み、ビニルアルコールに由来する構造単位を含む高分子および分子内にアニオン基を含む高分子からなる群より選択される少なくとも1種の高分子である、請求項1~7のいずれか1項に記載の研磨方法。
  9.  前記研磨用組成物S1および前記研磨用組成物S2は、塩基性化合物をさらに含む、請求項1~8のいずれか1項に記載の研磨方法。
  10.  前記研磨用組成物S1および前記研磨用組成物S2は、界面活性剤をさらに含む、請求項1~9のいずれか1項に記載の研磨方法。
  11.  前記研磨段2における研磨時間は、前記研磨段1における研磨時間よりも短い、請求項1~10のいずれか1項に記載の研磨方法。
  12.  前記基板は、シリコンウェーハである、請求項1~11のいずれか1項に記載の研磨方法。
  13.  請求項1~12のいずれか1項に記載の研磨方法で前記基板を研磨することを含む、半導体基板の製造方法。
  14.  基板の研磨方法に使用される研磨用組成物セットであって、
     前記研磨方法は、研磨工程を含み、
     前記研磨工程は、前記基板と、研磨定盤に取り付けられた研磨パッドとの接触面に研磨用組成物を供給しながら、前記研磨定盤を回転させることによって前記基板を研磨する、2以上の研磨段を含み、
     前記2以上の研磨段は、
     研磨定盤上で研磨する研磨段1と、
     前記研磨段1の後、前記研磨段1と同一の研磨定盤上で研磨する研磨段2と、を含み、
     前記研磨用組成物セットは、
     砥粒1と、水と、下記(1)~(4)の手順によって算出される砥粒吸着パラメータが5以上である水溶性高分子とを含有する、前記研磨段1で用いられる研磨用組成物S1と、
     砥粒2と、水と、前記砥粒吸着パラメータが5未満である水溶性高分子とを含有し、かつ、前記砥粒吸着パラメータが5以上である水溶性高分子を0.005質量%以上の含有量で含有しない、前記研磨段2で用いられる研磨用組成物S2と、
    を含む、研磨用組成物セット:
     (1)平均一次粒子径25nm、平均二次粒子径50nmであるコロイダルシリカを0.08質量%、測定対象の水溶性高分子を0.004質量%およびアンモニアを0.005質量%の濃度で含み、残部が水からなる試験液Lを用意する、
     (2)前記試験液Lの全有機炭素濃度(TOC値)を測定し、得られたTOC値を前記試験液Lに含まれる前記測定対象の水溶性高分子の全有機炭素濃度Wとする、
     (3)前記試験液Lに対して26000rpmで遠心分離処理を30分間行うことにより、沈降物と、上澄み液とに分離したあとに、前記上澄み液のTOC値を測定し、得られたTOC値を前記上澄み液に含まれる前記測定対象の水溶性高分子の全有機炭素濃度Wとする、
     (4)下記式により前記測定対象の水溶性高分子の吸着比を算出し、この値を砥粒吸着パラメータとする。
    Figure JPOXMLDOC01-appb-M000002
PCT/JP2022/012724 2021-03-26 2022-03-18 研磨方法および半導体基板の製造方法、ならびに研磨用組成物セット WO2022202688A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2023509138A JPWO2022202688A1 (ja) 2021-03-26 2022-03-18
EP22775475.1A EP4317337A1 (en) 2021-03-26 2022-03-18 Polishing method, method for producing semiconductor substrate, and polishing composition set
KR1020237028075A KR20230162925A (ko) 2021-03-26 2022-03-18 연마 방법 및 반도체 기판의 제조 방법, 그리고 연마용조성물 세트
CN202280024860.1A CN117063267A (zh) 2021-03-26 2022-03-18 研磨方法和半导体基板的制造方法、以及研磨用组合物套组

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-052791 2021-03-26
JP2021052791 2021-03-26

Publications (1)

Publication Number Publication Date
WO2022202688A1 true WO2022202688A1 (ja) 2022-09-29

Family

ID=83397313

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/012724 WO2022202688A1 (ja) 2021-03-26 2022-03-18 研磨方法および半導体基板の製造方法、ならびに研磨用組成物セット

