JP5835191B2 - 回折環形成装置及び回折環形成システム - Google Patents

回折環形成装置及び回折環形成システム Download PDF

Info

Publication number
JP5835191B2
JP5835191B2 JP2012251903A JP2012251903A JP5835191B2 JP 5835191 B2 JP5835191 B2 JP 5835191B2 JP 2012251903 A JP2012251903 A JP 2012251903A JP 2012251903 A JP2012251903 A JP 2012251903A JP 5835191 B2 JP5835191 B2 JP 5835191B2
Authority
JP
Japan
Prior art keywords
measurement object
imaging
light
image
visible light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012251903A
Other languages
English (en)
Other versions
JP2014098677A (ja
Inventor
洋一 丸山
洋一 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pulstec Industrial Co Ltd
Original Assignee
Pulstec Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pulstec Industrial Co Ltd filed Critical Pulstec Industrial Co Ltd
Priority to JP2012251903A priority Critical patent/JP5835191B2/ja
Priority to PCT/JP2013/051604 priority patent/WO2014076974A1/ja
Publication of JP2014098677A publication Critical patent/JP2014098677A/ja
Application granted granted Critical
Publication of JP5835191B2 publication Critical patent/JP5835191B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/207Diffractometry using detectors, e.g. using a probe in a central position and one or more displaceable detectors in circumferential positions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/30Accessories, mechanical or electrical features
    • G01N2223/308Accessories, mechanical or electrical features support of radiation source
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/30Accessories, mechanical or electrical features
    • G01N2223/309Accessories, mechanical or electrical features support of sample holder

