WO2015136677A1 - 燃料電池システム - Google Patents

燃料電池システム Download PDF

Info

Publication number
WO2015136677A1
WO2015136677A1 PCT/JP2014/056762 JP2014056762W WO2015136677A1 WO 2015136677 A1 WO2015136677 A1 WO 2015136677A1 JP 2014056762 W JP2014056762 W JP 2014056762W WO 2015136677 A1 WO2015136677 A1 WO 2015136677A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow rate
control
fuel cell
wet
cathode gas
Prior art date
Application number
PCT/JP2014/056762
Other languages
English (en)
French (fr)
Inventor
青木 哲也
垣内 孝宏
隆宏 藤井
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to CN201480077150.0A priority Critical patent/CN106104881B/zh
Priority to EP14885711.3A priority patent/EP3118922B1/en
Priority to JP2016507213A priority patent/JP6304366B2/ja
Priority to CA2942629A priority patent/CA2942629C/en
Priority to PCT/JP2014/056762 priority patent/WO2015136677A1/ja
Priority to US15/124,763 priority patent/US10164275B2/en
Publication of WO2015136677A1 publication Critical patent/WO2015136677A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04097Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with recycling of the reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04231Purging of the reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04388Pressure; Ambient pressure; Flow of anode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04395Pressure; Ambient pressure; Flow of cathode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04492Humidity; Ambient humidity; Water content
    • H01M8/04529Humidity; Ambient humidity; Water content of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04604Power, energy, capacity or load
    • H01M8/04619Power, energy, capacity or load of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04828Humidity; Water content
    • H01M8/0485Humidity; Water content of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • the present invention relates to a fuel cell system including a fuel cell that generates electric power by receiving supply of anode gas and cathode gas.
  • JP 2010-538415 discloses a fuel cell system that adjusts the wetness of the fuel cell by controlling at least one of the anode gas flow rate and the cathode gas flow rate.
  • the wetness of the fuel cell can be adjusted by controlling the anode gas flow rate or the cathode gas flow rate, and the wetness is adjusted based on the anode gas flow rate control and the cathode gas flow rate control. Proper adjustment is not disclosed.
  • the inventors of the present application have found that the wetness of the fuel cell can hardly be adjusted by the anode gas flow rate control even if the anode gas flow rate is changed when the cathode gas flow rate is high. I found it. That is, when adjusting the wetness of the fuel cell by controlling the anode gas flow rate, it is necessary to reduce the cathode gas flow rate as much as possible. Therefore, in the conventional fuel cell system in which this point is not taken into account, the cathode gas flow rate control unit and the anode gas flow rate control unit configured by a compressor or a pump may be operated more than necessary during the wet control. There is.
  • An object of the present invention is to provide a fuel cell system capable of appropriately controlling the cathode gas flow rate control unit and the anode gas flow rate control unit and adjusting the wetness of the fuel cell.
  • a fuel cell that generates power by receiving supply of anode gas and cathode gas, and a circulation mechanism configured to supply anode off-gas discharged from the fuel cell to the fuel cell;
  • a fuel cell system is provided.
  • the fuel cell system includes a wet target value calculation unit that calculates a target value of a wet state of the fuel cell, a gas request flow rate calculation unit that calculates a cathode gas request flow rate based on a power generation request for the fuel cell, and a dry control time
  • a wet control anode gas flow rate calculation unit for calculating a wet control anode gas circulation flow rate based on at least the wet target value and the cathode gas required flow rate; and an anode gas circulation flow rate based on the wet control anode gas circulation flow rate
  • An anode gas flow rate control unit for controlling Further, the fuel cell system includes a wet control cathode gas flow rate calculation unit that calculates a wet control cathode gas flow rate based on at least the wet target value and the measured value or estimated value of the anode gas circulation flow rate during dry control, A cathode gas flow rate control unit that controls the cathode gas flow rate based on the required cathode gas flow
  • FIG. 1 is a perspective view of a fuel cell according to an embodiment of the present invention.
  • 2 is a sectional view of the fuel cell of FIG. 1 taken along the line II-II.
  • FIG. 3 is a schematic configuration diagram of a fuel cell system according to an embodiment of the present invention.
  • FIG. 4 is a characteristic diagram showing the relationship between the flow rate ratio of the anode gas and the cathode gas and the relative humidity of the cathode gas discharged from the fuel cell stack.
  • FIG. 5 is a block diagram showing a configuration of a controller provided in the fuel cell system.
  • FIG. 6 is a diagram illustrating calculation processing of the target anode gas circulation flow rate and the target cathode gas flow rate in the gas flow rate calculation unit at the time of dry control.
  • FIG. 1 is a perspective view of a fuel cell according to an embodiment of the present invention.
  • 2 is a sectional view of the fuel cell of FIG. 1 taken along the line II-II.
  • FIG. 3 is a
  • FIG. 7 is a diagram illustrating a calculation process performed by the wet control anode gas flow rate calculation unit during dry control.
  • FIG. 8 is a characteristic diagram of the cathode gas demand flow rate based on the power generation demand for the fuel cell stack.
  • FIG. 9 is a characteristic diagram of the required circulation flow rate of the anode gas based on the power generation request for the fuel cell stack.
  • FIG. 10 is a diagram illustrating a calculation process in the wet control cathode gas flow rate calculation unit during dry control.
  • FIG. 11 is a diagram illustrating calculation processing of the target anode gas circulation flow rate and the target cathode gas flow rate in the gas flow rate calculation unit during wet control.
  • FIG. 12 is a diagram illustrating a calculation process in a wet control anode gas flow rate calculation unit during wet control.
  • FIG. 13 is a diagram illustrating a calculation process in the wet control cathode gas flow rate calculation unit during wet control.
  • FIG. 14 is a timing chart showing an example of wetting control in the fuel cell system according to the embodiment of the present invention.
  • FIG. 15 is a timing chart showing an example of wetting control in the fuel cell system according to the reference example.
  • FIG. 16 is a timing chart showing an example of wetting control in the fuel cell system according to the embodiment of the present invention.
  • FIG. 17 is a diagram illustrating a target anode gas circulation flow rate calculation process during dry control when cathode gas flow rate control is disabled.
  • FIG. 18 is a diagram showing a target cathode gas flow rate calculation process during wet control when anode gas circulation flow rate control is disabled.
  • the fuel cell includes an anode electrode as a fuel electrode, a cathode electrode as an oxidant electrode, and an electrolyte membrane disposed so as to be sandwiched between these electrodes.
  • the fuel cell generates electric power using an anode gas containing hydrogen supplied to the anode electrode and a cathode gas containing oxygen supplied to the cathode electrode.
  • the electrode reaction that proceeds in both the anode electrode and the cathode electrode is as follows.
  • Anode electrode 2H 2 ⁇ 4H + + 4e ⁇ (1)
  • Cathode electrode 4H + + 4e ⁇ + O 2 ⁇ 2H 2 O (2)
  • the fuel cell generates an electromotive force of about 1 V (volt) by the electrode reaction of (1) and (2).
  • FIG. 1 and 2 are diagrams for explaining the configuration of a fuel cell 10 according to an embodiment of the present invention.
  • FIG. 1 is a perspective view of the fuel cell 10
  • FIG. 2 is a cross-sectional view of the fuel cell 10 of FIG.
  • the fuel cell 10 includes a membrane electrode assembly (MEA) 11, and an anode separator 12 and a cathode separator 13 disposed so as to sandwich the MEA 11.
  • MEA membrane electrode assembly
  • the MEA 11 includes an electrolyte membrane 111, an anode electrode 112, and a cathode electrode 113.
  • the MEA 11 has an anode electrode 112 on one surface side of the electrolyte membrane 111 and a cathode electrode 113 on the other surface side.
  • the electrolyte membrane 111 is a proton conductive ion exchange membrane formed of a fluorine-based resin.
  • the electrolyte membrane 111 exhibits good electrical conductivity with an appropriate degree of wetness.
  • the anode electrode 112 includes a catalyst layer 112A and a gas diffusion layer 112B.
  • the catalyst layer 112 ⁇ / b> A is a member formed of platinum or carbon black particles carrying platinum or the like, and is provided in contact with the electrolyte membrane 111.
  • the gas diffusion layer 112B is disposed outside the catalyst layer 112A.
  • the gas diffusion layer 112B is a member formed of carbon cloth having gas diffusibility and conductivity, and is provided in contact with the catalyst layer 112A and the anode separator 12.
  • the cathode electrode 113 includes a catalyst layer 113A and a gas diffusion layer 113B.
  • the catalyst layer 113A is disposed between the electrolyte membrane 111 and the gas diffusion layer 113B, and the gas diffusion layer 113B is disposed between the catalyst layer 113A and the cathode separator 13.
  • the anode separator 12 is disposed outside the gas diffusion layer 112B.
  • the anode separator 12 includes a plurality of anode gas passages 121 for supplying anode gas (hydrogen gas) to the anode electrode 112.
  • the anode gas flow path 121 is formed as a groove-shaped passage.
  • the cathode separator 13 is disposed outside the gas diffusion layer 113B.
  • the cathode separator 13 includes a plurality of cathode gas passages 131 for supplying cathode gas (air) to the cathode electrode 113.
  • the cathode gas channel 131 is formed as a groove-shaped passage.
  • the anode separator 12 and the cathode separator 13 are arranged such that the flow direction of the anode gas flowing through the anode gas flow path 121 and the flow direction of the cathode gas flowing through the cathode gas flow path 131 are opposite to each other. It is configured.
  • the anode separator 12 and the cathode separator 13 may be configured such that the flow directions of these gases flow in the same direction.
  • FIG. 3 is a schematic configuration diagram of a fuel cell system 100 according to an embodiment of the present invention.
  • the fuel cell system 100 includes a fuel cell stack 1, a cathode gas supply / discharge device 2, an anode gas supply / discharge device 3, a stack cooling device 4, a power system 5, and a controller 60.
  • the fuel cell stack 1 is a battery in which a plurality of fuel cells 10 are stacked.
  • the fuel cell stack 1 receives the supply of the anode gas and the cathode gas and generates electric power necessary for traveling of the vehicle.
  • the cathode gas supply / discharge device 2 includes a cathode gas supply passage 21, a cathode gas discharge passage 22, a cathode compressor 23, a cathode flow rate sensor 24, a cathode pressure sensor 25, and a cathode pressure regulating valve 26.
  • the cathode gas supply / discharge device 2 supplies cathode gas to the fuel cell stack 1 and discharges cathode off-gas discharged from the fuel cell stack 1 to the outside.
  • the cathode gas supply passage 21 is a passage through which the cathode gas supplied to the fuel cell stack 1 flows. One end of the cathode gas supply passage 21 is connected to the cathode compressor 23, and the other end is connected to the cathode gas inlet of the fuel cell stack 1.
  • the cathode gas discharge passage 22 is a passage through which the cathode off gas discharged from the fuel cell stack 1 flows. One end of the cathode gas discharge passage 22 is connected to the cathode gas outlet of the fuel cell stack 1, and the other end is formed as an open end.
  • the cathode off gas is a mixed gas containing cathode gas and water vapor generated by electrode reaction.
  • the cathode compressor 23 is provided at the tip of the cathode gas supply passage 21.
  • the cathode compressor 23 takes in air as the cathode gas and supplies the cathode gas to the fuel cell stack 1.
  • the cathode flow rate sensor 24 is provided in the cathode gas supply passage 21 downstream of the cathode compressor 23.
  • the cathode flow rate sensor 24 detects the flow rate of the cathode gas supplied to the fuel cell stack 1.
  • the cathode pressure sensor 25 is provided in the cathode gas supply passage 21 downstream of the cathode flow rate sensor 24.
  • the cathode pressure sensor 25 is disposed in the vicinity of the cathode gas inlet of the fuel cell stack 1.
  • the cathode pressure sensor 25 detects the pressure of the cathode gas supplied to the fuel cell stack 1.
  • the cathode gas pressure detected by the cathode pressure sensor 25 represents the pressure of the entire cathode system including the cathode gas channel 131 of the fuel cell stack 1 and the like.
  • the cathode pressure regulating valve 26 is provided in the cathode gas discharge passage 22.
  • the cathode pressure regulating valve 26 is controlled to be opened and closed by the controller 60 and adjusts the pressure of the cathode gas supplied to the fuel cell stack 1.
  • the anode gas supply / discharge device 3 supplies anode gas to the fuel cell stack 1 and discharges anode off-gas discharged from the fuel cell stack 1 to the cathode gas discharge passage 22.
  • the anode gas supply / discharge device 3 includes a high pressure tank 31, an anode gas supply passage 32, an anode pressure regulating valve 33, an anode flow rate sensor 34, an anode pressure sensor 35, an anode gas discharge passage 36, a purge valve 37, Is provided. Further, the anode gas supply / discharge device 3 includes a reflux passage 38 connecting the anode gas supply passage 32 and the anode gas discharge passage 36, and a reflux pump 39 installed in the reflux passage 38.
  • the high-pressure tank 31 is a container that stores the anode gas supplied to the fuel cell stack 1 while maintaining the high-pressure state.
  • the anode gas supply passage 32 is a passage for supplying the anode gas discharged from the high-pressure tank 31 to the fuel cell stack 1.
  • One end of the anode gas supply passage 32 is connected to the high-pressure tank 31, and the other end is connected to the anode gas inlet of the fuel cell stack 1.
  • the anode pressure regulating valve 33 is provided in the anode gas supply passage 32 downstream of the high pressure tank 31.
  • the anode pressure regulating valve 33 is controlled to be opened and closed by the controller 60 and adjusts the pressure of the anode gas supplied to the fuel cell stack 1.
  • the anode gas discharge passage 36 is a passage through which the anode off gas discharged from the fuel cell stack 1 flows. One end of the anode gas discharge passage 36 is connected to the anode gas outlet portion of the fuel cell stack 1, and the other end is connected to the cathode gas discharge passage 22 downstream of the cathode pressure regulating valve 26.
  • the purge valve 37 is provided in the anode gas discharge passage 36.
  • the purge valve 37 is controlled to be opened and closed by the controller 60 and controls the purge flow rate of the anode off-gas discharged from the anode gas discharge passage 36 to the cathode gas discharge passage 22.
  • the anode off gas is discharged to the outside through the anode gas discharge passage 36 and the cathode gas discharge passage 22. At this time, the anode off gas is mixed with the cathode off gas in the cathode gas discharge passage 22. Thus, the anode off gas and the cathode off gas are mixed and discharged to the outside, so that the hydrogen concentration in the mixed gas is set to a value equal to or lower than the discharge allowable concentration.
  • the reflux passage 38 is a passage through which the anode off gas from the anode gas discharge passage 36 flows to the anode gas supply passage 32.
  • One end of the reflux passage 38 is connected to an anode gas discharge passage 36 between the anode gas outlet and the purge valve 37, and the other end of the reflux passage 38 is an anode gas supply between the anode gas inlet and the anode pressure regulating valve 33. Connected to the passage 32.
  • a reflux pump 39 is provided in the reflux passage 38.
  • the recirculation pump 39 recirculates the anode off gas discharged from the fuel cell stack 1 to the anode gas supply passage 32 through the recirculation passage 38.
  • the reflux passage 38 and the reflux pump 39 constitute a circulation mechanism that supplies the anode off-gas discharged from the fuel cell stack 1 to the fuel cell stack 1 again.
  • the anode flow rate sensor 34 is provided in the anode gas supply passage 32 downstream of the connection portion of the reflux passage 38.
  • the anode flow rate sensor 34 detects the circulation flow rate of the anode gas supplied to the fuel cell stack 1.
  • the anode pressure sensor 35 is provided in the anode gas supply passage 32 downstream of the anode flow rate sensor 34.
  • the anode pressure sensor 35 detects the pressure of the anode gas supplied to the fuel cell stack 1.
  • the anode gas pressure detected by the anode pressure sensor 35 represents the pressure of the entire anode system including the anode gas flow path 121 and the like of the fuel cell stack 1.
  • the stack cooling device 4 is a temperature adjusting device that cools the fuel cell stack 1 with cooling water such as antifreeze and adjusts the fuel cell stack 1 to a temperature suitable for power generation.
  • the stack cooling device 4 includes a circulation passage 41, a radiator 42, a bypass passage 43, a three-way valve 44, a circulation pump 45, an inlet water temperature sensor 46, and an outlet water temperature sensor 47.
  • the circulation passage 41 constitutes a loop passage through which cooling water circulates. One end of the circulation passage 41 is connected to the cooling water inlet of the fuel cell stack 1 and the other end is connected to the cooling water outlet of the fuel cell stack 1.
  • the radiator 42 is provided in the circulation passage 41.
  • the radiator 42 is a heat exchanger that radiates heat of the cooling water discharged from the fuel cell stack 1 to the outside.
  • the bypass passage 43 is a passage through which the cooling water flows by bypassing the radiator 42.
  • One end of the bypass passage 43 is connected to the circulation passage 41 upstream from the radiator 42, and the other end is connected to a three-way valve 44 provided in the circulation passage 41 downstream from the radiator 42.
  • the three-way valve 44 switches the cooling water circulation path according to the temperature of the cooling water. Specifically, when the cooling water temperature is higher than a predetermined temperature, the three-way valve 44 is switched so that the cooling water discharged from the fuel cell stack 1 is supplied again to the fuel cell stack 1 through the radiator 42. On the other hand, when the cooling water temperature is lower than the predetermined temperature, the three-way valve 44 is switched so that the cooling water discharged from the fuel cell stack 1 flows through the bypass passage 43 and is supplied to the fuel cell stack 1 again. .
  • the circulation pump 45 is provided in the circulation passage 41 downstream of the three-way valve 44 and circulates the cooling water.
  • the inlet water temperature sensor 46 is provided in the circulation passage 41 near the cooling water inlet of the fuel cell stack 1, and the outlet water temperature sensor 47 is provided in the circulation passage 41 near the cooling water outlet of the fuel cell stack 1.
  • the inlet water temperature sensor 46 detects the temperature of the cooling water flowing into the fuel cell stack 1, and the outlet water temperature sensor 47 detects the temperature of the cooling water discharged from the fuel cell stack 1.
  • the average water temperature calculated from the inlet water temperature detected by the inlet water temperature sensor 46 and the outlet water temperature detected by the outlet water temperature sensor 47 becomes the internal temperature of the fuel cell stack 1, that is, the so-called stack temperature.
  • the power system 5 includes a current sensor 51, a voltage sensor 52, a traveling motor 53, an inverter 54, a battery 55, and a DC / DC converter 56.
  • the current sensor 51 detects the output current taken out from the fuel cell stack 1.
