WO2013099143A1 - 研磨剤の製造方法 - Google Patents

研磨剤の製造方法 Download PDF

Info

Publication number
WO2013099143A1
WO2013099143A1 PCT/JP2012/008026 JP2012008026W WO2013099143A1 WO 2013099143 A1 WO2013099143 A1 WO 2013099143A1 JP 2012008026 W JP2012008026 W JP 2012008026W WO 2013099143 A1 WO2013099143 A1 WO 2013099143A1
Authority
WO
WIPO (PCT)
Prior art keywords
abrasive
dispersant
component
producing
cerium oxide
Prior art date
Application number
PCT/JP2012/008026
Other languages
English (en)
French (fr)
Inventor
葉月 中江
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2013551215A priority Critical patent/JP6044550B2/ja
Priority to US14/369,915 priority patent/US9388331B2/en
Publication of WO2013099143A1 publication Critical patent/WO2013099143A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • C09K3/1472Non-aqueous liquid suspensions
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1409Abrasive particles per se
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • C09K3/1463Aqueous liquid suspensions

Definitions

  • the present invention relates to a method for producing an abrasive.
  • the magnetic information recording apparatus records information on an information recording medium by using magnetism, light, magneto-optical, and the like.
  • a typical example is a hard disk drive (hereinafter referred to as HDD) device.
  • Recent HDD devices are required to have a high capacity and a small diameter, and in order to increase the recording density, the flying height of the magnetic head is reduced or the unit recording area is reduced. Along with this, the surface quality such as surface roughness and micro waviness required after polishing in the manufacturing process of HDD glass substrates has become stricter year by year, and high polishing quality corresponding to low head flying is required. It has been.
  • the processing rate is higher than other abrasives due to the relationship with the glass component when using an abrasive mainly composed of cerium oxide. .
  • Patent Document 1 describes a method in which a cerium-based abrasive slurry having a reduced polishing force can be recycled by regenerating the performance as an abrasive by a simple regeneration process.
  • the present invention has been made in view of the above problems, and is a method for producing an abrasive that reuses a used abrasive slurry, and provides a method for producing an abrasive having high dispersibility and polishing ability.
  • the purpose is to do.
  • the present inventor has intensively studied, and as a result, the recovered abrasive component can be reused by the manufacturing method having the following constitution, and an abrasive having high dispersibility and polishing ability can be easily obtained. As a result, the present invention has been completed.
  • the present invention is a method for producing an abrasive containing a dispersant and containing cerium oxide as a main abrasive component, wherein the ionic radius in terms of hexacoordination is 80 to 160 pm with respect to the used abrasive slurry.
  • a step of recovering the abrasive component by subjecting it to salting out using a cation of the first group element or the second group element, and aggregating and precipitating the cerium oxide and solid-liquid separation, and the recovered abrasive material
  • the present invention relates to a method for producing an abrasive, comprising a step of adding a dispersant having an anionic polymer to a component.
  • the abrasive is an abrasive (also referred to as abrasive grains) that exerts a polishing action on a substrate that is an object to be polished, and a solvent (also referred to as a polishing liquid) that is a dispersion medium.
  • abrasive also referred to as abrasive grains
  • a solvent also referred to as a polishing liquid
  • the abrasive after specification is sometimes referred to as an abrasive slurry, for the sake of convenience.
  • the present invention it is possible to provide a method for producing an abrasive that reuses a used abrasive slurry and that can efficiently produce an abrasive having high dispersibility and polishing ability.
  • the method for producing an abrasive is a method for producing an abrasive containing a dispersant and containing cerium oxide as a main abrasive component, in terms of hexacoordinated conversion with respect to the used abrasive slurry.
  • a step of recovering an abrasive component by subjecting to salting out using a cation of a Group 1 element or Group 2 element having an ionic radius of 80 to 160 pm, coagulating and precipitating the cerium oxide, and solid-liquid separation; And a step of adding a dispersant having an anionic polymer having a carboxylic acid to the recovered abrasive component.
  • the abrasive slurry in the present embodiment includes an abrasive mainly composed of cerium oxide and a solvent, and is synonymous with an abrasive, but in the following, for the sake of convenience, after component adjustment.
  • the abrasive slurry is referred to as an abrasive, and the abrasive slurry before use and after component adjustment in the polishing process may be simply distinguished as an abrasive slurry. If the said cerium oxide is normally used for an abrasive
  • the content of cerium oxide is preferably 1 to 10% by mass, and more preferably 3 to 5% by mass with respect to the total amount of the substrate abrasive.
  • the content of cerium oxide is less than 1% by mass, polishing may not proceed or the shape of the polished substrate may be deteriorated.
  • it exceeds 10% by mass production cost may be increased.
  • the average particle diameter (D 50 ) of the cerium oxide is preferably 0.5 to 1.5 ⁇ m, and more preferably 0.7 to 1.2 ⁇ m. If the average particle diameter (D 50 ) of cerium oxide is less than 0.5 ⁇ m, the polishing rate may be reduced, and if it exceeds 1.5 ⁇ m, the glass substrate after the polishing process may be damaged. .
  • the average particle diameter (D 50 ) is 50% (D 50 ) based on JIS R 1629-1997 “Method for measuring particle size distribution of fine ceramic raw material by laser diffraction / scattering method”.
  • 50 means a particle diameter corresponding to 50 ), and is generally used as an average particle diameter of ultrafine metal powder.
  • an acid an oxidizing agent, a bactericidal agent, an antibacterial agent, a thickener, a dispersant, a rust inhibitor, a basic substance, a pH adjuster, and the like may be included.
  • the used abrasive slurry in the present embodiment is a slurry obtained by using the abrasive slurry once or a plurality of times in the polishing step and then collecting it.
  • the recovery method include a method of extracting the abrasive slurry accumulated in the storage unit provided in the polishing machine after the polishing is completed.
  • the used abrasive slurry contains an abrasive mainly composed of cerium oxide, like the above-mentioned abrasive.
  • an abrasive and a glass component having a mass ratio of 1 to 10% with respect to water are usually dispersed.
  • the used abrasive slurry may contain a dispersant, an impurity component (Al component, Fe component, etc.) and the like in addition to the above cerium oxide and glass component.
  • the above-mentioned used slurry used in the polishing step is recovered, and the recovered used slurry is reused to produce an abrasive.
  • the salting-out treatment according to the production method of the present embodiment is to add a cation of the first group element or the second group element having the ionic radius as described above to the used abrasive slurry, and use the used abrasive.
  • a process of obtaining an abrasive component by aggregating a cerium-based abrasive together with cations through precipitation and solid-liquid separation by the interaction with the dispersant contained in the slurry. is there.
  • the ionic radius of the cation in terms of six coordination is 80 to 160 pm, more preferably 80 to 120 pm.
  • the interaction between the ions and the dispersant is small, and the efficiency of the salting-out treatment may be deteriorated.
  • the ionic radius exceeds 160 pm, the interaction between the ions and the dispersing agent becomes too strong, and the dispersing agent acts preferentially on the cation rather than acting on the abrasive, so that the remaining dispersion
  • the interaction between the materials becomes too low, the cohesiveness of the abrasive may deteriorate during the salting out treatment.
  • Examples of the cation having an ion radius of 80 to 160 pm in terms of hexacoordination include alkali metal ions, magnesium ions, alkaline earth metal ions, and the like. More specifically, lithium ion (ionic radius in hexacoordinated conversion: 90 pm), sodium ion (ionic radius in hexacoordinated conversion: 116 pm), potassium ion (ionic radius in hexacoordinated conversion: 152 pm), magnesium ion (Ion radius in hexacoordinate conversion: 86 pm), calcium ion (ion radius in hexacoordinate conversion: 114 pm), strontium ion (ion radius in hexacoordinate conversion: 132 pm), barium ion (ion radius in hexacoordinate conversion) : 149 pm).
  • the salting-out treatment in the production method of the present embodiment is performed with a cation of the first group element or second group element. Since the elements of the first group and the second group can stably exist in the aqueous solution as cations, the salting-out treatment can be performed smoothly.
  • the cation it is preferable to use at least one cation selected from the group consisting of magnesium ion, calcium ion, sodium ion, and potassium ion. By using these cations, more efficient salting-out treatment can be performed.
  • anion as a counter ion of the cation, chloride ion, carbonate ion, or the like can be used.
  • the salt which consists of the said cation and an anion is used suitably as an aggregation precipitation agent for carrying out the aggregation precipitation of the abrasive
  • the pH change of the solution is small, and since the settled abrasive and waste liquid can be easily treated, magnesium chloride, magnesium sulfate, calcium sulfate, calcium carbonate, potassium iodide, sodium carbonate, etc. More preferred.
  • the cation concentration in the used abrasive slurry is in the range of 1 to 100 mmol / L. If the cation concentration is less than 1 mmol / L, it is difficult to obtain an agglomeration effect and the efficiency of the salting-out treatment may be deteriorated. If it exceeds 100 mmol / L, the salt remains on the substrate when reused. Even if a dispersing agent is added, there is a possibility that it cannot be dispersed and cannot be used as an abrasive.
  • Solid-liquid separation Solid-liquid separation in which the abrasive in the used abrasive slurry and the cation are aggregated to precipitate the abrasive will be described.
  • the cation is added to the used abrasive slurry as a coagulating precipitant.
  • Means (apparatus, etc.) for adding the flocculating precipitant containing the cation to the used abrasive slurry include a coagulating precipitant in a well dispersed state without precipitating the stored abrasive slurry of the used abrasive slurry.
  • the reaction is not particularly limited as long as the reaction can be effectively advanced.
  • a stirring vessel type reaction vessel equipped with a stirring means, a heating means, a temperature control means, a supply means for abrasive slurry and a coagulating precipitation agent, and the like can be used.
  • the stirring of the abrasive slurry and the coagulating precipitant is not particularly limited, and can be performed using a stirrer such as a homomixer, a homogenizer, an ultrasonic disperser, and a wet ball mill.
  • the used abrasive slurry to which the coagulating precipitant is added is solid-liquid separated into an abrasive component (component derived from the abrasive) and a supernatant (filtrate).
  • abrasive component component derived from the abrasive
  • a supernatant filament
  • most of the glass component (Si component), other impurity components (Al component, Fe component, etc.) in the abrasive and part of the dispersant are solubilized or released and transferred.
  • solid-liquid separation specifically, in a settling tank such as thickener, the used abrasive slurry to which the above-mentioned coagulating precipitant is added is allowed to settle to separate and separate the abrasive particles, and the supernatant There is a method of overflowing the liquid from the decant or tank.
  • solid-liquid separation may be performed by combining sedimentation separation and filtration.
  • an appropriate filter medium such as a filter cloth, a ceramic filter, or a filter paper can be used according to the particle size of the abrasive particles.
  • the abrasive component and the filtrate are separated into solid and liquid.
  • the abrasive component recovered in the recovery step contains cerium oxide as the main abrasive component. Further, the recovered abrasive component includes a coagulating precipitant, a dispersant, a glass component and the like in addition to the cerium oxide.
  • the recovery rate of cerium oxide in the abrasive component after the recovery step is 80 to 99%.
  • the said recovery rate can be calculated
  • the abrasive slurry can be reused with good yield.
  • the abrasive component after the recovery step may be adjusted to an abrasive by further adding a solvent.
  • water can be used as the solvent of the present embodiment.
  • the water include distilled water, ion exchange water, pure water, and ultrapure water.
  • the content of the solvent in the abrasive slurry of the present embodiment is preferably 55% by mass or more, and more preferably 75% by mass or more, because handling of the abrasive slurry is further facilitated.
  • the solvent may be added in the following dispersant addition step.
  • the dispersant addition step of this embodiment is a step of adding a dispersant mainly composed of an anionic polymer to the recovered abrasive component.
  • Examples of the dispersant of this embodiment include a method of adding and stirring the dispersant containing the anionic polymer.
  • Stirring of the abrasive is not particularly limited, and can be performed using a stirrer such as a homomixer, a homogenizer, an ultrasonic disperser, and a wet ball mill.
  • the amount of the dispersant added is preferably 0.05 to 2% by mass and more preferably 0.1 to 1% by mass with respect to the total amount of the abrasive. If the added amount of the dispersant is less than 0.05% by mass, the dispersion effect may be lowered. If it exceeds 2% by mass, the physical properties of the polishing liquid may be affected, and polishing may be adversely affected. It is not preferable.
  • the dispersant is mainly composed of an anionic polymer, and specifically, it is preferably contained in 80 to 100% by mass. By including the polymer in such a range, the effect of the present invention can be further enhanced.
  • anionic polymer examples include acrylic acid / maleic acid copolymer, polystyrene sulfonic acid, styrene / styrene sulfonic acid copolymer, poly ⁇ 2- (meth) acryloylamino-2,2- Dimethylethanesulfonic acid ⁇ , 2- (meth) acryloylamino-2,2-dimethylethanesulfonic acid / styrene copolymer, 2- (meth) acryloylamino-2,2-dimethylethanesulfonic acid / acrylamide copolymer, 2- (meth) acryloylamino-2,2-dimethylethanesulfonic acid / (meth) acrylic acid copolymer, 2- (meth) acryloylamino-2,2-dimethylethanesulfonic acid / (meth) acrylic acid / acrylamide Copolymer, 2- (meth) acryloyla
  • the dispersant is most preferably an acrylic acid / maleic acid copolymer. This is because the anion site in the acrylic acid / maleic acid copolymer is a carboxyl group, which is effective for dispersibility of cerium oxide.
  • the weight average molecular weight (Mw) of the acrylic acid / maleic acid copolymer is preferably 100 to 10,000, and more preferably 1,000 to 5,000.
  • Mw molecular weight
  • the molecular weight (Mw) is less than 100, the dispersibility may be deteriorated and the polishing processability may be deteriorated.
  • the molecular weight (Mw) is more than 10,000, the viscosity of the abrasive slurry may be increased and the polishing characteristics may be deteriorated. .
  • an acid in addition to the polishing component, the dispersant, and the solvent, an acid, an oxidizer, a bactericidal agent, an antibacterial agent, a thickener, a dispersant, a rust preventive agent, a basic substance, a pH adjuster, and the like. May be added.
  • the content of cerium oxide as the main abrasive component is usually 1 to 10% by mass with respect to the total amount of the abrasive component. It is preferable to adjust the amount of the above additive. When the content of cerium oxide is in such a range, it is preferable in that the polishing processability can be maintained.
  • the manufacturing method of this embodiment can efficiently manufacture an abrasive containing a dispersant and containing cerium oxide as a main abrasive component by reusing the used abrasive slurry. it can.
  • the abrasive obtained by the manufacturing method of the present embodiment can be used in any polishing process in the substrate manufacturing method, and among them, is suitable for use in the rough polishing process in the substrate manufacturing method.
  • the abrasive according to the present embodiment may be used as it is, or may be diluted and used if it is a concentrated solution.
  • the dilution ratio is not particularly limited, and can be appropriately determined according to the concentration of each component in the concentrated liquid (abrasive content, etc.), polishing conditions, and the like.
  • the substrate to be polished by the abrasive according to this embodiment is not particularly limited, but a substrate for recording disk used as a recording medium, for example, a substrate for manufacturing a glass substrate for HDD is preferable.
  • a manufacturing method of an abrasive which is an aspect of the present invention is a manufacturing method of an abrasive containing a dispersant and containing cerium oxide as a main abrasive component, and is a six-coordinate with respect to a used abrasive slurry.
  • the abrasive component is recovered by subjecting to salting-out using a cation of a Group 1 element or Group 2 element having an ionic radius of 80 to 160 pm, and coagulating and precipitating the cerium oxide to separate into solid and liquid. It includes a step of adding a dispersant having an anionic polymer to the step and the recovered abrasive component.
  • the abrasive can be recycled more efficiently.
  • the cation has an ionic radius in terms of hexacoordinate of 80 to 120 pm. According to such a structure, the said effect can be exhibited more.
  • the cation is at least one cation selected from the group consisting of magnesium ion, calcium ion, sodium ion, and potassium ion.
  • the dispersant is a polymer having a carboxyl group in the molecule.
  • the agglomeration of the abrasive can be further prevented and the dispersibility can be improved.
  • the dispersant is an acrylic acid / maleic acid copolymer having a molecular weight (Mw) of 100 to 10,000.
  • the agglomeration of the abrasive can be further prevented and the dispersibility thereof can be further improved.
  • the amount of the dispersant added is 0.05 to 2% by mass with respect to the total amount of the abrasive.
  • Disc machining process As the glass material, a glass material (see Table 1 for the composition) was used, and the molten glass material was press-molded to produce disc-shaped blanks having an outer diameter of about 66 mm. The thickness of the blanks was 1.05 mm.
  • Disc machining process Using a core drill equipped with a cylindrical diamond grindstone, a circular hole (center hole) having a diameter of 20.5 mm was formed in the center of the blank. Next, using a drum-shaped diamond grindstone, inner and outer diameter processing was performed so that the outer peripheral end surface and the inner peripheral end surface of the blanks had an outer diameter of 65 mm and an inner diameter of 20 mm. Subsequently, the outer peripheral end surface and the inner peripheral end surface of the glass substrate after the disk processing step were ground by an inner and outer peripheral processing machine (TKV-1, manufactured by Hadano Machinery Co., Ltd.).
  • TKV-1 inner and outer peripheral processing machine
  • An abrasive slurry was prepared by stirring 5% by mass of cerium oxide as an abrasive, 0.1% by mass of an acrylic acid / maleic acid copolymer as a dispersant, and about 95% by mass of water as a solvent.
  • D 50 average particle diameter of the abrasive slurry was measured with a laser diffraction particle size distribution analyzer (manufactured by Shimadzu Corporation), it was 1.2 ⁇ m.
  • the glass substrate obtained by the aforementioned steps was polished under the following polishing conditions.
  • Polishing machine Double-side polishing machine (manufactured by HAMAI Corporation) Polishing pad: Thickness 0.8mm, average hole diameter 30 ⁇ m Total number of polished glass substrates to be polished: 100,000
  • the abrasive slurry used in the polishing step was collected and used as a used abrasive slurry below.
  • Solid-liquid separation 50 L of the abrasive slurry used in the above polishing process is prepared in a tank, and an aqueous magnesium chloride solution containing magnesium ions prepared to 5 mol / L is gradually added thereto to perform salting out, and the aggregated precipitate is removed. Generated.
  • Judgment whether or not the coagulation sedimentation occurred was performed by confirming whether an interface between the sediment and the supernatant occurred during the 180 minutes after the addition and stirring.
  • the used abrasive slurry in which the aggregated precipitate was confirmed was divided into a supernatant liquid and an aggregated precipitate by decanting the supernatant liquid. Then, 2700 g of an abrasive component that is an aggregated precipitate was recovered.
  • the abrasive component contained 2500 g of cerium oxide.
  • the particle size of the abrasive 1 was measured with a laser diffraction particle size distribution measuring machine (manufactured by Shimadzu Corporation) and judged according to the following evaluation criteria.
  • the evaluation judgment is as follows.
  • Example 2 to 8 Comparative Examples 1 to 3>
  • the cation (salt) type, ionic radius, cation addition amount, dispersant type, molecular weight and addition amount as shown in Table 2 below were changed.
  • Abrasives 2 to 11 were prepared in the same manner as in Example 1 except that the abrasive component was dispersed.
  • the abrasives 1 to 4 of Examples 1 to 4 were subjected to salting out using magnesium ions having an ion radius of 80 to 160 pm in terms of hexacoordination, and were abrasives that were agglomerated precipitates. Since the components were dispersed using an acrylic acid / maleic acid copolymer having an anionic polymer as a dispersant, the recovery rate was good even when compared with the abrasive slurry before use, and the dispersibility was not inferior An abrasive could be obtained.
  • Examples 2 and 3 dispersed using an acrylic acid / maleic acid copolymer having a molecular weight (Mw) of 1000 to 5000 were able to obtain the same dispersibility as the abrasive slurry before use. It is considered that an abrasive having a high polishing ability could be obtained.
  • Mw molecular weight
  • abrasive having inferior dispersibility with respect to the abrasives 5 to 6 using the dispersant mainly composed of an anionic polymer having no carboxyl group in Examples 5 to 6. Conceivable. Further, the abrasives 7 to 8 of Examples 7 to 8 were also subjected to salting out using calcium ions and potassium ions having an ionic radius of 80 to 160 pm in terms of hexacoordination, so that the abrasives with inferior dispersibility were used. It is thought that I was able to get.
  • the abrasive 9 of Comparative Example 1 was obtained by dispersing the abrasive component with a dispersant similar to the dispersant used in Example 3 by filtration without performing salting out.
  • the particle size distribution of the polished material was largely broken by impurities.
  • polishing agent 10 of the comparative example 2 salted out using the rubidium chloride ion whose ionic radius in six coordinate conversion is 166 pm, the recovery rate of the slurry was bad and it could not be reused.
  • polishing agent 11 of the comparative example 3 diluted the abrasive
  • the present invention has wide industrial applicability in the technical field of substrate abrasives and substrates.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Grinding-Machine Dressing And Accessory Apparatuses (AREA)

Abstract

 本発明は、分散剤を含み、研磨材成分として酸化セリウムを主成分とする研磨剤の製造方法であって、使用済み研磨材スラリーに対して、六配位換算におけるイオン半径が80~160pmである第一族元素又は第二族元素の陽イオンを用いて塩析処理し、前記酸化セリウムを凝集沈殿させて固液分離することにより研磨材成分を回収する工程、及び回収後の研磨材成分に、アニオン性の高分子を有する分散剤を添加する工程を含むことを特徴とする研磨剤の製造方法を提供する。

Description

研磨剤の製造方法
 本発明は、研磨剤の製造方法に関する。
 磁気情報記録装置は、磁気、光及び光磁気等を利用することによって、情報を情報記録媒体に記録させるものである。その代表的なものとしては、例えば、ハードディスクドライブ(以下、HDDという。)装置が挙げられる。
 近年のHDD装置には、高容量・小径化が求められ記録密度を上げるために磁気ヘッドの浮上量を低下させたり、単位記録面積を小さくすることが強いられている。それに伴い、HDD用ガラス基板の製造工程においても研磨後に要求される表面粗さ、微小うねり等の表面品質は年々基準が厳しくなってきており、ヘッドの低浮上に対応する高度な研磨品質が求められている。
 HDD用ガラス基板の研磨品質を安定化させるために酸化セリウムを主成分とする研磨剤を用いると、ガラス成分との関係性から加工レートが他の研磨剤よりも高くなることが知られている。
 一方、近年は省エネルギーの観点から前記研磨剤の使用量の低減や再利用(リサイクル)などが積極的に検討されている。例えば、特許文献1には、研摩力が低下したセリウム系研磨材スラリーを、簡易な再生処理により研磨剤としての性能を再生させてリサイクルすることができる方法について記載されている。
 しかしながら、上記製造方法においては研磨剤のリサイクルを行うのに多くの時間を要していた。また、スラッジ等の被研磨材微粒子を取り除いても完全に不純物を取り除くことができず、焼結工程において残存する不純物が研磨材の粒径や結晶構造に影響し、リサイクル前に比べて研磨性が劣ることがあり、問題となる場合があった。
特開2005-14187号公報
 本発明は、上記のような問題に鑑みてなされたものであり、使用済み研磨材スラリーを再使用する研磨剤の製造方法であって、分散性及び研磨能力の高い研磨剤の製造方法を提供することを目的とする。
 前記課題を解決するために、本発明者は鋭意検討を行った結果、下記構成の製造方法によって回収後の研磨剤成分を再使用し、分散性及び研磨能力の高い研磨剤を容易に得られることを見出し、本発明を完成するに至った。
 すなわち、本発明は、分散剤を含み、酸化セリウムを主たる研磨材成分として含有する研磨剤の製造方法であって、使用済み研磨材スラリーに対して、六配位換算におけるイオン半径が80~160pmである第一族元素又は第二族元素の陽イオンを用いて塩析処理し、前記酸化セリウムを凝集沈殿させて固液分離することにより研磨材成分を回収する工程、及び回収後の研磨材成分に、アニオン性の高分子を有する分散剤を添加する工程を含むことを特徴とする、研磨剤の製造方法に関する。なお、本発明において、研磨剤とは被研磨物である基板に対して研磨作用を及ぼす研磨材(研磨砥粒と呼ぶ場合もある)と、その分散媒である溶媒(研磨液という場合もある)を含有する溶液(分散液)全体を意味し、研磨材スラリーと同義であるが、本発明においては、便宜上、研磨工程で仕様後の研磨剤を研磨材スラリーと呼び区別する場合がある。
 本発明によれば、使用済み研磨材スラリーを再使用する研磨剤の製造方法であって、効率よく、分散性及び研磨能力の高い研磨剤を製造できる方法を提供することができる。
 以下、本発明に係る実施形態について説明するが、本発明は、これらに限定されるものではない。
 本実施形態に係る研磨剤の製造方法は、分散剤を含み、酸化セリウムを主たる研磨材成分として含有する研磨剤の製造方法であって、使用済み研磨材スラリーに対して、六配位換算におけるイオン半径が80~160pmである第一族元素又は第二族元素の陽イオンを用いて塩析処理し、前記酸化セリウムを凝集沈殿させて固液分離することにより研磨材成分を回収する工程、及び回収後の研磨材成分に、カルボン酸を有するアニオン性の高分子を有する分散剤を添加する工程を含むことを特徴とする。
 (研磨材スラリー)
 上述のように、本実施形態において研磨材スラリーとは、酸化セリウムを主成分とする研磨材と溶媒を含むものであり、研磨剤と同義であるが、以下においては、便宜上、成分調整後の研磨材スラリーを研磨剤と呼び、研磨工程で使用後で成分調整前の研磨材スラリーを単に研磨材スラリーとして区別する場合がある。前記酸化セリウムは、通常研磨剤に用いられるものであれば、特に限定されない。
 酸化セリウムの含有量は、基板用研磨剤全量に対して1~10質量%であることが好ましく、3~5質量%であることがより好ましい。酸化セリウムの含有量が1質量%未満であると、研磨が進行しない場合や、研磨した基板の形状が悪くなる場合があり、10質量%を超えると、生産コストがかかる場合がある。
 前記酸化セリウムの平均粒径(D50)は、0.5~1.5μmであることが好ましく、0.7~1.2μmであることがより好ましい。酸化セリウムの平均粒径(D50)が0.5μm未満であると、研磨速度が低下する可能性があり、1.5μmを超えると、研磨工程後のガラス基板に傷などが増えるおそれがある。
 ここで、前記平均粒径(D50)とは、JIS R 1629-1997「ファインセラミックス原料のレーザー回折・散乱法による粒子径分布測定方法」に倣い、体積基準の積算分率で50%(D50)に相当する粒子径を意味し、金属超微粉の平均粒径を表すものとして一般に用いられている。
 また、前記研磨材の他に、酸、酸化剤、殺菌剤、抗菌剤、増粘剤、分散剤、防錆剤、塩基性物質及びpH調整剤等を含んでもよい。
 (使用済み研磨材スラリー)
 よって、本実施形態において使用済み研磨材スラリーとは、前記研磨材スラリーを一回又は複数回に渡り研磨工程において使用し、その後に回収したものである。回収方法としては、例えば研磨機に備えられた貯留部に溜まっている研磨材スラリーを研磨終了後に抜き取る方法等が挙げられる。
 また、使用済み研磨材スラリーは前記研磨剤同様、酸化セリウムを主成分とする研磨材を含むものである。使用済み研磨材スラリーとしては、通常、水に対して質量比1~10%の研磨材及びガラス成分が分散している。
 使用済み研磨材スラリーには、上記の酸化セリウム、ガラス成分以外に、分散剤や不純物成分(Al成分、Fe成分等)等が含まれている場合がある。
 以下、本実施形態に係る研磨剤の製造方法を各段階に分けて説明する。
 本実施形態では、上述したような研磨材スラリーであって、研磨工程において使用された使用済みの前記スラリーを回収し、回収した使用済スラリーを再度用いて研磨剤を製造する。
 〔研磨材成分回収工程〕
 まず、上記したような手段によって回収した使用済み研磨材スラリーに対して、六配位換算におけるイオン半径が80~160pmである第一族元素又は第二族元素の陽イオンを用いて塩析処理を行う。
 本実施形態の製造方法に係る塩析処理とは、使用済み研磨材スラリーに対して上記のようなイオン半径を有する第一族元素又は第二族元素の陽イオンを添加し、使用済み研磨材スラリーに含まれている分散剤との相互作用によって、セリウムを主成分とする研磨材を陽イオンと共に凝集させ、研磨材を沈殿させて固液分離することにより研磨材成分を得る処理のことである。
 (陽イオン)
 前記陽イオンの六配位換算におけるイオン半径は80~160pmであるが、80~120pmであることがさらに好ましい。前記イオン半径が80pm未満である場合、イオンと分散剤の相互作用が少なく、塩析処理の効率が悪くなるおそれがある。また、前記イオン半径が160pmを超える場合、イオンと分散剤の相互作用が強くなりすぎ、分散剤が研磨材に対して作用するよりも陽イオンに対して優先的に作用するため、残存する分散材同士の相互作用が低くなりすぎることによって、塩析処理の際に研磨材の凝集性が悪化するおそれがある。
 六配位換算におけるイオン半径は80~160pmである陽イオンとしては、例えば、アルカリ金属イオン、マグネシウムイオン、アルカリ土類金属イオンなどが挙げられる。より具体的には、リチウムイオン(六配位換算におけるイオン半径:90pm)、ナトリウムイオン(六配位換算におけるイオン半径:116pm)、カリウムイオン(六配位換算におけるイオン半径:152pm)、マグネシウムイオン(六配位換算におけるイオン半径:86pm)、カルシウムイオン(六配位換算におけるイオン半径:114pm)、ストロンチウムイオン(六配位換算におけるイオン半径:132pm)、バリウムイオン(六配位換算におけるイオン半径:149pm)などが挙げられる。
 また、本実施形態の製造方法における塩析処理は前記第一族元素又は第二族元素の陽イオンで行う。前記第一族および第二族の元素は、水溶液中にて安定して陽イオンで存在することができるため、塩析処理が円滑に行える。
 なかでも、前記陽イオンとしては、マグネシウムイオン、カルシウムイオン、ナトリウムイオン、及びカリウムイオンからなる群より選択される少なくとも一つの陽イオンを用いることが好ましい。これらの陽イオンを用いることによって、より効率の良い塩析処理を行うことができる。
 前記陽イオンの対イオンとしての陰イオンは、塩化物イオンや炭酸イオン等を用いることができる。そして、前記陽イオンと陰イオンからなる塩は、使用済み研磨材スラリー中の研磨剤成分を凝集沈殿させるための凝集沈殿剤として好適に用いられる。
 前記凝集沈殿剤のうち、溶液のpH変化が小さく、沈降した研磨材及び廃液の処理が容易であるという理由から、塩化マグネシウム、硫酸マグネシウム、硫酸カルシウム、炭酸カルシウム、ヨウ化カリウム、炭酸ナトリウム等がより好ましい。
 さらに、前記使用済み研磨材スラリーに対して凝集沈殿剤を添加する際、使用済み研磨材スラリー液中の陽イオン濃度が1~100mmol/Lの範囲内になるように添加することが好ましい。前記陽イオン濃度が1mmol/L未満であると、凝集効果が得られにくいため塩析処理の効率が悪くなりおそれがあり、100mmol/Lを超えると、再利用する際に塩が基板に残存し、分散剤を添加しても分散が行えず研磨材として使用ができなくなる可能性がある。
 (固液分離)
 次に、使用済み研磨材スラリー中の研磨材と前記陽イオンとを凝集させ、研磨材を沈殿させる固液分離について説明する。
 陽イオンは前述のように凝集沈殿剤として、使用済み研磨材スラリーに添加される。使用済み研磨材スラリーに前記陽イオンを含む凝集沈殿剤を添加する手段(装置など)としては、収容した使用済み研磨材スラリーの研磨材を沈殿させることなく、良好に分散した状態で凝集沈殿剤と効果的に反応を進行させることができるものであれば、特に限定されない。
 例えば、前記添加装置としては、撹拌手段、加熱手段、温度制御手段、研磨材スラリーや凝集沈殿剤の供給手段等を備えた撹拌槽型の反応容器を用いることができる。また、研磨材スラリーと凝集沈殿剤の攪拌は、特に制限されず、ホモミキサー、ホモジナイザー、超音波分散機及び湿式ボールミル等の撹拌機等を用いて行うことができる。
 続いて、凝集沈殿剤を添加された使用済み研磨材スラリーは、研磨材成分(研磨材由来の成分)と上澄み液(濾液)に固液分離される。前記上澄み液には、研磨剤中のガラス成分(Si成分)、その他の不純物成分(Al成分、Fe成分等)の大部分、分散剤の一部が可溶化又は遊離して移行している。
 固液分離の方法として、具体的には、シックナー等の沈降槽中で、前述の凝集沈殿剤を添加された使用済み研磨材スラリーを静置して研磨材粒子を沈降させて分離し、上澄み液をデカントまたは槽からオーバーフローさせる方法がある。または、機械的に、遠心分離、遠心沈降分離、濾過等により固液分離する方法がある。さらに、沈降分離と濾過等を組み合わせて固液分離を行ってもよい。なお、濾過分離の場合、研磨材粒子の粒径に応じて、濾布、セラミックフィルター、濾紙等適当な濾材を使用することができる。
 以上に説明した工程により、研磨剤成分と濾液とが固液分離される。
 (研磨剤成分)
 前記回収工程において回収された研磨材成分は、酸化セリウムを主たる研磨材成分として含有する。また、回収された研磨材成分としては、前記酸化セリウムの他に凝集沈殿剤、分散剤、ガラス成分等を含むものである。
 また、本実施形態の製造方法においては、前記回収工程後の研磨材成分中における酸化セリウムの回収率は、80~99%である。前記回収率は、研磨工程前の研磨材スラリー中の酸化セリウムの質量と、回収後の研磨材成分中の酸化セリウムの質量から求めることができる。本実施形態の製造方法では、前記範囲の回収率を達成できるため、収率良く研磨材スラリーを再使用することができる。
 (溶媒添加)
 前記回収工程後の研磨材成分は、さらに溶媒を添加して研磨剤に調整してもよい。
 本実施形態の溶媒として、例えば水を使用することができる。前記水としては、蒸留水、イオン交換水、純水及び超純水等が挙げられる。本実施形態の研磨材スラリー中の溶媒の含有量は、研磨材スラリーの取扱いがさらに容易になるため、55質量%以上であることが好ましく、75質量%以上であることがより好ましい。
 前記溶媒は、下記の分散剤添加工程にて添加されてもよい。
 〔分散剤添加工程〕
 本実施形態の分散剤添加工程は、前記回収後の研磨材成分にアニオン性の高分子を主成分とする分散剤を添加する工程である。
 本実施形態の分散剤は、前記アニオン性の高分子を含有する分散剤を添加、攪拌する方法等が挙げられる。前記研磨剤の攪拌は、特に制限されず、ホモミキサー、ホモジナイザー、超音波分散機及び湿式ボールミル等の撹拌機等を用いて行うことができる。
 前記分散剤の添加量は、研磨剤全量に対して0.05~2質量%であることが好ましく、0.1~1質量%であることがより好ましい。前記分散剤の添加量が0.05質量%未満であると、分散効果が低くなりおそれがあり、2質量%を超えると、研磨液の物性に影響し研磨に悪影響を及ぼす可能性があるため好ましくない。
 また前記分散剤は、アニオン性の高分子を主成分とするものであるが、具体的には80~100質量%含有することが好ましい。このような範囲の前記高分子を含有することによって、本発明の効果をより高めることができる。
 前記アニオン性の高分子の具体的な例としては、アクリル酸/マレイン酸共重合体、ポリスチレンスルホン酸、スチレン/スチレンスルホン酸共重合体、ポリ{2-(メタ)アクリロイルアミノ-2,2-ジメチルエタンスルホン酸}、2-(メタ)アクリロイルアミノ-2,2-ジメチルエタンスルホン酸/スチレン共重合体、2-(メタ)アクリロイルアミノ-2,2-ジメチルエタンスルホン酸/アクリルアミド共重合体、2-(メタ)アクリロイルアミノ-2,2-ジメチルエタンスルホン酸/(メタ)アクリル酸共重合体、2-(メタ)アクリロイルアミノ-2,2-ジメチルエタンスルホン酸/(メタ)アクリル酸/アクリルアミド共重合体、2-(メタ)アクリロイルアミノ-2,2-ジメチルエタンスルホン酸/スチレン/アクリルアミド共重合体、2-(メタ)アクリロイルアミノ-2,2-ジメチルエタンスルホン酸/スチレン/(メタ)アクリル酸共重合体、ナフタレンスルホン酸ホルムアルデヒド縮合物、メチルナフタレンスルホン酸ホルムアルデヒド縮合物、ジメチルナフタレンスルホン酸ホルムアルデヒド縮合物、アントラセンスルホン酸ホルムアルデヒド縮合物、メラミンスルホン酸ホルムアルデヒド縮合物、アニリンスルホン酸-フェノール-ホルムアルデヒド縮合物及びこれらの塩等が挙げられる。
 また、これらの中でも、研磨材の凝集を防ぐことでき、かつ分散性を高めることができることから、分子内にカルボキシル基を有する高分子であることがより好ましい。
 また、前記分散剤は、アクリル酸/マレイン酸共重合体が最も好ましい。これは、アクリル酸/マレイン酸共重合体におけるアニオン部位がカルボキシル基であるため、酸化セリウムの分散性に有効であるからである。
 前記アクリル酸/マレイン酸共重合体の重量平均分子量(Mw)は100~10000であることが好ましく、1000~5000であることがより好ましい。前記分子量(Mw)が100未満であると、分散性が悪化して研磨加工性が悪化する可能性があり、10000を超えると、研磨材スラリーの粘性が上がり、研磨特性が悪化するおそれがある。
 本実施形態の製造方法では、上記研磨成分、分散剤、溶媒に加えて、酸、酸化剤、殺菌剤、抗菌剤、増粘剤、分散剤、防錆剤、塩基性物質及びpH調整剤等を添加してもよい。
 また、最終的に得られる研磨剤において、主たる研磨材成分(研磨材)である酸化セリウムの含有量は、通常、前記研磨剤成分全量に対して1~10質量%となるように、上記溶媒や上記添加剤の量を調製することが好ましい。酸化セリウムの含有量がこのような範囲であると、研磨加工性を維持できる点で好ましい。
 このようにして、本実施形態の製造方法により、分散剤を含み、酸化セリウムを主たる研磨材成分として含有する研磨剤を、使用済み研磨材スラリーを再使用することによって、効率よく製造することができる。
 本実施形態の製造方法により得られた研磨剤は、基板の製造方法におけるあらゆる研磨工程に使用できるが、その中でも基板の製造方法における粗研磨工程での使用に適している。
 本実施形態に係る研磨剤は、そのまま使用してもよいし、濃縮液であれば希釈して使用すればよい。前記濃縮液を希釈する場合、その希釈倍率は、特に制限されず、前記濃縮液における各成分の濃度(研磨材の含有量等)や研磨条件等に応じて適宜決定できる。
 本実施形態に係る研磨剤によって研磨される被研磨基板は、特に制限されないが、記録媒体として使用される記録ディスク用の基板、例えば、HDD用ガラス基板を製造するための被研磨基板が好ましい。
 本明細書は、上述したように様々な態様の技術を開示しているが、そのうち主な技術を以下に纏める。
 本発明の一局面である研磨剤の製造方法は、分散剤を含み、酸化セリウムを主たる研磨材成分として含有する研磨剤の製造方法であって、使用済み研磨材スラリーに対して、六配位換算におけるイオン半径が80~160pmである第一族元素又は第二族元素の陽イオンを用いて塩析処理し、前記酸化セリウムを凝集沈殿させて固液分離することにより研磨材成分を回収する工程、及び回収後の研磨材成分に、アニオン性の高分子を有する分散剤を添加する工程を含むことを特徴とする。
 このような構成によれば、研磨材のリサイクルをより効率的に行うことができる。
 また、本発明の研磨剤の製造方法において、前記陽イオンは、六配位換算におけるイオン半径が80~120pmであることが好適である。このような構成によれば、上記効果をより発揮し得る。
 また、本発明の研磨剤の製造方法において、前記陽イオンは、マグネシウムイオン、カルシウムイオン、ナトリウムイオン、及びカリウムイオンからなる群より選択される少なくとも一つの陽イオンであることが好適である。
 このような構成によれば、研磨特性に優れた研磨材のリサイクルをより容易に行うことができる。
 また、本発明の研磨剤の製造方法において、前記分散剤は、分子内にカルボキシル基を有する高分子であることが好適である。
 このような構成によれば、さらに、研磨材の凝集を防ぐことでき、かつその分散性を高めることができる。
 また、本発明の研磨剤の製造方法において、前記分散剤は、分子量(Mw)が100~10000であるアクリル酸/マレイン酸共重合体であることが好適である。
 このような構成によれば、より研磨材の凝集を防ぐことができ、かつその分散性をより高めることができる。
 さらに、本発明の研磨剤の製造方法において、前記分散剤の添加量は研磨剤全量に対して0.05~2質量%であることが好適である。
 このような構成によれば、よりいっそう凝集を防ぐことができ、かつ分散性をより高めることができる。
 以下に実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
 <実施例1>
 〔ガラス基板〕
 以下の各工程によって製造されたガラス基板を用意した。
 (円盤加工工程)
 ガラス素材として、ガラス素材(組成は表1参照)を用い、溶融したガラス素材をプレス成形して、外径が約66mmの円板状のブランクスを作製した。ブランクスの厚みは1.05mmとした。
Figure JPOXMLDOC01-appb-T000001
 (円盤加工工程)
 円筒状のダイヤモンド砥石を備えたコアドリルを用いてブランクスの中心部に直径が20.5mmの円形の孔(中心孔)を開けた。次に、鼓状のダイヤモンド砥石を用いて、ブランクスの外周端面および内周端面を外径65mm、内径20mmに内・外径加工を行った。続いて、上記円盤加工工程後のガラス基板の外周端面および内周端面を、内外周加工機(TKV-1、舘野機械製作所製)により研削した。
 (研削工程)
 前記内外周端面研削工程後のガラス基板の主表面を、両面研削機を使用して主表面の平坦度が10μmとなるよう、35μmの取り代で主表面を研削した。次に、前記ガラス基板の両表面を再び研削加工し、ガラス基板の平坦度が3μmとなるように、50μmの取り代で主表面を研削した。
 (研磨工程)
 研磨材として酸化セリウムを5質量%、分散剤としてアクリル酸/マレイン酸共重合体を0.1質量%、溶媒として水を約95質量%攪拌し、研磨材スラリーを調製した。前記研磨材スラリーの平均粒径(D50)を、レーザー回折粒度分布測定機(島津製作所株式会社製)にて測定を行うと、1.2μmであった。
 続いて、この研磨材スラリーを用いて、前述の各工程によって得られたガラス基板を以下の研磨条件により研磨した。
 (研磨条件)
 研磨機:両面研磨機(HAMAI株式会社製)
 研磨パッド:厚み0.8mm、平均開孔径30μm
 研磨した被研磨ガラス基板の総枚数:100000枚
 前記研磨工程により使用した研磨材スラリーを回収し、使用済み研磨材スラリーとして以下用いた。
 〔固液分離〕
 以上の研磨工程によって使用された研磨材スラリーをタンクに50L用意し、これに対して5mol/Lに調製したマグネシウムイオンを有する塩化マグネシウム水溶液を徐々に添加して塩析を行い、凝集沈殿物を生成させた。
 凝集沈殿が起こったか否かの判断は、添加、撹拌後180分間静置する間に、沈降物と上澄みの界面が生じるかを確認することで行った。
 凝集沈殿物が確認された使用済み研磨材スラリーを、上澄み液をデカントすることによって上澄み液と凝集沈殿物とに分けた。そして、凝集沈殿物である研磨剤成分2700gを回収した。前記研磨剤成分は、酸化セリウムを2500g含有していた。
 ここで、研磨前に含まれていた酸化セリウムと、回収した研磨剤成分中に含まれる酸化セリウムの質量により酸化セリウムの回収率を求めると93%であった。
 次に、酸化セリウムの含有量が、研磨材スラリー全量に対して5質量%となるように、回収した前記研磨剤成分1000gを水で希釈した。その後、分散剤として重量平均分子量(Mw)が500であるアクリル酸/マレイン酸共重合体を2g添加し、スリーワンモーター(新東科学株式会社製)を用いて攪拌し、研磨剤1とした。
 〔分散性の評価〕
 前記研磨剤1の粒径をレーザー回折粒度分布測定機(島津製作所株式会社製)で測定し、以下の評価基準で判定を行った。
 評価判定は以下の通りである。
◎:使用前の研磨材スラリーの粒径(D50)との変化量が10%未満である。
○:使用前の研磨材スラリーの粒径(D50)との変化量が10%以上20%未満である。
×:使用前の研磨材スラリーの粒径(D50)との変化量が20%以上である。
 <実施例2~8、比較例1~3>
 実施例2~8、比較例1~3では、下記表2に示すような陽イオン(塩)の種類、イオン半径、陽イオン添加量、分散剤の種類、その分子量及びその添加量を代えて研磨材成分を分散させた他は前記実施例1と同様にして研磨剤2~11を調製した。
 そして、実施例2~8、比較例1~3の前記各研磨剤2~11を用いたこと以外は、前記実施例1と同様に酸化セリウムの回収率を求め、かつ粒径測定を行い前述の評価を行った。
 以上の実施例1~8,比較例1~3によって得られた結果を下記表2に示す。
Figure JPOXMLDOC01-appb-T000002
 上記表2に示すとおり、実施例1~4の研磨剤1~4は、六配位換算におけるイオン半径が80~160pmであるマグネシウムイオンを用いて塩析を行い、凝集沈殿物である研磨材成分を分散剤としてアニオン性の高分子を有するアクリル酸/マレイン酸共重合体を用いて分散させたため、使用前の研磨材スラリーと比較しても回収率が良好であり、分散性の劣らない研磨剤を得ることができた。特に、分子量(Mw)が1000~5000のアクリル酸/マレイン酸共重合体を用いて分散させた実施例2,3は、使用前の研磨材スラリーと同等の分散性を得ることができたため、研磨能力の高い研磨剤を得ることができたと考えられる。
 また、実施例5~6のカルボキシル基を有さないアニオン性の高分子を主成分とする分散剤を用いた研磨剤5~6についても、分散性の劣らない研磨剤を得ることができたと考えられる。さらに、実施例7~8の研磨剤7~8についても、六配位換算におけるイオン半径が80~160pmであるカルシウムイオン、カリウムイオンを用いて塩析を行ったため、分散性の劣らない研磨剤を得ることができたと考えられる。
 一方で、比較例1の研磨剤9は、塩析を行わずに濾過により研磨剤成分を、実施例3に用いた分散剤と同様の分散剤により分散させたが、回収率が悪く、また、不純物によって研磨物の粒度分布が大きく崩れる結果となった。また、比較例2の研磨剤10は、六配位換算におけるイオン半径が166pmである塩化ルビジウムイオンを用いて塩析を行ったが、スラリーの回収率が悪く、再利用できなかった。また、比較例3の研磨剤11は、研磨材成分を水で希釈し、分散剤を使用しなかったため、分散性に劣る結果となった。
 この出願は、2011年12月28日に出願された日本国特許出願特願2011-289539を基礎とするものであり、その内容は、本願に含まれるものである。
 本発明を表現するために、前述において図面等を参照しながら実施形態を通して本発明を適切かつ十分に説明したが、当業者であれば前述の実施形態を変更及び/又は改良することは容易になし得ることであると認識すべきである。したがって、当業者が実施する変更形態又は改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態又は当該改良形態は、当該請求項の権利範囲に包括されると解釈される。
 本発明は、基板用研磨剤および基板の技術分野において、広範な産業上の利用可能性を有する。
 

Claims (6)

  1.  分散剤を含み、酸化セリウムを主たる研磨材成分として含有する研磨剤の製造方法であって、
     使用済み研磨材スラリーに対して、六配位換算におけるイオン半径が80~160pmである第一族元素又は第二族元素の陽イオンを用いて塩析処理し、前記酸化セリウムを凝集沈殿させて固液分離することにより研磨剤成分を回収する工程、及び
     回収後の研磨剤成分に、アニオン性の高分子を有する分散剤を添加する工程を含むことを特徴とする研磨剤の製造方法。
  2.  前記陽イオンは、六配位換算におけるイオン半径が80~120pmであることを特徴とする、請求項1に記載の研磨剤の製造方法。
  3.  前記陽イオンは、マグネシウムイオン、カルシウムイオン、ナトリウムイオン、及びカリウムイオンからなる群より選択される少なくとも一つの陽イオンであることを特徴とする、請求項1又は2に記載の研磨剤の製造方法。
  4.  前記分散剤は、分子内にカルボキシル基を有する高分子であることを特徴とする、請求項1~3のいずれかに記載の研磨剤の製造方法。
  5.  前記分散剤は、重量平均分子量(Mw)が100~10000であるアクリル酸/マレイン酸共重合体であることを特徴とする、請求項4に記載の研磨剤の製造方法。
  6.  前記分散剤の添加量は研磨剤全量に対して0.05~2質量%であることを特徴とする、請求項1~5のいずれかに記載の研磨剤の製造方法。
PCT/JP2012/008026 2011-12-28 2012-12-14 研磨剤の製造方法 WO2013099143A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013551215A JP6044550B2 (ja) 2011-12-28 2012-12-14 研磨剤の製造方法
US14/369,915 US9388331B2 (en) 2011-12-28 2012-12-14 Abrasive agent manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-289539 2011-12-28
JP2011289539 2011-12-28

Publications (1)

Publication Number Publication Date
WO2013099143A1 true WO2013099143A1 (ja) 2013-07-04

Family

ID=48696690

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/008026 WO2013099143A1 (ja) 2011-12-28 2012-12-14 研磨剤の製造方法

Country Status (3)

Country Link
US (1) US9388331B2 (ja)
JP (1) JP6044550B2 (ja)
WO (1) WO2013099143A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017098986A1 (ja) * 2015-12-09 2017-06-15 コニカミノルタ株式会社 研磨材スラリーの再生方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140102696A (ko) * 2011-12-27 2014-08-22 코니카 미놀타 가부시키가이샤 연마재 분리 방법 및 재생 연마재
JP5843036B1 (ja) * 2015-06-23 2016-01-13 コニカミノルタ株式会社 再生研磨材スラリーの調製方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10280060A (ja) * 1997-04-10 1998-10-20 Mitsui Mining & Smelting Co Ltd 廃セリウム研摩材からの研摩材原料の回収方法
JP2000254659A (ja) * 1999-03-12 2000-09-19 Kurita Water Ind Ltd Cmp排液の処理方法
JP2002043256A (ja) * 2000-07-27 2002-02-08 Hitachi Ltd 半導体ウエハ平坦化加工方法及び平坦化加工装置
JP2003138248A (ja) * 2001-10-16 2003-05-14 Ppt Research Inc 切削又は研磨用スラリー組成物およびその利用
JP2006061774A (ja) * 2004-08-25 2006-03-09 Nihon Micro Coating Co Ltd 粒子分離回収方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001009721A (ja) * 1999-07-02 2001-01-16 Kurita Water Ind Ltd 研磨材の回収装置
JP4294396B2 (ja) 2003-06-27 2009-07-08 三井金属鉱業株式会社 セリウム系研摩材のリサイクル方法
EP1838620B1 (en) * 2005-10-14 2016-12-14 Lg Chem, Ltd. Method for preparing a cerium oxide powder for a chemical mechanical polishing slurry
SG173357A1 (en) * 2005-11-11 2011-08-29 Hitachi Chemical Co Ltd Polishing slurry for silicon oxide, additive liquid and polishing method
JPWO2007105714A1 (ja) * 2006-03-13 2009-07-30 昭和電工株式会社 希土類フッ化物を含有する組成物から希土類元素を回収する方法
WO2011099197A1 (ja) * 2010-02-15 2011-08-18 三井金属鉱業株式会社 セリウム系研摩材の再生方法
KR101245276B1 (ko) * 2010-03-12 2013-03-19 주식회사 엘지화학 산화세륨 연마재의 재생 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10280060A (ja) * 1997-04-10 1998-10-20 Mitsui Mining & Smelting Co Ltd 廃セリウム研摩材からの研摩材原料の回収方法
JP2000254659A (ja) * 1999-03-12 2000-09-19 Kurita Water Ind Ltd Cmp排液の処理方法
JP2002043256A (ja) * 2000-07-27 2002-02-08 Hitachi Ltd 半導体ウエハ平坦化加工方法及び平坦化加工装置
JP2003138248A (ja) * 2001-10-16 2003-05-14 Ppt Research Inc 切削又は研磨用スラリー組成物およびその利用
JP2006061774A (ja) * 2004-08-25 2006-03-09 Nihon Micro Coating Co Ltd 粒子分離回収方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017098986A1 (ja) * 2015-12-09 2017-06-15 コニカミノルタ株式会社 研磨材スラリーの再生方法
US11458590B2 (en) 2015-12-09 2022-10-04 Konica Minolta, Inc. Abrasive slurry regeneration method

Also Published As

Publication number Publication date
JPWO2013099143A1 (ja) 2015-04-30
US20150135602A1 (en) 2015-05-21
JP6044550B2 (ja) 2016-12-14
US9388331B2 (en) 2016-07-12

Similar Documents

Publication Publication Date Title
JP6421887B2 (ja) セリウム塩の製造方法、酸化セリウム及びセリウム系研磨剤
JP5858050B2 (ja) 研磨材再生方法
US20100248593A1 (en) Polishing slurry, process for producing the same, polishing method and process for producing glass substrate for magnetic disk
JP2007276055A (ja) セリウム系研磨剤の再生方法
KR101398904B1 (ko) 세륨계 연마재의 재생 방법
JP6044550B2 (ja) 研磨剤の製造方法
JP5940224B2 (ja) セリア含有廃研磨材の再生方法
JP6292119B2 (ja) 研磨材再生方法
JP6044551B2 (ja) 研磨材分離方法
JP2015067507A (ja) コロイダルシリカ砥粒の製造方法および磁気ディスク用ガラス基板の製造方法
JP6286566B2 (ja) 磁気ディスク用基板の製造方法
JP2023061348A (ja) 研磨剤スラリーの再生方法及び研磨剤スラリーの再生システム
KR20140035264A (ko) 세리아 함유 폐연마재의 재생 방법
JP2022172678A (ja) 再生研磨剤スラリーの調製方法及び研磨剤スラリー
WO2014042430A1 (ko) 세리아 함유 폐연마재의 재생 방법
WO2016051539A1 (ja) 磁気ディスク用基板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12863272

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013551215

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14369915

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 12863272

Country of ref document: EP

Kind code of ref document: A1