JP5655367B2 - モータ駆動装置 - Google Patents

モータ駆動装置 Download PDF

Info

Publication number
JP5655367B2
JP5655367B2 JP2010106991A JP2010106991A JP5655367B2 JP 5655367 B2 JP5655367 B2 JP 5655367B2 JP 2010106991 A JP2010106991 A JP 2010106991A JP 2010106991 A JP2010106991 A JP 2010106991A JP 5655367 B2 JP5655367 B2 JP 5655367B2
Authority
JP
Japan
Prior art keywords
motor
current detection
inverter circuit
current
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010106991A
Other languages
English (en)
Other versions
JP2011239515A (ja
Inventor
富田 謙治郎
謙治郎 富田
亀田 晃史
晃史 亀田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2010106991A priority Critical patent/JP5655367B2/ja
Priority to EP11158171.6A priority patent/EP2385619A3/en
Priority to TW100110592A priority patent/TWI460986B/zh
Priority to CN2011101172143A priority patent/CN102234908B/zh
Publication of JP2011239515A publication Critical patent/JP2011239515A/ja
Application granted granted Critical
Publication of JP5655367B2 publication Critical patent/JP5655367B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters

Description

本発明はインバータ回路により複数のモータを駆動する洗濯機等のモータ駆動装置に関するものである。
従来、3相誘導電動機やブラシレスモータのような3相同期電動機(以下、総称としてモータと略す)の制御装置として、広く一般にインバータ回路が用いられており、その制御回路の一部分として、モータの巻線電流の検出が行われている。モータの巻線電流の検出方法として、大別して、2通りの方法がある。
1つめの方法は、モータの巻線につながる電路にホールセンサ等を使用した電流検出器を用いることで、モータ巻線の電流を直接検出する方法である。この方法では、モータの巻線電流が精度よく検出でき、また、ホール素子を用いたセンサを使用すると、巻線と制御回路間の絶縁が可能である。一般的に三相モータでは2回路を使用する場合が多い。しかしこの方法では、検出器(あるいは検出回路)が比較的大きく、また、高価である。一般的に産業用のサーボモータの制御回路等、高精度な制御が必要な制御装置に使用されている。
2つ目の方法は、インバータ回路の−側(下側)素子の−電源側に直列に電流検出用シャント抵抗を挿入し、その電圧降下を増幅し、検出する方法である。この方法では、インバータの各素子のオン、オフのタイミングに対して電流検出用シャント抵抗に流れる電流が変化するため、制御回路にて検出するタイミングの制御が必要であり、多くはマイクロコンピュータを用い、制御されている。また、検出する信号の電位はインバータ回路の−側の電位となるため、制御回路を同電位に設置する場合には問題ないが、制御回路をインバータ回路と絶縁した電位に設置する場合には何らかの絶縁回路が必要である。しかし、この方法では比較的安価に電流検出回路を構成できることから、産業用三相誘導電動機駆動用インバータや、洗濯機、エアコン等の家電用モータの制御に幅広く用いられている(例えば、特許文献1参照)。
図7は、従来におけるモータ駆動装置のブロック図を示すもので、ヒートポンプ式洗濯乾燥機への実施例を示している。
