JP5695411B2 - タイヤに作用する力の推定方法、及びそれに用いる空気入りタイヤ - Google Patents

タイヤに作用する力の推定方法、及びそれに用いる空気入りタイヤ Download PDF

Info

Publication number
JP5695411B2
JP5695411B2 JP2010283527A JP2010283527A JP5695411B2 JP 5695411 B2 JP5695411 B2 JP 5695411B2 JP 2010283527 A JP2010283527 A JP 2010283527A JP 2010283527 A JP2010283527 A JP 2010283527A JP 5695411 B2 JP5695411 B2 JP 5695411B2
Authority
JP
Japan
Prior art keywords
strain
tire
sensor
line
sensors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010283527A
Other languages
English (en)
Other versions
JP2012131284A (ja
Inventor
紀一郎 各務
紀一郎 各務
久保田 康弘
康弘 久保田
五郎 山口
五郎 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2010283527A priority Critical patent/JP5695411B2/ja
Publication of JP2012131284A publication Critical patent/JP2012131284A/ja
Application granted granted Critical
Publication of JP5695411B2 publication Critical patent/JP5695411B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Tires In General (AREA)

Description

本発明は、サイドウォール部におけるタイヤ歪を歪センサにより測定することにより、タイヤに作用する前後力、横力および上下力の何れかを推定する推定方法に関する。
近年、例えば図5に示すように、タイヤの一方側のサイドウォール部にn個の歪センサaを周方向の異なる位置に取り付け、所定のタイヤ回転角度位置Qにてタイヤ歪を同時に測定するとともに、これによって得たn個の同時のセンサ出力V1〜Vnによって、タイヤに作用する前後力Fx、横力Fy、及び上下力Fz(以下、これらを総称して3分力という場合がある。)をそれぞれ推定する技術が提案されている(例えば特許文献1参照。)。同図にはn=4の場合が示されている。
各歪センサaが計測するタイヤ歪εは、前後力Fxによる歪みεxと、横力Fyによる歪みεyと、上下力Fzによる歪みεzとの和としてしか現れない。しかし、異なる周方向位置においては、前後力Fxとその歪みεxとの関係、横力Fyとその歪みεyとの関係、及び上下力Fzとその歪みεzとの関係が、周方向の位置毎に、それぞれ異なって現れるという特性を有する。従ってこの特性を利用し、異なる周方向位置で同時に測定したn個のセンサ出力V1〜Vnを説明変数、前記三分力Fx、Fy、Fzをそれぞれ目的変数として重回帰分析を行うことで、回帰式である下記の推定式を得ることができる。
Fx=fx(V1、V2、・・・、Vn)
Fy=fy(V1、V2、・・・、Vn)
Fz=fz(V1、V2、・・・、Vn)
しかしながら、従来の方法では、前記三分力Fx、Fy、Fzの推定精度を充分に高めることが難しいという問題がある。その理由として、前後力Fxによる歪センサの出力形態と、横力Fyによる歪センサの出力形態とが似ているため、三分力Fx、Fy、Fzを分離させることが難しくなり、前述の推定式の精度が低下するためと推測される。
例えば、従来の歪センサの配置の場合、タイヤに前後力Fxが作用した時、図6(A)に概念的に示すように、各歪センサa1〜a4では、それぞれ引張歪を検出する。又タイヤに横力Fyが作用した時、図6(B)に概念的に示すように、各歪センサa1〜a4では、それぞれ引張歪を検出する。又タイヤに上下力Fzが作用した時、図6(C)に概念的に示すように、歪センサa2、a3では引張歪を検出し、かつ歪センサa1、a4では圧縮歪を検出する。このように、前後力Fxおよび横力Fyでは、それぞれ各歪センサa1〜a4が引張歪を検出するという似た出力形態を示している。その結果、荷重付加試験データを重回帰分析して推定式(回帰式)を求める際、歪みが前後力由来のものか横力由来のものか不明瞭となって誤差が大きくなり、前記推定式の精度を低下させると考えられる。
特開2005−126008号公報
そこで本発明は、説明変数の数を1つとして推定式を簡潔化しながら前後力、横力、上下力の推定精度を向上させうるタイヤに作用する力の推定方法、及びそれに用いる空気入りタイヤを提供することを目的としている。
上記課題を解決するために、本願請求項1の発明は、タイヤのサイドウォール部におけるタイヤ歪を測定する歪センサのセンサ出力を用いて、タイヤに作用する前後力、横力および上下力の何れかを推定する推定方法であって、
タイヤの一方側のサイドウォール部に、
センシングのゲインが最大となるゲイン最大線がタイヤ半径方向線に対して30〜60°の角度θ1で傾斜する6個以上のn個の一方側の第1の歪センサと、
ゲイン最大線がタイヤ半径方向線に向くn個の一方側の第2の歪センサとからなり、
しかも前記一方側の第1、第2の歪センサが、タイヤ軸心を中心とした同一円周線上でタイヤ周方向に交互にかつ等間隔を隔てて取り付く一方側の歪センサ群、
タイヤの他方側のサイドウォール部に、
ゲイン最大線が前記角度θ1と等しい角度θ2で傾斜するn個の他方側の第1の歪センサと、
ゲイン最大線がタイヤ半径方向線に向くn個の他方側の第2の歪センサとからなり、
しかも前記他方側の第1、第2の歪センサが、前記一方側の第1、第2の歪センサとタイヤ赤道面を挟んで向かい合う対称位置に取り付き、かつ他方側の第1の歪センサのゲイン最大線が、前記一方側の第1の歪センサのゲイン最大線と同一方向に傾斜する他方側の歪センサ群、
及びタイヤの回転角度位置を測定する角度センサを用い、
所定のタイヤ回転角度位置Qにおいて、前記一方側の歪センサ群と他方側の歪センサ群とによってタイヤ歪を同時に測定することにより4n個のセンサ出力をうる歪測定ステップと、
前記歪測定ステップによって得たセンサ出力に基づいてタイヤに作用する力の推定値を求める演算ステップとを行うとともに、
前記演算ステップでは、
前後力Fxの推定値を求める場合、前記歪測定ステップにより測定される4n個のセンサ出力のうち、前記一方側の第1の歪センサからのn個のセンサ出力VA1と、前記他方側の第1の歪センサからのn個のセンサ出力VB1とのみを用い、前記n個のセンサ出力VA1の総和ΣVA1と、前記n個のセンサ出力VB1の総和ΣVB1との和(ΣVA1+ΣVB1)を変数とした次の推定式(1)を用いて前後力Fxの推定値を求める、
(イ) 前記横力Fyの推定値を求める場合、前記歪測定ステップにより測定される4n個のセンサ出力のうち、前記一方側の第1の歪センサからのn個のセンサ出力VA1と、前記他方側の第1の歪センサからのn個のセンサ出力VB1とのみを用い、前記n個のセンサ出力VA1の総和ΣVA1と、前記n個のセンサ出力VB1の総和ΣVB1との差(ΣVA1−ΣVB1)を変数とした次の推定式(2)を用いて横力Fyの推定値を求める、或いは
(ウ) 前記上下力Fzの推定値を求める場合、前記歪測定ステップにより測定される4n個のセンサ出力のうち、前記一方側の第の歪センサからのn個のセンサ出力VA2と、前記他方側の第の歪センサからのn個のセンサ出力VB2とのみを用い、前記n個のセンサ出力VA2の総和ΣVA2と、前記n個のセンサ出力VB2の総和ΣVB2との和(ΣVA2+ΣVB2)を変数とした次の推定式(3)を用いて上下力Fzの推定値を求めることを特徴としている。
Fx=Kx・(ΣVA1+ΣVB1)+Ax −−−(1)
Fy=Ky・(ΣVA1−ΣVB1)+Ay −−−(2)
Fz=Kz・(ΣVA2+ΣVB2)+Az −−−(3)
(式中のKx、Ky、Kz、Ax、Ay、Azは定数)
又請求項2の発明は、サイドウォール部におけるタイヤ歪を測定したセンサ出力により、タイヤに作用する前後力、横力および上下力の何れかを推定するために用いる歪センサを具える空気入りタイヤであって、
一方側のサイドウォール部に取り付く一方側の歪センサ群と、他方側のサイドウォール部に取り付く他方側の歪センサ群とを具え、
かつ一方側の歪センサ群は、センシングのゲインが最大となるゲイン最大線がタイヤ半径方向線に対して30〜60°の角度θ1で傾斜する6個以上のn個の一方側の第1の歪センサと、ゲイン最大線がタイヤ半径方向線に向くn個の一方側の第2の歪センサとからなり、しかも前記一方側の第1、第2の歪センサが、タイヤ軸心を中心とした同一円周線上でタイヤ周方向に交互にかつ等間隔を隔てて取り付くとともに、
前記他方側の歪センサ群は、ゲイン最大線が前記角度θ1と等しい角度θ2で傾斜するn個の他方側の第1の歪センサと、ゲイン最大線がタイヤ半径方向線に向くn個の他方側の第2の歪センサとからなり、しかも前記他方側の第1、第2の歪センサが、前記一方側の第1、第2の歪センサとタイヤ赤道面を挟んで向かい合う対称位置に取り付き、かつ他方側の第1の歪センサのゲイン最大線が、前記一方側の第1の歪センサのゲイン最大線と同一方向に傾斜することを特徴としている。
本発明は、後述する「発明を実施するための形態」の欄で説明する如く、一方側の第1の歪センサからのn個のセンサ出力VA1の総和ΣVA1と、他方側の第1の歪センサからのn個のセンサ出力VB1の総和ΣVB1との和(ΣVA1+ΣVB1)により、横力と上下力とによる影響を相殺でき、又差(ΣVA1−ΣVB1)により、前後力と上下力とによる影響を相殺でき、又一方側の第2の歪センサからのn個のセンサ出力VA2の総和ΣVA2と、他方側の第2の歪センサからのn個のセンサ出力VB2の総和ΣVB2との和(ΣVA2+ΣVB2)により、前後力と横力とによる影響を相殺できる。
従って、前記和(ΣVA1+ΣVB1)を変数とすることで、横力と上下力との影響が互いに相殺されて除去されるため、前後力Fxを高精度で推定することが可能となる。又前記差(ΣVA1−ΣVB1)を変数とすることで、前後力と上下力との影響が互いに相殺されて除去されるため、横力Fyを高精度で推定することが可能となる。又前記和(ΣVA2+ΣVB2)を変数とすることで、前後力と横力との影響が互いに相殺されて除去されるため、上下力Fzを高精度で推定することが可能となる。
しかも、説明変数の数が例えば1つと少なくて済むため、前後力、横力、上下力の推定式をそれぞれ簡潔化することができ、演算時間を短縮してタイムラグを減じうるとともに、メモリ容量が小さい安価な演算器を使用しうるためコストの低減を図ることができる。又説明変数の数の減少とともに誤差の発生が抑えられるため、推定精度をさらに向上することができる。
本発明の力の推定方法に用いる空気入りタイヤを示す断面図である。 (A)は歪センサの一実施例を示す平面図、(B)はそのゲイン最大線の傾斜の向きを示す側面図である。 歪センサの配置を説明する略図である。 (A)〜(C) タイヤが一回転したときの前後力によるセンサ出力の変化を示すグラフ、横力によるセンサ出力の変化を示すグラフ、及び上下力によるセンサ出力の変化を示すグラフである。 従来技術を説明する歪センサの配置図である。 (A)〜(C)は、前後力、横力、上下力がそれぞれ作用したときのタイヤの歪みを誇張して示す説明図である。
以下、本発明の実施の形態について、詳細に説明する。
図1に、本発明の力の推定方法に用いる空気入りタイヤの一実施例の断面図を示す。図1において、本例の空気入りタイヤ1は、トレッド部2からサイドウォール部3をへてビード部4のビードコア5に至るカーカス6と、トレッド部2の内方かつ前記カーカス6の半径方向外側に配されるベルト層7とを具える。
前記カーカス6は、カーカスコードをタイヤ周方向に対して例えば70〜90°の角度で配列した1枚以上、本例では1枚のカーカスプライ6Aから形成される。このカーカスプライ6Aは、前記ビードコア5、5間に跨るプライ本体部6aの両側に、前記ビードコア5の廻りでタイヤ軸方向内側から外側に折り返されるプライ折返し部6bを一連に具える。又前記プライ本体部6aとプライ折返し部6bとの間には、前記ビードコア5からタイヤ半径方向外方にのびる断面三角形状のビード補強用のビードエーペックスゴム8が配設される。
前記ベルト層7は、ベルトコードをタイヤ周方向に対して例えば10〜35゜の角度で配列した2枚以上、本例では2枚のベルトプライ7A、7Bから形成され、各ベルトコードがプライ間相互で交差することにより、ベルト剛性を高め、トレッド部2の略全巾をタガ効果を有して強固に補強している。なお該ベルト層7の半径方向外側には、本例では、高速走行性能および高速耐久性等を高める目的で、バンドコードを周方向に対して5度以下の角度で配列させたバンド層9を設けている。
又前記空気入りタイヤ1は、一方側のサイドウォール部3Aに取り付く一方側の歪センサ群10AGと、他方側のサイドウォール部3Bに取り付く他方側の歪センサ群10BGとを具える。
前記一方側の歪センサ群10AGは、図3に概念的に示すように、センシングのゲインが最大となるゲイン最大線Nがタイヤ半径方向線に対して30〜60°の角度θ1で傾斜する6個以上のn個の一方側の第1の歪センサ11Aと、ゲイン最大線Nがタイヤ半径方向線に向くn個の一方側の第2の歪センサ12Aとからなる。又前記一方側の第1、第2の歪センサ11A、12Aは、タイヤ軸心を中心とした同一円周線jA上でタイヤ周方向に交互にかつ等間隔を隔てて取り付く。
又前記他方側の歪センサ群10BGは、ゲイン最大線Nが前記角度θ1と等しい角度θ2で傾斜する前記n個の他方側の第1の歪センサ11Bと、ゲイン最大線Nがタイヤ半径方向線に向く前記n個の他方側の第2の歪センサ12Bとからなる。この他方側の第1、第2の歪センサ11B、12Bも、タイヤ軸心を中心とした同一円周線jB上でタイヤ周方向に交互にかつ等間隔を隔てて取り付くとともに、該他方側の第1の歪センサ11Bのゲイン最大線Nは、前記一方側の第1の歪センサ11Aのゲイン最大線Nと同一方向、本例ではタイヤ半径方向外側に向かってタイヤ回転方向Sに傾斜している。
