JP6060474B1 - X線回折測定装置 - Google Patents

X線回折測定装置 Download PDF

Info

Publication number
JP6060474B1
JP6060474B1 JP2016010419A JP2016010419A JP6060474B1 JP 6060474 B1 JP6060474 B1 JP 6060474B1 JP 2016010419 A JP2016010419 A JP 2016010419A JP 2016010419 A JP2016010419 A JP 2016010419A JP 6060474 B1 JP6060474 B1 JP 6060474B1
Authority
JP
Japan
Prior art keywords
ray
diffraction
measurement object
incident angle
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016010419A
Other languages
English (en)
Other versions
JP2017129514A (ja
Inventor
洋一 丸山
洋一 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pulstec Industrial Co Ltd
Original Assignee
Pulstec Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pulstec Industrial Co Ltd filed Critical Pulstec Industrial Co Ltd
Priority to JP2016010419A priority Critical patent/JP6060474B1/ja
Application granted granted Critical
Publication of JP6060474B1 publication Critical patent/JP6060474B1/ja
Publication of JP2017129514A publication Critical patent/JP2017129514A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

【課題】 3軸残留応力を測定する際、X線回折測定装置の筐体の位置と姿勢の調整に時間がかからず、測定対象物が狭い場所にある場合でも測定が困難にならないX線回折測定装置を提供する。【解決手段】 X線回折測定装置の筐体50の傾斜角を、出射X線の光軸と交差する回転軸であって、交差する点がイメージングプレート15から設定された距離Lである回転軸周りに変更する傾斜角変更機構5を設ける。測定対象物OBのX線の照射点からイメージングプレート15までの距離を設定値Lにし、傾斜角変更機構5により筐体50の傾斜角を変更することで測定対象物OBに対するX線の入射角を異なる2つの状態にし、それぞれX線を測定対象物OBに照射してイメージングプレート15に撮像される回折環の形状を検出する。得られた2つの回折環の形状と2つの入射角から、3軸残留応力を計算する。【選択図】図1

Description

本発明は、測定対象物にX線を照射し、測定対象物で回折したX線により形成されるX線回折環の形状を検出するX線回折測定装置および該X線回折測定装置を用いたX線回折測定方法に関する。
従来から、例えば特許文献1に示されるように、測定対象物に所定の入射角度でX線を照射して、測定対象物で回折したX線によりX線回折環(以下、回折環という)を形成し、形成された回折環の形状を検出してcosα法による分析を行い、測定対象物の残留応力を測定するX線回折測定装置が知られている。特許文献1に示されている装置は、X線出射器、イメージングプレート等の回折環撮像手段、レーザ検出装置及びレーザ走査機構等の回折環読取手段、並びにLED照射器等の回折環消去手段等を1つの筐体内に備えている。また、筐体の測定対象物に対する位置と姿勢をアーム式移動装置により変化させることができるようになっている。そして、筐体の測定対象物に対する位置と姿勢を調整した後、測定対象物にX線を照射して発生する回折X線により、回折環をイメージングプレートに撮像する撮像工程、イメージングプレートにレーザ検出装置からのレーザ光を走査しながら照射することで回折環の形状を検出する読取り工程、及び該回折環をLED光の照射により消去する消去工程を連続して行えるようになっている。このX線回折測定装置を用いれば、装置を測定対象物がある場所まで運搬してアーム式移動装置を固定した後、短時間で測定対象物の残留応力を測定することができる。
測定対象物の残留応力を測定する場合、測定対象物の表面の2方向における残留垂直応力σx、σyと残留せん断応力τxy(以下、平面残留応力という)を測定することが多いが、測定対象物によっては、残留垂直応力σx、σy、σzと残留せん断応力τxy、τyz、τxz(以下、3軸残留応力という)を測定することもある。特許文献1に示されるようなX線回折測定装置で3軸残留応力を測定するには、測定対象物の同一箇所をX線照射方向を変えて複数回測定すればよい。例えば特許文献2では、測定箇所の法線(以下、Z軸という)と測定箇所から残留垂直応力σxの方向のライン(以下、X軸という)とを含む平面にX線の光軸が含まれ、測定対象物に対し所定の入射角になるようX線を照射する場合と、Z軸にX線の光軸を合わせて(すなわち測定箇所に垂直に)X線を照射する場合の2つの測定を行い、それぞれの測定で得られる回折環の形状から3軸残留応力を計算する方法が示されている。この方法を用いれば、2回の測定で測定対象物の3軸残留応力を測定することができる。
国際公開2014/128874号 特開2014−13203号公報
しかしながら、測定箇所に対し斜め方向と垂直方向のX線照射を行い、それぞれX線回折測定を行う場合、それぞれの測定におけるX線の照射箇所(測定箇所)が同一になるよう、X線回折測定装置の筐体の位置と姿勢を調整する必要があり、調整に時間がかかり、3軸残留応力を測定するまでに時間がかかるという問題がある。また、測定対象物が狭い場所にある場合、測定箇所に対し斜め方向と垂直方向からX線を照射するのが困難な場合があるという問題もある。
本発明はこの問題を解消するためなされたもので、その目的は、測定対象物にX線を照射し、測定対象物で回折したX線により形成される回折環の形状を検出するX線回折測定装置および該X線回折測定装置を用いたX線回折測定方法において、3軸残留応力を測定する際、X線回折測定装置の筐体の位置と姿勢の調整に時間がかからず、測定対象物が狭い場所にある場合でも測定が困難にならない、X線回折測定装置およびX線回折測定方法を提供することにある。
上記目的を達成するために、本発明の特徴は、対象とする測定対象物に向けてX線を出射するX線出射器と、X線出射器から測定対象物に向けてX線が照射された際、測定対象物にて発生した回折X線を、X線出射器から出射されるX線の光軸に対して垂直に交差する撮像面にて受光し、撮像面に回折X線の像である回折環を形成するとともに回折環の形状を検出する回折環形成検出手段と、X線出射器と回折環形成検出手段とを内部に配置した筐体と、筐体の傾斜角を、X線出射器から出射されるX線の光軸と交差する回転軸であって、交差する点が撮像面から予め設定された距離である回転軸周りに変更する傾斜角変更機構と、X線出射器から出射されるX線の測定対象物に対する入射角を検出する入射角検出手段とを備えたX線回折測定装置において、X線出射器、回折環形成検出手段、傾斜角変更機構及び入射角検出手段を制御するとともに、回折環形成検出手段が検出した回折環の形状と入射角検出手段が検出した入射角を用いて演算を行う制御手段を備え、制御手段は、回転軸がX線の光軸と交差する点が測定対象物の測定箇所に合致した状態で、入射角検出手段に入射角を検出させた後、X線出射器と回折環形成検出手段を制御して、測定対象物にX線を照射して撮像面に撮像された回折環の形状を検出する第1回折環検出工程と、傾斜角変更機構を制御して筐体を異なる傾斜角にするとともに、入射角検出手段に入射角を検出させた後、X線出射器と回折環形成検出手段を制御して、測定対象物にX線を照射して撮像面に撮像された回折環の形状を検出する第2回折環検出工程と、第1回折環検出工程及び第2回折環検出工程で得られた2つの回折環の形状と2つの入射角とを用いて、3軸残留応力を計算する演算工程とを行うことにある。
これによれば、測定対象物のX線の照射箇所から撮像面までの距離を予め設定された距離にすれば、X線の照射箇所は、傾斜角変更機構が傾斜角を変更する際の回転軸に含まれるので、傾斜角変更機構を用いて筐体の傾斜角を変更させるのみで、X線の照射箇所が同一のままX線の入射角を変更することができ、X線回折測定装置の筐体の位置と姿勢の調整に時間がかからないようにすることができる。すなわち、作業者は測定対象物のX線の照射箇所から撮像面までの距離が予め設定された距離になるよう、筐体の位置と姿勢を調整すれば、後は制御手段が第1回折環検出工程、第2回折環検出工程及び演算工程を実施して3軸残留応力を測定するので、3軸残留応力を測定するまでに時間がかからないようにすることができる。
また、本発明の他の特徴は、X線出射器から出射されるX線と光軸を同一にした平行光である可視光を測定対象物に出射する可視光出射器と、回転軸がX線の光軸と交差する点が測定対象物の測定箇所に合致した状態で、可視光出射器から可視光を測定対象物に照射したとき、測定対象物からの反射光の受光位置を設定された位置にすることにより測定対象物に対する可視光の入射角を設定値にする入射角設定手段とを備え、入射角検出手段は、傾斜角変更機構により変更された傾斜角を検出する傾斜角検出手段と、傾斜角検出手段が検出した傾斜角の、入射角設定手段により入射角が設定値にされたとき傾斜角検出手段により検出された傾斜角からの差を、入射角の設定値に加算することにより入射角を計算する計算手段とを備えたことにある。
これによれば、可視光出射器から可視光を出射して照射位置を確認しながら、測定箇所を希望する箇所にすることができるとともに、測定対象物に対するX線の入射角をどのような角度にしても、精度よく入射角を検出することができる。
また、本発明の他の特徴は、制御手段は、第2回折環検出工程おける入射角の第1回折環検出工程における入射角からの差が、X線出射器から出射されるX線の測定対象物の表面に投影した方向が同一方向の状態で20°以内であるように、傾斜角変更機構を制御して傾斜角を変更することにある。
これによれば、出射X線の測定対象物表面に投影した方向が同一方向で、測定箇所に対し入射角を20°以内で異ならせてX線を照射すればいいので、X線回折測定装置の筐体の位置と姿勢が大きく変化せず、垂直方向からのX線照射という条件もないので、測定対象物が狭い場所にある場合でも、測定が困難にならない。発明者はこのようにしても3軸残留応力を測定することができることを見出した。その理論は、発明を実施するための形態で説明する。
また、本発明は、上述したX線出射器、回折環形成検出手段、筐体、傾斜角変更機構及び入射角検出手段を備えたX線回折測定装置を用いたX線回折測定方法の発明としても実施し得るものである。この場合は、回転軸がX線の光軸と交差する点が測定対象物の測定箇所に合致した状態で、入射角検出手段に入射角を検出させた後、X線出射器からX線を出射させ、回折環形成検出手段により撮像面に撮像された回折環の形状を検出する第1回折環検出ステップと、傾斜角変更機構により筐体を異なる傾斜角にするとともに、入射角検出手段に入射角を検出させた後、X線出射器からX線を出射させ、回折環形成検出手段により撮像面に撮像された回折環の形状を検出する第2回折環検出ステップと、第1回折環検出ステップ及び第2回折環検出ステップで得られた2つの回折環の形状と2つの入射角とを用いて、3軸残留応力を計算する演算ステップとを行えばよい。また、その際、第1回折環検出ステップ及び第2回折環検出ステップにおける、X線出射器から出射されるX線の測定対象物の表面に投影した方向が同一方向になり、2つの入射角の差が20°以内になるように傾斜角変更機構により傾斜角を変更すればよい。これによっても、上述したX線回折測定装置の発明と同様の効果を得ることができる。
本発明の実施形態に用いるX線回折測定装置を含むX線回折測定システムを示す全体概略図である。 図1のX線回折測定装置の拡大図である。 図2のX線回折測定装置におけるX線が通過する部分を拡大して示す部分断面図である。 図3のプレート部分の拡大斜視図である。 X線回折測定システムを用いて測定対象物の3軸残留応力測定を行うときの工程図である。 X線の入射角を変えて2回のX線回折測定を行ったときに得られる値を視覚的に示した図である。
本発明の一実施形態に係るX線回折測定装置を含むX線回折測定システムの構成について図1乃至図4を用いて説明する。なお、このX線回折測定システムが、先行技術文献の特許文献2に示されているX線回折測定システムと異なっている点は、X線回折測定装置の筐体50の傾斜角を変更する傾斜角変更機構5とX線の測定対象物に対する入射角を検出する機能とを備える点、及びコントローラ91に傾斜角変更機構5により傾斜角を変更してX線回折測定を2回行うプログラムと、検出した回折環の形状データと入射角データを用いて3軸残留応力を計算するプログラムがインストロールされている点のみである。よって、特許文献1に示されているX線回折測定システムで既に説明されている箇所は、簡略的に説明するにとどめる。
このX線回折測定システムは、X線回折測定システムを測定対象物OBの所まで運搬してX線回折測定を行い、測定対象物OBの3軸残留応力を測定するものである。X線回折測定装置はアーム式移動装置の先端にある支持アーム61に連結され、アーム式移動装置を操作することで位置と姿勢を調整できるようになっている。このX線回折測定システムにより測定を行うときは、X線回折測定システムを測定対象物OBの所まで運搬した後、アーム式移動装置を測定対象物OBの近傍に固定し、X線回折測定装置の位置と姿勢を調整することで、測定対象物OBにおけるX線の照射点、X線の照射方向及びX線照射点から後述するイメージングプレート15までの距離を調整し、測定対象物OBへX線を照射してX線回折測定を行う。なお、本実施形態では、測定対象物OBは鉄製の部材である。
X線回折測定装置は、筐体50内に、X線出射器10、イメージングプレート15を取り付けるテーブル16、テーブル16を回転及び移動させるテーブル駆動機構20及び回折環を検出するレーザ検出装置30等を備えている。そして、X線回折測定システムは、このX線回折測定装置とともに、アーム式移動装置(図示しない)、コンピュータ装置90及び高電圧電源95を備える。筐体50内には、上述した装置および機構に接続されて作動制御したり、検出信号を入力したりするための各種回路も内蔵されており、図1において筐体50外に示された2点鎖線で示された各種回路は、筐体50内の2点鎖線内に納められている。
筐体50は、略直方体状に形成されるとともに、底面壁50a、前面壁50b、後面壁50e、上面壁50f、側面壁(図示せず)、及び底面壁50aと前面壁50bの角部を紙面の表側から裏側に向けて切り欠くように設けた切欠き部壁50cと繋ぎ壁50dを有するように形成されている。切欠き部壁50cは底面壁50aに垂直な平板と平行な平板とからなり、繋ぎ壁50dは側面壁と垂直であり底面壁50aと所定の角度を有している。この所定の角度は、例えば30〜45度である。筐体50は、上面壁50fが固定板54を介して電動式ゴニオステージである傾斜角変更機構5の駆動ステージ51に連結され、傾斜角変更機構5により図1及び図2の紙面垂直方向周りに傾斜角が変更できるようになっている。言い換えると、傾斜角を変更するときの回転軸は、図1及び図2の紙面垂直方向であり、後述するX線出射器10から出射されるX線の光軸と後述するイメージングプレート15の回転基準位置のラインとを含む平面の垂直方向である。そして、傾斜角を変更するときの回転軸は、後述するX線出射器10から出射されるX線の光軸と交差し、交差する点から後述するイメージングプレート15までの距離は設定値Lになっている。また、傾斜角変更機構5の固定ステージ52は側面板53に連結され、側面板53には、支持アーム61に接続される接続部(図示せず)が設けられており、接続部も図1及び図2の紙面の垂直周り、すなわち、出射X線の光軸と後述するイメージングプレート15の回転基準位置のラインとを含む平面の垂直周りに回転可能になっている。支持アーム61はアーム式移動装置の先端であり、アーム式移動装置を操作することにより、筐体50(X線回折測定装置)を任意の位置と姿勢にすることができる。
傾斜角変更機構5はモータ55が回転駆動することで、駆動ステージ51が固定ステージ52に対して駆動し、これは上述したように回転軸周りの回転であるため、筐体50の傾斜角が変化する。モータ55はモータ制御回路88から入力する駆動信号により回転駆動する。モータ制御回路88は、コンピュータ装置90を構成するコントローラ91から傾斜角変更の指令と回転角度が入力すると、モータ55に駆動信号を出力するとともに後述する回転角度検出回路89から回転角度を入力し、入力した回転角度がコントローラ91から入力した回転角度に等しくなったタイミングで駆動信号の出力を停止する。また、モータ制御回路88は、コントローラ91から駆動開始の指令と回転方向が入力すると、モータ55に駆動信号を出力し、コントローラから駆動停止の指令が入力すると出力していた駆動信号を停止する。そして、どちらの場合においても、モータ制御回路88はモータ55内に組み込まれたエンコーダ55aが出力する信号により、モータ55の回転速度(筐体50の傾斜角変更速度)が設定された速度になるよう、駆動信号の強度を制御する。エンコーダ55aはモータ55が所定の微小回転角度だけ回転するたびに、ハイレベルとローレベルとに交互に切り替わるパルス列信号をモータ制御回路88と後述する回転角度検出回路89に出力する。モータ制御回路88には、予めコントローラ91から入力して設定された回転速度が記憶されており、モータ55に駆動信号を出力する際、エンコーダ55aから入力するパルス列信号の単位時間当たりのパルス数を用いて回転速度を計算し、計算した回転速度が設定されている回転速度になるよう、出力する駆動信号の強度を制御する。
回転角度検出回路89は、エンコーダ55aから入力するパルス列信号のパルス数をカウントし、モータ55の回転方向に応じてカウントアップまたはカウントダウンさせて積算カウント値とし、積算カウント値から回転角度を計算してモータ制御回路88とコントローラ91に出力する。回転角度が0となる位置は、駆動ステージ51及び筐体50が図1及び図2おいて左周りに回転し、駆動限界位置に達したときであり、これは、X線回折測定装置に電源を投入したときコントローラ91からの指令により設定される。すなわち、電源の投入時において、コントローラ91はモータ制御回路88と回転角度検出回路89に回転角度0の設定を指令する信号を出力し、この指令が入力すると、モータ制御回路88は駆動ステージ51が図1及び図2おいて左周りに回転する駆動信号を出力し、回転角度検出回路89は、エンコーダ55aから入力するパルス列信号のパルス数をカウントする。そして、回転角度検出回路89は、パルス列信号のパルス数がカウントされなくなると、積算カウント値をリセットして0にし、駆動限界位置を意味する信号をモータ制御回路88に出力する。モータ制御回路88は駆動限界位置を意味する信号が入力すると、モータ55に出力していた駆動信号を停止する。コントローラ91は回転角度0の設定を指令する信号を出力した後、回転角度検出回路89から入力する回転角度が0になると、駆動ステージ51及び筐体50が図1及び図2の状態になる(傾斜角変化範囲の中心付近の傾斜角になる)回転角度を出力する。これによりモータ制御回路88は上述したように回転角度検出回路89から入力する回転角度がコントローラ91から入力した回転角度になるまで駆動信号を出力し、駆動ステージ51及び筐体50は図1及び図2の状態になる。
コントローラ91は、入力装置92から筐体50の傾斜角が入力されると、筐体50が入力された傾斜角になるよう、傾斜角変更の指令と回転角度をモータ制御回路88に出力する。入力装置92から入力する傾斜角は、駆動ステージ51及び筐体50が図1及び図2おいて左周りに回転し、駆動限界位置に達したときを0とした回転角度であり、回転角度検出回路89が出力する回転角度と同一である。よって、コントローラ91は入力した傾斜角をそのまま回転角度検出回路89に出力する。X線回折測定装置の筐体50は、アーム式移動装置により姿勢を変えることができるので、傾斜角は水平面に対する傾斜の角度にはならない。作業者は、後述する表示装置93に表示される現在の傾斜角とX線回折測定装置の筐体50の姿勢から入力する傾斜角を判断する。また、コントローラ91は、入力装置92から筐体50の傾斜角変化方向が入力されると、モータ制御回路88に駆動開始の指令と回転方向を出力し、入力装置92から停止指令が入力されると、モータ制御回路88に駆動停止の指令を出力する。
また、コントローラ91は、回転角度検出回路89から入力する回転角度を、傾斜角として表示装置93に表示する。さらに、入力装置92から入射角設定値調整完了の指令が入力されると、回転角度検出回路89から入力している回転角度Θsを記憶する。そして、その後、回転角度検出回路89から入力する回転角度Θと、予めメモリに記憶されている入射角の設定値Ψsとを用いて、Ψ=Ψs+(Θ−Θs)なる計算から現時点のX線の入射角Ψを計算して、表示装置93に表示する。作業者は、表示装置93に表示される現時点のX線の入射角またはX線回折測定装置の筐体50の傾斜角を確認しながら、入力装置92からの入力により、X線の入射角または筐体50の傾斜角を意図する値にすることができる。
X線出射器10は、筐体50内の上部にて図示左右方向に延設されて筐体50に固定されており、高電圧電源95からの高電圧の供給を受け、X線を図示下方向に出射する。X線制御回路71は、コントローラ91から指令が入力すると、X線出射器10から一定強度のX線が出射されるように、X線出射器10に高電圧電源95から供給される駆動電流及び駆動電圧を制御する。また、X線出射器10は、図示しない冷却装置を備えていて、X線制御回路71は、この冷却装置に供給される駆動信号も制御する。
テーブル駆動機構20は、筐体50に固定され、X線出射器10の下方にて移動ステージ21を備えている。移動ステージ21は、テーブル駆動機構20における対向する1対の板状のガイド25,25により挟まれていて、テーブル駆動機構20に固定されたフィードモータ22、スクリューロッド23及び軸受部24により、出射X線の光軸が含まれる筐体50の側面壁に平行な平面内であって、出射X線の光軸に垂直な方向に移動する。フィードモータ22内には、エンコーダ22aが組み込まれており、エンコーダ22aはフィードモータ22が所定の微小回転角度だけ回転するたびに、ハイレベルとローレベルとに交互に切り替わるパルス列信号を位置検出回路72及びフィードモータ制御回路73へ出力する。
位置検出回路72及びフィードモータ制御回路73は、コントローラ91からの指令により作動する。測定開始直後において、フィードモータ制御回路73は、移動ステージ21をフィードモータ22側へ移動させるようフィードモータ22に駆動信号を出力し、位置検出回路72は、移動ステージ21が移動限界位置に達して、エンコーダ22aからパルス列信号が入力されなくなると、駆動信号停止を意味する信号をフィードモータ制御回路73に出力し、カウント値を「0」に設定する。フィードモータ制御回路73は、これにより駆動信号の出力を停止する。この移動限界位置が移動ステージ21の原点位置となり、位置検出回路72は、以後、移動ステージ21が移動するごとにエンコーダ22aからのパルス列信号をカウントし、移動方向によりカウント値を加算または減算して移動限界位置からの移動距離xを位置信号として出力する。フィードモータ制御回路73は、コントローラ91から移動ステージ21の移動先位置を入力すると、位置検出回路72から入力する位置信号が入力した移動先位置に等しくなるまで、フィードモータ22を正転又は逆転駆動する。 また、フィードモータ制御回路73は、コントローラ91から移動ステージ21の移動速度を入力すると、エンコーダ22aから入力したパルス列信号の単位時間当たりのパルス数を用いて、移動ステージ21の移動速度を計算し、計算した移動速度が入力した移動速度になるようにフィードモータ22を駆動する。
一対のガイド25,25の上端は、板状の上壁26によって連結されており、上壁26には貫通孔26aが設けられていて、貫通孔26aの中心位置はX線出射器10の出射口11の中心位置に対向しており、出射X線は、出射口11及び貫通孔26aを介してテーブル駆動機構20内に入射する。後述するイメージングプレート15が回折環撮像位置にある状態(図1乃至図3の状態)において、移動ステージ21の貫通孔26aと対向する位置には、図3に拡大して示すように、貫通孔21aが形成されている。移動ステージ21には、出射口11及び貫通孔26a,21aの中心軸線位置を回転中心とするスピンドルモータ27が組み付けられており、スピンドルモータ27の出力軸27aは円筒状で断面円形の貫通孔27a1を有する。スピンドルモータ27の出力軸27aの反対側には、貫通孔27bが設けられ、貫通孔27bの内周面上には、貫通孔27bの一部の内径を小さくするための円筒状の通路部材28が固定されている。
また、スピンドルモータ27内にはエンコーダ27cが組み込まれ、エンコーダ27cは、スピンドルモータ27が所定の微小回転角度だけ回転する度に、ハイレベルとローレベルとに交互に切り替わるパルス列信号を、スピンドルモータ制御回路74及び回転角度検出回路75へ出力する。さらに、エンコーダ27cは、スピンドルモータ27が1回転するごとに、所定の短い期間だけローレベルからハイレベルに切り替わるインデックス信号を、コントローラ91及び回転角度検出回路75に出力する。
スピンドルモータ制御回路74は、コントローラ91から回転速度を入力すると、エンコーダ27cから入力するパルス列信号の単位時間当たりのパルス数から計算される回転速度が、入力した回転速度になるように、駆動信号をスピンドルモータ27に出力する。回転角度検出回路75は、エンコーダ27cから入力するパルス列信号のパルス数をカウントし、そのカウント値から回転角度θpを計算してコントローラ91に出力する。また、回転角度検出回路75は、エンコーダ27cからインデックス信号を入力すると、カウント値をリセットして「0」にする。これが回転角度0°の位置である。なお、イメージングプレート15の回転角度0°の位置とは、後述するレーザ検出装置30からのレーザ照射によりイメージングプレート15に形成された回折環を読み取る際、インデックス信号を入力した時点でレーザ光が照射されている位置である。この位置はイメージングプレート15の各半径位置ごとにあるためラインであり、以後このラインを回転基準位置のラインという。
テーブル16は、円形状であり、スピンドルモータ27の出力軸27aの先端部に固定されている。テーブル16は、下面中央部から下方へ突出した突出部17を有し、突出部17の外周面には、ねじ山が形成されている。テーブル16の下面にはイメージングプレート15が取付けられる。イメージングプレート15の中心部には貫通孔15aが設けられていて、この貫通孔15aに突出部17を通し、突出部17の外周面上にナット状の固定具18をねじ込むことにより、イメージングプレート15が、固定具18とテーブル16の間に挟まれて固定される。固定具18は、円筒状の部材で、内周面に、突出部17のねじ山に対応するねじ山が形成されている。
テーブル16、突出部17及び固定具18にも貫通孔16a,17a,18aがそれぞれ設けられており、貫通孔18aの内径は通路部材28の内径と同じである。すなわち、出射X線は、貫通孔26a,21a,通路部材28,貫通孔27b,27a1,16a,17a,18aを介して出射され、通路部材28の内径及び貫通孔18aの内径は小さいので、貫通孔18aから出射されるX線は貫通孔27a1の軸線に平行な平行光となり、筐体50の円形孔50c1から出射される。
イメージングプレート15は、移動ステージ21、スピンドルモータ27及びテーブル16と共に、回折環撮像位置へ移動し、また、後述する撮像した回折環を読み取る回折環読取り領域、及び回折環を消去する回折環消去領域へ移動する。この移動において、イメージングプレート15の中心軸は、出射X線の光軸とイメージングプレート15における回転基準位置のラインとが含まれる平面内に保たれた状態で、出射X線の光軸に垂直な方向に移動する。
レーザ検出装置30は、回折環を撮像したイメージングプレート15にレーザ光を照射し、イメージングプレート15が発光した光の強度を検出する。レーザ検出装置30は、回折環撮像位置にあるイメージングプレート15からフィードモータ22側に充分離れており、測定対象物OBにて回折したX線がレーザ検出装置30によって遮られないようになっている。レーザ検出装置30は、レーザ光源31、コリメートレンズ32、反射鏡33、ダイクロイックミラー34、及び対物レンズ36等を備えた光ヘッドであり、光ディスクの記録再生に用いられるものと同様な構成である。 レーザ駆動回路77は、コントローラ91から指令が入力すると、フォトディテクタ42から入力する信号の強度が所定の強度になるようレーザ光源31に駆動信号を出力し。レーザ光源31からは一定強度のレーザ光が出射される。フォトディテクタ42は後述するダイクロイックミラー34で微量が反射し、集光レンズ41を介して受光したレーザ光の強度に相当する強度の信号を出力するが、ダイクロイックミラー34での反射の割合は一定であるので、出射したレーザ光の強度に相当する強度の信号を出力すると見なせる。コリメートレンズ32はレーザ光を平行光にし、反射鏡33はレーザ光を、ダイクロイックミラー34に向けて反射し、ダイクロイックミラー34は、入射したレーザ光の大半(例えば、95%)をそのまま透過させる。対物レンズ36は、レーザ光をイメージングプレート15の表面に集光させる。対物レンズ36には、フォーカスアクチュエータ37が組み付けられており。後述するフォーカスサーボにより、レーザ光の焦点は常にイメージングプレート15の表面に合致する。
集光されたレーザ光が、イメージングプレート15の回折環が撮像されている部分に照射すると、輝尽発光(Photo−Stimulated Luminesence)現象が生じ、回折環撮像時における回折X線の強度に応じた光が発生する。この輝尽発光により発生した光はレーザ光の波長よりも波長が短く、レーザ光の反射光と共に対物レンズ36を通過するが、ダイクロイックミラー34にて大部分が反射し、レーザ光の反射光は大部分が透過する。ダイクロイックミラー34で反射した光は、集光レンズ38、シリンドリカルレンズ39を介してフォトディテクタ40に入射する。フォトディテクタ40は、4つの同一正方形状の受光素子からなる4分割受光素子からなり、4つの受光信号(a,b,c,d)を増幅回路78に出力する。なお、シリンドリカルレンズ39は非点収差を生じさせるためにある。
増幅回路78は、入力した4つの受光信号(a,b,c,d)を増幅してフォーカスエラー信号生成回路79及びSUM信号生成回路80へ出力する。フォーカスエラー信号生成回路79は、非点収差法におけるフォーカスエラー信号を生成してフォーカスサーボ回路81へ出力する。フォーカスサーボ回路81は、コントローラ91により指令が入力すると作動開始し、入力したフォーカスエラー信号に基づいて、フォーカスサーボ信号を生成してドライブ回路82に出力する。ドライブ回路82は、入力したフォーカスサーボ信号に応じてフォーカスアクチュエータ37を駆動して、対物レンズ36をレーザ光の光軸方向に変位させ、これにより、レーザ光の焦点は常にイメージングプレート15の表面に合致する。
SUM信号生成回路80は、入力した4つの受光信号を合算してSUM信号を生成し、A/D変換回路83に出力する。SUM信号の強度は、イメージングプレート15にて反射し、ダイクロイックミラー34で反射した微量のレーザ光の強度と輝尽発光により発生した光の強度を合わせた強度に相当するが、イメージングプレート15にて反射するレーザ光の強度はほぼ一定であるので、SUM信号の強度は、輝尽発光により発生した光の強度に相当する。すなわち、SUM信号の強度は、撮像された回折環における回折X線の強度に相当する。A/D変換回路83は、コントローラ91から指令が入力すると、入力するSUM信号の瞬時値をデジタルデータに変換してコントローラ91に出力する。
また、対物レンズ36に隣接して、LED光源43が設けられている。LED光源43は、LED駆動回路84によって制御されて、可視光を発して、イメージングプレート15に撮像された回折環を消去する。LED駆動回路84は、コントローラ91から指令を入力すると、LED光源43に、所定の強度の可視光を発生させるための駆動信号を供給する。
また、X線回折測定装置は、LED光源44を有する。LED光源44は、図2乃至図4に示すように、移動ステージ21とテーブル駆動機構20の上壁26の下面との間に配置されたプレート45の一端部下面に固定されている。プレート45は、移動ステージ21内に固定されたモータ46の出力軸46aに固着されており、モータ46の回転により、上壁26の下面に平行な面内を回転する。移動ステージ21にはストッパ部材47a,47bが設けられており、ストッパ部材47aは、プレート45を図4のD1方向に回転させたとき、LED光源44が上壁26の貫通孔26a及び移動ステージ21の貫通孔21aに対向する位置(A位置)で静止するように、プレート45の回転を規制する。一方、ストッパ部材47bは、プレート45を図4のD2方向に回転させたとき、プレート45が上壁26の貫通孔26aと移動ステージ21の貫通孔21aとの間を遮断しない位置(B位置)で静止するように、プレート45の回転を規制する。言い換えれば、A位置は、プレート45が図2及び図3に示す状態にある位置であり、LED光源44から出射されるLED光がスピンドルモータ27の貫通孔27a1に設けた通路部材28の通路に入射する位置である。B位置は、X線出射器10から出射されるX線がプレート45によって遮られない位置である。LED光源44は、コントローラ91によって作動制御されるLED駆動回路85からの駆動信号によりLED光を出射する。LED光は拡散する可視光であるが、プレート45がA位置にあるとき、その一部は、出射X線と同様の経路で貫通孔18aから出射するので、出射X線と同様、貫通孔27a1の軸線に平行な平行光になる。
モータ46はエンコーダ46bを備えており、エンコーダ46bはモータ46が所定の微小回転角度だけ回転する度に、ハイレベルとローレベルとに交互に切り替わるパルス列信号を回転制御回路86に出力する。回転制御回路86は、コントローラ91から回転方向と回転開始の指令が入力されると、モータ46に駆動信号を出力し、モータ46を指示方向に回転させる。そして、エンコーダ46bからパルス列信号の入力が停止すると、駆動信号の出力を停止する。これにより、プレート45を、上述したA位置及びB位置までそれぞれ回転させることができる。
筐体50の切欠き部壁50cには結像レンズ48が設けられ、筐体50内部には撮像器49が設けられている。撮像器49は、CCD受光器又はCMOS受光器で構成され、各撮像素子ごとの受光強度に相当する強度の信号をセンサ信号取出回路87に出力する。結像レンズ48及び撮像器49は、イメージングプレート15に対して設定された位置にある測定対象物OBにおけるLED光の照射点を中心とした領域の画像を撮像するデジタルカメラとして機能する。イメージングプレート15に対して設定された位置とは、測定対象物OBにおけるX線及びLED光の照射点からイメージングプレート15までの垂直距離が、予め決められた設定値Lとなる位置である。この場合の結像レンズ48及び撮像器49による被写界深度は、前記照射点を中心とした前後の範囲で設定されている。センサ信号取出回路87は、撮像器49の各撮像素子ごとの信号強度データを、各撮像素子の位置(すなわち画素位置)が分かるデータと共にコントローラ91に出力する。
また、結像レンズ48の光軸は、X線出射器10から出射されるX線の光軸とイメージングプレート15の回転基準位置のラインを含む平面に含まれるとともに、この光軸と測定対象物OBに照射されるX線及びLED光の光軸が交わる点は、イメージングプレート15に対して設定された位置にある測定対象物OBにおけるX線及びLED光の照射点であるように調整されている。さらに、X線及びLED光の測定対象物OBに対する入射角度が設定値であるとき、結像レンズ48の光軸と測定対象物OBのX線及びLED光の照射点における法線方向とが成す角度は前記入射角度に等しい角度であるようにされている。したがって、測定対象物OBにおけるX線及びLED光の照射点がイメージングプレート15に対して設定された位置にあり、LED光が測定対象物OBに設定された入射角度で照射された場合には、撮影画像におけるLED光の照射点と測定対象物OBで反射したLED光の受光点は同じ位置に生じる。測定対象物OBに照射されるLED光は平行光であるので、照射点において、LED光は散乱光と、略平行光のまま反射する反射光を発生させるが、散乱光のうち結像レンズ48に入射した光は撮像器49の位置で結像して照射点の画像となり、結像レンズ48に入射した反射光は結像レンズ48により集光されて撮像器49で受光され、受光点の画像となる。そして、LED光の照射点がイメージングプレート15に対して設定された位置にあり、LED光が測定対象物OBに設定された入射角度で照射されたとき、結像レンズ48に入射する散乱光の光軸と反射光の光軸は、いずれも結像レンズ48の光軸と一致するため、照射点の画像と受光点の画像は同じ位置であるとともに、結像レンズ48の光軸が撮臓器49と交差する所定の位置に生じる。よって、撮影画像におけるLED光の照射点と受光点が撮影画像上の所定の位置に生じるよう、X線回折測定装置の筐体50の位置と姿勢を調整することで、X線及びLED光の照射点からイメージングプレート15までの距離を設定値Lにし、X線の入射角を設定値にすることができる。
コンピュータ装置90は、コントローラ91、入力装置92及び表示装置93からなる。コントローラ91は、CPU、ROM、RAM、大容量記憶装置などを備えたマイクロコンピュータを主要部とした電子制御装置であり、大容量記憶装置に記憶された各種プログラムを実行してX線回折測定装置の作動を制御する。入力装置92は、コントローラ91に接続されて、作業者により、各種パラメータ、作動指令などの入力のために利用される。表示装置93は、表示画面上に撮像器49によって撮像された照射点及び受光点を含む画像に加えて、LED光の照射点及び受光点を合致させるべき位置を示すマークも表示される。さらに、表示装置93は、作業者に対して各種の設定状況、作動状況、測定結果なども視覚的に知らせる。高電圧電源95は、X線出射器10にX線出射のための高電圧及び電流を供給する。
次に、上記のように構成したX線回折測定装置を含むX線回折測定システムを用いて、X線回折測定装置の位置と姿勢を調整したうえで、測定対象物OBの3軸残留応力を測定するためのX線回折測定を行う具体的方法について説明する。作業者は、X線回折測定システムを測定対象物OBがある場所まで運搬し、アーム式移動装置を測定対象物OBの近傍の適切な箇所に固定する。そして、アーム式移動装置を操作して、おおよそでX線回折測定装置から出射されるX線が測定対象物OBの測定箇所に目的の方向から照射されるとともに、X線照射点からイメージングプレート15までの距離が設定値L付近になるようにする。この後、X線回折測定は、図5に示されるように、位置姿勢調整工程S1、回折環撮像工程S2、回折環読取り工程S3及び回折環消去工程S4が行われ、測定が1回目であると入射角変更工程S6を行った後、再度、回折環撮像工程S2、回折環読取り工程S3及び回折環消去工程S4が行われ、3軸残留応力計算工程S7が行われることで実施される。なお、各工程において、先行技術文献の特許文献1で既に詳細に説明されている箇所は、簡略的に説明するにとどめる。
位置姿勢調整工程S1は、測定対象物OBに対するX線回折測定装置(筐体50)の位置と姿勢を調整する工程である。作業者は、入力装置92から位置姿勢の調整を行うことを入力すると、コントローラ91は、各回路に指令を出力し、イメージングプレート15を回折環撮像位置(図1乃至図3の状態)に移動させ、モータ46を駆動させてプレート45をA位置まで回転させ、LED光源44を点灯させる。これにより平行光であるLED光が筐体50の円形孔50c1から外部へ出射され、測定対象物OBの測定箇所付近に照射される。さらに、コントローラ91は、撮像器49による撮像信号をセンサ信号取出回路87からコントローラ91に出力させ、この撮像信号から作成したLED光の照射位置近傍の画像を表示装置93に表示させる。このとき、表示される画像には、撮像信号によって表示される画像とは独立して、結像レンズ48の光軸が撮像器49と交差する位置に相当する撮影画像上の位置に、十字マークが表示される。
この場合、十字マークのクロス点は表示装置93の画面の中心に位置し、十字マークのX軸方向は画面の横方向に対応し、十字マークのY軸方向は画面の縦方向に対応する。そして、十字マークのクロス点は、LED光の照射点からイメージングプレート15までの距離が設定値Lであるときに、照射点が撮像される位置であると同時に、該距離が設定値Lであり、LED光が測定対象物OBに設定された入射角度で入射されるとき、受光点が撮像される位置である。また、十字マークのY軸は、出射X線の光軸とイメージングプレート15の回転基準位置のラインを含む平面が撮臓器49と交差するラインに相当し、十字マークのY軸方向がLED光及びX線の照射方向であり、この方向を測定対象物OBに投影させた方向が残留垂直応力σxの測定方向である。
作業者は、表示装置93に表示される画像を見ながら、アーム式移動装置を操作してX線回折測定装置(筐体50)の位置と姿勢を調整し、画面上におけるLED光の照射点が測定対象物OBの目的とする測定箇所になるとともに、十字マークのクロス点と合致し、受光点が十字マークのクロス点と合致するようにする。これにより、出射X線は測定対象物OBの目的とする測定箇所に照射され、X線照射点からイメージングプレート15までの距離は設定値Lになり、測定対象物OBに対するX線の入射角は設定値になる。
作業者は、LED光の照射点と受光点が十字マークのクロス点と合致すると、入力装置92から入射角設定値調整完了の指令を入力する。これにより、コントローラ91は、回転角度検出回路89から入力している回転角度Θsを記憶し、これ以降、回転角度検出回路89から入力する回転角度Θと、予めメモリに記憶されている入射角の設定値Ψsとを用いて、Ψ=Ψs+(Θ−Θs)なる計算から現時点のX線の入射角Ψを計算して、表示装置93に表示する。作業者はX線の入射角を設定値以外の入射角にしたいときは、入力装置92から傾斜角を入力するか傾斜角変更方向を入力して傾斜角変更機構5のモータ55を駆動させ、X線回折測定装置の筐体50の傾斜角を変更する。上述した調整でX線照射点からイメージングプレート15までの距離は設定値Lになっているので、傾斜角変更機構5の駆動ステージ51の傾斜角を変更するときの回転軸は、X線照射点(LED光の照射点)と一致している。よって、X線回折測定装置の筐体50の傾斜角を変更してもX線照射点は変化せず、X線の入射角のみが変化する。
X線回折測定装置の筐体50の位置と姿勢の調整が終了すると、作業者は入力装置92から位置姿勢の調整終了を入力する。これにより、コントローラ91は、各回路に指令を出力し、LED光源44を消灯させ、撮像信号の出力を停止させ、モータ46を駆動させてプレート45をB位置まで回転させる。これにより、X線出射器10からのX線が移動ステージ21の貫通孔21aに入射され得る状態となる。さらに、コントローラ91は、回転角度検出回路89から入力している回転角度と表示装置93に表示している現時点のX線の入射角Ψ1を記憶する。
次の回折環撮像工程S2において、作業者は入力装置92から測定対象物OBの材質(本実施形態では、鉄)を入力し、測定開始を入力する。これにより、コントローラ91は、スピンドルモータ制御回路74を制御して、イメージングプレート15を低速回転させ、エンコーダ27cからインデックス信号を入力した時点で、イメージングプレート15の回転を停止させる。これにより、回折環の読取り時において回転角度0°となる状態で、イメージングプレート15に回折環が撮像されるようになる。次に、コントローラ91は、X線制御回路71を制御してX線出射器10にX線の出射を開始させる。これにより、測定対象物OBにおけるX線照射点で発生した回折X線により、イメージングプレート15に回折環が撮像されていく。そして、所定時間の経過後に、X線制御回路71を制御してX線出射器10にX線の出射を停止させる。
次にコントローラ91は、自動または作業者の入力により回折環読取り工程S3を実行する。コントローラ91は、フィードモータ制御回路73を制御して、イメージングプレート15を回折環読取り領域内の読取り開始位置へ移動させる。読取り開始位置とは、レーザ光の照射位置が回折環基準半径Roの円に対して若干だけ内側になるような位置である。回折環基準半径Roとは、測定対象物OBの残留応力が「0」であるときに、イメージングプレート15上に形成される回折環の半径であり、測定対象物OBにおけるX線の回折角度2Θ(Θはブラッグ角)及び距離IP−OBの設定値LからRo=L・tan(2Θ)の計算式で計算される。そして、X線の回折角度2Θは測定対象物OBの材質で決まり、距離Lは設定値に調整されているので、測定対象物OBの材質ごとに予め回折角2Θを記憶しておけば、測定対象物OBの材質を入力することで回折環基準半径Roは計算できる。
次に、コントローラ91は、スピンドルモータ制御回路74を制御して、スピンドルモータ27を所定の回転速度で回転させ、レーザ駆動回路77を制御してレーザ検出装置30からレーザ光をイメージングプレート15に照射させ、フォーカスサーボ回路81を制御してフォーカスサーボを開始させる。さらに、回転角度検出回路75を制御して、スピンドルモータ27(イメージングプレート15)の回転角度θpの出力を開始させ、A/D変換回路83を制御して、SUM信号の瞬時値Iのデータ出力を開始させ、フィードモータ制御回路73を制御してフィードモータ22を回転させ、イメージングプレート15を読取り開始位置から図1及び図2の右下方向へ一定速度で移動させる。これにより、レーザ光の照射位置は、相対的にイメージングプレート15上を螺旋状に回転し始める。その後、コントローラ91は、イメージングプレート15が所定の小さな角度だけ回転するごとに、A/D変換回路83が出力するSUM信号の瞬時値Iのデータと、回転角度検出回路75が出力する回転角度θpのデータと位置検出回路72が出力する移動距離xのデータとを入力し、それぞれのデータを対応させて記憶する。なお、移動距離xはレーザ光照射位置の径方向距離r(半径値r)に変換したうえで記憶する。これにより、螺旋状に回転するレーザ光の照射位置に関して、SUM信号の瞬時値I、回転角度θp及び半径値rを表すデータが所定回転角度ごとに順次記憶されていく。
SUM信号の瞬時値I、回転角度θp及び半径値rを表すデータの所定回転角度ごとの記憶動作と並行して、コントローラ91は、回転角度θpごとに半径値rに対するSUM信号の瞬時値Iの曲線を作成し、曲線のピークに対応した半径値rαとSUM信号強度値Iαを記憶する。これは回折環の回転角度αごとに半径方向における回折X線の強度分布を求め、回折X線の強度がピークとなる箇所の半径値rαと回折X線の強度に相当する強度Iαを求める処理である。そして、すべての回転角度θp(回転角度α)において半径値rαと強度Iαを取得し、検出するSUM信号の瞬時値Iが強度Iαに対して充分小さくなった時点で、データの記憶を終了する。これにより、回折環における回折X線の強度に相当する強度の分布が瞬時値I、回転角度θp及び半径値rのデータ群で、および回折環の形状が回転角度αごとの半径値rαで検出されたことになる。その後、コントローラ91は、各回路に指令を出力し、フォーカスサーボを停止させ、レーザ光の照射を停止させ、A/D変換回路83と回転角度検出回路75の作動を停止させ、フィードモータ22の作動を停止させる。なおイメージングプレート15の回転は、継続されている。
次にコントローラ91は、自動または作業者の入力により回折環消去工程S4を実行する。コントローラ91は、フィードモータ制御回路73を制御してイメージングプレート15を回折環消去領域内の消去開始位置へ移動させる。このイメージングプレート15の消去開始位置とは、LED光源43から出力されるLED光の中心が回折環基準半径Roの円に対して前記読取り開始位置の場合よりもさらに内側になる位置である。次に、コントローラ91は、LED駆動回路84を制御してLED光源43によるLED光をイメージングプレート15に対して照射させ、フィードモータ制御回路73を制御して、イメージングプレート15が前記消去開始位置から消去終了位置まで図1及び図2の右下方向に一定速度で移動するよう、フィードモータ22を回転させる。消去終了位置とは、LED光の中心が回折環基準半径Roよりも前記消去開始位置と同じ程度の距離だけ外側となる位置である。これにより、LED光がイメージングプレート15上に螺旋状に照射され、撮像された回折環が消去される。
イメージングプレート15が消去終了位置になると、コントローラ91は、フィードモータ制御回路73を制御してイメージングプレート15の移動を停止させ、LED駆動回路84を制御してLED光の照射を停止させ、位置検出回路72の作動を停止させ、スピンドルモータ制御回路74を制御してスピンドルモータ27(イメージングプレート15)の回転を停止させる。
次にコントローラ91または作業者は、測定が1回目であるか否か判定し、1回目であれば、自動または作業者の入力により入射角変更工程S6を実行する。コントローラ91が自動で行う場合は、位置姿勢調整工程S1の終了段階で記憶している回転角度に予め記憶されている回転角度変化量Aを加算した回転角度をモータ制御回路88に出力する。これにより、X線の入射角Ψ2は最初のX線の入射角Ψ1に回転角度変化量Aを加算した値になる。回転角度変化量Aは作業者が入力装置92から入力して設定することができるが、予め設定された上限値を超える設定はできないようになっている。この上限値は例えば20°である。また、作業者が入力する場合は、表示装置93に表示されている入射角と傾斜角を見て、適切な傾斜角を入力装置92から入力するか、表示装置93に表示されている入射角を見ながら、入力装置92から傾斜角変化方向を入力し、適切な入射角となったタイミングで停止指令を入力する。そして、入力装置92から入射角変更終了を入力するとコントローラ91は、表示装置93に表示している入射角Ψ2を記憶する。なお、上述したように、傾斜角変更機構5の駆動ステージ51の傾斜角を変更するときの回転軸は、X線照射点と一致しているので、入射角変更工程S6が実行された後もX線の照射点は同一位置であり、後述する2回目のX線回折測定も測定箇所は同一である。
次にコントローラ91は、自動または作業者の入力により回折環撮像工程S2、回折環読取り工程S3及び回折環消去工程S4を再度実行する。これらの工程は、1回目のそれぞれの工程と同じである。これによりコントローラ91には、2つ目の回折環の形状データ(回転角度αごとの半径値rα)が記憶される。そして、この時点でコントローラ91に記憶されている値を視覚的に示すと図6のようになる。図6に示す値の内、2つの回折環の半径値rα1,rα2と2つの入射角Ψ1,Ψ2は2回のX線回折測定が行われることにより記憶され、X線照射点からイメージングプレート15までの距離Lは予め記憶されている。図6について注釈すると、X,Y,Z軸は図2に示されるものとは異なり、X軸はX線照射点から出射X線を測定対象物の平面に投影した方向であり、別の表現をすると出射X線の光軸とイメージングプレート15の回転基準位置のラインを含む平面が、測定対象物の平面と交差するラインである。また、Y軸は測定対象物の平面でX線照射点を通るX軸に垂直なラインであり、Z軸はX軸、Y軸に垂直なラインである。後述する残留垂直応力σx,σy,σzは、X,Y,Z軸方向の残留垂直応力であり、残留せん断応力τxyは、測定対象物の平面であるXY平面の残留せん断応力であり、残留せん断応力τxz,τyzは、XZ平面,YZ平面の残留せん断応力である。
次にコントローラ91は、自動または作業者の入力により3軸残留応力計算工程S7を実行する。以下に計算の手順を、計算式とともに説明する。なお、cosα法を用いた演算により3軸残留応力を計算する演算は公知技術であり、例えば特開2014−13203号公報に示されているため、公知技術である箇所は簡単に説明するにとどめる。まず、2つの回折環の形状データである半径値rα1,rα2から、以下の数1の式を用いて回転角度αごとの回折角2Θαを計算する。LはX線照射点からイメージングプレート15までの距離Lである。
(数1)
2Θα = tan−1(−rα/L)
次に回折角2Θαと既知である無ひずみのときの回折角2Θから、以下の数2の式を用いて回転角度αごとのひずみεαを計算する。
(数2)
εα = (1/2)(2Θ−2Θα)cotΘ
次に回転角度αごとのひずみεαから、以下の数3乃至数5の式を用いてa,a,a値を計算する。
(数3)
= (1/2){(εα−επ+α)+(ε−α−επ−α)}
(数4)
= (1/2){(εα−επ+α)−(ε−α−επ−α)}
(数5)
= (1/2){(εα+επ+α)+(ε−α+επ−α)}
2つの回折環の形状データである半径値rα1,rα2があるので、a,a,a値はそれぞれ2つづつ得られる。
公知技術に示されているように、a値と回転角度αの余弦であるcosαには、残留応力σx,σz,τxzを用いて次の数6の関係式がある。
Eはヤング率、νはポアソン比、ηは(π−回折角)でこの場合の回折角には無応力の回折角2Θを用いることができる。よって、数6において変数はαとa値のみであるので、cosαとa値には比例の関係があり、式を変形すると次の数7のようになる。
左辺の(∂a/∂cosα)はcosαとa値の原点を通る回帰線の傾きから計算される値であり、右辺の−(1+ν)/E,sin2η及びsin2Ψは定数であるので、両辺に −E/{(1+ν)・sin2η・sin2Ψ}を乗算したときの左辺である−{(∂a/∂cosα)・E}/{(1+ν)・sin2η・sin2Ψ}も、cosαとa値の原点を通る回帰線の傾きから計算される値とすることができる。この左辺を(cosα線図計算値)とすると、数7は以下の数8のように変形することができる。
上述したようにa値には、2回のX線回折測定におけるそれぞれの値があるので、cosαとa値の原点を通る回帰線の傾きをそれぞれ計算し、得られたそれぞれの値に定数−E/{(1+ν)・sin2η・sin2Ψ}を乗算すれば、2回のX線回折測定におけるそれぞれの(cosα線図計算値)を求めることができる。数8において未知数はσx−σzとτxzの2つであるので、それぞれの(cosα線図計算値)と入射角Ψ1,Ψ2を数8に代入した連立方程式を解くことで、σx−σzとτxzを求めることができる。
また、公知技術に示されているように、a値と回転角度αの正弦であるsinαには、残留応力τxy,τyzを用いて次の数9の関係式がある。
数6と同様、数9においても変数はαとa値のみであるので、sinαとa値には比例の関係があり、式を変形すると次の数10のようになる。
左辺の(∂a/∂sinα)はsinαとa値の原点を通る回帰線の傾きから計算される値であり、右辺の2(1+ν)/E,sin2η及びsinΨは定数であるので、両辺に E/{2(1+ν)・sin2η・sinΨ}を乗算したときの左辺である−{(∂a/∂sinα)・E}/{2(1+ν)・sin2η・sinΨ}も、sinαとa値の原点を通る回帰線の傾きから計算される値とすることができる。この左辺を(sinα線図計算値)とすると、数10は以下の数11のように変形することができる。
上述したようにa値には、2回のX線回折測定におけるそれぞれの値があるので、sinαとa値の原点を通る回帰線の傾きをそれぞれ計算し、得られたそれぞれの値に定数E/{2(1+ν)・sin2η・sinΨ}を乗算すれば、2回のX線回折測定におけるそれぞれの(sinα線図計算値)を求めることができる。数11において未知数はτxyとτyzの2つであるので、それぞれの(sinα線図計算値)と入射角Ψ1,Ψ2を数11に代入した連立方程式を解くことで、τxyとτyzを求めることができる。ここまでの計算により、σx−σz,τxy,τxz,τyzを求めることができる。
これ以降の計算は、公知技術に示されている計算と同じである。a値と回転角度αの余弦の二乗であるcosαには、残留応力σx−σz,σy−σz,τxzを用いて次の数12、数13の関係式がある。
Dは、残留垂直応力σx、ヤング率E、ポアソン比ν、(π−回折角)であるη及び入射角Ψから定まる値であり定数である。よって、数12において変数はαとa1値のみであるので、cosαとa値には直線の関係があり、cosαとa値の回帰線の傾きを最小二乗法で計算することでΦを求めることができる。そして、数13において、σx−σz,τxzは既に計算されており、ヤング率E、ポアソン比ν、(π−回折角)であるη及び入射角Ψは既知の値であるので、Φが得られれば、数13からσy−σzを求めることができる。a値には、2回のX線回折測定におけるそれぞれの値があるので、Φおよびσy−σzをそれぞれ求めることができる。よって、それぞれのσy−σzを平均し、正規のσy−σzとすればよい。
ひずみεαと3軸残留応力を関係づける式は、公知技術に示されているように以下の数14及び数15である。
数15においてφは、測定対象物表面に出射X線の光軸を投影した方向とX軸が成す角度であり、本実施形態では0である。よって、数15において式の右辺に出てくるη、Ψ、φは既知の値であり、変数は回折環の回転角度αのみであるので、n乃至nは回転角度αにより定まる値である。
数14を変形すると、以下の数16及び数17になる。
数17の右辺において、σx−σz,σy−σz,τxy,τxz,τyzは既に計算された値であり、ヤング率E、ポアソン比νは既知の値であり、上述したようにn乃至nは回転角度αにより定まる値である。よって、Xは回転角度αにより定まる値である。また、数16の右辺においてヤング率E、ポアソン比νは既知の値であり、ひずみεαは回転角度αごとに得られている値である。したがって、数15と数17を用いて回転角度αごとのXを計算し、数16に回転角度αごとのXと回転角度αごとのひずみεαを代入すれば、残留垂直応力σzを回転角度αごとに求めることができる。
ひずみεαには2回のX線回折測定におけるそれぞれの値があるので、回転角度αごとの残留垂直応力σzを2回のX線回折測定においてそれぞれ計算し、すべてのσzを平均して正規の残留垂直応力σzとする。そして、既に計算されているσx−σz,σy−σzにσzを加算し、残留垂直応力σx,σyとする。これにより、3軸残留応力σx,σy,σz,τxy,τxz,τyzを求めることができる。
コントローラ91は3軸残留応力計算工程S7が終了すると、表示装置に93に残留応力の計算結果を表示する。なお、残留応力以外に、X線照射点からイメージングプレート15までの距離L、X線の入射角Ψ1,Ψ2等の測定条件、回折環の形状曲線(回転角度αごとの半径値rα1,rα2から得られる曲線)、回折環の強度分布画像(瞬時値Iαを明度に換算し、瞬時値Iαに対応する明度、回転角度θp及び半径値rのデータ群から作成される画像)等を表示するようにしてもよい。作業者は結果を見ることで、測定対象物OBの疲労度の評価や、ショットピーニングなどによる加工結果の評価等を行うことができる。
上記説明からも理解できるように、上記実施形態においては、対象とする測定対象物OBに向けてX線を出射するX線出射器10と、X線出射器10から測定対象物OBに向けてX線を出射し、測定対象物OBのX線照射箇所にて発生した回折X線を、X線出射器10から出射されるX線の光軸に対して垂直に交差するイメージングプレート15にて受光し、イメージングプレート15に回折X線の像である回折環を形成するとともに回折環の形状を検出するレーザ検出装置30、テーブル駆動機構20及び各種回路からなる回折環形成検出機器と、X線出射器10と回折環形成検出機器とを内部に配置した筐体50と、筐体50の傾斜角をX線出射器10から出射されるX線の光軸と交差する回転軸であって、交差する点がイメージングプレート15から予め設定された距離Lである回転軸周りに変更する傾斜角変更機構5と、X線出射器10から出射されるX線の測定対象物OBに対する入射角を検出する入射角検出機能とを備えたX線回折測定装置を含むX線回折測定システムにおいて、X線出射器10、回折環形成検出機器、傾斜角変更機構5及び入射角検出機能を制御するとともに、回折環形成検出機器が検出した回折環の形状と入射角検出機能が検出した入射角を用いて演算を行うコントローラ91のプログラムを備え、コントローラ91のプログラムは、傾斜角変更機構5の回転軸がX線の光軸と交差する点が測定対象物OBの測定箇所に合致した状態で、入射角検出機能に入射角を検出させた後、X線出射器10と回折環形成検出機能を制御して、測定対象物OBにX線を照射してイメージングプレート15に撮像された回折環の形状を検出する1回目の回折環検出工程と、傾斜角変更機構5を制御して筐体50を異なる傾斜角にするとともに、入射角検出機能に入射角を検出させた後、X線出射器10と回折環形成検出機能を制御して、測定対象物OBにX線を照射してイメージングプレート15に撮像された回折環の形状を検出する2回目の回折環検出工程と、1回目の回折環検出工程及び2回目の回折環検出工程で得られた2つの回折環の形状と2つの入射角とを用いて、3軸残留応力を計算する3軸残留応力計算工程とを行っている。
これによれば、測定対象物OBのX線の照射箇所からイメージングプレート15までの距離を予め設定された距離にすれば、X線の照射箇所は、傾斜角変更機構5が傾斜角を変更する際の回転軸に含まれるので、傾斜角変更機構5を用いて筐体50の傾斜角を変更させるのみで、X線の照射箇所が同一のままX線の入射角を変更することができ、X線回折測定装置の筐体50の位置と姿勢の調整に時間がかからないようにすることができる。すなわち、作業者は、測定対象物OBのX線の照射箇所からイメージングプレート15までの距離が予め設定された距離になるよう、筐体の位置と姿勢を調整すれば、後はコントローラ91のプログラムが1回目の回折環検出工程、2回目の回折環検出工程及び3軸残留応力計算工程を実施して3軸残留応力を測定するので、3軸残留応力を測定するまでに時間がかからないようにすることができる。
また、上記実施形態においては、X線出射器10から出射されるX線と光軸を同一にした平行光である可視光を測定対象物OBに出射するLED光源44、プレート45等からなる可視光出射器と、傾斜角変更機構5の回転軸がX線の光軸と交差する点が測定対象物OBの測定箇所に合致した状態で、可視光出射器から可視光を測定対象物OBに照射したとき、測定対象物OBからの反射光の受光位置を設定された位置にすることにより測定対象物OBに対する可視光の入射角を設定値にする入射角設定機能とを備え、入射角検出機能は、傾斜角変更機構5により変更された傾斜角を回転角度で検出する回転角度検出回路89と、回転角度検出回路89が検出した回転角度の、入射角設定機能により入射角が設定値にされたとき回転角度検出回路89により検出された回転角度からの差を、入射角の設定値に加算することにより入射角を計算するコントローラ91の計算機能とを備えている。
これによれば、可視光出射器から可視光を出射して照射位置を確認しながら、測定箇所を希望する箇所にすることができるとともに、測定対象物OBに対するX線の入射角をどのような角度にしても、精度よく入射角を検出することができる。
また、上記実施形態においては、コントローラ91のプログラムは、2回目の回折環検出工程おける入射角の1回目の回折環検出工程における入射角からの差が、X線出射器10から出射されるX線の測定対象物OBの表面に投影した方向が同一方向の状態で20°以内であるように、傾斜角変更機構5を制御して傾斜角を変更している。
これによれば、出射X線の測定対象物OBの表面に投影した方向が同一方向で、測定箇所に対し入射角を20°以内で異ならせてX線を照射すればいいので、X線回折測定装置の筐体50の位置と姿勢が大きく変化せず、垂直方向からのX線照射という条件もないので、測定対象物OBが狭い場所にある場合でも、測定が困難にならない。このようにしても3軸残留応力を測定できることは、数1乃至数17を用いて説明した通りである。
また、上記実施形態は、1回目の回折環検出工程、2回目の回折環検出工程及び3軸残留応力計算工程を、コントローラ91のプログラムの実行に替えて作業者が入力装置92から指令を入力して行うこともできる。すなわち、X線出射器10、回折環形成検出機器、筐体50、傾斜角変更機構5及び入射角検出機能を備えたX線回折測定装置を含むX線回折測定システムを用いたX線回折測定方法の発明としても実施し得るものである。この場合、筐体50の傾斜角の変更は、表示装置に表示される入射角を見ながら、2回目の回折環検出工程おける入射角の1回目の回折環検出工程における入射角からの差が、X線出射器10から出射されるX線の測定対象物OBの表面に投影した方向が同一方向の状態で20°以内になるようにすればよい。これによっても、コントローラ91のプログラムの実行による場合と同様の効果を得ることができる。
本発明の実施にあたっては、上記実施形態に限定されるものではなく、本発明の目的を逸脱しない限りにおいて種々の変更が可能である。
上記実施形態においては、電動式ゴニオステージである傾斜角変更機構5の駆動ステージ51をX線回折測定装置の筐体50の上面壁50fに連結させ、筐体50の傾斜角を変更できるようにした。しかし、傾斜角を変更する際の回転軸が出射X線の光軸と交差し、交差する点からイメージングプレート15までの距離が設定値Lになっていれば、傾斜角を変更する機構はどのような機構であってもよい。例えば、手動式で回転角度を読取ることができるゴニオステージを用いてもよいし、駆動ステージ51を筐体50の側面に連結させた機構であってもよい。
また、上記実施形態においては、結像レンズ48、撮像器49及びセンサ信号取出回路87から得られる撮影画像におけるLED光の照射点と受光点の位置が、撮影画像とは独立して表示される十字マークのクロス点に合致させて、X線の入射角を設定値Ψsにし、このとき回転角度検出回路89から入力している回転角度Θsを記憶した。そして、これ以降、回転角度検出回路89から入力する回転角度Θと、予めメモリに記憶されている入射角の設定値Ψsとを用いて、Ψ=Ψs+(Θ−Θs)なる計算からX線の入射角Ψを検出するようにした。しかし、X線の入射角を検出することができるならば、どのような検出方法を用いてもよい。例えば、可視の平行光とは別に四角形等のパターン光を測定対象物OBに照射し、測定対象物OBの表面に形成されたパターンの撮影画像における形状から演算処理により入射角を計算するようにしてもよい。また、可視の平行光を測定対象物OBに照射したまま、テーブル16をレーザ検出装置30側に移動させ、移動量と撮影画像におけるLED光の照射点の位置の変化量から入射角を計算するようにしてもよい。
また、上記実施形態においては、結像レンズ48、撮像器49及びセンサ信号取出回路87から得られる撮影画像におけるLED光照射点の位置が、撮影画像とは独立して表示される十字マークのクロス点に合致するようにすることで、X線照射点からイメージングプレート15までの距離を設定値Lにした。しかし、X線照射点からイメージングプレート15までの距離を設定値Lにできれば、どのような方法を用いてもよい。例えば、撮影機能は設けず、出射X線と光軸が同一のLED光の光軸と光軸が異なる可視の平行光が、LED光の光軸とイメージングプレート15から距離Lの点で交差するようにし、2つの光の照射点が1つになるように測定対象物OBの位置を調整することで、X線照射点からイメージングプレート15までの距離を設定値Lにするようにしてもよい。また、その場合のX線の入射角は、目視でLED光の反射光の受光位置が設定された位置になったとき、回転角度検出回路89から入力している回転角度Θsを記憶し、上述したΨ=Ψs+(Θ−Θs)なる計算により検出するようにすればよい。
また、上記実施形態においては、コントローラ91にインストールされているプログラムは予め記憶されている回転角度変化量Aを、位置姿勢調整工程S1の終了段階で記憶している回転角度に加算してモータ制御回路88に出力することで、2回目のX線回折測定におけるX線入射角Ψ2を1回目のX線回折測定のときのX線入射角Ψ1から回転角度変化量Aだけ変更するようにした。しかし、2回目のX線回折測定におけるX線入射角を1回目のX線回折測定と異ならせ、該X線入射角を検出できれば、傾斜角変更機構5を制御する方法はどのような方法を用いてもよい。例えば、設定された時間だけモータ制御回路88に駆動信号を出力し、回転が終了した時点で上述したΨ=Ψs+(Θ−Θs)なる計算により得られる入射角ΨをX線入射角Ψ2として記憶してもよい。
また、上記実施形態においては、2つの入射角においてそれぞれX線回折測定を行って回折環の形状を検出し、3軸残留応力を計算したが、測定に時間がかかってもよければ、3つ以上の傾斜角でX線回折測定を行い、3軸残留応力を計算してもよい。その場合3軸残留応力は、σx−σz,τxy,τxz,τyzについては2つの回折環のすべての組み合わせで計算して平均し、σy−σz,σzはすべての回折環において計算して平均すればよい。
また、上記実施形態においては、X線回折測定装置を、イメージングプレート15に回折環を撮像し、レーザ検出装置30からのレーザ照射と光の強度検出により、回折環の形状を検出する装置としたが、回折環を撮像して形状を検出することができるならば、どのような方式の装置でもよい。例えば、イメージングプレート15の代わりにイメージングプレート15と同じ広さの平面を有するX線CCDを備え、X線出射器10からのX線照射の際、X線CCDの各画素が出力する電気信号により回折環における回折X線の強度分布を検出する装置でもよい。また、イメージングプレート15と同じ広さの平面を有するX線CCDの代わりに、微小サイズのX線CCDを位置を検出しながら走査し、X線CCDの各画素が出力する電気信号とX線CCDの走査位置から、回折環における回折X線の強度分布を検出する装置でもよい。また、X線CCDに替えてシンチレータから出た蛍光を、光電子増倍管(PMT)で検出するシンチレーションカウンタを用いる装置でもよい。
また、上記実施形態においては、コントローラ91に3軸残留応力を計算する演算プログラムを備えた。しかし、X線回折測定に時間がかかってもよい場合は、X線回折測定システムは回折環の形状と2つの入射角を得るまでにし、別のコンピュータ装置に回折環の形状データと2つの入射角を入力して、3軸残留応力を計算するようにしてもよい。この場合、別のコンピュータ装置にデータを入力する方法としては、記録媒体を介する方法、ネット回線等を使用して転送する方法等、様々な方法が考えられる。また、計算の一部または全部を人為的に行ってもよい。
また、上記実施形態においては、アーム式移動装置の支持アーム61にX線回折測定装置の筐体50を連結させることで、測定対象物OBに対するX線回折測定装置の筐体50の位置と姿勢を調整できるようにしたが、測定対象物OBに対するX線回折測定装置の筐体50の位置と姿勢を調整することができれば、どのような構造にしてもよい。例えば、測定対象物OBが運搬可能な試料片であれば、傾斜角変更機構5の固定ステージ52と側面板53を固定し、X線回折測定装置の筐体50は傾斜角変更機構5のみにより位置と姿勢が変化するようにし、測定対象物OBの載置用として直交する3方向に移動可能で傾斜角が変更可能なステージ装置を用意してもよい。この場合は、ステージ装置をX線回折測定装置の筐体50に置き、測定対象物OBをステージ装置に載置し、ステージ装置を操作してX線回折測定装置の筐体50に対する測定対象物OB位置と姿勢を調整するようにすればよい。また、その場合でも、X線回折測定装置の筐体50をアーム式移動装置の支持アーム61に連結させ、アーム式移動装置、ステージ装置の双方で位置と姿勢を調整することができるようにしてもよい。
また、上記実施形態においては、プレート45、モータ46及びストッパ部材47aによりLED光源44をX線の光軸上に移動させて、LED光を測定対象物OBに照射する構造にした。しかし、これに代えて、出射X線と光軸を同一にした可視の平行光を照射することができれば、どのような構造にしてもよい。例えば、ビームスプリッタを出射X線の光軸上に配置し、LED光をビームスプリッタで反射させて出射X線と光軸を同一にして照射するようにしてもよい。
また、上記実施形態においては、スピンドルモータ27の貫通孔27bに内径の小さな通路部材28を設けるとともに、固定具18の貫通孔18a,18bの内径を小さくして、LED光源44から出射されたLED光から小さな断面径の平行光が得られるようにしたが、小さな断面径の可視の平行光が得られるならば、別の構造にしてもよい。例えば、可視光であるレーザ光を出射するレーザ光源の近くにコリメートレンズとエキスパンダーレンズを配置し、小さな断面径のレーザ光の光軸をスピンドルモータ27の出力軸27aの貫通孔27a1の中心軸線と一致させ、固定具18の貫通孔18a,18bに入射させるようにしてもよい。
5…傾斜角変更機構、10…X線出射器、15…イメージングプレート、15a,16a,17a,18a,21a,26a,27a1,27b…貫通孔、16…テーブル、17…突出部、18…固定具、19…シリンドリカルレンズ、20…テーブル駆動機構、21…移動ステージ、22…フィードモータ、23…スクリューロッド、27…スピンドルモータ、28…通路部材、30…レーザ検出装置、31…レーザ光源、36…対物レンズ、44…LED光源、45…プレート、46…モータ、47a,47b…ストッパ部材、48…結像レンズ、49…撮像器、50…筐体、50a…底面壁、50c…切欠き部壁、50d…繋ぎ壁、50f…上面壁、51…駆動ステージ、52…固定ステージ、53…側面板、54…固定板、55…モータ、61…支持アーム、90…コンピュータ装置、91…コントローラ、92…入力装置、93…表示装置、95…高電圧電源 、OB…測定対象物

Claims (5)

  1. 対象とする測定対象物に向けてX線を出射するX線出射器と、
    前記X線出射器から前記測定対象物に向けてX線が照射された際、前記測定対象物にて発生した回折X線を、前記X線出射器から出射されるX線の光軸に対して垂直に交差する撮像面にて受光し、前記撮像面に前記回折X線の像である回折環を形成するとともに前記回折環の形状を検出する回折環形成検出手段と、
    前記X線出射器と前記回折環形成検出手段とを内部に配置した筐体と、
    前記筐体の傾斜角を、前記X線出射器から出射されるX線の光軸と交差する回転軸であって、交差する点が前記撮像面から予め設定された距離である回転軸周りに変更する傾斜角変更機構と、
    前記X線出射器から出射されるX線の前記測定対象物に対する入射角を検出する入射角検出手段とを備えたX線回折測定装置において、
    前記X線出射器、前記回折環形成検出手段、前記傾斜角変更機構及び前記入射角検出手段を制御するとともに、前記回折環形成検出手段が検出した回折環の形状と前記入射角検出手段が検出した角を用いて演算を行う制御手段を備え、
    前記制御手段は、前記回転軸が前記X線の光軸と交差する点が前記測定対象物の測定箇所に合致した状態で、前記入射角検出手段に入射角を検出させた後、前記X線出射器と前記回折環形成検出手段を制御して、前記測定対象物にX線を照射して前記撮像面に撮像された回折環の形状を検出する第1回折環検出工程と、前記傾斜角変更機構を制御して前記筐体を異なる傾斜角にするとともに、前記入射角検出手段に入射角を検出させた後、前記X線出射器と前記回折環形成検出手段を制御して、前記測定対象物にX線を照射して前記撮像面に撮像された回折環の形状を検出する第2回折環検出工程と、前記第1回折環検出工程及び前記第2回折環検出工程で得られた2つの回折環の形状と2つの入射角とを用いて、3軸残留応力を計算する演算工程とを行うことを特徴とするX線回折測定装置。
  2. 請求項1に記載のX線回折測定装置において、
    前記X線出射器から出射されるX線と光軸を同一にした平行光である可視光を測定対象物に出射する可視光出射器と、
    前記回転軸が前記X線の光軸と交差する点が前記測定対象物の測定箇所に合致した状態で、前記可視光出射器から可視光を前記測定対象物に照射したとき、前記測定対象物からの反射光の受光位置を設定された位置にすることにより前記測定対象物に対する前記可視光の入射角を設定値にする入射角設定手段とを備え、
    前記入射角検出手段は、
    前記傾斜角変更機構により変更された傾斜角を検出する傾斜角検出手段と、
    前記傾斜角検出手段が検出した傾斜角の、前記入射角設定手段により入射角が設定値にされたとき前記傾斜角検出手段により検出された傾斜角からの差を、前記入射角の設定値に加算することにより入射角を計算する計算手段とを備えたことを特徴とするX線回折測定装置。
  3. 請求項1または請求項2に記載のX線回折測定装置において、
    前記制御手段は、前記第2回折環検出工程おける入射角の前記第1回折環検出工程における入射角からの差が、前記X線出射器から出射されるX線の前記測定対象物の表面に投影した方向が同一方向の状態で20°以内であるように、前記傾斜角変更機構を制御して傾斜角を変更することを特徴とするX線回折測定装置。
  4. 対象とする測定対象物に向けてX線を出射するX線出射器と、
    前記X線出射器から前記測定対象物に向けてX線が照射された際、前記測定対象物にて発生した回折X線を、前記X線出射器から出射されるX線の光軸に対して垂直に交差する撮像面にて受光し、前記撮像面に前記回折X線の像である回折環を形成するとともに前記回折環の形状を検出する回折環形成検出手段と、
    前記X線出射器と前記回折環形成検出手段とを内部に配置した筐体と、
    前記筐体の傾斜角を、前記X線出射器から出射されるX線の光軸と交差する回転軸であって、交差する点が前記撮像面から予め設定された距離である回転軸周りに変更する傾斜角変更機構と、
    前記X線出射器から出射されるX線の前記測定対象物に対する入射角を検出する入射角検出手段とを備えたX線回折測定装置を用いたX線回折測定方法において、
    前記回転軸が前記X線の光軸と交差する点が前記測定対象物の測定箇所に合致した状態で、前記入射角検出手段に入射角を検出させた後、前記X線出射器からX線を出射させ、前記回折環形成検出手段により前記撮像面に撮像された回折環の形状を検出する第1回折環検出ステップと、
    前記傾斜角変更機構により前記筐体を異なる傾斜角にするとともに、前記入射角検出手段に入射角を検出させた後、前記X線出射器からX線を出射させ、前記回折環形成検出手段により前記撮像面に撮像された回折環の形状を検出する第2回折環検出ステップと、
    前記第1回折環検出ステップ及び前記第2回折環検出ステップで得られた2つの回折環の形状と2つの入射角とを用いて、3軸残留応力を計算する演算ステップとを行うことを特徴とするX線回折測定方法。
  5. 請求項4に記載のX線回折測定方法において、
    前記第1回折環検出ステップ及び第2回折環検出ステップにおける、前記X線出射器から出射されるX線の前記測定対象物の表面に投影した方向が同一方向になり、前記2つの入射角の差が20°以内になるように前記傾斜角変更機構により傾斜角を変更することを特徴とするX線回折測定装置。
JP2016010419A 2016-01-22 2016-01-22 X線回折測定装置 Active JP6060474B1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016010419A JP6060474B1 (ja) 2016-01-22 2016-01-22 X線回折測定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016010419A JP6060474B1 (ja) 2016-01-22 2016-01-22 X線回折測定装置

Publications (2)

Publication Number Publication Date
JP6060474B1 true JP6060474B1 (ja) 2017-01-18
JP2017129514A JP2017129514A (ja) 2017-07-27

Family

ID=57800002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016010419A Active JP6060474B1 (ja) 2016-01-22 2016-01-22 X線回折測定装置

Country Status (1)

Country Link
JP (1) JP6060474B1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6264591B1 (ja) * 2017-03-28 2018-01-24 パルステック工業株式会社 熱膨張係数測定方法及びx線回折測定装置
JP2018124244A (ja) * 2017-02-03 2018-08-09 国立大学法人東北大学 携帯型3軸応力測定装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004325267A (ja) * 2003-04-24 2004-11-18 Spectris Co Ltd 薄膜の残留応力測定装置並びに薄膜の残留応力測定方法
WO2014076974A1 (ja) * 2012-11-16 2014-05-22 パルステック工業株式会社 回折環形成装置及び回折環形成システム
JP2015145846A (ja) * 2014-02-04 2015-08-13 パルステック工業株式会社 X線回折測定装置およびx線回折測定装置による測定方法
JP2015222235A (ja) * 2014-05-23 2015-12-10 パルステック工業株式会社 X線回折測定方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004325267A (ja) * 2003-04-24 2004-11-18 Spectris Co Ltd 薄膜の残留応力測定装置並びに薄膜の残留応力測定方法
WO2014076974A1 (ja) * 2012-11-16 2014-05-22 パルステック工業株式会社 回折環形成装置及び回折環形成システム
JP2015145846A (ja) * 2014-02-04 2015-08-13 パルステック工業株式会社 X線回折測定装置およびx線回折測定装置による測定方法
JP2015222235A (ja) * 2014-05-23 2015-12-10 パルステック工業株式会社 X線回折測定方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018124244A (ja) * 2017-02-03 2018-08-09 国立大学法人東北大学 携帯型3軸応力測定装置
JP6264591B1 (ja) * 2017-03-28 2018-01-24 パルステック工業株式会社 熱膨張係数測定方法及びx線回折測定装置

Also Published As

Publication number Publication date
JP2017129514A (ja) 2017-07-27

Similar Documents

Publication Publication Date Title
JP5835191B2 (ja) 回折環形成装置及び回折環形成システム
JP6264591B1 (ja) 熱膨張係数測定方法及びx線回折測定装置
JP5967394B2 (ja) 回折環形成装置及びx線回折測定装置
JP2016042050A (ja) X線回折装置を用いた表面硬さ評価方法およびx線回折測定装置
JP6361086B1 (ja) X線回折測定装置及びx線回折測定方法
JP6060474B1 (ja) X線回折測定装置
JP6037237B2 (ja) X線回折測定装置およびx線回折測定装置による測定方法
JP6060473B1 (ja) X線回折測定装置
JP5949704B2 (ja) 回折環形成方法
JP6372731B1 (ja) X線回折測定装置
JP6128333B2 (ja) X線回折測定方法
JP6221199B1 (ja) X線回折測定装置
JP2015215343A (ja) 回折環形成装置を用いた軸力評価方法
JP6048547B1 (ja) X線回折測定装置
JP5962737B2 (ja) X線回折測定装置およびx線回折測定方法
JP5967491B2 (ja) X線回折測定装置およびx線回折測定装置におけるx線入射角検出方法
JP6195140B1 (ja) X線回折測定装置
JP6246965B1 (ja) X線回折測定装置を用いた軸力評価方法
JP6212835B1 (ja) X線回折測定装置およびx線回折像の回折像幅測定方法
JP6044877B1 (ja) X線回折測定装置
JP5954642B1 (ja) X線回折測定装置および3軸残留応力測定の必要性判定方法
JP6924348B2 (ja) X線回折測定装置
JP6115597B2 (ja) X線回折測定装置
JP5958584B1 (ja) X線回折測定装置及びx線回折測定方法
JP6032500B2 (ja) X線回折測定方法および入射角度調整用治具

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161127

R150 Certificate of patent or registration of utility model

Ref document number: 6060474

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250