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

本発明は、イメージングプレートの表面に形成されたX線回折環に基づいて測定対象物の残留応力を測定するために、測定対象物にX線を照射して、測定対象物で回折したX線によりイメージングプレートの表面にX線回折環を形成する回折環形成装置と、回折環形成装置を含む回折環形成システムに関する。
従来から、例えば下記特許文献1,2に示されているように、イメージングプレートの表面に形成されたX線回折環(以下、回折環という)に基づいて測定対象物の残留応力を測定するX線回折測定装置(回折環形成装置を含むX線回折測定装置)及びX線回折測定方法はよく知られている。この種のX線回折測定装置及びX線回折測定方法においては、X線出射器から出射されたX線を所定の角度で測定対象物に照射し、測定対象物で回折したX線(以下、回折X線という)を、感光性を有するイメージングプレートで受光し、イメージングプレートに形成された環状の回折環の形状を測定する。そして、測定した回折環の形状をcosα法により分析して、測定対象物の残留応力を計算するようにしている。
特開2005−241308号公報 特開2011−27550号公報
上記のようなcosα法によるX線回折測定装置及びX線回折測定方法において、測定対象物の測定箇所である所定位置の残留応力を求めるには、X線が測定対象物の所定位置に的確に照射されるようにする必要がある。また、測定対象物の表面における所定方向の残留応力を求めるには、X線出射器から出射された出射X線(すなわち、測定対象物に照射される照射X線)を測定対象物の表面に投影させた直線方向が、所定方向になっている必要がある。なお、この出射X線(照射X線)を測定対象物に投影させた直線方向とは、厳密には、X線の照射位置における測定対象物の表面の法線と出射X線(照射X線)の光軸を含む平面が測定対象物の表面と交差する直線の方向を意味する。この明細書では、前記交差する直線の方向を、単に、出射X線(又は照射X線)を測定対象物に投影させた直線方向ということにする。さらに、このcosα法によるX線回折測定において、回折環の形状から測定対象物の残留応力を求めるには、出射X線の光軸とX線の照射位置における測定対象物の表面の法線とがなす角度φ(以下、出射X線の入射角度φという)と、測定対象物におけるX線の照射点からイメージングプレートまでの距離L(すなわち、X線の照射位置からイメージングプレートまでの垂直方向の距離L)を求めておく必要がある。
上記特許文献1に示されているX線回折測定装置のように、X線回折測定装置と測定対象物の位置関係が固定されており、照射X線と測定対象物の表面の位置関係が常に一定であれば、X線を測定対象物の所定位置に照射することは容易であり、照射X線の光軸を測定対象物の表面に投影させた直線方向は常に予め設定された方向である。また、入射角度φと距離Lを予め求めておけば、それらの値を使用し続けることで、設定された方向の残留応力を求めることができる。
しかしながら、種々な測定対象物の残留応力を測定したい場合には、照射X線と測定対象物の表面との位置関係は様々に変化し、X線回折測定装置と測定対象物との位置関係を固定することは非常に困難である。そのような場合には、X線の照射位置を測定対象物の所定位置に設定し、照射X線の光軸を測定対象物の表面に投影させた直線方向を所定方向に設定することは困難である。さらに、入射角度φと距離Lが所定値になるように設定するか、入射角度φと距離Lを特別な装置を用いて検出しなければならず、測定を行うのに手間、時間等がかかるという問題がある。
本発明は上記問題を解決するためになされたもので、その目的は、残留応力を測定するための回折環をイメージングプレートに形成する際に、種々の測定対象物に対して、X線の照射位置を測定対象物の所定位置に簡単に設定できるようにするとともに、照射X線の光軸を測定対象物の表面に投影させた直線方向を所定方向に簡単に設定できるようにした回折環形成装置及び回折環形成システムを提供することにある。また、測定対象物におけるX線の照射点からイメージングプレートまでの距離を予め定めた所定距離になるように簡単に設定できるようにするか、測定対象物におけるX線の照射点からイメージングプレートまでの距離を簡単に検出できるようにした回折環形成装置及び回折環形成システムを提供することもある。さらに、出射X線の測定対象物の表面に対する入射角度を所定角度に簡単に設定できるようにするか、出射X線の測定対象物の表面に対する入射角度を簡単に検出できるようにした回折環形成装置及び回折環形成システムを提供することにもある。なお、下記本発明の各構成要件の記載においては、本発明の理解を容易にするために、後述する実施形態の対応箇所の符号を括弧内に記載しているが、本発明の各構成要件は、この実施形態の符号によって示された対応箇所の構成に限定解釈されるべきものではない。
上記目的を達成するために、本発明の基本的構成は、測定対象物(OB)に向けてX線を出射するX線出射器10と、中央にX線を通過させる貫通孔(16a)が形成されたテーブル(16)と、テーブルに取付けられて、中央部にてX線を通過させるとともに、測定対象物にて回折したX線の回折光を受光する受光面を有し、回折光の像である回折環を記録するイメージングプレート(15)とを備えた回折環形成装置において、X線出射器からX線が出射されていない状態で、X線出射器から出射されるX線と光軸を同一にした平行光である可視光を測定対象物に出射する可視光出射器(44,28,18a)を設けたことにある。
この場合、可視光出射器は、例えば、可視光を出射する可視光光源(44)を有し、可視光光源から出射された可視光を小さな径の通路(28,18a)を通過させることにより、平行光を形成するものであり、X線出射器から出射されたX線も前記通路を通過させるとよい。より具体的には、例えば、可視光光源からの可視光を、長い通路長を有する一つの小さな径の通路を通過させるようにしてもよいし、それぞれ離間した2つ以上の小さな径の通路を通過させるようにしてもよい。
上記本発明の基本的構成においては、可視光出射器が、X線出射器からX線が出射されていない状態で、X線出射器から出射されるX線の光軸と同一の光軸を有する平行光である可視光を測定対象物に出射する。これにより、測定対象物には視覚確認可能な照射点が形成され、この照射点を視覚確認しながら、照射点が測定対象物の残留応力の測定箇所すなわち測定対象物の所定位置となるように、測定対象物の表面に平行な各種方向に、回折環形成装置又は測定対象物を移動させることにより、すなわち前記各種方向における回折環形成装置と測定対象物との相対位置を調整することにより、可視光すなわちX線の照射位置を測定対象物の所定位置に簡単に設定することができる。また、可視光すなわちX線の光軸を測定対象物の表面に投影させた直線方向は、X線出射器の出射口の位置と、テーブル及びイメージングプレートの貫通孔の位置とから、視覚的に判断できるので、測定対象物の表面の法線を回転軸として、回折環形成装置又は測定対象物を回転させることにより、すなわち前記法線を回転軸にした回転方向に回折環形成装置と測定対象物との相対回転位置を調整することにより、可視光すなわちX線の光軸を測定対象物の表面に投影させた直線方向を、測定対象物に対して所定方向に簡単に設定できる。
なお、測定対象物の表面の面積が大きい、測定対象物の表面が方向性を認識できにくい形状(例えば、円)であるなどの理由により、測定対象物の表面における所定位置又は測定対象物に対する所定方向を視認できなかったり、前記視認が難しかったりする場合には、測定対象物の表面に、所定位置を示すマーク(例えば、所定位置を囲む枠)を表記したり、測定対象物に対する所定方向を示すマーク(例えば、直線)を表記したりして、測定対象物の表面における所定位置又は測定対象物に対する所定方向を視認できるようにしておけばよい。その結果、前記本発明の基本的構成によれば、測定対象物の厚さがほぼ一定であれば、X線出射器によるX線の出射により、測定対象物の表面の所定位置で回折されたX線による回折像をイメージングプレートに的確に形成でき、所定方向における残留応力を求めることができる。
また、本発明の他の基本的構成は、さらに、前記可視光の照射点を含む領域の測定対象物の画像を結像する結像レンズ(48)、及び結像レンズによって結像された画像を撮像する撮像器(49)を有し、前記撮像された画像を表す撮像信号を出力するカメラと、カメラから出力される撮像信号を入力して、撮像器によって撮像された画像を画面上に表示する表示器(93)とを設けたことにある。
これによれば、前記可視光の照射点を含む領域の画像を表示する表示器の画面を見ながら、前記場合と同様に、測定対象物の表面に平行な各種方向における回折環形成装置と測定対象物との相対位置の調整、及び測定対象物の表面の法線を回転軸にした回転方向における相対回転位置の調整により、可視光すなわちX線の照射位置を測定対象物の所定位置に簡単に設定できるとともに、可視光すなわちX線の光軸を測定対象物の表面に投影させた直線方向を、測定対象物の所定方向に簡単に設定できる。
なお、X線の照射位置の設定においては、測定対象物の表面の面積が小さくて、表示器の画面上に測定対象物OBの全体の画像が表示されており、測定対象物の所定位置を表示器の画面上で視認できれば、作業者は画面上の前記表示に基づいて可視光すなわちX線の照射位置を測定対象物の表面の所定位置に設定すればよい。しかし、表示器の画面上に測定対象物OBの全体の画像が表示されなかったり、測定対象物OBの全体の画像が表示されていても、測定対象物の表面の面積が大きかったりして、測定対象物の所定位置が視認できなかったり、前記視認が難しい場合には、測定対象物の表面に、所定位置を示すマーク(例えば、所定位置を囲む枠)を表記して、測定対象物の表面における所定位置を視認できるようにしておけばよい。
また、測定対象物の表面の面積が小さく、表示器の画面上に測定対象物OBの全体の画像が表示されており、測定対象物における所定方向を表示器の画面上で視認できれば、例えば測定対象物の外形から測定対象物における所定方向を表示器の画面上で視認できれば、作業者は、画面上の表示に基づいて、可視光すなわちX線の光軸を測定対象物の表面に投影させた直線方向を、測定対象物における所定方向に設定すればよい。しかし、表示器の画面上に測定対象物OBの全体の画像が表示されなかったり、測定対象物OBの全体の画像が表示されていても、測定対象物の表面の面積が大きい、表面が方向性を認識できにくい形状(例えば、円)であるなどの理由により、測定対象物における所定方向を視認できなかったり、前記視認が難しかったりする場合には、測定対象物の表面に、測定対象物に対する所定方向を示すマーク(例えば、直線)を表記したりして、測定対象物における所定方向を視認できるようにしておけばよい。
また、可視光すなわちX線の光軸を測定対象物の表面に投影させた直線方向を、表示器における画面における方向(例えば、縦方向又は横方向)から視認できれば、前記測定対象物に対する所定方向を、画面上の所定の方向(例えば、縦方向又は横方向)に設定することにより、可視光すなわちX線の光軸を測定対象物の表面に投影させた直線方向を、測定対象物に対する所定方向に設定できる。しかし、表示器の画面上に、測定対象物の画像とは独立して、可視光すなわちX線の光軸を測定対象物の表面に投影させた直線方向を示す表示マーク(例えば、直線)を表示しておけば、前記測定対象物における所定方向を前記表示マークに合わせることによって、さらに簡単に、可視光すなわちX線の光軸を測定対象物の表面に投影させた直線方向を、測定対象物における所定方向に設定できる。
その結果、前記本発明の他の基本的構成によっても、測定対象物の厚さがほぼ一定であれば、X線出射器によるX線の出射により、測定対象物の表面の所定位置で回折されたX線による回折像をイメージングプレートに的確に形成でき、所定方向における残留応力を求めることができる。また、前記可視光による測定対象物上の照射位置の直接的な視覚確認に比べて、可視光すなわちX線の照射位置及び可視光すなわちX線の光軸を測定対象物の表面に投影させた直線方向の設定を、簡単かつ精度よく行える。
また、本発明の第1の特徴は、表示器は、測定対象物における可視光の照射点からイメージングプレートまでの距離(すなわち、可視光の照射点からイメージングプレートまでの垂直方向の距離)が所定距離であるとき、撮像器によって撮像される照射点の画像上の位置を照射点基準位置として、撮像信号により表示される画像とは独立して画面上に表示するようにしたことにある。
前記本発明の第1の特徴においては、測定対象物における可視光の照射点からイメージングプレートまでの距離が所定距離であれば、結像レンズによる結像により、撮像器の所定位置に可視光の照射点は撮像され、表示器の表示画面上においても所定位置に可視光の照射点は表示される。一方、測定対象物における可視光の照射点からイメージングプレートまでの距離が前記所定距離でなければ、撮像器における前記所定位置とは異なる位置に可視光の照射点は撮像されて、表示器の表示画面上においても前記所定位置とは異なる位置に可視光の照射点は表示される。この所定位置が照射点基準位置であり、作業者は、前記可視光の照射点を含む領域の画像を表示する表示器の画面を見ながら、表示器による表示画面上で、照射点の画像上の位置が照射点基準位置に合致するように、測定対象物の表面の垂直方向に、回折環形成装置又は測定対象物を移動させることにより、回折環形成装置と測定対象物との前記垂直方向の相対位置を調整する。その結果、照射点の画像上の位置が照射点基準位置に合致すれば、可視光の照射点からイメージングプレートまでの距離が所定距離に設定されたことになる。なお、前述した測定対象物の表面に平行な各種方向における位置調整及び測定対象物の表面の法線を回転軸にした回転方向における回転調整により、X線の照射位置は測定対象物の所定位置に設定されるとともに、X線の光軸を測定対象物の表面に投影させた直線方向は測定対象物に対して所定方向に設定されている場合、前記垂直方向の位置調整により、測定対象物における可視光の照射点は前記所定方向に若干移動する。したがって、この場合には、前記所定方向における回折環形成装置と測定対象物の相対位置を若干調整する必要がある。
その結果、前記本発明の第1の特徴によれば、測定対象物におけるX線の照射点からイメージングプレートまでの距離が所定距離に設定されるので、測定対象物の所定位置の残留応力の計算のために、測定対象物におけるX線の照射点からイメージングプレートまでの距離を検出する必要がなくなるとともに、前記距離を簡単かつ精度よく取得できる。
また、本発明の第2の特徴は、結像レンズは測定対象物による可視光の反射光を集光し、撮像器は前記集光された反射光の受光点も撮像し、かつカメラは受光点を表す撮像信号も出力し、表示器は、撮像器によって撮像された受光点も撮像信号により画面上に表示し、さらに、表示器は、測定対象物における可視光の照射点を通る測定対象物の表面の法線に対して、測定対象物に照射される可視光の光軸が所定角度であるとき、撮像器によって撮像される受光点の画像上の位置を受光点基準位置として、前記撮像信号により表示される画像とは独立して画面上に表示するようにしたことにある。
前記本発明の第2の特徴においては、測定対象物に照射される可視光は平行光であるので、測定対象物の照射点において多少散乱するが、略平行光である反射光が測定対象物の照射点で発生する。この反射光は結像レンズによって集光され、この集光された反射光は撮像器上に受光点を形成し、撮像器はこの受光点を撮像するので、表示器の表示画面上においても受光点が表示される。この場合、測定対象物の照射点から出射される反射光は、測定対象物に照射される可視光の光軸と、測定対象物の照射点を通る測定対象物の表面の法線とを含む測定対象物の表面に対して垂直な平面内であって、前記法線を中心にして前記測定対象物に照射される可視光の光軸と対称な位置にある。したがって、測定対象物における可視光の照射点を通る測定対象物の表面の法線に対して、測定対象物に照射される可視光の光軸が所定角度であれば、撮像器の所定位置に受光点は撮像され、表示器の表示画面上においても所定位置に受光点は表示される。一方、測定対象物における可視光の照射点を通る測定対象物の表面の法線に対して、測定対象物に照射される可視光の光軸が前記所定角度でなければ、撮像器における前記所定位置とは異なる位置に受光点は撮像されて、表示器の表示画面上においても前記所定位置とは異なる位置に受光点は表示される。
この所定位置が受光点基準位置であり、作業者は、受光点を含む領域の画像を表示する表示器の画面を見ながら、表示器による表示画面上で、受光点の画像上の位置が受光点基準位置に合致するように、回折環形成装置又は測定対象物を回転させて、例えば、回折環形成装置又は測定対象物を測定対象物における可視光の照射点を中心に測定対象物の表面の法線に垂直な少なくとも2つの軸周りに回転させて、測定対象物の表面の法線に対する可視光の光軸の角度を調整する。その結果、受光点の画像上の位置が受光点基準位置に合致すれば、測定対象物における可視光の照射点を通る測定対象物の表面の法線に対して、測定対象物に照射される可視光の光軸が所定角度に設定されたことになる。
その結果、前記本発明の第2の特徴によれば、測定対象物に照射される可視光の測定対象物の照射点を通る測定対象物の法線に対する角度が所定角度に設定され、測定対象物の所定位置の残留応力の計算のために、測定対象物におけるX線の測定対象物に対する入射角度を検出する必要がなくなるとともに、前記入射角度を簡単かつ精度よく取得できる。
また、本発明の第3の特徴は、結像レンズは測定対象物による可視光の反射光を集光し、撮像器は前記集光された反射光の受光点も撮像し、かつカメラは受光点を表す撮像信号も出力し、表示器は、撮像器よって撮像された受光点も撮像信号により画面上に表示し、さらに、カメラを、測定対象物における可視光の照射点からイメージングプレートまでの距離(すなわち、可視光の出射点からイメージングプレートまでの垂直方向の距離)が所定距離であるときに撮像器によって撮像される照射点の撮像位置と、測定対象物における可視光の照射点を通る測定対象物の表面の法線に対して、測定対象物に照射される可視光の光軸が所定角度であるときに撮像器によって撮像される受光点の撮像位置とが一致するように構成しておき、表示器は、前記撮像位置を一致させた照射点及び受光点の画像上の位置を基準位置として、撮像信号により表示される画像とは独立して画面上に表示するようにしたことにある。
前記本発明の第3の特徴においては、作業者は、照射点及び受光点を含む領域の画像を表示する表示器の画面を見ながら、表示器による表示画面上で、照射点及び受光点の画像上の位置が基準位置に共に合致し、照射点が測定対象物の表面の所定位置に合致するように、測定対象物の表面の平行方向及び垂直方向に、回折環形成装置又は測定対象物を移動させて、回折環形成装置と測定対象物との前記平行方向及び垂直方向の相対位置を調整するとともに、回折環形成装置又は測定対象物を回転させて、例えば回折環形成装置又は測定対象物を測定対象物における可視光の照射点を中心に回転させて、測定対象物の表面の法線に対する可視光の光軸の角度を調整する。これによれば、前述した場合と同様に、測定対象物におけるX線の照射点からイメージングプレートまでの距離が所定距離に設定されるとともに、測定対象物に照射される可視光の測定対象物の照射点を通る測定対象物の法線に対する角度が所定角度に設定される。その結果、前記本発明の第3の特徴によれば、測定対象物におけるX線の出射点からイメージングプレートまでの距離、及び測定対象物におけるX線の測定対象物に対する入射角度を検出する必要がなくなるとともに、前記距離及び入射角度を簡単かつ精度よく取得できる。
また、本発明の第4の特徴は、撮像信号を基に撮像器によって撮像された照射点の撮像位置を検出し、撮像器によって撮像される照射点の撮像位置と、照射点からイメージングプレートまでの距離との関係に基づいて、前記検出した照射点の撮像位置を用いて照射点からイメージングプレートまでの距離を導出する距離導出手段(91)を設けたことにある。
測定対象物における可視光の照射点からイメージングプレートまでの距離が所定距離であれば、前述のように、結像レンズによる結像により、撮像器の所定位置に可視光の照射位置が撮像される。一方、可視光の照射点からイメージングプレートまでの距離が前記所定距離でないときには、撮像器における可視光の照射点は前記所定位置からずれて撮像される。この可視光の照射点の前記所定位置からのずれ量は、可視光の照射点からイメージングプレートまでの距離と1対1の関係にあるので、撮像器における可視光の照射点の位置が特定されれば、3角測量の原理により、可視光の照射点からイメージングプレートまでの距離を計算できる。したがって、前記本発明の第4の特徴によれば、距離導出手段により、可視光の照射点からイメージングプレートまでの距離が簡単かつ精度よく取得できる。
また、本発明の第5の特徴は、結像レンズは測定対象物による可視光の反射光を集光し、撮像器は前記集光された反射光の受光点も撮像し、かつカメラは前記受光点を表す撮像信号も出力し、さらに、撮像信号を基に撮像器によって撮像された受光点の撮像位置を検出し、撮像器によって撮像された受光点の撮像位置と、可視光出射器から出射される可視光の測定対象物の表面の法線に対する角度との関係に基づいて、前記検出した受光点の撮像位置を用いて可視光出射器から出射される可視光の測定対象物の表面の法線に対する角度を導出する角度導出手段(91)を設けたことにある。
可視光出射器から出射される可視光の測定対象物の表面の法線に対する角度が所定角度であれば、前述のように、結像レンズによる集光により、撮像器の所定位置に可視光の受光点が撮像される。一方、可視光の測定対象物の表面の法線に対する角度が前記所定角度でないときには、撮像器における可視光の受光点は前記所定位置からずれて撮像される。この可視光の受光点の前記所定位置からのずれ量は、可視光の照射点からイメージングプレートまでの距離が一定であれば、前記可視光の測定対象物の表面の法線に対する角度と1対1の関係にあるので、撮像器における可視光の受光点の位置が特定されれば、可視光の測定対象物の表面の法線に対する角度を計算できる。したがって、前記本発明の第5の特徴によれば、撮像器によって撮像される照射点の画像上の位置を照射点基準位置になるように調整した状態において、又は測定対象物の厚さがほぼ一定であるため常に可視光の照射点からイメージングプレートまでの距離が一定である状態において、角度導出手段により、可視光の測定対象物の表面の法線に対する角度が導出され、可視光とX線は同軸であるので、前記角度を簡単かつ精度よく取得できる。
さらに、本発明の第6の特徴は、前述した回折環形成装置を備え、さらに、測定対象物を載置するためのステージを有し、ステージの回折環形成装置に対する位置を調整可能とする対象物セット装置を備えたことにある。この場合、ステージの回折環形成装置に対する位置は、例えば、直交する3軸方向の相対位置及び前記3軸方向のうちの少なくとも2軸周りの相対回転位置である。
この本発明の第6の特徴によれば、ステージの位置を調整すれば、測定対象物の回折環形成装置に対する位置を簡単に調整できる。
さらに、本発明の実施にあたっては、回折環形成装置に限定されるものではなく、回折環形成装置を用いたX線による回折環の形成方法の発明としても実施し得るものである。
本発明の一実施形態に係るX線回折測定装置を含むX線回折測定システムを示す全体概略図である。 図1のX線回折測定装置の拡大図である。 図2のX線回折測定装置におけるX線が通過する部分を拡大して示す部分断面図である。 図1のプレート部分の拡大斜視図である。 X線回折測定装置を用いて、測定対象物の残留応力を測定するまでの工程図である。 (A)はステージのX,Y,Z軸方向の位置調整を説明するための図であり、(B)は前記位置調整時の画像を示す図である。 (A)はステージのX,Y軸周りの傾き調整を説明するための図であり、(B)は前記傾き調整時の画像を示す図である。 (A)はステージのX,Y,Z軸方向の位置及びX,Y軸周りの傾きの微調整を説明するための図であり、(B)は前記微調整時の画像を示す図である。
本発明の一実施形態に係るX線回折測定装置を含むX線回折測定システムの構成について図1乃至図3を用いて説明する。このX線回折測定システムは、測定対象物OBの残留応力を測定及び評価するために、X線を測定対象物OBに照射するとともに、X線の照射によって測定対象物OBからの出射される回折X線により形成される回折環の形状を検出する。なお、本実施形態では、測定対象物OBは鉄製の板状部材である。
X線回折測定装置は、X線を出射するX線出射器10、回折X線による回折環が形成されるイメージングプレート15を取り付けるためのテーブル16と、テーブル16を回転及び移動させるテーブル駆動機構20と、イメージングプレート15に形成された回折環の形状を測定するためのレーザ検出装置30と、これらのX線出射器10、イメージングプレート15、テーブル16、テーブル駆動機構20及びレーザ検出装置30を収容するケース50とを備えている。そして、X線回折測定システムは、前記X線回折測定装置とともに、測定対象物OBがセットされる対象物セット装置60、コンピュータ装置90及び高電圧電源95を備えている。また、ケース50内には、X線出射器10、テーブル16、テーブル駆動機構20及びレーザ検出装置30に接続されて作動制御したり、検出信号を入力したりするための各種回路も内蔵されており、図1においてケース50外に示された2点鎖線で示された各種回路は、ケース50内の2点鎖線内に納められている。なお、図1及び図2においては、回路基板、電線、固定具、空冷ファンなどは省略されている。
ケース50は、略直方体状に形成されるとともに、底面壁50aと側面壁50bの角部を紙面の表側から裏側に向けて切り欠くように設けた切欠き部壁50cを有するように形成されている。ケース50の上面壁50dには、ケース50を持ち運ぶための取っ手51が設けられている。このケース50の図示裏側の側面壁には、支持ロッド52(図1では省略)に固定される固定具が設けられており、ケース50は、切欠き部壁50cが対象物セット装置60の上面に対向するように、図示傾斜状態で支持ロッド52に固定される。支持ロッド52は、設置面上に載置された平板状に形成された設置プレート53上に立設固定されている。
対象物セット装置60は、いわゆるゴニオメータで構成されており、測定対象物OBが載置されるステージ61を、図示X,Y,Z軸方向にそれぞれ移動させるとともに、図示X軸及びY軸周りに回動(傾斜)させるものである。設置面上に載置された平板状に形成された設置プレート62上に、高さ調整機構63、第1乃至第5プレート64〜68及びステージ61がそれぞれ下から上に順に載置されている。高さ調整機構63は、操作子63aを有し、操作子63aの回動操作により第1プレート64を設置プレート62に対して上下動(すなわちZ軸方向に移動)させて、設置プレート62と第1プレート64間の垂直距離を変更することにより第1プレート64の高さすなわちステージ61の高さを変更する。
第2プレート65には操作子65aが組み付けられており、操作子65aの回動操作により、図示しない機構を介して第3プレート66が第2プレート65に対してY軸周りに回動されて、第3プレート66の第2プレート65に対するY軸周りの傾斜角すなわちステージ61のY軸周りの傾斜角が変更される。第3プレート66には操作子66aが組み付けられており、操作子66aの回動操作により、図示しない機構を介して第4プレート67が第3プレート66に対してX軸周りに回動されて、第4プレート67の第3プレート66に対するX軸周りの傾斜角すなわちステージ61のX軸周りの傾斜角が変更される。第4プレート67には操作子67aが組み付けられており、操作子67aの回動操作により、図示しない機構を介して第5プレート68が第4プレート67に対してX軸方向に移動されて、第5プレート68の第4プレート67に対するX軸方向の位置すなわちステージ61のX軸方向の位置が変更される。第5プレート68には操作子68aが組み付けられており、操作子68aの回動操作により、図示しない機構を介してステージ61が第5プレート68に対してY軸方向に移動されて、ステージ61の第5プレート68に対するY軸方向の位置すなわちステージ61のY軸方向の位置が変更される。
X線出射器10は、長尺状に形成され、ケース50内の上部にて図示左右方向に延設されてケース50に固定されており、高電圧電源95からの高電圧の供給を受け、X線制御回路71により制御されて、X線を下方(図示左下方向)に向けて出射する。X線出射器10から出射されたX線の光軸の垂直方向に対する角度(X線の入射角度φ)が所定角度φoとなるように、ケース50が支持ロッド52に対して組み付けられるとともに、X線出射器10の出射口11の向きが設定されている。この所定角度φoは、例えば30度乃至45度の範囲内の所定角度である。
X線制御回路71は、後述するコンピュータ装置90を構成するコントローラ91によって制御され、X線出射器10から一定の強度のX線が出射されるように、X線出射器10に高電圧電源95から供給される駆動電流及び駆動電圧を制御する。また、X線出射器10は、図示しない冷却装置を備えていて、X線制御回路71は、この冷却装置に供給される駆動信号も制御する。これにより、X線出射器10の温度が一定に保たれる。
テーブル駆動機構20は、X線出射器10の下方にて、移動ステージ21を備えている。移動ステージ21は、フィードモータ22及びスクリューロッド23により、X線出射器10から出射されたX線の光軸と測定対象物OBの法線とが成す平面内であって、前記X線の光軸に垂直な方向に移動可能となっている。フィードモータ22は、テーブル駆動機構20内に固定されていてケース50に対して移動不能となっている。スクリューロッド23は、X線出射器10から出射されたX線の光軸に垂直な方向に延設されていて、その一端部がフィードモータ22の出力軸に連結されている。スクリューロッド23の他端部は、テーブル駆動機構20内に設けた軸受部24に回転可能に支持されている。また、移動ステージ21は、それぞれテーブル駆動機構20内にて固定された、対向する1対の板状のガイド25,25により挟まれていて、スクリューロッド23の軸線方向に沿って移動可能となっている。すなわち、フィードモータ22を正転又は逆転駆動すると、フィードモータ22の回転運動が移動ステージ21の直線運動に変換される。フィードモータ22内には、エンコーダ22aが組み込まれている。エンコーダ22aは、フィードモータ22が所定の微小回転角度だけ回転するたびに、ハイレベルとローレベルとに交互に切り替わるパルス列信号を位置検出回路72及びフィードモータ制御回路73へ出力する。
位置検出回路72及びフィードモータ制御回路73は、コントローラ91からの指令により作動開始する。測定開始直後において、フィードモータ制御回路73は、フィードモータ22を駆動して移動ステージ21をフィードモータ22側へ移動させる。位置検出回路72は、エンコーダ22aから出力されるパルス列信号が入力されなくなると、移動ステージ21が移動限界位置に達したことを表す信号をフィードモータ制御回路73に出力し、カウント値を「0」に設定する。フィードモータ制御回路73は、位置検出回路72から移動限界位置に達したことを表す信号を入力すると、フィードモータ22への駆動信号の出力を停止する。上記の移動限界位置を移動ステージ21の原点位置とする。したがって、位置検出回路72は、移動ステージ21が図1及び図2にて左上方向に移動して移動限界位置に達したとき「0」を表す位置信号を出力し、移動ステージ21が移動限界位置から右下方向へ移動すると、エンコーダ22aからのパルス列信号をカウントし、移動限界位置からの移動距離xを表す信号を位置信号として出力する。
フィードモータ制御回路73は、コントローラ91から移動ステージ21の移動先の位置を表す設定値を入力すると、その設定値に応じてフィードモータ22を正転又は逆転駆動する。位置検出回路72は、エンコーダ22aが出力するパルス信号のパルス数をカウントする。そして、位置検出回路72は、カウントしたパルス数を用いて移動ステージ21の現在の位置(移動限界位置からの移動距離x)を計算し、コントローラ91及びフィードモータ制御回路73に出力する。フィードモータ制御回路73は、位置検出回路72から入力した移動ステージ21の現在の位置が、コントローラ91から入力した移動先の位置と一致するまでフィードモータ22を駆動する。
また、フィードモータ制御回路73は、移動ステージ21の移動速度を表す設定値をコントローラ91から入力する。そして、エンコーダ22aから入力したパルス信号の単位時間当たりのパルス数を用いて、移動ステージ21の移動速度を計算し、前記計算した移動ステージ21の移動速度がコントローラ91から入力した移動速度になるようにフィードモータ22を駆動する。
一対のガイド25,25の上端は、板状の上壁26によって連結されている。上壁26には、貫通孔26aが設けられていて、貫通孔26aの中心位置はX線出射器10の出射口11の中心位置に対向しており、X線出射器10から出射されたX線は、出射口11及び貫通孔26aを介してテーブル駆動機構20内に入射する。
後述するイメージングプレート15が回折環撮像位置にある状態(図1乃至図3の状態)において、移動ステージ21の貫通孔26aと対向する位置には、図3に拡大して示すように、貫通孔21aが形成されている。移動ステージ21には、出射口11及び貫通孔26a,21aの中心軸線位置を回転中心とする出力軸27aを有するスピンドルモータ27が組み付けられている。出力軸27aは、円筒状に形成され、回転中心を中心軸とする断面円形の貫通孔27a1を有する。スピンドルモータ27の出力軸27aと反対側には、貫通孔27a1の中心位置を中心軸線とする貫通孔27bが設けられている。貫通孔27bの内周面上には、貫通孔27bの一部の内径を小さくするための円筒状の通路部材28が固定されている。
また、スピンドルモータ27内には、エンコーダ22aと同様のエンコーダ27cが組み込まれている。エンコーダ27cは、スピンドルモータ27が所定の微小回転角度だけ回転する度に、ハイレベルとローレベルとに交互に切り替わるパルス列信号を、スピンドルモータ制御回路74及び回転角度検出回路75へ出力する。さらに、エンコーダ27cは、スピンドルモータ27が1回転するごとに、所定の短い期間だけローレベルからハイレベルに切り替わるインデックス信号を、コントローラ91及び回転角度検出回路75に出力する。
スピンドルモータ制御回路74及び回転角度検出回路75は、コントローラ91からの指令により作動開始する。スピンドルモータ制御回路74は、コントローラ91から、スピンドルモータ27の回転速度を表す設定値を入力する。そして、エンコーダ27cから入力したパルス信号の単位時間当たりのパルス数を用いてスピンドルモータ27の回転速度を計算し、計算した回転速度がコントローラ91から入力した回転速度(設定値)になるように、駆動信号をスピンドルモータ27に供給する。回転角度検出回路75は、エンコーダ27cから出力されたパルス列信号のパルス数をカウントし、そのカウント値を用いてスピンドルモータ27の回転角度すなわちイメージングプレート15の回転角度θpを計算して、コントローラ91に出力する。そして、回転角度検出回路75は、エンコーダ27cから出力されたインデックス信号を入力すると、カウント値を「0」に設定する。すなわち、インデックス信号を入力した位置が回転角度0度の基準位置である。
テーブル16は、円形状に形成され、スピンドルモータ27の出力軸27aの先端部に固定されている。テーブル16の中心軸と、スピンドルモータ27の出力軸の中心軸とは一致している。テーブル16は、一体的に設けられて下面中央部から下方へ突出した突出部17を有していて、突出部17の外周面には、ねじ山が形成されている。突出部17の中心軸は、スピンドルモータ27の出力軸27aの中心軸と一致している。テーブル16の下面には、イメージングプレート15が取付けられる。イメージングプレート15は、表面に蛍光体が塗布された円形のプラスチックフィルムである。イメージングプレート15の中心部には、貫通孔15aが設けられていて、この貫通孔15aに突出部17を通し、突出部17の外周面上にナット状の固定具18をねじ込むことにより、イメージングプレート15が、固定具18とテーブル16の間に挟まれて固定される。固定具18は、円筒状の部材で、内周面に、突出部17のねじ山に対応するねじ山が形成されている。
テーブル16、突出部17及び固定具18にも貫通孔16a,17a,18aがそれぞれ設けられており、貫通孔16a,17a,18aの中心軸はテーブル16の中心軸と同じであり、貫通孔18aの内径は貫通孔16a,17aに比べて小さく、前述した通路部材28の内径と同じである。したがって、スピンドルモータ27の出力軸27aから出射されたX線は、貫通孔16a,17a,18aを介するとともに、切欠き部壁50cに設けた円形孔50c1を介して外部下方に位置する測定対象物OBに向かって出射される。この場合、通路部材28の内径及び貫通孔18aの内径は小さいので、通路部材28を介して貫通孔27b,27a1,16a,17a内に入射したX線はやや拡散しているが、貫通孔18aから出射されるX線は貫通孔27a1の軸線に平行な平行光となり、円形孔50c1から出射される。また、この円形孔50c1の内径は、測定対象物OBからの回折光をイメージングプレート15に導くために大きい。
イメージングプレート15は、フィードモータ22によって駆動されて、移動ステージ21、スピンドルモータ27及びテーブル16と共に、原点位置から回折環を撮像する回折環撮像位置へ移動する。前述のように、この回折環撮像位置において、X線出射器10から出射されたX線がステージ61上の測定対象物OBに照射されるようになっている。また、イメージングプレート15は、スピンドルモータ27によって駆動されて回転しながら、フィードモータ22によって駆動されて、移動ステージ21、スピンドルモータ27及びテーブル16と共に、撮像した回折環を読み取る回折環読取り領域内、及び回折環を消去する回折環消去領域内を移動する。なお、この場合のイメージングプレート15の移動においては、イメージングプレート15の中心軸が、X線出射器10から出射されたX線の光軸と測定対象物OBの法線とが成す平面内に保たれた状態で、前記X線の光軸に垂直な方向に移動する。
レーザ検出装置30は、回折環を撮像したイメージングプレート15にレーザ光を照射して、イメージングプレート15から入射した光の強度を検出する。レーザ検出装置30は、測定対象物OB及び回折環撮像位置にあるイメージングプレート15からフィードモータ22側に充分離れている。すなわち、イメージングプレート15が回折環撮像位置にあるとき、測定対象物OBにて回折したX線がレーザ検出装置30によって遮られないようになっている。レーザ検出装置30は、レーザ光源31と、コリメートレンズ32、反射鏡33、偏光ビームスプリッタ34、1/4波長板35及び対物レンズ36を備えている。
レーザ光源31は、レーザ駆動回路77によって制御されて、イメージングプレート15に照射するレーザ光を出射する。レーザ駆動回路77は、コントローラ91によって制御され、レーザ光源31から所定の強度のレーザ光が出射されるように、駆動信号を制御して供給する。レーザ駆動回路77は、後述するフォトディテクタ42から出力された受光信号を入力して、受光信号の強度が所定の強度になるようにレーザ光源31に出力する駆動信号を制御する。これにより、イメージングプレート15に照射されるレーザ光の強度が一定に維持される。
コリメートレンズ32は、レーザ光源31から出射されたレーザ光を平行光に変換する。反射鏡33は、コリメートレンズ32にて平行光に変換されたレーザ光を、偏光ビームスプリッタ34に向けて反射する。偏光ビームスプリッタ34は、反射鏡33から入射したレーザ光の大半(例えば、95%)をそのまま透過させる。1/4波長板35は、偏光ビームスプリッタ34から入射したレーザ光を直線偏光から円偏光に変換する。対物レンズ36は、1/4波長板35から入射したレーザ光をイメージングプレート15の表面に集光させる。この対物レンズ36から出射されるレーザ光の光軸は、X線出射器10から出射されたX線の光軸と測定対象物OBの法線とが成す平面内であって、前記X線の光軸に平行な方向、すなわち移動ステージ21の移動方向に対して垂直な方向である。
対物レンズ36には、フォーカスアクチュエータ37が組み付けられている。フォーカスアクチュエータ37は、対物レンズ36をレーザ光の光軸方向に移動させるアクチュエータである。なお、対物レンズ36は、フォーカスアクチュエータ37が通電されていないときに、その可動範囲の中心に位置する。
対物レンズ36によって集光されたレーザ光を、イメージングプレート15の表面であって、回折環が撮像されている部分に照射すると、輝尽発光(Photo−Stimulated Luminesence)現象が生じる。すなわち、回折環を撮像した後、イメージングプレート15にレーザ光を照射すると、イメージングプレート15の蛍光体が回折X線の強度に応じた光であって、レーザ光の波長よりも波長が短い光を発する。イメージングプレート15に照射されて反射したレーザ光の反射光及び蛍光体から発せられた光は、対物レンズ36及び1/4波長板35を通過して、偏光ビームスプリッタ34にて反射する。偏光ビームスプリッタ34の反射方向には、集光レンズ38、シリンドリカルレンズ39及びフォトディテクタ40が設けられている。集光レンズ38は、偏光ビームスプリッタ34から入射した光を、シリンドリカルレンズ39に集光する。シリンドリカルレンズ39は、透過した光に非点収差を生じさせる。フォトディテクタ40は、分割線で区切られた4つの同一正方形状の受光素子からなる4分割受光素子によって構成されており、時計回りに配置された受光領域A,B,C,Dに入射した光の強度に比例した大きさの検出信号を受光信号(a,b,c,d)として、増幅回路78に出力する。
増幅回路78は、フォトディテクタ40から出力された受光信号(a,b,c,d)をそれぞれ同じ増幅率で増幅して受光信号(a’,b’,c’,d’)を生成し、フォーカスエラー信号生成回路79及びSUM信号生成回路80へ出力する。本実施形態においては、非点収差法によるフォーカスサーボ制御を用いる。フォーカスエラー信号生成回路79は、増幅された受光信号(a’,b’,c’,d’)を用いて、演算によりフォーカスエラー信号を生成する。すなわち、フォーカスエラー信号生成回路79は、(a’+c’)−(b’+d’)の演算を行い、この演算結果をフォーカスエラー信号としてフォーカスサーボ回路81へ出力する。フォーカスエラー信号(a’+c’)−(b’+d’)は、レーザ光の焦点位置のイメージングプレート15の表面からのずれ量を表している。
フォーカスサーボ回路81は、コントローラ91により制御され、フォーカスエラー信号に基づいて、フォーカスサーボ信号を生成してドライブ回路82に出力する。ドライブ回路82は、このフォーカスサーボ信号に応じてフォーカスアクチュエータ37を駆動して、対物レンズ36をレーザ光の光軸方向に変位させる。この場合、フォーカスエラー信号(a’+c’)−(b’+d’)の値が常に一定値(例えば、ゼロ)となるようにフォーカスサーボ信号を生成することにより、イメージングプレート15の表面にレーザ光を集光させ続けることができる。
SUM信号生成回路80は、受光信号(a’,b’,c’,d’)を合算してSUM信号(a’+b’+c’+d’)を生成し、A/D変換回路83に出力する。SUM信号の強度は、イメージングプレート15にて反射したレーザ光の強度と輝尽発光により発生した光の強度を合わせた強度に相当するが、イメージングプレート15にて反射したレーザ光の強度はほぼ一定であるので、SUM信号の強度は、輝尽発光により発生した光の強度に相当する。すなわち、SUM信号の強度は、イメージングプレート15に入射した回折X線の強度に相当する。A/D変換回路83は、コントローラ91によって制御され、SUM信号生成回路80からSUM信号を入力し、入力したSUM信号の瞬時値をディジタルデータに変換してコントローラ91に出力する。
また、レーザ検出装置30は、集光レンズ41及びフォトディテクタ42を備えている。集光レンズ41は、レーザ光源31から出射されたレーザ光の一部であって、偏光ビームスプリッタ34を透過せずに反射したレーザ光をフォトディテクタ42の受光面に集光する。フォトディテクタ42は、受光面に集光された光の強度に応じた受光信号を出力する受光素子である。従って、フォトディテクタ42は、レーザ光源31が出射したレーザ光の強度に対応した受光信号をレーザ駆動回路77へ出力する。
また、対物レンズ36に隣接して、LED光源43が設けられている。LED光源43は、LED駆動回路84によって制御されて、可視光を発して、イメージングプレート15に撮像された回折環を消去する。LED駆動回路84は、コントローラ91によって制御され、LED光源43に、所定の強度の可視光を発生させるための駆動信号を供給する。
また、X線回折測定装置は、LED光源44を有する。LED光源44は、図2乃至図4に示すように、X線出射器10とテーブル駆動機構20の上壁26との間に配置されたプレート45の一端部下面に固定されている。プレート45は、その他端部上面にて、ケース50内に固定されたモータ46の出力軸46aに固着されており、モータ46の回転により、テーブル駆動機構20の上壁26に平行な面内を回転する。テーブル駆動機構20の上壁26にはストッパ部材47a,47bが設けられており、ストッパ部材47aは、プレート45を図4のD1方向に回転させたとき、LED光源44がX線出射器10の出射口11及びテーブル駆動機構20の上壁26の貫通孔26aに対向する位置(A位置)に静止するように、プレート45の回転を規制する。一方、ストッパ部材47bは、プレート45を図4のD2方向に回転させたとき、プレート45がX線出射器10の出射口11とテーブル駆動機構20の上壁26の貫通孔26aとの間を遮断しない位置(B位置)に静止するように、プレート45の回転を規制する。言い換えれば、A位置は、プレート45が図2及び図3に示す状態にある位置であり、LED光源44から出射されるLED光がスピンドルモータ27の貫通孔27a1に設けた通路部材28の通路に入射する位置である。B位置は、X線出射器10から出射されるX線がプレート45によって遮られない位置である。
LED光源44は、コントローラ91によって作動制御されるLED駆動回路85からの駆動信号によりLED光を出射する。LED光は拡散する可視光であり、プレート45がA位置にあるとき、その一部は、貫通孔26a,21a、通路部材28の通路及び貫通孔27bを介して、スピンドルモータ27の出力軸27aの貫通孔27a1に入射し、貫通孔16a,17a,18a及び切欠き部壁50cの円形孔50c1から出射される。このLED光の場合も、通路部材28の内径及び貫通孔18aの内径は小さいので、通路部材28を介して貫通孔27b,27a1,16a,17a内に入射したX線はやや拡散しているが、貫通孔18aから出射されるLED光は貫通孔27a1の軸線に平行な平行光となり、円形孔50c1から出射される。したがって、LED光源44、通路部材28、貫通孔18aなどが、可視光である平行光を測定対象物OBに出射する本発明の可視光出射器を構成する。
モータ46はエンコーダ22a,27aと同様なエンコーダ46bを備えており、エンコーダ46bはモータ46が所定の微小回転角度だけ回転する度に、ハイレベルとローレベルとに交互に切り替わるパルス列信号を回転制御回路86に出力する。回転制御回路86は、コントローラ91から回転方向と回転開始の指示が入力されると、モータ46に駆動信号を出力して、モータ46を指示方向に回転させる。そして、エンコーダ46bからのパルス列信号の入力が停止すると、駆動信号の出力を停止する。これにより、プレート45を、上述したA位置及びB位置までそれぞれ回転させることができる。
ケース50の切欠き部壁50cには結像レンズ48が設けられているとともに、ケース50内部には撮像器49が設けられている。撮像器49は、多数の撮像素子をマトリクス状に配置したCCD受光器又はCMOS受光器で構成され、各撮像素子で受光した光の強度に応じた大きさの受光信号(撮像信号)を撮像素子ごとにセンサ信号取出回路87にそれぞれ出力する。これらの結像レンズ48及び撮像器49は、イメージングプレート15に対して設定された位置にある測定対象物OBにおけるLED光の出射点を中心とした領域の画像を撮像する。すなわち、結像レンズ48及び撮像器49は、測定対象物OBを撮像するディジタルカメラとして機能する。このイメージングプレート15に対して設定された位置とは、前記測定対象物OBにおけるX線及びLED光の出射点(照射点)からイメージングプレート15までの垂直距離Lが、予め決められた所定距離Loとなる位置である。なお、この場合の結像レンズ48及び撮像器49による被写界深度は、前記出射点を中心とした前後の範囲で設定されている。センサ信号取出回路87は、撮像器49の各撮像素子からの受光信号(撮像信号)を、各撮像素子の位置(すなわち画素位置)が分かるデータと共にコントローラ91に出力する。したがって、コントローラ91には、測定対象物OBにおけるLED光の照射点P1(図6〜図8参照)を含む、照射点P1近傍の画像を表す画像データが出力されることになる。
また、結像レンズ48の光軸と、測定対象物OBに照射されるX線及びLED光の光軸を含む平面は、対象物セット装置60の設置プレート62の上面と平行な面(すなわち傾き角度が「0」であるときのステージ61の上面)に垂直になっている。また、結像レンズ48の光軸と、測定対象物OBに照射されるX線及びLED光の光軸が交わる点は、イメージングプレート15に対して設定された位置にある測定対象物OBにおけるX線及びLED光の出射点(照射点)である。さらに、設定された位置にある測定対象物OBにおけるX線及びLED光の出射点を通り、かつ対象物セット装置60の設置プレート62の上面と平行な面(すなわち傾き角度が「0」であるときのステージ61の上面)の法線に対して、結像レンズ48の光軸がなす角度は、X線出射器10から出射されるX線及びLED光源44から出射されるLED光の光軸が前記法線に対してなす角度(X線及びLED光の入射角度φ)に等しい。
したがって、測定対象物OBがイメージングプレート15に対して設定された位置にある状態で、LED光源44からのLED光を測定対象物OBに照射した場合には、照射点P1を含む測定対象物OBの画像が撮像器49で撮像されることに加えて、測定対象物OBにて反射したLED光の受光点P2(図7,8参照)も撮像器49で照射点P1と同じ位置に撮像されることになる。すなわち、測定対象物OBに照射されるLED光は平行光であり、測定対象物OBにおけるLED光の照射点において、LED光は散乱光と、略平行光のまま反射する反射光を発生させる。そして、散乱光のうち結像レンズ48に入射した光は撮像器49の位置で結像して照射点P1の画像となり、結像レンズ48に入射した反射光は結像レンズ48により集光されて撮像器49で受光され、受光点P2の画像となる。測定対象物OBが設定された位置にあるとき、結像レンズ48に入射する散乱光の光軸と反射光の光軸は、いずれも結像レンズ48の光軸と一致するため、照射点P1の画像と受光点P2の画像は同じ位置になる。なお、撮像器49は測定対象物OBを撮像するもので、撮像器49は結像レンズ48の焦点位置よりも若干量だけ後方に位置するので、厳密には、撮像器49によって受光される反射光は集光した後にやや拡散したものである。
コンピュータ装置90は、コントローラ91、入力装置92及び表示装置93からなる。コントローラ91は、CPU、ROM、RAM、大容量記憶装置などを備えたマイクロコンピュータを主要部とした電子制御装置であり、大容量記憶装置に記憶された各種プログラムを実行してX線回折測定装置の作動を制御する。入力装置92は、コントローラ91に接続されて、作業者により、各種パラメータ、作業指示などの入力のために利用される。表示装置93は、表示画面上に撮像器49によって撮像された照射点P1及び受光点P2を含む画像に加えて、ステージ61上に測定対象物OBの高さ及び傾斜角を適正に設定するためのマークも表示される。このマークに関しては、詳しく後述する。さらに、表示装置93は、作業者に対して各種の設定状況、作動状況、測定結果なども視覚的に知らせる。高電圧電源95は、X線出射器10にX線出射のための高電圧及び電流を供給する。
以下に、上記のように構成したX線回折測定装置を含むX線回折測定システムを用いて、測定対象物OBである平板状の鉄材の回折環を測定して残留応力を求める具体的方法について説明する。この残留応力の測定においては、X線回折測定システムを図1及び図2に示すように構成するとともに、電源を投入することによりX線回折測定システムの作動を開始させる。そして、図5に示すようなステージ調整工程S1、回折環撮像工程S2、回折環読取り工程S3,回折環消去工程S4及び残留応力計算工程S5を実行する。
まず、ステージ調整工程S1について説明する。このステージ調整工程S1においては、作業者は、残留応力の測定位置にX線及びLED光が照射されるとともに、残留応力の測定方向とY軸方向(図2参照)が合うように測定対象物OBを置いた後、入力装置92を操作して、ステージ調整工程S1の開始をコントローラ91に指示する。この指示に応答して、コントローラ91は、フィードモータ制御回路73を制御して、イメージングプレート15を回折環撮像位置(図1及び図2の状態)に移動させる。また、コントローラ91は、回転制御回路86を制御し、モータ46をストッパ部材47aによりプレート45の回転が停止するまで図4のD1方向に回転させて、プレート45をA位置まで回転させる。この状態では、LED光源44がテーブル駆動機構20の上壁26に設けた貫通孔26aに対向して位置する。
その後、コントローラ91は、LED駆動回路85を制御して、LED光源44を点灯させる。このLED光源44の点灯により、LED光源44から出射されて拡散された可視光であるLED光の一部は、貫通孔26a、通路部材28、貫通孔27b,27a1,16a,17a,18aを介して固定具18から出射される。この場合、通路部材28及び貫通孔18aの内径は小さく、貫通孔18aから出射されるX線は貫通孔27a1の軸線に平行な平行光である。この平行光であるLED光は、ケース50の切欠き部壁50cに設けた円形孔50c1から外部へ出射され、測定対象物OBに照射される。
次に、コントローラ91は、センサ信号取出回路87に撮像器49からの撮像信号の入力を指示して、撮像器49による撮像信号をセンサ信号取出回路87からコントローラ91に出力させる。コントローラ91は、この撮像信号を表示装置93に出力して、撮像器49によって撮像されたLED光の照射位置近傍の画像を表示装置93に表示させる。この場合、表示装置93に表示される画像には、前記LED光の照射位置近傍の画像の中に、測定対象物OBにおけるLED光の照射点P1の画像がある。また、測定対象物OBのLED光の照射点で反射した反射光が結像レンズ48により集光されて、撮像器49が受光した受光点P2も画像として表示される。さらに、コントローラ91は、撮像器49によって撮像された照射点P1及び受光された受光点P2を含む、撮像器49からの撮像信号によって表示される画像とは独立して、結像レンズ48の光軸が撮像器49と交差する位置に相当する撮影画像上の位置に十字マークを表示する。この十字マークは、図6A乃至図6Cに破線で示すものであり、図2のX軸方向及びY軸方向にそれぞれ対応している。
この場合、十字マークのクロス点は表示装置93の画面の中心に位置し、十字マークのX軸方向は画面の横方向に対応し、十字マークのY軸方向は画面の縦方向に対応する。そして、十字マークのクロス点は、測定対象物OBにおけるLED光の照射点からイメージングプレート15までの距離Lが所定距離Loであるときに、照射点P1が撮像器49に撮像される位置であると同時に、距離Lが所定距離Loであり、測定対象物OBにおける照射点を通る測定対象物OBの表面に対して、測定対象物OBに照射されるLED光の光軸の角度φ(入射角度φ)が所定角度φoであるとき、測定対象物OBでの反射光が結像レンズ48により集光されて、撮像器49に受光点P2として受光される位置である。また、十字マークのY軸方向がLED光及びX線の照射方向であり、測定対象物OBの表面に投影させた方向が残留応力の測定方向である。すなわち、十字マークのクロス点は、表示装置93の表示画面上で、撮像器49によって撮像されたLED光の照射点P1及び撮像器49にて受光された受光点P2を合わせるべき点であり、Y軸方向がLED光及びX線の照射方向を示す。
次に、作業者は、表示装置93に表示される画像を見ながら、対象物セット装置60の操作子67a,68aを操作してステージ61すなわち測定対象物OBをX軸方向及びY軸方向にそれぞれ移動させて、画面上における照射点すなわちレーザ光の照射位置を測定対象物OBの所定位置(測定箇所)に設定する。また、測定対象物OBをステージ61上で回転させて、測定対象物OBの所定方向(測定方向)が十字マークのY軸方向に一致するようにして、測定対象物OBに照射されるLED光の照射方向を所定方向(測定方向)に設定する。また、操作子63aを操作して、ステージ61すなわち測定対象物OBをZ軸方向(すなわち高さ方向)に移動させて、照射点P1が十字マークのクロス点と一致するようにして、測定対象物OBにおける照射点からイメージングプレート15までの垂直距離Lを所定距離Loに設定する。さらに、操作子68a、65aを操作して、ステージ61すなわち測定対象物OBを回転させて(傾斜を変更して)、受光点P2が十字マークのクロス点と一致するようにして、測定対象物OBにおける照射点を通る測定対象物OBの表面の法線に対する測定対象物OBに照射されるLED光の角度(入射角度φ)を所定角度φoに設定する。
この表示装置93の画像を見ながらのステージ61(測定対象物OB)のX軸方向位置、Y軸方向位置、Z軸方向位置(高さ)、X軸周りの傾斜角及びY軸周りの傾斜角の調整について、図6乃至図8を用いて説明すると、前記調整は以下の手順(1)〜(3)のように行われる。なお、図6(B)、図7(B)及び図8(B)は表示装置93に表示される画像を示しており、この場合、測定対象物OBが明確に分かるように、測定対象物OBの輪郭が画像上に現れるようにしているが、測定対象物OBにおける測定箇所及びLED光の照射方向が視認できれば、測定対象物OBにおける残留応力の測定箇所部分のみが画像上に現れるようにしてもよい。
(1)まず、図6(A)(B)に示すように、操作子67a,68aを操作してステージ61をX軸方向及びY軸方向にそれぞれ移動させるとともに、測定対象物OBをステージ61上でステージ61の平面内で回転させて、LED光の照射点P1すなわち測定対象物OBに対するLED光の照射点P1(照射位置)が測定対象物OBの所定位置(測定箇所)になるとともに、測定対象物OBに対するLED光の照射方向である十字マークのY軸方向が所定方向(測定方向)になるようにしながら、操作子63aを操作してステージ61をZ軸方向(高さ方向)に移動させて、LED光の照射点P1が十字マークのクロス点になるように調整する。特に、ステージ61のX軸方向及びY軸方向の移動調整により、照射点P1を測定対象物OBの所定位置に設定しても、その後に、照射点P1が十字マークのクロス点に位置するように、ステージ61のZ軸方向への移動調整を行うと、照射点P1(照射位置)は測定対象物OBのY軸方向に多少ずれるので、これらの位置調整を繰り返し行う必要がある。なお、図6(B)においては、ステージ61の傾きが大きく、反射光の受光点P2(図7(B)参照)は画像上に現れていないものとしている。
(2)次に、図7(A)(B)に示すように、操作子66a,65aを操作してステージ61をX軸周り及びY軸周りにそれぞれ回動させて、平行光であるLED光の反射光の受光点P2が画像の中心(十字マークのクロス点)になるように調整する。
(3)さらに、図8(A)(B)に示すように、操作子67a,68a,63a,66a,65aを操作して、ステージ61のX軸方向、Y軸方向及びX軸方向の位置、並びにX軸周り及びY軸周りの傾斜角を微調整して、LED光の照射点P1(照射位置)が測定対象物OBの所定位置(測定箇所)に位置し、LED光の照射点P1及び反射光の受光点P2が十字マークのクロス点に完全に一致するようにする。また、測定対象物OBの残留応力の測定方向と画像の縦方向(Y軸方向)とがずれたときは、測定対象物OBの置き方を微調整する。
このようなLED光の照射点P1及び受光点P2の位置調整及びステージ61の平面内での測定対象物OBの向きの調整により、X線出射器10から測定対象物OBに照射されるX線は測定箇所になるとともに、照射されるX線の測定対象物OBの表面の投影方向(残留応力の測定方向)は設定方向となる。また、X線の照射点からイメージングプレート15までの距離Lは所定距離Loになる。さらに、測定対象物OBの表面の法線に対する、X線出射器10から測定対象物OBの表面に出射されるX線の角度φ(X線の入射角度φ)は所定角度φoになる。
このような画像を用いた調整の終了後、作業者は、入力装置92を操作して、コントローラ91に調整終了を指示する。この指示に応答して、コントローラ91は、LED駆動回路85を制御してLED光源44を消灯させ、センサ信号取出回路87を制御して撮像器49から撮像信号の入力停止及び撮像信号のコントローラ91への出力を停止させ、かつ回転制御回路86を制御して、モータ46をストッパ部材47bによりプレート45の回転が停止するまで図4のD2方向に回転させて、プレート45をB位置まで回転させる。このプレート45の回転により、X線出射器10からのX線がテーブル駆動機構20の上壁26に設けた貫通孔26aに入射され得る状態となる。
前記ステージ調整工程S1の終了後の回折環撮像工程S2においては、作業者は、入力装置92を用いて、測定対象物OBの材質(例えば、鉄)を入力し、残留応力の測定開始をコントローラ91に指示する。これにより、コントローラ91は、まずイメージングプレート15が撮像位置にある状態で、スピンドルモータ制御回路74を制御して、イメージングプレート15を低速回転させ、エンコーダ27cからインデックス信号を入力した時点で、イメージングプレート15の回転を停止させる。これにより、後述する回折環読取り工程S3による回折環の読取り開始時における、イメージングプレート15の回転角度が0度に設定される。
次に、コントローラ91は、X線制御回路71を制御してX線出射器10にX線の出射を開始させ、所定時間の経過後に、X線制御回路71を制御してX線出射器10にX線の出射を停止させる。これにより、X線出射器10から出射されたX線は、貫通孔26a,21a、通路部材28、貫通孔27b,27a1,16a,17a,18a及び円形孔50c1を介して外部に出射され、測定対象物OBの測定箇所に所定時間だけ照射される。この測定対象物OBへのX線の所定時間の照射により、測定対象物OBの測定箇所から回折X線が発生し、イメージングプレート15には回折環が撮像される。なお、この場合におけるX線出射器10から測定対象物OBの表面に出射されるX線の光軸方向は前記LED光の場合と同じであり、X線の測定対象物OBに対する入射角度φは、上述したLED光の場合と同様な所定角度φoである。
このような回折環撮像工程S2の後、コントローラ91は、自動的に又は作業者による入力装置92を用いた指示により、図5の回折環読取り工程S3を実行する。コントローラ91は、フィードモータ制御回路73を制御して、イメージングプレート15を回折環読取り領域内の読取り開始位置へ移動させる。このイメージングプレート15の読取り開始位置とは、対物レンズ36の中心すなわちレーザ光の照射位置が回折環基準半径Roの円に対して若干だけ内側になるような位置である。この場合、位置検出回路72から出力される位置信号は、移動ステージ21が移動限界位置にある状態から移動ステージ21が移動した移動距離xを表しており、移動ステージ21すなわちテーブル16(イメージングプレート15)が移動限界位置にある状態で、テーブル16(イメージングプレート15)の中心から対物レンズ36の中心位置までの距離は予め決められた所定値である。したがって、イメージングプレート15の読取り開始位置への移動は、位置検出回路72からの位置信号を用いて行われる。
回折環基準半径Roとは、測定対象物OBの残留応力が「0」であるときに、測定対象物OBに対するX線の照射によりイメージングプレート15上に形成される回折環の半径であり、測定対象物OBにおけるX線の回折角度φx及びイメージングプレート15から測定対象物OBまでの距離Lに応じて決まる。そして、X線の回折角度φxは測定対象物OBの材質で決まり、前記距離Lは前記ステージ調整工程S1での調整で設定されて予め決められた所定距離Loである。したがって、測定対象物OBの材質ごとに予め回折角φxを記憶しておけば、前記入力した測定対象物OBの材質を用いることにより、コントローラ91は回折環基準半径RoをRo=L・tan(φx)の演算によって自動的に計算する。なお、同一の材質の測定対象物OBの残留応力を繰り返し測定する場合には、前記回折環基準半径Roを計算することなく、繰り返し利用できる。
次に、コントローラ91は、スピンドルモータ制御回路74に、イメージングプレート15が所定の一定回転速度で回転するように、スピンドルモータ27の回転を制御させる。また、レーザ駆動回路77を制御してレーザ光源31によるレーザ光のイメージングプレート15に対する照射を開始させる。その後、コントローラ91は、フォーカスサーボ回路81にフォーカスサーボ制御の開始を指示して、フォーカスサーボ回路81にフォーカスサーボ制御を開始させる。したがって、対物レンズ36が、レーザ光の焦点がイメージングプレート15の表面に合うように光軸方向に駆動制御される。
次に、コントローラ91は、回転角度検出回路75及びA/D変換回路83を作動させて、回転角度検出回路75からスピンドルモータ27(イメージングプレート15)の基準位置からの回転角度θpを入力させ始めるとともに、A/D変換回路83からSUM信号の瞬時値のディジタルデータをコントローラ91に出力させ始める。次に、コントローラ91は、フィードモータ制御回路73を制御してフィードモータ22を回転させて、イメージングプレート15を読取り開始位置から図1及び図2の右下方向へ一定速度で移動させる。これにより、レーザ光の照射位置が、イメージングプレート15において、回折環基準半径Roの若干内側の位置から外側方向に一定速度で相対移動し始める。この若干内側の位置は、撮像した回折環の半径が回折環基準半径Roからずれる可能性のある位置よりもやや内側の位置である。これにより、レーザ光の照射位置は、相対的にイメージングプレート15上を螺旋状に回転し始める。
その後、コントローラ91は、イメージングプレート15が所定の小さな角度だけ回転するごとに、SUM信号の瞬時値のディジタルデータをA/D変換回路83を介して入力するとともに、回転角度検出回路75からの回転角度θp及び位置検出回路72からの移動距離xを入力して、SUM信号の瞬時値のディジタルデータを、基準位置からの回転角度θpと、移動距離xに基づくイメージングプレート15の中心からのレーザ光の照射位置の径方向距離r(半径値r)とに対応させて順次記憶する。この場合も、移動ステージ21すなわちテーブル16(イメージングプレート15)が移動限界位置にある状態で、テーブル16(イメージングプレート15)の中心から対物レンズ36の中心位置までの距離は予め決められた所定値であるので、前記半径値rは移動距離xを用いて計算される。これにより、螺旋状に回転するレーザ光の照射位置に関して、SUM信号の瞬時値、回転角度θp及び半径値rを表すデータが所定回転角度ごとに順次記憶されて蓄積されていく。
SUM信号の瞬時値、回転角度θp及び半径値rを表すデータの所定回転角度ごとの記憶動作と並行して、コントローラ91は、前記所定角度ごとに、SUM信号の瞬時値のピークに対応した半径値rを回折環の半径値とする。具体的には、回転角度θpが同一である複数のSUM信号の瞬時値が増加した後に減少している状態を検出することにより、前記複数のSUM信号の瞬時値のピークを検出し、このピークであるSUM信号の瞬時値に対応して記憶されている半径値rを取得する。そして、前記所定回転角度ごとの全ての半径値rを取得した時点で、SUM信号の瞬時値、回転角度θp及び半径値rを表すデータを所定回転角度ごとに検出し記憶する処理を終了する。これにより、回折環の形状が検出されたことになる。
その後、コントローラ91は、フォーカスサーボ回路81によるフォーカスサーボ制御を停止させ、レーザ駆動回路77によるレーザ光源31のレーザ光の照射を停止させる。また、コントローラ91は、A/D変換回路83及び回転角度検出回路75の作動を停止させるとともに、フィードモータ制御回路73によるフィードモータ22の作動も停止させる。これにより、回折環読取り工程S3が終了される。なお、この状態では、位置検出回路72の作動及びイメージングプレート15の回転は、以前と同様のまま継続されている。
このような回折環読取り工程S3の後、コントローラ91は、自動的に又は作業者による入力装置92を用いた指示により、図5の回折環消去工程S4を実行する。この回折環消去工程においては、コントローラ91は、フィードモータ制御回路73を制御してイメージングプレート15を回折環消去領域内の消去開始位置へ移動させる。このイメージングプレート15の消去開始位置とは、LED光源43から出力される可視光の中心が回折環基準半径Roの円に対して前記読取り開始位置の場合よりもさらに内側になるような位置である。この場合も、前記読取り開始位置の場合と同様に、イメージングプレート15の移動は、位置検出回路72からの位置信号を用いて行われる。
次に、コントローラ91は、LED駆動回路84を制御してLED光源43による可視光のイメージングプレート15に対する照射を開始させるとともに、フィードモータ制御回路73を制御して、イメージングプレート15を前記消去開始位置から消去終了位置まで図1及び図2の右下方向に一定速度で移動させるように、フィードモータ22を回転させる。消去終了位置とは、LED光源43によるLED光の中心が回折環基準半径Roよりも前記消去開始位置と同じ程度の距離だけ外側となる位置である。これにより、LED光源43による可視光が、消去開始位置から消去終了位置まで、イメージングプレート15上に螺旋状に照射され、前記回折X線によって形成された回折環が消去される。
次に、コントローラ91は、フィードモータ制御回路73を制御してイメージングプレート15の移動を停止させるとともに、LED駆動回路84を制御してLED光源43による可視光の照射を停止させる。また、コントローラ91は、位置検出回路72の作動を停止させるとともに、スピンドルモータ制御回路74を制御してスピンドルモータ27によるイメージングプレート15の回転も停止させる。これにより、回折環消去工程S4が終了する。
このような回折環消去工程S4の後、コントローラ91は、作業者による入力装置92を用いた指示により、図5の残留応力計算工程S5を実行する。なお、前記回折環消去工程S4の後、同一の測定対象物OBの異なる位置の残留応力の測定又は他の測定対象物OBの残留応力の測定のために、前記ステージ調整工程S1、回折環撮像工程S2、回折環読取り工程S3及び回折環消去工程S4を繰返し行った後、残留応力計算工程S5を行うようにしてもよい。
この残留応力計算工程S5においては、作業者による入力装置92を用いた指示により、前記取得した回折環の形状を表すデータすなわち回折環の半径値r、前記計算した回折環基準半径Ro、前記予め設定されたX線の入射角度φo、測定対象物OBからイメージングプレート15までの距離Lo、前記入力した測定対象物OBの材質などを用いて、測定対象物OBにおける測定箇所の残留圧縮応力、残留せん断応力などを計算し、計算した結果に応じて測定対象物OBのショットピーニングなどによる加工結果を評価する。なお、これらの残留圧縮応力及び残留せん断応力は、従来からよく知られているcosαを用いて計算されるとともに、その計算結果による残留圧縮応力及び残留せん断応力の大きさにより、測定対象物OBの疲労度の評価や、ショットピーニングなどによる加工結果の評価もなされる。
上記説明からも理解できるように、上記実施形態においては、X線出射器10からX線が出射されていない状態で、可視光出射器を構成するLED光源44、通路部材28、貫通孔18aなどにより、X線出射器10から出射されるX線と光軸を同一にした可視光である平行光が測定対象物OBに出射される。したがって、上記実施形態によれば、可視光である平行光が測定対象物OBに照射される照射点が測定対象物OBの測定箇所(設定位置)になるように、対象物セット装置60におけるステージ61の位置、すなわち測定対象物OBの位置を調整することにより、X線の照射位置を測定対象物OBの設定位置に容易に一致させることができる。また、LED光の照射方向が設定方向になるように測定対象物OBをステージ61上で回転させれば、X線の測定対象物OBに対する照射方向も設定方向に容易に一致させることができる。
この場合、上記実施形態においては、結像レンズ48及び撮像器49からなるカメラにより、結像レンズ48によって結像されたLED光の照射点P1を含む領域の画像を撮像器49上に撮像し、センサ信号取出回路87によって取出された撮像器49による前記画像を表す信号を用いて表示装置93に前記画像を表示するようにした。したがって、上記実施形態によれば、表示装置93に表示される前記照射点P1を含む領域の画像を見ながら、対象物セット装置60におけるステージ61の位置、すなわち測定対象物OBの位置の調整を簡単に行うことができるとともに、測定対象物OBのステージ61上の回転調整も簡単に行うことができる。
また、上記実施形態においては、イメージングプレート15からX線の照射点までの距離Lが所定距離Loであるとき、撮像器49からの撮像信号による画像とは独立して、撮像器49からの信号により表示装置93に表示される照射点の画像上の照射点の位置を照射点基準位置(十字マークのクロス点)として表示するようにした。したがって、上記実施形態によれば、表示装置93による表示画面上で、照射点P1の画像上の位置が照射点基準位置に合致するように、対象物セット装置60におけるステージ61の位置(高さ)、すなわち測定対象物OBの位置(高さ)を調整すれば、イメージングプレート15からX線の照射点までの距離Lが所定距離Loになる。その結果、イメージングプレート15からX線の照射点までの距離Lを所定距離Loに簡単に調整できる。
また、上記実施形態においては、X線出射器10から出射されるX線の測定対象物OBの表面の法線に対する角度(入射角度φ)が所定角度φoであるとき、撮像器49からの撮像信号による画像とは独立して、撮像器49からの信号により表示装置93に表示されるLED光の反射光の受光点P2の画像上の位置を受光点基準位置(十字マークのクロス点)として表示するようにした。したがって、上記実施形態によれば、表示装置93による表示画面上で、LED光の反射光の受光点P2が受光点基準位置に合致するように、対象物セット装置60におけるステージ61の傾き、すなわち測定対象物OBの傾きを調整すれば、出射X線の測定対象物の表面の法線に対する角度(X線の入射角度φ)が所定角度φoになる。その結果、出射X線の測定対象物OBの表面の法線に対する角度を所定角度φoに簡単に調整できる。
さらに、本発明の実施にあたっては、上記実施形態に限定されるものではなく、本発明の目的を逸脱しない限りにおいて種々の変更が可能である。
上記実施形態においては、対象物セット装置60の操作子67a,68a,63a,66a,65aを手動操作することにより、ステージ61及び測定対象物OBのX軸方向位置、Y軸方向位置、Z軸方向位置、X軸周りの傾斜角及びY軸周りの傾斜角を変更するようにした。しかし、これに加えて、ステージ61及び測定対象物OBをZ軸周りに回転させる機構を設けて、操作子の操作によりステージ61及び測定対象物OBをZ軸周りに回転させるようにしてもよい。また、操作子の操作によるステージ61及び測定対象物OBのX軸方向位置、Y軸方向位置、Z軸方向位置、X軸周りの傾斜角及びY軸周りの傾斜角の変更(又は、これらに加えてZ軸周りの回転位置の変更)を、対象物セット装置60内にモータを設けて、入力装置92による指示によりモータを回転させて、ステージ61及び測定対象物OBのX軸方向位置、Y軸方向位置、Z軸方向位置、X軸周りの傾斜角及びY軸周りの傾斜角(これらに加えてZ軸周りの回転位置)の一部又は全部を変更するようにしてもよい。
また、上記実施形態においては、表示装置93に表示される画像上のLED光の照射点P1及び反射光の受光点P2を同一位置に合わせるようにしたが、これらの画像上のLED光の照射点P1及び反射光の受光点P2を異なる位置に合わせるようにしてもよい。この場合、結像レンズ48の光軸位置を上記実施形態とは異なる位置にして、測定対象物OBが設定された位置にあるとき結像レンズ48に入射する散乱光の光軸と反射光の光軸が異なるようにし、撮像器49における反射光の受光点P2をLED光の照射点P1と異ならせるようにすればよい。
また、上記実施形態においては、LED光の照射点P1を画像上の所定位置に合わせるように、ステージ61すなわち測定対象物OBの高さを調整して、測定対象物OBにおけるLED光の照射位置からイメージングプレートまでの距離Lが所定距離Loになるようにした。しかし、これに代えて、測定対象物OBの表面がステージ61の表面と平行であるものに限定されていることを条件に、LED光の照射点P1を所定位置に合わせることなく、距離Lを計算により導出することができる。なお、この場合、測定対象物OBの表面がステージ61の表面と平行であるので、LED光及びX線の入射角度φを所定角度φoに設定するために、反射光の受光点P2を画像上の設定位置に合わせる調整を省略してもよい。
測定対象物OBにおける可視光の照射点からイメージングプレート15までの距離Lが所定距離Loであれば、結像レンズ48による結像により、撮像器49の所定位置にLED光の照射点が撮像される。一方、距離Lが所定距離Loでないときには、撮像器49におけるLED光の照射点は前記所定位置からずれて撮像される。このLED光の照射点の前記所定位置からずれ量は、距離Lと1対1の関係にあるので、撮像器49におけるLED光の照射点の位置が特定されれば、3角測量の原理により距離Lを計算できる。すなわち、前記所定位置に対する撮像器49による照射点の撮像位置と距離Lとの関係を予め記憶しておき、撮像器49からの撮像信号を基に、撮像器49によるLED光の照射点の撮像位置を検出して、前記撮像位置と距離Lとの関係に基づいて、前記検出した撮像位置を用いて距離Lを計算により導出する。なお、これらの撮像位置の検出及び距離Lの計算は、コントローラ91のプログラム処理により、撮像器49からの受光信号を用いて実行される。そして、この求めた距離Lを用いて回折環基準半径Ro、残留応力などを計算するようにしてもよい。
また、上記実施形態においては、画像上においてLED光の反射光の受光点P2を所定位置に合わせるように、測定対象物OBすなわちステージ61の傾きを調整して、LED光及びX線の入射角度φが所定角度φoになるようにした。しかし、これに代えて、LED光の反射光の受光点P2を所定位置に合わせることなく、入射角度φを計算により導出することもできる。
LED光の照射点P1が所定位置にある条件、すなわち測定対象物OBにおける可視光の照射点からイメージングプレート15までの距離Lが所定距離Loである条件では、LED光の入射角度φが所定角度φoであれば、結像レンズ48によるLED光の反射光の集光により、撮像器49の所定位置にLED光の反射光は受光される。一方、入射角度φが所定角度φoでないときには、撮像器49における受光点は、前記所定位置からずれる。この受光点の前記所定位置からずれ量は、入射角度φと1対1の関係にあるので、撮像器49における受光点の位置が特定されれば、入射角度φを計算できる。すなわち、撮像器49による受光点の位置と入射角度φとの関係を予め記憶しておき、撮像器49からの撮像信号を基に、撮像器49による受光点の位置を検出して、前記位置と入射角度φとの関係に基づいて、前記検出した位置を用いて入射角度φを計算により導出する。なお、これらの受光点の位置の検出及び入射角度φの計算は、コントローラ91のプログラム処理により、撮像器49からの撮像信号を用いて実行される。そして、この求めた入射角度φを用いて残留応力などを計算するようにしてもよい。
また、上記実施形態においては、プレート45、モータ46及びストッパ部材47aによりLED光源44をX線の光軸上に移動させて、LED光を測定対象物OBに照射する構造にした。しかし、これに代えて、出射X線と光軸を同一にした可視の平行光を照射することができれば、どのような構造にしてもよい。例えば、ビームスプリッタを出射X線の光軸上に配置し、LED光をビームスプリッタで反射させて出射X線と光軸を同一にして照射するようにしてもよい。
また、上記実施形態においては、スピンドルモータ27の貫通孔27bに内径の小さな通路部材28を設けるとともに、固定具18の貫通孔18aの内径を小さくして、LED光源44から出射されたLED光から小さな断面径の平行光が得られるようにしたが、小さな断面径の可視の平行光が得られるならば、別の構造にしてもよい。例えば、通路部材28の軸長を長くすることにより、LED光源44からのLED光から小さな断面径の平行光が得られるようにしてもよい。また、可視光であるレーザ光を出射するレーザ光源の近くにコリメートレンズとエキスパンダ―レンズを配置し、出射する小さな断面径のレーザ光の光軸をスピンドルモータ27の出力軸27aの貫通孔27a1の中心軸線と一致させるようにしてもよい。
また、上記実施形態においては、対象物セット装置60の操作子67a,68a,63a,66a,65aを手動操作することにより、ステージ61及び測定対象物OBのX軸方向位置、Y軸方向位置、Z軸方向位置、X軸周りの傾き及びY軸周りの傾きを調整するようにした。しかし、これに代えて、ケース50又はケース50内部の各種装置のX軸方向位置、Y軸方向位置、Z軸方向位置、X軸周りの傾斜角及びY軸周りの傾斜角の一部又は全てを調整できる構造にし、ケース50若しくはケース50内部の各種装置とステージ61との組み合わせ、又はケース50若しくはケース50内部の各種装置のみで、出射X線とイメージングプレート15に対する測定対象物OBの前記位置及び傾きを調整するようにしてもよい。
また、上記実施形態では、図6乃至図8の(B)のように、表示装置93の画面上に、測定対象物OBの全体が表示されるようにしたが、表示装置93の画面が小さかったり、測定対象物OBの表面積が大きかったりして、測定対象物OBの全体を表示装置93に表示できずに、測定体対象物OBにおける残留応力の測定箇所が視認できない場合には、測定対象物OBの表面に測定箇所を囲む枠などのマークを表記するとよい。また、前述のように測定対象物OBの全体を表示装置93に表示できなかったり、測定対象物OBの表面形状が円形などで方向性を認識し難くかったりして、測定対象物OBの方向性を視認でき難い場合には、測定対象物OBの表面に測定対象物OBの方向を示す直線などのマークを表記するとよい。
また、上記実施形態においては、X線回折測定装置を、回折環がイメージングプレート15に形成された後に、レーザ検出装置30からのレーザ光の照射により回折環を読取る構造にした。しかし、回折環の読取りを別途行う装置でも、イメージングプレート15の中心にある貫通孔を通してX線が出射され、イメージングプレート15に回折環を形成する装置であれは、本発明は適用されるものである。
さらに、上記実施形態では、表示装置93による画像を見ながら、測定対象物OBにおけるLED光の照射位置及び測定対象物OBに対するLED光の照射方向を調整することにより、LED光すなわちX線の照射位置及び照射方向を所定位置及び所定方向に設定するようにした。しかし、LED光の測定対象物OBへの照射により、表示装置93の画像を見なくても、測定対象物OBそのものを見て前記LED光の照射位置及び照射方向の調整が可能であれば、特に、表示装置93に測定対象物OBの画像を表示しなくてもよい。
10…X線出射器、15…イメージングプレート、15a,16a,17a,18a,21a,26a,27a1,27b…貫通孔、16…テーブル、18…固定具、20…テーブル駆動機構、21…移動ステージ、22…フィードモータ、23…スクリューロッド、27…スピンドルモータ、28…通路部材、30…レーザ検出装置、31…レーザ光源、36…対物レンズ、44…LED光源、45…プレート、46…モータ、47a,47b…ストッパ部材、48…結像レンズ、49…撮像器、50…ケース、50c…切欠き部壁、60…対象物セット装置、61…ステージ、63a,65a,66a,67a,68a…操作子、90…コンピュータ装置、91…コントローラ、92…入力装置、93…表示装置

Claims (7)

  1. 測定対象物に向けてX線を出射するX線出射器と、
    中央にX線を通過させる貫通孔が形成されたテーブルと、
    前記テーブルに取付けられて、中央部にてX線を通過させるとともに、測定対象物にて回折したX線の回折光を受光する受光面を有し、回折光の像である回折環を記録するイメージングプレートと、
    前記X線出射器からX線が出射されていない状態で、前記X線出射器から出射されるX線と光軸を同一にした平行光である可視光を測定対象物に出射する可視光出射器と、
    前記可視光の照射点を含む領域の測定対象物の画像を結像する結像レンズ、及び前記結像レンズによって結像された画像を撮像する撮像器を有し、前記撮像された画像を表す撮像信号を出力するカメラと、
    前記カメラから出力される撮像信号を入力して、前記撮像器によって撮像された画像を画面上に表示する表示器とを備えた回折環形成装置において、
    前記表示器は、測定対象物における前記可視光の照射点から前記イメージングプレートまでの距離が所定距離であるとき、前記撮像器によって撮像される照射点の画像上の位置を照射点基準位置として、前記撮像信号により表示される画像とは独立して画面上に表示するようにしたことを特徴とする回折環形成装置。
  2. 請求項1に記載の回折環形成装置において、
    前記結像レンズは測定対象物による前記可視光の反射光を集光し、前記撮像器は前記集光された反射光の受光点も撮像し、かつ前記カメラは前記受光点を表す撮像信号も出力し、
    前記表示器は、前記撮像器よって撮像された受光点も前記撮像信号により画面上に表示し、さらに、
    前記表示器は、測定対象物における前記可視光の照射点を通る測定対象物の表面の法線に対して、測定対象物に照射される前記可視光の光軸が所定角度であるとき、前記撮像器によって撮像される前記受光点の画像上の位置を受光点基準位置として、前記撮像信号により表示される画像とは独立して画面上に表示するようにしたことを特徴とする回折環形成装置。
  3. 測定対象物に向けてX線を出射するX線出射器と、
    中央にX線を通過させる貫通孔が形成されたテーブルと、
    前記テーブルに取付けられて、中央部にてX線を通過させるとともに、測定対象物にて回折したX線の回折光を受光する受光面を有し、回折光の像である回折環を記録するイメージングプレートと、
    前記X線出射器からX線が出射されていない状態で、前記X線出射器から出射されるX線と光軸を同一にした平行光である可視光を測定対象物に出射する可視光出射器と、
    前記可視光の照射点を含む領域の測定対象物の画像を結像する結像レンズ、及び前記結像レンズによって結像された画像を撮像する撮像器を有し、前記撮像された画像を表す撮像信号を出力するカメラと、
    前記カメラから出力される撮像信号を入力して、前記撮像器によって撮像された画像を画面上に表示する表示器とを備えた回折環形成装置において、
    前記結像レンズは測定対象物による前記可視光の反射光を集光し、前記撮像器は前記集光された反射光の受光点も撮像し、かつ前記カメラは前記受光点を表す撮像信号も出力し、
    前記表示器は、前記撮像器よって撮像された受光点も前記撮像信号により画面上に表示し、さらに、
    前記カメラを、測定対象物における前記可視光の照射点から前記イメージングプレートまでの距離が所定距離であるときに前記撮像器によって撮像される照射点の撮像位置と、測定対象物における前記可視光の照射点を通る測定対象物の表面の法線に対して、測定対象物に照射される前記可視光の光軸が所定角度であるときに前記撮像器によって撮像される前記受光点の撮像位置とが一致するように構成しておき、
    前記表示器は、前記撮像位置を一致させた照射点及び受光点の画像上の位置を基準位置として、前記撮像信号により表示される画像とは独立して画面上に表示するようにしたことを特徴とする回折環形成装置。
  4. 測定対象物に向けてX線を出射するX線出射器と、
    中央にX線を通過させる貫通孔が形成されたテーブルと、
    前記テーブルに取付けられて、中央部にてX線を通過させるとともに、測定対象物にて回折したX線の回折光を受光する受光面を有し、回折光の像である回折環を記録するイメージングプレートと、
    前記X線出射器からX線が出射されていない状態で、前記X線出射器から出射されるX線と光軸を同一にした平行光である可視光を測定対象物に出射する可視光出射器と、
    前記可視光の照射点を含む領域の測定対象物の画像を結像する結像レンズ、及び前記結像レンズによって結像された画像を撮像する撮像器を有し、前記撮像された画像を表す撮像信号を出力するカメラと、
    前記カメラから出力される撮像信号を入力して、前記撮像器によって撮像された画像を画面上に表示する表示器とを備えた回折環形成装置において、
    前記撮像信号を基に前記撮像器によって撮像された照射点の撮像位置を検出し、前記撮像器によって撮像される照射点の撮像位置と、前記照射点から前記イメージングプレートまでの距離との関係に基づいて、前記検出した照射点の撮像位置を用いて前記X線の照射点から前記イメージングプレートまでの距離を導出する距離導出手段とを設けたことを特徴とする回折環形成装置。
  5. 測定対象物に向けてX線を出射するX線出射器と、
    中央にX線を通過させる貫通孔が形成されたテーブルと、
    前記テーブルに取付けられて、中央部にてX線を通過させるとともに、測定対象物にて回折したX線の回折光を受光する受光面を有し、回折光の像である回折環を記録するイメージングプレートと、
    前記X線出射器からX線が出射されていない状態で、前記X線出射器から出射されるX線と光軸を同一にした平行光である可視光を測定対象物に出射する可視光出射器と、
    前記可視光の照射点を含む領域の測定対象物の画像を結像する結像レンズ、及び前記結像レンズによって結像された画像を撮像する撮像器を有し、前記撮像された画像を表す撮像信号を出力するカメラと、
    前記カメラから出力される撮像信号を入力して、前記撮像器によって撮像された画像を画面上に表示する表示器とを備えた回折環形成装置において、
    前記結像レンズは測定対象物による前記可視光の反射光を集光し、前記撮像器は前記集光された反射光の受光点も撮像し、かつ前記カメラは前記受光点を表す撮像信号も出力し、さらに、
    前記撮像信号を基に前記撮像器によって撮像された受光点の撮像位置を検出し、前記撮像器によって撮像される受光点の撮像位置と、前記可視光出射器から出射される可視光の測定対象物の表面の法線に対する角度との関係に基づいて、前記検出した受光点の撮像位置を用いて前記可視光出射器から出射される可視光の測定対象物の表面の法線に対する角度を導出する角度導出手段を設けたことを特徴とする回折環形成装置。
  6. 請求項1乃至5のうちのいずれか一つに記載の回折環形成装置において、
    前記可視光出射器は、可視光を出射する可視光光源を備え、前記可視光光源から出射された可視光を小さな径の通路を通過させることにより、平行光を形成するものであり、
    前記X線出射器から出射されたX線も前記小さな径の通路を通過させるようにしたことを特徴とする回折環形成装置。
  7. 請求項1乃至6のうちのいずれか一つに記載した回折環形成装置を備え、さらに、測定対象物を載置するためのステージを有し、前記ステージの前記回折環形成装置に対する位置を調整可能とする対象物セット装置を備えたことを特徴とする回折環形成システム。
JP2012251903A 2012-11-16 2012-11-16 回折環形成装置及び回折環形成システム Active JP5835191B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012251903A JP5835191B2 (ja) 2012-11-16 2012-11-16 回折環形成装置及び回折環形成システム
PCT/JP2013/051604 WO2014076974A1 (ja) 2012-11-16 2013-01-25 回折環形成装置及び回折環形成システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012251903A JP5835191B2 (ja) 2012-11-16 2012-11-16 回折環形成装置及び回折環形成システム

Publications (2)

Publication Number Publication Date
JP2014098677A JP2014098677A (ja) 2014-05-29
JP5835191B2 true JP5835191B2 (ja) 2015-12-24

Family

ID=50730905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012251903A Active JP5835191B2 (ja) 2012-11-16 2012-11-16 回折環形成装置及び回折環形成システム

Country Status (2)

Country Link
JP (1) JP5835191B2 (ja)
WO (1) WO2014076974A1 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014128874A1 (ja) * 2013-02-21 2014-08-28 パルステック工業株式会社 回折環形成装置及びx線回折測定装置
JP6128333B2 (ja) * 2014-05-23 2017-05-17 パルステック工業株式会社 X線回折測定方法
JP6032500B2 (ja) * 2014-05-23 2016-11-30 パルステック工業株式会社 X線回折測定方法および入射角度調整用治具
JP5958584B1 (ja) * 2015-03-24 2016-08-02 パルステック工業株式会社 X線回折測定装置及びx線回折測定方法
JP6048547B1 (ja) * 2015-07-29 2016-12-21 パルステック工業株式会社 X線回折測定装置
JP6115597B2 (ja) * 2015-07-29 2017-04-19 パルステック工業株式会社 X線回折測定装置
JP6155538B2 (ja) * 2015-11-30 2017-07-05 パルステック工業株式会社 X線回折測定装置及びx線回折測定方法
JP6060474B1 (ja) * 2016-01-22 2017-01-18 パルステック工業株式会社 X線回折測定装置
JP6060473B1 (ja) * 2016-01-22 2017-01-18 パルステック工業株式会社 X線回折測定装置
JP6221199B1 (ja) * 2016-10-12 2017-11-01 パルステック工業株式会社 X線回折測定装置
JP6198088B1 (ja) * 2016-10-25 2017-09-20 パルステック工業株式会社 回折環撮像装置、回折環読取装置及びx線回折測定方法
JP6614294B1 (ja) * 2018-08-24 2019-12-04 パルステック工業株式会社 回折環撮像装置
JP6924348B2 (ja) * 2019-10-31 2021-08-25 パルステック工業株式会社 X線回折測定装置
FR3105413B1 (fr) * 2019-12-20 2022-01-21 Commissariat Energie Atomique Dispositif de determination de contraintes residuelles par diffraction
JP6844103B1 (ja) * 2020-03-24 2021-03-17 パルステック工業株式会社 X線回折測定装置
JP7280516B2 (ja) * 2020-09-30 2023-05-24 パルステック工業株式会社 X線回折測定装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51121388A (en) * 1975-04-16 1976-10-23 Nec Corp Apparatus for adjusting a specimen for x-ray diffration camera
JPS5798846A (en) * 1980-12-11 1982-06-19 Nec Corp X-ray diffractometer
JPS58101113U (ja) * 1981-12-28 1983-07-09 セイコーインスツルメンツ株式会社 螢光x線膜厚計に於ける測定点検出装置
JPS6354057U (ja) * 1986-09-27 1988-04-11
JP2742415B2 (ja) * 1987-11-27 1998-04-22 株式会社日立製作所 X線分析装置
JP2003004677A (ja) * 2001-06-26 2003-01-08 Shimadzu Corp X線照射位置指示装置及びx線分析装置
US7023954B2 (en) * 2003-09-29 2006-04-04 Jordan Valley Applied Radiation Ltd. Optical alignment of X-ray microanalyzers
JP5829415B2 (ja) * 2011-03-30 2015-12-09 株式会社島津製作所 電子線分析装置
JP5505361B2 (ja) * 2011-04-20 2014-05-28 パルステック工業株式会社 X線回折装置

Also Published As

Publication number Publication date
JP2014098677A (ja) 2014-05-29
WO2014076974A1 (ja) 2014-05-22

Similar Documents

Publication Publication Date Title
JP5835191B2 (ja) 回折環形成装置及び回折環形成システム
JP5967394B2 (ja) 回折環形成装置及びx線回折測定装置
JP6264591B1 (ja) 熱膨張係数測定方法及びx線回折測定装置
JP6055970B2 (ja) X線回折装置を用いた表面硬さ評価方法およびx線回折測定装置
JP6037237B2 (ja) X線回折測定装置およびx線回折測定装置による測定方法
JP5915943B2 (ja) 回折環形成システム及びx線回折測定システム
JP6361086B1 (ja) X線回折測定装置及びx線回折測定方法
JP5949704B2 (ja) 回折環形成方法
JP6128333B2 (ja) X線回折測定方法
JP5967491B2 (ja) X線回折測定装置およびx線回折測定装置におけるx線入射角検出方法
JP2015215343A (ja) 回折環形成装置を用いた軸力評価方法
JP6060473B1 (ja) X線回折測定装置
JP6372731B1 (ja) X線回折測定装置
JP6060474B1 (ja) X線回折測定装置
JP6048547B1 (ja) X線回折測定装置
JP5962737B2 (ja) X線回折測定装置およびx線回折測定方法
JP6195140B1 (ja) X線回折測定装置
JP6246965B1 (ja) X線回折測定装置を用いた軸力評価方法
JP6212835B1 (ja) X線回折測定装置およびx線回折像の回折像幅測定方法
JP6044877B1 (ja) X線回折測定装置
JP6032500B2 (ja) X線回折測定方法および入射角度調整用治具
JP6844103B1 (ja) X線回折測定装置
JP6115597B2 (ja) X線回折測定装置
JP5958584B1 (ja) X線回折測定装置及びx線回折測定方法
JP2022056837A (ja) X線回折測定装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150623

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151019

R150 Certificate of patent or registration of utility model

Ref document number: 5835191

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250