  • the voltage sensor 52 detects the output voltage of the fuel cell stack 1, that is, the voltage across the terminals of the fuel cell stack 1.
  • the traveling motor 53 is a three-phase AC synchronous motor, and is a drive source for driving the wheels.
  • the traveling motor 53 has a function as an electric motor that rotates by receiving power supplied from the fuel cell stack 1 and the battery 55, and a function as a generator that generates electric power by being rotationally driven by an external force.
  • the inverter 54 includes a plurality of semiconductor switches such as IGBTs.
  • the semiconductor switch of the inverter 54 is switching-controlled by the controller 60, whereby DC power is converted into AC power or AC power is converted into DC power.
  • the traveling motor 53 functions as an electric motor
  • the inverter 54 converts the combined DC power of the output power of the fuel cell stack 1 and the output power of the battery 55 into three-phase AC power and supplies it to the traveling motor 53.
  • the traveling motor 53 is caused to function as a generator, the inverter 54 converts the regenerative AC power of the traveling motor 53 into DC power and supplies it to the battery 55.
  • the battery 55 is configured such that the surplus output power of the fuel cell stack 1 and the regenerative power of the traveling motor 53 are charged.
  • the electric power charged in the battery 55 is supplied to auxiliary equipment such as the cathode compressor 23 and the traveling motor 53 as necessary.
  • the DC / DC converter 56 is a bidirectional voltage converter that raises and lowers the output voltage of the fuel cell stack 1. By controlling the output voltage of the fuel cell stack 1 by the DC / DC converter 56, the output current and the like of the fuel cell stack 1 are adjusted.
  • the controller 60 is composed of a microcomputer including a central processing unit (CPU), a read only memory (ROM), a random access memory (RAM), and an input / output interface (I / O interface).
  • CPU central processing unit
  • ROM read only memory
  • RAM random access memory
  • I / O interface input / output interface
  • a signal from a sensor that detects the vehicle operating state such as an accelerator stroke sensor 7 that detects the amount of depression of the accelerator pedal is input to the controller 60. Is done.
  • the controller 60 controls the anode pressure control valve 33 and the recirculation pump 39 according to the operating state of the fuel cell system 100 to adjust the pressure and circulation flow rate of the anode gas, and also controls the cathode pressure control valve 26 and the cathode compressor 23. Thus, the pressure and flow rate of the cathode gas are adjusted.
  • the controller 60 calculates the target output power of the fuel cell stack 1 based on the operation state of the fuel cell system 100.
  • the controller 60 calculates the target output power based on the required power of the traveling motor 53, the required power of the auxiliary machines, the charge / discharge request of the battery 55, and the like.
  • the controller 60 calculates a target output current of the fuel cell stack 1 by referring to a predetermined current-voltage characteristic of the fuel cell stack 1 based on the target output power. Then, the controller 60 uses the DC / DC converter 56 to control the output voltage of the fuel cell stack 1 so that the output current of the fuel cell stack 1 becomes the target output current.
  • the cathode gas flow rate and the anode gas circulation flow rate are controlled so that the wet state of the fuel cell stack 1 is suitable for power generation.
  • the cathode gas flow rate control is mainly executed by the cathode compressor 23, and the cathode compressor 23 functions as a cathode gas flow rate control unit that controls the cathode gas flow rate according to the target cathode gas flow rate.
  • the anode gas circulation flow rate control is mainly executed by the reflux pump 39, and the reflux pump 39 functions as an anode gas flow rate control unit that controls the anode gas circulation flow rate according to the target anode gas circulation flow rate.
  • the wetness of the fuel cell stack 1 can be adjusted to the dry side.
  • the cathode gas flow rate is decreased, the moisture discharged from the fuel cell stack 1 together with the cathode gas is decreased, so that the wetness of the electrolyte membrane 111 is increased. Thereby, the wetness of the fuel cell stack 1 can be adjusted to the wet side.
  • the anode gas is humidified by moisture leaking from the downstream side of the cathode gas channel 131 (see FIG. 2) through the electrolyte membrane 111.
  • the circulation flow rate of the humidified anode gas is increased in this way, the moisture contained in the anode gas easily spreads from the upstream to the downstream of the anode gas flow path 121 (see FIG. 2), and the electrolyte membrane 111 of the fuel cell stack 1 is obtained.
  • the degree of wetting can be increased. Thereby, the wetness of the fuel cell stack 1 can be adjusted to the wet side.
  • the anode gas circulation flow rate is decreased, the wetness of the electrolyte membrane 111 decreases. Thereby, the wetness of the fuel cell stack 1 can be adjusted to the dry side.
  • the fuel cell system 100 is configured not only to control the cathode gas flow rate and the anode gas circulation flow rate but also to adjust the wetness of the fuel cell stack 1 by controlling the cathode gas pressure, the cooling water temperature, and the like. May be.
  • the inventors of the present application relate to the wet control of the fuel cell stack 1, and even if the anode gas circulation flow rate is changed when the cathode gas flow rate is large, the wetness degree of the fuel cell stack 1 is almost adjusted by the anode gas circulation flow rate control. I found that I can't.
  • FIG. 4 is a characteristic diagram showing the relationship between the flow rate ratio of the anode gas and the cathode gas and the relative humidity of the cathode gas discharged from the fuel cell stack 1.
  • the cathode gas relative humidity is an index indicating the amount of water contained in the cathode gas discharged from the fuel cell stack 1. As the cathode gas relative humidity decreases, the electrolyte membrane 111 of the fuel cell stack 1 becomes wet.
  • the inventors of the present application have found that there is a relationship as shown in FIG. 4 between the cathode gas relative humidity and the flow rate ratio obtained by dividing the anode gas flow rate (circulation flow rate) by the cathode gas flow rate.
  • the cathode gas relative humidity hardly changes in the region where the anode gas circulation flow rate is small and the flow rate ratio is small (broken line region). The wetness can hardly be adjusted.
  • the cathode gas relative humidity can be changed according to the flow rate ratio, and the wetness of the fuel cell stack 1 can be adjusted. According to the knowledge found by the present inventors, when adjusting the wetness of the fuel cell stack 1 by controlling the anode gas circulation flow rate, for example, the cathode gas flow rate is kept as low as possible and the flow rate ratio is set to be large. There is a need to.
  • the fuel cell system 100 is configured to appropriately control the wetness of the fuel cell stack 1 by controlling the anode gas circulation flow rate and the cathode gas flow rate based on the above-described knowledge.
  • the control of the anode gas circulation flow rate and the cathode gas flow rate is executed based on the target anode gas circulation flow rate and the target cathode gas flow rate calculated by the controller 60 according to the operation state of the fuel cell stack 1.
  • the reflux pump 39 controls the flow rate of the anode gas supplied to the fuel cell stack 1 according to the target anode gas circulation flow rate, and the cathode compressor 23 supplies the cathode supplied to the fuel cell stack 1 according to the target cathode gas flow rate. Control the gas flow rate.
  • FIG. 5 is a block diagram showing a configuration of the controller 60 provided in the fuel cell system 100.
  • the controller 60 includes a wet target value calculation unit 61 that calculates a wet target value that is a target value in a wet state of the fuel cell stack 1, and a cathode gas request based on a power generation request to the fuel cell stack 1.
  • a gas required flow rate calculation unit 63 that calculates the flow rate and the anode gas required circulation flow rate, and a gas flow rate calculation unit 62 that calculates the target anode gas flow rate and the target cathode gas flow rate based on the wet target value and these required flow rates are provided.
  • the wet target value calculation unit 61 includes a basic wet value calculation unit 61A, a subtraction unit 61B, a PI control execution unit 61C, and an addition unit 61D.
  • the basic wet value calculation unit 61A calculates a basic wet value based on the target value of the internal impedance (HFR) of the fuel cell stack 1.
  • the basic wet value is set to a smaller value as the HFR target value increases.
  • the internal impedance (HFR) of the fuel cell stack 1 increases as the wetness decreases, that is, as the electrolyte membrane 111 dries.
  • the HFR target value is set to a smaller value as the power generation load of the fuel cell stack 1 increases. Further, the HFR target value is corrected so as to become smaller as the stack temperature becomes higher when the power generation load of the fuel cell stack 1 is the same.
  • the subtraction unit 61B subtracts the measured value of the internal impedance of the fuel cell stack 1 from the HFR target value, and calculates the difference (HFR deviation) between the HFR target value and the HFR measured value.
  • the measured HFR value is calculated based on the output current of the fuel cell stack 1 detected by the current sensor 51 and the output voltage of the fuel cell stack 1 detected by the voltage sensor 52.
  • the PI control execution unit 61C calculates a feedback correction value based on the HFR deviation calculated by the subtraction unit 61B.
  • the adding unit 61D calculates the wet target value by adding the basic wet value and the feedback correction value.
  • the wet target value corresponds to the target value of the wetness of the fuel cell stack 1, and the wet control of the fuel cell stack 1 is executed according to the wet target value.
  • the wet target value calculation unit 61 is configured to calculate the wet target value based on the HFR target value and the HFR measurement value.
  • the wet target value calculation method by the wet target value calculation unit 61 is an example, and the wet target value may be calculated using other methods.
  • the gas required flow rate calculation unit 63 calculates the cathode gas required flow rate Qc (see FIG. 8) and the anode gas required circulation flow rate Qa (see FIG. 9) based on the power generation request to the fuel cell stack 1.
  • the gas flow rate calculation unit 62 calculates the target anode gas circulation flow rate and the target cathode gas flow rate based on the required flow rate and the wet target value calculated by the wet target value calculation unit 61.
  • the gas flow rate calculation unit 62 calculates the target anode gas circulation flow rate and the target cathode gas flow rate so that the wetness of the fuel cell stack 1 is suitable for the operating state.
  • FIG. 6 is a diagram showing calculation processing of the target anode gas circulation flow rate and the target cathode gas flow rate in the gas flow rate calculation unit 62 during dry control.
  • FIG. 7 is a diagram illustrating a calculation process in the wet control anode gas flow rate calculation unit 70.
  • FIG. 8 is a characteristic diagram of the cathode gas request flow rate Qc based on the power generation request for the fuel cell stack 1.
  • FIG. 9 is a characteristic diagram of the required circulation flow rate Qa of the anode gas based on the power generation request for the fuel cell stack 1.
  • FIG. 10 is a diagram illustrating a calculation process in the wet control cathode gas flow rate calculation unit 80.
  • the gas flow rate calculation unit 62 of the controller 60 includes a wet control anode gas flow rate calculation unit 70, a target anode gas flow rate setting unit 91, a wet control cathode gas flow rate calculation unit 80, and a target cathode.
  • a gas flow rate setting unit 92 As shown in FIG. 6, the gas flow rate calculation unit 62 of the controller 60 includes a wet control anode gas flow rate calculation unit 70, a target anode gas flow rate setting unit 91, a wet control cathode gas flow rate calculation unit 80, and a target cathode.
  • the wet control anode gas flow rate calculation unit 70 calculates the wet target value calculated by the wet target value calculation unit 61, the measured value of the cathode gas pressure, and the cooling water. Based on the measured temperature value and the cathode gas required flow rate Qc, the wet gas control anode gas circulation flow rate Qwa is calculated. In addition, the controller 60 determines whether it is the time of dry control or the time of wet control, for example by comparing the present wet target value with the last value.
  • the wet control anode gas flow rate calculation unit 70 includes an addition unit 71, a division unit 72, a cathode gas relative humidity calculation unit 73, a flow rate ratio calculation unit 74, and a multiplication unit 75. ing.
  • the wet control anode gas flow rate calculation unit 70 adds the wet target value and the cathode gas required flow rate Qc obtained from FIG. 8 in the addition unit 71, and divides the wet target value by this addition value in the division unit 72.
  • the cathode gas wet state value is calculated.
  • the cathode gas request flow rate Qc used for calculating the wet control anode gas circulation flow rate Qwa refers to the characteristic diagram shown in FIG. 8, and is a power generation request for the fuel cell stack 1 obtained based on the vehicle operating state, that is, a fuel cell. It is calculated according to the generated current extracted from the stack 1.
  • the cathode gas required flow rate Qc becomes a constant value when the generated current is from 0 to I 1 , and becomes a large value as the generated current is increased when I 1 or more.
  • the cathode gas required flow rate Qc is defined in accordance with a power generation request to the fuel cell stack 1, and is defined as a cathode gas flow rate that is minimum required when the fuel cell stack 1 generates power in a normal state, for example. In this normal state, the wetness of the fuel cell stack 1 is controlled within an appropriate range, the occurrence of flooding is prevented, and the rotational speed of the cathode compressor 23 does not fall below the minimum rotational speed. The state etc. are included.
  • the cathode gas relative humidity calculation unit 73 of the wet control anode gas flow rate calculation unit 70 multiplies the measured value of the cathode gas pressure by the cathode gas wet state value calculated by the division unit 72, and uses the multiplied value as cooling water.
  • the cathode gas relative humidity is calculated by dividing by the saturated water vapor pressure obtained from the temperature measurement value.
  • the cathode gas relative humidity is an index indicating the amount of moisture contained in the cathode gas discharged from the fuel cell stack 1 as described in FIG.
  • the measured value of the cathode gas pressure used in the cathode gas relative humidity calculating unit 73 is calculated based on the detected value of the cathode pressure sensor 25, and the measured value of the cooling water temperature is obtained from the inlet water temperature sensor 46 and the outlet water temperature sensor 47. Calculated based on the detected value. Moreover, you may use the estimated value of a cathode gas pressure and a cooling water temperature instead of using the measured value of a cathode gas pressure and a cooling water temperature.
  • the flow rate ratio calculation unit 74 refers to the flow rate ratio-cathode gas relative humidity characteristic map described with reference to FIG. 4, and based on the cathode gas relative humidity calculated by the cathode gas relative humidity calculation unit 73, the flow rate ratio necessary for wet control. Is calculated.
  • the flow rate ratio calculated by the flow rate calculation unit 74 is the ratio of the anode gas circulation flow rate to the cathode gas flow rate.
  • the multiplication unit 75 multiplies the flow rate ratio calculated by the flow rate calculation unit 74 by the cathode gas required flow rate Qc used by the addition unit 71 to calculate the wet control anode gas circulation flow rate Qwa.
  • the wet control anode gas flow rate calculation unit 70 calculates the cathode gas relative humidity from the wet target value and the required cathode gas flow rate without using the cathode gas pressure and the cooling water temperature, and uses the cathode gas relative humidity.
  • the wet control anode gas circulation flow rate may be calculated.
  • the gas flow rate calculation unit 62 is obtained by the target anode gas flow rate setting unit 91 from the wet control anode gas circulation flow rate Qwa calculated as described above and the power generation request to the fuel cell stack 1.
  • the anode gas required circulation flow rate Qa is compared, and the larger one is set as the target anode gas circulation flow rate Qta at the time of dry control.
  • the anode gas required circulation flow rate Qa used when setting the target anode gas circulation flow rate Qta is referred to the characteristic diagram shown in FIG. 9, and the power generation request for the fuel cell stack 1 obtained based on the vehicle operating state, that is, the fuel It is calculated according to the generated current taken out from the battery stack 1.
  • the anode gas required circulation flow rate Qa becomes a constant value when the generated current is from 0 to I 2 , and becomes a large value as the generated current increases when I 2 or more.
  • the anode gas required circulation flow rate Qa is defined according to a power generation request for the fuel cell stack 1, and is defined as, for example, the minimum anode gas circulation flow rate required when the fuel cell stack 1 generates power in a normal state. In this normal state, in addition to the state in which the wetness of the fuel cell stack 1 is controlled within an appropriate range, the occurrence of flooding is prevented, and the rotational speed of the reflux pump 39 does not fall below the minimum rotational speed. The state etc. are included.
  • the wet control cathode gas flow rate calculation unit 80 the wet target value calculated by the wet target value calculation unit 61, the measured value of the cathode gas pressure, the measured value of the cooling water temperature, the anode gas Based on the measured value of the circulation flow rate, the wet control cathode gas flow rate Qwc is calculated.
  • the wet control cathode gas flow rate calculation unit 80 includes an addition unit 81, a first division unit 82, a cathode gas relative humidity calculation unit 83, a flow rate ratio calculation unit 84, and a second division unit 85. And.
  • the wet control cathode gas flow rate calculation unit 80 adds the wet target value and the previous value of the target cathode gas flow rate Qtc in the addition unit 81, and divides the wet target value by this addition value in the first division unit 82.
  • the cathode gas wet state value is calculated.
  • a measured value of the cathode gas flow rate may be used instead of the previous value of the target cathode gas flow rate Qtc.
  • the cathode gas relative humidity calculation unit 83 of the wet control cathode gas flow rate calculation unit 80 multiplies the measurement value of the cathode gas pressure by the cathode gas wet state value calculated by the first division unit 82, and the multiplication value is obtained.
  • the cathode gas relative humidity is calculated by dividing by the saturated water vapor pressure obtained from the measured value of the cooling water temperature. Instead of using the measured values of the cathode gas pressure and the cooling water temperature, estimated values of the cathode gas pressure and the cooling water temperature may be used.
  • the flow rate ratio calculation unit 84 refers to the flow rate ratio-cathode gas relative humidity characteristic map described with reference to FIG. 4, and based on the cathode gas relative humidity calculated by the cathode gas relative humidity calculation unit 83, the flow rate ratio necessary for wet control. Is calculated.
  • the flow rate ratio calculated by the flow rate calculation unit 84 is the ratio of the anode gas circulation flow rate to the cathode gas flow rate.
  • the second division unit 85 calculates the wet control cathode gas flow rate Qwc by dividing the measured value of the anode gas circulation flow rate by the flow rate ratio calculated by the flow rate calculation unit 84.
  • the measured value of the anode gas circulation flow rate is calculated based on the detection value of the anode flow rate sensor 34. Further, an estimated value of the anode gas circulation flow rate may be used instead of the measurement value of the anode gas circulation flow rate.
  • the wet control cathode gas flow rate calculation unit 80 uses the wet target value and the previous value of the target cathode gas flow rate Qtc or the measured value (estimated value) of the cathode gas flow rate without using the cathode gas pressure and the cooling water temperature.
  • the cathode gas relative humidity may be calculated, and the cathode gas flow rate for wet control may be calculated using the cathode gas relative humidity.
  • the gas flow rate calculation unit 62 is obtained by the target cathode gas flow rate setting unit 92 from the wet control cathode gas flow rate Qwc calculated as described above and the power generation request to the fuel cell stack 1.
  • the cathode gas required flow rate Qc (see FIG. 8) is compared, and the larger one is set as the target cathode gas flow rate Qtc during dry control.
  • the anode gas circulation flow rate Qwa for wet control during dry control is at least the wet target value and the cathode gas required flow rate Qc required when the fuel cell stack 1 generates power in a normal state.
  • the wet control cathode gas flow rate Qwc during dry control is calculated based on at least the wet target value and the measured or estimated value of the anode gas circulation flow rate.
  • the wet control anode gas circulation flow rate and the wet control cathode gas flow rate at the time of dry control indicate the shortage of dry control when the wetness cannot be controlled to the dry side based on the anode gas circulation flow rate control. Calculated to compensate by control.
  • FIG. 11 is a diagram showing calculation processing of the target anode gas circulation flow rate and the target cathode gas flow rate in the gas flow rate calculation unit 62 during wet control.
  • FIG. 12 is a diagram illustrating a calculation process in the wet control anode gas flow rate calculation unit 70.
  • FIG. 13 is a diagram illustrating a calculation process in the wet control cathode gas flow rate calculation unit 80.
  • the wet control anode gas flow rate calculation unit 70 of the gas flow rate calculation unit 62 includes the wet target value and the cathode gas pressure. Based on the measured value, the measured value of the cooling water temperature, and the measured value of the cathode gas flow rate, the wet control anode gas circulation flow rate Qwa is calculated.
  • Each calculation process in the wet control anode gas flow rate calculation unit 70 shown in FIG. 12 is the same as the calculation process shown in FIG. 7 except that the measured value of the cathode gas flow rate is used instead of the cathode gas required flow rate Qc. is there.
  • the wet control anode gas flow rate calculation unit 70 calculates the wet control anode gas circulation flow rate Qwa using the cathode gas request flow rate Qc during dry control, whereas the wet control anode gas flow rate calculation unit 70 measures the cathode gas flow rate during wet control. Is used to calculate the anode gas circulation flow rate Qwa for wetting control.
  • the cathode gas pressure, cooling water temperature, and cathode gas flow rate are used.
  • the estimated value may be used.
  • the wet control anode gas flow rate calculation unit 70 does not use the cathode gas pressure and the cooling water temperature, but uses the wet target value and the measured value or the estimated value of the cathode gas flow rate supplied to the fuel cell stack 1 as the cathode gas relative humidity.
  • the anode gas circulation flow rate for wet control may be calculated using the cathode gas relative humidity.
  • the gas flow rate calculation unit 62 is obtained from the wet control anode gas circulation flow rate Qwa calculated as described above and the power generation request to the fuel cell stack 1 in the target anode gas flow rate setting unit 91. Compared with the required anode gas circulation flow rate Qa (see FIG. 9), the larger one is set as the target anode gas circulation flow rate Qta at the time of wet control.
  • the wet control cathode gas flow rate calculation unit 80 includes a wet target value, a measured value of the cathode gas pressure, a measured value of the coolant temperature, and a fuel cell.
  • the wet control cathode gas flow rate Qwc is calculated based on the anode gas required circulation flow rate Qa (see FIG. 9) obtained from the power generation request to the stack 1.
  • Each calculation process in the wet control cathode gas flow rate calculation unit 80 shown in FIG. 13 is the same as the calculation process shown in FIG. 10 except that the anode gas required circulation flow rate Qa is used instead of the measured value of the anode gas circulation flow rate. It is the same.
  • the wet control cathode gas flow rate calculation unit 80 calculates the wet control cathode gas flow rate Qwc using the measured value of the anode gas circulation flow rate during the dry control, whereas the wet control requires the anode gas required circulation flow rate.
  • the wet control cathode gas flow rate Qwc is calculated using Qa.
  • the estimated values of the cathode gas pressure and the cooling water temperature may be used.
  • the gas flow rate calculation unit 62 is obtained from the wet control cathode gas flow rate Qwc calculated as described above and the power generation request for the fuel cell stack 1 in the target cathode gas flow rate setting unit 92.
  • the cathode flow rate Qc (see FIG. 8) is compared, and the larger flow rate is set as the target cathode gas flow rate Qtc during wet control.
  • the wet control cathode gas flow rate Qwc at the time of wet control is at least the wet target value and the anode gas required circulation flow rate Qa required when the fuel cell stack 1 generates power in a normal state. Based on the above.
  • the anode gas circulation flow rate Qwa for wet control during wet control is calculated based on at least the wet target value and the measured value or estimated value of the cathode gas flow rate.
  • the wet gas control anode gas circulation flow rate and the wet control cathode gas flow rate during the wet control when the wetness cannot be controlled to the wet side based on the cathode gas flow rate control, the shortage of the wet control is the anode gas circulation flow rate.
  • the wet control anode gas circulation flow rate and the wet control cathode gas flow rate during the wet control when the wetness cannot be controlled to the wet side based on the cathode gas flow rate control, the shortage of the wet control is the anode gas circulation flow rate.
  • wetting control in the fuel cell system 100 according to the present embodiment will be described with reference to FIG. 14, and wetting control in the fuel cell system according to the reference example will be described with reference to FIG.
  • the wet control is executed according to the wet target value from time t0 to t2.
  • the wetness can be controlled to the wet side even if the anode gas circulation flow rate is increased. Can not. Therefore, the HFR measurement value (broken line) hardly decreases and deviates greatly from the HFR target value (solid line). Since the cathode gas flow rate decreases after time t1, the HFR measurement value converges toward the HFR target value. As described above, in a state where the cathode gas flow rate is large, even if the anode gas circulation flow rate is increased, the wet control cannot be effectively performed.
  • dry control is executed according to the wet target value from time t3 to time t5.
  • wet control is executed in accordance with the wet target value from time t0 to t2.
  • the wet control cathode gas flow rate Qwc is calculated based on at least the wet target value and the anode gas required circulation flow rate Qa required when the fuel cell stack 1 generates power in a normal state.
  • the gas circulation flow rate Qwa is calculated based on at least the wet target value and the measured value of the cathode gas flow rate. That is, the wet control anode gas circulation flow rate and the wet control cathode gas flow rate at the time of wet control are calculated so as to compensate for the shortage of wet control by the cathode gas flow rate control by the anode gas circulation flow rate control.
  • the wet control by the cathode gas flow rate control is controlled by the anode gas circulation flow rate control. It works superior to the wet control. As a result, as long as wet control by reducing the cathode gas flow rate can be performed, execution of wet control by increasing the anode gas circulation flow rate is suppressed.
  • the cathode gas flow rate is decreased while the anode gas circulation flow rate is kept low, and the wet control by the cathode gas flow rate control is executed in advance.
  • the anode gas circulation flow rate is increased and the wet control by the anode gas circulation flow rate control is executed.
  • the cathode gas flow rate is kept low, and the ratio of the anode gas circulation flow rate to the cathode gas flow rate is large. Therefore, the electrolyte membrane 111 of the fuel cell stack 1 is humidified by increasing the anode gas circulation flow rate. Is possible. As a result, the HFR measurement value follows the HFR target value without deviation even after t1.
  • the amount of change in HFR from time t1 to t2 is the amount of change in HFR from time t0 to t1. Small compared.
  • the fuel cell system 100 is configured to compensate for the shortage of the wet control by the anode gas circulation flow control when the wetness cannot be controlled to the wet side based on the cathode gas flow control. Therefore, according to the fuel cell system 100, the wetness of the fuel cell stack 1 can be appropriately adjusted to the wet side without wastefully controlling the anode gas circulation flow rate and the cathode gas flow rate.
  • dry control is executed in accordance with the wet target value from time t3 to time t5.
  • the wet control anode gas circulation flow rate Qwa is calculated based on at least the wet target value and the cathode gas required flow rate Qc required when the fuel cell stack 1 generates power in a normal state.
  • the gas flow rate Qwc is calculated based on at least the wet target value and the measured value of the anode gas circulation flow rate. That is, the wet control anode gas circulation flow rate and the wet control cathode gas flow rate at the time of dry control are calculated so as to compensate the shortage of dry control by the anode gas circulation flow control by the cathode gas flow control.
  • the dry control based on the anode gas circulation flow rate control is the cathode gas flow rate control. It works superior to the dry control by the. Thereby, as long as the dry control by the decrease of the anode gas circulation flow rate can be executed, the execution of the dry control by the increase of the cathode gas flow rate is suppressed.
  • the anode gas circulation flow rate is decreased while the cathode gas flow rate is kept low, and the dry control by the anode gas circulation flow rate control is executed in advance.
  • the cathode gas flow rate is increased and the dry control by the cathode gas flow rate control is executed.
  • the fuel cell system 100 is configured to compensate for the shortage of dry control by the cathode gas flow control when the wetness cannot be controlled to the dry side based on the anode gas circulation flow control. Therefore, according to the fuel cell system 100, the wetness of the fuel cell stack 1 can be appropriately adjusted to the dry side without wastefully controlling the anode gas circulation flow rate or the cathode gas flow rate.
  • FIG. 14 illustrates the wetting control when the wetting target value changes gently.
  • the wet target value may change rapidly depending on the driving state of the vehicle.
  • the wet control in the case where the wet target value rapidly increases at time t6 and time t7 will be described.
  • the wet gas control anode gas circulation flow rate is suppressed so that the wet gas control by the anode gas circulation flow rate control is suppressed.
  • the cathode gas flow rate for wetting control is calculated.
  • the cathode gas flow rate is controlled to decrease, and the anode gas circulation flow rate is temporarily set to compensate for the response delay of the actual cathode gas flow rate with respect to the target cathode gas flow rate. It is controlled to increase.
  • a portion where the wetness cannot be adjusted to the wet side only by the cathode gas flow rate control is compensated by the wet control based on the anode gas circulation flow rate control.
  • wet control is performed by increasing the anode gas circulation flow rate. Is executed. Since the cathode gas flow rate is low during the wet control by the anode gas circulation flow rate control, the HFR measurement value (broken line) converges toward the HFR target value (solid line) although there is a slight response delay.
  • the fuel cell system 100 includes a wet target value calculation unit 61 that calculates a target value of a wet state of the fuel cell stack 1, and a gas request flow rate calculation unit 63 that calculates a cathode gas request flow rate based on a power generation request to the fuel cell stack 1.
  • a wet control anode gas flow rate calculation unit 70 for calculating a wet control anode gas circulation flow rate based on at least a wet target value and a cathode gas required flow rate during dry control, and an anode based on the wet control anode gas circulation flow rate
  • a reflux pump 39 anode gas flow rate control unit for controlling the gas circulation flow rate.
  • the fuel cell system 100 includes a wet control cathode gas flow rate calculation unit 80 that calculates a wet control cathode gas flow rate based on at least the wet target value and the measured value or estimated value of the anode gas circulation flow rate during dry control, A cathode compressor 23 (cathode gas flow rate control unit) that controls the cathode gas flow rate based on the cathode gas required flow rate and the wet control cathode gas flow rate.
  • the shortage of dry control by the anode gas circulation flow rate control can be compensated for by the cathode gas flow rate control. As shown in FIG. Can be controlled properly.
  • the required gas flow rate calculation unit 63 calculates the required anode gas circulation flow rate based on the power generation request for the fuel cell stack 1, and the wet control cathode gas flow rate calculation unit 80 calculates at least the wet target value and the anode flow rate.
  • the wet control cathode gas flow rate is calculated based on the gas demand circulation flow rate.
  • the wet control anode gas flow rate calculation unit 70 calculates the wet control anode gas circulation flow rate based on at least the wet target value and the measured or estimated value of the cathode gas flow rate. According to such a fuel cell system 100, the shortage of the wet control by the cathode gas flow rate control can be compensated by the anode gas circulation flow rate control. As shown in FIG. Can be controlled properly.
  • the reflux pump 39 and the cathode compressor 23 can be efficiently operated during the wet control, and the power consumption performance in the fuel cell system 100 can be improved.
  • the fuel cell system 100 When the fuel cell system 100 is viewed from a different viewpoint, the fuel cell system 100 includes a reflux pump 39 that controls the anode gas circulation flow rate according to the target anode gas circulation flow rate, and a cathode gas according to the target cathode gas flow rate. A cathode compressor 23 for controlling the flow rate. Further, the fuel cell system 100 calculates the target value of the wet state of the fuel cell stack 1 and the target flow rate of cathode gas and the required circulation rate of anode gas based on the power generation request to the fuel cell stack 1. And a required gas flow rate calculation unit 63 for calculation.
  • the fuel cell system 100 includes a wet control cathode gas flow rate calculation unit 80 that calculates a wet control cathode gas flow rate based on at least the wet target value and the measured value or estimated value of the anode gas circulation flow rate during dry control,
  • a wet control anode gas flow rate calculation unit 70 that calculates a wet control anode gas circulation flow rate based on at least a wet target value and a cathode gas request flow rate during dry control, and based on the cathode gas request flow rate and the wet control cathode gas flow rate
  • the anode gas circulation flow rate for wet control and the cathode gas flow rate for wet control at the time of dry control are calculated so as to compensate for the shortage of dry control by the anode gas circulation flow rate control by the cathode gas flow rate control.
  • the dry gas control by the anode gas circulation flow rate control is performed rather than the dry control by the cathode gas flow rate control.
  • the wetness of the fuel cell stack 1 can be appropriately controlled to the dry side.
  • the wet control anode gas flow rate calculation unit 70 calculates the wet control anode gas circulation flow rate based on at least the wet target value and the measured value or estimated value of the cathode gas flow rate.
  • the flow rate calculation unit 80 calculates the wet control cathode gas flow rate based on at least the wet target value and the anode gas required circulation flow rate.
  • the wet gas control anode gas circulation flow rate and the wet control cathode gas flow rate at the time of wet control are calculated so that the shortage of wet control by the cathode gas flow rate control is compensated by the anode gas circulation flow rate control.
  • the wet gas control by the cathode gas flow rate control is more effective than the wet control by the anode gas circulation flow rate control.
  • the wetness of the fuel cell stack 1 can be appropriately controlled toward the wet side.
  • the reflux pump 39 and the cathode compressor 23 can be efficiently operated during wet control, and the power consumption performance in the fuel cell system 100 can be improved.
  • FIG. 17 shows a calculation process of the target anode gas circulation flow rate during the dry control when the cathode gas flow rate control becomes impossible.
  • FIG. 18 shows a process for calculating the target cathode gas flow rate during wet control when the anode gas circulation flow rate control is disabled.
  • the wet control anode gas flow rate calculation unit 70 measures the cathode gas flow rate instead of using the cathode gas flow rate Qc obtained from FIG. Use value or estimate. That is, as shown in FIG. 17, the wet control anode gas flow rate calculation unit 70 sets the wet target value, the measured value of the cathode gas pressure, the measured value of the cooling water temperature, and the measured value (estimated value) of the cathode gas flow rate.
  • the wet control anode gas circulation flow rate Qwa during dry control is calculated.
  • the calculation of the target cathode gas flow rate Qtc in the gas flow rate calculation unit 62 may be stopped.
  • the target anode gas circulation flow rate Qta is based on the wet control anode gas circulation flow rate Qwa obtained using the actual cathode gas flow rate supplied to the fuel cell stack 1. Therefore, dry control suitable for the abnormal state of the cathode gas flow rate control system can be executed.
  • the wet control cathode gas flow rate calculation unit 80 uses the anode gas circulation flow rate instead of using the anode gas circulation flow rate Qa obtained from FIG. The measured value or estimated value is used. That is, as shown in FIG. 18, the wet control cathode gas flow rate calculation unit 80 has a wet target value, a measured value of the cathode gas pressure, a measured value of the cooling water temperature, and a measured value (estimated value) of the anode gas circulation flow rate. Based on the above, the cathode gas flow rate Qwc for wet control is calculated. When the anode gas circulation flow rate cannot be controlled, the gas flow rate calculation unit 62 may stop calculating the target anode gas circulation flow rate Qta.
  • the target cathode gas flow rate Qtc is based on the wet control cathode gas flow rate Qwc obtained using the actual anode gas circulation flow rate supplied to the fuel cell stack 1. Therefore, wet control suitable for the abnormal state of the anode gas circulation flow rate control system can be executed.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

 燃料電池システムは、燃料電池の湿潤状態の目標値を算出する湿潤目標値算出部と、燃料電池に対する発電要求に基づいてカソードガス要求流量を算出するガス要求流量算出部と、ドライ制御時に少なくとも湿潤目標値とカソードガス要求流量とに基づいて湿潤制御用アノードガス循環流量を算出する湿潤制御用アノードガス流量算出部と、湿潤制御用アノードガス循環流量に基づいてアノードガス循環流量を制御するアノードガス流量制御部と、を備える。さらに、燃料電池システムは、ドライ制御時に少なくとも湿潤目標値とアノードガス循環流量の測定値又は推定値とに基づいて湿潤制御用カソードガス流量を算出する湿潤制御用カソードガス流量算出部と、カソードガス要求流量と湿潤制御用カソードガス流量に基づいてカソードガス流量を制御するカソードガス流量制御部と、を備える。

Description

燃料電池システム
 本発明は、アノードガス及びカソードガスの供給を受けて発電する燃料電池を備える燃料電池システムに関する。
 燃料電池では、電解質膜の湿潤度が高くなり過ぎたり低くなり過ぎたりすると、発電性能が低下する。燃料電池を効率的に発電させるためには、燃料電池の電解質膜を適度な湿潤度に維持することが重要である。
 特表2010-538415号公報には、アノードガス流量及びカソードガス流量の少なくとも一方を制御することで、燃料電池の湿潤度を調整する燃料電池システムが開示されている。
 上記公報には、アノードガス流量制御やカソードガス流量制御によって燃料電池の湿潤度が調整可能であることが開示されているにすぎず、アノードガス流量制御及びカソードガス流量制御に基づいて湿潤度を適切に調整することは開示されていない。
 一方、本願発明者らは、燃料電池の湿潤制御に関し、カソードガス流量が多い場合にアノードガス流量を変更しても、アノードガス流量制御によって燃料電池の湿潤度をほとんど調整することができないことを見出した。つまり、アノードガス流量を制御して燃料電池の湿潤度を調整する場合には、カソードガス流量をできる限り少なくしておくことが必要である。そのため、この点について考慮していない従来の燃料電池システムでは、湿潤制御の際に、コンプレッサ又はポンプ等によって構成されるカソードガス流量制御部やアノードガス流量制御部を必要以上に動作させてしまうおそれがある。
 本発明の目的は、カソードガス流量制御部やアノードガス流量制御部を適切に制御し、燃料電池の湿潤度を調整可能な燃料電池システムを提供することである。
 本発明のある態様によれば、アノードガス及びカソードガスの供給を受けて発電する燃料電池と、前記燃料電池から排出されたアノードオフガスを当該燃料電池に供給するように構成された循環機構と、を備える燃料電池システムが提供される。燃料電池システムは、前記燃料電池の湿潤状態の目標値を算出する湿潤目標値算出部と、前記燃料電池に対する発電要求に基づいてカソードガス要求流量を算出するガス要求流量算出部と、ドライ制御時に少なくとも前記湿潤目標値と前記カソードガス要求流量とに基づいて湿潤制御用アノードガス循環流量を算出する湿潤制御用アノードガス流量算出部と、前記湿潤制御用アノードガス循環流量に基づいてアノードガス循環流量を制御するアノードガス流量制御部と、を備える。また、燃料電池システムは、ドライ制御時に少なくとも前記湿潤目標値とアノードガス循環流量の測定値又は推定値とに基づいて湿潤制御用カソードガス流量を算出する湿潤制御用カソードガス流量算出部と、前記カソードガス要求流量と前記湿潤制御用カソードガス流量に基づいてカソードガス流量を制御するカソードガス流量制御部と、を備える。
図1は、本発明の実施形態による燃料電池の斜視図である。 図2は、図1の燃料電池のII-II断面図である 図3は、本発明の実施形態による燃料電池システムの概略構成図である。 図4は、アノードガスとカソードガスの流量比と、燃料電池スタックから排出されるカソードガスの相対湿度との関係を示す特性図である。 図5は、燃料電池システムに備えられるコントローラの構成を示すブロック図である。 図6は、ドライ制御時におけるガス流量算出部での目標アノードガス循環流量及び目標カソードガス流量の算出処理を示す図である。 図7は、ドライ制御時における湿潤制御用アノードガス流量算出部での算出処理を示す図である。 図8は、燃料電池スタックに対する発電要求に基づくカソードガス要求流量の特性図である。 図9は、燃料電池スタックに対する発電要求に基づくアノードガス要求循環流量の特性図である。 図10は、ドライ制御時における湿潤制御用カソードガス流量算出部での算出処理を示す図である。 図11は、ウェット制御時におけるガス流量算出部での目標アノードガス循環流量及び目標カソードガス流量の算出処理を示す図である。 図12は、ウェット制御時における湿潤制御用アノードガス流量算出部での算出処理を示す図である。 図13は、ウェット制御時における湿潤制御用カソードガス流量算出部での算出処理を示す図である。 図14は、本発明の実施形態による燃料電池システムでの湿潤制御の一例を示すタイミングチャートである。 図15は、参考例による燃料電池システムでの湿潤制御の一例を示すタイミングチャートである。 図16は、本発明の実施形態による燃料電池システムでの湿潤制御の一例を示すタイミングチャートである。 図17は、カソードガス流量制御が不能となった場合におけるドライ制御時の目標アノードガス循環流量の算出処理を示す図である。 図18は、アノードガス循環流量制御が不能となった場合におけるウェット制御時の目標カソードガス流量の算出処理を示す図である。
 以下、図面等を参照して、本発明の実施形態について説明する。
 燃料電池は、燃料極としてのアノード電極と、酸化剤極としてのカソード電極と、これら電極に挟まれるように配置される電解質膜と、から構成されている。燃料電池は、アノード電極に供給される水素を含有するアノードガス及びカソード電極に供給される酸素を含有するカソードガスを用いて発電する。アノード電極及びカソード電極の両電極において進行する電極反応は、以下の通りである。
   アノード電極: 2H2 → 4H+4e        ・・・(1)
   カソード電極: 4H+4e+O2 → 2HO       ・・・(2)
 これら(1)(2)の電極反応によって、燃料電池は1V(ボルト)程度の起電力を生じる。
 図1及び図2は、本発明の一実施形態による燃料電池10の構成を説明するための図である。図1は燃料電池10の斜視図であり、図2は図1の燃料電池10のII-II断面図である。
 図1及び図2に示すように、燃料電池10は、膜電極接合体(MEA)11と、MEA11を挟むように配置されるアノードセパレータ12及びカソードセパレータ13と、を備える。
 MEA11は、電解質膜111と、アノード電極112と、カソード電極113とから構成されている。MEA11は、電解質膜111の一方の面側にアノード電極112を有しており、他方の面側にカソード電極113を有している。
 電解質膜111は、フッ素系樹脂により形成されたプロトン伝導性のイオン交換膜である。電解質膜111は、適度な湿潤度で良好な電気伝導性を示す。
 アノード電極112は、触媒層112Aとガス拡散層112Bとを備える。触媒層112Aは、白金又は白金等が担持されたカーボンブラック粒子により形成された部材であって、電解質膜111と接するように設けられる。ガス拡散層112Bは、触媒層112Aの外側に配置される。ガス拡散層112Bは、ガス拡散性及び導電性を有するカーボンクロスで形成された部材であって、触媒層112A及びアノードセパレータ12と接するように設けられる。
 アノード電極112と同様に、カソード電極113も触媒層113Aとガス拡散層113Bとを備える。触媒層113Aは電解質膜111とガス拡散層113Bとの間に配置され、ガス拡散層113Bは触媒層113Aとカソードセパレータ13との間に配置される。
 アノードセパレータ12は、ガス拡散層112Bの外側に配置される。アノードセパレータ12は、アノード電極112にアノードガス(水素ガス)を供給するための複数のアノードガス流路121を備えている。アノードガス流路121は、溝状通路として形成されている。
 カソードセパレータ13は、ガス拡散層113Bの外側に配置される。カソードセパレータ13は、カソード電極113にカソードガス(空気)を供給するための複数のカソードガス流路131を備えている。カソードガス流路131は、溝状通路として形成されている。
 図2に示すように、アノードセパレータ12及びカソードセパレータ13は、アノードガス流路121を流れるアノードガスの流れ方向とカソードガス流路131を流れるカソードガスの流れ方向とが互いに逆向きとなるように構成されている。なお、アノードセパレータ12及びカソードセパレータ13は、これらガスの流れ方向が同じ向きに流れるように構成されてもよい。
 このような燃料電池10を自動車用電源として使用する場合には、要求される電力が大きいため、数百枚の燃料電池10を積層した燃料電池スタック1が構成される。そして、燃料電池スタック1にアノードガス及びカソードガスを供給する燃料電池システム100を構成して、車両を駆動させるための電力を取り出す。
 図3は、本発明の一実施形態による燃料電池システム100の概略構成図である。
 燃料電池システム100は、燃料電池スタック1と、カソードガス給排装置2と、アノードガス給排装置3と、スタック冷却装置4と、電力システム5と、コントローラ60と、を備える。
 燃料電池スタック1は、複数の燃料電池10を積層した電池である。燃料電池スタック1は、アノードガス及びカソードガスの供給を受けて、車両の走行に必要な電力を発電する。
 カソードガス給排装置2は、カソードガス供給通路21と、カソードガス排出通路22と、カソードコンプレッサ23と、カソード流量センサ24と、カソード圧力センサ25と、カソード調圧弁26と、を備える。カソードガス給排装置2は、燃料電池スタック1にカソードガスを供給するとともに、燃料電池スタック1から排出されるカソードオフガスを外部に排出する。
 カソードガス供給通路21は、燃料電池スタック1に供給されるカソードガスが流れる通路である。カソードガス供給通路21の一端はカソードコンプレッサ23に接続され、他端は燃料電池スタック1のカソードガス入口部に接続される。
 カソードガス排出通路22は、燃料電池スタック1から排出されるカソードオフガスが流れる通路である。カソードガス排出通路22の一端は燃料電池スタック1のカソードガス出口部に接続され、他端は開口端として形成される。カソードオフガスは、カソードガスや電極反応によって生じた水蒸気等を含む混合ガスである。
 カソードコンプレッサ23は、カソードガス供給通路21の先端に設けられる。カソードコンプレッサ23は、カソードガスとしての空気を取り込み、燃料電池スタック1にカソードガスを供給する。
 カソード流量センサ24は、カソードコンプレッサ23よりも下流のカソードガス供給通路21に設けられる。カソード流量センサ24は、燃料電池スタック1に供給されるカソードガスの流量を検出する。
 カソード圧力センサ25は、カソード流量センサ24よりも下流のカソードガス供給通路21に設けられる。カソード圧力センサ25は、燃料電池スタック1のカソードガス入口部の近傍に配置される。カソード圧力センサ25は、燃料電池スタック1に供給されるカソードガスの圧力を検出する。カソード圧力センサ25で検出されたカソードガス圧力は、燃料電池スタック1のカソードガス流路131等を含むカソード系全体の圧力を代表する。
 カソード調圧弁26は、カソードガス排出通路22に設けられる。カソード調圧弁26は、コントローラ60によって開閉制御され、燃料電池スタック1に供給されるカソードガスの圧力を調整する。
 次に、アノードガス給排装置3について説明する。
 アノードガス給排装置3は、燃料電池スタック1にアノードガスを供給するとともに、燃料電池スタック1から排出されるアノードオフガスをカソードガス排出通路22に排出する。アノードガス給排装置3は、高圧タンク31と、アノードガス供給通路32と、アノード調圧弁33と、アノード流量センサ34と、アノード圧力センサ35と、アノードガス排出通路36と、パージ弁37と、を備える。さらに、アノードガス給排装置3は、アノードガス供給通路32とアノードガス排出通路36とを接続する還流通路38、及び還流通路38に設置される還流ポンプ39を備えている。
 高圧タンク31は、燃料電池スタック1に供給するアノードガスを高圧状態に保って貯蔵する容器である。
 アノードガス供給通路32は、高圧タンク31から排出されるアノードガスを燃料電池スタック1に供給する通路である。アノードガス供給通路32の一端は高圧タンク31に接続され、他端は燃料電池スタック1のアノードガス入口部に接続される。
 アノード調圧弁33は、高圧タンク31よりも下流のアノードガス供給通路32に設けられる。アノード調圧弁33は、コントローラ60によって開閉制御され、燃料電池スタック1に供給されるアノードガスの圧力を調整する。
 アノードガス排出通路36は、燃料電池スタック1から排出されたアノードオフガスを流す通路である。アノードガス排出通路36の一端は燃料電池スタック1のアノードガス出口部に接続され、他端はカソード調圧弁26よりも下流のカソードガス排出通路22に接続される。
 パージ弁37は、アノードガス排出通路36に設けられる。パージ弁37は、コントローラ60によって開閉制御され、アノードガス排出通路36からカソードガス排出通路22に排出するアノードオフガスのパージ流量を制御する。
 パージ弁37が開弁状態となるパージ制御が実行されると、アノードオフガスは、アノードガス排出通路36及びカソードガス排出通路22を通じて外部に排出される。この時、アノードオフガスは、カソードガス排出通路22内でカソードオフガスと混合される。このようにアノードオフガスとカソードオフガスとを混合させて外部に排出することで、混合ガス中の水素濃度が排出許容濃度以下の値に設定される。
 還流通路38は、アノードガス排出通路36のアノードオフガスをアノードガス供給通路32に流す通路である。還流通路38の一端はアノードガス出口部とパージ弁37との間のアノードガス排出通路36に接続され、還流通路38の他端はアノードガス入口部とアノード調圧弁33との間のアノードガス供給通路32に接続される。
 還流通路38には、還流ポンプ39が設けられる。還流ポンプ39は、燃料電池スタック1から排出されたアノードオフガスを還流通路38を通じてアノードガス供給通路32に還流する。このように、還流通路38及び還流ポンプ39は、燃料電池スタック1から排出されたアノードオフガスを再び燃料電池スタック1に供給する循環機構を構成する。
 アノード流量センサ34は、還流通路38の接続部よりも下流のアノードガス供給通路32に設けられる。アノード流量センサ34は、燃料電池スタック1に供給されるアノードガスの循環流量を検出する。
 アノード圧力センサ35は、アノード流量センサ34よりも下流のアノードガス供給通路32に設けられる。アノード圧力センサ35は、燃料電池スタック1に供給されるアノードガスの圧力を検出する。アノード圧力センサ35で検出されたアノードガス圧力は、燃料電池スタック1のアノードガス流路121等を含むアノード系全体の圧力を代表する。
 スタック冷却装置4は、不凍液等である冷却水によって燃料電池スタック1を冷却し、燃料電池スタック1を発電に適した温度に調整する温度調整装置である。スタック冷却装置4は、循環通路41と、ラジエータ42と、バイパス通路43と、三方弁44と、循環ポンプ45と、入口水温センサ46と、出口水温センサ47と、を備える。
 循環通路41は、冷却水が循環するループ状通路を構成する。循環通路41の一端は燃料電池スタック1の冷却水入口部に接続され、他端は燃料電池スタック1の冷却水出口部に接続される。
 ラジエータ42は、循環通路41に設けられる。ラジエータ42は、燃料電池スタック1から排出された冷却水の熱を外部に放熱する熱交換器である。
 バイパス通路43は、ラジエータ42をバイパスさせて冷却水を流す通路である。バイパス通路43の一端はラジエータ42より上流の循環通路41に接続され、他端はラジエータ42より下流の循環通路41に設けられた三方弁44に接続される。
 三方弁44は、冷却水の温度に応じて冷却水の循環経路を切り替える。具体的には、冷却水温度が所定温度よりも高い場合、三方弁44は燃料電池スタック1から排出された冷却水がラジエータ42を通じて再び燃料電池スタック1に供給されるように切り換えられる。これに対して、冷却水温度が所定温度よりも低い場合、三方弁44は燃料電池スタック1から排出された冷却水がバイパス通路43を流れて再び燃料電池スタック1に供給されるように切り換えられる。
 循環ポンプ45は、三方弁44よりも下流の循環通路41に設けられ、冷却水を循環させる。
 入口水温センサ46は燃料電池スタック1の冷却水入口部近傍の循環通路41に設けられ、出口水温センサ47は燃料電池スタック1の冷却水出口部近傍の循環通路41に設けられる。入口水温センサ46は燃料電池スタック1に流入する冷却水の温度を検出し、出口水温センサ47は燃料電池スタック1から排出された冷却水の温度を検出する。入口水温センサ46によって検出された入口水温と出口水温センサ47によって検出された出口水温とから算出される平均水温が、燃料電池スタック1の内部温度、いわゆるスタック温度となる。
 電力システム5は、電流センサ51と、電圧センサ52と、走行モータ53と、インバータ54と、バッテリ55と、DC/DCコンバータ56と、を備える。
 電流センサ51は、燃料電池スタック1から取り出される出力電流を検出する。電圧センサ52は、燃料電池スタック1の出力電圧、つまり燃料電池スタック1の端子間電圧を検出する。
 走行モータ53は、三相交流同期モータであって、車輪を駆動するための駆動源である。走行モータ53は、燃料電池スタック1及びバッテリ55から電力の供給を受けて回転駆動する電動機としての機能と、外力によって回転駆動されることで発電する発電機としての機能とを有する。
 インバータ54は、IGBT等の複数の半導体スイッチから構成される。インバータ54の半導体スイッチは、コントローラ60によってスイッチング制御され、これにより直流電力が交流電力に、又は交流電力が直流電力に変換される。走行モータ53を電動機として機能させる場合、インバータ54は、燃料電池スタック1の出力電力とバッテリ55の出力電力との合成直流電力を三相交流電力に変換し、走行モータ53に供給する。これに対して、走行モータ53を発電機として機能させる場合、インバータ54は、走行モータ53の回生交流電力を直流電力に変換し、バッテリ55に供給する。
 バッテリ55は、燃料電池スタック1の出力電力の余剰分及び走行モータ53の回生電力が充電されるように構成されている。バッテリ55に充電された電力は、必要に応じてカソードコンプレッサ23等の補機類や走行モータ53に供給される。
 DC/DCコンバータ56は、燃料電池スタック1の出力電圧を昇降圧させる双方向性の電圧変換機である。DC/DCコンバータ56によって燃料電池スタック1の出力電圧を制御することで、燃料電池スタック1の出力電流等が調整される。
 コントローラ60は、中央演算装置(CPU)、読み出し専用メモリ(ROM)、ランダムアクセスメモリ(RAM)及び入出力インタフェース(I/Oインタフェース)を備えたマイクロコンピュータで構成される。コントローラ60には、カソード流量センサ24やアノード流量センサ34等の各種センサからの信号の他、アクセルペダルの踏み込み量を検出するアクセルストロークセンサ7等の車両運転状態を検出するセンサからの信号が入力される。
 コントローラ60は、燃料電池システム100の運転状態に応じて、アノード調圧弁33及び還流ポンプ39を制御することでアノードガスの圧力及び循環流量を調整するとともに、カソード調圧弁26及びカソードコンプレッサ23を制御することでカソードガスの圧力及び流量を調整する。
 また、コントローラ60は、燃料電池システム100の運転状態に基づいて、燃料電池スタック1の目標出力電力を算出する。コントローラ60は、走行モータ53の要求電力や補機類の要求電力、バッテリ55の充放電要求等に基づいて、目標出力電力を算出する。コントローラ60は、目標出力電力に基づいて、予め定められた燃料電池スタック1の電流電圧特性を参照し、燃料電池スタック1の目標出力電流を算出する。そして、コントローラ60は、DC/DCコンバータ56を用いて、燃料電池スタック1の出力電流が目標出力電流となるように燃料電池スタック1の出力電圧を制御する。
 上記した燃料電池システム100の燃料電池スタック1では、各燃料電池10の電解質膜111の湿潤度(含水量)が高くなり過ぎたり低くなり過ぎたりすると、発電性能が低下する。燃料電池スタック1を効率的に発電させるためには、燃料電池スタック1の電解質膜111を適度な湿潤度に維持することが重要である。そのため、燃料電池システム100では、燃料電池スタック1の湿潤状態が発電に適した状態となるように、カソードガス流量及びアノードガス循環流量が制御される。
 カソードガス流量制御は主にカソードコンプレッサ23により実行され、カソードコンプレッサ23は目標カソードガス流量に応じてカソードガス流量を制御するカソードガス流量制御部として機能する。また、アノードガス循環流量制御は主に還流ポンプ39により実行され、還流ポンプ39は目標アノードガス循環流量に応じてアノードガス循環流量を制御するアノードガス流量制御部として機能する。
 例えば、カソードガス流量を増加させる場合には、カソードガスとともに燃料電池スタック1から排出される水分が増えるため、電解質膜111の湿潤度が低下する。これにより、燃料電池スタック1の湿潤度をドライ側に調整することができる。これに対して、カソードガス流量を減少させる場合には、カソードガスとともに燃料電池スタック1から排出される水分が減るため、電解質膜111の湿潤度が増加する。これにより、燃料電池スタック1の湿潤度をウェット側に調整することができる。
 一方、アノードガスは、カソードガス流路131(図2参照)の下流側から電解質膜111を介してリークしてきた水分によって加湿される。このように加湿されるアノードガスの循環流量を増加させると、アノードガスに含まれる水分がアノードガス流路121(図2参照)の上流から下流まで行き渡りやすくなり、燃料電池スタック1の電解質膜111の湿潤度を高めることができる。これにより、燃料電池スタック1の湿潤度をウェット側に調整することができる。これに対して、アノードガス循環流量を減少させる場合には、電解質膜111の湿潤度が低下する。これにより、燃料電池スタック1の湿潤度をドライ側に調整することができる。
 なお、燃料電池システム100は、カソードガス流量及びアノードガス循環流量を制御するだけでなく、カソードガス圧力や冷却水温度等を制御することで、燃料電池スタック1の湿潤度を調整するように構成されてもよい。
 ところで、本願発明者らは、燃料電池スタック1の湿潤制御に関し、カソードガス流量が多い場合にアノードガス循環流量を変更しても、アノードガス循環流量制御によって燃料電池スタック1の湿潤度をほとんど調整することができないことを見出した。
 図4は、アノードガスとカソードガスの流量比と、燃料電池スタック1から排出されるカソードガスの相対湿度との関係を示す特性図である。カソードガス相対湿度は、燃料電池スタック1から排出されるカソードガスに含まれる水分量を示す指標である。カソードガス相対湿度が低くなるほど、燃料電池スタック1の電解質膜111はウェットな状態となる。本願発明者らは、カソードガス相対湿度と、アノードガス流量(循環流量)をカソードガス流量で除算して得られる流量比との間に、図4に示すような関係があることを見出した。
 つまり、アノードガス循環流量制御に基づいて湿潤制御を実行する場合、アノードガス循環流量が小さく、流量比が小さい領域(破線領域)では、カソードガス相対湿度はほとんど変化せず、燃料電池スタック1の湿潤度をほとんど調整することができない。これに対して、流量比が大きい領域では、流量比に応じてカソードガス相対湿度を変更することができ、燃料電池スタック1の湿潤度を調整することが可能となる。本願発明者らが見出した知見によれば、アノードガス循環流量を制御して燃料電池スタック1の湿潤度を調整する場合には、例えばカソードガス流量をできる限り少なく抑えて、流量比を大きく設定する必要がある。
 そこで、燃料電池システム100は、上述した知見に基づき、アノードガス循環流量及びカソードガス流量の制御によって燃料電池スタック1の湿潤度を適切に制御できるように構成されている。
 アノードガス循環流量及びカソードガス流量の制御は、燃料電池スタック1の運転状態に応じてコントローラ60が算出した目標アノードガス循環流量及び目標カソードガス流量に基づいて実行される。そして、還流ポンプ39が目標アノードガス循環流量に応じて燃料電池スタック1に供給されるアノードガスの流量を制御し、カソードコンプレッサ23が目標カソードガス流量に応じて燃料電池スタック1に供給されるカソードガスの流量を制御する。
 次に、図5を参照して、コントローラ60が実行するガス流量算出処理について説明する。図5は、燃料電池システム100に備えられるコントローラ60の構成を示すブロック図である。
 図5に示すように、コントローラ60は、燃料電池スタック1の湿潤状態の目標値である湿潤目標値を算出する湿潤目標値算出部61と、燃料電池スタック1に対する発電要求に基づいてカソードガス要求流量及びアノードガス要求循環流量を算出するガス要求流量算出部63と、湿潤目標値やこれら要求流量に基づいて目標アノードガス流量及び目標カソードガス流量を算出するガス流量算出部62と、を備える。
 湿潤目標値算出部61は、基本湿潤値算出部61Aと、減算部61Bと、PI制御実行部61Cと、加算部61Dとから構成されている。
 基本湿潤値算出部61Aは、燃料電池スタック1の内部インピーダンス(HFR)の目標値に基づいて基本湿潤値を算出する。基本湿潤値は、HFR目標値が大きくなるほど小さな値に設定される。
 なお、燃料電池スタック1の内部インピーダンス(HFR)と燃料電池スタック1の電解質膜111の湿潤度との間には相関関係がある。燃料電池スタック1の内部インピーダンスは、湿潤度が低下するほど、つまり電解質膜111が乾燥するほど大きな値となる。HFR目標値は、燃料電池スタック1の発電負荷が大きくなるほど小さな値に設定される。また、HFR目標値は、燃料電池スタック1の発電負荷が同一である場合にスタック温度が高くなるほど小さな値となるように補正される。
 減算部61Bは、HFR目標値から、燃料電池スタック1の内部インピーダンスの計測値を減算し、HFR目標値とHFR計測値との差分(HFR偏差)を算出する。HFR計測値は、電流センサ51により検出される燃料電池スタック1の出力電流及び電圧センサ52により検出される燃料電池スタック1の出力電圧に基づいて算出される。
 PI制御実行部61Cは、減算部61Bで算出されたHFR偏差に基づいてフィードバック補正値を算出する。
 加算部61Dは、基本湿潤値とフィードバック補正値とを加算して、湿潤目標値を算出する。湿潤目標値は燃料電池スタック1の湿潤度の目標値に相当するものであり、この湿潤目標値に応じて燃料電池スタック1の湿潤制御が実行される。
 このように、湿潤目標値算出部61は、HFR目標値及びHFR計測値に基づいて湿潤目標値を算出するように構成されている。湿潤目標値算出部61による湿潤目標値の算出方法は一例であり、その他の手法を用いて湿潤目標値を算出してもよい。
 ガス要求流量算出部63は、燃料電池スタック1に対する発電要求に基づいてカソードガス要求流量Qc(図8参照)及びアノードガス要求循環流量Qa(図9参照)を算出する。
 ガス流量算出部62は、これら要求流量や湿潤目標値算出部61により算出された湿潤目標値に基づいて、目標アノードガス循環流量及び目標カソードガス流量を算出する。ガス流量算出部62は、燃料電池スタック1の湿潤度が運転状態に適した状態となるように、目標アノードガス循環流量及び目標カソードガス流量を演算する。
 次に、図6から図10を参照して、コントローラ60のガス流量算出部62が実行するドライ制御時の目標アノードガス循環流量及び目標カソードガス流量の算出処理について説明する。
 図6は、ドライ制御時におけるガス流量算出部62での目標アノードガス循環流量及び目標カソードガス流量の算出処理を示す図である。図7は、湿潤制御用アノードガス流量算出部70での算出処理を示す図である。図8は、燃料電池スタック1に対する発電要求に基づくカソードガス要求流量Qcの特性図である。図9は、燃料電池スタック1に対する発電要求に基づくアノードガス要求循環流量Qaの特性図である。図10は、湿潤制御用カソードガス流量算出部80での算出処理を示す図である。
 図6に示すように、コントローラ60のガス流量算出部62は、湿潤制御用アノードガス流量算出部70と、目標アノードガス流量設定部91と、湿潤制御用カソードガス流量算出部80と、目標カソードガス流量設定部92と、から構成されている。
 燃料電池スタック1の湿潤度を低下させるドライ制御時には、湿潤制御用アノードガス流量算出部70は、湿潤目標値算出部61により算出された湿潤目標値と、カソードガス圧力の計測値と、冷却水温度の計測値と、カソードガス要求流量Qcとに基づいて、湿潤制御用アノードガス循環流量Qwaを算出する。なお、コントローラ60は、例えば現在の湿潤目標値を前回値と比較することによって、ドライ制御時であるかウェット制御時であるかを判断する。
 図7に示すように、湿潤制御用アノードガス流量算出部70は、加算部71と、除算部72、カソードガス相対湿度算出部73と、流量比算出部74と、乗算部75と、を備えている。
 湿潤制御用アノードガス流量算出部70は、加算部71において湿潤目標値と図8から求められるカソードガス要求流量Qcとを加算し、除算部72において湿潤目標値をこの加算値で除することで、カソードガス湿潤状態値を算出する。
 湿潤制御用アノードガス循環流量Qwaの算出に使用されるカソードガス要求流量Qcは、図8に示す特性図を参照し、車両運転状態に基づいて求められる燃料電池スタック1に対する発電要求、つまり燃料電池スタック1から取り出される発電電流に応じて算出される。
 図8に示すように、カソードガス要求流量Qcは、発電電流が0からIまでは一定値となり、I以上では発電電流の増加に伴って大きな値となる。カソードガス要求流量Qcは、燃料電池スタック1に対する発電要求に応じて規定されており、例えば燃料電池スタック1が正常状態で発電する際に最低限必要なカソードガス流量として規定されている。この正常状態には、燃料電池スタック1の湿潤度が適切な範囲内に制御されている状態のほか、フラッディングの発生が防止されている状態やカソードコンプレッサ23の回転数が最低回転数を下回らない状態等が含まれる。
 湿潤制御用アノードガス流量算出部70のカソードガス相対湿度算出部73は、カソードガス圧力の計測値と、除算部72で算出されたカソードガス湿潤状態値とを乗算し、その乗算値を冷却水温度の計測値から求められる飽和水蒸気圧力で除することで、カソードガス相対湿度を算出する。カソードガス相対湿度は、図4において説明したように、燃料電池スタック1から排出されるカソードガスに含まれる水分量を示す指標である。
 なお、カソードガス相対湿度算出部73で使用されるカソードガス圧力の計測値はカソード圧力センサ25の検出値に基づいて算出され、冷却水温度の計測値は入口水温センサ46及び出口水温センサ47の検出値に基づいて算出される。また、カソードガス圧力及び冷却水温度の計測値を使用する代わりに、カソードガス圧力及び冷却水温度の推定値を用いてもよい。
 流量比算出部74は、図4で説明した流量比-カソードガス相対湿度特性マップを参照し、カソードガス相対湿度算出部73で算出されたカソードガス相対湿度に基づき、湿潤制御に必要な流量比を算出する。流量比算出部74で算出される流量比は、カソードガス流量に対するアノードガス循環流量の割合である。
 乗算部75は、流量比算出部74で算出された流量比と、加算部71で使用されたカソードガス要求流量Qcとを乗算することで、湿潤制御用アノードガス循環流量Qwaを算出する。
 なお、湿潤制御用アノードガス流量算出部70は、カソードガス圧力及び冷却水温度を用いずに、湿潤目標値とカソードガス要求流量とからカソードガス相対湿度を算出し、そのカソードガス相対湿度を用いて湿潤制御用アノードガス循環流量を算出するように構成されてもよい。
 図6に示すように、ガス流量算出部62は、目標アノードガス流量設定部91において、上記のように算出された湿潤制御用アノードガス循環流量Qwaと、燃料電池スタック1に対する発電要求から求められたアノードガス要求循環流量Qaとを比較し、それら流量の大きい方をドライ制御時の目標アノードガス循環流量Qtaに設定する。
 目標アノードガス循環流量Qtaを設定する際に使用されるアノードガス要求循環流量Qaは、図9に示す特性図を参照し、車両運転状態に基づいて求められる燃料電池スタック1に対する発電要求、つまり燃料電池スタック1から取り出される発電電流に応じて算出される。
 図9に示すように、アノードガス要求循環流量Qaは、発電電流が0からIまでは一定値となり、I以上では発電電流の増加に伴って大きな値となる。アノードガス要求循環流量Qaは、燃料電池スタック1に対する発電要求に応じて規定されており、例えば燃料電池スタック1が正常状態で発電する際に最低限必要なアノードガス循環流量として規定されている。この正常状態には、燃料電池スタック1の湿潤度が適切な範囲内に制御されている状態のほか、フラッディングの発生が防止されている状態や還流ポンプ39の回転数が最低回転数を下回らない状態等が含まれる。
 一方、ドライ制御時には、湿潤制御用カソードガス流量算出部80は、湿潤目標値算出部61により算出された湿潤目標値と、カソードガス圧力の計測値と、冷却水温度の計測値と、アノードガス循環流量の計測値とに基づいて、湿潤制御用カソードガス流量Qwcを算出する。
 図10に示すように、湿潤制御用カソードガス流量算出部80は、加算部81と、第一除算部82、カソードガス相対湿度算出部83と、流量比算出部84と、第二除算部85と、を備えている。
 湿潤制御用カソードガス流量算出部80は、加算部81において湿潤目標値と目標カソードガス流量Qtcの前回値とを加算し、第一除算部82において湿潤目標値をこの加算値で除することで、カソードガス湿潤状態値を算出する。カソードガス湿潤状態値の算出には、目標カソードガス流量Qtcの前回値の代わりに、カソードガス流量の計測値を使用してもよい。
 湿潤制御用カソードガス流量算出部80のカソードガス相対湿度算出部83は、カソードガス圧力の計測値と、第一除算部82で算出されたカソードガス湿潤状態値とを乗算し、その乗算値を冷却水温度の計測値から求められる飽和水蒸気圧力で除することで、カソードガス相対湿度を算出する。なお、カソードガス圧力及び冷却水温度の計測値を使用する代わりに、カソードガス圧力及び冷却水温度の推定値を用いてもよい。
 流量比算出部84は、図4で説明した流量比-カソードガス相対湿度特性マップを参照し、カソードガス相対湿度算出部83で算出されたカソードガス相対湿度に基づき、湿潤制御に必要な流量比を算出する。流量比算出部84で算出される流量比は、カソードガス流量に対するアノードガス循環流量の割合である。
 第二除算部85は、アノードガス循環流量の計測値を流量比算出部84で算出された流量比で除することで、湿潤制御用カソードガス流量Qwcを算出する。なお、アノードガス循環流量の計測値は、アノード流量センサ34の検出値に基づいて算出される。また、アノードガス循環流量の計測値ではなく、アノードガス循環流量の推定値を用いてもよい。
 なお、湿潤制御用カソードガス流量算出部80は、カソードガス圧力及び冷却水温度を用いずに、湿潤目標値と目標カソードガス流量Qtcの前回値又はカソードガス流量の計測値(推定値)とからカソードガス相対湿度を算出し、そのカソードガス相対湿度を用いて湿潤制御用カソードガス流量を算出するように構成されてもよい。
 図6に示すように、ガス流量算出部62は、目標カソードガス流量設定部92において、上記のように算出された湿潤制御用カソードガス流量Qwcと、燃料電池スタック1に対する発電要求から求められたカソードガス要求流量Qc(図8参照)とを比較し、それら流量の大きい方をドライ制御時の目標カソードガス流量Qtcに設定する。
 このように、ガス流量算出部62では、ドライ制御時の湿潤制御用アノードガス循環流量Qwaは、少なくとも湿潤目標値と、燃料電池スタック1が正常状態で発電する際に必要なカソードガス要求流量Qcとに基づいて算出される。一方、ドライ制御時の湿潤制御用カソードガス流量Qwcは、少なくとも湿潤目標値と、アノードガス循環流量の計測値又は推定値とに基づいて算出される。つまり、ドライ制御時における湿潤制御用アノードガス循環流量及び湿潤制御用カソードガス流量は、アノードガス循環流量制御に基づいて湿潤度をドライ側に制御できない場合に、ドライ制御の不足分をカソードガス流量制御により補うように算出される。このように両ガス流量を算出することで、図14を参照して後述するように、カソードガス流量制御によるドライ制御よりもアノードガス循環流量制御によるドライ制御に優位性を持たせることが可能となる。
 次に、図11~図13を参照して、コントローラ60のガス流量算出部62が実行するウェット制御時の目標アノードガス循環流量及び目標カソードガス流量の算出処理について説明する。
 図11は、ウェット制御時におけるガス流量算出部62での目標アノードガス循環流量及び目標カソードガス流量の算出処理を示す図である。図12は、湿潤制御用アノードガス流量算出部70での算出処理を示す図である。図13は、湿潤制御用カソードガス流量算出部80での算出処理を示す図である。
 図11及び図12に示すように、燃料電池スタック1の湿潤度を増加させるウェット制御時には、ガス流量算出部62の湿潤制御用アノードガス流量算出部70は、湿潤目標値と、カソードガス圧力の計測値と、冷却水温度の計測値と、カソードガス流量の計測値とに基づいて、湿潤制御用アノードガス循環流量Qwaを算出する。図12に示す湿潤制御用アノードガス流量算出部70での各算出処理は、カソードガス要求流量Qcの代わりにカソードガス流量の計測値を用いる点以外は、図7に示した算出処理と同様である。このように、湿潤制御用アノードガス流量算出部70は、ドライ制御時にはカソードガス要求流量Qcを用いて湿潤制御用アノードガス循環流量Qwaを算出するのに対し、ウェット制御時にはカソードガス流量の計測値を用いて湿潤制御用アノードガス循環流量Qwaを算出する。
 なお、ウェット制御時の湿潤制御用アノードガス循環流量の算出では、カソードガス圧力、冷却水温度、及びカソードガス流量の計測値を使用する代わりに、カソードガス圧力、冷却水温度、及びカソードガス流量の推定値を用いてもよい。湿潤制御用アノードガス流量算出部70は、カソードガス圧力及び冷却水温度を用いずに、湿潤目標値と燃料電池スタック1に供給されるカソードガス流量の計測値又は推定値とからカソードガス相対湿度を算出し、そのカソードガス相対湿度を用いて湿潤制御用アノードガス循環流量を算出するように構成されてもよい。
 図11に示すように、ガス流量算出部62は、目標アノードガス流量設定部91において、上記のように算出された湿潤制御用アノードガス循環流量Qwaと、燃料電池スタック1に対する発電要求から求められたアノードガス要求循環流量Qa(図9参照)とを比較し、それら流量の大きい方をウェット制御時の目標アノードガス循環流量Qtaに設定する。
 一方、図11及び図13に示すように、ウェット制御時には、湿潤制御用カソードガス流量算出部80は、湿潤目標値と、カソードガス圧力の計測値と、冷却水温度の計測値と、燃料電池スタック1に対する発電要求から求められたアノードガス要求循環流量Qa(図9参照)とに基づいて、湿潤制御用カソードガス流量Qwcを算出する。図13に示す湿潤制御用カソードガス流量算出部80での各算出処理は、アノードガス循環流量の計測値の代わりにアノードガス要求循環流量Qaを用いる点以外は、図10に示した算出処理と同様である。このように、湿潤制御用カソードガス流量算出部80は、ドライ制御時にはアノードガス循環流量の計測値を用いて湿潤制御用カソードガス流量Qwcを算出するのに対し、ウェット制御時にはアノードガス要求循環流量Qaを用いて湿潤制御用カソードガス流量Qwcを算出する。
 なお、ウェット制御時の湿潤制御用カソードガス流量の算出では、カソードガス圧力及び冷却水温度の計測値を使用する代わりに、カソードガス圧力及び冷却水温度の推定値を用いてもよい。
 図11に示すように、ガス流量算出部62は、目標カソードガス流量設定部92において、上記のように算出された湿潤制御用カソードガス流量Qwcと、燃料電池スタック1に対する発電要求から求められたカソードガス要求流量Qc(図8参照)とを比較し、それら流量の大きい方をウェット制御時の目標カソードガス流量Qtcに設定する。
 このように、ガス流量算出部62では、ウェット制御時の湿潤制御用カソードガス流量Qwcは、少なくとも湿潤目標値と、燃料電池スタック1が正常状態で発電する際に必要なアノードガス要求循環流量Qaとに基づいて算出される。一方、ウェット制御時の湿潤制御用アノードガス循環流量Qwaは、少なくとも湿潤目標値と、カソードガス流量の計測値又は推定値とに基づいて算出される。つまり、ウェット制御時における湿潤制御用アノードガス循環流量及び湿潤制御用カソードガス流量は、カソードガス流量制御に基づいて湿潤度をウェット側に制御できない場合に、ウェット制御の不足分をアノードガス循環流量制御により補うように算出される。このように両ガス流量を算出することで、図14を参照して後述するように、アノードガス循環流量制御によるウェット制御よりもカソードガス流量制御によるウェット制御に優位性を持たせることが可能となる。
 次に、図14を参照して本実施形態による燃料電池システム100での湿潤制御について説明するとともに、図15を参照して参考例による燃料電池システムでの湿潤制御について説明する。
 図15に示すように、参考例による燃料電池システムでは、時刻t0~t2までの間、湿潤目標値に応じてウェット制御が実行される。
 時刻t0~t1では、カソードガス流量が多い状態のままアノードガス循環流量を増加させるため(流量比が小さくなるため)、アノードガス循環流量を増加させても湿潤度をウェット側に制御することができない。したがって、HFR計測値(破線)はほとんど減少せず、HFR目標値(実線)から大きくずれている。時刻t1以降にカソードガス流量が低下することで、HFR計測値がHFR目標値に向かって収束する。このように、カソードガス流量が多い状態ではアノードガス循環流量を増加させても、効果的にウェット制御を実行することができない。
 また、参考例による燃料電池システムでは、時刻t3~t5までの間、湿潤目標値に応じてドライ制御が実行される。
 時刻t3~t4では、カソードガス流量が増大されることでドライ制御が実行され、HFR計測値(破線)はHFR目標値(実線)に追従する。しかしながら、時刻t4~t5においては、カソードガス流量が多い状態でアノードガス循環流量を低下させるため(流量比が小さくなるため)、アノードガス循環流量を低下させても湿潤度をドライ側に制御することができない。したがって、HFR計測値は、ほとんど増加せずにHFR目標値からずれ始める。このように、カソードガス流量が多い状態ではアノードガス循環流量を低下させても、効果的にドライ制御を実行することができない。
 一方、図14に示すように、燃料電池システム100では、時刻t0~t2までの間、湿潤目標値に応じてウェット制御が実行される。
 ウェット制御時には、湿潤制御用カソードガス流量Qwcは、少なくとも湿潤目標値と、燃料電池スタック1が正常状態で発電する際に必要なアノードガス要求循環流量Qaとに基づいて算出され、湿潤制御用アノードガス循環流量Qwaは少なくとも湿潤目標値とカソードガス流量の計測値とに基づいて算出される。つまり、ウェット制御時における湿潤制御用アノードガス循環流量及び湿潤制御用カソードガス流量は、カソードガス流量制御によるウェット制御の不足分をアノードガス循環流量制御により補うように算出される。これら湿潤制御用カソードガス流量Qwc及び湿潤制御用アノードガス循環流量Qwaを利用して目標カソードガス流量及び目標アノードガス循環流量を設定することで、カソードガス流量制御によるウェット制御がアノードガス循環流量制御によるウェット制御よりも優位的に機能する。これにより、カソードガス流量の減少によるウェット制御が実行可能である限り、アノードガス循環流量の増大によるウェット制御の実行が抑制される。
 したがって、時刻t0~t1までの間は、アノードガス循環流量が低流量を維持したままカソードガス流量が減少され、カソードガス流量制御によるウェット制御が先行して実行される。カソードガス流量の減少制御だけではウェット制御を実行できなくなる時刻t1以降においては、アノードガス循環流量が増大され、アノードガス循環流量制御によるウェット制御が実行される。この時、カソードガス流量は低く抑えられており、カソードガス流量に対するアノードガス循環流量の比は大きくなっているので、アノードガス循環流量の増大制御により燃料電池スタック1の電解質膜111を加湿することが可能となる。これにより、HFR計測値は、t1以降もHFR目標値に対してずれることなく追従する。
 なお、HFRは燃料電池スタック1の電解質膜111がウェットになるほど変化しにくくなる傾向を有しているため、時刻t1~t2でのHFRの変化量は時刻t0~t1でのHFRの変化量と比較して小さい。
 このように、燃料電池システム100は、カソードガス流量制御に基づいて湿潤度をウェット側に制御できない場合にウェット制御の不足分をアノードガス循環流量制御により補うように構成されている。したがって、燃料電池システム100によれば、アノードガス循環流量やカソードガス流量を無駄に制御することなく、燃料電池スタック1の湿潤度を適切にウェット側に調整することが可能となる。
 また、燃料電池システム100では、時刻t3~t5までの間、湿潤目標値に応じてドライ制御が実行される。
 ドライ制御時には、湿潤制御用アノードガス循環流量Qwaは、少なくとも湿潤目標値と、燃料電池スタック1が正常状態で発電する際に必要なカソードガス要求流量Qcとに基づいて算出され、湿潤制御用カソードガス流量Qwcは、少なくとも湿潤目標値と、アノードガス循環流量の計測値とに基づいて算出される。つまり、ドライ制御時における湿潤制御用アノードガス循環流量及び湿潤制御用カソードガス流量は、アノードガス循環流量制御によるドライ制御の不足分をカソードガス流量制御により補うように算出される。これら湿潤制御用カソードガス流量Qwc及び湿潤制御用アノードガス循環流量Qwaを利用して目標カソードガス流量及び目標アノードガス循環流量を設定することで、アノードガス循環流量制御によるドライ制御がカソードガス流量制御によるドライ制御よりも優位的に機能する。これにより、アノードガス循環流量の減少によるドライ制御が実行可能である限り、カソードガス流量の増大によるドライ制御の実行が抑制される。
 したがって、時刻t3~t4までの間は、カソードガス流量が低く抑えられた状態でアノードガス循環流量が減少され、アノードガス循環流量制御によるドライ制御が先行して実行される。アノードガス循環流量の減少制御だけではドライ制御を実行できなくなる時刻t4以降においては、カソードガス流量が増大され、カソードガス流量制御によるドライ制御が実行される。このようにアノードガス循環流量の減少制御の後にカソードガス流量の増大制御が実行されるので、これらガス流量制御によって燃料電池スタック1の電解質膜111を適切に乾燥させることができる。これにより、HFR計測値は、HFR目標値に対してずれることなく追従する。
 このように、燃料電池システム100は、アノードガス循環流量制御に基づいて湿潤度をドライ側に制御できない場合にドライ制御の不足分をカソードガス流量制御により補うように構成されている。したがって、燃料電池システム100によれば、アノードガス循環流量やカソードガス流量を無駄に制御することなく、燃料電池スタック1の湿潤度を適切にドライ側に調整することが可能となる。
 図14では、湿潤目標値が緩やかに変化した場合における湿潤制御について説明した。しかしながら、車両の運転状態によっては湿潤目標値が急激に変化する場合がある。以下では、図16を参照して、時刻t6及び時刻t7で湿潤目標値が急増した場合におけるウェット制御について説明する。
 前述したように燃料電池システム100では、カソードガス流量を調整してウェット制御が実行可能である限り、アノードガス循環流量制御によるウェット制御の実行が抑制されるように、湿潤制御用アノードガス循環流量及び湿潤制御用カソードガス流量は算出される。
 したがって、時刻t6において湿潤目標値が急増した場合には、カソードガス流量が減少制御されるとともに、目標カソードガス流量に対する実際のカソードガス流量の応答遅れ分を補うようにアノードガス循環流量が一時的に増大制御される。このように、カソードガス流量制御だけでは湿潤度をウェット側に調整できない部分が、アノードガス循環流量制御に基づくウェット制御により補われる。その結果、湿潤目標値が急増した場合であっても、HFR目標値(実線)からのHFR計測値(破線)のずれを最小限に抑制することができる。
 時刻t6の後、時刻t7において湿潤目標値が急増した場合には、カソードガス流量は既に低流量となっておりそれ以上減少させることができないので、アノードガス循環流量を増大制御することによってウェット制御が実行される。アノードガス循環流量制御によるウェット制御時にはカソードガス流量が低くなっているので、HFR計測値(破線)は僅かな応答遅れを有するもののHFR目標値(実線)に向かって収束していく。
 なお、燃料電池システム100において湿潤目標値が急減する場合には、アノードガス循環流量制御だけでは湿潤度をドライ側に調整できない部分が、カソードガス流量制御に基づくドライ制御により補われる。その結果、湿潤目標値が急減した場合であっても、ドライ制御を効果的に実行することが可能となる。
 上記した本実施形態の燃料電池システム100によれば、以下の効果を得ることができる。
 燃料電池システム100は、燃料電池スタック1の湿潤状態の目標値を算出する湿潤目標値算出部61と、燃料電池スタック1に対する発電要求に基づいてカソードガス要求流量を算出するガス要求流量算出部63と、ドライ制御時に少なくとも湿潤目標値とカソードガス要求流量とに基づいて湿潤制御用アノードガス循環流量を算出する湿潤制御用アノードガス流量算出部70と、湿潤制御用アノードガス循環流量に基づいてアノードガス循環流量を制御する還流ポンプ39(アノードガス流量制御部)と、を備える。さらに、燃料電池システム100は、ドライ制御時に少なくとも湿潤目標値とアノードガス循環流量の測定値又は推定値とに基づいて湿潤制御用カソードガス流量を算出する湿潤制御用カソードガス流量算出部80と、カソードガス要求流量と湿潤制御用カソードガス流量に基づいてカソードガス流量を制御するカソードコンプレッサ23(カソードガス流量制御部)と、を備える。このような燃料電池システム100によれば、アノードガス循環流量制御によるドライ制御の不足分をカソードガス流量制御により補うことができ、図14に示したように燃料電池スタック1の湿潤度をドライ側へ適切に制御することができる。
 一方、ウェット制御時には、ガス要求流量算出部63は、燃料電池スタック1に対する発電要求に基づいてアノードガス要求循環流量を算出し、湿潤制御用カソードガス流量算出部80は、少なくとも湿潤目標値とアノードガス要求循環流量とに基づいて湿潤制御用カソードガス流量を算出する。この時、湿潤制御用アノードガス流量算出部70は、少なくとも湿潤目標値とカソードガス流量の測定値又は推定値とに基づいて湿潤制御用アノードガス循環流量を算出する。このような燃料電池システム100によれば、カソードガス流量制御によるウェット制御の不足分をアノードガス循環流量制御により補うことができ、図14に示したように燃料電池スタック1の湿潤度をウェット側へ適切に制御することができる。
 上述の通り、燃料電池システム100によれば燃料電池スタック1の湿潤制御を適切に実行できるため、アノードガス循環流量やカソードガス流量を無駄に制御することがない。したがって、湿潤制御の際に還流ポンプ39やカソードコンプレッサ23を効率的に作動させることができ、燃料電池システム100における電力消費性能を改善することが可能となる。
 燃料電池システム100を上記とは異なる視点で見た場合、燃料電池システム100は、目標アノードガス循環流量に応じてアノードガス循環流量を制御する還流ポンプ39と、目標カソードガス流量に応じてカソードガス流量を制御するカソードコンプレッサ23と、を備える。また、燃料電池システム100は、燃料電池スタック1の湿潤状態の目標値を算出する湿潤目標値算出部61と、燃料電池スタック1に対する発電要求に基づいてカソードガス要求流量及びアノードガス要求循環流量を算出するガス要求流量算出部63と、を備える。さらに、燃料電池システム100は、ドライ制御時に少なくとも湿潤目標値とアノードガス循環流量の測定値又は推定値とに基づいて湿潤制御用カソードガス流量を算出する湿潤制御用カソードガス流量算出部80と、ドライ制御時に少なくとも湿潤目標値とカソードガス要求流量とに基づいて湿潤制御用アノードガス循環流量を算出する湿潤制御用アノードガス流量算出部70と、カソードガス要求流量と湿潤制御用カソードガス流量に基づいて目標カソードガス流量を設定する目標カソードガス流量設定部92と、アノードガス要求循環流量と湿潤制御用アノードガス循環流量に基づいて目標アノードガス流量を設定する目標アノードガス流量設定部91と、を備える。ドライ制御時における湿潤制御用アノードガス循環流量及び湿潤制御用カソードガス流量は、アノードガス循環流量制御によるドライ制御の不足分をカソードガス流量制御により補うように算出される。これら湿潤制御用アノードガス循環流量及び湿潤制御用カソードガス流量を用いて目標アノードガス循環流量及び目標カソードガス流量を設定することで、カソードガス流量制御によるドライ制御よりもアノードガス循環流量制御によるドライ制御に優位性を持たせることができ、図14に示したように燃料電池スタック1の湿潤度をドライ側へ適切に制御することができる。
 一方、ウェット制御時には、湿潤制御用アノードガス流量算出部70は少なくとも湿潤目標値とカソードガス流量の測定値又は推定値とに基づいて湿潤制御用アノードガス循環流量を算出し、湿潤制御用カソードガス流量算出部80は少なくとも湿潤目標値とアノードガス要求循環流量とに基づいて湿潤制御用カソードガス流量を算出する。ウェット制御時における湿潤制御用アノードガス循環流量及び湿潤制御用カソードガス流量は、カソードガス流量制御によるウェット制御の不足分をアノードガス循環流量制御により補うように算出される。これら湿潤制御用アノードガス循環流量及び湿潤制御用カソードガス流量を用いて目標アノードガス循環流量及び目標カソードガス流量を設定することで、アノードガス循環流量制御によるウェット制御よりもカソードガス流量制御によるウェット制御に優位性を持たせることができ、図14に示したように燃料電池スタック1の湿潤度をウェット側へ適切に制御することができる。
 上述した燃料電池システム100によっても、湿潤制御の際に還流ポンプ39やカソードコンプレッサ23を効率的に作動させることができ、燃料電池システム100における電力消費性能を改善することが可能となる。
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。
 図17及び図18を参照して、変形例による燃料電池システム100について説明する。図17は、カソードガス流量制御が不能となった場合におけるドライ制御時の目標アノードガス循環流量の算出処理を示す。図18は、アノードガス循環流量制御が不能となった場合におけるウェット制御時の目標カソードガス流量の算出処理を示す。
 燃料電池システム100では、カソードコンプレッサ23に異常が発生した場合等に、カソードガス流量制御が不能となることがある。このような場合、ドライ制御時の湿潤制御用アノードガス循環流量の算出に際し、湿潤制御用アノードガス流量算出部70は、図8から求められるカソードガス流量Qcを用いる代わりに、カソードガス流量の計測値又は推定値を用いる。つまり、図17に示すように、湿潤制御用アノードガス流量算出部70は、湿潤目標値、カソードガス圧力の計測値、冷却水温度の計測値、及びカソードガス流量の計測値(推定値)に基づいて、ドライ制御時の湿潤制御用アノードガス循環流量Qwaを算出する。なお、カソードガス流量制御不能時には、ガス流量算出部62での目標カソードガス流量Qtcの算出を停止してもよい。
 このようにカソードガス流量が制御不能な場合には、燃料電池スタック1に供給されている実際のカソードガス流量を用いて求めた湿潤制御用アノードガス循環流量Qwaに基づいて目標アノードガス循環流量Qtaが算出されるので、カソードガス流量制御系の異常状態に適したドライ制御を実行することができる。
 さらに、燃料電池システム100では、還流ポンプ39に異常が発生した場合等に、アノードガス循環流量制御が不能となることがある。このような場合、ウェット制御時の湿潤制御用目標カソードガス流量の算出に際し、湿潤制御用カソードガス流量算出部80は、図9から求められるアノードガス循環流量Qaを用いる代わりに、アノードガス循環流量の計測値又は推定値を用いる。つまり、図18に示すように、湿潤制御用カソードガス流量算出部80は、湿潤目標値、カソードガス圧力の計測値、冷却水温度の計測値、及びアノードガス循環流量の計測値(推定値)に基づいて、湿潤制御用カソードガス流量Qwcを算出する。なお、アノードガス循環流量制御不能時には、ガス流量算出部62は目標アノードガス循環流量Qtaの算出を停止してもよい。
 このようにアノードガス循環流量が制御不能な場合には、燃料電池スタック1に供給されている実際のアノードガス循環流量を用いて求めた湿潤制御用カソードガス流量Qwcに基づいて目標カソードガス流量Qtcが算出されるので、アノードガス循環流量制御系の異常状態に適したウェット制御を実行することができる。

Claims (4)

  1.  アノードガス及びカソードガスの供給を受けて発電する燃料電池と、前記燃料電池から排出されたアノードオフガスを当該燃料電池に供給するように構成された循環機構と、を備える燃料電池システムであって、
     前記燃料電池の湿潤状態の目標値を算出する湿潤目標値算出部と、
     前記燃料電池に対する発電要求に基づいてカソードガス要求流量を算出するガス要求流量算出部と、
     ドライ制御時に、少なくとも前記湿潤目標値と前記カソードガス要求流量とに基づいて、湿潤制御用アノードガス循環流量を算出する湿潤制御用アノードガス流量算出部と、
     前記湿潤制御用アノードガス循環流量に基づいてアノードガス循環流量を制御するアノードガス流量制御部と、
     ドライ制御時に、少なくとも前記湿潤目標値とアノードガス循環流量の測定値又は推定値とに基づいて、湿潤制御用カソードガス流量を算出する湿潤制御用カソードガス流量算出部と、
     前記カソードガス要求流量と前記湿潤制御用カソードガス流量に基づいてカソードガス流量を制御するカソードガス流量制御部と、
     を備える燃料電池システム。
  2.  請求項1に記載の燃料電池システムであって、
     前記ガス要求流量算出部は、前記燃料電池に対する発電要求に基づいてアノードガス要求循環流量を算出し、
     前記湿潤制御用カソードガス流量算出部は、ウェット制御時に、少なくとも前記湿潤目標値と前記アノードガス要求循環流量とに基づいて、前記湿潤制御用カソードガス流量を算出し、
     前記湿潤制御用アノードガス流量算出部は、ウェット制御時に、少なくとも前記湿潤目標値とカソードガス流量の測定値又は推定値とに基づいて、前記湿潤制御用アノードガス循環流量を算出する、
     燃料電池システム。
  3.  請求項1又は2に記載の燃料電池システムであって、
     前記湿潤制御用アノードガス流量算出部は、ドライ制御時に前記カソードガス流量制御部による流量制御が実行不能な場合には、前記湿潤目標値とカソードガス流量の測定値又は推定値とに基づいて前記湿潤制御用アノードガス循環流量を算出する、
     燃料電池システム。
  4.  請求項1から3のいずれか一つに記載の燃料電池システムであって、
     前記湿潤制御用カソードガス流量算出部は、ウェット制御時に前記アノードガス流量制御部による循環流量制御が実行不能な場合には、前記湿潤目標値とアノードガス循環流量の測定値又は推定値とに基づいて前記湿潤制御用カソードガス流量を算出する、
     燃料電池システム。
PCT/JP2014/056762 2014-03-13 2014-03-13 燃料電池システム WO2015136677A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201480077150.0A CN106104881B (zh) 2014-03-13 2014-03-13 燃料电池系统
EP14885711.3A EP3118922B1 (en) 2014-03-13 2014-03-13 Fuel cell system
JP2016507213A JP6304366B2 (ja) 2014-03-13 2014-03-13 燃料電池システム
CA2942629A CA2942629C (en) 2014-03-13 2014-03-13 Fuel cell system with wetness control
PCT/JP2014/056762 WO2015136677A1 (ja) 2014-03-13 2014-03-13 燃料電池システム
US15/124,763 US10164275B2 (en) 2014-03-13 2014-03-13 Fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/056762 WO2015136677A1 (ja) 2014-03-13 2014-03-13 燃料電池システム

Publications (1)

Publication Number Publication Date
WO2015136677A1 true WO2015136677A1 (ja) 2015-09-17

Family

ID=54071154

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/056762 WO2015136677A1 (ja) 2014-03-13 2014-03-13 燃料電池システム

Country Status (6)

Country Link
US (1) US10164275B2 (ja)
EP (1) EP3118922B1 (ja)
JP (1) JP6304366B2 (ja)
CN (1) CN106104881B (ja)
CA (1) CA2942629C (ja)
WO (1) WO2015136677A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6187412B2 (ja) * 2014-08-08 2017-08-30 トヨタ自動車株式会社 燃料電池のアノードにおける液体の水の量を推定する方法
JP6899539B2 (ja) 2016-04-26 2021-07-07 パナソニックIpマネジメント株式会社 燃料電池システム
US20190393526A1 (en) * 2018-06-22 2019-12-26 Hyster-Yale Group, Inc. Closed loop control for fuel cell water management

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010538415A (ja) * 2008-03-26 2010-12-09 トヨタ自動車株式会社 燃料電池システム及び燃料電池の運転方法
JP2012043677A (ja) * 2010-08-20 2012-03-01 Toyota Motor Corp 燃料電池システム、および、燃料電池システムの制御方法
JP2012252939A (ja) * 2011-06-06 2012-12-20 Nissan Motor Co Ltd 燃料電池の湿潤状態制御装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5168848B2 (ja) * 2006-08-10 2013-03-27 日産自動車株式会社 燃料電池システム
JP5309603B2 (ja) * 2007-06-20 2013-10-09 日産自動車株式会社 燃料電池システム及びその運転方法
JP2009289461A (ja) * 2008-05-27 2009-12-10 Toyota Motor Corp 燃料電池面内状態推定システム及び燃料電池面内状態推定方法
JP5585412B2 (ja) * 2010-11-19 2014-09-10 日産自動車株式会社 燃料電池システム
DE112011100046T5 (de) * 2011-01-28 2012-11-29 Toyota Jidosha K.K. Brennstoffzellensystem
CN103563148B (zh) * 2011-06-06 2016-04-27 日产自动车株式会社 燃料电池的湿润状态控制装置
JP5812118B2 (ja) * 2012-01-10 2015-11-11 日産自動車株式会社 燃料電池システム
US11142457B2 (en) * 2017-02-27 2021-10-12 Nec Corporation Method for producing carbon nanohorn aggregate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010538415A (ja) * 2008-03-26 2010-12-09 トヨタ自動車株式会社 燃料電池システム及び燃料電池の運転方法
JP2012043677A (ja) * 2010-08-20 2012-03-01 Toyota Motor Corp 燃料電池システム、および、燃料電池システムの制御方法
JP2012252939A (ja) * 2011-06-06 2012-12-20 Nissan Motor Co Ltd 燃料電池の湿潤状態制御装置

Also Published As

Publication number Publication date
CN106104881A (zh) 2016-11-09
EP3118922A1 (en) 2017-01-18
US20170018791A1 (en) 2017-01-19
CN106104881B (zh) 2018-08-28
US10164275B2 (en) 2018-12-25
EP3118922A4 (en) 2017-01-18
CA2942629A1 (en) 2015-09-17
JPWO2015136677A1 (ja) 2017-04-06
CA2942629C (en) 2018-04-24
EP3118922B1 (en) 2017-09-13
JP6304366B2 (ja) 2018-04-04

Similar Documents

Publication Publication Date Title
US8420268B2 (en) Fuel cell system
US9853311B2 (en) Fuel cell system and fuel cell powered vehicle
US8053123B2 (en) Fuel cell system with a scavenging device and AC impedance measuring unit
JP2009016089A (ja) 燃料電池システムおよびその電流制御方法
JP5522309B2 (ja) 燃料電池システム
US20100112398A1 (en) Fuel cell system
JP5812118B2 (ja) 燃料電池システム
JP5737395B2 (ja) 燃料電池システム
US10256484B2 (en) Fuel cell system and method for controlling fuel cell system
WO2013129553A1 (ja) 燃料電池システム及び燃料電池システムの制御方法
JP6304366B2 (ja) 燃料電池システム
JP5164014B2 (ja) 燃料電池システムおよびその制御方法
JP2014127452A (ja) 燃料電池システム
JP5625469B2 (ja) 燃料電池システム
JP6136185B2 (ja) 燃料電池システム
JP2015125911A (ja) 燃料電池システム
JP4675605B2 (ja) 燃料電池の酸化剤供給装置
JP2014127451A (ja) 燃料電池システム
WO2013129241A1 (ja) 燃料電池システム及び燃料電池システムの制御方法
WO2014192649A1 (ja) 燃料電池システム及び燃料電池システムの制御方法
JP2008226593A (ja) 燃料電池システム
JP2015076246A (ja) 燃料電池システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14885711

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016507213

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15124763

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2942629

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014885711

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014885711

Country of ref document: EP