JP5525067B2 - セパレータの製造方法、その方法によって形成されたセパレータ、及びそれを含む電気化学素子の製造方法 - Google Patents

セパレータの製造方法、その方法によって形成されたセパレータ、及びそれを含む電気化学素子の製造方法 Download PDF

Info

Publication number
JP5525067B2
JP5525067B2 JP2012551929A JP2012551929A JP5525067B2 JP 5525067 B2 JP5525067 B2 JP 5525067B2 JP 2012551929 A JP2012551929 A JP 2012551929A JP 2012551929 A JP2012551929 A JP 2012551929A JP 5525067 B2 JP5525067 B2 JP 5525067B2
Authority
JP
Japan
Prior art keywords
separator
binder polymer
manufacturing
inorganic particles
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012551929A
Other languages
English (en)
Other versions
JP2013519206A (ja
Inventor
リー、ジョー‐スン
ホン、ジャン‐ヒュク
キム、ジョン‐フン
リュ、ボ‐キュン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Chem Ltd
Original Assignee
LG Chem Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Chem Ltd filed Critical LG Chem Ltd
Publication of JP2013519206A publication Critical patent/JP2013519206A/ja
Application granted granted Critical
Publication of JP5525067B2 publication Critical patent/JP5525067B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2275Heterogeneous membranes
    • C08J5/2281Heterogeneous membranes fluorine containing heterogeneous membranes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2287After-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/42Acrylic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/423Polyamide resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/426Fluorocarbon polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/429Natural polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2427/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2427/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2427/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2427/14Homopolymers or copolymers of vinyl fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2433/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2433/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2433/14Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2433/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2433/24Homopolymers or copolymers of amides or imides
    • C08J2433/26Homopolymers or copolymers of acrylamide or methacrylamide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • Y10T29/49115Electric battery cell making including coating or impregnating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Description

本発明は、リチウム二次電池のような電気化学素子のセパレータ製造方法、その方法によって形成されたセパレータ、及びそれを含む電気化学素子の製造方法に関し、より詳しくは、無機物粒子とバインダー高分子との混合物からなる多孔性コーティング層が多孔性基材上に形成されたセパレータの製造方法、その方法によって形成されたセパレータ、及びそれを含む電気化学素子の製造方法に関する。
本出願は、2010年02月25日出願の韓国特許出願第10−2010−0016990号及び2011年02月24日出願の韓国特許出願第10−2011−0016508号に基づく優先権を主張し、該当出願の明細書及び図面に開示された内容は、すべて本出願に援用される。
近年、エネルギー貯蔵技術に対する関心が高まりつつある。携帯電話、カムコーダー、及びノートパソコン、さらには電気自動車のエネルギーまで適用分野が拡がるとともに、電気化学素子の研究と開発に対する努力が次第に具体化されている。電気化学素子はこのような面で最も注目される分野であり、その中でも、充放電可能な二次電池の開発に関心が寄せられている。このような電池の開発において、容量密度及び比エネルギーを向上させるために、新たな電極と電池の設計に対する研究開発が行われている。
1990年代の初めに開発されたリチウム二次電池は、水溶液電解液を用いるニッケル‐マンガン、ニッケル‐カドミウム、硫酸‐鉛電池などの従来型電池に比べて作動電圧が高くエネルギー密度が格段に高いという長所から、現在使用されている二次電池のうち最も脚光を浴びている。しかし、このようなリチウムイオン電池は、有機電解液を用いることによる発火及び爆発などの安全問題を抱えており、またその製造に手間がかかるという短所がある。最近のリチウムイオン高分子電池は、上記のようなリチウムイオン電池の短所を改善し、次世代電池の1つとして挙げられているが、未だ電池の容量がリチウムイオン電池と比べて相対的に低く、特に低温における放電容量が不十分であるため、それに対する改善が至急に求められている。
上記のような電気化学素子は多くのメーカにおいて生産中であるが、それらの安全性特性は相異なる様相を呈している。電気化学素子の安全性の評価及び安全性の確保は最も重要に考慮すべき事項である。特に、電気化学素子の誤作動によりユーザが傷害を被ることはあってはならなく、ゆえに、安全規格は電気化学素子内の発火及び発煙などを厳格に規制している。電気化学素子が過熱し、熱暴走が起きるか又はセパレータが貫通される場合は、爆発が起きる恐れが大きい。特に、電気化学素子のセパレータとして通常使用されるポリオレフィン系多孔性膜は、材料特性及び延伸を含む製造工程上の特性から100℃以上の温度で甚だしい熱収縮挙動を見せ、正極と負極との間の短絡を起こすという問題がある。
このような電気化学素子の安全性問題を解決するために、多数の気孔を有する多孔性基材の少なくとも一面に、無機物粒子とバインダー高分子との混合物をコーティングして多孔性有機無機複合コーティング層を形成したセパレータが提案された。例えば、特許文献1には、多孔性基材上に無機物粒子とバインダー高分子との混合物で形成された多孔性コーティング層を設けたセパレータに関する技術が開示されている。
有機無機複合多孔性コーティング層が形成されたセパレータにおいて、多孔性基材上に形成された多孔性コーティング層に存在する無機物粒子が、多孔性コーティング層の物理的形態を維持する一種のスペーサの役割をすることで、電気化学素子が過熱したとき、多孔性基材の熱収縮を抑制するか、または、熱暴走時の両電極の短絡を防止するようになる。また、無機物粒子同士の間には空き空間(インタースティシャル・ボリューム、interstitial volume)が存在し、微細気孔を形成する。
多孔性基材に形成された有機無機複合多孔性コーティング層が、上記のような機能を良好に発現するためには、無機物粒子が所定含量以上に十分含まれていなければならない。しかし、無機物粒子の含量が多くなれば、バインダー高分子の含量は相対的に少なくなるため、電極との結着性が低下し、巻取など電気化学素子の組立て過程で発生する応力や外部との接触によって多孔性コーティング層の無機物粒子が脱離し易い。セパレータの電極に対する結着性が低下すれば電気化学素子の性能が低下し、脱離した無機物粒子は電気化学素子の局所的な欠陥として作用して電気化学素子の安全性に悪影響を及ぼすことになる。
本出願人は、特定の高分子をバインダー高分子として用いてセパレータを製造することで、このような問題点を解決したが(特許文献2)、より改善された性能を備えるセパレータの製造方法が必要とされる。
韓国特許公開第10−2007−0000231号公報 韓国特許第10−0754746号公報
本発明は、上記問題点に鑑みてなされたものであり、電極に対する結着性が良好であって、電気化学素子の組立て過程で無機物粒子が脱離する問題点が改善されたセパレータを容易に製造する方法、その方法によって形成されたセパレータ、及びそれを含む電気化学素子の製造方法を提供することを課題とする。
上記の課題を解決するため、本発明のセパレータ製造方法は、
(S1)多数の気孔を有する平面状の多孔性基材を用意する段階;
(S2)無機物粒子が分散され、第1バインダー高分子及び第2バインダー高分子を含むバインダー高分子が溶媒に溶解されたスラリーを、前記多孔性基材の少なくとも一面にコーティングする段階;
(S3)前記第2バインダー高分子は溶解させない非溶媒を前記多孔性基材にコーティングされたスラリー上に噴射する段階;及び
(S4)前記溶媒及び非溶媒を同時に乾燥処理する段階を含む。
本発明のセパレータ製造方法において、前記多孔性基材はポリオレフィン系多孔性膜であることが望ましく、多孔性基材の厚さは1ないし100μmであることが望ましい。
本発明のセパレータ製造方法において、無機物粒子の平均粒径は0.001ないし10μmであることが望ましい。また、無機物粒子としては、誘電率定数が5以上の無機物粒子またはリチウムイオン伝達能力を有する無機物粒子をそれぞれ単独でまたはこれらを混合して使用することができる。
本発明のセパレータ製造方法において、前記第1バインダー高分子はシアノ基を有する高分子であることが望ましい。シアノ基を有する高分子としては、シアノエチルプルラン、シアノエチルポリビニルアルコール、シアノエチルセルロース、シアノアクリレート、シアノエチルスクロースなどが挙げられる。
本発明のセパレータ製造方法において、スラリーの製造に使用される溶媒としては、前記第1バインダー高分子との溶解度指数差及び前記第2バインダー高分子との溶解度指数差がそれぞれ5.0MPa0.5以下の溶媒が望ましく、アセトン、N,N‐ジメチルアセトアミド、N,N‐ジメチルホルムアミド、N‐メチル‐2‐ピロリドン、メチルエチルケトンなどを使用することがさらに望ましい。
本発明のセパレータ製造方法において、第2バインダー高分子としては、ポリフッ化ビニリデン‐ヘキサフルオロプロピレン、ポリフッ化ビニリデン‐トリクロロエチレン、ポリメチルメタクリレートなどが挙げられる。前記非溶媒としては、前記第2バインダー高分子との溶解度指数差が8.0MPa0.5以上の非溶媒が望ましく、特に水、メタノール、エタノールなどを使用することがさらに望ましい。
このような方法で製造された本発明のセパレータは、多孔性基材の表面に無機物粒子とバインダー高分子との混合物で形成された多孔性コーティング層を備える。このようなセパレータを正極と負極との間に介在させて電極とラミネートすることで、リチウム二次電池やスーパーキャパシタ素子のような電気化学素子を製造することができる。
本発明によって製造されたセパレータは、次のような効果を奏する。
第一、スラリー上に噴射された非溶媒は第2バインダー高分子の相分離を促すことで、第2バインダー高分子を多孔性コーティング層の表面部により多く存在させる。これにより、セパレータの電極に対する結着性が増大するので、ラミネーションが容易になる。また、無機物粒子の脱離による問題が低減する。
第二、電極に対する十分な結着力が確保されることで、多孔性コーティング層内の無機物粒子の含量を高めることができ、セパレータの安定性が一層向上する。
本発明の実施例1によって製造されたセパレータの多孔性コーティング層のSEM写真である。 本発明の実施例2によって製造されたセパレータの多孔性コーティング層のSEM写真である。 本発明の比較例1によって製造されたセパレータの多孔性コーティング層のSEM写真である。
以下、本発明を詳しく説明する。これに先立ち、本明細書及び請求範囲に使われた用語や単語は通常的や辞書的な意味に限定して解釈されてはならず、発明者自らは発明を最善の方法で説明するために用語の概念を適切に定義できるという原則に則して本発明の技術的な思想に応ずる意味及び概念で解釈されねばならない。したがって、本明細書に記載された実施例に示された構成は、本発明のもっとも望ましい一実施例に過ぎず、本発明の技術的な思想のすべてを代弁するものではないため、本出願の時点においてこれらに代替できる多様な均等物及び変形例があり得ることを理解せねばならない。
本発明によるセパレータ製造方法を詳しく説明すれば、次のようである。
まず、多数の気孔を有する平面状の多孔性基材を用意する(S1段階)。
多孔性基材としては、多様な高分子で形成された多孔性膜や不織布など通常電気化学素子に使用される平面状の多孔性基材であれば全て使用することができる。例えば、電気化学素子、特に、リチウム二次電池の分離膜として使用されるポリオレフィン系多孔性膜や、ポリエチレンテレフタレート繊維からなる不織布などを使用でき、その材質や形態は目的に応じて多様に選択することができる。例えば、ポリオレフィン系多孔性膜は、高密度ポリエチレン、線形低密度ポリエチレン、低密度ポリエチレン、超高分子量ポリエチレンのようなポリエチレン、ポリプロピレン、ポリブチレン、ポリペンテンなどのポリオレフィン系高分子をそれぞれ単独でまたはこれらを混合した高分子で形成でき、不織布もポリオレフィン系高分子またはこれより耐熱性が高い高分子を用いた繊維で製造することができる。多孔性基材の厚さは特に制限されないが、望ましくは1ないし100μm、より望ましくは5ないし50μmである。多孔性基材に存在する気孔の大きさ及び気孔度も特に制限されないが、それぞれ0.001ないし50μm及び10ないし95%であることが望ましい。
次いで、無機物粒子が分散され、第1バインダー高分子及び第2バインダー高分子を含むバインダー高分子が溶媒に溶解されたスラリーを、前記多孔性基材の少なくとも一面にコーティングする(S2段階)。
本段階で使用されるスラリーの構成成分を説明すれば、次のようである。
無機物粒子は電気化学的に安定していれば、特に制限されない。すなわち、本発明で使用する無機物粒子は、適用する電気化学素子の作動電圧範囲(例えば、Li/Li基準で0〜5V)で酸化及び/または還元反応を起こさないものであれば、特に制限されない。特に、無機物粒子として誘電率の高い無機物粒子を使用する場合、液体電解質内の電解質塩、例えばリチウム塩の解離度増加に寄与し、電解液のイオン伝導度を向上させることができる。
上述した理由から、前記無機物粒子は誘電率定数が5以上、望ましくは10以上の高誘電率無機物粒子を含むことが望ましい。誘電率定数が5以上の無機物粒子の非制限的な例としては、BaTiO、Pb(Zr,Ti)O(PZT)、Pb1−xLaZr1−yTi(PLZT)、Pb(Mg1/3Nb2/3)O‐PbTiO(PMN‐PT)、ハフニア(HfO)、SrTiO、SnO、CeO、MgO、NiO、CaO、ZnO、ZrO、Y、Al、TiO、SiCまたはこれらの混合体などがある。
また、無機物粒子としては、リチウムイオン伝達能力を有する無機物粒子、すなわちリチウム元素を含むが、リチウムを貯蔵せず、リチウムイオンを移動させる機能を有する無機物粒子を使用することができる。リチウムイオン伝達能力を有する無機物粒子の非制限的な例としては、リチウムホスフェート(LiPO)、リチウムチタンホスフェート(LiTi(PO、0<x<2、0<y<3)、リチウムアルミニウムチタンホスフェート(LiAlTi(PO、0<x<2、0<y<1、0<z<3)、14LiO‐9Al‐38TiO‐39Pなどのような(LiAlTiP)系列ガラス(0<x<4、0<y<13)、リチウムランタンチタネート(LiLaTiO、0<x<2、0<y<3)、Li3.25Ge0.250.75などのようなリチウムゲルマニウムチオホスフェート(LiGe、0<x<4、0<y<1、0<z<1、0<w<5)、LiNなどのようなリチウムナイトライド(Li、0<x<4、0<y<2)、LiPO‐LiS‐SiSなどのようなSiS系列ガラス(LiSi、0<x<3、0<y<2、0<z<4)、LiI‐LiS‐PなどのようなP系列ガラス(Li、0<x<3、0<y<3、0<z<7)またはこれらの混合物などが挙げられる。
また、無機物粒子の平均粒径には特別な制限がないが、均一な厚さのコーティング層の形成及び適切な孔隙率のため、0.001ないし10μmであることが望ましい。0.001μm未満の場合は分散性が低下し、10μmを超過すれば、形成されるコーティング層の厚さが増加する恐れがある。
第1バインダー高分子は、特に制限されないが、シアノ基を有する高分子であることが望ましい。シアノ基を有する高分子としては、シアノエチルプルラン、シアノエチルポリビニルアルコール、シアノエチルセルロース、シアノアクリレート、シアノエチルスクロースなどをそれぞれ単独でまたはこれらを2種以上混合して使用することができる。また、第1バインダー高分子としては、共重合体であるポリアクリルアミド‐アクリレート(polyacrylamide‐co‐acrylate)を使用することが望ましい。
第2バインダー高分子としては、ポリフッ化ビニリデン‐ヘキサフルオロプロピレン、ポリフッ化ビニリデン‐トリクロロエチレン、ポリメチルメタクリレートなどをそれぞれ単独でまたはこれらを2種以上混合して使用することができる。
前記第1バインダー高分子と第2バインダー高分子との重量比は、75:25ないし10:90であることが本発明の目的を達成するために好適である。また、無機物粒子とバインダー高分子(第1バインダー高分子と第2バインダー高分子の和)との重量比は、例えば50:50ないし99:1が望ましく、より望ましくは70:30ないし95:5である。無機物粒子の含量が50重量部未満であれば、バインダー高分子の含量が多くなって形成される多孔性コーティング層の気孔の大きさ及び気孔度が減少し、99重量部を超過すれば、バインダー高分子の含量が少ないため形成される多孔性コーティング層の耐剥離性が弱化することがある。
スラリー製造に使用される溶媒は、第1バインダー高分子及び第2バインダー高分子を両方とも溶解させる。このような溶媒としては、前記第1バインダー高分子に対する溶解度指数差及び前記第2バインダー高分子に対する溶解度指数差がそれぞれ5.0MPa0.5以下である溶媒を使用することが望ましく、アセトン、N,N‐ジメチルアセトアミド、N,N‐ジメチルホルムアミド、N‐メチル‐2‐ピロリドン、メチルエチルケトンなどをそれぞれ単独でまたはこれらを2種以上混合して使用することができる。
無機物粒子が分散され、バインダー高分子が溶媒に溶解されたスラリーは、第1バインダー高分子と第2バインダー高分子を溶媒に溶解させた後、無機物粒子を添加し、それを分散させることで製造することができる。無機物粒子は適正の大きさに破砕した状態で添加し得るが、バインダー高分子の溶液に無機物粒子を添加した後、無機物粒子をボールミル法などで破砕しながら分散させることが望ましい。
上記の方法で用意したスラリーは、ディップコーティング法、ロールコーティング法、ダイコーティング法など公知のコーティング法を用いて前記多孔性基材の少なくとも一面にコーティングする。多孔性基材にコーティングするスラリーのローディングレベル(loading level)は、コーティング層の機能及び高容量電池に対する適合性を考慮して、最終的に形成される多孔性コーティング層が5ないし20g/mの範囲になるように調節することが望ましい。
その後、前記第2バインダー高分子を溶解させない非溶媒を前記多孔性基材にコーティングされたスラリー上に噴射する(S3段階)。これにより、スラリーコーティング層上には非溶媒コーティング層が形成される。ここで、非溶媒(non−solvent)とは、前記第2バインダー高分子を溶解させない溶媒を意味する。このような非溶媒としては、前記第2バインダー高分子との溶解度指数差が8.0MPa0.5以上の非溶媒を使用することが望ましく、特に、水、メタノール、エタノールなどがさらに望ましい。
スラリーコーティング層上に噴射された非溶媒はスラリー内の第2バインダー高分子の相分離を促すことで、第2バインダー高分子をスラリーコーティング層の表面部により多く存在させる。これにより、後述する(S3)の乾燥処理後、セパレータの電極に対する結着性が増大するため、ラミネーションが容易になる。また、無機物粒子の脱離による問題が減少する。また、電極に対する十分な結着力が確保されることで、多孔性コーティング層内の無機物粒子含量が高められるため、セパレータの安定性が一層向上する。
最後に、多孔性基材上にコーティングされたスラリーの溶媒及び非溶媒を同時に乾燥処理する(S4段階)。スラリーの溶媒と非溶媒を同時に乾燥処理することで、第2バインダー高分子が多孔性コーティング層の表面部の最外層により多く存在する状態で多孔性コーティング層が形成される。すなわち、多孔性コーティング層の表面部がその下部よりバインダー高分子をより多く含む状態になるため、上述した電極に対する結着力などが向上する。
一方、本発明とは違って、スラリーコーティング層を先に乾燥し、その後非溶媒を噴射するようになれば、第2バインダー高分子に対する非溶媒の機能を期待できない。
本発明の製造方法によって形成されたセパレータは、多孔性基材及びその上に形成された多孔性コーティング層を備える。多孔性コーティング層で、バインダー高分子は、無機物粒子同士が結着した状態を維持できるように、これらを相互付着(すなわち、バインダー高分子が無機物粒子同士の間を連結及び固定)させる。また、多孔性コーティング層は、バインダー高分子によって多孔性基材と結着した状態を維持することが望ましい。これにより、多孔性コーティング層の無機物粒子は相互接触した状態で存在し、無機物粒子が接触した状態で生じる空き空間(インタースティシャル・ボリューム)が多孔性コーティング層の気孔になることが望ましい。このとき、空き空間の大きさは無機物粒子の平均粒径以下になる。
上述した方法によって製造したセパレータを正極と負極との間に介在させてラミネートすることで電気化学素子を製造することができる。電気化学素子は電気化学反応を行うあらゆる素子を含み、具体的には、あらゆる種類の一次電池、二次電池、燃料電池、太陽電池またはスーパーキャパシタ素子のようなキャパシタなどが挙げられる。特に、前記二次電池のうちリチウム金属二次電池、リチウムイオン二次電池、リチウムポリマー二次電池またはリチウムイオンポリマー二次電池などを含むリチウム二次電池が望ましい。
本発明のセパレータと共に使用する正極と負極の両電極は、特に制限されず、当業界で周知の通常の方法によって電極活物質を電極電流集電体に結着した形態で製造することができる。前記電極活物質のうち正極活物質の非制限的な例としては、従来電気化学素子の正極に使用される通常の正極活物質が使用でき、特にリチウムマンガン酸化物、リチウムコバルト酸化物、リチウムニッケル酸化物、リチウム鉄酸化物、またはこれらを組み合わせたリチウム複合酸化物を使用することが望ましい。負極活物質の非制限的な例としては、従来電気化学素子の負極に使用される通常の負極活物質が使用でき、特にリチウム金属またはリチウム合金、炭素、石油コーク(petroleum coke)、活性化炭素、グラファイトまたはその他炭素類などのようなリチウム吸着物質などが望ましい。正極電流集電体の非制限的な例としては、アルミニウム、ニッケル、またはこれらの組合せによって製造されるホイルなどがあり、負極電流集電体の非制限的な例としては、銅、金、ニッケル、銅合金またはこれらの組合せによって製造されるホイルなどがある。
本発明の電気化学素子で使用できる電解液は、Aのような構造の塩であり、AはLi、Na、Kのようなアルカリ金属陽イオンまたはこれらの組合せからなるイオンを含み、BはPF 、BF 、Cl、Br、I、ClO 、AsF 、CHCO 、CFSO 、N(CFSO 、C(CFSO のような陰イオンまたはこれらの組合せからなるイオンを含む塩を、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、ジプロピルカーボネート(DPC)、ジメチルスルホキシド、アセトニトリル、ジメトキシエタン、ジエトキシエタン、テトラヒドロフラン、N‐メチル‐2‐ピロリドン(NMP)、エチルメチルカーボネート(EMC)、γ‐ブチロラクトンまたはこれらの混合物からなる有機溶媒に溶解または解離したものであるが、これに限定されることはない。
前記電解液の注入は、最終製品の製造工程及び求められる物性に応じて、電池製造工程のうち適宜な段階において行えばよい。すなわち、電池組立ての前または電池組立ての最終段階などにおいて注入すればよい。
以下、本発明を具体的な実施例を挙げて説明する。しかし、本発明による実施例は多くの他の形態に変形され得、本発明の範囲が後述する実施例に限定されると解釈されてはならない。本発明の実施例は当業界で平均的な知識を持つ者に本発明をより完全に説明するために提供されるものである。
実施例1
第1バインダー高分子であるシアノエチルプルラン及び第2バインダー高分子であるポリフッ化ビニリデン‐ヘキサフルオロプロピレン(PVdF‐HFP)を2:10の重量比でそれぞれアセトンに添加し、50℃で約12時間以上溶解させて高分子溶液を製造した。製造された高分子溶液にチタン酸バリウム(BaTiO)粉末を高分子混合物/活性炭素粉末=10/90の重量比になるように添加し、12時間以上ボールミル法で無機物粒子を破砕及び分散してスラリーを製造した。製造されたスラリーの無機物粒子の粒径は平均600nmであった。
製造されたスラリーをディップコーティング法で厚さ12μmのポリエチレン多孔性膜(気孔度45%)にコーティングした。スラリーのローディングレベルは12.5g/mになるように調節した。
次いで、第2バインダー高分子の非溶媒として、蒸留水をスラリーの両表面に噴射した。非溶媒の噴射量は9mL/minになるように調節した。
次いで、コーティングが完了した基材を乾燥機に通過させることでスラリーの溶媒と非溶媒を乾燥させ、セパレータを完成した。
完成したセパレータのガーレー(Gurley)値は373.9sec/100mLと良好であった。
図1は実施例1によって製造されたセパレータの多孔性コーティング層のSEM写真である。図1を参照すれば、第2バインダー高分子からなる層の表面への露出が多いことが確認できる。
一方、セパレータの結着性を評価するため、実施例1による2枚のセパレータを100度でラミネートした後、結着力を測定した結果、11.21gf/cmと優れた結着力を見せた。このことから実施例1のセパレータは電極との結着性に優れることが分かる。
実施例2
非溶媒の種類を蒸留水とメタノールが6:4(v/v)で混合された混合非溶媒に変更したことを除き、実施例1と同様の方法でセパレータを製造した。
図2は実施例2によって製造されたセパレータの多孔性コーティング層のSEM写真である。図2を参照すれば、第2バインダー高分子からなる層の表面への露出が多いことが確認できる。
一方、セパレータのガーレー値及び結着力は、それぞれ371.1sec/100mL及び9.42gf/cmであった。
実施例3
第1バインダー高分子をシアノアクリレートに変更したことを除き、実施例1と同様の方法でセパレータを製造した。
得られたセパレータのガリー値及び結着力は、それぞれ364.9sec/100mL及び13.10gf/cmであった。
実施例4
第1バインダー高分子をアクリルアミド‐アクリレートの共重合体に変更したことを除き、実施例1と同様の方法でセパレータを製造した。得られたセパレータのガリー値及び結着力はそれぞれ361.8sec/100mL及び11.07gf/cmであった。
比較例1
非溶媒を噴射しないことを除き、実施例1と同様の方法で実施した。
図3は比較例1によって製造されたセパレータの多孔性コーティング層のSEM写真である。図3を参照すれば、バインダー高分子からなる層の表面への露出が実施例1及び実施例2よりかなり低いことが分かる。
一方、得られたセパレータのガーレー値は382.5sec/100mLと良好であったが、結着力は2.61gf/cmであって実施例1ないし4より非常に低い結着力を見せた。

Claims (20)

  1. セパレータの製造方法であって、
    (S1)多数の気孔を有する平面状の多孔性基材を用意する段階と、
    (S2)無機物粒子が分散され、第1バインダー高分子及び第2バインダー高分子を含むバインダー高分子が溶媒に溶解されたスラリーを、前記多孔性基材の少なくとも一面にコーティングする段階と、
    (S3)前記第2バインダー高分子が溶解されない非溶媒を前記多孔性基材にコーティングされたスラリー上に噴射する段階と、及び
    (S4)前記溶媒及び非溶媒を同時に乾燥処理する段階とを含んでなる、セパレータの製造方法。
  2. 前記多孔性基材が、ポリオレフィン系多孔性膜であることを特徴とする、請求項1に記載のセパレータの製造方法。
  3. 前記多孔性基材の厚さが、1ないし100μmであることを特徴とする、請求項1又は2に記載のセパレータの製造方法。
  4. 前記無機物粒子の平均粒径が、0.001ないし10μmであることを特徴とする、請求項1〜3の何れか一項に記載のセパレータの製造方法。
  5. 前記無機物粒子が、誘電率定数が5以上の無機物粒子、リチウムイオン伝達能力を有する無機物粒子、及びこれらの混合物からなる群より選択された無機物粒子であることを特徴とする、請求項1〜4の何れか一項に記載のセパレータの製造方法。
  6. 前記誘電率定数が5以上の無機物粒子が、BaTiO、Pb(Zr,Ti)O(PZT)、Pb1−xLaZr1−yTi(PLZT、0<x<1、0<y<1)、Pb(Mg1/3Nb2/3)O‐PbTiO(PMN‐PT)、ハフニア(HfO)、SrTiO、SnO、CeO、MgO、NiO、CaO、ZnO、ZrO、Y、Al、SiC及びTiOからなる群より選択されたいずれか1つの無機物粒子またはこれらのうち2種以上の混合物であることを特徴とする、請求項5に記載のセパレータの製造方法。
  7. 前記リチウムイオン伝達能力を有する無機物粒子が、リチウムホスフェート(LiPO)、リチウムチタンホスフェート(LiTi(PO、0<x<2、0<y<3)、リチウムアルミニウムチタンホスフェート(LiAlTi(PO、0<x<2、0<y<1、0<z<3)、(LiAlTiP)系列ガラス(0<x<4、0<y<13)、リチウムランタンチタネート(LiLaTiO、0<x<2、0<y<3)、リチウムゲルマニウムチオホスフェート(LiGe、0<x<4、0<y<1、0<z<1、0<w<5)、リチウムナイトライド(Li、0<x<4、0<y<2)、SiS系列ガラス(LiSi、0<x<3、0<y<2、0<z<4)、P系列ガラス(Li、0<x<3、0<y<3、0<z<7)からなる群より選択されたいずれか1つの無機物粒子またはこれらのうち2種以上の混合物であることを特徴とする、請求項5に記載のセパレータの製造方法。
  8. 前記第1バインダー高分子が、シアノ基を有する高分子であることを特徴とする、請求項1〜7の何れか一項に記載のセパレータの製造方法。
  9. 前記シアノ基を有する高分子が、シアノエチルプルラン、シアノエチルポリビニルアルコール、シアノエチルセルロース、シアノアクリレート、及びシアノエチルスクロースからなる群より選択されたいずれか1つまたはこれらのうち2種以上の混合物であることを特徴とする、請求項8に記載のセパレータの製造方法。
  10. 前記第1バインダー高分子が、ポリアクリルアミド‐アクリレートであることを特徴とする、請求項1〜9の何れか一項に記載のセパレータの製造方法。
  11. 前記溶媒と前記第1バインダー高分子との溶解度指数差、及び前記溶媒と前記第2バインダー高分子との溶解度指数差が、それぞれ5.0MPa0.5以下であることを特徴とする、請求項1〜10の何れか一項に記載のセパレータの製造方法。
  12. 前記溶媒が、アセトン、N,N‐ジメチルアセトアミド、N,N‐ジメチルホルムアミド、N‐メチル‐2‐ピロリドン、及びメチルエチルケトンからなる群より選択されたいずれか1つまたはこれらのうち2種以上の混合物であることを特徴とする、請求項11に記載のセパレータの製造方法。
  13. 前記第2バインダー高分子が、ポリフッ化ビニリデン‐ヘキサフルオロプロピレン、ポリフッ化ビニリデン‐トリクロロエチレン、及びポリメチルメタクリレートからなる群より選択されたいずれか1つまたはこれらのうち2種以上の混合物であることを特徴とする、請求項1〜12の何れか一項に記載のセパレータの製造方法。
  14. 前記非溶媒と前記第2バインダー高分子との溶解度指数差が、8.0MPa0.5以上であることを特徴とする、請求項1〜13の何れか一項に記載のセパレータの製造方法。
  15. 前記非溶媒が、水、メタノール、及びエタノールからなる群より選択されたいずれか1つまたはこれらのうち2種以上の混合物であることを特徴とする、請求項14に記載のセパレータの製造方法。
  16. 前記第1バインダー高分子と第2バインダー高分子との重量比が、75:25ないし10:90であることを特徴とする、請求項1〜15の何れか一項に記載のセパレータの製造方法。
  17. 前記無機物粒子とバインダー高分子との重量比が、50:50ないし99:1であることを特徴とする、請求項1〜16の何れか一項に記載のセパレータの製造方法。
  18. 請求項1〜17の何れか一項に記載のセパレータの製造方法によって形成された、セパレータ。
  19. 電気化学素子の製造方法であって、
    セパレータを製造し、正極と負極との間に前記セパレータを介在させてラミネートする段階を含んでなり、
    前記セパレータを請求項1〜17の何れか一項によって製造することを特徴とする、電気化学素子の製造方法。
  20. 前記電気化学素子がリチウム二次電池であることを特徴とする、請求項19に記載の電気化学素子の製造方法。
JP2012551929A 2010-02-25 2011-02-25 セパレータの製造方法、その方法によって形成されたセパレータ、及びそれを含む電気化学素子の製造方法 Active JP5525067B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
KR10-2010-0016990 2010-02-25
KR20100016990 2010-02-25
KR10-2011-0016508 2011-02-24
KR1020110016508A KR101173202B1 (ko) 2010-02-25 2011-02-24 세퍼레이터의 제조방법, 이로부터 형성된 세퍼레이터 및 이를 포함하는 전기화학소자의 제조방법
PCT/KR2011/001371 WO2011105866A2 (ko) 2010-02-25 2011-02-25 세퍼레이터의 제조방법, 이로부터 형성된 세퍼레이터 및 이를 포함하는 전기화학소자의 제조방법

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2014080436A Division JP5885313B2 (ja) 2010-02-25 2014-04-09 セパレータの製造方法、その方法によって形成されたセパレータ、及びそれを含む電気化学素子の製造方法

Publications (2)

Publication Number Publication Date
JP2013519206A JP2013519206A (ja) 2013-05-23
JP5525067B2 true JP5525067B2 (ja) 2014-06-18

Family

ID=44932603

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2012551929A Active JP5525067B2 (ja) 2010-02-25 2011-02-25 セパレータの製造方法、その方法によって形成されたセパレータ、及びそれを含む電気化学素子の製造方法
JP2014080436A Active JP5885313B2 (ja) 2010-02-25 2014-04-09 セパレータの製造方法、その方法によって形成されたセパレータ、及びそれを含む電気化学素子の製造方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2014080436A Active JP5885313B2 (ja) 2010-02-25 2014-04-09 セパレータの製造方法、その方法によって形成されたセパレータ、及びそれを含む電気化学素子の製造方法

Country Status (6)

Country Link
US (2) US8815433B2 (ja)
EP (1) EP2541644B1 (ja)
JP (2) JP5525067B2 (ja)
KR (1) KR101173202B1 (ja)
CN (1) CN102770984B (ja)
WO (1) WO2011105866A2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014160666A (ja) * 2010-02-25 2014-09-04 Lg Chem Ltd セパレータの製造方法、その方法によって形成されたセパレータ、及びそれを含む電気化学素子の製造方法

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101173201B1 (ko) * 2010-02-25 2012-08-13 주식회사 엘지화학 세퍼레이터의 제조방법, 이로부터 형성된 세퍼레이터 및 이를 포함하는 전기화학소자의 제조방법
WO2013070031A1 (ko) 2011-11-11 2013-05-16 주식회사 엘지화학 세퍼레이터 및 이를 구비한 전기화학소자
KR101712645B1 (ko) * 2012-03-12 2017-03-06 주식회사 엘지화학 세퍼레이터 도포용 슬러리, 그 슬러리를 이용한 세퍼레이터 및 그를 포함하는 전기화학소자
US10096810B2 (en) * 2012-05-10 2018-10-09 Samsung Sdi Co., Ltd. Separator and method of manufacturing the same and rechargeable lithium battery including the same
US9570781B2 (en) 2012-08-10 2017-02-14 Battelle Memorial Institute Optical waveguide methods for detecting internal faults in operating batteries
US10211489B2 (en) 2012-08-10 2019-02-19 Battelle Memorial Institute Integral light sources and detectors for an optical sensor to detect battery faults
US10439255B2 (en) * 2012-08-10 2019-10-08 Battelle Memorial Institute Optical monitoring of battery health
WO2014030507A1 (ja) * 2012-08-23 2014-02-27 Jnc株式会社 耐熱性に優れた複合多孔質膜
KR101535199B1 (ko) * 2012-11-30 2015-07-09 주식회사 엘지화학 개선된 분산성을 갖는 슬러리 및 그의 용도
KR102304350B1 (ko) * 2014-02-14 2021-09-17 제온 코포레이션 이차 전지 다공막용 조성물, 이차 전지용 다공막, 및 이차 전지
JP2015191710A (ja) * 2014-03-27 2015-11-02 株式会社村田製作所 リチウムイオン二次電池の製造方法およびリチウムイオン二次電池
KR101707193B1 (ko) * 2014-04-01 2017-02-27 주식회사 엘지화학 세퍼레이터의 제조방법, 이로부터 형성된 세퍼레이터 및 이를 포함하는 전기화학소자
US10002719B2 (en) 2014-04-21 2018-06-19 Lg Chem, Ltd. Separator having binder layer, and electrochemical device comprising the separator and method of preparing the separator
KR102636109B1 (ko) * 2014-05-05 2024-02-14 다라믹 엘엘씨 개선된 납 축전지 분리기, 전극, 배터리 그리고 그 제조 방법 및 그 용도
HUE054492T2 (hu) * 2014-12-05 2021-09-28 Celgard Llc Javított bevonatos szeparátorok lítium akkumulátorokhoz és vonatkozó eljárások
US10177421B2 (en) 2015-02-12 2019-01-08 Battelle Memorial Institute Battery cell structure with limited cell penetrations
PL3336930T3 (pl) * 2015-08-11 2021-05-04 Zeon Corporation Kompozycja dla warstwy funkcjonalnej niewodnego ogniwa akumulatorowego, warstwa funkcjonalna dla niewodnego ogniwa akumulatorowego i niewodne ogniwo akumulatorowe
JP6863283B2 (ja) 2015-08-11 2021-04-21 東レ株式会社 電池用セパレータ
WO2017110067A1 (ja) * 2015-12-25 2017-06-29 日本ゼオン株式会社 非水系二次電池多孔膜用バインダー組成物、非水系二次電池多孔膜用スラリー組成物、非水系二次電池用多孔膜、及び非水系二次電池
EP3219771B1 (en) * 2016-03-14 2019-02-06 3M Innovative Properties Company Fluoropolymer compositions with high content of inorganic material
JP6766411B2 (ja) 2016-03-31 2020-10-14 東レ株式会社 電池用セパレータおよびその製造方法
PL3367466T3 (pl) * 2016-06-08 2021-11-08 Lg Chem, Ltd. Separator i zawierające go urządzenie elektrochemiczne
CN109478625A (zh) 2016-07-28 2019-03-15 东丽株式会社 层合卷绕体
KR102140130B1 (ko) * 2017-01-26 2020-07-31 주식회사 엘지화학 분리막의 제조방법, 이로부터 제조된 분리막 및 이를 포함하는 전기화학소자
ES2931534T3 (es) 2017-01-26 2022-12-30 Lg Energy Solution Ltd Método para fabricar un separador, separador fabricado mediante el mismo y dispositivo electroquímico que comprende el mismo
CN110521021B (zh) 2017-11-24 2022-05-13 株式会社Lg化学 隔板制造方法、由此制得的隔板和包括该隔板的电化学装置
US11489232B2 (en) 2017-12-27 2022-11-01 Lg Energy Solution, Ltd. Method for manufacturing separator, separator formed thereby, and electrochemical device including same
US11658365B2 (en) 2018-01-30 2023-05-23 Lg Energy Solution, Ltd. Separator for electrochemical device and method for manufacturing the same
GB2586926A (en) * 2018-05-07 2021-03-10 Teebs R&D Llc A method of forming a carbon based active layer for an anode of a lead carbon battery and the active layer formed therefrom
EP3796455B1 (en) * 2018-05-17 2024-07-24 NGK Insulators, Ltd. Lithium secondary battery
JP6966639B2 (ja) * 2018-05-17 2021-11-17 日本碍子株式会社 リチウム二次電池
KR102228049B1 (ko) * 2018-06-12 2021-03-15 주식회사 엘지화학 전극접착력이 개선된 리튬 이차전지용 세퍼레이터 및 그의 제조방법
PL3694020T3 (pl) 2018-06-20 2024-03-11 Lg Chem, Ltd. Separator dla urządzenia elektrochemicznego, sposób wytwarzania separatora oraz urządzenie elektrochemiczne zawierające separator
KR101996642B1 (ko) 2018-07-13 2019-07-04 주식회사 엘지화학 저저항 코팅층을 포함하는 전기화학소자용 분리막 및 이를 제조하는 방법
KR20200032542A (ko) * 2018-09-18 2020-03-26 삼성에스디아이 주식회사 리튬 이차 전지용 분리막 및 이를 포함하는 리튬 이차 전지
KR20200047409A (ko) 2018-10-24 2020-05-07 주식회사 엘지화학 용해 온도가 다른 바인더를 포함하는 분리막 및 이의 제조방법
KR102342669B1 (ko) * 2019-01-16 2021-12-22 삼성에스디아이 주식회사 리튬 이차 전지용 분리막 및 이를 포함하는 리튬 이차 전지
KR102421618B1 (ko) 2019-03-25 2022-07-14 주식회사 엘지에너지솔루션 전기화학소자용 세퍼레이터의 제조방법
CN111834591B (zh) * 2019-04-18 2022-04-15 比亚迪股份有限公司 多孔隔膜及其制备方法和锂离子电池
CN110911623B (zh) * 2019-11-06 2021-09-24 电子科技大学 一种锂硫电池隔膜用铁酸铋@二氧化钛复合材料及制备方法
KR102580239B1 (ko) * 2020-03-09 2023-09-19 삼성에스디아이 주식회사 복합 세퍼레이터 제조 방법, 복합세퍼레이터 및 이를 채용한 리튬 전지

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07122257A (ja) * 1993-09-03 1995-05-12 Sumitomo Electric Ind Ltd 電池用セパレータ
JPH07161343A (ja) * 1993-10-14 1995-06-23 Sumitomo Electric Ind Ltd 電池用セパレータ
JP3218170B2 (ja) 1995-09-06 2001-10-15 キヤノン株式会社 リチウム二次電池及びリチウム二次電池の製造方法
US6537703B2 (en) * 1998-11-12 2003-03-25 Valence Technology, Inc. Polymeric mesoporous separator elements for laminated lithium-ion rechargeable batteries
CN1157817C (zh) * 1999-08-14 2004-07-14 惠州Tcl金能电池有限公司 复合聚合物电解质膜及用此膜制造的锂电池
JP2001148243A (ja) 1999-11-19 2001-05-29 Matsushita Electric Ind Co Ltd 電池電極シートの製造方法及び電解質シートの製造方法
US7871946B2 (en) * 2003-10-09 2011-01-18 Kuraray Co., Ltd. Nonwoven fabric composed of ultra-fine continuous fibers, and production process and application thereof
KR20060020904A (ko) 2004-09-01 2006-03-07 브이케이 주식회사 적층형 리튬 이차 전지 및 그 제조방법
KR100858214B1 (ko) * 2005-06-27 2008-09-10 주식회사 엘지화학 이질적 표면을 갖는 2층 구조의 유/무기 복합 다공성분리막 및 이를 이용한 전기 화학 소자
JP5153101B2 (ja) 2005-08-31 2013-02-27 旭化成イーマテリアルズ株式会社 セパレータ及びその製造方法
KR100821102B1 (ko) * 2005-12-06 2008-04-08 주식회사 엘지화학 안전성이 강화된 전극 및 이를 구비한 전기화학소자
CN101326658B (zh) * 2005-12-06 2010-09-29 Lg化学株式会社 具有形态梯度的有机/无机复合隔膜、其制造方法和含该隔膜的电化学装置
JP5162825B2 (ja) * 2005-12-13 2013-03-13 パナソニック株式会社 非水電解質二次電池用負極とそれを用いた非水電解質二次電池
KR100791791B1 (ko) * 2006-03-10 2008-01-04 주식회사 엘지화학 다공성 활성층이 코팅된 전극, 그 제조방법 및 이를 구비한전기화학소자
EP2741345B1 (en) * 2006-04-28 2017-09-13 LG Chem, Ltd. Separator for battery with gel polymer layer
US9825267B2 (en) 2006-05-04 2017-11-21 Lg Chem, Ltd. Lithium secondary battery and method for producing the same
KR100860552B1 (ko) * 2006-11-23 2008-09-26 한국과학기술원 높은 기계적 강도를 가지는 리튬이차전지용 분리막의제조방법 및 이를 적용한 리튬이차전지
KR20070000231U (ko) 2007-02-02 2007-02-22 오윤희 상하 왕복 선풍기
KR100727248B1 (ko) * 2007-02-05 2007-06-11 주식회사 엘지화학 다공성 활성층이 코팅된 유기/무기 복합 분리막 및 이를구비한 전기화학소자
KR100859755B1 (ko) * 2007-02-07 2008-09-24 한국과학기술원 폴리우레탄계 고분자 화합물이 코팅된 전지용 분리막을 포함하는 Li/SOCl2 전지
KR100859754B1 (ko) * 2007-02-07 2008-09-24 한국과학기술원 시아노아크릴레이트 화합물이 코팅된 전지용 분리막 및이를 포함하는 Li/SOCl2 전지
KR100754746B1 (ko) 2007-03-07 2007-09-03 주식회사 엘지화학 다공성 활성층이 코팅된 유기/무기 복합 분리막 및 이를구비한 전기화학소자
US8455053B2 (en) * 2007-07-06 2013-06-04 Sony Corporation Separator, battery using the same, and method for manufacturing separator
WO2009081594A1 (ja) 2007-12-26 2009-07-02 Panasonic Corporation 非水電解質二次電池
PL2927993T3 (pl) * 2008-01-30 2019-01-31 Lg Chem, Ltd. Separator dla urządzeń elektrochemicznych
EP2260523B1 (en) * 2008-04-08 2014-02-26 SK Innovation Co. Ltd. Method of manufacturing the microporous polyolefin composite film with a thermally stable layer at high temperature
JP2009266464A (ja) 2008-04-23 2009-11-12 Panasonic Corp リチウム電池の製造方法
KR101055536B1 (ko) * 2009-04-10 2011-08-08 주식회사 엘지화학 다공성 코팅층을 포함하는 세퍼레이터, 그 제조방법 및 이를 구비한 전기화학소자
US20100261055A1 (en) * 2009-04-14 2010-10-14 Zhiping Jiang Lithium Primary Cells
WO2011040704A2 (ko) * 2009-09-29 2011-04-07 주식회사 엘지화학 세퍼레이터의 제조방법, 이로부터 형성된 세퍼레이터 및 이를 포함하는 전기화학소자의 제조방법
KR101055431B1 (ko) * 2009-11-23 2011-08-08 주식회사 엘지화학 다공성 코팅층을 구비한 분리막의 제조방법, 이로부터 형성된 분리막 및 이를 구비한 전기화학소자
WO2011065765A2 (ko) * 2009-11-27 2011-06-03 주식회사 엘지화학 세퍼레이터의 제조방법, 이로부터 형성된 세퍼레이터 및 이를 포함하는 전기화학소자
KR101173202B1 (ko) 2010-02-25 2012-08-13 주식회사 엘지화학 세퍼레이터의 제조방법, 이로부터 형성된 세퍼레이터 및 이를 포함하는 전기화학소자의 제조방법
KR101173201B1 (ko) 2010-02-25 2012-08-13 주식회사 엘지화학 세퍼레이터의 제조방법, 이로부터 형성된 세퍼레이터 및 이를 포함하는 전기화학소자의 제조방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014160666A (ja) * 2010-02-25 2014-09-04 Lg Chem Ltd セパレータの製造方法、その方法によって形成されたセパレータ、及びそれを含む電気化学素子の製造方法

Also Published As

Publication number Publication date
JP2014160666A (ja) 2014-09-04
CN102770984B (zh) 2016-04-13
US9985260B2 (en) 2018-05-29
WO2011105866A3 (ko) 2011-12-01
EP2541644B1 (en) 2018-01-17
EP2541644A4 (en) 2014-03-12
CN102770984A (zh) 2012-11-07
KR20110097715A (ko) 2011-08-31
US8815433B2 (en) 2014-08-26
EP2541644A2 (en) 2013-01-02
US20140220411A1 (en) 2014-08-07
WO2011105866A2 (ko) 2011-09-01
US20120115036A1 (en) 2012-05-10
JP2013519206A (ja) 2013-05-23
JP5885313B2 (ja) 2016-03-15
KR101173202B1 (ko) 2012-08-13

Similar Documents

Publication Publication Date Title
JP5885313B2 (ja) セパレータの製造方法、その方法によって形成されたセパレータ、及びそれを含む電気化学素子の製造方法
JP5885312B2 (ja) セパレータの製造方法、その方法によって形成されたセパレータ、及びそれを含む電気化学素子の製造方法
JP6052813B2 (ja) セパレータ及びそれを備えたリチウム二次電池
JP6461328B2 (ja) 安全性が向上した電極組立体、その製造方法及びその電極組立体を含む電気化学素子
JP6208663B2 (ja) セパレータの製造方法、その方法で形成されたセパレータ、及びそれを含む電気化学素子
JP6069677B2 (ja) 多孔性活性層がコーティングされた有機/無機複合分離膜及びこれを備えた電気化学素子
JP5678201B2 (ja) セパレータの製造方法、その方法により形成したセパレータ、及びそれを備えた電気化学素子
EP2333876B1 (en) Separator having porous coating layer and electrochemical device containing the same
JP5415609B2 (ja) 多孔性コーティング層を含むセパレータ、その製造方法、及びそれを備える電気化学素子
JP5384631B2 (ja) 多孔性コーティング層を備えたセパレータ、その製造方法及びこれを備えた電気化学素子
JP2013544430A (ja) セパレータ及びそれを備える電気化学素子
KR101623101B1 (ko) 세퍼레이터의 제조방법, 이로부터 형성된 세퍼레이터 및 이를 구비한 전기화학소자
KR101708882B1 (ko) 세퍼레이터의 제조방법
JP5902692B6 (ja) サイクル特性が改善した電気化学素子
JP5902692B2 (ja) サイクル特性が改善した電気化学素子

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20131112

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20140212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140214

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20140219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140410

R150 Certificate of patent or registration of utility model

Ref document number: 5525067

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250