しかも、前記一方側の第1、第2の歪センサ11A、12Aと、他方側の第1、第2の歪センサ11B、12Bとは、タイヤ赤道面Coを挟んで向かい合う対称位置に取り付く。ここで、前記「対称位置に取り付く」とは、前記円周線jAと円周線jBとが同径であり、かつ前記一方側の第1、第2の歪センサ11A、12Aと、他方側の第1、第2の歪センサ11B、12Bとが実質的に同じ位相角度位置に設けられることを意味する。又「実質的に同じ位相角度位置」とは、下記のように説明される。まず、タイヤ軸芯を通って接地面に向かって垂直に下した垂直線を0°とするタイヤ軸芯廻りの座標系(ただしタイヤ回転方向の一方側、本例ではタイヤ回転方向をプラス(+)とする)において、0°の基準線X0からプラス側に順次並ぶ1番目〜n番目の一方側の第1の歪センサ11A1〜11Anにおける位相角度をαA1〜αAn、一方側の第2の歪センサ12A1〜12Anにおける位相角度をβA1〜βAn、他方側の第1の歪センサ11B1〜11Bnにおける位相角度をαB1〜αBn、他方側の第2の歪センサ12B1〜12Bnにおける位相角度をβB1〜βBnとする。このとき、第1の歪センサ11A、11Bにおける同一番目同士の位相角度の差、すなわち|αA1−αB1|、|αA2−αB2|・・・|αAn−αBn|、及び第2の歪センサ12A、12Bにおける同一番目同士の位相角度の差、すなわち|βA1−βB1|、|βA2−βB2|・・・|βAn−βBn|、がそれぞれ5°以下の場合を、実質的に同じ位相角度位置にあるという。
又車軸には、タイヤ1の回転位相角度を検出する例えばレゾルバ、エンコーダ等のタイヤ角度歪センサ(図示しない)を設けている。
ここで、前記一方側の第1、第2の歪センサ11A、12A、及び他方側の第1、第2の歪センサ11B、12Bを取り付ける領域Y(図1に示す)は、タイヤ断面高さhの中間高さ位置Mを中心として、該タイヤ断面高さhの25%の距離h1を半径方向内外に隔てる領域範囲が好ましく、特には、前記距離h1をタイヤ断面高さhの20%、さらには15%とし、前記中間高さ位置Mにより近い領域範囲が好ましい。なお前記タイヤ断面高さhは、ビードベースラインBLからタイヤ赤道上のトレッド面までの半径方向高さを意味する。
各前記歪センサ11A、12A、11B、12Bは、図2(A)に示すように、1つの磁石21と、この磁石21のN極側に間隔を有して向き合う1つの磁気センサ素子22とを具え、本例では、前記磁石21と磁気センサ素子22とを弾性材23を介して一体化したブロック状のモールド体20として形成されている。前記磁気センサ素子22としては、ホール素子、及びMR素子(磁気抵抗効果素子)、TMF−MI素子、TMF−FG素子、アモルファス歪センサ等が採用でき、特にコンパクトさ、感度、取り扱い易さ等の観点からホール素子が好適に採用できる。又各前記歪センサ11A、12A、11B、12Bでは、サイドウォール部3の動きに追従して柔軟に弾性変形しうることが重要であり、そのために、前記弾性材23として各種のゴム弾性材料が採用される。特に、熱可塑性エラストマ(TPE)は、注型成形や射出成形等のプラスチック成形が可能であり各歪センサを容易に製造しうるという観点から好適に採用できる。
次に、前記3分力Fx、Fy、Fzの推定方法を、前記空気入りタイヤ1を用いて説明する。
前記推定方法は、
(A) 所定のタイヤ回転角度位置Qにおいて、前記一方側の歪センサ群10AGと他方側の歪センサ群10BGとによってタイヤ歪を同時に測定することによりセンサ出力をうる歪測定ステップと、
(B)この歪測定ステップによって得たセンサ出力に基づいて、前後力Fx、横力Fy、上下力Fzの何れかの推定値を演算して求める演算ステップと、
を含んで構成される。
前記歪測定ステップでは、予め、タイヤ歪を測定するためのタイヤ回転角度位置Qを設定しておき、走行中のタイヤ1が、このタイヤ回転角度位置Qとなったとき、各前記歪センサ11A、12A、11B、12Bによってタイヤ歪を同時に測定する。これにより、4n個のセンサ出力をうることができる。本例では、前記図3に例示する如く、前記座標系において、1つの基準歪センサ10R(4n個の歪センサ11A、12A、11B、12Bから任意に選ぶことができる。)が所定角度γ(例えば+45°)の角度位置Pを通過する時のタイヤの回転位置を、前記タイヤ回転角度位置Qとして設定している。なお、例えば前記角度γが0°の時、+15°の時、或いは+30°の時など、タイヤ回転角度位置Qを適宜設定できる。又角度位置Pを1度毎に違えることにより360個のタイヤ回転角度位置Qを設定することができ、かかる場合には、1度毎に歪測定ステップが行われる。
次に、前記演算ステップでは、
(ア) 前記一方側の第1の歪センサ11Aからのn個のセンサ出力VA1の総和ΣVA1と、前記他方側の第1の歪センサ11Bからのn個のセンサ出力VB1の総和ΣVB1との和を変数とした次の推定式(1)を用いて前後力Fxの推定値を求める、
(イ) 前記センサ出力VA1の総和ΣVA1と、前記センサ出力VB1の総和ΣVB1との差(ΣVA1−ΣVB1)を変数とした次の推定式(2)を用いて横力Fyの推定値を求める、或いは
(ウ) 前記一方側の第2の歪センサ12Aからのn個のセンサ出力VA2の総和ΣVA2と、前記他方側の第2の歪センサ12Bからのn個のセンサ出力VB2iの総和ΣVB2との和(ΣVA2+ΣVB2)を変数とした次の推定式(3)を用いて前後力Fzの推定値を求める。
Fx=Kx・(ΣVA1+ΣVB1)+Ax −−−(1)
Fy=Ky・(ΣVA1−ΣVB1)+Ay −−−(2)
Fz=Kz・(ΣVA2+ΣVB2)+Az −−−(3)
(式中のKx、Ky、Kz、Ax、Ay、Azは定数)
上記式(1)〜(3)を用いることにより、三分力Fx、Fy、Fzを分離でき、推定精度を向上することができる。
ここで上記式(1)〜(3)を用いることにより、三分力Fx、Fy、Fzを分離しうることを以下に検証する。
走行中、タイヤの前後力がFxからFx+ΔFxに変化した時、任意のi番目(i=1、・・・、n)の一方側の第1の歪センサ11Aiのセンサ出力は、VA1iからVA1i+ΔViに変化し、他方側の第1の歪センサ11Biのセンサ出力は、VB1iからVB1i+ΔViに変化する。これに対して、一方側、他方側の第2の歪センサ12Ai、12Biでは、ゲイン最大線Nがタイヤ周方向となる前後力による歪と直角となるため、そのセンサ出力はVA2i、VB2iからは変化しない。
これを、式(1)に代入すると、
Fx+ΔFx=Kx・{Σ(VA1i+ΔVi)+Σ(VB1i+ΔVi)}+Ax
=Fx+Kx・(2ΣΔVi)
即ち、ΔFx=Kx・(2ΣΔVi) となる。
又式(2)に代入すると、
Fy+ΔFy=Ky・{Σ(VA1i+ΔVi)−Σ(VB1i+ΔVi)}+Ay
=Fy
即ち、ΔFy=0 となる。
又式(3)に代入すると、
Fz+ΔFz=Kz・(ΣVA2i+ΣVB2i}+Az
=Fz
即ち、ΔFz=0 となる。このように上記式(1)〜(3)では、前後力が変化したとき、横力、上下力には影響がなく、従って前後力を高精度で推定することができる。
又走行中、タイヤの横力がFyからFy+ΔFyに変化した時、任意のi番目(i=1、・・・、n)の一方側の第1の歪センサ11Aiのセンサ出力は、VA1iからVA1i+ΔViに変化し、他方側の第1の歪センサ11Biのセンサ出力は、VB1iからVB1i−ΔViに変化する。又同様に一方側の第2の歪センサ12Aiのセンサ出力は、VA2iからVA2i+ΔViに変化し、他方側の第2の歪センサ12Biのセンサ出力は、VB2iからVB2i−ΔViに変化する。
これを、式(1)に代入すると、
Fx+ΔFx=Kx・{Σ(VA1i+ΔVi)+Σ(VB1i−ΔVi)}+Ax
=Fx
即ち、ΔFx=0 となる。
又式(2)に代入すると、
Fy+ΔFy=Ky・{Σ(VA1i+ΔVi)−Σ(VB1i−ΔVi)}+Ay
=Fy+Ky・(2ΣΔVi)
即ち、ΔFy=Ky・(2ΣΔVi) となる。
又式(3)に代入すると、
Fz+ΔFz=Kz・{Σ(VA2i+ΔVi)+Σ(VB2i−ΔVi)}+Az
=Fz
即ち、ΔFz=0 となる。このように上記式(1)〜(3)では、横力の変化は、前後力、上下力に影響を与えることがなく、従って横力を高精度で推定することができる。
又走行中、タイヤの上下力がFzからFz+ΔFzに変化した時、任意のi番目(i=1、・・・、n)の一方側の第1の歪センサ11Aiのセンサ出力は、VA1iからVA1i±ΔViに変化し、他方側の1の歪センサ11Biのセンサ出力は、VB1iからVB1i±ΔViに変化する。又一方側の第2の歪センサ12Aiのセンサ出力は、VA2iからVA2i+ΔViに変化し、他方側の第2の歪センサ12Biのセンサ出力は、VB2iからVB2i+ΔViに変化する。なおセンサ出力が「VA1i±ΔVi」とは、接地中心よりも前(原点側)ではセンサ出力が「+ΔVi」、後では「−ΔVi」になることを意味する。
これを、式(1)に代入すると、
Fx+ΔFx=Kx・{Σ(VA1i+ΔVi−ΔVi)+Σ(VB1i+ΔVi−ΔVi)}+Ax
=Fx
即ち、ΔFx=0 となる。
又式(2)に代入すると、
Fy+ΔFy=Ky・{Σ(VA1i+ΔVi−ΔVi)−Σ(VB1i+ΔVi−ΔVi)}+Ay
=Fy
即ち、ΔFy=0 となる。
又式(3)に代入すると、
Fz+ΔFz=Kz・{Σ(VA2i+ΔVi)+Σ(VB2i+ΔVi)}+Az
=Fz+Kz・(2ΣΔVi)
即ち、ΔFz=Kz・(2ΣΔVi) となる。
このように上記式(1)〜(3)では、上下力の変化ΔFzは、前後力、横力に影響を与えることがなく、従って上下力を高精度で推定することができる。
なお前記式(1)〜(3)の定数Kx、Ky、Kz、Ax、Ay、Azは、前後力Fx、横力Fy、及び上下力Fzをそれぞれ違えた事前の荷重付加試験によって求めることができる。例えばタイヤが所定のタイヤ回転角度位置Qとなったときのタイヤ歪εを、異なる種々の荷重付加条件毎に各n個の歪センサ11A、12A、11B、12Bによって同時に測定し、これによって得たセンサ出力VA1、VA2、VB1、VB2から、和(ΣVA1+ΣVB1)、差(ΣVA1−ΣVB1)、和(ΣVA2+ΣVB2)を求める。そして、事前の荷重付加試験の入力であるFx、Fy、Fzを目的変数とし、前記和(ΣVA1+ΣVB1)、差(ΣVA1−ΣVB1)、和(ΣVA2+ΣVB2)をそれぞれ説明変数として、重回帰分析することで求めることができる。
なお、各歪センサ11A、12A、11B、12Bがそれぞれ6個以上とする理由は、以下のとうりである。図4(A)〜(C)に、タイヤを一回転したときの前後力Fxによる第1の歪センサ11Aのセンサ出力VA1の変化、横力Fyによるセンサ出力VA1の変化、及び上下力Fzによるセンサ出力VA1の変化を示す。具体的には、前記図4(A)では、一方側のサイドウォール部3Aに、一つの第1の歪センサ11Aを取付けたタイヤを、ドラム上で、横力Fy=0(スリップ角0°)、上下力Fz=一定、の条件下で回転させたときのセンサ出力VA1の波形(出力波形)が示されている。なお前後力Fxのみ、0、−1200N(Nはニュートン)、−2400N、−3600Nに変化させている。前後力Fxのマイナス表示は、制動力を意味する。又図4(B)では、前記タイヤを、前後力Fx=0、上下力Fz一定の条件下で回転させたときのセンサ出力VA1の波形(出力波形)が示されている。横力Fyとして、スリップ角のみ、0°、左1°、左2°、右1°、右2°に変化させている。図4(C)では、前記タイヤを、前後力Fx=0、横力Fy=0(スリップ角0°)の条件下で回転させたときのセンサ出力Vの波形(出力波形)が示されている。なお上下力Fzのみ、4000N、6000N、8000Nに変化させている。
同図から明らかなように、各出力波形における最大最小のピークpa、pb間の角度δは、約60°であるが、3方力Fx、Fy、Fzを精度良く推定するためには、この出力波形のピークpa、pbをとらえることが必要である。そのために、周上に6個以上の第1の歪センサ11A、11Bを、それぞれ配し、隣り合う第1の歪センサ11A、11A間(及び第1の歪センサ11B、11B間)に、2つのピークpa、pbが現れないようにしている。なお第2の歪センサ12A、12Bの形成数も同数となる。
以上、本発明の特に好ましい実施形態について詳述したが、本発明は図示の実施形態に限定されることなく、種々の態様に変形して実施しうる。
図3に示すように、一方側、及び他方側のサイドウォール部に、それぞれ歪センサ11A、12A及び歪センサ11B、12Bを6個(n=6)づつ同一円周線上で等間隔を隔てて取り付けた空気入りタイヤ(サイズ245/40ZR18)を試作した。一方側の歪センサ11A、12Aと、他方側の歪センサ11B、12Bとは、タイヤ赤道面を挟んだ対称位置(同位相角度位置)に配される。又各歪センサ11A、12A、11B、12Bは、1つの磁石と1つの磁気センサ素子(ホール素子−−Melxis社製のホールIC:MLX90251)とをゴム弾性材で一体化したモールド体を使用し、歪センサ11A、11Bのゲイン最大線Nのタイヤ半径方向線に対する角度θは45°、しかも半径方向外側に向かってタイヤ回転方向S側に傾斜している。又歪センサ12A、12Bのゲイン最大線Nは、タイヤ半径方向線に配される。
そしてフラットベルト上を時速20km/hで走行するタイヤに対し、タイヤの回転角度1°毎(タイヤ回転角度位置が1°毎に360個設定されている)に、各歪センサ11A、12A、11B、12Bによってタイヤ歪を同時に測定し、それによって得た合計24個のセンサ出力VA1〜VA1、VB1〜VB1、VA2〜VA2、VB2〜VB2から、前後力Fx、横力Fy、及び上下力Fzを推定式を用いてタイヤの回転角度1°毎に求め、6分力計を用いて実際に測定した実測値との差のバラツキを3σ(σ:標準偏差)で評価した。3σが小さいほど、実測値とのバラツキが少なく良好である。なお標準偏差は、力を45水準に振り、各水準で1秒間計測した45000点の標本で構成されたデータから求めている。
なお実施例1では、前記推定式(1)〜(3)を用いて推定した。又比較例1では、24個のセンサ出力VA1〜VA112、VB1〜VB112を変数(説明変数)とした一次式(推定式)を用いて、前後力Fx、横力Fy、及び上下力Fzを推定している。
Figure 0005695411
表に示すように、実施例の推定方法は、説明変数の数を1としながらも、推定精度を向上しうるのが確認できる。
1 空気入りタイヤ
3A 一方側のサイドウォール部
3B 他方側のサイドウォール部
10AG 一方側の歪センサ群
10BG 他方側の歪センサ群
11A 一方側の第1の歪センサ
11B 他方側の第1の歪センサ
12A 一方側の第2の歪センサ12A
12B 他方側の第2の歪センサ
Coタイヤ赤道面
jA、jB円周線
N ゲイン最大線

Claims (2)

  1. タイヤのサイドウォール部におけるタイヤ歪を測定する歪センサのセンサ出力を用いて、タイヤに作用する前後力、横力および上下力の何れかを推定する推定方法であって、
    タイヤの一方側のサイドウォール部に、
    センシングのゲインが最大となるゲイン最大線がタイヤ半径方向線に対して30〜60°の角度θ1で傾斜する6個以上のn個の一方側の第1の歪センサと、
    ゲイン最大線がタイヤ半径方向線に向くn個の一方側の第2の歪センサとからなり、
    しかも前記一方側の第1、第2の歪センサが、タイヤ軸心を中心とした同一円周線上でタイヤ周方向に交互にかつ等間隔を隔てて取り付く一方側の歪センサ群、
    タイヤの他方側のサイドウォール部に、
    ゲイン最大線が前記角度θ1と等しい角度θ2で傾斜するn個の他方側の第1の歪センサと、
    ゲイン最大線がタイヤ半径方向線に向くn個の他方側の第2の歪センサとからなり、
    しかも前記他方側の第1、第2の歪センサが、前記一方側の第1、第2の歪センサとタイヤ赤道面を挟んで向かい合う対称位置に取り付き、かつ他方側の第1の歪センサのゲイン最大線が、前記一方側の第1の歪センサのゲイン最大線と同一方向に傾斜する他方側の歪センサ群、
    及びタイヤの回転角度位置を測定する角度センサを用い、
    所定のタイヤ回転角度位置Qにおいて、前記一方側の歪センサ群と他方側の歪センサ群とによってタイヤ歪を同時に測定することにより4n個のセンサ出力をうる歪測定ステップと、
    前記歪測定ステップによって得たセンサ出力に基づいてタイヤに作用する力の推定値を求める演算ステップとを行うとともに、
    前記演算ステップでは、
    (ア) 前後力Fxの推定値を求める場合、前記歪測定ステップにより測定される4n個のセンサ出力のうち、前記一方側の第1の歪センサからのn個のセンサ出力VA1と、前記他方側の第1の歪センサからのn個のセンサ出力VB1とのみを用い、前記n個のセンサ出力VA1の総和ΣVA1と、前記n個のセンサ出力VB1の総和ΣVB1との和(ΣVA1+ΣVB1)を変数とした次の推定式(1)を用いて前後力Fxの推定値を求める、
    (イ) 前記横力Fyの推定値を求める場合、前記歪測定ステップにより測定される4n個のセンサ出力のうち、前記一方側の第1の歪センサからのn個のセンサ出力VA1と、前記他方側の第1の歪センサからのn個のセンサ出力VB1とのみを用い、前記n個のセンサ出力VA1の総和ΣVA1と、前記n個のセンサ出力VB1の総和ΣVB1との差(ΣVA1−ΣVB1)を変数とした次の推定式(2)を用いて横力Fyの推定値を求める、或いは
    (ウ) 前記上下力Fzの推定値を求める場合、前記歪測定ステップにより測定される4n個のセンサ出力のうち、前記一方側の第の歪センサからのn個のセンサ出力VA2と、前記他方側の第の歪センサからのn個のセンサ出力VB2とのみを用い、前記n個のセンサ出力VA2の総和ΣVA2と、前記n個のセンサ出力VB2の総和ΣVB2との和(ΣVA2+ΣVB2)を変数とした次の推定式(3)を用いて上下力Fzの推定値を求めることを特徴とするタイヤに作用する力の推定方法。
    Fx=Kx・(ΣVA1+ΣVB1)+Ax −−−(1)
    Fy=Ky・(ΣVA1−ΣVB1)+Ay −−−(2)
    Fz=Kz・(ΣVA2+ΣVB2)+Az −−−(3)
    (式中のKx、Ky、Kz、Ax、Ay、Azは定数)
  2. サイドウォール部におけるタイヤ歪を測定したセンサ出力により、タイヤに作用する前後力、横力および上下力の何れかを推定するために用いる歪センサを具える空気入りタイヤであって、
    一方側のサイドウォール部に取り付く一方側の歪センサ群と、他方側のサイドウォール部に取り付く他方側の歪センサ群とを具え、
    かつ一方側の歪センサ群は、センシングのゲインが最大となるゲイン最大線がタイヤ半径方向線に対して30〜60°の角度θ1で傾斜する6個以上のn個の一方側の第1の歪センサと、ゲイン最大線がタイヤ半径方向線に向くn個の一方側の第2の歪センサとからなり、しかも前記一方側の第1、第2の歪センサが、タイヤ軸心を中心とした同一円周線上でタイヤ周方向に交互にかつ等間隔を隔てて取り付くとともに、
    前記他方側の歪センサ群は、ゲイン最大線が前記角度θ1と等しい角度θ2で傾斜するn個の他方側の第1の歪センサと、ゲイン最大線がタイヤ半径方向線に向くn個の他方側の第2の歪センサとからなり、しかも前記他方側の第1、第2の歪センサが、前記一方側の第1、第2の歪センサとタイヤ赤道面を挟んで向かい合う対称位置に取り付き、かつ他方側の第1の歪センサのゲイン最大線が、前記一方側の第1の歪センサのゲイン最大線と同一方向に傾斜することを特徴とする空気入りタイヤ。
JP2010283527A 2010-12-20 2010-12-20 タイヤに作用する力の推定方法、及びそれに用いる空気入りタイヤ Expired - Fee Related JP5695411B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010283527A JP5695411B2 (ja) 2010-12-20 2010-12-20 タイヤに作用する力の推定方法、及びそれに用いる空気入りタイヤ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010283527A JP5695411B2 (ja) 2010-12-20 2010-12-20 タイヤに作用する力の推定方法、及びそれに用いる空気入りタイヤ

Publications (2)

Publication Number Publication Date
JP2012131284A JP2012131284A (ja) 2012-07-12
JP5695411B2 true JP5695411B2 (ja) 2015-04-08

Family

ID=46647425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010283527A Expired - Fee Related JP5695411B2 (ja) 2010-12-20 2010-12-20 タイヤに作用する力の推定方法、及びそれに用いる空気入りタイヤ

Country Status (1)

Country Link
JP (1) JP5695411B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5876667B2 (ja) * 2011-04-28 2016-03-02 住友ゴム工業株式会社 タイヤに作用する力の推定方法
US8983716B2 (en) * 2012-12-07 2015-03-17 The Goodyear Tire & Rubber Company Tire slip angle estimation system and method

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62263434A (ja) * 1986-05-09 1987-11-16 Yamato Scale Co Ltd 実車測定装置
JP4165320B2 (ja) * 2003-07-23 2008-10-15 トヨタ自動車株式会社 タイヤ状態検出装置
JP4653435B2 (ja) * 2004-07-26 2011-03-16 住友電気工業株式会社 タイヤに作用する力の検出装置
JP2007271005A (ja) * 2006-03-31 2007-10-18 Jtekt Corp センサ付き転がり軸受装置
JP4914179B2 (ja) * 2006-11-07 2012-04-11 住友ゴム工業株式会社 空気入りタイヤ、及びそれに作用する力の検出方法
JP2009126460A (ja) * 2007-11-27 2009-06-11 Sumitomo Rubber Ind Ltd タイヤの故障検出方法
JP5199926B2 (ja) * 2009-03-18 2013-05-15 住友ゴム工業株式会社 タイヤに作用する力の推定方法、及びそれに用いる空気入りタイヤ
JP2010215178A (ja) * 2009-03-18 2010-09-30 Sumitomo Rubber Ind Ltd タイヤに作用する力の推定方法、及びそれに用いる空気入りタイヤ
JP5580547B2 (ja) * 2009-04-16 2014-08-27 住友ゴム工業株式会社 タイヤに作用する上下力の推定方法
JP5542037B2 (ja) * 2010-12-07 2014-07-09 住友ゴム工業株式会社 タイヤに作用する力の推定方法
JP2012122811A (ja) * 2010-12-07 2012-06-28 Sumitomo Rubber Ind Ltd タイヤに作用する力の推定方法、及びそれに用いる空気入りタイヤ
JP2012122813A (ja) * 2010-12-07 2012-06-28 Sumitomo Rubber Ind Ltd タイヤに作用する力の推定方法

Also Published As

Publication number Publication date
JP2012131284A (ja) 2012-07-12

Similar Documents

Publication Publication Date Title
JP5027549B2 (ja) 空気入りタイヤ、及びそれに作用する力の検出方法
JP4276686B2 (ja) タイヤ作用力の検出方法
JP4928352B2 (ja) タイヤに作用する前後力の検出方法
CN102358117B (zh) 充气轮胎
JP4914179B2 (ja) 空気入りタイヤ、及びそれに作用する力の検出方法
US7249498B2 (en) System and method for determining tire force
JP4377651B2 (ja) タイヤに作用する力の検出方法、及びそれに用いる空気入りタイヤ
JP5695411B2 (ja) タイヤに作用する力の推定方法、及びそれに用いる空気入りタイヤ
JP5876667B2 (ja) タイヤに作用する力の推定方法
JP5542037B2 (ja) タイヤに作用する力の推定方法
JP2010215178A (ja) タイヤに作用する力の推定方法、及びそれに用いる空気入りタイヤ
JP2012122813A (ja) タイヤに作用する力の推定方法
JP4653435B2 (ja) タイヤに作用する力の検出装置
WO2019107297A1 (ja) タイヤ組み立て体及びタイヤ変形状態判定システム
JP5580547B2 (ja) タイヤに作用する上下力の推定方法
JP5199926B2 (ja) タイヤに作用する力の推定方法、及びそれに用いる空気入りタイヤ
JP4520783B2 (ja) タイヤに作用する前後力の検出方法
JP5438360B2 (ja) タイヤに作用する上下力の推定方法
JP2009276288A (ja) タイヤに作用する前後力および上下力の推定方法
JP2009126460A (ja) タイヤの故障検出方法
JP5149531B2 (ja) タイヤの空気圧低下検出方法
JP2009208621A (ja) キャンバー角推定方法、及びキャンバー角監視システム
JP2012122811A (ja) タイヤに作用する力の推定方法、及びそれに用いる空気入りタイヤ
JP5395477B2 (ja) タイヤに作用する力の推定方法、及びそれに用いる空気入りタイヤ
JP5314515B2 (ja) 空気入りタイヤに作用する力の推定方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150206

R150 Certificate of patent or registration of utility model

Ref document number: 5695411

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees