JP5657148B2 - 光受信器、局側光終端装置および受光レベルモニタ方法 - Google Patents

光受信器、局側光終端装置および受光レベルモニタ方法 Download PDF

Info

Publication number
JP5657148B2
JP5657148B2 JP2013555048A JP2013555048A JP5657148B2 JP 5657148 B2 JP5657148 B2 JP 5657148B2 JP 2013555048 A JP2013555048 A JP 2013555048A JP 2013555048 A JP2013555048 A JP 2013555048A JP 5657148 B2 JP5657148 B2 JP 5657148B2
Authority
JP
Japan
Prior art keywords
current
circuit
voltage
analog
digital
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013555048A
Other languages
English (en)
Other versions
JPWO2013111286A1 (ja
Inventor
正道 野上
正道 野上
聡 吉間
聡 吉間
雅樹 野田
雅樹 野田
中川 潤一
潤一 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Application granted granted Critical
Publication of JP5657148B2 publication Critical patent/JP5657148B2/ja
Publication of JPWO2013111286A1 publication Critical patent/JPWO2013111286A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/04Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements with semiconductor devices only
    • H03F3/08Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements with semiconductor devices only controlled by light
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0795Performance monitoring; Measurement of transmission parameters
    • H04B10/07955Monitoring or measuring power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • H04B10/272Star-type networks or tree-type networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/69Electrical arrangements in the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/08Time-division multiplex systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Computing Systems (AREA)
  • Optical Communication System (AREA)
  • Amplifiers (AREA)

Description

本発明は、光通信システムにおける光受信器、局側光終端装置および受光レベルモニタ方法に関する。
従来、光ファイバを用いた公衆回線網を実現する方式として、PON(Passive Optical Network)システムと呼ばれるポイント・トゥ・マルチポイントのアクセス系光通信システムが広く用いられている。
PONシステムは、局側装置である1台のOLT(Optical Line Terminal)と、光スターカプラを介してOLTに接続される複数の加入者端末装置であるONU(Optical Network Unit)と、により構成される。PONシステムは、多数のONUに対して、OLTと伝送路である光ファイバの大部分を共有できるため運用コストの経済化が期待できることや、受動部品である光スターカプラには給電が必要なく屋外設置が容易であり、信頼性も高いという利点があることから、ブロードバンドネットワークを実現する切り札として近年活発に導入が進められている。
例えば、IEEE(Institute of Electrical and Electronic Engineers)802.3avで規格化されている10Gbit/sの伝送速度の通信が可能な10G−EPON(10Gigabit−Ethernet(登録商標) Passive Optical Network)においては、PLTからONUへの下り通信では、1.58μm帯による同報通信方式を用いている。各ONUは波長分割多重を行うWDM(Wavelength Division Multiplexing)フィルタにより伝送速度を分割すると共に、割り当てられたタイムスロットの自局宛データのみ取り出す。一方、各ONUからOLTへの上り通信は、光波長1.27μm帯を用い、各ONUからのデータが衝突しないように送出タイミングを制御する時分割多重通信方式を用いている。
上記のようなPONシステムの上り通信においては、OLTの光受信部は、バースト光信号を受信している。OLTでは、各バースト光信号の受光レベルを検出する事により、例えば通信状態監視やバースト光信号の有無などPONの上り通信の品質を向上できる効果があることから、各バースト光信号の受光レベルを検出する必要がある。例えば特許文献1および特許文献2では、ポイントツーポイントシステムにおける受光レベルを検出する技術が提案されている。
特開平11−40840号公報 特開2004−289206号公報
しかしながら、上記特許文献1および特許文献2に示された技術では、カレントミラー回路が各バースト光信号によって受光素子より発生する電流の変化に高速に追従できないため、正確な受光レベル(入力信号強度)をモニタできないという問題があった。
具体的には、特許文献1では、受光素子には、各ONUからのバースト光信号が衝突しないように入力され、電流電圧変換増幅器およびデータ・クロック再生回路により、バースト光信号から瞬時にバースト電気信号のデータとクロックを生成する。また、カレントミラー回路はベース同士を接続した1対のトランジスタを有し、この1対のトランジスタのうちの一方のトランジスタ(基準電流側トランジスタ)のコレクタを受光素子のカソードに接続する。これにより、カレントミラー回路の他方のトランジスタ(ミラー電流側トランジスタ)のコレクタから、受光素子に流れる電流に比例した入力電流Ipdmを出力する。そして入力電流Ipdmは電圧に変換され入力光信号強度モニタ出力Vm2としてマイコンに入力される。入力光信号強度モニタ出力Vm2はマイコンより出力される。特許文献1では、入力光信号強度モニタ出力Vm2により受光レベルをモニタしている。
特許文献1では、受光素子にバースト的な光信号が入力されると、カレントミラー回路の基準電流側トランジスタから電流Ipdが流れる。しかし、基準電流側トランジスタに流れる電流は0Aから流れ始めるため、ミラー電流側トランジスタから出力される電流Ipdmの応答は遅くなる。従って、入力光信号強度モニタ出力Vm2もIpdmと同様な波形となり、正確に入力光信号強度を測定することができない。
また、特許文献2では、電圧変換後の入力光信号強度モニタ出力をアナログデジタル変換する際のサンプルタイミングにより入力光信号強度が異なるという問題がある。
本発明は、上記に鑑みてなされたものであって、入力光信号強度を正確に測定することができる光受信器、局側光終端装置および受光レベルモニタ方法を得ることを目的とする。
上述した課題を解決し、目的を達成するために、本発明は、入力光信号を電流に変換する受光素子と、基準電流側トランジスタとミラー電流側トランジスタとを有し、前記基準電流側トランジスタが前記受光素子と接続されるカレントミラー回路と、前記ミラー電流側トランジスタからの出力電流を電圧に変換して前記受光素子の受光レベルモニタ電圧として出力する電流電圧変換回路と、前記基準電流側トランジスタと接続され、前記基準電流側トランジスタに所定の電流を流す電流吸い込み回路と、前記受光素子に印加される印加電圧を検出する電圧検出回路と、前記電圧検出回路が検出した前記印加電圧をデジタル信号に変換する第1のアナログデジタル変換回路と、前記受光レベルモニタ電圧に対して制御信号に基づいてサンプリングおよびホールドを行うサンプルホールド回路と、前記サンプルホールド回路からの出力をデジタル信号へ変換する第2のアナログデジタル変換回路と、前記カレントミラー回路へ電圧を供給する電圧発生器と、前記受光素子の環境温度を検出する温度検出器と、前記第1のアナログデジタル変換回路から出力されるデジタル信号と前記温度検出器が検出した前記環境温度とに基づいて前記電圧発生器により供給される電圧を指示する指示信号を生成し、前記第2のアナログデジタル変換回路から出力されるデジタル信号に対して所定の演算を実施して受光レベルモニタ信号として出力する演算回路と、前記指示信号をアナログ信号に変換して前記電圧発生器へ入力する第1のデジタルアナログ変換回路と、入力されたデジタル信号をアナログ信号に変換して前記電流吸い込み回路へ入力する第2のデジタルアナログ変換回路と、を備え、前記演算回路は、前記制御信号のサンプリングタイミングに応じて前記所定の電流を決定し、決定した前記所定の電流を示す信号をデジタル信号として前記第2のデジタルアナログ変換回路へ入力し、前記電流吸い込み回路は、前記第2のデジタルアナログ変換回路から入力される前記アナログ信号により示された前記所定の電流を前記基準電流側トランジスタに流すことを特徴とする。
本発明にかかる光受信器、局側光終端装置および受光レベルモニタ方法は、入力光信号強度を正確に測定することができるという効果を奏する。
図1は、実施の形態1の光受信器の構成例を示す図である。 図2は、光受信器を備えるOLTを含むPONシステムの構成例を示す図である。 図3は、従来の受光レベルモニタ方法における各出力の一例を示す図である。 図4は、実施の形態1の受光レベルモニタ方法における各出力の一例を示す図である。 図5は、実施の形態2の光受信器の構成例を示す図である。 図6は、実施の形態2の受光レベルモニタ方法における各出力の一例を示す図である。 図7は、実施の形態3の光受信器の構成例を示す図である。 図8は、実施の形態3の受光レベルモニタ方法における各出力の一例を示す図である。 図9は、実施の形態4の光受信器の構成例を示す図である。 図10は、実施の形態4の受光レベルモニタ方法における各出力の一例を示す図である。 図11は、実施の形態5の光受信器の構成例を示す図である。 図12は、実施の形態6の光受信器の構成例を示す図である。 図13は、実施の形態7の光受信器の構成例を示す図である。
以下に、本発明にかかる光受信器、局側光終端装置および受光レベルモニタ方法は、入力光信号強度の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
図1は、本発明にかかる光受信器の実施の形態1の構成例を示す図である。本実施の形態の光受信器は、例えば、PONシステムにおけるOLT(局側光終端装置)に搭載される。なお、本実施の形態の光受信器は、OLTに限らず受光レベルのモニタを要求される装置であればどのような装置に適用してもよい。ここでは、PONシステムのOLTに搭載される例を説明する。
図2は、本実施の形態の光受信器を備えるOLTを含むPONシステムの構成例を示す図である。図2に示すように、このPONシステムは、OLT100と、ONU200−1〜200−n(nは1以上の整数)と、で構成される。OLT1とONU200−1〜200−nは、スターカプラを介して光ファイバにより接続される。
PONシステムにおいては、下り通信(OLT100からONU200−1〜200−nへの方向の通信))と上り通信(ONU200−1〜200−nからOLT100への方向の通信)では異なる光波長を用い、下り通信は同報通信方式を用い、上り通信では時分割多重通信方式を用いている。上り通信では、各ONU200−1〜200−nから送信された信号が衝突しないよう、OLT100が各ONU200−1〜200−nに対して送信許可時間帯を割当てる。これにより、各ONU200−1〜200−nから送信されるデータは、互いに異なる時間帯でバースト光信号としてOLT100で受信される。図2では、ONU#i(i=1,2,…n)からの送信データをONU#iと模式的に示している。
本実施の形態の光受信器は、例えば図2のOLT100において光信号を受信する光受信器であり、各ONU200−1〜200−nから送信されたバースト光信号を受信する。図1に示すように本実施の形態の光受信器は、PD(Photodiode)やAPD(Avalanche Photodiode)等である受光素子1と、カレントミラー回路2と、電流電圧変換回路3と、電流電圧変換増幅器(TIA)4と、データ・クロック再生回路5と、電流吸い込み回路6と、を備える。カレントミラー回路2は、トランジスタ21と、トランジスタ22と、を備え、トランジスタ21とトランジスタ22はベース同士が接続されている。また、トランジスタ22のコレクタは受光素子1のカソードに接続されている。
入力されたバースト光信号は受光素子1により電流に変換される。電流電圧変換増幅器4およびデータ・クロック再生回路5は、受光素子1に流れる電流に基づいてデータとクロックを生成する。
受光素子1にバースト光信号が入力されると、バースト光信号の強度(入力信号強度、すなわち受光レベル)に応じて受光素子1からカレントミラー回路2のトランジスタ21へ電流Ipdが流れる。トランジスタ22のコレクタからは受光素子1に流れる電流に比例した電流Ipdmが出力される。電流電圧変換回路3は、電流Ipdmを電圧Vm2に変換し、受光素子1の受光レベルモニタ電圧(入力信号強度)として出力する。
ここで、従来の光受信器の受光レベルモニタ方法について説明する。従来の光受信器の受光レベルモニタ方法では、例えば、図1の光受信器から電流吸い込み回路6を除いた構成により受光レベルをモニタしている。
図3は、従来の受光レベルモニタ方法における各出力の一例を示す図である。従来の受光レベルモニタ方法では、受光素子1に図3の1段目に示すようなバースト的な光信号が入力されると、受光素子1から図3の2段目に示す様な波形の電流Ipdが、カレントミラー回路2のトランジスタ21から流れる。トランジスタ22のコレクタからは受光素子1に流れる電流に比例した電流Ipdmが出力される。しかし、トランジスタ21に流れる電流は0Aから流れ始めるため、トランジスタ21から出力される電流Ipdmの応答は遅くなり、図3の3段目に示す電流波形となる。図3の3段目の横に、実際に動作させた場合の電流Ipdmの応答波形も示す。4段目に示す電流電圧変換回路3の出力Vm2も電流Ipdmと同様な波形となり、正確に入力光信号強度を測定することができない。
これに対し、本実施の形態では、電流吸い込み回路6により定常的に定電流をトランジスタ21に流すことにより、バースト光信号を受信するとトランジスタ21は動作状態から光信号電流Ipdを流し始める。
図4は、本実施の形態の受光レベルモニタ方法における各出力の一例を示す図である。本実施の形態では、従来例と同様に受光素子1にバースト的な光信号が入力されると、受光素子1から図に示す様な電流波形が流れ、カレントミラー回路2の基準電流側トランジスタであるトランジスタ21から電流Ipdが流れる。図4の1段目のバースト的な光信号と、2段目の電流Ipdは図3の1段目、2段目と同様である。しかし、本実施の形態では、電流吸い込み回路6により定常的に定電流をトランジスタ21に流すことにより、トランジスタ21は動作状態から電流Ipdを流し始めるため、ミラー電流側トランジスタであるトランジスタ22から流れ出す電流Ipdmは図4の3段目に示すように、従来例より応答が速くなる。図4の3段目の左側に実際に動作させた場合の応答波形を示している。
従って、電流電圧変換回路3が十分な周波数応答を有していれば、電流電圧変換回路3から出力される電圧Vm2は電流Ipdmに定数を乗算した値となり、すなわち電流Ipdmと同様な波形となり、従来に比べ電流Ipdの波形に近い正確な入力光信号強度を出力することができる。
このように、本実施の形態では、電流吸い込み回路6により定常的に定電流をトランジスタ21に流すことにより、バースト光信号を受信するとトランジスタ21は動作状態から光信号電流Ipdを流し始めるようにした。このため、トランジスタ22から流れ出す電流Ipdmの応答が速くなり、従来に比べ正確な入力光信号強度を出力することができる。
実施の形態2.
図5は、本発明にかかる光受信器の実施の形態2の構成例を示す図である。本実施の形態では、実施の形態1の光受信器に第2の電流吸い込み回路(ミラー側電流吸い込み回路)7を追加する以外は、実施の形態1の光受信器と同様である。本実施の形態では、実施の形態1の電流吸い込み回路を第1の電流吸い込み回路6としている。実施の形態1と同様の機能を有する構成要素は、実施の形態1と同一の符号を付して重複する説明を省略する。
図6は、本実施の形態の受光レベルモニタ方法における各出力の一例を示す図である。図6を用いて本実施の形態の動作を説明する。図6の1段目、2段目は、入力されるバースト光信号、電流Ipdを示しており、実施の形態1の図3、4の1段目、2段目と同様である。本実施の形態1では、図4に示すように、電流Ipdmには、電流吸い込み回路6により吸い込む電流に対応したオフセットIbが生じ、電圧Vm2にはこれに応じてオフセットIb*K(Kは定数)が生じる。これに対し、本実施の形態では、図6の3段目および4段目に示すように、第2の電流吸い込み回路7によってトランジスタ22からの出力電流に対してIb1と略同値の電流Ib2を吸い込む事により、IpdmおよびVm2に発生する第1の電流吸い込み回路6によるオフセットをキャンセルする事が可能となる。以上述べた以外の本実施の形態の動作は実施の形態1と同様である。
このように、本実施の形態では、第2の電流吸い込み回路7により第1の電流吸い込み回路6による吸い込み電流により生じるオフセットをキャンセルするようにした。このため、実施の形態1と同様の効果が得られるとともに、実施の形態1で生じたオフセットをキャンセルすることができる。
実施の形態3.
図7は、本発明にかかる光受信器の実施の形態3の構成例を示す図である。本実施の形態では、実施の形態1の光受信器に、電圧検出回路8、サンプル&ホールド回路(S/H)9、演算回路(マイコン)10、アナログデジタル変換回路(ADC)11,12は、温度検出器13、デジタルアナログ変換回路(DAC)14(第1のデジタルアナログ変換回路)、および高電圧発生器(電圧発生器)15を追加している。実施の形態1と同様の機能を有する構成要素は、実施の形態1と同一の符号を付して重複する説明を省略する。
本実施の形態では、入力光信号強度として電圧Vm2を出力するまでの動作は、実施の形態1と同様であるが、サンプル&ホールド回路9によりS/H信号(制御信号)に同期したVm2の値をサンプルして、ADC12(第2のアナログデジタル変換回路)によりデジタルデータに変換してマイコン10に取り込むことができる。高電圧発生器15は、受光素子1に適切な増倍率を与えるようカレントミラー回路2に対して電圧を印加する。電圧検出回路8は、受光素子1に印加される印加電圧Vapdを検出し、ADC11(第1のアナログデジタル変換回路)は、検出された印加電圧Vapdをデジタル信号に変換してマイコン10に入力する。これにより、マイコン10に電圧Vm2および受光素子1の印加電圧Vapdを取り込むことができ、マイコン10により電圧Vm2に対して演算を行うことができる。
例えば、受光素子1としてAPDを用いる場合等には、印加電圧Vapdは温度に依存して変化する。また、電圧Vm2は実際の入力信号強度に対して線形に変化せず、電圧Vm2と入力信号強度との関係を表す特性は受光素子1の温度に依存する。このため、温度検出器13により受光素子1の環境温度を検出し、高電圧発生器15により印加する電圧を制御する。また、マイコン10は、電圧検出回路8からの出力電圧と検出器13が検出した温度とに基づいて、マイコン10が電圧Vm2に対して受光素子1の温度を用いた補正等の演算を行って入力光信号強度(受光レベルモニタ信号)として出力することにより、特性が温度に依存する場合等でも、正確な入力光信号強度を出力することができる。
図8は、本実施の形態の受光レベルモニタ方法によるモニタ結果の一例を示す図である。図8の1段目、2段目、3段目、4段目は、入力されるバースト光信号、受光素子1を流れる電流Iapd、トランジスタ22から流れ出す電流Iapdm、電圧Vm2をそれぞれ示しており、図3、4の1段目のバースト光信号、2段目電流Ipd、3段目のIpdm、4段目の電圧Vm2とそれぞれ同様である。図8の5段目には、S/H信号を示し、6段目にはマイコン10からの出力を示している。
以上のように、本実施の形態では、実施の形態1と同様に電流吸い込み回路6を備え、電圧Vm2をサンプル&ホールド回路9によりS/H信号に同期したVm2の値をサンプルして、ADC12によりディタルデータに変換するようにした。このため、実施の形態1と同様の効果が得られるとともに、Vm2をマイコン10に取り込むことができVm2に対する演算を行うことができる。
実施の形態4.
図9は、本発明にかかる光受信器の実施の形態4の構成例を示す図である。本実施の形態では、実施の形態3の光受信器にDAC16(第2のデジタルアナログ変換回路)を追加する以外は実施の形態3の光受信器と同様である。実施の形態3と同様の機能を有する構成要素は、実施の形態1と同一の符号を付して重複する説明を省略する。
本実施の形態では、マイコン10が、電流吸い込み回路6が吸い込む電流量を変化させて、S/H信号のサンプリングタイミングに対して最適な電流量を設定する。DAC16は、マイコン10から出力される電流吸い込み回路6の電流吸い込み量をアナログ信号に変換して電流吸い込み回路6へ入力する。電流吸い込み回路6の吸い込み量が多くなるとバースト光信号に対する応答速度が速くなる。一方、電流吸い込み回路6の吸い込み量が多くなりすぎるとオフセット量が増えるため、マイコン10は、サンプリングタイミングに対して最適な電流量を電流吸い込み回路6に対して設定する。
図10は、本実施の形態の受光レベルモニタ方法によるモニタ結果の一例を示す図である。図10の1段目には、入力されるバースト光信号の一例を示しており、2段目は実施の形態3と同様にして得られる電圧Vm2を示している。電圧Vm2は、応答速度の異なる(電流吸い込み回路6の電流吸い込み量の異なる)3種類のパターンが示されている。3段目は、S/H信号の一例を示している。4段目は、3種類のVm2に対応するマイコン10からの出力が3種類示されている。このように、サンプリングタイミングと応答速度に依存してマイコン10から出力される値は異なってしまう。このため、このサンプリングタイミングでは、電圧Vm2のうち応答速度の速いVm2となるよう電流吸い込み量を設定する。以上述べた以外の本実施の形態の動作は、実施の形態3と同様である。
このように、本実施の形態では、マイコン10が電流吸い込み回路6に対してS/H信号のサンプリングタイミングに応じて最適な電流量を設定するようにした。このため、実施の形態3と同様の効果が得られるとともに、より正確な入力光信号強度モニタを可能とする。
実施の形態5.
図11は、本発明にかかる光受信器の実施の形態5の構成例を示す図である。本実施の形態では、実施の形態4の光受信器に、実施の形態2と同様に第2の電流吸い込み回路7を追加している。実施の形態2または4と同様の機能を有する構成要素は、実施の形態2または4と同一の符号を付して重複する説明を省略する。
本実施の形態では、マイコン10が、実施の形態4と同様に第1の吸い込み電流回路6に対してS/H信号のサンプリングタイミングに対して最適な吸い込み電流を設定するとともに、第2の吸い込み電流回路7に対しても同様に最適な吸い込み電流を設定する。以上述べた以外の本実施の形態の動作は、実施の形態2、実施の形態4と同様である。本実施の形態では、実施の形態4と同様の効果が得られるとともに、電圧Vm2に生じるオフセットをキャンセルすることができる。
実施の形態6.
図12は、本発明にかかる光受信器の実施の形態6の構成例を示す図である。本実施の形態では、実施の形態5の光受信器の第1の電流吸い込み回路6および電圧検出回路8の構成の一例を示している。実施の形態5と同様の機能を有する構成要素は、実施の形態5と同一の符号を付して重複する説明を省略する。
第1の電流吸い込み回路6は、トランジスタ61、抵抗62およびオペアンプ63で構成される。第2の電流吸い込み回路7も第1の電流吸い込み回路6と同様の構成である。また、電圧検出回路8は、抵抗81、82で構成される。
本実施の形態では、第1の電流吸い込み回路6および電圧検出回路8の回路構成例を示した。本実施の形態の効果は実施の形態5の効果と同様である。
実施の形態7.
図13は、本発明にかかる光受信器の実施の形態7の構成例を示す図である。本実施の形態では、実施の形態5の光受信器の第1の電流吸い込み回路6を電圧検出回路8a内に設ける例を示している。実施の形態5と同様の機能を有する構成要素は、実施の形態5と同一の符号を付して重複する説明を省略する。
本実施の形態の電圧検出回路8a(一体回路)は、実施の形態5の第1の電流吸い込み回路6と電圧検出回路8を一体化したものであり、抵抗81と第1の電流吸い込み回路6とを備える。電圧検出回路8a内の第1の電流吸い込み回路6は、トランジスタ83を備える。抵抗81は、カレントミラー回路2の基準電流側と受光素子1との接続点と接続し、抵抗81の他方は、NPNトランジスタであるトランジスタ83のコレクタと接続する。そして、トランジスタ83のコレクタの出力をADC11へ入力し、トランジスタ83のエミッタをGNDとし(接地し)、トランジスタ83のベースをDAC16の出力へ接続する。
受光素子1としてAPDを用いる場合、受光素子1の特性は環境温度に依存して変化するため、環境温度(温度検出器13の測定値)に応じて増倍率Mを一定に制御するために、以下の式(1)に示すように各温度でVapdを変化させる必要がある。なお、Tは環境温度、Vapdは受光素子1の印加電圧、Vbrは受光素子1のブレークダウン電圧、nは受光素子1のデバイスにより決まる係数である。
Figure 0005657148
実施の形態6の構成の場合、抵抗81、82の両端の電位差がVm1=Vapdであるので、抵抗81を流れる電流は温度によって変化する。このため、入力信号強度のオフセットが温度により変動する問題がある。
これに対し、本実施の形態では、電圧検出回路8a内の第1の電流吸い込み回路6に対してマイコン10から電流吸い込み量を設定することによりS/H信号タイミングに最適な電流を流すとともに、温度による入力信号強度のオフセットの変動を発生させずに電圧検出回路8aの出力電圧を得ることが可能となる。
このように、本実施の形態では、電圧検出回路8a内に第1の電流吸い込み回路6を設けるようにした。このため、実施の形態6と同様の効果が得られるとともに、温度による入力信号強度のオフセットの変動を低減することができる。
以上のように、本発明にかかる光受信器、局側光終端装置および受光レベルモニタ方法は、PONシステムに有用であり、特に、受光レベルを正確に測定するシステムに適している。
1 受光素子
2 カレントミラー回路
3 電流電圧変換回路
4 電流電圧変換増幅器(TIA)
5 データ・クロック再生回路
6 電流吸い込み回路,第1の電流吸い込み回路
7 第2の電流吸い込み回路
8,8a 電圧検出回路
9 サンプル&ホールド回路(S/H)
10 演算回路(マイコン)
11,12 アナログデジタル変換回路(ADC)
13 温度検出器
14,16 デジタルアナログ変換回路(DAC)
15 高電圧発生器
21,22,61,83 トランジスタ
62,81,82 抵抗
63 オペアンプ
100 OLT
200−1〜200−n ONU

Claims (6)

  1. 入力光信号を電流に変換する受光素子と、
    基準電流側トランジスタとミラー電流側トランジスタとを有し、前記基準電流側トランジスタが前記受光素子と接続されるカレントミラー回路と、
    前記ミラー電流側トランジスタからの出力電流を電圧に変換して前記受光素子の受光レベルモニタ電圧として出力する電流電圧変換回路と、
    前記基準電流側トランジスタと接続され、前記基準電流側トランジスタに所定の電流を流す電流吸い込み回路と、
    前記受光素子に印加される印加電圧を検出する電圧検出回路と、
    前記電圧検出回路が検出した前記印加電圧をデジタル信号に変換する第1のアナログデジタル変換回路と、
    前記受光レベルモニタ電圧に対して制御信号に基づいてサンプリングおよびホールドを行うサンプルホールド回路と、
    前記サンプルホールド回路からの出力をデジタル信号へ変換する第2のアナログデジタル変換回路と、
    前記カレントミラー回路へ電圧を供給する電圧発生器と、
    前記受光素子の環境温度を検出する温度検出器と、
    前記第1のアナログデジタル変換回路から出力されるデジタル信号と前記温度検出器が検出した前記環境温度とに基づいて前記電圧発生器により供給される電圧を指示する指示信号を生成し、前記第2のアナログデジタル変換回路から出力されるデジタル信号に対して所定の演算を実施して受光レベルモニタ信号として出力する演算回路と、
    前記指示信号をアナログ信号に変換して前記電圧発生器へ入力する第1のデジタルアナログ変換回路と、
    入力されたデジタル信号をアナログ信号に変換して前記電流吸い込み回路へ入力する第2のデジタルアナログ変換回路と、
    を備え、
    前記演算回路は、前記制御信号のサンプリングタイミングに応じて前記所定の電流を決定し、決定した前記所定の電流を示す信号をデジタル信号として前記第2のデジタルアナログ変換回路へ入力し、
    前記電流吸い込み回路は、前記第2のデジタルアナログ変換回路から入力される前記アナログ信号により示された前記所定の電流を前記基準電流側トランジスタに流すことを特徴とする光受信器。
  2. 前記電流吸い込み回路は、
    トランジスタと、
    前記トランジスタのベースに接続されたオペアンプと、
    一端が前記トランジスタのエミッタに接続され、他端が接地された抵抗と、
    を備えることを特徴とする請求項1に記載の光受信器。
  3. 前記電流吸い込み回路と前記電圧検出回路とを一体化して一体回路とし、
    前記一体回路は、トランジスタと抵抗とを備え、
    前記抵抗は、一端がカレントミラー回路の基準電流側と前記受光素子との接続点に接続され、他端が前記トランジスタのコレクタに接続され、
    前記トランジスタのコレクタを前記第1のアナログデジタル変換回路への入力とし、前記トランジスタのエミッタを接地し、前記トランジスタのベースを前記第2のデジタルアナログ変換回路の出力に接続することを特徴とする請求項1に記載の光受信器。
  4. 入力光信号を電流に変換する受光素子と、
    基準電流側トランジスタとミラー電流側トランジスタとを有し、前記基準電流側トランジスタが前記受光素子と接続されるカレントミラー回路と、
    前記ミラー電流側トランジスタからの出力電流を電圧に変換して前記受光素子の受光レベルモニタ電圧として出力する電流電圧変換回路と、
    前記基準電流側トランジスタと接続され、前記基準電流側トランジスタに所定の電流を流す電流吸い込み回路と、
    前記受光素子に印加される印加電圧を検出する電圧検出回路と、
    前記電圧検出回路が検出した前記印加電圧をデジタル信号に変換する第1のアナログデジタル変換回路と、
    前記受光レベルモニタ電圧に対して制御信号に基づいてサンプリングおよびホールドを行うサンプルホールド回路と、
    前記サンプルホールド回路からの出力をデジタル信号へ変換する第2のアナログデジタル変換回路と、
    前記カレントミラー回路へ電圧を供給する電圧発生器と、
    前記受光素子の環境温度を検出する温度検出器と、
    前記第1のアナログデジタル変換回路から出力されるデジタル信号と前記温度検出器が検出した前記環境温度とに基づいて前記電圧発生器により供給される電圧を指示する指示信号を生成し、前記第2のアナログデジタル変換回路から出力されるデジタル信号に対して所定の演算を実施して受光レベルモニタ信号として出力する演算回路と、
    前記指示信号をアナログ信号に変換して前記電圧発生器へ入力するデジタルアナログ変換回路と、
    を備え、
    前記電流吸い込み回路と前記電圧検出回路とを一体化して一体回路とし、
    前記一体回路は、トランジスタと抵抗とを備え、
    前記抵抗は、一端がカレントミラー回路の基準電流側と前記受光素子との接続点に接続され、他端が前記トランジスタのコレクタに接続され、
    前記トランジスタのコレクタを前記第1のアナログデジタル変換回路への入力とし、前記トランジスタのエミッタを接地し、前記トランジスタのベースを前記第2のデジタルアナログ変換回路の出力に接続することを特徴とする光受信器。
  5. 加入者側光終端装置と接続され、前記加入者側光終端装置とPONシステムを構成する局側光終端装置であって、
    請求項1〜4のいずれか1つに記載の光受信器を備えることを特徴とする局側光終端装置。
  6. 入力光信号を電流に変換する受光素子と、基準電流側トランジスタとミラー電流側トランジスタとを有し、前記基準電流側トランジスタが前記受光素子と接続されるカレントミラー回路と、を備える光受信器の受光レベルをモニタする受光レベルモニタ方法であって、
    前記基準電流側トランジスタに所定の電流を流す電流吸い込みステップと、
    前記ミラー電流側トランジスタからの出力電流を電圧に変換して前記受光素子の受光レベルモニタ電圧として出力する電流電圧変換ステップと、
    前記受光素子に印加される印加電圧を検出する電圧検出ステップと、
    前記電圧検出ステップで検出した前記印加電圧をデジタル信号に変換する第1のアナログデジタル変換ステップと、
    前記受光レベルモニタ電圧に対して制御信号に基づいてサンプリングおよびホールドを行うサンプルホールドステップと、
    前記サンプルホールドステップの出力をデジタル信号へ変換する第2のアナログデジタル変換ステップと、
    前記カレントミラー回路へ電圧を供給する電圧発生ステップと、
    前記受光素子の環境温度を検出する温度検出ステップと、
    前記第1のアナログデジタル変換ステップから出力されるデジタル信号と前記温度検出ステップで検出した前記環境温度とに基づいて前記電圧発生ステップにより供給される電圧を指示する指示信号を生成し、前記第2のアナログデジタル変換ステップから出力されるデジタル信号に対して所定の演算を実施して受光レベルモニタ信号として出力する演算ステップと、
    前記指示信号をアナログ信号に変換して前記電圧発生ステップの入力とする第1のデジタルアナログ変換ステップと、
    入力されたデジタル信号をアナログ信号に変換して前記電流吸い込みステップの入力とする第2のデジタルアナログ変換ステップと、
    を含み、
    前記演算ステップでは、前記制御信号のサンプリングタイミングに応じて前記所定の電流を決定し、決定した前記所定の電流をデジタル信号として前記第2のデジタルアナログ変換ステップの入力とし、
    前記電流吸い込みステップでは、前記第2のデジタルアナログ変換ステップで変換された前記アナログ信号により示された前記所定の電流を前記基準電流側トランジスタに流す
    ことを特徴とする受光レベルモニタ方法。
JP2013555048A 2012-01-25 2012-01-25 光受信器、局側光終端装置および受光レベルモニタ方法 Active JP5657148B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/051548 WO2013111286A1 (ja) 2012-01-25 2012-01-25 光受信器、局側光終端装置および受光レベルモニタ方法

Publications (2)

Publication Number Publication Date
JP5657148B2 true JP5657148B2 (ja) 2015-01-21
JPWO2013111286A1 JPWO2013111286A1 (ja) 2015-05-11

Family

ID=48873057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013555048A Active JP5657148B2 (ja) 2012-01-25 2012-01-25 光受信器、局側光終端装置および受光レベルモニタ方法

Country Status (4)

Country Link
US (1) US9252887B2 (ja)
JP (1) JP5657148B2 (ja)
CN (1) CN104054185B (ja)
WO (1) WO2013111286A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9369001B2 (en) * 2013-05-16 2016-06-14 Delphi Technologies, Inc. Magnetic field detection apparatus for a wireless power transfer system
JP6315950B2 (ja) * 2013-11-22 2018-04-25 三菱電機株式会社 光パワーモニタ用回路、光モジュール、局側装置、光パワーモニタ方法及びプログラム
JP6453553B2 (ja) * 2014-03-26 2019-01-16 株式会社メガチップス カレントミラー回路及びこれを用いた受信装置
US20170063452A1 (en) * 2014-06-05 2017-03-02 Mitsubishi Electric Corporation Power monitoring device and receiving apparatus
CN106841970B (zh) * 2017-03-02 2020-09-11 成都优博创通信技术股份有限公司 Apd的调试方法
CN108111230B (zh) * 2018-01-19 2023-07-21 厦门优迅高速芯片有限公司 一种复用光通信光接收组件mon管脚的电路
JP7073609B2 (ja) * 2018-09-21 2022-05-24 住友電工デバイス・イノベーション株式会社 光受信装置および光受信装置のパワーモニタ方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62192935A (ja) * 1986-02-19 1987-08-24 Fujitsu Ltd 光学情報記録再生装置
JP2003163413A (ja) * 2001-11-29 2003-06-06 Ricoh Co Ltd 半導体レーザ装置
JP2004289206A (ja) * 2003-03-19 2004-10-14 Mitsubishi Electric Corp 光受信器
WO2007043282A1 (ja) * 2005-10-11 2007-04-19 Rohm Co., Ltd. 電流検出回路およびそれを用いた受光装置、発光制御装置ならびにそれらを用いた電子機器

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4550254A (en) * 1984-01-16 1985-10-29 Xerox Corporation Low cost infrared reflectance densitometer signal processor chip
JPS63104384A (ja) 1986-10-22 1988-05-09 Fanuc Ltd 光電変換回路
JPH04348235A (ja) 1991-05-24 1992-12-03 Mitsubishi Electric Corp 光導電型赤外線検出装置
JPH0697888A (ja) * 1992-09-11 1994-04-08 Fujitsu Ltd 光レベル調整回路
JPH09159739A (ja) 1995-12-11 1997-06-20 Tamura Electric Works Ltd 電池電圧監視方法
US5892800A (en) * 1997-03-20 1999-04-06 Sigmatel, Inc. Data detection circuit having a pre-amplifier circuit
JPH1140840A (ja) * 1997-07-16 1999-02-12 Sumitomo Electric Ind Ltd 光受信器
US6426495B1 (en) * 1999-06-24 2002-07-30 Hitachi, Ltd. Temperature compensating circuit, temperature compensating logarithm conversion circuit and light receiver
JP2001154160A (ja) 1999-11-26 2001-06-08 Nec Corp 光スイッチ
US6822987B2 (en) * 2000-11-22 2004-11-23 Optical Communication Products, Inc. High-speed laser array driver
US7155133B2 (en) * 2002-02-12 2006-12-26 Finisar Corporation Avalanche photodiode controller circuit for fiber optics transceiver
JP3918635B2 (ja) * 2002-05-30 2007-05-23 ソニー株式会社 直流レベル制御方法、クランプ回路、撮像装置
JP2004022929A (ja) 2002-06-19 2004-01-22 Matsushita Electric Ind Co Ltd Dc−dc昇圧方法
US6888123B2 (en) * 2003-05-09 2005-05-03 Finisar Corporation Method and apparatus for monitoring a photo-detector
JP2005031430A (ja) 2003-07-14 2005-02-03 Tohoku Pioneer Corp 発光表示パネルの駆動方法および駆動装置
JP4655457B2 (ja) 2003-08-08 2011-03-23 富士ゼロックス株式会社 光量制御装置及びこれを用いた画像形成装置
JP2005203536A (ja) 2004-01-15 2005-07-28 Matsushita Electric Ind Co Ltd 光送信器
US7103288B2 (en) * 2004-03-17 2006-09-05 Nortel Networks Limited Dynamic control of photodiode bias voltage
JP4606190B2 (ja) 2004-03-30 2011-01-05 ローム株式会社 電圧制御装置および電圧制御方法、ならびにそれを利用した電子機器
JP4379328B2 (ja) * 2004-12-20 2009-12-09 住友電気工業株式会社 光受信器
US7180048B1 (en) * 2005-11-03 2007-02-20 Intersil Americas Inc. Slow tail compensation
JP4892287B2 (ja) * 2006-06-30 2012-03-07 富士通株式会社 Pon通信用光パワーモニタ
JP4791334B2 (ja) * 2006-12-11 2011-10-12 富士通オプティカルコンポーネンツ株式会社 光受信装置および光受信装置のバイアス電圧制御方法
JP2008205614A (ja) 2007-02-16 2008-09-04 Nec Electronics Corp 受光回路
JP5091567B2 (ja) 2007-07-06 2012-12-05 ローム株式会社 発光素子の駆動回路および電子機器
CN101179332A (zh) * 2007-11-24 2008-05-14 华为技术有限公司 一种测量光功率的方法和装置
JP2009194431A (ja) 2008-02-12 2009-08-27 Panasonic Corp 受光回路
JP2011165714A (ja) 2010-02-04 2011-08-25 Sumitomo Electric Device Innovations Inc 光送受信器
JP2011252716A (ja) * 2010-05-31 2011-12-15 Sumitomo Electric Device Innovations Inc 光強度測定方法
JP5630325B2 (ja) * 2011-02-25 2014-11-26 住友電気工業株式会社 利得可変差動増幅回路
WO2013042583A1 (ja) * 2011-09-22 2013-03-28 日本電気株式会社 光パワーモニタ装置、方法及びプログラム
US8901474B2 (en) * 2012-06-19 2014-12-02 Source Photonics, Inc. Enhanced received signal power indicators for optical receivers and transceivers, and methods of making and using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62192935A (ja) * 1986-02-19 1987-08-24 Fujitsu Ltd 光学情報記録再生装置
JP2003163413A (ja) * 2001-11-29 2003-06-06 Ricoh Co Ltd 半導体レーザ装置
JP2004289206A (ja) * 2003-03-19 2004-10-14 Mitsubishi Electric Corp 光受信器
WO2007043282A1 (ja) * 2005-10-11 2007-04-19 Rohm Co., Ltd. 電流検出回路およびそれを用いた受光装置、発光制御装置ならびにそれらを用いた電子機器

Also Published As

Publication number Publication date
CN104054185B (zh) 2016-05-18
WO2013111286A1 (ja) 2013-08-01
CN104054185A (zh) 2014-09-17
JPWO2013111286A1 (ja) 2015-05-11
US9252887B2 (en) 2016-02-02
US20150295659A1 (en) 2015-10-15

Similar Documents

Publication Publication Date Title
JP5657148B2 (ja) 光受信器、局側光終端装置および受光レベルモニタ方法
JP4624318B2 (ja) バーストモード光パワー測定を容易にする方法およびシステム
JP6315950B2 (ja) 光パワーモニタ用回路、光モジュール、局側装置、光パワーモニタ方法及びプログラム
US20090238582A1 (en) Optical receiver
JP2003198296A (ja) 光受信装置
JP5172046B1 (ja) 親局側装置
US9638725B2 (en) Optical receiver and light reception current monitoring method
US20150155951A1 (en) Receiver and reception method
US8476894B2 (en) Monitoring circuit, method for outputting monitor signal, and optical receiver
US8923353B2 (en) Laser driver modulation and bias control scheme
JP5885467B2 (ja) 受光レベル取得装置、光受信器、光通信システム、受光レベル取得方法及びプログラム
JP6075547B2 (ja) 光パワーモニタ用回路、光モジュール、局側装置及び光パワーモニタ方法
JP4975662B2 (ja) バースト受信装置
JP5273409B2 (ja) 光受信器および受光電流モニタ方法
US20050100350A1 (en) Optical receiving device
KR100547783B1 (ko) 기가비트 수동 광 가입자망에서 광 신호 파워 레벨 측정장치 및 이를 포함하는 olt
CN114975677B (zh) 光接收装置、光接收封装装置、相关设备和方法
JP5368370B2 (ja) 光受信器
JP6253347B2 (ja) 信号検出回路、光受信器、親局装置及び信号検出方法
JP2011217226A (ja) 利得可変増幅器および光受信器
JP5588814B2 (ja) バースト受信機,バースト受信制御方法、およびシステム
JP6027513B2 (ja) 通信システム、中継装置、通信方法及び中継方法
JP2004297592A (ja) 光受信器
WO2022219776A1 (ja) 光パワーモニタ用回路、光モジュール、局側装置及び光パワーモニタ方法
CN106610322A (zh) 光纤量子密钥分配系统中光电子器件高精度温度检测装置

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141028

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141125

R150 Certificate of patent or registration of utility model

Ref document number: 5657148

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250