JP6924348B2 - X線回折測定装置 - Google Patents

X線回折測定装置 Download PDF

Info

Publication number
JP6924348B2
JP6924348B2 JP2019198538A JP2019198538A JP6924348B2 JP 6924348 B2 JP6924348 B2 JP 6924348B2 JP 2019198538 A JP2019198538 A JP 2019198538A JP 2019198538 A JP2019198538 A JP 2019198538A JP 6924348 B2 JP6924348 B2 JP 6924348B2
Authority
JP
Japan
Prior art keywords
ray
rays
visible light
plate
emitted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019198538A
Other languages
English (en)
Other versions
JP2021071400A (ja
Inventor
鈴木 哲也
哲也 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pulstec Industrial Co Ltd
Original Assignee
Pulstec Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pulstec Industrial Co Ltd filed Critical Pulstec Industrial Co Ltd
Priority to JP2019198538A priority Critical patent/JP6924348B2/ja
Publication of JP2021071400A publication Critical patent/JP2021071400A/ja
Application granted granted Critical
Publication of JP6924348B2 publication Critical patent/JP6924348B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Description

本発明は、測定対象物にX線を照射し、測定対象物で回折したX線により撮像面に回折環を形成するX線回折測定装置に関する。
従来から、例えば特許文献1に示されるように、測定対象物に所定の入射角でX線を照射して、測定対象物で回折したX線によりX線回折環(以下、回折環という)を形成し、形成された回折環の形状を検出してcosα法による分析を行い、測定対象物の残留応力を測定するX線回折測定装置が知られている。特許文献1に示されている装置は、X線出射器、イメージングプレート等の撮像手段、レーザ検出装置等の読取手段、および移動機構と回転機構等のレーザ走査手段及びLED照射器等の回折環消去手段等を1つの筐体内に備えている。そして、測定対象物にX線を照射して発生する回折X線により、回折環をイメージングプレートに撮像する撮像工程、イメージングプレートにレーザ検出装置からのレーザ光を走査しながら照射することで回折環の形状を検出する読取工程、及び該回折環をLED光の照射により消去する消去工程を連続して行えるようになっている。また、特許文献1に示されている装置は、測定対象物に照射されるX線と光軸を同一にしたLED光を照射するLED光照射機能と、LED光の照射点付近を撮像する撮像機能とを備える。そして、該LED光を測定対象物に照射してLED光の照射点付近の撮像を行い、該照射点が測定対象物上の目的とする測定箇所になり、撮像画面におけるLED光の照射点とLED光の反射光の受光点が設定された位置になるようX線回折測定装置の位置と姿勢を調整することで、X線照射点からイメージングプレートまでの距離とX線入射角が設定値になるようにすることができる。
特許第5835191号公報 特許第5967500号公報 特許第6361086号公報
X線回折測定の対象となる物体には様々なものがあるが、その中には結晶粒が大きいものがあり、そのような測定対象物においては明瞭な回折環が撮像されない場合がある。具体的には、検出される回折環が不連続になったり、回折環の半径方向のX線強度分布が正規分布状にならない箇所がある場合がある。このような場合でも、例えば以下の特許文献2に示されているように、X線回折測定装置の筐体を揺動させる機構を設け、該筐体を揺動させながらX線照射を行って回折環を撮像するようにすると、通常の方法では明瞭な回折環が得られない場合であっても、明瞭な回折環を得ることができることが多い。これは、X線の測定対象物に対する入射方向が設定された範囲で変動するため、回折X線が発生する回折面があらゆる方向に一様に存在していなくても、入射方向のいずれかで回折X線が強く発生する回折面にX線が照射されることになるためである。
しかし、X線回折測定装置の筐体を揺動させる機構を設けると装置のコストがアップするという問題、装置の構造が複雑化するとともに重量がアップして装置の運搬の負担が増大するという問題、さらには揺動がないときよりも回折環が撮像されるまでに時間を要し、揺動がない測定(特許文献1に示されるX線回折測定装置による測定)よりも測定時間がかかるという問題がある。この問題に対応した装置として、特許文献3に示されるように、測定対象物に照射されるX線を微小断面の複数のX線の集合で見たとき、測定対象物のX線照射箇所におけるそれぞれの点に達するまでの複数のX線の光路が、可視の平行光が凸レンズにより集光したときと同様の光路になるようにするX線回折測定装置がある。この装置によれば、X線を所定の入射方向範囲で測定対象物に照射することになるため、装置の筐体を揺動させる機構がなくても、装置の筐体を揺動させた場合と同様の効果を得ることができる。
しかしながら、特許文献3に示されるX線回折測定装置でも、特許文献1に示されるX線回折測定装置による測定よりも測定時間がかかるという問題がある。詳細に説明すると、特許文献3では、X線の光路を可視の平行光が凸レンズにより集光したときと同様の光路になるようにするための方法として、次の3つを紹介している。
・X線管のターゲットにおけるX線発生領域を大きくし、X線を通過させるパイプの先端を測定箇所の近傍に位置させる。
・X線管のターゲットにおけるX線発生領域を大きくし、貫通孔を通過したX線をX線集光レンズで集光させる。
・X線管のターゲットにおけるX線発生箇所を大きくし、測定対象物の測定箇所に微小な孔の空いたX線不透過のシートを貼る。
いずれの方法も、X線管のターゲットにおけるX線発生領域を大きくしているため、パイプ内部や貫通孔又はシートの孔を通過させる際に、通過しないX線の割合は通常よりも大きくなり、測定対象物に照射されるX線の強度は小さくなる。このため、特許文献1に示されるX線回折測定装置による測定よりも測定対象物に照射されるX線の強度は小さくなり、回折環が撮像されるまでにかかる時間が長くなるため測定時間がかかることになる。この問題に対応するため、X線管が出射するX線の強度を強くすると、装置の電力消費が増大するという問題や、装置の劣化が早くなるという問題がある。また、特許文献3に示されるX線回折測定装置では、X線入射方向の範囲(揺動角度に相当する角度の範囲)は1つに定まり、装置の筐体を揺動させるX線回折測定装置のように揺動角度を様々に設定することはできないという問題がある。
本発明はこの問題を解消するためなされたもので、その目的は、測定対象物にX線を照射し、測定対象物で回折したX線により撮像面に回折環を形成するX線回折測定装置において、X線管から出射するX線の強度を従来と同程度にして、測定対象物に所定範囲の入射方向からX線を照射しても、言い換えると、X線の光路を可視の平行光が凸レンズにより集光したときと同様の光路になるようにX線を照射しても、測定時間を従来と同程度にすることができるX線回折測定装置を提供することにある。さらに、X線入射方向の範囲を様々に設定することが可能なX線回折測定装置を提供することにある。なお、本願において従来、といった場合は、特許文献1に示されるX線回折測定装置のように、筐体の揺動機構がなく、X線を略平行光にして出射するX線回折測定装置を指すものとし、以後も同様とする。
上記目的を達成するために、本発明の特徴は、対象とする測定対象物に向けてX線を出射するX線出射手段と、X線出射手段から測定対象物に向けてX線が照射された際、測定対象物にて発生した回折X線を、X線出射手段から出射されるX線の光軸に対して垂直に交差する撮像面にて受光し、撮像面に回折X線の像である回折環を形成する回折環形成手段とを備えたX線回折測定装置において、X線出射手段は、内部でX線を発生させて出射口よりX線を出射させるX線管と、X線管から出射したX線を入射し通過させて出射する多数の細束管の集合体であるポリキャピラリであって、多数の細束管から出射したX線が略1点で集光するように多数の細束管が構成されているポリキャピラリとを備え、ポリキャピラリにX線が入射する近傍に配置された、複数のX線通過用孔が形成されたプレートであって、複数のX線通過用の孔はそれぞれ異なった孔径であるプレートと、プレートに形成された複数のX線通過用孔のいずれかがX線の光路上に配置するようプレートを移動するプレート移動機構と、X線管からX線が出射されていない状態で、可視光をポリキャピラリに入射させて出射させる可視光出射手段とを備え、プレートは、円周方向に複数のX線通過用孔が形成された円盤状又は扇状のプレートであり、プレート移動機構は、プレートの回転位置を変化させる機構であって、可視光出射手段は、可視光を出射する光源と、プレートの円周方向の一部に取り付けられた反射部材であって、プレート移動機構によるプレートの移動により反射部材に光源から出射された可視光が入射するようになったとき、ポリキャピラリに可視光が入射するよう入射した可視光を反射させる反射部材とを備えたことにある。
これによれば、X線管のターゲットにおけるX線発生領域を大きくする必要はなく、ポリキャピラリの径をX線を通過させる貫通孔の径と同程度にすれば、従来のX線回折測定装置のように貫通孔にアパーチャがない分、出射するX線の強度を大きくし、X線を集光させて測定対象物に照射することができる。すなわち、X線管から出射するX線の強度が従来と同程度でも、測定対象物に照射されるX線の強度を従来より大きくして、測定対象物に所定範囲の入射方向からX線を照射することができる。別の表現をすると、X線をその光路が可視の平行光が凸レンズにより集光したときと同様の光路になるようにして測定対象物に照射することができる。これにより、測定時間を従来と同程度にしたまま、筐体を揺動させてX線回折測定を行った場合と同じ効果を得ることができる。 また、これによれば、プレート移動機構によりプレートを移動させれば、X線が通過するX線通過用孔が変わり、X線の断面径が変化する。そして、X線の断面径が変化すれば、X線が集光した箇所におけるX線入射方向の範囲(揺動角度に相当する角度の範囲)を変化させることができる。すなわち、プレート移動機構によりプレートを移動させてX線が通過するX線通過用孔を変えることで、X線入射方向の範囲を様々に設定することができる。また、これによれば、プレート移動機構をコンパクトで簡単な機構にすることができ、従来のX線回折測定装置にある出射X線の光軸と同じ光軸で可視光を出射する機能を、可視光の光源を設けプレートに反射部材を取り付けるのみで設けることができるので、X線入射方向の範囲を変化させる機能や出射X線の光軸と同じ光軸で可視光を出射する機能を設けても、X線回折測定装置をコンパクトにすることができる。
また、本発明の他の特徴は、可視光出射手段から出射された可視光の照射点を含む領域の測定対象物の画像を結像する結像レンズ、及び結像レンズによって結像された画像を撮像する撮像器を有し、撮像された画像を表す撮像信号を出力するカメラと、カメラから出力される撮像信号を入力して、撮像器によって撮像された画像を画面上に表示する表示器であって、測定対象物における可視光の照射点から撮像面までの距離が設定値であるとき、撮像器によって撮像される照射点の画像上の位置を照射点基準位置として、撮像信号により表示される画像とは独立して画面上に表示する表示器とを備え、表示器の照射点基準位置に可視光の照射点があるとき、測定対象物における可視光の照射点は、ポリキャピラリでX線が集光する点であるようにしたことにある。
これによれば、従来のX線回折測定装置にある、表示器における可視光の照射点が照射点基準位置にあるようにすることでX線照射点から撮像面までの距離を設定値にする機能を、X線照射点から撮像面までの距離を設定値にするとともにX線照射点をX線が集光する点にする機能にすることができる。
また、本発明の他の特徴は、可視光出射手段は、可視光の光路上に、ポリキャピラリの中心軸周りの限定された細束管にのみ可視光を入射させるようにした可視光限定入射手段をも備え、結像レンズは測定対象物による可視光の反射光を集光し、撮像器は集光された反射光の受光点も撮像し、かつカメラは受光点を表す撮像信号も出力し、表示器は、撮像器によって撮像された受光点も撮像信号により画面上に表示するとともに、測定対象物における可視光の照射点を通る測定対象物の表面の法線に対して、測定対象物に照射される可視光の光軸が所定方向であるとき、撮像器によって撮像される受光点の画像上の位置を受光点基準位置として、撮像信号により表示される画像とは独立して画面上に表示するようにしたことにある。
これによれば、X線が集光するよう測定対象物に照射されても、可視光は略平行光で測定対象物に照射されるので、従来のX線回折測定装置にある、表示器における可視光の受光点が受光点基準位置にあるようにすることでX線の入射角を設定値にし、撮像面の回転角度0のラインとX線光軸を含む平面と測定対象物のX線照射点における法線が成す角度を0にする機能をそのまま設けることができる。なお本願においては、X線の入射角は集光するX線の中心軸が測定対象物のX線照射点における法線と成す角度である。
また、本発明の他の特徴は、可視光出射手段は、可視光の光路上に、ポリキャピラリの断面における可視光が通過する細束管の集合体が、ポリキャピラリの断面の中心を定義可能な形状になるようポリキャピラリに可視光を入射させるようにしたマーク用可視光入射手段をも備えたことにある。
これによれば、X線照射点から撮像面までの距離が設定値になる前は、可視光の照射箇所をX線照射点を定義可能なマーク(例えば十字マーク)にすることができ、このマークが点になるよう位置を調整すれば、おおよそでX線照射点から撮像面までの距離を設定値にすることができる。また、結像レンズの箇所にマークが生じるように姿勢を調整すれば、おおよそでX線の入射角を設定値にし、撮像面の回転角度0のラインとX線光軸を含む平面と測定対象物のX線照射点における法線が成す角度を0にすることができるので、その後の位置と姿勢の調整を行いやすくすることができる。
本発明の一実施形態に係るX線回折測定装置を含むX線回折測定システムを示す全体概略図である。 図1のX線回折測定装置の拡大図である。 図2のX線回折測定装置におけるX線出射機構部分を拡大して示す部分断面図である。 図3の円盤状プレートとLED光源を上方から見た図である。 図1のX線回折測定装置から出射されたX線の光路と、カメラの結像レンズの光軸との関係を、出射X線の光軸の垂直方向を拡大して示した図である。 本発明の変形例におけるX線回折測定装置において、円盤状プレートとLED光源を上方から見た図である。 本発明の変形例におけるX線回折測定装置において、可視のレーザ光をポリキャピラリに入射させる構造の図である。 本発明の変形例におけるX線回折測定装置において、出射されたX線の光路と、カメラの結像レンズの光軸との関係を、出射X線の光軸の垂直方向を拡大して示した図である。
本発明の一実施形態に係るX線回折測定装置を含むX線回折測定システムの構成について図1乃至図5を用いて説明する。なお、このX線回折測定装置が先行技術文献の特許文献1に示されているX線回折測定装置と異なっている点で本願の発明に関わる点は、主に、X線出射機構のモータ27の貫通孔にポリキャピラリ14を取り付けている点、X線管10から出射されるX線がポリキャピラリ14に入射される前に、円盤状プレート45及びモータ46等からなるX線断面径調整機構を設けた点、および出射X線と同じ光軸で可視光を出射する機構をLED光源44、円盤状プレート45に取り付けた三角状ミラー12及びポリキャピラリ14等から構成した点である。また、本実施形態は、本願出願人が特許文献1に示されるX線回折測定装置を小型化するために開発したX線回折測定装置をベースにしているため、本願の発明に直接関わらない点においても特許文献1に示されているX線回折測定装置と、さらには特許文献2及び特許文献3に示されているX線回折測定装置とも異なっている箇所がある。以下、特許文献1乃至特許文献3に示されているX線回折測定システムのすべて又はいずれかと機能及び構造が同じ箇所は、同じであることを述べて簡略的に説明するにとどめ、異なっている箇所は詳細に説明するようにする。
図1及び図2に示すように、このX線回折測定システムは、測定対象物OBを対象物セット装置60に載置し、X線回折測定装置1からX線を照射して測定対象物OBの残留応力を測定するものである。図1に示すように、X線回折測定システムは、X線回折測定装置1、対象物セット装置60、コンピュータ装置90及び高電圧電源95及びX線回折測定装置1の固定機構から構成される。図2に示すようにX線回折測定装置1の筐体50は傾斜状態で支持ロッド52に固定され、支持ロッド52は設置プレート53に固定されており、設置プレート53を作業台等に載置することで、X線回折測定装置1は位置と姿勢が固定される。このX線回折測定装置1の固定機構は特許文献1に示されているX線回折測定システムと同じである。なお、以下、図1及び図2の紙面垂直方向をX軸方向、横方向をY軸方向、縦方向をZ軸方向として説明する。
図1及び図2に示すように、測定対象物OBは対象物セット装置60のステージ61に載置される。対象物セット装置60は、特許文献1に示されているX線回折測定システムのものと同じであり、X,Y,Z軸方向の移動とX,Y軸周りの傾斜角変更を行う機能を有し、ステージ61及びそこに載置された測定対象物OBの位置と姿勢を調整することができる。端的に説明すると、対象物セット装置60は、設置プレート62の上に高さ調整機構63、操作子63a及び第1プレート64からなるZ軸方向移動機能があり、その上に第2プレート65及び操作子65aからなるX軸周り傾斜角変更機能があり、その上に第3プレート66及び操作子66aからなるY軸周り傾斜角変更機能があり、その上に第4プレート67及び操作子67aからなるX軸方向移動機能があり、その上に第5プレート68、操作子68a及びステージ61からなるY軸方向移動機能がある。これにより、操作子63a,65a,66a,67a,68aを回転させることで、ステージ61及びそこに載置された測定対象物OBの位置と姿勢を変化させることができる。
図1及び図2に示すように、X線回折測定装置1は筐体50内に、X線管10、イメージングプレート15を取り付けるテーブル16、テーブル16を回転及び移動させるテーブル駆動機構20及び回折環を検出するレーザ検出装置30等を備えている。そして、X線回折測定装置1は筐体50内に、X線管10、テーブル駆動機構20及びレーザ検出装置30に接続され、それらの作動を制御したり、検出信号を入力したりするための各種回路も内蔵されており、図1において筐体50外に示された2点鎖線で囲われた各種回路は、筐体50内の2点鎖線内に納められている。そして、これらの各種回路はコンピュータ装置90に接続され、コンピュータ装置90のコントローラ91から入力する指令により作動する。コンピュータ装置90は入力装置92及び表示装置93を有し、入力装置92からの入力及びインスト−ルされているプログラムの作動により、上述した各種回路に指令を出力し、また該各種回路が出力したデータを入力してメモリに記憶する。また、図1に示すように、X線回折測定システムは高電圧電源95を備え、高電圧電源95はX線管10がX線を出射するための電圧及び電流をX線管10に出力する。これらの全体構成は、特許文献1乃至特許文献3に示されているX線回折測定システムと同じである。
図2に示すように、X線回折測定装置1の筐体50は、底面壁50a、前面壁50b、後面壁50e、上面壁50f、側面壁(図示せず)、底面壁50aと前面壁50bの角部を紙面の表側から裏側に向けて切り欠くように設けた切欠き部壁50cと繋ぎ壁50d及び後面壁50eと上面壁50fの角部をなくすように設けた傾斜壁50gを有するように形成されている。切欠き部壁50cは底面壁50aに対し所定の角度を成す平板と底面壁50aに平行な平板とからなり、繋ぎ壁50dは側面壁と垂直であり底面壁50aと所定の角度を有している。この所定の角度は、例えば30〜40度であり、X線回折測定装置1の筐体50は、繋ぎ壁50dが設置プレート53の上面及び下面と平行になるように支持ロッド52に固定されている。切欠き部壁50cには円形孔50c1があり、回折環撮像時にはこの円形孔50c1を通過してX線が出射され、測定対象物OBにて発生した回折X線はこの円形孔50c1を通過して撮像される。
図1及び図2に示すように、X線管10は筐体50内の上部にて図示左右方向に延設されて固定されている。この固定は、X線管10の側面が、後述するテーブル駆動機構20の板状プレート26に形成された円柱側面の一部の形状になっている溝に嵌合することで、位置決めがされたうえで行われている。そして、X線管10は、高電圧電源95からの高電圧の供給を受けると、その側面に形成された円状の出射口11からX線を図示下方向に出射する。図3に示すように板状プレート26において出射口11と合わさる箇所には貫通孔26aが形成されており、出射口11から出射したX線は貫通孔26aを通過して下方向に進む。X線制御回路71は、コントローラ91から指令が入力すると、X線管10から一定強度のX線が出射するように、高電圧電源95からX線管10に供給される駆動電流及び駆動電圧を制御する。また、X線管10は、図示しない冷却装置を備えていて、X線制御回路71は、この冷却装置に供給される駆動信号も制御する。
図2に示すように、テーブル駆動機構20は、筐体50に固定され、X線管10の下方にて移動ステージ21を備えている。移動ステージ21の紙面反対側には凸部があり、この凸部はテーブル駆動機構20における板状プレート26に固定されたブロック28とブロック29に固定された板状のガイド25にある溝に嵌合している。これにより移動ステージ21は板状のガイド25にある溝の方向にのみ移動可能になっており、ブロック28に固定されたフィードモータ22、スクリューロッド23及びブロック29に固定された軸受部24が回転することにより移動する。この移動方向は、X線管10の中心軸方向であり、別の表現をすると出射X線の光軸に垂直で筺体50の側面壁に平行な方向である。フィードモータ22内には、エンコーダ22aが組み込まれており、エンコーダ22aはフィードモータ22が回転するとパルス列信号を、図1に示す位置検出回路72及びフィードモータ制御回路73へ出力する。
位置検出回路72及びフィードモータ制御回路73は、コントローラ91からの指令により作動し、位置検出回路72はエンコーダ22aからのパルス列信号をカウントすることで、移動限界位置を原点とした移動距離である移動位置をフィードモータ制御回路73とコントローラ91に出力する。また、フィードモータ制御回路73は、コントローラ91から入力した移動位置が位置検出回路72から入力する移動位置に等しくなるまで、フィードモータ22に駆動信号を出力する。さらに、フィードモータ制御回路73は、コントローラ91から移動方向と移動速度が入力すると、エンコーダ22aからのパルス列信号から計算される移動速度が入力した移動速度になるよう移動を行う。位置検出回路72及びフィードモータ制御回路73のこれらの機能により、コントローラ91が指令を出力することで、移動ステージ21及び移動ステージ21と一体になっているスピンドルモータ27、テーブル16及びイメージングプレート15等は、回折環撮像位置、回折環読取位置及び回折環消去位置に移動し、コントローラ91が指定する移動速度で指定した方向に移動する。これらの機能は、特許文献1乃至特許文献3に示されているX線回折測定システムと同じである。
コントローラ91の指令により移動ステージ21が回折環撮像位置になっていると、図3に示すように、X線管10の出射口11から出射され板状プレート26の貫通孔26aを通過したX線は円盤状プレート45の方向に進む。円盤状プレート45には円周方向に複数の貫通孔45aが形成されており、円盤状プレート45が適切な回転位置にあると、X線はこの貫通孔45aを通過して移動ステージ21に形成された貫通孔21aの方向に進む。円盤状プレート45を上方向から見た図、別の表現をすると出射X線が進む方向にX線管10側から見た図が、図4である。図4に示すように円盤状プレート45は貫通孔45a1〜45a11が形成されており、貫通孔45a1〜45a11はそれぞれの孔径が異なっている。よって、円盤状プレート45を回転させ適切な回転位置で停止させることで、出射X線を指定した貫通孔45aを通過させて出射させることができる。これにより貫通孔45aを通過した出射X線の断面径は、貫通孔45aの孔径に相当する径になる。貫通孔45a1は孔径が最も大きく、貫通孔21aと同程度の孔径であり、貫通孔45a1を通過した出射X線が貫通孔21aに入射したときは円盤状プレート45を介さずに出射X線が貫通孔21aに入射した状態と同じになる。以下、貫通孔45a2から貫通孔45a11に行くに従い貫通孔45aを通過した出射X線の断面径は小さくなり、貫通孔21aの孔径より断面径が小さい出射X線が貫通孔21aに入射することになる。なお、図3における円盤状プレート45の回転位置は、出射X線の光軸上に貫通孔45aがなく、出射X線の光軸と光軸が等しいLED光を出射させる位置であり、この点は後述する。この回転位置から図4の矢印が示す方向に円盤状プレート45を回転させ、適切な回転位置で停止させると、出射X線の光軸と貫通孔45a1〜45a11のいずれかの中心軸を一致させることができる。
図3に示すように、円盤状プレート45の中心には円盤状プレート45の中心軸と回転軸が合うようにモータ46の出力軸46aが固定されており、モータ46が回転して停止することで、円盤状プレート45の回転位置を変化させることができる。モータ46にはエンコーダ46bが組み込まれており、エンコーダ46bが出力するパルス列信号とインデックス信号は、図1に示す回転角度検出回路87に入力する。回転角度検出回路87は、インデックス信号を入力すると回転角度を0にし、その後に入力するパルス列信号のパルス数をカウントすることで回転角度を検出し、検出した回転角度のデータをモータ制御回路86に出力する。モータ制御回路86はコントローラ91から回転角度の信号を入力すると、回転角度検出回路87から入力する回転角度がコントローラ91から入力した回転角度に等しくなるまでモータ46に駆動信号を出力する。この駆動信号はモータ46を低速回転させるものであり、駆動信号が停止するとその回転位置で円盤状プレート45は停止するようになる。コントローラ91のメモリには、貫通孔45a1〜45a11の中心軸が出射X線の光軸と一致するときの回転角度が記憶されている。さらに、貫通孔45a1〜45a11を出射X線が通過し、後述するようにポリキャピラリ14からX線が集光して出射したときのX線入射方向の範囲(揺動角度に相当する角度の範囲)が、貫通孔45a1〜45a11に対応させて(すなわち回転角度に対応させて)記憶されている。これにより、入力装置92から、11個あるX線入射方向の範囲(揺動角度に相当する角度の範囲)を選定して入力すると、コントローラ91からモータ制御回路86に回転角度の信号が出力し、円盤状プレート45の回転位置は、出射X線の光軸が選定されたX線入射方向の範囲になる貫通孔45aの中心軸と一致する位置になる。
図3に示すように、移動ステージ21の貫通孔21aは移動ステージ21に固定されたスピンドルモータ27の出力軸27aに形成された貫通孔27a1に固定されたポリキャピラリ14に入射する。スピンドルモータ27の出力軸27aは回転するため貫通孔27a1に固定されたポリキャピラリ14も回転するが、スピンドルモータ27の底面側に形成された貫通孔27bはポリキャピラリ14よりも大きくなっており、ポリキャピラリ14の回転に障害にならない。ポリキャピラリ14に入射したX線は、ポリキャピラリ14のそれぞれの細束管を進み、固定具18の孔18aの先にあるポリキャピラリ14の出射口から出射する。図3に示すように、ポリキャピラリ14のそれぞれの細束管はポリキャピラリ14の出射口付近では出射したX線が集束するような構成になっており、測定対象物OBに照射されるX線は、略1点で集光するように照射される。すなわち、測定対象物OBに所定範囲の入射方向からX線を照射することができる。そして、上述したように入力装置92からの入力によりこのときのX線入射方向の範囲を調整することができる。
テーブル16は円盤状であり、その中心軸に形成された孔16aがスピンドルモータ27の出力軸27aの貫通孔27a1と位置が合うよう出力軸27aに固定されている。そして、テーブル16は、中心軸周りに下面中央部から下方へ突出した突出部17を有し、突出部17の外周面には、ねじ山が形成されている。テーブル16の下面に貫通孔15aを突出部17に嵌め込むようにイメージングプレート15を取り付け、突出部17の外周面上にナット状の固定具18をねじ込むことにより、イメージングプレート15はテーブル16に固定される。この構造は特許文献1乃至特許文献3に示されているX線回折測定装置と同じであるが、テーブル16の孔16a、突出部17の孔17a及び固定具18の孔18aを貫くようにポリキャピラリ14が固定されている点が異なっている。上述したように、コントローラ91からX線制御回路71に指令が入力するとX線管10からX線が出射し、ポリキャピラリ14の先端からX線が測定対象物OBに照射されて照射点で回折X線が発生する。この回折X線が、イメージングプレート15に入射すると回折X線の強度が大きい箇所に回折環が撮像される。これが、回折環撮像機能であり、この機能は特許文献1乃至特許文献3に示されているX線回折測定システムと同じである。
スピンドルモータ27内にはエンコーダ27cが組み込まれ、エンコーダ27cは、パルス列信号を、図1に示すスピンドルモータ制御回路74と回転角度検出回路75へ出力する。さらに、エンコーダ27cは、スピンドルモータ27が1回転するごとにインデックス信号を、回転角度検出回路75及びコントローラ91に出力する。スピンドルモータ制御回路74は、コントローラ91から回転速度を入力すると、エンコーダ27cから入力するパルス列信号から計算される回転速度が入力した回転速度になるように、駆動信号をスピンドルモータ27に出力する。また、回転角度検出回路75は、エンコーダ27cからインデックス信号を入力したタイミングで回転角度を0にし、その後に入力するパルス列信号のパルス数から回転角度を計算してコントローラ91に出力する。これにより、コントローラ91の指令でテーブル16は指定された回転速度で回転し、回転角度データがコントローラ91に入力する。これらの機能は、特許文献1乃至特許文献3に示されているX線回折測定システムと同じである。なお、イメージングプレート15の回転角度0°の位置は、後述するレーザ検出装置30からのレーザ照射によりイメージングプレート15に形成された回折環を読み取る際、インデックス信号を入力した時点でレーザ光が照射されている位置であり、この位置はイメージングプレート15の各半径位置においてあるためラインである。そして、移動ステージ21の移動においてイメージングプレート15の中心軸は、出射X線の光軸とイメージングプレート15における回転角度0°のラインとが成す平面内に保たれた状態で、出射X線の光軸に垂直な方向に移動する。以下、出射X線の光軸とイメージングプレート15における回転角度0°のラインとが成す平面を基準平面という。
図1に示すように、レーザ検出装置30はレーザ検出制御回路77により制御され、回折環を撮像したイメージングプレート15にレーザ光を照射し、イメージングプレート15で発光した光の強度から、レーザ光照射位置における回折X線の強度を検出する。コントローラ91の指令で移動ステージ21が回折環読取位置になり、スピンドルモータ27とフィードモータ22が回転を開始したとき、レーザ検出制御回路77にはコントローラ91から指令が入力し、レーザ検出制御回路77はレーザ検出装置30に対し、レーザ光出射、出射レーザ光の強度制御、レーザ光照射点のイメージングプレート15への合焦制御、及びイメージングプレート15での発光強度のコントローラ91への出力といった制御を行う。レーザ検出装置30の構造は、先行技術文献の特許文献2及び特許文献3に示されているX線回折測定システムと同じであり、レーザ検出制御回路77の機能は、特許文献1乃至特許文献3と同じである。なお、特許文献1乃至特許文献3に示されているX線回折測定システムでは、レーザ検出制御回路77は、上述した制御ごとにいくつかの回路に分割されて示されている。コントローラ91は、レーザ検出制御回路77、スピンドルモータ制御回路74及びフィードモータ制御回路73に指令を出力した後、レーザ検出制御回路77から入力する発光強度のデータを、位置検出回路72と回転角度検出回路75が出力するデジタルデータと同じタイミングで取り込む。これにより、コントローラ91には撮像した回折環における回折X線の強度データが、移動距離データ及び回転角度データとともに蓄積される。これが回折環読取機能であり、この機能は特許文献1乃至特許文献3に示されているX線回折測定システムと同じである。
また、レーザ検出装置30にはLED光源43が設けられており、LED光源43はLED駆動回路84によって制御されて、可視光を発してイメージングプレート15に撮像された回折環を消去する。回折環読取りがされた後、コントローラ91の指令により移動ステージ21が所定位置に戻り移動を再開したとき、LED駆動回路84にコントローラ91から指令が入力し、LED駆動回路84はLED光源43が所定の強度の可視光を出射する駆動信号を出力する。これが回折環消去機能であり、この機能も特許文献1乃至特許文献3に示されているX線回折測定システムと同じである。
図3に示すように、円盤状プレート45には三角状ミラー12が取り付けられており、取り付け位置は図4に示すように、円盤状プレート45に貫通孔45aが形成されている円周位置の所定の回転角度の位置である。三角状ミラー12は円盤状プレート45の平面に水平に入力した光を反射して円盤状プレート45に垂直な光にするので、回折環撮像位置において円盤状プレート45の回転位置が適切な位置になると、LED光源44が出射した可視のLED光を反射してポリキャピラリ14に入射させる。コントローラ91のメモリには、この回転位置の回転角度が記憶されており、入力装置92より指令が入力すると、コントローラ91は記憶されている該回転角度をモータ制御回路86に出力し、円盤状プレート45の回転位置は可視のLED光がポリキャピラリ14に入射する位置になる。また、図3においては、わかりやすくするためLED光源44を固定する部材は除いているが、LED光源44は移動ステージ21に固定されており、図1に示すようにLED駆動回路85から駆動信号が入力すると可視のLED光を出射する。
図3に示すように、三角状ミラー12には中心に貫通孔13aを有する板状プレート13が取り付けられており、三角状ミラー12で反射したLED光は、貫通孔13aを通過したLED光のみがポリキャピラリ14に入射する。貫通孔13aを通過する光は、三角状ミラー12の反射面の中心に円盤状プレート45に平行に入射した光のみであり、この光はポリキャピラリ14の中心軸周りの限られた細束管のみに入射する。このため、ポリキャピラリ14から出射するLED光は、特許文献1に示されているX線回折測定装置と同様に出射X線と光軸が等しく平行光となる。よって、
出射X線を集光させるポリキャピラリ14を設けても、出射X線と光軸が等しいLED光は特許文献1に示されているX線回折測定装置と同じ平行光であり。このLED光照射機能と後述するカメラ機能とを用いることで、特許文献1に示されているX線回折測定装置と同様に、測定対象物OBに対するX線回折測定装置1の位置と姿勢の調整を行うことができる。
コントローラ91は、入力装置93から位置及び姿勢調整の指令を入力すると、モータ制御回路86にLED光がポリキャピラリ14に入射する回転角度を出力し、LED駆動回路85にLED出射の指令を出力し、さらにセンサ信号取出回路87に作動開始の指令を出力する。これにより、出射X線と光軸が等しい平行なLED光が測定対象物OBに照射され、測定対象物OBのLED光照射点の付近の撮影画像データがコントローラ91に入力し、表示装置93には入力した撮影画像データから作成された撮影画像が表示される。作業者はこの撮影画像を見ながら、対象物セット装置60を用いてX線回折測定装置1に対する測定対象物OBの位置と姿勢の調整を行うが、この調整方法は特許文献1乃至特許文献3に示されているX線回折測定装置の場合と同じである。
X線回折測定装置1に対する測定対象物OBの位置と姿勢の調整が終了すると、測定対象物OBにおけるLED光照射点(X線照射点と同)は意図した測定箇所になり、X線照射点からイメージングプレート15までの距離(以下、照射点―IP間距離という)は設定値になり、測定対象物OBに対するX線の入射角(本発明では出射X線は集光して入射するため、正確には出射X線の光軸が測定対象物OBのX線照射点における法線と成す角)は設定値になり、さらにX線照射点における法線は基準平面(出射X線の光軸と回転角度0のラインを含む平面)に含まれるようになる。このとき、図5に示すように、ポリキャピラリ14により出射したX線が集光する点は、測定対象物OB上のX線照射点になっており、測定対象物OBに所定範囲の入射方向からX線を照射することができ、X線回折測定装置1の筐体50を揺動させてX線回折測定を行った場合と同じ効果を得ることができる。また、X線管10から出射するX線の強度が特許文献1に示されているX線回折測定装置のものと同等でも、スピンドルモータ27の貫通孔27bに入射したX線の大部分を測定対象物OBに照射することができるので、照射されるX線の強度は特許文献1に示されているX線回折測定装置のときより大きくなり、X線を所定範囲の入射方向から照射しても、回折環撮像に要する時間は特許文献1に示されているX線回折測定装置のときと同程度になる。また、出射X線がポリキャピラリ14に入射する前に円盤状プレート45の貫通孔45a1〜45a11を通過することで、ポリキャピラリ14に入射するX線の断面径は変化し、ポリキャピラリ14から出射した時点のX線の断面径も変化するので、X線の入射方向の範囲(揺動角度に相当する角度の範囲)を意図する範囲に調整することができる。なお、図5においては、出射X線の光軸の垂直方向を拡大し、出射X線が集光する様子を誇張して示してある。
図5に示すように、結像レンズ48の光軸は、ポリキャピラリ14により出射X線が集光する点と交差している。結像レンズ48の光軸が撮像器49と交差する箇所は、照射点―IP間距離が設定値であるときLED光照射点が結像する位置であり、この位置が基準位置として撮像器49から出力される撮像信号から作成された画像上に画像データとは独立して、例えば十字マークで表示される。よって、撮影画像上のLED光照射点が基準位置に合うよう測定対象物OBの位置を調整することで、照射点―IP間距離を設定値にし、X線照射点を出射X線が集光する点にすることができる。また、結像レンズ48の光軸は基準平面に含まれ、出射X線の光軸と成す角度は、X線入射角の設定値の2倍の角度になっている。よって、照射点―IP間距離が設定値であり、出射X線の入射角が設定値であって、X線照射点の箇所の測定対象物OBの法線が基準平面に含まれていれば、結像レンズ48の光軸が撮像器49と交差する箇所は、照射されたLED光の反射光が結像レンズ48により集光して受光される点である。よって、撮影画像上のLED光照射点が基準位置に合うようにした後、撮影画像上のLED光の受光点も基準位置に合うよう測定対象物OBの姿勢を調整することで、測定対象物OBに対するX線の入射角は設定値になり、X線照射点における測定対象物OBの法線は基準平面に含まれるようになる。これらの説明は出射X線の集光を除き、特許文献1で詳細に説明されている。
上記のように構成したX線回折測定装置1を含むX線回折測定システムを用いて、測定対象物OBをX線回折測定する方法は、測定前に入力装置92からX線の入射方向の範囲を入力する点が追加される点を除き、特許文献1に示されているX線回折測定システムと同じであり、特許文献1で既に詳細に説明されている。端的に説明すると、作業者は電源を投入してX線回折測定システムを作動させ、対象物セット装置60にセットし、入力装置92から位置及び姿勢調整の指令を入力してLED光を測定対象物OBに照射し、表示装置93に撮影画像を見ながら測定対象物OBの位置と姿勢を調整する。次に、入力装置92からX線の入射方向の範囲とそれ以外の測定条件を入力し、測定開始の指令を入力する。これにより、X線回折測定装置1は測定対象物OBにX線を照射してイメージングプレート15に回折環を撮像し、レーザ検出装置30からのレーザ照射により、撮像された回折環のそれぞれの箇所における回折X線強度を検出してコントローラ91にデータを出力し、撮像された回折環を消去する。そして、コントローラ91は入力したデータから残留応力等の特性値を計算して、計算結果、X線の入射方向の範囲等の測定条件、及び回折環のそれぞれの箇所における回折X線強度に基づくマップ等を表示する。
上記説明からも理解できるように、上記実施形態においては、対象とする測定対象物OBに向けてX線を出射するX線出射機構と、X線出射機構から測定対象物OBに向けてX線が照射された際、測定対象物OBにて発生した回折X線を、X線出射機構から出射されるX線の光軸に対して垂直に交差するイメージングプレート15にて受光し、イメージングプレート15に回折X線の像である回折環を形成する回折環形成機構とを備えたX線回折測定装置1において、X線出射機構は、内部でX線を発生させて出射口11よりX線を出射させるX線管10と、X線管10から出射したX線を入射し通過させて出射する多数の細束管の集合体であるポリキャピラリ14とを備え、ポリキャピラリ14は、多数の細束管から出射したX線が略1点で集光するように多数の細束管が構成されている。
これによれば、X線管10のターゲットにおけるX線発生領域を大きくする必要はなく、ポリキャピラリ14の径をX線を通過させる貫通孔27bの径と同程度にすれば、従来のX線回折測定装置ように貫通孔にアパーチャがない分、出射するX線の強度を大きくし、X線を集光させて測定対象物OBに照射することができる。すなわち、X線管10から出射するX線の強度が従来と同程度でも、測定対象物OBに照射されるX線の強度を従来より大きくして、測定対象物OBに所定範囲の入射方向からX線を照射することができる。別の表現をすると、X線をその光路が可視の平行光が凸レンズにより集光したときと同様の光路になるようにして測定対象物OBに照射することができる。これにより、測定時間を従来と同程度にしたまま、筐体50を揺動させてX線回折測定を行った場合と同じ効果を得ることができる。
また、上記実施形態においては、X線回折測定装置1は、ポリキャピラリ14にX線が入射する近傍に、複数のX線通過用の貫通孔45aが形成された円盤状プレート45であって、複数のX線通過用の貫通孔45aはそれぞれ異なった孔径である円盤状プレートと、円盤状プレートに形成されたX線通過用の貫通孔45aのいずれかがX線の光路上に配置するよう、円盤状プレート45を回転させるモータ46、モータ制御回路86及び回転角度検出回路87からなる円盤状プレート移動機構とを備えている。
これによれば、円盤状プレート移動機構により円盤状プレート45を移動させれば、X線が通過する貫通孔45aが変わり、X線の断面径が変化する。そして、X線の断面径が変化すれば、X線が集光した箇所におけるX線入射方向の範囲(揺動角度に相当する角度の範囲)を変化させることができる。すなわち、円盤状プレート移動機構により円盤状プレート45を回転させてX線が通過する貫通孔45aを変えることで、X線入射方向の範囲を様々に設定することができる。また、X線が通過する貫通孔45aを変える機構を、複数の貫通孔45aが形成された円盤状プレート45を回転させる機構にすることで、該機構をコンパクトで簡単な機構にすることができる。
また、上記実施形態においては、X線回折測定装置1は、X線管10からX線が出射されていない状態で、可視のLED光をポリキャピラリ14に入射させて出射させる可視光出射機構を備え、可視光出射機構は、LED光を出射するLED光源44と、円盤状プレート45の円周方向の一部に取り付けられた三角状ミラー12であって、円盤状プレート移動機構による円盤状プレート45の移動により三角状ミラー12にLED光源44から出射されたLED光が入射するようになったとき、ポリキャピラリ14にLED光が入射するよう入射したLED光を反射させる三角状ミラー12とを備えている。
これによれば、従来のX線回折測定装置にある出射X線の光軸と同じ光軸で可視のLED光を出射する機能を、LED光源44を設け、円盤状プレート45に三角状ミラー12を取り付けるのみで設けることができるので、X線入射方向の範囲を変化させる機能や出射X線の光軸と同じ光軸で可視光を出射する機能を設けても、X線回折測定装置1をコンパクトにすることができる。
また、上記実施形態においては、X線回折測定装置1は、出射されたLED光の照射点を含む領域の測定対象物OBの画像を結像する結像レンズ48、及び結像レンズ48によって結像された画像を撮像する撮像器49を有し、撮像された画像を表す撮像信号を出力するカメラと、カメラから出力される撮像信号を入力して、撮像器49によって撮像された画像を画面上に表示する表示装置93であって、測定対象物OBにおけるLED光の照射点からイメージングプレート15までの距離が設定値であるとき、撮像器49によって撮像される照射点の画像上の位置を照射点基準位置として、撮像信号により表示される画像とは独立して画面上に表示する表示装置93とを備え、表示装置93の照射点基準位置にLED光の照射点があるとき、測定対象物OBにおけるLED光の照射点は、ポリキャピラリ14でX線が集光する点であるようにしている。
これによれば、特許文献1のX線回折測定装置にある、表示装置93におけるLED光の照射点が照射点基準位置にあるようにすることでX線照射点からイメージングプレート15までの距離を設定値にする機能を、X線照射点からイメージングプレート15までの距離を設定値にするとともにX線照射点をX線が集光する点にする機能にすることができる。
また、上記実施形態においては、可視光出射機構は、LED光の光路上に、ポリキャピラリ14の中心軸周りの限定された細束管にのみLED光を入射させるようにした板状プレート13をも備え、結像レンズ48は測定対象物OBによるLED光の反射光を集光し、撮像器49は集光された反射光の受光点も撮像し、かつカメラは受光点を表す撮像信号も出力し、表示装置93は、撮像器49によって撮像された受光点も撮像信号により画面上に表示するとともに、測定対象物OBにおけるLED光の照射点を通る測定対象物OBの表面の法線に対して、測定対象物OBに照射されるLED光の光軸が所定方向であるとき、撮像器49によって撮像される受光点の画像上の位置を受光点基準位置として、撮像信号により表示される画像とは独立して画面上に表示するようにしている。
これによれば、X線が集光するよう測定対象物OBに照射されても、LED光は略平行光で測定対象物OBに照射されるので、特許文献1のX線回折測定装置にある、表示装置93におけるLED光の受光点が受光点基準位置にあるようにすることでX線の入射角を設定値にし、イメージングプレート15の回転角度0のラインとX線光軸を含む平面と測定対象物OBのX線照射点における法線が成す角度を0にする機能をそのまま設けることができる。
さらに、本発明の実施にあたっては、上記実施形態に限定されるものではなく、本発明の目的を逸脱しない限りにおいて種々の変更が可能である。
上記実施形態においては、三角状ミラー12で反射したLED光を板状プレート13の貫通孔13aを通すことで、ポリキャピラリ14の中心軸周りの限定された細束管にのみLED光を入射させるようにし、ポリキャピラリ14から出射したLED光を平行光にしてLED光照射点が測定対象物OBに生じるようにした。そして、このLED光照射点が意図した測定箇所になるとともに、カメラの撮影画像でのLED光照射点と受光点の位置が基準位置に合うように測定対象物OBの位置と姿勢を調整するようにした。しかし、カメラの撮影画像でのLED光照射点と受光点を見ながら調整をする前に、測定対象物OBの位置と姿勢が、大まかに合っていると測定対象物OBの位置と姿勢の調整はより容易になる。図6に示す円盤状プレート45は大まかに測定対象物OBの位置と姿勢を調整できるようにしたもので、上記実施形態と同じ形状の三角状ミラー12と貫通孔13aが形成された板状プレートが同じように取り付けられ、その隣に、同じ形状の三角状ミラー12’と十字の貫通孔13a’が形成された板状プレートが取り付けられている。
この場合は、最初に三角状ミラー12’と十字の貫通孔13a’が形成された板状プレートによりLED光をポリキャピラリ14に入射させる。これにより、ポリキャピラリ14の細束管でLED光が通過するものの集合体は、ポリキャピラリ14の断面で見ると十字状になり、測定対象物OBには十字マークのLED光照射模様ができる。そして、十字マークのクロス点が意図した測定箇所になるとともに、十字マークが点に近くなり、結像レンズ48付近で十字マークができるよう測定対象物OBの位置と姿勢を調整すれば、測定対象物OBの位置と姿勢は、照射点―IP間距離が設定値になり、X線の入射角が設定値になり、基準平面に測定対象物OBのX線照射点における法線が含まれる位置と姿勢に近くなる。次に、円盤状プレート45の回転位置を変えることで、三角状ミラー12と貫通孔13aが形成された板状プレートによりLED光をポリキャピラリ14に入射させ、上記実施形態のように測定対象物OBの位置と姿勢の調整を行えばよい。既に、大まかに測定対象物OBの位置と姿勢は調整されているので、この場合の調整は微調整でよくなる。なお、図6では、貫通孔13a’の形状は十字にしたが、測定対象物OBにできるLED光照射模様からX線照射点が定義できれば、別の表現をするとポリキャピラリ14の断面におけるLED光が通過する細束管の集合体が、ポリキャピラリ14の断面の中心を定義可能な形状であれば、形状は十字以外のものでもよい。例えば、アスタリスクの形状でもよいし、○の中に×がある形状でもよい。
また、上記実施形態においては、可視光を出射する光源としてLED光源44を用いたが、可視光を出射するもので移動ステージ21に固定可能な程度に小型のものであれば、どのような光源を用いてもよい。例えば、図7に示すように、可視光を出射する光源をレーザ光源54にし、レーザ光源54から出射したレーザ光をコリメーティングレンズ55で平行光に近くして、三角状ミラー12に入射させるようにしてもよい。これによれば、発光光量に対する板状プレート13の貫通孔13aを通過する光量の割合は大きくなるので、LED光照射点がより明確になる。また、発光光量を抑制することができるので光源の劣化速度を遅くすることができる。また、レーザ光源54に替えてSLD光源を用いてもよい
また、上記実施形態においては、LED光照射点の撮影画像上の位置を照射点基準位置にしたとき、照射点―IP間距離が設定値になり、測定対象物OBにおけるLED光の照射点は、ポリキャピラリ14でX線が集光する点であるようにしている。しかし、LED光照射点の撮影画像上の位置を照射点基準位置にしたとき、ポリキャピラリ14でX線が集光する点は、測定対象物OBにおけるLED光の照射点よりも、X線の出射方向において後側にあってもよい。この場合、上記実施形態のように、撮影画像上の照射点基準位置を結像レンズ48の光軸が撮像器49と交差する点であるようにすると、図8に示すようにX線が集光する点は、結像レンズ48の光軸が出射X線の光軸と交差する点よりX線の出射方向において後側にある。このようにすると、X線入射方向の範囲が狭くなり、円盤状プレート45の貫通孔45aを変えることで変化させることができるX線入射方向の範囲も小さくなる。しかし、円盤状プレート45の貫通孔45aを変えることで、X線照射点の径を変化させることができるので、X線入射方向の範囲を小さくしても、測定対象物OBにより測定点の大きさを変化させることが要求される場合は、この形態にすればよい。
また、上記実施形態においては、円盤状プレート45に形成する貫通孔45aは、図4に示すように等間隔の回転角度ごとに設けた。しかしながら、図6に示すように貫通孔45aを孔径が小さくなるほど隣との間隔を狭めるようにしてもよい。これによれば、より多くの貫通孔45aを円盤状プレート45に設けることができ、X線入射方向の範囲の変化の間隔を小さくすることができる。また、複数の貫通孔45aの位置を変化させ、それぞれの貫通孔45aの中心軸を出射X線の光軸と一致させることができるならば、プレートの形状は円盤状でなくてもよい。プレートを回転させるならば扇状でもよいし、プレートを直線移動させるならば長方形状でもよい。また、装置の構造が複雑化してもかまわなければ、複数の貫通孔45aが形成されたプレートを移動させる替わりに、カメラの絞りのように貫通孔の径を変化させる機構を設けたプレートに、可視光を反射させる三角状ミラー12を取り付け、このプレートを往復移動させるような構造にしてもよい。
また、上記実施形態においては、三角状ミラー12で反射したLED光を貫通孔13aを通過させることでポリキャピラリ14の中心軸付近の細束管に入射させるようにした。しかし、X線の入射角を設定値にするか該入射角を検出し、基準平面内にX線照射点部分の測定対象物OBの法線を含める調整をすることができるならば、貫通孔13aが形成された板状プレート13をなくし、ポリキャピラリ14のすべての細束管にLED光を入射させるようにしてもよい。又は、貫通孔13aが形成された板状プレート13をなくし、図6に示される貫通孔13a’が形成された板状プレートを替わりに取り付けてもよい。なお、X線の入射角を設定値にするか該入射角を検出し、基準平面内にX線照射点部分の測定対象物OBの法線を含める調整を行う方法としては、特許第6128333号の特許又は特許6048547号の特許に示された技術がある。
また、上記実施形態においては、出射X線と同じ光軸で可視光を出射することができるよう、円盤状プレート45に三角状ミラー12を取り付け、LED光をポリキャピラリ14に入射させることができるようにしたが、測定対象物OBの形状が1つに限定されており、対象物セット装置60とX線回折測定装置1の位置と姿勢の関係が固定されているならば、出射X線と同じ光軸で可視光を出射する機能は設けなくてもよい。この場合は、円盤状プレート45は貫通孔45aだけを設ければよい。
また、上記実施形態においては、X線回折測定装置1が固定され、測定対象物OBを位置と姿勢が調整可能な対象物セット装置60に載置し、対象物セット装置60を操作することにより、X線回折測定装置1(筐体50)に対する測定対象物OBの位置と姿勢をするようにした。しかし、本発明は、測定対象物OBが固定され、X線回折測定装置1はアーム式移動装置等に取り付けられて位置と姿勢が変更可能な場合であっても適用することができる。また、測定対象物OB及びX線回折測定装置1の、双方の位置と姿勢が変更可能な場合であっても適用することができる。
また、上記実施形態においては、X線回折測定装置1をイメージングプレート15に回折環を撮像し、レーザ検出装置30からレーザ光照射しながら走査して照射位置と光の強度検出を行うことで回折環を読取る装置とした。しかし、回折環を撮像し回折環を読取ることができるならば、どのような方式の装置でも本発明は適用することができる。例えば、イメージングプレート15と同じ広さの平面を有するX線CCDを備え、X線管10からのX線照射の際、X線CCDの各画素が出力する電気信号により回折X線の強度分布を検出する装置でもよい。また、イメージングプレート15と同じ広さの平面を有するX線CCDの代わりに、微小サイズのX線CCDを位置を検出しながら走査し、X線CCDの各画素が出力する電気信号とX線CCDの走査位置から、回折X線の強度分布を検出する装置でもよい。また、X線CCDに替えてシンチレータから出た蛍光を、光電子増倍管(PMT)で検出するシンチレーションカウンタを用いる装置でもよい。
また、上記実施形態においては、コントローラ91に残留垂直応力を演算して求めるプログラムがインストールされているとした。しかし、測定効率を重要視しなければ、X線回折測定システムはX線回折像を検出するまでにし、残留応力の計算は別の装置で行うようにしてもよい。この場合、別の装置にX線回折像のデータを入力する方法としては、記録媒体を介する方法、ネット回線等を使用して転送する方法等、様々な方法が考えられる。また、さらに時間がかかってもよければ演算プログラムを使用せず、残留応力の計算の一部またはすべてを手計算により行ってもよい。
また、上記実施形態においては、X線回折測定装置1を回折環を形成(撮像)し回折環を読取ることができる装置としたが、測定効率を重要視しなければ、X線回折測定装置1は回折環の形成のみを行う装置にし、回折環が形成されたイメージングプレート15をテーブル16から取り外して別の装置にセットし、回折環の読取り、回折環の消去及び残留応力の計算を別の装置で行うようにしてもよい。なお、上述したようにX線CCDやシンチレーションカウンタを用いれば、回折環の形成と読取りを同時に行うことができるので、X線CCDやシンチレーションカウンタを用いた場合、特許請求の範囲における回折環の形成は、回折環の形成と読取りを指すものとする。
1…X線回折測定装置、10…X線管、11…出射口、12…三角状ミラー、13…板状プレート、13a…貫通孔、14…ポリキャピラリ、15…イメージングプレート、15a,16a,17a,18a,21a,26a,27a1,27b…貫通孔、16…テーブル、17…突出部、18…固定具、20…テーブル駆動機構、21…移動ステージ、22…フィードモータ、23…スクリューロッド、24…軸受部、25…ガイド、26…板状プレート、27…スピンドルモータ、28,29…ブロック、30…レーザ検出装置、43,44…LED光源、45…円盤状プレート、45a…貫通孔、46…モータ、48…結像レンズ、49…撮像器、50…筐体、50a…底面壁、50c…切欠き部壁、50c1…円形孔、50d…繋ぎ壁、52…支持ロッド、53…設置プレート、54…レーザ光源、55…コリメーティングレンズ、60…対象物セット装置、90…コンピュータ装置、91…コントローラ、92…入力装置、93…表示装置、95…高電圧電源 、OB…測定対象物

Claims (4)

  1. 対象とする測定対象物に向けてX線を出射するX線出射手段と、
    前記X線出射手段から前記測定対象物に向けてX線が照射された際、前記測定対象物にて発生した回折X線を、前記X線出射手段から出射されるX線の光軸に対して垂直に交差する撮像面にて受光し、前記撮像面に前記回折X線の像である回折環を形成する回折環形成手段とを備えたX線回折測定装置において、
    前記X線出射手段は、内部でX線を発生させて出射口よりX線を出射させるX線管と、前記X線管から出射したX線を入射し通過させて出射する多数の細束管の集合体であるポリキャピラリであって、前記多数の細束管から出射したX線が略1点で集光するように前記多数の細束管が構成されているポリキャピラリとを備え、
    前記ポリキャピラリにX線が入射する近傍に配置された、複数のX線通過用孔が形成されたプレートであって、前記複数のX線通過用の孔はそれぞれ異なった孔径であるプレートと、
    前記プレートに形成された複数のX線通過用孔のいずれかがX線の光路上に配置するよう前記プレートを移動するプレート移動機構と、
    前記X線管からX線が出射されていない状態で、可視光を前記ポリキャピラリに入射させて出射させる可視光出射手段とを備え、
    前記プレートは、円周方向に前記複数のX線通過用孔が形成された円盤状又は扇状のプレートであり、
    前記プレート移動機構は、前記プレートの回転位置を変化させる機構であって、
    前記可視光出射手段は、可視光を出射する光源と、前記プレートの円周方向の一部に取り付けられた反射部材であって、前記プレート移動機構による前記プレートの移動により前記反射部材に前記光源から出射された可視光が入射するようになったとき、前記ポリキャピラリに可視光が入射するよう前記入射した可視光を反射させる反射部材とを備えたことを特徴とするX線回折測定装置。
  2. 請求項1に記載のX線回折測定装置において、
    前記可視光出射手段から出射された可視光の照射点を含む領域の測定対象物の画像を結像する結像レンズ、及び前記結像レンズによって結像された画像を撮像する撮像器を有し、前記撮像された画像を表す撮像信号を出力するカメラと、
    前記カメラから出力される撮像信号を入力して、前記撮像器によって撮像された画像を画面上に表示する表示器であって、前記測定対象物における可視光の照射点から前記撮像面までの距離が設定値であるとき、前記撮像器によって撮像される照射点の画像上の位置を照射点基準位置として、前記撮像信号により表示される画像とは独立して画面上に表示する表示器とを備え、
    前記表示器の前記照射点基準位置に可視光の照射点があるとき、前記測定対象物における可視光の照射点は、前記ポリキャピラリでX線が集光する点であることを特徴とするX線回折測定装置。
  3. 請求項2に記載のX線回折測定装置において、
    前記可視光出射手段は、前記可視光の光路上に、前記ポリキャピラリの中心軸周りの限定された細束管にのみ可視光を入射させるようにした可視光限定入射手段をも備え、
    前記結像レンズは測定対象物による前記可視光の反射光を集光し、前記撮像器は前記集光された反射光の受光点も撮像し、かつ前記カメラは前記受光点を表す撮像信号も出力し、
    前記表示器は、前記撮像器によって撮像された受光点も前記撮像信号により画面上に表示するとともに、前記測定対象物における前記可視光の照射点を通る測定対象物の表面の法線に対して、測定対象物に照射される前記可視光の光軸が所定方向であるとき、前記撮像器によって撮像される前記受光点の画像上の位置を受光点基準位置として、前記撮像信号により表示される画像とは独立して画面上に表示するようにしたことを特徴とするX線回折測定装置。
  4. 請求項1乃至請求項3のいずれか1つに記載のX線回折測定装置において、
    前記可視光出射手段は、前記可視光の光路上に、前記ポリキャピラリの断面における可視光が通過する細束管の集合体が、前記ポリキャピラリの断面の中心を定義可能な形状になるよう前記ポリキャピラリに可視光を入射させるようにしたマーク用可視光入射手段をも備えたことを特徴とするX線回折測定装置。
JP2019198538A 2019-10-31 2019-10-31 X線回折測定装置 Active JP6924348B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019198538A JP6924348B2 (ja) 2019-10-31 2019-10-31 X線回折測定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019198538A JP6924348B2 (ja) 2019-10-31 2019-10-31 X線回折測定装置

Publications (2)

Publication Number Publication Date
JP2021071400A JP2021071400A (ja) 2021-05-06
JP6924348B2 true JP6924348B2 (ja) 2021-08-25

Family

ID=75712939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019198538A Active JP6924348B2 (ja) 2019-10-31 2019-10-31 X線回折測定装置

Country Status (1)

Country Link
JP (1) JP6924348B2 (ja)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57197454A (en) * 1981-05-29 1982-12-03 Rigaku Denki Kogyo Kk X-ray analysing apparatus
JPH0740080B2 (ja) * 1986-06-19 1995-05-01 株式会社島津製作所 X線ビ−ム収束装置
JP2007292623A (ja) * 2006-04-26 2007-11-08 Hitachi Ltd 材料評価装置
JP4860418B2 (ja) * 2006-10-10 2012-01-25 株式会社リガク X線光学系
JP2008203245A (ja) * 2007-01-23 2008-09-04 Sii Nanotechnology Inc X線分析装置及びx線分析方法
JP5835191B2 (ja) * 2012-11-16 2015-12-24 パルステック工業株式会社 回折環形成装置及び回折環形成システム
US9846132B2 (en) * 2013-10-21 2017-12-19 Kla-Tencor Corporation Small-angle scattering X-ray metrology systems and methods
JP5984024B2 (ja) * 2014-11-04 2016-09-06 パルステック工業株式会社 X線回折測定装置
JP6492389B1 (ja) * 2017-12-15 2019-04-03 パルステック工業株式会社 X線回折測定装置
JP6676241B1 (ja) * 2018-12-11 2020-04-08 パルステック工業株式会社 X線回折測定装置

Also Published As

Publication number Publication date
JP2021071400A (ja) 2021-05-06

Similar Documents

Publication Publication Date Title
JP5835191B2 (ja) 回折環形成装置及び回折環形成システム
JP6361086B1 (ja) X線回折測定装置及びx線回折測定方法
JP6060473B1 (ja) X線回折測定装置
JP6060474B1 (ja) X線回折測定装置
JP6264591B1 (ja) 熱膨張係数測定方法及びx線回折測定装置
JP6048547B1 (ja) X線回折測定装置
JP6037237B2 (ja) X線回折測定装置およびx線回折測定装置による測定方法
JP6221199B1 (ja) X線回折測定装置
JP6155538B2 (ja) X線回折測定装置及びx線回折測定方法
JP6924348B2 (ja) X線回折測定装置
JP6372731B1 (ja) X線回折測定装置
JP5949704B2 (ja) 回折環形成方法
JP5967491B2 (ja) X線回折測定装置およびx線回折測定装置におけるx線入射角検出方法
JP6128333B2 (ja) X線回折測定方法
JP6115597B2 (ja) X線回折測定装置
JP5962737B2 (ja) X線回折測定装置およびx線回折測定方法
JP6195140B1 (ja) X線回折測定装置
JP6246965B1 (ja) X線回折測定装置を用いた軸力評価方法
JP6044877B1 (ja) X線回折測定装置
JP6844103B1 (ja) X線回折測定装置
JP6032500B2 (ja) X線回折測定方法および入射角度調整用治具
JP7280516B2 (ja) X線回折測定装置
JP5958584B1 (ja) X線回折測定装置及びx線回折測定方法
JP2022173617A (ja) X線回折測定システム
JP2023027826A (ja) X線回折測定システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210713

R150 Certificate of patent or registration of utility model

Ref document number: 6924348

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150