図7において、交流電源1より全波整流回路20と電解コンデンサ21より構成される整流回路2に交流電力を加えて直流電力に変換する直流電源を構成し、第1のインバータ回路3A、第2のインバータ回路3B、および第3のインバータ回路3Cにより直流電力を3相交流電力に変換して、回転ドラム駆動モータ(第1のモータ)4A、ヒートポンプ用圧縮機モータ(第2のモータ)4Bおよび送風ファンモータ4Cを駆動する。それぞれのインバータ回路の下アームスイッチングトランジスタのエミッタ端子に接続されモータ電流を検出する第1の電流検出手段5A、第2の電流検出手段5B、および第3の電流検出手段5Cと、制御手段6により、回転ドラム駆動モータ(第1のモータ)4A、ヒートポンプ用圧縮機モータ(第2のモータ)6Bおよび送風ファンモータ6Cのそれぞれのモータの電流を検出して制御を行う。
インバータ制御手段60は、インバータ回路3A、3B、3CをPWM制御するPWM制御手段(図示せず)および高速A/D変換手段(図示せず)を複数個内蔵するマイクロコンピュータ、等の高速プロセッサにより構成され、インバータ回路3A、3B、3Cを同時に制御するもので、回転ドラム駆動モータ4A、圧縮機モータ4B、送風ファンモータ4Cはそれぞれ異なる回転速度で制御する。
第1のインバータ回路3Aは、回転ドラム駆動モータ4Aを制御するものであり、位置検出手段40aによりロータ永久磁石の位置を検出し、第1の電流検出手段5Aにより回転ドラム駆動モータ4Aのモータ電流を検出して、回転ドラム駆動モータ4Aを制御する。
第2のインバータ回路3Bは、圧縮機モータ4Bを、第3のインバータ回路3Cは、送風ファンモータ4Cを、第1のインバータと同様に制御を行う。
電流検出手段5A、5B、5Cは3シャント式電流検知方式で、3ヶ又は2ヶのシャント抵抗と電流信号増幅手段より構成し、電流検出手段5A、5B、5Cの基本構成は全く同じであり、モータ電流に応じてシャント抵抗値が異なるので、以下代表例について説明する。フルブリッジ3相インバータ回路下アームトランジスタのそれぞれのエミッタ端子(Nu、Nv、Nw)にシャント抵抗の一方の端子を接続し、シャント抵抗の他方の端子は直流電源負側G端子に接続するもので、それぞれ3ヶのシャント抵抗より構成されるため3シャント方式と呼ばれる。
図8は、従来におけるインバータ回路の詳細回路図であり、6個のトランジスタとダイオード、および制御用ICよりなるパワーモジュールよりインバータ回路を構成している。ここで、3相アームの1つのU相アーム30Aについて説明すると、絶縁ゲートバイポーラトランジスタ(以下、IGBTと略す)よりなる上アームトランジスタ31a1と逆並列ダイオード32a1の並列接続体と、IGBTよりなる下アームトランジスタ31a2と逆並列ダイオード32a2の並列接続体を直列関係に接続し、上アームトランジスタ31a1のコレクタ端子は直流電源の正電位端子P1に接続し、上アームトランジスタ31a1のエミッタ端子はモータ4への出力端子Uに接続し、下アームトランジスタ31a2のエミッタ端子Nuは電流検出手段5を構成するU相シャント抵抗50aを介して高圧直流電源の負電位側端子G1に接続する。
上アームトランジスタ31a1は上アーム駆動信号Upに応じて上アームゲート駆動回路33a1により駆動され、下アームトランジスタ31a2は下アーム駆動信号Unに応じて下アームゲート駆動回路33a2によりオンオフスイッチング制御される。
V相アーム30B、W相アーム30Cも同様の接続であり、各アームの下アームトランジスタのエミッタ端子Nv、Nwは電流検出手段5を構成するV相シャント抵抗50b、W相シャント抵抗50cに接続し、V相シャント抵抗50b、W相シャント抵抗50cの他方の端子は直流電源負電位端子G1に接続している。IGBT、あるいはパワーMOSFETにより下アームトランジスタを構成すると、ゲート電圧を制御することによりスイッチング制御できるので、IGBTの場合はエミッタ端子、パワーMOSFETの場合にはソース端子に接続するシャント抵抗の電圧が1V以下となるように抵抗値を選定すればスイッチング動作にはほとんど影響することなく電圧制御によりオンオフスイッチング制御でき、UVW各相シャント抵抗50a、50b、50cの電圧veu、vev、vewを検出することによりインバータ回路出力電流、すなわちモータ電流を検出できる。
