KR20110097715A - 세퍼레이터의 제조방법, 이로부터 형성된 세퍼레이터 및 이를 포함하는 전기화학소자의 제조방법 - Google Patents

세퍼레이터의 제조방법, 이로부터 형성된 세퍼레이터 및 이를 포함하는 전기화학소자의 제조방법 Download PDF

Info

Publication number
KR20110097715A
KR20110097715A KR1020110016508A KR20110016508A KR20110097715A KR 20110097715 A KR20110097715 A KR 20110097715A KR 1020110016508 A KR1020110016508 A KR 1020110016508A KR 20110016508 A KR20110016508 A KR 20110016508A KR 20110097715 A KR20110097715 A KR 20110097715A
Authority
KR
South Korea
Prior art keywords
separator
binder polymer
inorganic particles
solvent
producing
Prior art date
Application number
KR1020110016508A
Other languages
English (en)
Other versions
KR101173202B1 (ko
Inventor
이주성
홍장혁
김종훈
유보경
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2012551929A priority Critical patent/JP5525067B2/ja
Priority to PCT/KR2011/001371 priority patent/WO2011105866A2/ko
Priority to CN201180011068.4A priority patent/CN102770984B/zh
Priority to EP11747756.2A priority patent/EP2541644B1/en
Publication of KR20110097715A publication Critical patent/KR20110097715A/ko
Priority to US13/331,092 priority patent/US8815433B2/en
Application granted granted Critical
Publication of KR101173202B1 publication Critical patent/KR101173202B1/ko
Priority to US14/245,063 priority patent/US9985260B2/en
Priority to JP2014080436A priority patent/JP5885313B2/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2275Heterogeneous membranes
    • C08J5/2281Heterogeneous membranes fluorine containing heterogeneous membranes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2287After-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/42Acrylic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/423Polyamide resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/426Fluorocarbon polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/429Natural polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2427/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2427/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2427/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2427/14Homopolymers or copolymers of vinyl fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2433/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2433/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2433/14Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2433/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2433/24Homopolymers or copolymers of amides or imides
    • C08J2433/26Homopolymers or copolymers of acrylamide or methacrylamide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • Y10T29/49115Electric battery cell making including coating or impregnating

Abstract

본 발명의 세퍼레이터 제조방법은, (S1) 다수의 기공을 갖는 평면상의 다공성 기재를 준비하는 단계; (S2) 무기물 입자들이 분산되어 있으며 제1 바인더 고분자 및 제2 바인더 고분자를 포함하는 바인더 고분자가 용매에 용해된 슬러리를 상기 다공성 기재의 적어도 일면에 코팅하는 단계; (S3) 상기 제2 바인더 고분자는 용해시키지 않는 비용매를 상기 다공성 기재에 코팅된 슬러리 위에 분사하는 단계; 및 (S4) 상기 용매 및 비용매를 동시에 건조처리하는 단계를 포함한다. 본 발명의 제조방법에 따르면, 전극에 대한 결착성이 양호하며 전기화학소자의 조립과정에서 무기물 입자가 탈리되는 문제점이 개선된 세퍼레이터를 용이하게 제조할 수 있다.

Description

세퍼레이터의 제조방법, 이로부터 형성된 세퍼레이터 및 이를 포함하는 전기화학소자의 제조방법{PREPARATION METHOD OF SEPARATOR, SEPARATOR FORMED THEREFROM, AND PREPARATION METHOD OF ELECTROCHEMICAL DEVICE CONTAINING THE SAME }
본 발명은 리튬 이차전지와 같은 전기화학소자의 세퍼레이터 제조방법, 이로부터 형성된 세퍼레이터 및 이를 포함하는 전기화학소자의 제조방법에 관한 것으로서, 보다 상세하게는 무기물 입자와 바인더 고분자의 혼합물로 된 다공성 코팅층이 다공성 기재 위에 형성된 세퍼레이터의 제조방법, 이로부터 형성된 세퍼레이터 및 이를 포함하는 전기화학소자의 제조방법에 관한 것이다.
최근 에너지 저장 기술에 대한 관심이 갈수록 높아지고 있다. 휴대폰, 캠코더 및 노트북 PC, 나아가서는 전기 자동차의 에너지까지 적용분야가 확대되면서 전기화학소자의 연구와 개발에 대한 노력이 점점 구체화되고 있다. 전기화학소자는 이러한 측면에서 가장 주목받고 있는 분야이고 그 중에서도 충방전이 가능한 이차전지의 개발은 관심의 초점이 되고 있으며, 최근에는 이러한 전지를 개발함에 있어서 용량 밀도 및 비에너지를 향상시키기 위하여 새로운 전극과 전지의 설계에 대한 연구개발로 진행되고 있다.
현재 적용되고 있는 이차전지 중에서 1990 년대 초에 개발된 리튬 이차전지는 수용액 전해액을 사용하는 Ni-MH, Ni-Cd, 황산-납 전지 등의 재래식 전지에 비해서 작동 전압이 높고 에너지 밀도가 월등히 크다는 장점으로 각광을 받고 있다. 그러나 이러한 리튬 이온 전지는 유기 전해액을 사용하는 데 따르는 발화 및 폭발 등의 안전 문제가 존재하고, 제조가 까다로운 단점이 있다. 최근의 리튬 이온 고분자 전지는 이러한 리튬 이온 전지의 약점을 개선하여 차세대 전지의 하나로 꼽히고 있으나 아직까지 전지의 용량이 리튬 이온 전지와 비교하여 상대적으로 낮고, 특히 저온에서의 방전 용량이 불충분하여 이에 대한 개선이 시급히 요구되고 있다.
상기와 같은 전기화학소자는 많은 회사에서 생산되고 있으나 그들의 안전성 특성은 각각 다른 양상을 보인다. 이러한 전기화학소자의 안전성 평가 및 안전성 확보는 매우 중요하다. 가장 중요한 고려사항은 전기화학소자가 오작동시 사용자에게 상해를 입혀서는 안된다는 것이며, 이러한 목적으로 안전규격은 전기화학소자 내의 발화 및 발연 등을 엄격히 규제하고 있다. 전기화학소자의 안전성 특성에 있어서, 전기화학소자가 과열되어 열폭주가 일어나거나 세퍼레이터가 관통될 경우에는 폭발을 일으키게 될 우려가 크다. 특히, 전기화학소자의 세퍼레이터로서 통상적으로 사용되는 폴리올레핀계 다공성 막은 재료적 특성과 연신을 포함하는 제조공정 상의 특성으로 인하여 100 ℃ 이상의 온도에서 극심한 열 수축 거동을 보임으로서, 양극과 음극 사이의 단락을 일으키는 문제점이 있다.
이와 같은 전기화학소자의 안전성 문제를 해결하기 위하여, 다수의 기공을 갖는 다공성 기재의 적어도 일면에, 무기물 입자와 바인더 고분자의 혼합물을 코팅하여 다공성 유기-무기 복합 코팅층을 형성한 세퍼레이터가 제안되었다. 예를 들어, 한국 공개특허 제10-2007-0000231호에는 다공성 기재 상에 무기물 입자와 바인더 고분자의 혼합물로 형성된 다공성 코팅층을 마련한 세퍼레이터에 관한 기술이 개시되어 있다.
유기-무기 복합 다공성 코팅층이 형성된 세퍼레이터에 있어서, 다공성 기재 위에 형성된 다공성 코팅층에 존재하는 무기물 입자들이 다공성 코팅층의 물리적 형태를 유지할 수 있는 일종의 스페이서(spacer) 역할을 함으로서 전기화학소자 과열시 다공성 기재가 열 수축되는 것을 억제하거나 열 폭주시 양 전극의 단락을 방지하게 된다. 또한, 무기물 입자들 사이에는 빈 공간(interstitial volume)이 존재하여 미세 기공을 형성한다.
다공성 기재에 형성된 유기-무기 복합 다공성 코팅층이 전술한 기능을 양호하게 발현하기 위해서는 무기물 입자들이 소정 함량 이상으로 충분히 함유되어야 한다. 그러나, 무기물 입자들의 함량이 높아짐에 따라 바인더 고분자의 함량은 상대적으로 작아지게 되므로, 전극과의 결착성이 저하되고 권취 등 전기화학소자의 조립과정에서 발생하는 응력이나 외부와의 접촉에 의하여 다공성 코팅층의 무기물 입자들이 탈리되기 쉽다. 세퍼레이터의 전극에 대한 결착성이 저하되면 전기화학소자의 성능이 저하되며, 탈리된 무기물 입자들은 전기화학소자의 국부적인 결점으로 작용하여 전기화학소자의 안전성에 악영향을 미치게 된다.
본 출원인은 특정의 고분자를 바인더 고분자로 사용하여 세퍼레이터를 제조함으로서 이러한 문제점을 해결하였으나(대한민국 특허공보 0754746호), 보다 개선된 성능을 갖는 세퍼레이터의 제조방법이 필요하다.
따라서, 본 발명이 해결하고자 하는 과제는 전술한 문제점을 해결하여, 전극에 대한 결착성이 양호하며 전기화학소자의 조립과정에서 무기물 입자가 탈리되는 문제점이 개선된 세퍼레이터를 용이하게 제조할 수 있는 방법, 이로부터 형성된 세퍼레이터 및 이를 포함하는 전기화학소자의 제조방법을 제공하는데 있다.
상기 과제를 달성하기 위하여, 본 발명의 세퍼레이터 제조방법은,
(S1) 다수의 기공을 갖는 평면상의 다공성 기재를 준비하는 단계;
(S2) 무기물 입자들이 분산되어 있으며 제1 바인더 고분자 및 제2 바인더 고분자를 포함하는 바인더 고분자가 용매에 용해된 슬러리를 상기 다공성 기재의 적어도 일면에 코팅하는 단계;
(S3) 상기 제2 바인더 고분자는 용해시키지 않는 비용매를 상기 다공성 기재에 코팅된 슬러리 위에 분사하는 단계; 및
(S4) 상기 용매 및 비용매를 동시에 건조처리하는 단계를 포함한다.
본 발명의 세퍼레이터 제조방법에 있어서, 상기 다공성 기재는 폴리올레핀계 다공성 막인 것이 바람직하고, 다공성 기재의 두께는 1 내지 100 ㎛인 것이 바람직하다.
본 발명의 세퍼레이터 제조방법에 있어서, 무기물 입자의 평균입경은 0.001 내지 10 ㎛인 것이 바람직하고, 무기물 입자는 유전율 상수가 5 이상인 무기물 입자 또는 리튬 이온 전달 능력을 갖는 무기물 입자를 각각 단독으로 또는 이들을 혼합하여 사용할 수 있다.
본 발명의 세퍼레이터 제조방법에 있어서, 상기 제1 바인더 고분자는 시아노기를 갖는 고분자인 것이 바람직하다. 시아노기를 갖는 고분자로는 시아노에틸풀루란(cyanoethylpullulan), 시아노에틸폴리비닐알콜(cyanoethylpolyvinylalcohol), 시아노에틸셀룰로오스(cyanoethylcellulose), 시아노아크릴레이트(cyanoacrylate), 시아노에틸수크로오스(cyanoethylsucrose) 등을 예시할 수 있다.
본 발명의 세퍼레이터 제조방법에 있어서, 슬러리 제조에 사용되는 용매로는 상기 제1 바인더 고분자와의 용해도 지수 차이 및 상기 제2 바인더 고분자와의 용해도 지수 차이가 각각 5.0 MPa0.5 이하인 용매를 사용하는 것이 바람직한데, 아세톤, N,N-디메틸아세트아미드, N,N-디메틸포름아미드, N-메틸-2-피롤리돈, 메틸에틸케톤 등을 사용하는 것이 더욱 바람직하다.
본 발명의 세퍼레이터 제조방법에 있어서, 제2 바인더 고분자로는 폴리비닐리덴 플루오라이드-헥사플루오로프로필렌(polyvinylidene fluoride-co-hexafluoropropylene), 폴리비닐리덴 플루오라이드-트리클로로에틸렌(polyvinylidene fluoride-co-trichloroethylene), 폴리메틸메타크릴레이트(polymethylmethacrylate) 등을 예시할 수 있다. 상기 비용매로는 상기 제2 바인더 고분자와의 용해도 지수 차이가 8.0 MPa0.5 이상인 비용매를 사용하는 것이 바람직한데, 특히 물, 메탄올, 에탄올 등을 사용하는 것이 더욱 바람직하다.
이와 같은 방법으로 제조된 본 발명의 세퍼레이터는 다공성 기재의 표면에 무기물 입자와 바인더 고분자의 혼합물로 형성된 다공성 코팅층을 구비하게 된다. 이러한 세퍼레이터는 양극과 음극 사이에 개재시켜 전극과 라미네이팅하므로서 리튬 이차전지나 수퍼 캐패시터 소자와 같은 전기화학소자를 제조할 수 있다.
본 발명의 방법에 따라 제조된 세퍼레이터는 다음과 같은 특성을 나타낸다.
첫째, 슬러리 위에 분사된 비용매는 제2 바인더 고분자의 상분리를 촉진함으로서 제2 바인더 고분자가 다공성 코팅층의 표면부에 더 많이 존재하도록 한다. 이에 따라 세퍼레이터의 전극에 대한 결착성이 증대되므로 라미네이션이 용이해진다. 또한, 무기물 입자의 탈리에 따른 문제점이 줄어든다.
둘째, 전극에 대한 충분한 결착력이 확보됨에 따라 다공성 코팅층 내의 무기물 입자 함량을 높일 수 있게 되므로, 세퍼레이터의 안정성이 더욱 향상된다.
도 1은 실시예 1에 따라 완성된 세퍼레이터의 다공성 코팅층의 SEM 사진이다.
도 2는 실시예 2에 따라 완성된 세퍼레이터의 다공성 코팅층의 SEM 사진이다.
도 3은 비교예 1에 따라 완성된 세퍼레이터의 다공성 코팅층의 SEM 사진이다.
이하, 본 발명에 대하여 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서, 본 명세서에 기재된 실시예에 기재된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
본 발명의 세러페이터 제조방법을 상세히 설명하면 다음과 같다.
먼저, 다수의 기공을 갖는 평면상의 다공성 기재를 준비한다(S1 단계).
이러한 다공성 기재로는 다양한 고분자로 형성된 다공성 막이나 부직포등 통상적으로 전기화학소자에 사용되는 평면상의 다공성 기재라면 모두 사용이 가능하다. 예를 들어 전기화학소자 특히, 리튬 이차전지의 분리막으로 사용되는 폴리올레핀계 다공성 막이나, 폴리에틸렌테레프탈레이트 섬유로 이루어진 부직포 등을 사용할 수 있으며, 그 재질이나 형태는 목적하는 바에 따라 다양하게 선택할 수 있다. 예를 들어 폴리올레핀계 다공성 막(membrane)은 고밀도 폴리에틸렌, 선형 저밀도 폴리에틸렌, 저밀도 폴리에틸렌, 초고분자량 폴리에틸렌과 같은 폴리에틸렌, 폴리프로필렌, 폴리부틸렌, 폴리펜텐 등의 폴리올레핀계 고분자를 각각 단독으로 또는 이들을 혼합한 고분자로 형성할 수 있으며, 부직포 역시 폴리올레핀계 고분자 또는 이보다 내열성이 높은 고분자를 이용한 섬유로 제조될 수 있다. 다공성 기재의 두께는 특별히 제한되지 않으나, 바람직하게는 1 내지 100 ㎛, 더욱 바람직하게는 5 내지 50 ㎛이고, 다공성 기재에 존재하는 기공 크기 및 기공도 역시 특별히 제한되지 않으나 각각 0.001 내지 50 ㎛ 및 10 내지 95%인 것이 바람직하다.
이어서, 무기물 입자들이 분산되어 있으며 제1 바인더 고분자 및 제2 바인더 고분자를 포함하는 바인더 고분자가 용매에 용해된 슬러리를 상기 다공성 기재의 적어도 일면에 코팅한다(S2 단계).
본 단계에서 사용되는 슬러리의 구성성분에 대하여 설명하면 다음과 같다.
무기물 입자는 전기화학적으로 안정하기만 하면 특별히 제한되지 않는다. 즉, 본 발명에서 사용할 수 있는 무기물 입자는 적용되는 전기화학소자의 작동 전압 범위(예컨대, Li/Li+ 기준으로 0~5V)에서 산화 및/또는 환원 반응이 일어나지 않는 것이면 특별히 제한되지 않는다. 특히, 무기물 입자로서 유전율이 높은 무기물 입자를 사용하는 경우, 액체 전해질 내 전해질 염, 예컨대 리튬염의 해리도 증가에 기여하여 전해액의 이온 전도도를 향상시킬 수 있다.
전술한 이유들로 인해, 상기 무기물 입자는 유전율 상수가 5 이상, 바람직하게는 10 이상인 고유전율 무기물 입자를 포함하는 것이 바람직하다. 유전율 상수가 5 이상인 무기물 입자의 비제한적인 예로는 BaTiO3, Pb(Zr,Ti)O3(PZT), Pb1-xLaxZr1-yTiyO3(PLZT), PB(Mg3Nb2/3)O3-PbTiO3(PMN-PT), 하프니아(HfO2), SrTiO3, SnO2, CeO2, MgO, NiO, CaO, ZnO, ZrO2, Y2O3, Al2O3, TiO2, SiC 또는 이들의 혼합체 등이 있다.
또한, 무기물 입자로는 리튬 이온 전달 능력을 갖는 무기물 입자, 즉 리튬 원소를 함유하되 리튬을 저장하지 아니하고 리튬 이온을 이동시키는 기능을 갖는 무기물 입자를 사용할 수 있다. 리튬 이온 전달 능력을 갖는 무기물 입자의 비제한적인 예로는 리튬포스페이트(Li3PO4), 리튬티타늄포스페이트(LixTiy(PO4)3, 0 < x < 2, 0 < y < 3), 리튬알루미늄티타늄포스페이트(LixAlyTiz(PO4)3, 0 < x < 2, 0 < y < 1, 0 < z < 3), 14Li2O-9Al2O3-38TiO2-39P2O5 등과 같은 (LiAlTiP)xOy 계열 glass (0 < x < 4, 0 < y < 13), 리튬란탄티타네이트(LixLayTiO3, 0 < x < 2, 0 < y < 3), Li3.25Ge0.25P0.75S4 등과 같은 리튬게르마니움티오포스페이트(LixGeyPzSw, 0 < x < 4, 0 < y < 1, 0 < z < 1, 0 < w < 5), Li3N 등과 같은 리튬나이트라이드(LixNy, 0 < x < 4, 0 < y < 2), Li3PO4-Li2S-SiS2 등과 같은 SiS2 계열 glass(LixSiySz, 0 < x < 3, 0 < y < 2, 0 < z < 4), LiI-Li2S-P2S5 등과 같은 P2S5 계열 glass(LixPySz, 0 < x < 3, 0 < y < 3, 0 < z < 7) 또는 이들의 혼합물 등이 있다.
또한, 무기물 입자의 평균입경은 특별한 제한이 없으나 균일한 두께의 코팅층 형성 및 적절한 공극률을 위하여, 0.001 내지 10 ㎛ 범위인 것이 바람직하다. 0.001 ㎛ 미만인 경우 분산성이 저하될 수 있고, 10 ㎛를 초과하는 경우 형성되는 코팅층의 두께가 증가할 수 있다.
제1 바인더 고분자로는 특별히 제한되지 않으나 시아노기를 갖는 고분자인 것이 바람직하다. 시아노기를 갖는 고분자로는 시아노에틸풀루란(cyanoethylpullulan), 시아노에틸폴리비닐알콜(cyanoethylpolyvinylalcohol), 시아노에틸셀룰로오스(cyanoethylcellulose), 시아노아크릴레이트(cyanoacrylate), 시아노에틸수크로오스(cyanoethylsucrose) 등을 각각 단독으로 또는 이들을 2종 이상 혼합하여 사용할 수 있다. 또한, 제1 바인더 고분자로는 공중합체인 폴리아크릴아미드-아크릴레이트(polyacrylamide-co-acrylate)를 사용하는 것이 바람직하다.
제2 바인더 고분자로는 폴리비닐리덴 플루오라이드-헥사플루오로프로필렌(polyvinylidene fluoride-co-hexafluoropropylene), 폴리비닐리덴 플루오라이드-트리클로로에틸렌(polyvinylidene fluoride-co-trichloroethylene), 폴리메틸메타크릴레이트(polymethylmethacrylate) 등을 각각 단독으로 또는 이들을 2종 이상 혼합하여 사용할 수 있다.
상기 제1 바인더 고분자와 제2 바인더 고분자의 중량비는 75:25 내지 10:90 인 것이 본 발명의 목적을 달성하는데 적합하다. 또한, 무기물 입자와 바인더 고분자(제1 바인더 고분자와 제2 바인더 고분자의 합)의 중량비는 예를 들어 50:50 내지 99:1 범위가 바람직하며, 더욱 바람직하게는 70:30 내지 95:5이다. 그 함량비가 50:50 미만일 경우 바인더 고분자의 함량이 많아지게 되어 형성되는 다공성 코팅층의 기공 크기 및 기공도가 감소될 수 있다. 무기물 입자의 함량이 99 중량부를 초과할 경우 바인더 고분자 함량이 적기 때문에 형성되는 다공성 코팅층의 내필링성이 약화될 수 있다.
슬러리 제조시 사용되는 용매는 제1 바인더 고분자 및 제2 바인더 고분자를 모두 용해시킨다. 이러한 용매로는 상기 제1 바인더 고분자에 대한 용해도 지수 차이 및 상기 제2 바인더 고분자에 대한 용해도 지수 차이가 각각 5.0 MPa0.5 이하인 용매를 사용하는 것이 바람직한데, 아세톤, N,N-디메틸아세트아미드, N,N-디메틸포름아미드, N-메틸-2-피롤리돈, 메틸에틸케톤 등을 각각 단독으로 또는 이들을 2종 이상 혼합하여 사용할 수 있다.
무기물 입자들이 분산되어 있으며 바인더 고분자들이 용매에 용해된 슬러리는 제1 바인더 고분자와 제2 바인더 고분자를 용매에 용해시킨 다음 무기물 입자를 첨가하고 이를 분산시켜 제조할 수 있다. 무기물 입자들은 적정 크기로 파쇄된 상태에서 첨가할 수 있으나, 바인더 고분자들의 용액에 무기물 입자를 첨가한 후 무기물 입자를 볼밀법 등을 이용하여 파쇄하면서 분산시키는 것이 바람직하다.
전술한 방법으로 준비한 슬러리는 딥 코팅법, 롤 코팅법, 다이 코팅법 등 공지의 코팅법을 이용하여 상기 다공성 기재의 적어도 일면에 코팅한다. 다공성 기재에 코팅하는 슬러리의 로딩량은 최종적으로 형성되는 다공성 코팅층이 5 내지 20 g/m2 의 범위가 되도록 조절하는 것이 코팅층의 기능 및 고용량 전지에 대한 적합성을 고려할 때 바람직하다.
그런 다음, 상기 제2 바인더 고분자는 용해시키지 않는 비용매를 상기 다공성 기재에 코팅된 슬러리 위에 분사한다(S3단계). 이로 인하여 슬러리 코팅층 위에는 비용매 코팅층이 형성된다. 여기서, 비용매(non-solvent)란 상기 제2 바인더 고분자는 용해시키지 않는 용매를 의미한다. 이러한 비용매로는 상기 제2 바인더 고분자와의 용해도 지수 차이가 8.0 MPa0.5 이상인 비용매를 사용하는 것이 바람직한데, 특히 물, 메탄올, 에탄올 등을 사용하는 것이 더욱 바람직하다.
슬러리 코팅층 위에 분사된 비용매는 슬러리 내의 제2 바인더 고분자의 상분리를 촉진시키므로서 제2 바인더 고분자가 슬러리 코팅층의 표면부에 더 많이 존재하도록 한다. 이에 따라, 후술하는 (S3)의 건조 처리 후 세퍼레이터의 전극에 대한 결착성이 증대되므로 라미네이션이 용이해진다. 또한, 무기물 입자의 탈리에 따른 문제점이 줄어든다. 또한, 전극에 대한 충분한 결착력이 확보됨에 따라 다공성 코팅층 내의 무기물 입자 함량을 높일 수 있게 되므로, 세퍼레이터의 안정성이 더욱 향상된다.
마지막으로, 다공성 기재 위에 코팅된 슬러리의 용매 및 비용매를 동시에 건조처리한다(S4 단계). 슬러리의 용매와 비용매를 동시에 건조처리함으로서, 최외층에 제2 바인더 고분자가 다공성 코팅층의 표면부에 더 많이 존재하는 상태로 다공성 코팅층이 형성된다. 즉, 다공성 코팅층의 표면부가 그 하부보다 바인더 고분자를 더 많이 포함하는 상태가 되므로, 전술한 전극에 대한 결착력 등이 우수해진다.
본 발명과는 달리, 슬러리 코팅층을 먼저 건조한 후 비용매를 분사하게 되면, 제2 바인더 고분자에 대한 비용매의 기능이 수행되지 않는다.
이러한 제조방법에 따라 형성된 세퍼레이터는 다공성 기재 및 그 위에 형성된 다공성 코팅층을 구비한다. 다공성 코팅층은 바인더 고분자가 무기물 입자들이 서로 결착된 상태를 유지할 수 있도록 이들을 서로 부착(즉, 바인더 고분자가 무기물 입자 사이를 연결 및 고정)시키고 있으며, 또한 다공성 코팅층은 바인더 고분자에 의해 다공성 기재와 결착된 상태를 유지하는 것이 바람직하다. 이에 따라, 다공성 코팅층의 무기물 입자들은 서로 접촉한 상태로 존재하며, 무기물 입자들이 접촉된 상태에서 생기는 틈새 공간(interstitial volume)이 다공성 코팅층의 기공이 되도록 하는 것이 바람직하다. 이 때, 틈새 공간의 크기는 무기물 입자들의 평균 입경보다 같거나 작게 된다.
전술한 방법에 따라 제조된 세퍼레이터를 양극과 음극 사이에 개재시켜 라미네이팅하므로서 전기화학소자를 제조할 수 있다. 전기화학소자는 전기 화학 반응을 하는 모든 소자를 포함하며, 구체적인 예를 들면, 모든 종류의 1차, 이차 전지, 연료 전지, 태양 전지 또는 수퍼 캐패시터 소자와 같은 캐퍼시터(capacitor) 등이 있다. 특히, 상기 2차 전지 중 리튬 금속 이차 전지, 리튬 이온 이차 전지, 리튬 폴리머 이차 전지 또는 리튬 이온 폴리머 이차 전지 등을 포함하는 리튬 이차전지가 바람직하다.
본 발명의 세퍼레이터와 함께 적용될 양극과 음극의 양 전극으로는 특별히 제한되지 않으며, 당업계에 알려진 통상적인 방법에 따라 전극활물질을 전극 전류집전체에 결착된 형태로 제조할 수 있다. 상기 전극활물질 중 양극활물질의 비제한적인 예로는 종래 전기화학소자의 양극에 사용될 수 있는 통상적인 양극활물질이 사용 가능하며, 특히 리튬망간산화물, 리튬코발트산화물, 리튬니켈산화물, 리튬철산화물 또는 이들을 조합한 리튬복합산화물을 사용하는 것이 바람직하다. 음극활물질의 비제한적인 예로는 종래 전기화학소자의 음극에 사용될 수 있는 통상적인 음극활물질이 사용 가능하며, 특히 리튬 금속 또는 리튬 합금, 탄소, 석유코크(petroleum coke), 활성화 탄소(activated carbon), 그래파이트(graphite) 또는 기타 탄소류 등과 같은 리튬 흡착물질 등이 바람직하다. 양극 전류집전체의 비제한적인 예로는 알루미늄, 니켈 또는 이들의 조합에 의하여 제조되는 호일 등이 있으며, 음극 전류집전체의 비제한적인 예로는 구리, 금, 니켈 또는 구리 합금 또는 이들의 조합에 의하여 제조되는 호일 등이 있다.
본 발명의 전기화학소자에서 사용될 수 있는 전해액은 A+B-와 같은 구조의 염으로서, A+는 Li+, Na+, K+와 같은 알칼리 금속 양이온 또는 이들의 조합으로 이루어진 이온을 포함하고 B-는 PF6 -, BF4 -, Cl-, Br-, I-, ClO4 -, AsF6 -, CH3CO2 -, CF3SO3 -, N(CF3SO2)2 -, C(CF2SO2)3 -와 같은 음이온 또는 이들의 조합으로 이루어진 이온을 포함하는 염이 프로필렌 카보네이트(PC), 에틸렌 카보네이트(EC), 디에틸카보네이트(DEC), 디메틸카보네이트(DMC), 디프로필카보네이트(DPC), 디메틸설폭사이드, 아세토니트릴, 디메톡시에탄, 디에톡시에탄, 테트라하이드로퓨란, N-메틸-2-피롤리돈(NMP), 에틸메틸카보네이트(EMC), 감마 부티로락톤 또는 이들의 혼합물로 이루어진 유기 용매에 용해 또는 해리된 것이 있으나, 이에만 한정되는 것은 아니다.
상기 전해액 주입은 최종 제품의 제조 공정 및 요구 물성에 따라, 전지 제조 공정 중 적절한 단계에서 행해질 수 있다. 즉, 전지 조립 전 또는 전지 조립 최종 단계 등에서 적용될 수 있다.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예들에 한정되는 것으로 해석되어져서는 안된다. 본 발명의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되어지는 것이다.
실시예 1
제1 바인더 고분자인 Cyanoethylpullulan (시아노에틸풀루란) 및 제2 바인더 고분자인 PVdF-HFP (폴리비닐리덴플로라이드-헥사플루오로프로필렌)을 2:10의 중량비로 각각 아세톤에 첨가하여 50℃에서 약 12시간 이상 용해시켜 고분자 용액을 제조하였다. 기 제조된 고분자 용액에 바륨티타네이트(BaTiO3) 분말을 고분자 혼합물/활성탄소 분말 = 10/90 중량비가 되도록 첨가하고, 12시간 이상 ball mill법을 이용하여 무기물 입자들을 파쇄 및 분산하여 슬러리를 제조하였다. 이렇게 제조된 슬러리의 무기물 입자의 입경은 평균 600nm이었다.
이와 같이 제조된 슬러리를 딥(dip) 코팅법으로, 두께 12㎛ 폴리에틸렌 다공성 막(기공도 45%)에 코팅하였다. 슬러리의 로딩량은 12.5 g/m2이 되도록 조절하였다.
이어서, 제2 바인더 고분자의 비용매로서 증류수를 슬러리의 양 표면에 분사하였다. 비용매의 분사량은 9 mL/min이 되도록 조절하였다.
이어서, 코팅이 완료된 기재를 건조기에 통과시켜 슬러리의 용매와 비용매를 건조시켜 세퍼레이터를 완성하였다.
완성된 세퍼레이터의 걸리(Gurley) 값은 373.9 sec/100mL로 양호하게 나타났다.
도 1은 실시예 1에 따라 완성된 세퍼레이터의 다공성 코팅층의 SEM 사진이다. 도 1을 참조하면, 제2 바인더 고분자로 된 층이 표면에 많이 노출된 것을 확인할 수 있다.
한편, 세퍼레이터의 결착성을 평가하기 위하여, 실시예 1의 세퍼레이터를 서로 100도에서 라미네이팅 한 후 결착력을 측정한 결과. 11.21 gf/cm로 우수한 결착력을 보였다. 이로부터 실시예 1의 세퍼레이터는 전극과의 결착성이 우수하다는 것을 알 수 있다.
실시예 2
비용매의 종류를 증류수와 메탄올이 6:4(v/v)로 혼합된 혼합 비용매로 변경한 것을 제외하고는, 실시예 1과 동일한 방법으로 세퍼레이터를 제조하였다.
도 2는 실시예 2에 따라 완성된 세퍼레이터의 다공성 코팅층의 SEM 사진이다. 도 2를 참조하면, 제2 바인더 고분자로 된 층이 표면에 많이 노출된 것을 확인할 수 있다.
한편, 세퍼레이터의 걸리 값과 결착력은 각각 371.1 sec/100mL 및 9.42 gf/cm으로 나타났다.
실시예 3
제1 바인더 고분자를 cyanoacrylate (시아노아크릴레이트) 로 변경한 것을 제외하고는, 실시예 1과 동일한 방법으로 세퍼레이터를 제조하였다.
완성된 세퍼레이터의 걸리값과 결착력은 각각 364.9 sec/100mL 및 13.10 gf/cm로 나타났다.
실시예 4
제1 바인더 고분자를 아크릴아미드-아크릴레이트의 공중합체(polyacrylamide-acrylate)로 변경한 것을 제외하고는, 실시예 1과 동일한 방법으로 세퍼레이터를 제조하였다. 완성된 세퍼레이터의 걸리값과 결착력은 각각 361.8 sec/100mL 및 11.07 gf/cm로 나타났다.
비교예 1
비용매를 분사하지 않은 것을 제외하고는 실시예 1과 동일한 방법으로 실시하였다.
도 3은 비교예 1에 따라 완성된 세퍼레이터의 다공성 코팅층의 SEM 사진이다. 도 3을 참조하면, 바인더 고분자로 된 층이 표면에 노출되는 정도가 실시예 1 및 실시예 2보다 상당히 낮은 것을 알 수 있다.
한편, 완성된 세퍼레이터의 걸리(Gurley) 값은 382.5 sec/100mL로 양호하게 나타났으나, 결착력은 2.61 gf/cm로서 실시예 1 내지 4보다 매우 낮은 결착력을 보였다.

Claims (20)

  1. (S1) 다수의 기공을 갖는 평면상의 다공성 기재를 준비하는 단계;
    (S2) 무기물 입자들이 분산되어 있으며 제1 바인더 고분자 및 제2 바인더 고분자를 포함하는 바인더 고분자가 용매에 용해된 슬러리를 상기 다공성 기재의 적어도 일면에 코팅하는 단계;
    (S3) 상기 제2 바인더 고분자는 용해시키지 않는 비용매를 상기 다공성 기재에 코팅된 슬러리 위에 분사하는 단계; 및
    (S4) 상기 용매 및 비용매를 동시에 건조처리하는 단계를 포함하는 세퍼레이터의 제조방법.
  2. 제 1항에 있어서,
    상기 다공성 기재는 폴리올레핀계 다공성 막인 것을 특징으로 하는 세퍼레이터의 제조방법.
  3. 제 1항에 있어서,
    상기 다공성 기재의 두께는 1 내지 100 ㎛인 것을 특징으로 하는 세퍼레이터의 제조방법.
  4. 제 1항에 있어서,
    상기 무기물 입자의 평균입경은 0.001 내지 10 ㎛인 것을 특징으로 하는 세퍼레이터의 제조방법.
  5. 제 1항에 있어서,
    상기 무기물 입자는 유전율 상수가 5 이상인 무기물 입자, 리튬 이온 전달 능력을 갖는 무기물 입자 및 이들의 혼합물로 이루어진 군으로부터 선택된 무기물 입자인 것을 특징으로 하는 세퍼레이터의 제조방법.
  6. 제 5항에 있어서,
    상기 유전율 상수가 5 이상인 무기물 입자는 BaTiO3, Pb(Zr,Ti)O3 (PZT), Pb1-xLaxZr1-yTiyO3 (PLZT, 여기서, 0 < x < 1, 0 < y < 1임), Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT), 하프니아(HfO2), SrTiO3, SnO2, CeO2, MgO, NiO, CaO, ZnO, ZrO2, Y2O3, Al2O3, SiC 및 TiO2로 이루어진 군으로부터 선택된 어느 하나의 무기물 입자 또는 이들 중 2종 이상의 혼합물인 것을 특징으로 하는 세퍼레이터의 제조방법.
  7. 제 5항에 있어서,
    상기 리튬 이온 전달 능력을 갖는 무기물 입자는 리튬포스페이트(Li3PO4), 리튬티타늄포스페이트(LixTiy(PO4)3, 0 < x < 2, 0 < y < 3), 리튬알루미늄티타늄포스페이트(LixAlyTiz(PO4)3, 0 < x < 2, 0 < y < 1, 0 < z < 3), (LiAlTiP)xOy 계열 glass(0 < x < 4, 0 < y < 13), 리튬란탄티타네이트(LixLayTiO3, 0 < x < 2, 0 < y < 3), 리튬게르마니움티오포스페이트(LixGeyPzSw, 0 < x < 4, 0 < y < 1, 0 < z < 1, 0 < w < 5), 리튬나이트라이드(LixNy, 0 < x < 4, 0 < y < 2), SiS2 (LixSiySz, 0 < x < 3, 0 < y < 2, 0 < z < 4) 계열 glass 및 P2S5 (LixPySz, 0 < x < 3, 0 < y < 3, 0 < z < 7) 계열 glass로 이루어진 군으로부터 선택된 어느 하나의 무기물 입자 또는 이들 중 2종 이상의 혼합물인 것을 특징으로 하는 세퍼레이터의 제조방법.
  8. 제 1항에 있어서,
    상기 제1 바인더 고분자는 시아노기를 갖는 고분자인 것을 특징으로 하는 세퍼레이터의 제조방법.
  9. 제 8항에 있어서,
    상기 시아노기를 갖는 고분자는 시아노에틸풀루란(cyanoethylpullulan), 시아노에틸폴리비닐알콜(cyanoethylpolyvinylalcohol), 시아노에틸셀룰로오스(cyanoethylcellulose), 시아노아크릴레이트(cyanoacrylate) 및 시아노에틸수크로오스(cyanoethylsucrose)로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물인 것을 특징으로 하는 세퍼레이터의 제조방법.
  10. 제 1항에 있어서,
    상기 제1 바인더 고분자는 폴리아크릴아미드-아크릴레이트(polyacrylamide-co-acrylate)인 것을 특징으로 하는 세퍼레이터의 제조방법.
  11. 제 1항에 있어서,
    상기 용매와 상기 제1 바인더 고분자의 용해도 지수 차이 및 상기 용매와 상기 제2 바인더 고분자의 용해도 지수 차이는 각각 5.0 MPa0.5 이하인 것을 특징으로 하는 세퍼레이터의 제조방법.
  12. 제 11항에 있어서,
    상기 용매는 아세톤, N,N-디메틸아세트아미드, N,N-디메틸포름아미드, N-메틸-2-피롤리돈 및 메틸에틸케톤으로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물인 것을 특징으로 하는 세퍼레이터의 제조방법.
  13. 제 1항에 있어서,
    상기 제2 바인더 고분자는 폴리비닐리덴 플루오라이드-헥사플루오로프로필렌(polyvinylidene fluoride-co-hexafluoropropylene), 폴리비닐리덴 플루오라이드-트리클로로에틸렌(polyvinylidene fluoride-co-trichloroethylene) 및 폴리메틸메타크릴레이트(polymethylmethacrylate)로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물인 것을 특징으로 하는 세퍼레이터의 제조방법.
  14. 제 1항에 있어서,
    상기 비용매와 상기 제2 바인더 고분자의 용해도 지수 차이는 8.0 MPa0.5 이상인 것을 특징으로 하는 세퍼레이터의 제조방법.
  15. 제 14항에 있어서,
    상기 비용매는 물, 메탄올 및 에탄올로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물인 것을 특징으로 하는 세퍼레이터의 제조방법.
  16. 제 1항에 있어서,
    상기 제1 바인더 고분자와 제2 바인더 고분자의 중량비가 75:25 내지 10:90인 것을 특징으로 하는 세퍼레이터의 제조방법.
  17. 제 1항에 있어서,
    상기 무기물 입자와 바인더 고분자의 중량비가 50:50 내지 99:1 인 것을 특징으로 하는 세퍼레이터의 제조방법.
  18. 제1항 내지 제17항 중 어느 한 항의 세퍼레이터의 제조방법에 따라 형성된 세퍼레이터.
  19. 세퍼레이터를 제조하고, 양극과 음극 사이에 상기 세퍼레이터를 개재시켜 라미네이팅하는 단계를 포함하는 전기화학소자의 제조방법에 있어서,
    상기 세퍼레이터를 제1항 내지 제17항 중 어느 한 항에 따라 제조하는 것을 특징으로 하는 전기화학소자의 제조방법.
  20. 제 19항에 있어서,
    상기 전기화학소자는 리튬 이차전지인 것을 특징으로 하는 전기화학소자의 제조방법.
KR1020110016508A 2010-02-25 2011-02-24 세퍼레이터의 제조방법, 이로부터 형성된 세퍼레이터 및 이를 포함하는 전기화학소자의 제조방법 KR101173202B1 (ko)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2012551929A JP5525067B2 (ja) 2010-02-25 2011-02-25 セパレータの製造方法、その方法によって形成されたセパレータ、及びそれを含む電気化学素子の製造方法
PCT/KR2011/001371 WO2011105866A2 (ko) 2010-02-25 2011-02-25 세퍼레이터의 제조방법, 이로부터 형성된 세퍼레이터 및 이를 포함하는 전기화학소자의 제조방법
CN201180011068.4A CN102770984B (zh) 2010-02-25 2011-02-25 制备隔板的方法、由该方法制备的隔板和制备含有该隔板的电化学器件的方法
EP11747756.2A EP2541644B1 (en) 2010-02-25 2011-02-25 Manufacturing method for separator
US13/331,092 US8815433B2 (en) 2010-02-25 2011-12-20 Method for manufacturing separator, separator manufactured by the method and method for manufacturing electrochemical device including the separator
US14/245,063 US9985260B2 (en) 2010-02-25 2014-04-04 Separator for electrochemical device and electrochemical device including the separator
JP2014080436A JP5885313B2 (ja) 2010-02-25 2014-04-09 セパレータの製造方法、その方法によって形成されたセパレータ、及びそれを含む電気化学素子の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020100016990 2010-02-25
KR20100016990 2010-02-25

Publications (2)

Publication Number Publication Date
KR20110097715A true KR20110097715A (ko) 2011-08-31
KR101173202B1 KR101173202B1 (ko) 2012-08-13

Family

ID=44932603

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110016508A KR101173202B1 (ko) 2010-02-25 2011-02-24 세퍼레이터의 제조방법, 이로부터 형성된 세퍼레이터 및 이를 포함하는 전기화학소자의 제조방법

Country Status (6)

Country Link
US (2) US8815433B2 (ko)
EP (1) EP2541644B1 (ko)
JP (2) JP5525067B2 (ko)
KR (1) KR101173202B1 (ko)
CN (1) CN102770984B (ko)
WO (1) WO2011105866A2 (ko)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130103946A (ko) * 2012-03-12 2013-09-25 주식회사 엘지화학 세퍼레이터 도포용 슬러리, 그 슬러리를 이용한 세퍼레이터 및 그를 포함하는 전기화학소자
EP2662912A1 (en) * 2012-05-10 2013-11-13 Samsung SDI Co., Ltd. Separator and method of manufacturing the same and rechargeable lithium battery including the same
EP2779275A4 (en) * 2011-11-11 2016-03-02 SEPARATOR AND ELECTROCHEMICAL DEVICE COMPRISING SAID SEPARATOR
KR20170003617A (ko) * 2014-05-05 2017-01-09 다라믹 엘엘씨 개선된 납 축전지 분리기, 전극, 배터리 그리고 그 제조 방법 및 그 용도
WO2017213444A1 (ko) * 2016-06-08 2017-12-14 주식회사 엘지화학 세퍼레이터 및 이를 포함하는 전기화학소자
WO2019132456A1 (ko) * 2017-12-27 2019-07-04 주식회사 엘지화학 세퍼레이터의 제조방법, 이로부터 형성된 세퍼레이터 및 이를 포함하는 전기화학소자
KR20190140870A (ko) * 2018-06-12 2019-12-20 주식회사 엘지화학 전극접착력이 개선된 리튬 이차전지용 세퍼레이터 및 그의 제조방법
WO2020060018A1 (ko) * 2018-09-18 2020-03-26 삼성에스디아이 주식회사 리튬 이차 전지용 분리막 및 이를 포함하는 리튬 이차 전지
KR20200047409A (ko) 2018-10-24 2020-05-07 주식회사 엘지화학 용해 온도가 다른 바인더를 포함하는 분리막 및 이의 제조방법
WO2020149478A1 (ko) * 2019-01-16 2020-07-23 삼성에스디아이 주식회사 리튬 이차 전지용 분리막 및 이를 포함하는 리튬 이차 전지
US20210280943A1 (en) * 2020-03-09 2021-09-09 Samsung Sdi Co., Ltd. Method for preparing composite separator, composite separator, and lithium battery comprising composite separator
US11450921B2 (en) 2017-11-24 2022-09-20 Lg Energy Solution, Ltd. Separator fabrication method, separator fabricated thereby, and electrochemical element comprising same separator
US11657984B2 (en) 2018-06-20 2023-05-23 Lg Chem, Ltd. Separator for electrochemical device, method for manufacturing same, and electrochemical device comprising same

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101173202B1 (ko) * 2010-02-25 2012-08-13 주식회사 엘지화학 세퍼레이터의 제조방법, 이로부터 형성된 세퍼레이터 및 이를 포함하는 전기화학소자의 제조방법
KR101173201B1 (ko) * 2010-02-25 2012-08-13 주식회사 엘지화학 세퍼레이터의 제조방법, 이로부터 형성된 세퍼레이터 및 이를 포함하는 전기화학소자의 제조방법
US9570781B2 (en) 2012-08-10 2017-02-14 Battelle Memorial Institute Optical waveguide methods for detecting internal faults in operating batteries
EP2883260B1 (en) * 2012-08-10 2016-11-09 Battelle Memorial Institute Optical monitoring of battery health
US10211489B2 (en) 2012-08-10 2019-02-19 Battelle Memorial Institute Integral light sources and detectors for an optical sensor to detect battery faults
CN104582949B (zh) 2012-08-23 2016-08-17 捷恩智株式会社 耐热性优良的复合多孔质膜
KR101535199B1 (ko) 2012-11-30 2015-07-09 주식회사 엘지화학 개선된 분산성을 갖는 슬러리 및 그의 용도
JP6481623B2 (ja) * 2014-02-14 2019-03-13 日本ゼオン株式会社 二次電池多孔膜用組成物、二次電池用多孔膜、及び二次電池
JP2015191710A (ja) * 2014-03-27 2015-11-02 株式会社村田製作所 リチウムイオン二次電池の製造方法およびリチウムイオン二次電池
KR101707193B1 (ko) * 2014-04-01 2017-02-27 주식회사 엘지화학 세퍼레이터의 제조방법, 이로부터 형성된 세퍼레이터 및 이를 포함하는 전기화학소자
US10002719B2 (en) 2014-04-21 2018-06-19 Lg Chem, Ltd. Separator having binder layer, and electrochemical device comprising the separator and method of preparing the separator
EP3866244A1 (en) * 2014-12-05 2021-08-18 Celgard, LLC Improved coated separators for lithium batteries and related methods
US10177421B2 (en) 2015-02-12 2019-01-08 Battelle Memorial Institute Battery cell structure with limited cell penetrations
HUE052238T2 (hu) * 2015-08-11 2021-04-28 Zeon Corp Készítmény nem-vizes akkumulátor funkciós réteghez, funkciós réteg nem-vizes akkumulátorhoz, és nem-vizes akkumulátor
CN107925036B (zh) 2015-08-11 2020-12-22 东丽株式会社 电池用隔膜
US10637063B2 (en) * 2015-12-25 2020-04-28 Zeon Corporation Binder composition for non-aqueous secondary battery porous membrane, slurry composition for non-aqueous secondary battery porous membrane, porous membrane for non-aqueous secondary battery, and non-aqueous secondary battery
EP3219771B1 (en) * 2016-03-14 2019-02-06 3M Innovative Properties Company Fluoropolymer compositions with high content of inorganic material
JP6766411B2 (ja) 2016-03-31 2020-10-14 東レ株式会社 電池用セパレータおよびその製造方法
KR102206758B1 (ko) 2016-07-28 2021-01-25 도레이 카부시키가이샤 적층 권회체
KR102140130B1 (ko) * 2017-01-26 2020-07-31 주식회사 엘지화학 분리막의 제조방법, 이로부터 제조된 분리막 및 이를 포함하는 전기화학소자
US11283134B2 (en) 2017-01-26 2022-03-22 Lg Energy Solution, Ltd. Method for manufacturing separator, separator manufactured thereby, and electrochemical device comprising same
WO2019151780A1 (ko) 2018-01-30 2019-08-08 주식회사 엘지화학 전기화학소자용 분리막 및 상기 분리막을 제조하는 방법
US20190341604A1 (en) * 2018-05-07 2019-11-07 Teebs R&D, Llc Method of forming a carbon based active layer for an anode of a lead carbon battery and the active layer formed therefrom
CN112074987B (zh) * 2018-05-17 2024-01-26 日本碍子株式会社 锂二次电池
WO2019221146A1 (ja) * 2018-05-17 2019-11-21 日本碍子株式会社 リチウム二次電池
KR101996642B1 (ko) 2018-07-13 2019-07-04 주식회사 엘지화학 저저항 코팅층을 포함하는 전기화학소자용 분리막 및 이를 제조하는 방법
KR102421618B1 (ko) * 2019-03-25 2022-07-14 주식회사 엘지에너지솔루션 전기화학소자용 세퍼레이터의 제조방법
CN111834591B (zh) * 2019-04-18 2022-04-15 比亚迪股份有限公司 多孔隔膜及其制备方法和锂离子电池
CN110911623B (zh) * 2019-11-06 2021-09-24 电子科技大学 一种锂硫电池隔膜用铁酸铋@二氧化钛复合材料及制备方法

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07161343A (ja) * 1993-10-14 1995-06-23 Sumitomo Electric Ind Ltd 電池用セパレータ
JPH07122257A (ja) * 1993-09-03 1995-05-12 Sumitomo Electric Ind Ltd 電池用セパレータ
JP3218170B2 (ja) 1995-09-06 2001-10-15 キヤノン株式会社 リチウム二次電池及びリチウム二次電池の製造方法
US6537703B2 (en) * 1998-11-12 2003-03-25 Valence Technology, Inc. Polymeric mesoporous separator elements for laminated lithium-ion rechargeable batteries
CN1157817C (zh) * 1999-08-14 2004-07-14 惠州Tcl金能电池有限公司 复合聚合物电解质膜及用此膜制造的锂电池
JP2001148243A (ja) 1999-11-19 2001-05-29 Matsushita Electric Ind Co Ltd 電池電極シートの製造方法及び電解質シートの製造方法
US7871946B2 (en) * 2003-10-09 2011-01-18 Kuraray Co., Ltd. Nonwoven fabric composed of ultra-fine continuous fibers, and production process and application thereof
KR20060020904A (ko) 2004-09-01 2006-03-07 브이케이 주식회사 적층형 리튬 이차 전지 및 그 제조방법
KR100858214B1 (ko) 2005-06-27 2008-09-10 주식회사 엘지화학 이질적 표면을 갖는 2층 구조의 유/무기 복합 다공성분리막 및 이를 이용한 전기 화학 소자
JP5153101B2 (ja) 2005-08-31 2013-02-27 旭化成イーマテリアルズ株式会社 セパレータ及びその製造方法
BRPI0620590B1 (pt) * 2005-12-06 2019-07-09 Lg Chem, Ltd. Separador compósito orgânico/inorgânico, método para fabricar um separador compósito orgânico/inorgânico e dispositivo eletroquímico
CN101313428B (zh) * 2005-12-06 2010-08-25 Lg化学株式会社 安全性加强的电极以及具有该电极的电化学装置
JP5162825B2 (ja) * 2005-12-13 2013-03-13 パナソニック株式会社 非水電解質二次電池用負極とそれを用いた非水電解質二次電池
KR100791791B1 (ko) * 2006-03-10 2008-01-04 주식회사 엘지화학 다공성 활성층이 코팅된 전극, 그 제조방법 및 이를 구비한전기화학소자
CN101432906B (zh) * 2006-04-28 2011-06-15 株式会社Lg化学 具有凝胶聚合物层的电池用隔膜
US9825267B2 (en) 2006-05-04 2017-11-21 Lg Chem, Ltd. Lithium secondary battery and method for producing the same
KR100860552B1 (ko) * 2006-11-23 2008-09-26 한국과학기술원 높은 기계적 강도를 가지는 리튬이차전지용 분리막의제조방법 및 이를 적용한 리튬이차전지
KR20070000231U (ko) 2007-02-02 2007-02-22 오윤희 상하 왕복 선풍기
KR100727248B1 (ko) * 2007-02-05 2007-06-11 주식회사 엘지화학 다공성 활성층이 코팅된 유기/무기 복합 분리막 및 이를구비한 전기화학소자
KR100859754B1 (ko) * 2007-02-07 2008-09-24 한국과학기술원 시아노아크릴레이트 화합물이 코팅된 전지용 분리막 및이를 포함하는 Li/SOCl2 전지
KR100859755B1 (ko) * 2007-02-07 2008-09-24 한국과학기술원 폴리우레탄계 고분자 화합물이 코팅된 전지용 분리막을 포함하는 Li/SOCl2 전지
KR100754746B1 (ko) 2007-03-07 2007-09-03 주식회사 엘지화학 다공성 활성층이 코팅된 유기/무기 복합 분리막 및 이를구비한 전기화학소자
KR101460640B1 (ko) * 2007-07-06 2014-12-02 소니 가부시끼가이샤 세퍼레이터, 세퍼레이터를 이용한 전지, 및 세퍼레이터를제조하는 방법
CN101911368B (zh) 2007-12-26 2014-07-02 松下电器产业株式会社 非水电解质二次电池
JP5572101B2 (ja) * 2008-01-30 2014-08-13 エルジー・ケム・リミテッド 電極に対する結着性が改善したセパレータ及びこれを備えた電気化学素子
US20110033743A1 (en) * 2008-04-08 2011-02-10 Jean Lee Method of manufacturing the microporous polyolefin composite film with a thermally stable layer at high temperature
JP2009266464A (ja) 2008-04-23 2009-11-12 Panasonic Corp リチウム電池の製造方法
KR101055536B1 (ko) * 2009-04-10 2011-08-08 주식회사 엘지화학 다공성 코팅층을 포함하는 세퍼레이터, 그 제조방법 및 이를 구비한 전기화학소자
US20100261055A1 (en) * 2009-04-14 2010-10-14 Zhiping Jiang Lithium Primary Cells
EP2485296B1 (en) * 2009-09-29 2018-10-03 LG Chem, Ltd. Method for manufacturing separator, separator manufactured therefrom and method for manufacturing electrochemical device having the same
KR101055431B1 (ko) * 2009-11-23 2011-08-08 주식회사 엘지화학 다공성 코팅층을 구비한 분리막의 제조방법, 이로부터 형성된 분리막 및 이를 구비한 전기화학소자
JP5655088B2 (ja) * 2009-11-27 2015-01-14 エルジー・ケム・リミテッド セパレータの製造方法、その方法によって形成されたセパレータ、及びそれを含む電気化学素子
KR101173201B1 (ko) 2010-02-25 2012-08-13 주식회사 엘지화학 세퍼레이터의 제조방법, 이로부터 형성된 세퍼레이터 및 이를 포함하는 전기화학소자의 제조방법
KR101173202B1 (ko) 2010-02-25 2012-08-13 주식회사 엘지화학 세퍼레이터의 제조방법, 이로부터 형성된 세퍼레이터 및 이를 포함하는 전기화학소자의 제조방법

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2779275A4 (en) * 2011-11-11 2016-03-02 SEPARATOR AND ELECTROCHEMICAL DEVICE COMPRISING SAID SEPARATOR
US10033024B2 (en) 2011-11-11 2018-07-24 Lg Chem, Ltd. Separator and electrochemical device having the same
KR20130103946A (ko) * 2012-03-12 2013-09-25 주식회사 엘지화학 세퍼레이터 도포용 슬러리, 그 슬러리를 이용한 세퍼레이터 및 그를 포함하는 전기화학소자
EP2662912A1 (en) * 2012-05-10 2013-11-13 Samsung SDI Co., Ltd. Separator and method of manufacturing the same and rechargeable lithium battery including the same
US10096810B2 (en) 2012-05-10 2018-10-09 Samsung Sdi Co., Ltd. Separator and method of manufacturing the same and rechargeable lithium battery including the same
KR20170003617A (ko) * 2014-05-05 2017-01-09 다라믹 엘엘씨 개선된 납 축전지 분리기, 전극, 배터리 그리고 그 제조 방법 및 그 용도
KR20220156676A (ko) * 2014-05-05 2022-11-25 다라믹 엘엘씨 개선된 납 축전지 분리기, 전극, 배터리 그리고 그 제조 방법 및 그 용도
US11245158B2 (en) 2016-06-08 2022-02-08 Lg Energy Solution, Ltd. Separator and electrochemical device including the same
WO2017213444A1 (ko) * 2016-06-08 2017-12-14 주식회사 엘지화학 세퍼레이터 및 이를 포함하는 전기화학소자
US11450921B2 (en) 2017-11-24 2022-09-20 Lg Energy Solution, Ltd. Separator fabrication method, separator fabricated thereby, and electrochemical element comprising same separator
KR20190079544A (ko) * 2017-12-27 2019-07-05 주식회사 엘지화학 세퍼레이터의 제조방법, 이로부터 형성된 세퍼레이터 및 이를 포함하는 전기화학소자
US11489232B2 (en) 2017-12-27 2022-11-01 Lg Energy Solution, Ltd. Method for manufacturing separator, separator formed thereby, and electrochemical device including same
WO2019132456A1 (ko) * 2017-12-27 2019-07-04 주식회사 엘지화학 세퍼레이터의 제조방법, 이로부터 형성된 세퍼레이터 및 이를 포함하는 전기화학소자
KR20190140870A (ko) * 2018-06-12 2019-12-20 주식회사 엘지화학 전극접착력이 개선된 리튬 이차전지용 세퍼레이터 및 그의 제조방법
US11657984B2 (en) 2018-06-20 2023-05-23 Lg Chem, Ltd. Separator for electrochemical device, method for manufacturing same, and electrochemical device comprising same
WO2020060018A1 (ko) * 2018-09-18 2020-03-26 삼성에스디아이 주식회사 리튬 이차 전지용 분리막 및 이를 포함하는 리튬 이차 전지
KR20200047409A (ko) 2018-10-24 2020-05-07 주식회사 엘지화학 용해 온도가 다른 바인더를 포함하는 분리막 및 이의 제조방법
WO2020149478A1 (ko) * 2019-01-16 2020-07-23 삼성에스디아이 주식회사 리튬 이차 전지용 분리막 및 이를 포함하는 리튬 이차 전지
US20210280943A1 (en) * 2020-03-09 2021-09-09 Samsung Sdi Co., Ltd. Method for preparing composite separator, composite separator, and lithium battery comprising composite separator

Also Published As

Publication number Publication date
EP2541644B1 (en) 2018-01-17
JP5885313B2 (ja) 2016-03-15
US20140220411A1 (en) 2014-08-07
US20120115036A1 (en) 2012-05-10
JP5525067B2 (ja) 2014-06-18
WO2011105866A2 (ko) 2011-09-01
US8815433B2 (en) 2014-08-26
JP2013519206A (ja) 2013-05-23
CN102770984B (zh) 2016-04-13
EP2541644A4 (en) 2014-03-12
CN102770984A (zh) 2012-11-07
US9985260B2 (en) 2018-05-29
KR101173202B1 (ko) 2012-08-13
EP2541644A2 (en) 2013-01-02
WO2011105866A3 (ko) 2011-12-01
JP2014160666A (ja) 2014-09-04

Similar Documents

Publication Publication Date Title
KR101173202B1 (ko) 세퍼레이터의 제조방법, 이로부터 형성된 세퍼레이터 및 이를 포함하는 전기화학소자의 제조방법
KR101173201B1 (ko) 세퍼레이터의 제조방법, 이로부터 형성된 세퍼레이터 및 이를 포함하는 전기화학소자의 제조방법
KR101073208B1 (ko) 세퍼레이터의 제조방법, 이로부터 형성된 세퍼레이터 및 이를 포함하는 전기화학소자의 제조방법
JP5415609B2 (ja) 多孔性コーティング層を含むセパレータ、その製造方法、及びそれを備える電気化学素子
JP5384631B2 (ja) 多孔性コーティング層を備えたセパレータ、その製造方法及びこれを備えた電気化学素子
KR101040482B1 (ko) 다공성 코팅층이 코팅된 세퍼레이터 및 이를 구비한 전기화학소자
KR101091228B1 (ko) 다공성 코팅층을 구비한 세퍼레이터 및 이를 구비한 전기화학소자
KR101708884B1 (ko) 세퍼레이터의 제조방법, 이로부터 형성된 세퍼레이터 및 이를 구비한 전기화학소자
KR101739080B1 (ko) 미소 캡슐을 구비한 세퍼레이터 및 이를 구비한 전기화학소자
KR20150051556A (ko) 다공성 코팅층을 구비한 세퍼레이터, 그 제조방법 및 이를 구비한 전기화학소자
KR20120036061A (ko) 세퍼레이터의 제조방법, 이로부터 형성된 세퍼레이터 및 이를 구비한 전기화학소자
KR20120054883A (ko) 세퍼레이터의 제조방법, 이로부터 형성된 세퍼레이터 및 이를 구비한 전기화학소자
KR101028923B1 (ko) 다공성 코팅층이 코팅된 세퍼레이터의 제조방법

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150716

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160803

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20170718

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20180619

Year of fee payment: 7