Country Status (6)

Country Link
EP (1) EP4317337A1 (ja)
JP (1) JPWO2022202688A1 (ja)
KR (1) KR20230162925A (ja)
CN (1) CN117063267A (ja)
TW (1) TW202302804A (ja)
WO (1) WO2022202688A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017183478A (ja) 2016-03-30 2017-10-05 株式会社フジミインコーポレーテッド シリコンウェーハの研磨方法及び研磨用組成物セット
WO2018043504A1 (ja) * 2016-08-31 2018-03-08 株式会社フジミインコーポレーテッド 研磨用組成物および研磨用組成物セット
WO2018216733A1 (ja) * 2017-05-26 2018-11-29 株式会社フジミインコーポレーテッド 研磨用組成物およびこれを用いた研磨方法
WO2019187837A1 (ja) * 2018-03-30 2019-10-03 株式会社フジミインコーポレーテッド 研磨用組成物および研磨方法
JP2019179890A (ja) * 2018-03-30 2019-10-17 株式会社フジミインコーポレーテッド シリコンウェーハの研磨方法および研磨用組成物
JP2021052791A (ja) 2016-06-20 2021-04-08 株式会社GenAhead Bio 抗体−薬物コンジュゲート

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017183478A (ja) 2016-03-30 2017-10-05 株式会社フジミインコーポレーテッド シリコンウェーハの研磨方法及び研磨用組成物セット
JP2021052791A (ja) 2016-06-20 2021-04-08 株式会社GenAhead Bio 抗体−薬物コンジュゲート
WO2018043504A1 (ja) * 2016-08-31 2018-03-08 株式会社フジミインコーポレーテッド 研磨用組成物および研磨用組成物セット
WO2018216733A1 (ja) * 2017-05-26 2018-11-29 株式会社フジミインコーポレーテッド 研磨用組成物およびこれを用いた研磨方法
WO2019187837A1 (ja) * 2018-03-30 2019-10-03 株式会社フジミインコーポレーテッド 研磨用組成物および研磨方法
JP2019179837A (ja) * 2018-03-30 2019-10-17 株式会社フジミインコーポレーテッド 研磨用組成物および研磨方法
JP2019179890A (ja) * 2018-03-30 2019-10-17 株式会社フジミインコーポレーテッド シリコンウェーハの研磨方法および研磨用組成物

Also Published As

Publication number Publication date
EP4317337A1 (en) 2024-02-07
TW202302804A (zh) 2023-01-16
CN117063267A (zh) 2023-11-14
JPWO2022202688A1 (ja) 2022-09-29
KR20230162925A (ko) 2023-11-29

Similar Documents

Publication Publication Date Title
JP6193959B2 (ja) リンス用組成物及びリンス方法
EP2957613B1 (en) Polishing composition, method for producing polishing composition and method for producing polished article
JP6901595B2 (ja) シリコンウェーハの研磨方法および表面処理組成物
JP7148506B2 (ja) 研磨用組成物およびこれを用いた研磨方法
JP6110681B2 (ja) 研磨用組成物、研磨用組成物製造方法および研磨物製造方法
JP2017101248A (ja) 研磨用組成物、研磨用組成物製造方法および研磨物製造方法
KR102617007B1 (ko) 기판의 연마 방법 및 연마용 조성물 세트
TWI724117B (zh) 研磨用組成物套組、前研磨用組成物及矽晶圓之研磨方法
JP7166819B2 (ja) 化学機械研磨組成物、リンス組成物、化学機械研磨方法及びリンス方法
JP5859055B2 (ja) シリコンウェーハ研磨用組成物
TWI828859B (zh) 包含具有矽-矽鍵結之材料的研磨對象物之研磨方法
JP2021057467A (ja) シリコンウェーハ用研磨用組成物
WO2022202688A1 (ja) 研磨方法および半導体基板の製造方法、ならびに研磨用組成物セット
US10748778B2 (en) Method for polishing silicon wafer and surface treatment composition
JP2016207875A (ja) 研磨方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22775475

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023509138

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280024860.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022775475

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022775475

Country of ref document: EP

Effective date: 20231026