図9は、従来例による電流検出手段5の電流信号増幅手段を単電源増幅回路より構成した詳細回路図であり、UVW各相シャント抵抗50a、50b、50cにより検出した交流の電流信号を非反転増幅器により変換増幅し、マイクロコンピュータ等のプロセッサに内蔵するA/D変換器が検出できるDC電圧レベルにレベル変換するものである。
特開2008−054812号公報
しかしながら、このような従来のモータ電流検出手段は従来、モータの電流を電圧として検出するシャント抵抗と、増幅器を構成するアンプ(一般的にオペアンプが使用されている)と、増幅器のゲインを決定する複数の抵抗器と、コンデンサやダイオード等のその他の部品より構成されており、部品点数が多く、実装面積も必要で、コストの上でも高くついていた。また、前記先行技術では電流検出手段のモジュール化を記してあるが、前記シャント抵抗、増幅器を構成するアンプ、複数の抵抗器と、コンデンサやダイオード等の部品を例えばハイブリッドICのようなモジュールとしてまとめたものであり、ある程度小型化にはなるものの限界があり、また、コスト的にはモジュール化することで決して安くはならないものである。
また、差動増幅回路の電流増幅率が一定であり、モータによって必要とされる電流値が異なるため、複数のモータを駆動するような機器において、それぞれのモータごとに電流検出手段が必要であり、実装スペースが必要になる。
本発明は、上記従来の課題を解決するもので、インバータ回路により複数のモータを駆動する洗濯機等のモータ駆動装置おいて、小型化、部品点数削減、低コスト化を行うことを目的としている。
本発明は上記目的を達成するために、直流電力を交流電力に変換するインバータ回路と、前記インバータ回路により駆動される複数のモータと、前記インバータ回路の出力先が一つのモータに接続されるように配線を切り替える負荷リレーと、前記インバータ回路の負電圧側に接続され、前記インバータ回路の下アームスイッチング手段の導通時に前記モータ電流を検出する電流検出手段と、前記電流検出手段の出力信号により前記インバータ回路を制御して前記モータを駆動する制御手段を備え、前記電流検出手段はシャント抵抗とこのシャント抵抗の電圧を入力し差動増幅する電流検知ICにより構成し、前記電流検知ICは負電圧の入力が可能であるとともに増幅率を切換え可能な差動増幅回路を有し、前記制御手段は駆動するモータに応じて前記負荷リレーと前記電流検出ICの増幅率を切替えてモータ制御を行う洗濯機等のモータ駆動装置である。
これにより、電流検出手段の小型化、およびモータごとに電流検出手段を実装する必要がなくなり、小型化、部品点数削減、低コスト化を実現できるものである。
本発明のモータ駆動装置は、電流検出手段の小型化、および電流検出手段の削減、低コスト化を実施するものであり、インバータ回路により複数のモータを駆動する洗濯機等のモータ駆動装置の小型化、低コスト化を実現することができる。
本発明の実施の形態1における洗濯機等のシステムブロック図 同洗濯機の電流検出手段周辺の要部ブロック図 同洗濯機の電流検知ICの回路図 本発明の実施の形態2におけるバスポンプ駆動時のフローチャート 本発明の実施の形態3における洗濯機等のシステムブロック図 同洗濯機のファンモータ駆動時のフローチャート 従来のモータ駆動装置のブロック図 従来のモータ駆動装置のインバータ回路の詳細回路図 従来のモータ駆動装置の電流信号増幅手段の単電源増幅回路の詳細回路図
第1の発明は、直流電力を交流電力に変換するインバータ回路と、前記インバータ回路により駆動される複数のモータと、前記インバータ回路の出力先が一つのモータに接続されるように配線を切り替える負荷リレーと、前記インバータ回路の負電圧側に接続され、前記インバータ回路の下アームスイッチング手段の導通時に前記モータ電流を検出する電流検出手段と、前記電流検出手段の出力信号により前記インバータ回路を制御して前記モータを駆動する制御手段を備え、前記電流検出手段はシャント抵抗とこのシャント抵抗の電圧を入力し差動増幅する電流検知ICにより構成し、前記電流検知ICは負電圧の入力が可能であるとともに増幅率を切換え可能な差動増幅回路を有し、前記制御手段は駆動するモータに応じて前記負荷リレーと前記電流検出ICの増幅率を切替えるようにしたことにより、モータを駆動するインバータ回路の下側のスイッチング素子の−電源側を一括接続し、直列に挿入されたシャント抵抗の両端を前記作動増幅回路の+、−一対の入力端子に接続することで、小型化された電流検出手段を構成することができ、また差動増幅回路の増幅率を制御手段で制御することで、モータごとの電流検出手段が不要になり、部品点数や実装面積が小さく、低コスト化を実現することができる。
第2の発明は、上記第1の発明において、制御手段は、インバータ回路を停止させ、電流検出手段からの信号変化がないことを確認した後に、負荷リレーと電流検出ICの増幅率を切替えるようにしたことにより、負荷リレーによりインバータ負荷を切換えるときのアーク電流、あるいはサージ電圧を減少させることができるので、安価なリレー等で構成可能となり、信頼性の高いモータ駆動装置を実現することができる。
以下、本発明の実施の形態について、図面を参照しながら説明する。なお、従来例と同じ構成のものは同一符号を付して説明を省略する。また、この実施の形態によって本発明が限定されるものではない。
(実施の形態1)
図1は本発明の実施の形態1におけるモータ駆動装置を用いたインバータ式洗濯機等のシステムブロック図である。図1において、交流電源100より全波整流回路101と電解コンデンサ102より構成される整流回路に交流電力を加えて直流電力に変換する直流電源を構成し、インバータ回路103Aにより洗い・すすぎ・脱水等を行うWM(洗濯モータ)104、インバータ回路103Bにより空気を循環させるFM(ファンモータ)105および洗濯の為の風呂水を給水するBP(バスポンプ)106を駆動する。また、電流検出手段107Aはマイクロコンピュータ等で構成された制御手段108からの増幅率設定信号zs1にて設定される電流増幅率で差動増幅したインバータ回路103Aの電流信号idc1を制御手段108に出力する。
そして、制御手段108は信号idc1の入力により、最適な条件で負荷モータを駆動するようインバータ回路103Aにインバータの駆動信号inv1を出力する。同様に、電流検出手段107Bは制御手段108からの増幅率設定信号zs2にて設定される電流増幅率で差動増幅したインバータ回路103Bの電流信号idc2を制御手段108に出力する。そして、制御手段108は信号idc2の入力により、最適な条件で負荷モータを駆動するようインバータ回路103Bにインバータの駆動信号inv2を出力する。さらに制御手段108はFM(ファンモータ)105を駆動するかBP(バスポンプ)106を駆動するかを洗濯の工程で判断し、インバータ回路103Bの出力を負荷リレー109で切換えることにより実現させるようになっている。
図2は電流検出手段107周辺の要部ブロック図、図3は電流検出手段107を構成する電流検知IC110の回路図である。図2において、3相モータ駆動用のインバータ回路はスイッチング素子31a1(上アームスイッチング手段)と31a2(下アームスイッチング手段)、31b1(上アームスイッチング手段)と31b2(下アームスイッチング手段)、31c1(上アームスイッチング手段)と31c2(下アームスイッチング手段)の直列に接続された2個1組を並列に3組、合計6個のスイッチング素子より構成されており、図2では例としてスイッチング素子にIGBTを使用している。2個1組のスイッチング素子の接続点、例えば31a1の下側(エミッタ側)と31a2の上側(コレクタ側)が接続されているが、その接続点より図示しないモータに接続されている。直列に接続された各下側スイッチング素子(下アームスイッチング手段)のエミッタ側は全て接続されており、電流検出用の抵抗であるシャント抵抗111に接続されている。
シャント抵抗111の両端は電流検出用IC110に入力されている。電流検出用IC110はシャント抵抗111の両端の電圧を差動増幅回路112で増幅し、アナログの信号idcとして出力する。この信号はマイクロコンピュータ等の制御回路108に入力され、A/D変換を行い、電流検出値としてモータの速度制御、トルク制御等に使用される。
図3で、前述のシャント抵抗111の両端は入力端子T1、T2に接続される。説明のため、入力端子T1には図2に示すシャント抵抗111の右側、下側IGBTのエミッタ側が接続され、入力端子T2には図2に示すシャント抵抗111の左側、コンデンサ102側が接続されているとする。入力端子T1への入力電圧をVT1[V]、入力端子T2への入力電圧をVT2[V]、出力端子T7への出力電圧をVOUT[V]、抵抗R4のVREF側の電圧をVREF[v]、抵抗R1、R2、R4、R5の抵抗値をR1[Ω]、R2[Ω]、R4[Ω]、R5[Ω]とすると、出力電圧は、

OUT={(R12+R15)VREF+(R24+R45)VT1
+(−R15−R45)VT2}/{R2(R1+R4)}

で表される。また、一般的に差動増幅回路を構成する場合、抵抗R1、R2、R4、R5の値はR1=R2、R4=R5(またはR1:R4=R2:R5)であり、前式にこれを代入すると、

OUT=VREF+(VT1−VT2)R4/R1

となり、電圧VREFを仮想GNDとし、それを中心に、増幅率R4/R1で増幅された電圧を端子T7に接続する。
また、電流検知IC110は差動増幅回路1112の増幅率を調整あるいは選択可能とする機能を設け、増幅率の設定用端子を設けた構成とする。図3において、端子T13、T14は増幅率設定端子であり、増幅率設定器114に入力される。図3の例では、端子T13、T14は2本あるので、4種類の状態を設定することができる。増幅率設定器114は例えば端子T13、T14の状態により、抵抗R4、R5の値を変更する。具体的には抵抗R1、R2が40kΩであったとする。増幅率設定器114は端子T13、T14の状態によって、R4、R5を同時に100kΩ、200kΩ、400kΩ、800kΩと設定する。増幅率はそれぞれ2.5倍、5倍、10倍、20倍となる。
これによって、制御するモータの電流値が小さい場合、例えば電流が最大で1A以下の場合には図2に示す電流検出用のシャント抵抗111の値を1Ω、電流増幅率を2.5倍とすることで電流は小さいがS/N比に優れた電流検出が可能である。また、電流が大きい場合には、電流検出用抵抗の損失が大きくなるので、抵抗値をなるべく下げたい。例えば電流検出値の最大値が20Aの場合、図2に示す電流検出用のシャント抵抗111の値を10mΩ、電流増幅率を20倍とすることで極力抵抗による損失を抑えた電流検出回路を構成することができる。
図1の構成において各定数の設計値の例を示す。今、WM(洗濯モータ)104の最大値を±8A(ゼロ−ピーク)とする。図2に示すシャント抵抗111はインバータを構成するIGBT 31a2、31b2、31c2の動作に影響しないように、シャント抵抗111による電圧降下を1V以下とするべきである。シャント抵抗の値を50mΩとしたとき、モータの最大電流による電圧降下は8A×50mΩ=0.4Vであり、仮に8Aを超えることがあってもインバータ回路の素子を余裕を持って駆動できる。
図2に示す制御回路108をマイクロコンピュータのA/D変換器を想定すると、入力可能な電圧は一般的に0V〜5Vであり、その中心電圧の2.5Vを基準に±2.5Vの範囲に差動増幅器の電圧を設定したい。この場合には、IC内部の基準電圧VREFを2.5Vになるように設定する。図3に示す抵抗R6、R7、アンプ113より構成される基準電圧VREFが2.5Vとなるように抵抗R6、R7を設定する。例えばICの電源電圧VCCが+5Vの場合には抵抗R6とR7の値を等しく設定する。入力端子T1、T2間にはモータの最大電流8A時に0.4Vの電圧が入力される。このときの振幅を2.5V以下とする必要がある。制御手段108は電流検知IC110の電流増幅率が5倍になるよう設定信号zs1を出力する。それにより、最大電流8A時の出力端子T7の振幅は0.4V×5=2.0Vとなる。
同様に、FM(ファンモータ)105の最大値を±2A、BP(バスポンプ)106の最大値を±1Aとする。シャント抵抗111の値を0.2Ωとすると最大電圧降下は0.4Vである。そして、FM(ファンモータ)105駆動時は増幅率を5倍に設定し、BP(バスポンプ)106駆動時は増幅率を10倍とすることで、それぞれのモータについてS/N比に優れた電流検出が可能となる。
このようにそれぞれ電流の異なるモータを1つのインバータ回路と1つの電流検出手段で、インバータ回路の出力先を切換えることで、精度の高いモータ駆動が実現できる。
なお、上記各定数は一例であり、モータの電流値、制御回路への出力電圧等の条件により、値は変化するものである。また、ICの内部ブロック構成は一例であり、例えば入力端子T1、T2と差動増幅器への入力の極性や、差動増幅器の構成を別の構成としても良い。また、本実施例の電流検出手段は各インバータ回路3相分の電流をまとめて検出しているが、各相毎に3個の電流検出を配置することにより、さらに高精度なモータの速度制御、トルク制御等が可能となる。
また、増幅率の設定に2端子を用い、4通りの設定として説明を行ったが、増幅率設定端子の数は2端子以外の数でも良い。例えば増幅率設定端子を1端子のみとし、差動増幅回路の増幅率を5倍、10倍といった2段階に設定することもできる。また、増幅率設定端子を3端子とし、5種類以上の差動増幅回路の増幅率の設定をすることもできる。また、増幅率をアナログ的に設定しても良い。例えば1端子で端子と回路GND間に抵抗を接続し、アナログ入力とすることで、増幅率設定器内部にカレントミラーを用い、各抵抗R4、R5をリニアに設定を行うこともできる。
以上のように本発明のモータ制御装置を構成することで、電流検出手段の小型化、およびモータごとに電流検出手段を実装する必要がなり、小型化、部品点数削減、低コスト化を実現できる小型で安価なモータ制御装置を実現することができる。
(実施の形態2)
本実施の形態では、上記実施の形態1において、制御手段108はインバータ回路103Bを停止させ、電流検出手段107Bからの信号idc2の変化がないことを確認した後に、負荷リレー109を駆動するようにしたものである。
図4にその実施例を示す。図4はBP(バスポンプ)106を駆動する際の制御手段108の判断を示したフローチャートである。ステップ200でBP(バスポンプ)106の駆動判断を行う。まず、ステップ201で現在FM(ファンモータ)105駆動中か否かを判定する。駆動中であればステップ202でFM(ファンモータ)105を停止させる。そして、ステップ203で電流検知IC110からの電流信号idc2が基準電圧であるVREFのままで変化がない、つまりモータに電流が流れていないことを確認し、ステップ204で、負荷リレー109をBP(バスポンプ)106側に切換え、電流検知IC110に増幅率5倍の設定信号を出力する。そして、ステップ205でインバータ回路103Bにインバータ駆動信号を出力し、BP(バスポンプ)106の駆動を開始する。
これにより、負荷リレー109でインバータ負荷を切換えるときのアーク電流、あるいはサージ電圧を減少させることができるので、安価なリレー等で構成可能となり、信頼性の高いモータ駆動装置を実現することができる。
(実施の形態3)
図5は本発明の実施の形態3におけるモータ駆動装置を用いたインバータ式洗濯機等のシステムブロック図であり、制御手段108はFM(ファンモータ)105の目標電流値(目標回転数)に応じて電流検出IC110の増幅率を切替えるようにしたものである。他の構成は上記実施の形態1と同じである。
図6にその実施例を示す。図6はFM(ファンモータ)105を駆動する際の制御手段108の判断を示したフローチャートである。ステップ300でFM(ファンモータ)105駆動判断を行う。まず、ステップ301で目標回転数が2000rpmなのか5000rpmなのかを工程により判断する。ここで、FM(ファンモータ)105の電流最大値を2000rpm時は±2A、5000rpm時は±3.5Aであるものとする。シャント抵抗111の値を0.2Ωとすると最大電圧降下は0.6Vであり、前述した1.0V以下を構成できる。そして、ステップ302で2000rpm目標時は電流検知IC110の増幅率を5倍に設定することで、電流検出IC110の出力電流idc2を2.5V±2.0Vとする。また5000rpm目標時はステップ303およびステップ304にて、電流検出ICの増幅率を2.5倍に設定することで、電流検出IC110の出力電流idc2を2.5V±1.75Vとする。そして、ステップ305でインバータ回路103Bにインバータ駆動信号を出力し、所望の回転数でFM(ファンモータ)105の駆動を開始する。
これにより、負荷の状態が変化する場合においても電流検知IC110から出力される電流検知信号idc2の値を0〜5Vの範囲で最大限の振幅にすることができ、S/N比に優れた信号電流検出が可能となり、少ない部品構成で最適なモータ制御を実現することがでる。
なお、本実施例では実施の形態1で示した負荷リレー109が存在しないが、負荷リレー109が存在した場合でも同様に実現可能である。
以上のように、本発明にかかるモータ駆動装置は、電流検出手段の小型化、部品点数の削減、および電流検出手段の削減が可能となるので、インバータ回路により複数のモータを駆動する洗濯機等のモータ駆動装置として有用である。
103 インバータ回路
104 WM(洗濯モータ)
105 FM(ファンモータ)
106 BP(バスポンプ)
107 電流検出手段
108 制御手段
109 負荷リレー
110 電流検知IC
111 シャント抵抗
112 差動増幅回路

Claims (2)

  1. 直流電力を交流電力に変換するインバータ回路と、前記インバータ回路により駆動される複数のモータと、前記インバータ回路の出力先が一つのモータに接続されるように配線を切り替える負荷リレーと、前記インバータ回路の負電圧側に接続され、前記インバータ回路の下アームスイッチング手段の導通時に前記モータ電流を検出する電流検出手段と、前記電流検出手段の出力信号により前記インバータ回路を制御して前記モータを駆動する制御手段を備え、前記電流検出手段はシャント抵抗とこのシャント抵抗の電圧を入力し差動増幅する電流検知ICにより構成し、前記電流検知ICは負電圧の入力が可能であるとともに増幅率を切換え可能な差動増幅回路を有し、前記制御手段は駆動するモータに応じて前記負荷リレーと前記電流検出ICの増幅率を切替えるようにしたモータ駆動装置。
  2. 制御手段は、インバータ回路を停止させ、電流検出手段からの信号変化がないことを確認した後に、負荷リレーと電流検出ICの増幅率を切替えるようにした請求項1記載のモータ駆動装置。
JP2010106991A 2010-05-07 2010-05-07 モータ駆動装置 Expired - Fee Related JP5655367B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010106991A JP5655367B2 (ja) 2010-05-07 2010-05-07 モータ駆動装置
EP11158171.6A EP2385619A3 (en) 2010-05-07 2011-03-15 Motor drive apparatus
TW100110592A TWI460986B (zh) 2010-05-07 2011-03-28 馬達驅動裝置
CN2011101172143A CN102234908B (zh) 2010-05-07 2011-05-05 电动机驱动装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010106991A JP5655367B2 (ja) 2010-05-07 2010-05-07 モータ駆動装置

Publications (2)

Publication Number Publication Date
JP2011239515A JP2011239515A (ja) 2011-11-24
JP5655367B2 true JP5655367B2 (ja) 2015-01-21

Family

ID=44584884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010106991A Expired - Fee Related JP5655367B2 (ja) 2010-05-07 2010-05-07 モータ駆動装置

Country Status (4)

Country Link
EP (1) EP2385619A3 (ja)
JP (1) JP5655367B2 (ja)
CN (1) CN102234908B (ja)
TW (1) TWI460986B (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102611286A (zh) * 2011-12-21 2012-07-25 广东美的电器股份有限公司 高集成智能功率模块
KR101413181B1 (ko) * 2013-01-21 2014-06-27 주식회사 아모텍 다중 모터 구동장치와 이를 이용한 세탁기용 모터 구동장치 및 그 방법
WO2014112839A1 (ko) 2013-01-21 2014-07-24 주식회사 아모텍 다중 모터 구동장치와 이를 이용한 세탁기용 모터 구동장치 및 그 방법
WO2014208095A1 (ja) 2013-06-28 2014-12-31 パナソニックIpマネジメント株式会社 換気装置
JP2015047000A (ja) * 2013-08-28 2015-03-12 パナソニックIpマネジメント株式会社 換気装置
KR20150031828A (ko) 2013-09-17 2015-03-25 삼성전자주식회사 이중 인버터 시스템 및 그 제어 방법
RU2632916C1 (ru) 2013-09-25 2017-10-11 Мицубиси Электрик Корпорейшн Переключающее устройство, устройство преобразования мощности, устройство возбуждения двигателя, нагнетатель воздуха, компрессор, кондиционер воздуха, холодильник и морозильный аппарат
CN104787217A (zh) * 2014-08-20 2015-07-22 成都宽和科技有限责任公司 速度信号处理输出信号的数字差分控制助力系统
CN104787219A (zh) * 2014-08-20 2015-07-22 成都宽和科技有限责任公司 以挡位和速度信号都输入的电压差分控制助力车系统
CN105675988A (zh) * 2014-11-17 2016-06-15 无锡飞翎电子有限公司 洗衣机电机识别装置和方法以及洗衣机
KR101698782B1 (ko) * 2015-02-09 2017-02-01 엘지전자 주식회사 모터구동장치 및 이를 구비한 식기 세척기
JP6525330B2 (ja) * 2016-03-28 2019-06-05 三菱重工業株式会社 電力変換装置及び空調機
US11012011B2 (en) * 2017-04-27 2021-05-18 Mitsubishi Electric Corporation Motor control device and air conditioner
DK3714541T3 (da) * 2017-11-20 2022-10-31 Linak As Bestemmelse af en elektrisk strøm, der bevæger sig igennem en elektrisk motor ud af en flerhed af elektriske motorer
CN113737463A (zh) * 2021-08-10 2021-12-03 Tcl家用电器(合肥)有限公司 驱动电路及其驱动板

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6232731B1 (en) * 1997-06-26 2001-05-15 Electric Boat Corporation Multi-channel motor winding configuration and pulse width modulated controller
KR100553293B1 (ko) * 1999-02-02 2006-02-22 로크웰삼성오토메이션 주식회사 전류검출신호의 가변 오프셋 성분 제거장치 및 그 방법
JP2001129293A (ja) * 1999-11-09 2001-05-15 Matsushita Electric Ind Co Ltd 洗濯機の制御装置
JP4380012B2 (ja) * 2000-04-04 2009-12-09 パナソニック株式会社 モータ駆動装置
JP3910414B2 (ja) * 2001-11-15 2007-04-25 株式会社豊田中央研究所 モータ駆動制御装置およびその方法
DK200200572A (da) * 2002-04-17 2003-10-18 Danfoss Drives As Fremgangsmåde til måling af strøm i en motorstyring og motorstyring som bruger denne fremgangsmåde
JP4363169B2 (ja) * 2003-12-11 2009-11-11 パナソニック株式会社 食器洗い機のモータ駆動装置
JP4168965B2 (ja) * 2004-04-14 2008-10-22 株式会社デンソー 交流電動機制御装置
JP5010836B2 (ja) * 2006-02-27 2012-08-29 日立オートモティブシステムズ株式会社 モータ駆動装置,モータ駆動方法、及び電動ブレーキ装置
JP4661739B2 (ja) 2006-08-30 2011-03-30 パナソニック株式会社 モータ駆動装置
JP5096020B2 (ja) * 2007-03-02 2012-12-12 オリエンタルモーター株式会社 インダクタンス負荷制御装置
JP4882934B2 (ja) * 2007-09-14 2012-02-22 ダイキン工業株式会社 電流測定装置
JP5011051B2 (ja) * 2007-10-02 2012-08-29 日立アプライアンス株式会社 ブラシレスモータ
JP2009095206A (ja) * 2007-10-12 2009-04-30 Nec Electronics Corp インバータ制御回路とその制御方法
JP2008099554A (ja) * 2008-01-07 2008-04-24 Hitachi Industrial Equipment Systems Co Ltd インバータ装置及びモータ駆動装置

Also Published As

Publication number Publication date
EP2385619A2 (en) 2011-11-09
CN102234908B (zh) 2013-07-03
TW201212522A (en) 2012-03-16
CN102234908A (zh) 2011-11-09
TWI460986B (zh) 2014-11-11
JP2011239515A (ja) 2011-11-24
EP2385619A3 (en) 2014-02-19

Similar Documents

Publication Publication Date Title
JP5655367B2 (ja) モータ駆動装置
JP5556353B2 (ja) モータ電流検出器及びモータ制御装置
US8217602B2 (en) Motor driving apparatus and control method thereof
JP4941686B2 (ja) 電力変換装置
US7839113B2 (en) Apparatus and method for driving synchronous motor
US8237396B2 (en) Motor driving device, and control method of motor driving device
JP5716158B2 (ja) モータ電流検出用ic、およびこれを用いた電流検出器またはモータ制御装置
WO2018078851A1 (ja) 電動機駆動装置
JP5163536B2 (ja) 誘起電圧検出回路とそれを有するモータ駆動用半導体装置及びモータ並びに空調機
JP4661739B2 (ja) モータ駆動装置
CN108336942B (zh) 三相电机驱动电路
JP2008104481A (ja) 洗濯乾燥機のモータ駆動装置
JP4062074B2 (ja) 三相ブラシレスdcモータの制御方法
JP4345553B2 (ja) モータ駆動装置
JP2020025435A (ja) 集積回路及びモータ装置
JP5477159B2 (ja) モータ電流検出用ic、およびこれを用いた電流検出器またはモータ制御装置
JP2006180608A (ja) ブラシレスdcモータ駆動回路及びそれを用いたファンモータ
JP2008160915A (ja) モータ駆動用インバータ制御装置および該装置を用いた機器
JP2006271108A (ja) インバータ制御用半導体装置及びモータ駆動用インバータ制御装置
JP2006345618A (ja) モータ駆動装置
JPWO2014167719A1 (ja) 電力変換装置、およびそれを備えたモータ駆動装置、およびそれを備えた送風機、圧縮機、およびそれらを備えた空気調和機、冷蔵庫、ならびに冷凍機
CN219065589U (zh) 用于无刷直流电机驱动控制系统的电流检测电路
JP7264095B2 (ja) 電力変換装置
JP2023144346A (ja) モータ制御装置並びにモータ制御方法
JP2023142618A (ja) 電動機システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130418

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20130514

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140401

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140519

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20141007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141028

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141110

R151 Written notification of patent or utility model registration

Ref document number: 5655367

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees