JP5796680B2 - 燃料電池システム - Google Patents

燃料電池システム Download PDF

Info

Publication number
JP5796680B2
JP5796680B2 JP2014521438A JP2014521438A JP5796680B2 JP 5796680 B2 JP5796680 B2 JP 5796680B2 JP 2014521438 A JP2014521438 A JP 2014521438A JP 2014521438 A JP2014521438 A JP 2014521438A JP 5796680 B2 JP5796680 B2 JP 5796680B2
Authority
JP
Japan
Prior art keywords
flow rate
supply flow
stack
compressor
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014521438A
Other languages
English (en)
Other versions
JPWO2013187514A1 (ja
Inventor
要介 冨田
要介 冨田
隼人 筑後
隼人 筑後
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2014521438A priority Critical patent/JP5796680B2/ja
Application granted granted Critical
Publication of JP5796680B2 publication Critical patent/JP5796680B2/ja
Publication of JPWO2013187514A1 publication Critical patent/JPWO2013187514A1/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04111Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants using a compressor turbine assembly
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04291Arrangements for managing water in solid electrolyte fuel cell systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04395Pressure; Ambient pressure; Flow of cathode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04492Humidity; Ambient humidity; Water content
    • H01M8/04529Humidity; Ambient humidity; Water content of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04604Power, energy, capacity or load
    • H01M8/04619Power, energy, capacity or load of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04776Pressure; Flow at auxiliary devices, e.g. reformer, compressor, burner
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04828Humidity; Water content
    • H01M8/0485Humidity; Water content of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • H01M8/0435Temperature; Ambient temperature of cathode exhausts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04432Pressure differences, e.g. between anode and cathode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は燃料電池システムに関する。
燃料電池スタックへカソードガスを供給するためにコンプレッサを用いた場合、コンプレッサのサージ回避等のために、燃料電池スタックに供給すべき空気量より大きな流量をコンプレッサが供給しなければならないことがある。しかしながら、燃料電池スタックにとっては発電や湿潤管理のために必要な空気量以外は不要である。そのため、JP2009−123550Aには、従来の燃料電池システムとして、コンプレッサから吐出されたカソードガスのうち、燃料電池スタックにとって不要な空気量をバイパス通路を介してカソードガス排出通路に排出するものが開示されている。
しかしながら、前述した従来の燃料電池システムの場合、次のような不都合を生じる可能性が発明者によって知見された。
通常、バイパス通路の上流は、燃料電池スタック内の圧力と等しいため大気圧より高い圧力が設定されている。一方で、バイパス通路の下流はカソードガスの排出通路であって大気圧相当である。
したがって、バイパス通路に設けられるバイパスバルブを開くことで、この差圧によってバイパス流量を稼ぐことができるが、例えば、コンプレッサの熱保護等のために燃料電池スタックの圧力を落とさなければならない場合など、バイパスバルブを全開にしてもバイパス通路に燃料電池スタックにとって不要な空気量を流すことができない可能性がある。
このとき、コンプレッサは、サージ回避等のために必要な流量を流すだけで、燃料電池スタックが要求する流量を考慮していない。従って、バイパス通路に流せない分の空気は、燃料電池スタックに供給されることになり、管理している湿潤状態が乾燥側へずれてしまうといった不都合が生じる可能性がある。
本発明はこのような問題点に着目してなされたものであり、バイパス弁が所定の開度以上となっても、燃料電池スタックにとって不要な空気が供給されることを抑制することを目的とする。
本発明のある態様によれば、カソードガスを供給するコンプレッサと、コンプレッサから吐出されたカソードガスの一部を、燃料電池スタックをバイパスさせてカソードガス排出通路に排出するバイパス通路と、バイパス通路に設けられ、バイパス通路を流れるカソードガスの流量を調節するバイパス弁と、燃料電池スタックの要求に応じて、燃料電池スタックに供給するカソードガス流量の目標値を算出する目標燃料電池供給流量算出部と、燃料電池システムの運転状態に応じて、コンプレッサが供給するカソードガス流量を制御するコンプレッサ供給流量制御部と、目標燃料電池供給流量に基づいて、コンプレッサから燃料電池スタックに供給されるカソードガスの流量が、目標燃料電池供給流量となるように、バイパス弁を制御するバイパス弁制御部と、バイパス弁が所定開度であって、燃料電池スタックへ供給されるカソードガス流量が目標燃料電池供給流量以上のときに、コンプレッサが供給するカソードガス流量を制限するコンプレッサ供給流量制限部と、を備える燃料電池システムが提供される。
本発明の実施形態、本発明の利点については、添付された図面を参照しながら以下に詳細に説明する。
図1は、本発明の一実施形態による燃料電池システムの概略図である。 図2は、希釈要求コンプレッサ供給流量と発電要求スタック供給流量との関係を燃料電池スタックの負荷に応じて示した図である。 図3は、本実施形態によるカソード系の制御ブロックを示したものである。 図4は、全開時基本バイパス流量算出マップである。 図5は、流量補正値算出テーブルである。 図6は、本実施形態によるカソード系の制御の動作について説明するタイムチャートである。 図7は、比較例によるカソード系の制御ブロックを示したものである。
燃料電池は電解質膜をアノード電極(燃料極)とカソード電極(酸化剤極)とによって挟み、アノード電極に水素を含有するアノードガス(燃料ガス)、カソード電極に酸素を含有するカソードガス(酸化剤ガス)を供給することによって発電する。アノード電極及びカソード電極の両電極において進行する電極反応は以下の通りである。
アノード電極 : 2H2 →4H+ +4e- …(1)
カソード電極 : 4H+ +4e- +O2 →2H2O …(2)
この(1)(2)の電極反応によって燃料電池は1ボルト程度の起電力を生じる。
燃料電池を自動車用動力源として使用する場合には、要求される電力が大きいため、数百枚の燃料電池を積層した燃料電池スタックとして使用する。そして、燃料電池スタックにアノードガス及びカソードガスを供給する燃料電池システムを構成して、車両駆動用の電力を取り出す。
図1は、本発明の一実施形態による燃料電池システム100の概略図である。
燃料電池システム100は、燃料電池スタック1と、カソードガス給排装置2と、アノードガス給排装置3と、コントローラ4と、を備える。
燃料電池スタック1は、数百枚の燃料電池を積層したものであり、アノードガス及びカソードガスの供給を受けて、車両の駆動に必要な電力を発電する。
カソードガス給排装置2は、燃料電池スタック1にカソードガスを供給するとともに、燃料電池スタック1から排出されるカソードオフガスを外気に排出する。カソードガス給排装置2は、カソードガス供給通路20と、フィルタ21と、カソードコンプレッサ22と、カソードガス排出通路23と、カソード調圧弁24と、バイパス通路25と、バイパス弁26と、第1流量センサ27と、第2流量センサ28と、圧力センサ29と、温度センサ30と、を備える。
カソードガス供給通路20は、燃料電池スタック1に供給するカソードガスが流れる通路である。カソードガス供給通路20は、一端がフィルタ21に接続され、他端が燃料電池スタック1のカソードガス入口孔に接続される。
フィルタ21は、カソードガス供給通路20に取り込むカソードガス中の異物を取り除く。
カソードコンプレッサ22は、カソードガス供給通路20に設けられる。カソードコンプレッサ22は、フィルタ21を介してカソードガスとしての空気(外気)をカソードガス供給通路20に取り込み、燃料電池スタック1に供給する。
カソードガス排出通路23は、燃料電池スタック1から排出されるカソードオフガスが流れる通路である。カソードガス排出通路23は、一端が燃料電池スタック1のカソードガス出口孔に接続され、他端が開口端となっている。
カソード調圧弁24は、カソードガス排出通路23に設けられる。カソード調圧弁24は、コントローラ4によって開閉制御されて、燃料電池スタック1に供給されるカソードガスの圧力を所望の圧力に調節する。
バイパス通路25は、カソードコンプレッサ22から吐出されたカソードガスの一部を、必要に応じて燃料電池スタッ1を経由させずに直接カソードガス排出通路23に排出することができるように設けられた通路である。バイパス通路25は、一端がカソードコンプレッサ23よりも下流のカソードガス供給通路21に接続され、他端がカソード調圧弁24よりも下流のカソードガス排出通路24に接続される。
バイパス弁26は、バイパス通路25に設けられる。バイパス弁26は、コントローラ4によって開閉制御されて、バイパス通路25を流れるカソードガスの流量(以下「バイパス流量」という。)を調節する。
第1流量センサ27は、カソードコンプレッサ23よりも上流のカソードガス供給通路20に設けられる。第1流量センサ27は、コンプレッサ23に供給されるカソードガスの流量(以下「コンプレッサ供給流量」という。)を検出する。
第2流量センサ28は、バイパス通路26との接続部よりも下流のカソードガス供給通路20、すなわち、燃料電池スタック1のカソードガス入口孔近傍のカソード供給通路20に設けられる。第2流量センサ28は、燃料電池スタック1に供給されるカソードガスの流量(以下「スタック供給流量」という。)を検出する。
圧力センサ29は、バイパス通路26との接続部よりも下流のカソードガス供給通路20、すなわち、燃料電池スタック1のカソードガス入口孔近傍のカソード供給通路20に設けられる。圧力センサ29は、燃料電池スタックの入口圧(以下「スタック入口圧」という。)を検出する。
温度センサ30は、カソードコンプレッサ23の吐出側近傍のカソードガス供給通路20に設けられる。温度センサ30は、カソードコンプレッサ23から吐出されたカソードガスの温度(以下「吐出温度」という。)を検出する。
アノードガス給排装置3は、燃料電池スタック1にアノードガスを供給するとともに、燃料電池スタック1から排出されるアノードオフガスを、カソードガス排出通路23に排出する。アノードガス給排装置3は、高圧タンク31と、アノードガス供給通路32と、アノード調圧弁33と、アノードガス排出通路34と、パージ弁35と、を備える。
高圧タンク31は、燃料電池スタック1に供給するアノードガスを高圧状態に保って貯蔵する。
アノードガス供給通路32は、高圧タンク31から排出されるアノードガスを燃料電池スタック1に供給するための通路である。アノードガス供給通路32は、一端が高圧タンク31に接続され、他端が燃料電池スタック1のアノードガス入口孔に接続される。
アノード調圧弁33は、アノードガス供給通路32に設けられる。アノード調圧弁34は、コントローラ4によって開閉制御されて、燃料電池スタック1に供給されるアノードガスの圧力を所望の圧力に調節する。
アノードガス排出通路34は、燃料電池スタック1から排出されるアノードオフガスが流れる通路である。アノードガス排出通路35は、一端が燃料電池スタック1のアノードガス出口孔に接続され、他端がカソードガス排出通路23に接続される。
アノードガス排出通路34を介してカソードガス排出通路23に排出されたアノードオフガスは、カソードガス排出通路23内でカソードオフガス及びバイパス通路26を流れてきたカソードガスと混合されて燃料電池システム100の外部に排出される。アノードオフガスには、電極反応に使用されなかった余剰のアノードガス(水素)が含まれているので、このようにカソードオフガス及びカソードガスと混合させて燃料電池システム100の外部に排出することで、その排出ガス中の水素濃度が予め定められた所定濃度以下となるようにしている。
パージ弁35は、アノードガス排出通路34に設けられる。パージ弁35は、コントローラ4によって開閉制御され、アノードガス排出通路34からカソードガス排出通路23に排出するアノードオフガスの流量を制御する。
コントローラ4は、中央演算装置(CPU)、読み出し専用メモリ(ROM)、ランダムアクセスメモリ(RAM)及び入出力インタフェース(I/Oインタフェース)を備えたマイクロコンピュータで構成される。コントローラ4には、前述した第1流量センサ27や第2流量センサ28、圧力センサ29、温度センサ30の他にも、大気圧を検出する大気圧センサ41などの各種センサからの信号が入力される。
コントローラ4は、これらの入力信号に基づいて、燃料電池システム100の外部に排出される排出ガス中の水素濃度を所定濃度以下にするという要求(以下「希釈要求」という。)と、駆動モータなどの燃料電池システム100の各電気部品が要求する電力(以下「要求出力電力」という。)を燃料電池スタック1で発電するという要求(以下「発電要求」という。)と、の2つの要求を同時に満足するように、カソードコンプレッサ22及びバイパス弁26をフィードバック制御する。
図2は、燃料電池システム100の外部に排出される排出ガスの水素濃度を、所定濃度以下にするために必要なコンプレッサ供給流量(以下「希釈要求コンプレッサ供給流量」という。)と、要求出力電力を発電するために必要なスタック供給流量(以下「発電要求スタック供給流量」という。)と、の関係を、燃料電池スタック1の負荷(=要求出力電力)に応じて示した図である。
図2に示すように、中高負荷領域では、発電要求スタック供給流量のほうが、希釈要求コンプレッサ供給よりも大きくなる。
この場合は、単純に目標コンプレッサ供給流量を発電要求スタック供給流量としてカソードコンプレッサ22をフィードバック制御すれば、燃料電池スタック1に供給されるカソードガスの流量が発電要求スタック供給流量となるので、燃料電池スタック1で要求発電電力を発電することができる。そして、燃料電池スタック1から排出されるカソードオフガスによって、アノードガス排出通路34からカソードガス排出通路23に流れてきたアノードオフガスを希釈して、排出ガスの水素濃度を所定濃度以下にすることができる。
一方で、図2に示すように、低負荷領域では、希釈要求コンプレッサ供給流量のほうが、発電要求スタック供給流量よりも大きくなる。
この場合に、単純に目標コンプレッサ供給流量を発電要求スタック供給流量としてカソードコンプレッサ22をフィードバック制御すると、燃料電池スタック1では要求発電電力を発電することができるが、燃料電池スタック1から排出されるカソードオフガスによってアノードガス排出通路34からカソードガス排出通路23に流れてきたアノードオフガスを希釈しても、排出ガスの水素濃度を所定濃度以下にすることができない。
したがって、低負荷領域で排出ガスの水素濃度を所定濃度以下にするためには、目標コンプレッサ供給流量を希釈要求コンプレッサ供給流量としてカソードコンプレッサ22をフィードバック制御し、燃料電池スタック1で要求発電電力を発電するために必要なカソードガス流量(発電要求スタック供給流量)よりも多くのカソードガスをカソードコンプレッサ22によって供給しなければならない。そうすると、発電に不要な余剰のカソードガスが燃料電池スタック1に供給されることになるので、燃料電池スタック1を構成する各燃料電池の電解質膜が乾燥して燃料電池スタック1の発電効率が低下するおそれがある。
そのため、発電要求スタック供給流量よりも希釈要求コンプレッサ供給流量のほうが大きくなったときは、目標コンプレッサ供給流量を希釈要求コンプレッサ供給流量としてカソードコンプレッサ22をフィードバック制御しつつ、スタック供給流量が発電要求スタック供給流量となるようにバイパス弁26をフィードバック制御して、発電に不要な余剰のカソードガスをバイパス通路25に流す必要がある。つまり、バイパス流量が、希釈要求コンプレッサ供給流量から発電要求スタック供給流量を引いた流量(希釈要求コンプレッサ供給流量−発電要求スタック供給流量)となるように、バイパス弁26を開く必要がある。
ここで、このようなフィードバック制御によってカソードコンプレッサ22及びバイパス弁26を制御しようとすると、バイパス弁26が全開まで開かれたときに燃料電池スタック1の発電効率が低下するという問題が生じることがわかった。以下では、本発明の理解を容易にするために、本実施形態によるカソード系の制御について説明する前に、図7を参照して比較例によるカソード系の制御について説明し、バイパス弁26が全開まで開かれたときの問題点について説明する。
図7は、比較例によるカソード系の制御ブロックを示したものである。
比較例によるカソード系の制御ブロックは、湿潤要求スタック供給流量算出部101と、目標スタック供給流量設定部102と、スタック要求コンプレッサ供給流量算出部103と、目標コンプレッサ供給流量設定部104と、カソードコンプレッサ制御部105と、目標バイパス弁開度算出部106と、バイパス弁制御部107と、を備える。
湿潤要求スタック供給流量算出部101には、交流インピーダンス法によって算出された燃料電池スタック1の実インピーダンスと、燃料電池スタック1の負荷に応じて予め定められた目標インピーダンスと、が入力される。
湿潤要求スタック供給流量算出部101は、実インピーダンスを目標インピーダンスにするために必要なスタック供給流量を到達湿潤要求スタック供給流量として設定し、その設定した到達湿潤要求スタック供給流量に向けて、スタック供給流量を所定の過渡応答で変化させる際の目標値を、湿潤要求スタック供給流量として算出する。到達湿潤要求スタック供給流量は、換言すれば電解質膜の湿潤度(含水率)を、燃料電池スタック1の負荷に応じた最適な湿潤度(要求湿潤度)に制御するために必要なスタック供給流量である。
目標スタック供給流量設定部102には、燃料電池スタック1の負荷に応じて予め定められた発電要求スタック供給流量と、湿潤要求スタック供給流量と、が入力される。目標スタック供給流量設定部102は、発電要求スタック流量と、湿潤要求スタック供給流量と、のうちの大きいほうを目標スタック供給流量として設定する。このように、目標スタック供給流量設定部102は、燃料電池スタック1の負荷に応じた最適なスタック供給流量を目標スタック供給流量として設定する。
スタック要求コンプレッサ供給流量算出部103には、第2流量センサ28で検出されたスタック供給流量(以下「実スタック供給流量」という。)と、目標スタック供給流量と、が入力される。スタック要求コンプレッサ供給流量算出部103は、実スタック供給流量を所定の過渡応答で目標スタック供給流量に向けて変化させるためのコンプレッサ供給流量の目標値を、スタック要求コンプレッサ供給流量として算出する。
目標コンプレッサ供給流量設定部104には、燃料電池スタック1の負荷に応じて定まる希釈要求コンプレッサ供給流量と、スタック要求コンプレッサ供給流量と、が入力される。目標コンプレッサ供給流量設定部104は、希釈要求コンプレッサ供給流量と、スタック要求コンプレッサ供給流量と、のうちの大きいほうを、目標コンプレッサ供給流量として設定する。
カソードコンプレッサ制御部105には、第1流量センサ27で検出されたコンプレッサ供給流量(以下「実コンプレッサ供給流量」という。)と、目標コンプレッサ供給流量と、が入力される。カソードコンプレッサ制御部105は、実コンプレッサ供給流量が目標コンプレッサ供給流量になるように、カソードコンプレッサ22を制御する。
目標バイパス弁開度算出部106には、実スタック供給流量と、目標スタック供給流量と、が入力される。目標バイパス弁開度算出部106は、実スタック供給流量と目標スタック供給流量との差分量(実スタック供給流量−目標スタック供給流量)に基づいて目標バイパス弁開度を算出する。目標バイパス弁開度は、実スタック供給流量が目標スタック供給流量よりも多いときに、その差分量をバイパス通路25に流すために必要なバイパス弁26の開度である。したがって、目標バイパス弁開度は、差分量が大きくなるほど大きくなり、差分量がゼロ以下のときはゼロ(全閉)となる。
バイパス弁制御部107には、バイパス弁26の実開度と、目標バイパス弁開度が入力される。バイパス弁制御部107は、バイパス弁26の開度を目標バイパス弁開度に制御する。
この比較例によるカソード系の制御では、目標スタック供給流量設定部102で目標スタック供給流量として湿潤要求スタック供給流量が選択されていれば、スタック要求コンプレッサ供給流量算出部103において、スタック供給流量を湿潤要求スタック供給流量にするために必要なコンプレッサ供給流量が、スタック要求コンプレッサ供給流量として算出される。
このとき、スタック要求コンプレッサ供給流量が希釈要求コンプレッサ供給流量よりも大きければ、目標コンプレッサ供給流量設定部104において、スタック要求コンプレッサ供給流量が目標コンプレッサ供給流量として選択される。
そして、コンプレッサ供給流量がスタック要求コンプレッサ供給流量となるようにカソードコンプレッサ22がフィードバック制御される。
この場合は、実スタック供給流量が目標スタック供給流量に収束していくので、フィードバック制御によってバイパス弁26は全閉に制御されることになる。これにより、実インピーダンスが目標インピーダンスに制御される。
一方で、スタック要求コンプレッサ供給流量が希釈要求コンプレッサ供給流量よりも小さければ、目標コンプレッサ供給流量設定部104において、希釈要求コンプレッサ供給流量が目標コンプレッサ供給流量として選択される。
そして、コンプレッサ供給流量が希釈要求コンプレッサ供給流量となるようにカソードコンプレッサ22がフィードバック制御される。
この場合は、実スタック供給流量が目標スタック供給流量よりも大きくなっていくので、実スタック供給流量が目標スタック供給流量となるように、フィードバック制御によってバイパス弁26が徐々に開かれることになる。
このとき、バイパス弁26が全開まで開かれてしまうと、実スタック供給流量を目標スタック供給流量にすることができず、実スタック供給流量が目標スタック供給流量よりも大きくなってしまう。この状態が続くと、電解質膜が乾燥して燃料電池スタック1の発電効率が低下してしまうので、実スタック供給流量が目標スタック供給流量となるように、すなわち実インピーダンスが目標インピーダンスとなるように、コンプレッサ供給流量を減少させたい。
ここで、実スタック供給流量が目標スタック供給流量よりも大きくなると、スタック要求コンプレッサ供給流量算出部103では、スタック要求コンプレッサ供給流量を減らす方向に制御しようとする。
しかしながら、比較例によるカソード系の制御では、目標コンプレッサ供給流量設定部104において、希釈要求コンプレッサ供給流量及びスタック要求コンプレッサ供給流量の大きいほうを目標コンプレッサ供給流量として設定している。そのため、希釈要求コンプレッサ供給流量が目標コンプレッサ供給流量として選択されているときに、スタック要求コンプレッサ供給流量を減らす方向に制御してしまうと、希釈要求コンプレッサ供給流量が目標コンプレッサ供給流量として選択され続けてしまう。
その結果、バイパス弁26が全開まで開かれてしまうと、実スタック供給流量が目標スタック供給流量よりも大きくなる状態が続いてしまい、燃料電池スタック1の発電効率が低下するという問題が生じるのである。
そこで本実施形態では、バイパス弁26が全開まで開かれたときは、実スタック供給流量が目標スタック供給流量となるようにコンプレッサ供給流量を減少させるべく、カソード系の制御を構成することとした。以下、この本実施形態によるカソード系の制御について説明する。
図3は、本実施形態によるカソード系の制御ブロックを示したものである。なお、本実施形態によるカソード系の制御ブロックにおいて、比較例によるカソード系の制御ブロックと同様の機能を果たす部分は、同一の符号を用いて重複する説明を適宜省略する。
本実施形態によるカソード系の制御ブロックは、湿潤要求スタック供給流量算出部101、目標スタック供給流量設定部102、スタック要求コンプレッサ供給流量算出部103、カソードコンプレッサ制御部105、目標バイパス弁開度算出部106、及び、バイパス弁制御部107の他に、暫定目標コンプレッサ供給流量設定部111と、全開時推定バイパス流量算出部112と、コンプレッサ制限流量算出部113と、目標コンプレッサ供給流量設定部114と、を備える。
暫定目標コンプレッサ供給流量設定部111には、希釈要求コンプレッサ供給流量と、スタック要求コンプレッサ供給流量と、が入力される。暫定目標コンプレッサ供給流量設定部111は、希釈要求コンプレッサ供給流量と、スタック要求コンプレッサ供給流量と、のうちの大きいほうを、暫定目標コンプレッサ供給流量として設定する。
全開時推定バイパス流量算出部112は、現在の燃料電池システム100の運転状態で、バイパス弁26の開度が全開であると仮定したときのバイパス流量の推定値(以下「全開時推定バイパス流量」という。)を算出する。
全開時推定バイパス流量算出部112は、全開時基本バイパス流量算出部1121と、流量補正値算出部1122と、乗算部1123と、を備える。
全開時基本バイパス流量算出部1121には、スタック入口圧と、大気圧と、が入力される。全開時基本バイパス流量算出部1121は、図4に示す全開時基本バイパス流量算出マップを参照し、スタック入口圧と大気圧とに基づいて、全開時基本バイパス流量を算出する。図4の全開時基本バイパス流量算出マップに示すように、全開時基本バイパス流量は、スタック入口圧(ゲージ圧)、すなわちバイパス弁26の上流側の圧力が高くなるほどバイパス弁26の前後差圧が大きくなるので多くなる。また、スタック入口圧(ゲージ圧)が一定であれば、大気圧が低くなるほど多くなる。
流量補正値算出部1122には、吐出温度が入力される。流量補正値算出部1122は、図5に示す流量補正値算出テーブルを参照し、吐出温度に基づいて補正値を算出する。図5の流量補正値算出テーブルに示すように、流量補正値は、吐出温度が高くなるほど小さくなる。
乗算部1123には、全開時基本バイパス流量と、流量補正値と、が入力される。乗算部1123は、全開時基本バイパス流量と流量補正値とを掛け合わせたものを、全開時推定バイパス流量として出力する。
コンプレッサ制限流量算出部113には、湿潤要求スタック供給流量と、全開時推定バイパス流量と、が入力される。コンプレッサ制限流量算出部113は、湿潤要求スタック供給流量と全開時推定バイパス流量とを足し合わせて、コンプレッサ制限流量を算出する。
目標コンプレッサ供給流量設定部114には、暫定目標コンプレッサ供給流量と、コンプレッサ制限流量と、が入力される。目標コンプレッサ供給流量設定部114は、暫定目標コンプレッサ供給流量と、コンプレッサ制限流量と、のうちの小さいほうを、目標コンプレッサ供給流量として設定する。このように、目標コンプレッサ供給流量設定部114は、希釈要求、発電要求及び湿潤要求等の燃料電池システム全体の運転状態を考慮して、燃料電池システムの運状態に応じた最適なコンプレッサ供給流量を目標コンプレッサ供給流量として設定する。
この本実施形態によるカソード系の制御によれば、以下の理由によって、バイパス弁26が全開まで開かれたときに、実スタック供給流量が目標スタック供給流量となるようにコンプレッサ供給流量を減少させることができる。
この本実施形態によるカソード系の制御においても、バイパス弁26が全開まで開かれて、実スタック供給流量が目標スタック供給流量よりも大きくなると、スタック要求コンプレッサ供給流量算出部103で算出されるスタック要求コンプレッサ供給流量は小さくなっていく。その結果、暫定目標コンプレッサ供給流量設定部111では、希釈要求コンプレッサ供給流量が暫定目標コンプレッサ供給流量として選択されることになる。
また、バイパス弁26が全開まで開かれて、実スタック供給流量が目標スタック供給流量よりも大きくなると、電解質膜が乾燥することによって、実インピーダンスが目標インピーダンスよりも増加していく。そうすると、湿潤要求スタック供給流量算出部101では、実インピーダンスが目標インピーダンスとなるようなスタック供給流量を湿潤要求スタック供給流量として算出する。したがって、湿潤要求スタック供給流量は、バイパス弁26が全開まで開かれたときの実スタック供給流量よりも小さい値となる。
そして、本実施形態では、この湿潤要求スタック供給流量に全開時推定バイパス流量を足し合わせたものを、コンプレッサ制限流量として目標コンプレッサ供給流量設定部114に入力する。
ここで、バイパス弁26が全開まで開かれたときに目標コンプレッサ供給流量設定部114に入力されるコンプレッサ制限流量は、湿潤要求スタック供給流量と全開時推定バイパス流量との和である。一方、暫定目標コンプレッサ供給流量として目標コンプレッサ供給流量設定部114に入力される希釈要求コンプレッサ供給流量は、実スタック供給流量(>湿潤要求スタック供給流量)と全開時推定バイパス流量との和と考えることができる。
したがって、バイパス弁26が全開まで開かれたときに目標コンプレッサ供給流量設定部114に入力されるコンプレッサ制限流量は、暫定目標コンプレッサ供給流量として目標コンプレッサ供給流量設定部114に入力される希釈要求コンプレッサ供給流量よりも小さくなる。
その結果、バイパス弁26が全開まで開かれたときは、目標コンプレッサ供給流量設定部114において、コンプレッサ制限流量が目標コンプレッサ供給流量として設定される。
これにより、バイパス弁26が全開まで開かれたときは、実スタック供給流量が湿潤供給スタック供給流量となるようにカソードコンプレッサ22がフィードバック制御されることになるので、増加した実インピーダンスを目標インピーダンスに向けて収束させることができる。よって、実スタック供給流量が目標スタック供給流量よりも大きくなる状態が続くのを抑制できるので、電解質膜の乾燥を抑制して燃料電池スタック1の発電効率が低下するのを抑制できる。
図6は、本実施形態によるカソード系の制御の動作について説明するタイムチャートである。本発明の理解を容易にするため、必要に応じて比較例によるカソード系の制御の動作を細い実線で示した。
時刻t1では、暫定目標コンプレッサ供給流量設定部111において、希釈要求コンプレッサ供給流量が暫定目標コンプレッサ供給流量として設定され、目標コンプレッサ供給流量設定部114において、その暫定目標コンプレッサ供給流量が目標コンプレッサ供給流量として設定されているものとする。
時刻t1で、吐出温度がカソードコンプレッサ22の耐熱性能等から定まる所定の許容温度以上になると、吐出温度を低下させるためにカソード調圧弁24が開かれ、カソードコンプレッサ22の吐出側の圧力(=スタック入口圧)が低下させられる(図6(F))。スタック入口圧が低下すると、バイパス弁26の前後差圧が小さくなるので、バイパス弁26の開度が同じであればバイパス流量は低下する。そのため、時刻t1でスタック入口圧が低下させられると、バイパス流量を維持するために、スタック入口圧の低下に併せてバイパス弁26が徐々に開かれる(図6(D)(E))。
時刻t2で、バイパス弁26が全開まで開かれると、その後はスタック入口圧の低下に併せて徐々にバイパス流量が低下していき(図6(D)(E))、実スタック供給流量が目標スタック供給流量(ここでは湿潤要求スタック供給流量)よりも大きくなっていく(図6(C))。その結果、実インピーダンスが目標インピーダンスよりも大きくなっていく(図6(A))。
実スタック供給流量が目標スタック供給流量よりも大きくなると、スタック要求コンプレッサ供給流量算出部103では、実スタック供給流量が目標スタック供給流量になるように、スタック要求コンプレッサ供給流量を減らす方向に制御しようとする。
しかしながら、比較例の場合は、目標コンプレッサ供給流量設定部104において、希釈要求コンプレッサ供給流量とスタック要求コンプレッサ供給流量の大きいほうを目標コンプレッサ供給流量として選択していた。そのため、スタック要求コンプレッサ供給流量が減少することによって、目標コンプレッサ供給流量設定部104において、希釈要求コンプレッサ供給流量が目標コンプレッサ供給流量として選択され続けてしまう(図6(B))。
その結果、比較例の場合は、時刻t2でバイパス弁26が開かれて実スタック供給流量が目標スタック供給流量よりも大きくなっても、コンプレッサ供給流量が希釈要求コンプレッサ供給流量のままとなって実スタック供給流量を目標スタック供給流量にすることができず、実インピーダンスが目標インピーダンスよりも大きい状態が続くことになる。
これ対して本実施形態の場合は、バイパス弁26が全開まで開かれると、目標コンプレッサ供給流量設定部114において、コンプレッサ制限流量が目標コンプレッサ供給流量として設定されることになる(時刻t3、図6(B))。
これにより、コンプレッサ制限流量は湿潤要求スタック供給流量と全開時推定バイパス流量との和なので、実スタック供給流量を湿潤要求スタック供給流量に制御することができ、実インピーダンスを目標インピーダンスに制御することができる(図6(A))。その結果、電解質膜の乾燥を抑制でき、燃料電池スタック1の発電効率が低下するのを抑制することができる。
なお、このように、希釈要求コンプレッサ供給流量が暫定目標コンプレッサ供給流量として選択されている場合に、最終的な目標コンプレッサ供給流量としてコンプレッサ制限流量が選択されたときは、パージ弁35を閉じる方向に制御することで、排出ガスの水素濃度が所定濃度以上になるのを防止すれば良い。
以上説明した本実施形態によれば、燃料電池スタックの負荷に応じて、発電要求スタック供給流量及び湿潤要求スタック供給流量の一方を目標スタック供給流量として算出し、スタック供給流量が目標スタック供給流量となるようにバイパス弁26をフィードバック制御することとした。
また、燃料電池システムの運転状態に応じて、スタック要求コンプレッサ供給流量及び希釈要求スタック供給流量の一方を暫定目標コンプレッサ供給流量として算出することとした。そして、暫定目標コンプレッサ供給流量として希釈要求スタック供給流量が選択されている場合にバイパス弁26が全開になったときは、その暫定目標コンプレッサ供給流量よりも少ない流量を目標コンプレッサ供給流量としてカソードコンプレッサ22をフィードバック制御することとした。具体的には、全開時推定バイパス流量と湿潤要求スタック供給流量とを足し合わせたものをコンプレッサ制限流量とし、暫定目標コンプレッサ供給流量とコンプレッサ制限流量の小さいほうを目標コンプレッサ供給流量としてカソードコンプレッサ22をフィードバック制御することとした。
これにより、バイパス弁26が全開になるまでは、希釈要求を満足しつつ、実スタック供給流量が目標スタック供給流量となるようにカソードコンプレッサ22及びバイパス弁26をフィードバック制御することができる。
そしてバイパス弁26が全開になって、実スタック供給流量が目標スタック供給流量よりも大きくなったときは、実スタック供給流量が湿潤供給スタック供給流量となるようにカソードコンプレッサ22をフィードバック制御することができる。よって、実スタック供給流量が目標スタック供給流量よりも大きくなる状態が続くのを抑制できるので、電解質膜の乾燥を抑制して燃料電池スタック1の発電効率が低下するのを抑制できる。
このように、本実施形態によれば、何らかの理由によりバイパス弁が所定開度(たとえば、全開)になったときであっても、発電に不要なカソードガスが燃料電池に供給されるのを抑制できるので、電解質膜の乾燥を抑制することができる。
以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。
上記実施形態では、目標スタック供給流量算出部102に、発電要求スタック供給流量と湿潤要求スタック供給流量とを入力していたが、これ以外に、燃料電池スタック1の負荷に応じて定まるフラッディング防止用のスタック供給流量を入力し、これらの最大値を目標スタック供給流量としても良い。
また、上記実施形態では、暫定目標コンプレッサ供給流量算出部111に、希釈要求コンプレッサ供給流量とスタック要求コンプレッサ供給流量とを入力していたが、これ以外に、カソードコンプレッサ22のサージング防止用のコンプレッサ供給流量を入力し、これらの最大値を暫定目標コンプレッサ供給流量としても良い。
本願は、2012年6月15日に日本国特許庁に出願された特願2012−135721号に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。

Claims (6)

  1. アノードガス及びカソードガスを燃料電池スタックに供給して発電する燃料電池システムであって、
    カソードガスを供給するコンプレッサと、
    前記コンプレッサから吐出されたカソードガスの一部を、前記燃料電池スタックをバイパスさせてカソードガス排出通路に排出するバイパス通路と、
    前記バイパス通路に設けられ、前記バイパス通路を流れるカソードガスの流量を調節するバイパス弁と、
    前記燃料電池スタックの負荷と湿潤要求とに応じて、前記燃料電池スタックに供給するカソードガス流量の目標値を算出する目標スタック供給流量算出部と、
    前記燃料電池システムの運転状態に応じて、前記コンプレッサが供給するカソードガス流量を制御するコンプレッサ供給流量制御部と、
    目標スタック供給流量に基づいて、前記コンプレッサから前記燃料電池スタックに供給されるカソードガスの流量が、前記目標スタック供給流量となるように、前記バイパス弁を制御するバイパス弁制御部と、
    前記燃料電池スタックの湿潤要求に基づいて、前記燃料電池システムの運転状態に応じて前記コンプレッサにより制御されるカソードガス流量を制限するコンプレッサ供給流量制限部と、
    を備える燃料電池システム。
  2. 前記コンプレッサ供給流量制限部は、
    前記コンプレッサが供給するカソードガス流量を、前記燃料電池スタックの電解質膜の湿潤度を要求湿潤度にするために前記燃料電池スタックに供給する必要のあるカソードガス流量と、前記バイパス弁の全開時に前記バイパス通路へ供給できるバイパス可能流量と、の加算値に制限する、
    請求項1に記載の燃料電池システム。
  3. 前記燃料電池スタックの電解質膜の湿潤度を要求湿潤度にするために、前記要求湿潤度と実湿潤度とに基づいて前記燃料電池スタックに供給する必要のあるカソードガス流量を算出する湿潤要求スタック供給流量算出部と、
    前記燃料電池スタックの負荷に基づいて、前記燃料電池スタックに供給するカソードガス流量を算出する発電要求スタック供給流量算出部と、
    を備え、
    前記目標スタック供給流量算出部は、
    前記湿潤要求スタック供給流量、及び、前記発電要求スタック供給流量の大きいほうを、前記燃料電池スタックに供給すべきカソードガス流量の目標値とする、
    請求項1又は請求項2に記載の燃料電池システム。
  4. 前記コンプレッサ供給流量制御部は、
    前記燃料電池システムの運転状態に応じて、前記コンプレッサが供給するカソードガス流量の暫定目標値を算出する暫定目標コンプレッサ供給流量算出部を備え、
    前記コンプレッサ供給流量制限部は、
    前記湿潤要求スタック供給流量と前記バイパス弁の全開時に前記バイパス通路へ供給できるバイパス可能流量との加算値をコンプレッサ制限流量として算出し、暫定目標コンプレッサ供給流量、及び、前記コンプレッサ制限流量の小さいほうを選択することで、前記コンプレッサが供給するカソードガス流量を制限する、
    請求項3に記載の燃料電池システム。
  5. 前記目標スタック供給流量に基づいて、前記コンプレッサが前記燃料電池スタックに供給すべきカソードガス流量の目標値をスタック要求コンプレッサ供給流量として算出するスタック要求コンプレッサ供給流量算出部と、
    前記燃料電池システムから外気に排出する排出ガスに応じて、その排出ガスの水素濃度を所定濃度以下に希釈するためのカソードガス流量を希釈要求コンプレッサ供給流量として算出する希釈要求コンプレッサ供給流量算出部と、
    を備え、
    前記暫定目標コンプレッサ供給流量算出部は、
    前記スタック要求コンプレッサ供給流量、及び、前記希釈要求コンプレッサ供給流量の大きい値を暫定目標コンプレッサ供給流量とする、
    請求項4に記載の燃料電池システム。
  6. 前記バイパス可能流量は、
    前記バイパス弁の前後差圧に基づいて算出される、
    請求項2、請求項4又は請求項5に記載の燃料電池システム。
JP2014521438A 2012-06-15 2013-06-14 燃料電池システム Expired - Fee Related JP5796680B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014521438A JP5796680B2 (ja) 2012-06-15 2013-06-14 燃料電池システム

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012135721 2012-06-15
JP2012135721 2012-06-15
PCT/JP2013/066505 WO2013187514A1 (ja) 2012-06-15 2013-06-14 燃料電池システム
JP2014521438A JP5796680B2 (ja) 2012-06-15 2013-06-14 燃料電池システム

Publications (2)

Publication Number Publication Date
JP5796680B2 true JP5796680B2 (ja) 2015-10-21
JPWO2013187514A1 JPWO2013187514A1 (ja) 2016-02-08

Family

ID=49758332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014521438A Expired - Fee Related JP5796680B2 (ja) 2012-06-15 2013-06-14 燃料電池システム

Country Status (6)

Country Link
US (1) US10581096B2 (ja)
EP (1) EP2863463B1 (ja)
JP (1) JP5796680B2 (ja)
CN (1) CN104380510B (ja)
CA (1) CA2876576C (ja)
WO (1) WO2013187514A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104885280B (zh) * 2012-12-28 2018-01-02 日产自动车株式会社 燃料电池系统
JP2016009518A (ja) * 2014-06-20 2016-01-18 本田技研工業株式会社 燃料電池システムの運転方法
JP6161580B2 (ja) * 2014-06-30 2017-07-12 本田技研工業株式会社 燃料電池システム及び燃料電池車両
JP6278119B2 (ja) 2014-08-20 2018-02-14 日産自動車株式会社 燃料電池システム及び燃料電池システムの制御方法
JP6168028B2 (ja) * 2014-11-05 2017-07-26 トヨタ自動車株式会社 燃料電池システム
US10069157B2 (en) * 2015-05-18 2018-09-04 Hyundai Motor Company Fuel cell system having valve module between fuel cell stack and humidifier
JP6330832B2 (ja) * 2016-03-04 2018-05-30 トヨタ自動車株式会社 燃料電池システム及びその制御方法
WO2017158957A1 (ja) * 2016-03-15 2017-09-21 日産自動車株式会社 燃料電池システムの湿潤状態制御方法及び湿潤状態制御装置
DE102018212420A1 (de) * 2018-07-25 2020-01-30 Bayerische Motoren Werke Aktiengesellschaft Die Erfindung betrifft ein Brennstoffzellensystem für ein Kraftfahrzeug
US10862143B2 (en) * 2019-01-30 2020-12-08 Toyota Jidosha Kabushiki Kaisha Turbo compressor path and rate control
CN113782789B (zh) * 2021-08-31 2022-03-18 金华氢途科技有限公司 一种燃料电池系统阳极压力保护方法
JP7434399B2 (ja) 2022-03-31 2024-02-20 本田技研工業株式会社 燃料電池システム

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003208911A (ja) * 2002-01-11 2003-07-25 Nissan Motor Co Ltd 燃料電池システム
JP2006164626A (ja) * 2004-12-03 2006-06-22 Nissan Motor Co Ltd 燃料電池システム
JP2007257956A (ja) * 2006-03-22 2007-10-04 Nissan Motor Co Ltd 燃料電池システム
JP2009123550A (ja) * 2007-11-15 2009-06-04 Toyota Motor Corp 燃料電池システム
JP2010153079A (ja) * 2008-12-24 2010-07-08 Toyota Motor Corp 燃料電池システムおよび燃料電池システムの制御方法
JP2011222176A (ja) * 2010-04-06 2011-11-04 Honda Motor Co Ltd 燃料電池システム
WO2011148426A1 (ja) * 2010-05-27 2011-12-01 トヨタ自動車株式会社 燃料電池システム
JP2012109182A (ja) * 2010-11-19 2012-06-07 Nissan Motor Co Ltd 燃料電池システム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4498845B2 (ja) * 2004-07-16 2010-07-07 本田技研工業株式会社 燃料電池の排出ガス処理装置
JP5044969B2 (ja) * 2006-04-07 2012-10-10 トヨタ自動車株式会社 燃料電池運転システム及び燃料電池運転システムにおける弁の凍結防止方法
JP2008016399A (ja) * 2006-07-10 2008-01-24 Toyota Motor Corp 燃料電池システム
KR101300897B1 (ko) * 2009-07-30 2013-08-27 도요타지도샤가부시키가이샤 연료 전지 시스템

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003208911A (ja) * 2002-01-11 2003-07-25 Nissan Motor Co Ltd 燃料電池システム
JP2006164626A (ja) * 2004-12-03 2006-06-22 Nissan Motor Co Ltd 燃料電池システム
JP2007257956A (ja) * 2006-03-22 2007-10-04 Nissan Motor Co Ltd 燃料電池システム
JP2009123550A (ja) * 2007-11-15 2009-06-04 Toyota Motor Corp 燃料電池システム
JP2010153079A (ja) * 2008-12-24 2010-07-08 Toyota Motor Corp 燃料電池システムおよび燃料電池システムの制御方法
JP2011222176A (ja) * 2010-04-06 2011-11-04 Honda Motor Co Ltd 燃料電池システム
WO2011148426A1 (ja) * 2010-05-27 2011-12-01 トヨタ自動車株式会社 燃料電池システム
JP2012109182A (ja) * 2010-11-19 2012-06-07 Nissan Motor Co Ltd 燃料電池システム

Also Published As

Publication number Publication date
US10581096B2 (en) 2020-03-03
JPWO2013187514A1 (ja) 2016-02-08
EP2863463A1 (en) 2015-04-22
WO2013187514A1 (ja) 2013-12-19
CN104380510A (zh) 2015-02-25
EP2863463A4 (en) 2015-07-29
CA2876576C (en) 2019-05-14
CN104380510B (zh) 2016-12-28
CA2876576A1 (en) 2013-12-19
EP2863463B1 (en) 2020-08-05
US20150162629A1 (en) 2015-06-11

Similar Documents

Publication Publication Date Title
JP5796680B2 (ja) 燃料電池システム
JP5858139B2 (ja) 燃料電池システム
JP6065117B2 (ja) 燃料電池システム及び燃料電池システムの制御方法
JP6107931B2 (ja) 燃料電池システム及び燃料電池システムの制御方法
JP6137315B2 (ja) 燃料電池システム及び燃料電池システムの制御方法
JP5522309B2 (ja) 燃料電池システム
JP5812118B2 (ja) 燃料電池システム
JP2009016170A (ja) 燃料電池システムおよび燃料電池システムの制御装置
JP6079788B2 (ja) 燃料電池システム
JP5983862B2 (ja) 燃料電池システム及び燃料電池システムの制御方法
EP2717371A1 (en) Fuel cell system
KR101966449B1 (ko) 연료전지 시스템의 공기 공급장치 및 에어 블로어 압력 조절방법
WO2015136677A1 (ja) 燃料電池システム
JP6064623B2 (ja) 燃料電池システム
JP6136185B2 (ja) 燃料電池システム
JP6064622B2 (ja) 燃料電池システム
JP6287010B2 (ja) 燃料電池システム
JP4675605B2 (ja) 燃料電池の酸化剤供給装置
WO2016013320A1 (ja) 燃料電池システム及び燃料電池システムの圧力損失推定方法
JP2009283409A (ja) 燃料電池システムおよび燃料電池システムの制御方法

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150721

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150803

R151 Written notification of patent or utility model registration

Ref document number: 5796680

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees