JP5502549B2 - 電圧出力装置 - Google Patents

電圧出力装置 Download PDF

Info

Publication number
JP5502549B2
JP5502549B2 JP2010072349A JP2010072349A JP5502549B2 JP 5502549 B2 JP5502549 B2 JP 5502549B2 JP 2010072349 A JP2010072349 A JP 2010072349A JP 2010072349 A JP2010072349 A JP 2010072349A JP 5502549 B2 JP5502549 B2 JP 5502549B2
Authority
JP
Japan
Prior art keywords
inverting input
operational amplifier
resistance
load resistance
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010072349A
Other languages
English (en)
Other versions
JP2011205515A (ja
Inventor
宏嘉 一倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lapis Semiconductor Co Ltd
Original Assignee
Lapis Semiconductor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lapis Semiconductor Co Ltd filed Critical Lapis Semiconductor Co Ltd
Priority to JP2010072349A priority Critical patent/JP5502549B2/ja
Priority to US13/050,641 priority patent/US8203381B2/en
Publication of JP2011205515A publication Critical patent/JP2011205515A/ja
Priority to US13/488,315 priority patent/US8384473B2/en
Priority to US13/754,451 priority patent/US8729961B2/en
Application granted granted Critical
Publication of JP5502549B2 publication Critical patent/JP5502549B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45479Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection
    • H03F3/45928Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection using IC blocks as the active amplifying circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier

Description

本発明は、オペアンプを含む電圧出力装置に関し、特にオペアンプの出力オフセットを補正する技術に関する。
従来技術
オペアンプ(差動増幅器)は、入力トランジスタの特性差に起因するオフセットを有している。すなわち、オペアンプは入力端子間の電位差を増幅する回路素子であるにもかかわらず、両入力端子に同じ電圧を加えた場合でも出力電圧はゼロにはならない。オペアンプのオフセットを解消する従来技術としては、例えば以下のようなものがある。特許文献1には、オペアンプの出力電圧と基準電圧とを比較してオペアンプのオフセット電圧を検出するコンパレータと、オフセット電圧の大きさに応じた値だけカウント値をダウンまたはアップさせるカウンタと、カウンタのカウント値に応じてオペアンプを構成する可変抵抗の抵抗値を変化させるレジスタを有するオフセット電圧補償回路が開示されている。
特許文献2には、液晶表示パネルを駆動するためのドライバを構成する差動増幅回路において、差動増幅回路の1対の入力トランジスタを交互に入れ替えながら動作させることにより、時間平均でみた場合のオフセット成分を排除し得ることが記載されている。
特許文献3および4には、液晶表示パネルを駆動するためのドライバ回路において、オペアンプの出力電圧と基準電圧とを比較することによりオペアンプのオフセットを検出し、オフセットがなくなるまでゲイン調整用の容量を順次オペアンプに接続していく方法が開示されている。
特開2005−33541号公報 特開平11−305735号公報 特開2007−116493号公報 特開2008−258725号公報
特許文献2に記載されるような1対の入力トランジスタを交互に入れ替えながら動作させるオペアンプを液晶表示パネル駆動用のドライバに適用した場合には、液晶素子にはフレーム毎に異なった電圧が印加されることとなり、表示画像のちらつきの原因となる。また、特許文献3および4に記載されるようなゲイン調整用の容量の値を順次変化させることによりオフセット補償を行うオペアンプにおいては、ゲイン調整のための複数のキャパシタを回路内に設けておく必要があり、オペアンプを半導体集積回路で構成した場合にチップサイズの増大を招く。また、特許文献1、3および4に記載されるように、オフセット電圧の検出をコンパレータを用いて行う場合、コンパレータの精度や基準電圧の安定性が問題となり、高精度なオフセット補償が容易ではない。また、オフセット検出のためのコンパレータや基準電圧を生成するための回路も必要となるため回路規模が増大する。
本発明は、上記した点に鑑みてなされたものであり、回路規模の増大を抑制することができ、特に液晶表示パネル等の表示装置の駆動回路への適用に適したオフセット補償機能を備えた電圧出力装置を提供することを目的とする。
本発明の電圧出力装置は、反転入力端子および非反転入力端子を有するオペアンプと、前記反転入力端子の前記非反転入力端子への接続、非接続を切替える接続切換手段と、前記反転入力端子と前記非反転入力端子の接続時において、前記オペアンプの反転入力側の負荷抵抗と非反転入力側の負荷抵抗の一方または双方の抵抗値を順次変化させる負荷抵抗変更手段と、を含み、前記負荷抵抗変更手段は、前記オペアンプの出力電圧のレベルが変化したときに、前記反転入力側の負荷抵抗と前記非反転入力側の負荷抵抗の抵抗値を維持させることを特徴としている。
本発明に係る電圧出力装置によれば、従来と比較して簡単な構成とすることができ、回路規模の増大を抑制することができる。
本発明の実施例に係る電圧出力装置の構成を示すブロック図である。 本発明の実施例に係る負荷抵抗回路の構成を示すブロック図である。 本発明の実施例に係る電圧出力装置の動作を示すフローチャートである。 (a)はオフセット補正モードにおけるオペアンプの接続状態を示す図、(b)はオフセット補正後におけるオペアンプの接続状態を示す図である。 本発明の実施例に係る電圧出力装置を備えた液晶表示装置の構成を示す図である。 本発明の実施例3に係るオペアンプの負荷抵抗回路の構成を示す図である。 本発明の実施例4に係るオペアンプの構成を示す等価回路図である。 本発明の実施例4に係るオペアンプの負荷抵抗回路の構成を示す図である。
以下、本発明の実施例について図面を参照しつつ説明する。尚、以下に示す図において、実質的に同一又は等価な構成要素、部分には同一の参照符を付している。
(実施例1)
図1は、本発明の実施例1に係るオフセット補償機能を有する電圧出力装置1の構成を示すブロック図である。電圧出力装置1は、オペアンプ10と、オペアンプ10の入力端子の接続形態を切替えるスイッチSW1と、外部より供給される所定周期のクロック信号CLKをカウントし、カウント値Sを出力するカウンタ20と、オペアンプ10の出力電圧Soutの電圧レベルに応じてカウンタ20から供給されるカウント値Sを保持するラッチ回路30と、ラッチ回路30から供給されるカウント値に対応した制御信号SM2を生成し、オペアンプ10を構成する可変抵抗R1の抵抗値を設定するデコーダ40と、SW1の切換制御とカウンタ20およびラッチ回路30のリセット制御を行う制御部50と、を含んでいる。
NチャンネルトランジスタQ2およびQ3は、オペアンプ10の入力トランジスタである。オペアンプ10の非反転入力端子に相当する入力端子INは、トランジスタQ2のゲート端子に接続される。オペアンプ10の反転入力端子に相当するトランジスタQ3のゲートは、スイッチSW1に接続される。スイッチSW1は、制御部50から供給される制御信号SM1に基づいてトランジスタQ3のゲートを出力端子OUTまたは入力端子INのいずれかに接続する。NチャンネルトランジスタQ1のドレインは、トランジスタQ2およびQ3のソースに接続される。トランジスタQ1のソースは、接地電位Gndに接続される。トランジスタQ1は、バイアス電圧Vb1が供給されることによりオン状態となり、オペアンプ10に回路電流を供給する。PチャンネルトランジスタQ4およびQ5は、カレントミラー回路を構成し、入力トランジスタQ2およびQ3に同一の電流を供給する。
トランジスタQ4およびQ5と電源ラインとの間には、負荷抵抗回路11が接続されている。負荷抵抗回路11は、オペアンプ10の非反転入力側の負荷抵抗を構成する可変抵抗R1と、オペアンプ10の反転入力側の負荷抵抗を構成する固定抵抗R2を有している。可変抵抗R1は、デコーダ40より供給される制御信号SM2に基づいて抵抗値が変化するように構成されている。負荷抵抗回路11の詳細な構成については後述する。
PチャンネルトランジスタQ7とNチャンネルトランジスタQ6は、オペアンプ10の出力回路を構成している。トランジスタQ7のソースは電源ラインに接続され、トランジスタQ6のソースは接地電位Gndに接続される。トランジスタQ7のドレインとトランジスタQ6のドレインは接続されており、かかる接続点にはオペアンプ10の出力端子OUT接続されている。トランジスタQ2のドレインは、トランジスタQ7のゲートに接続されるとともにキャパシタC1を介して出力端子OUTに接続される。トランジスタQ6のゲートにはバイアス電圧Vb2が印加される。
カウンタ20は、所定周期のクロック信号CLKを係数したカウント値Sを生成し、これをラッチ回路30に供給する。カウンタ20は、制御部50から供給されるリセット信号SRSに基づいてカウント値Sをリセットする。
ラッチ回路30は、カウンタ20より供給されるカウント値Sをオペアンプ10の出力電圧Soutの電圧レベルに基づいて保持し、保持しているカウント値Sをデコーダ40に供給する。ラッチ回路30は、制御部50から供給されるリセット信号SRSに基づいて保持しているカウント値Sを消去する。
デコーダ40は、ラッチ回路30より供給されるカウント値に応じた制御信号SM2を生成し、これをオペアンプ10の負荷抵抗回路11に供給し、可変抵抗R1の抵抗値を設定する。
制御部50は、例えば図示しないメモリに格納された制御プログラムを実行するマイクロコンピュータを含んでおり、制御プログラムに基づいて所定のタイミングで制御信号SM1を出力してスイッチSW1を切替える。また、制御部50は、リセット信号SRSを出力してカウンタ20およびラッチ回路30をリセットする。
図2は、負荷抵抗回路11の具体的な構成を示す回路図である。オペアンプ10の非反転入力側の負荷抵抗をなす可変抵抗R1は、PチャンネルトランジスタQ101、Q102、Q103、Q104が並列接続されて構成される。負荷抵抗回路11は、デコーダ40から供給される制御信号SM2に基づいてトランジスタQ101〜Q104のオンオフを個別に切替える駆動部12を有している。駆動部12は、制御信号SM2に応じてトランジスタQ101〜Q104のゲート電位を電源電位Vddまたは接地電位Gndのいずれかに切替えるスイッチSW11〜SW14により構成される。スイッチSW11〜SW14は、デコーダ40から供給される制御信号SM2に応じて独立に駆動されるようになっている。トランジスタQ101〜Q104は、それぞれゲートが電源電圧Vdd側に接続されたときにオフ状態となる。一方、ゲートが接地電位Gnd側に接続されたときにオン状態となり抵抗素子として機能する。このように、トランジスタQ101〜Q104のオン抵抗を利用して抵抗素子が構成される。
トランジスタQ101〜Q104は、所定の抵抗比を有するように形成される。例えばトランジスタQ101の抵抗値を1としたときに、トランジスタQ102の抵抗値は2、トランジスタQ103の抵抗値は3、トランジスタQ104の抵抗値は4に設定される。つまり、トランジスタQ101〜Q104の抵抗比は、1:2:3:4である。尚、抵抗値は、トランジスタのオン抵抗の値に相当する。トランジスタQ101〜Q104のオン抵抗は、各トランジスタのサイズにより設定することができる。
オペアンプ10の反転入力側の負荷抵抗をなす抵抗R2は、単一のPチャンネルトランジスタQ105により構成されている。トランジスタQ105のゲート電位は接地電位に固定され、これによりトランジスタQ105はオン状態を維持し、抵抗素子として機能する。抵抗R2の抵抗値は、例えばトランジスタQ101〜Q104の抵抗値の中間値である2.5に設定される。
以下に、上記した構成を有する本発明の実施例1に係る電圧出力装置1の動作について図3に示すフローチャートを参照しつつ説明する。電源投入時または電源投入後の所定のタイミング毎に電圧出力装置1は、オフセット補正モードとなり、オペアンプ10に生じている出力オフセットを補正するための動作を行う。例えば、電圧出力装置1の電源が投入されると、制御部50はリセット信号SRSをカウンタ20およびラッチ回路30に供給するとともに、トランジスタQ3のゲートを入力端子IN側に接続すべき制御信号SM1をスイッチSW1に供給する。カウンタ20はリセット信号SRSを受信すると、カウント値Sを初期値である「00」にリセットする。ラッチ回路30はリセット信号SRSを受信すると、それまで保持していたカウント値を消去する。ラッチ回路30は、次のセット入力が供給されるまでは、カウンタ20から供給されるカウント値Sをそのままデコーダ40に向けて出力する(ステップS1)。
スイッチSW1は、制御信号SM1を受信すると、接点を端子T1側に切替えて、トランジスタQ3のゲートを入力端子INに接続する。これにより、オペアンプ10は、図4(a)に示されるように、非反転入力端子(トランジスタQ2のゲート)と反転入力端子(トランジスタQ3のゲート)とが短絡された接続状態となる(ステップS2)。かかる接続状態においては、オペアンプ10の反転入力端子と非反転入力端子は同電位となるが、オフセットに起因して出力端子OUTには、高レベル(例えば5V)又は低レベル(例えば0V)の出力電圧Soutが表れる。本実施例においては、オフセット補正モードの初期段階では、出力電圧Soutが低レベルとなるように可変抵抗R1の抵抗値が設定される。すなわち、可変抵抗R1の抵抗値は、調整範囲の最小値に設定される。デコーダ40は、上記リセット動作に基づいてラッチ回路30より供給される値「00」を受信すると、駆動部12のスイッチSW11を接地電位Gnd側、スイッチSW12、SW13、SW14を電源電圧Vdd側に接続すべき制御信号SM2を駆動部12に供給する。これにより、トランジスタQ101がオン状態、トランジスタQ102〜Q104がオフ状態となり、可変抵抗R1の抵抗値は、調整範囲の最小値である「1」となる。これに対して固定抵抗R2の抵抗値は「2.5」である。従って、オペアンプ10の非反転入力側の負荷抵抗と反転入力側の負荷抵抗の差分(R1−R2)が「−1.5」となり、マイナス側の最大値をとる。これにより、入力トランジスタQ2とQ3のバランスが崩れて通常は出力電圧Soutは低レベルとなる。
カウンタ20は、カウント値Sをリセットした後、改めてクロック信号CLKのカウントを行う。カウンタ20から出力されるカウント値Sは、例えば2ビットの2進数で表される。すなわち、カウンタ20は、クロック信号を係数する毎に「00」、「01」、「10」、「11」で表されるカウント値Sを順次出力する(ステップS3)。
ラッチ回路30は、カウンタ20からカウント値「01」を受信すると、これをそのままデコーダ40に供給する。デコーダ40は、カウント値「01」を受信すると、スイッチSW12を接地電位Gnd側、スイッチSW11、SW13、SW14を電源電圧Vdd側に接続すべき制御信号SM2を駆動部12に供給する。これにより、トランジスタQ102がオン状態、トランジスタQ101、Q103、Q104がオフ状態となり、可変抵抗R1の抵抗値は「2」となる(ステップS4)。可変抵抗R1の値が「1」から「2」に変化することにより、トランジスタQ2とQ3のバランスが直前の状態から変化する。
可変抵抗R1の抵抗値を「2」に設定したときに出力電圧Soutがなお低レベルを維持している場合には(ステップS5 No)、ラッチ回路30は、カウンタ20から供給されるカウント値S「10」をデコーダに供給する。つまり、ラッチ回路30は、出力電圧Soutが反転するまで、カウンタ20から供給されるカウント値を順次出力する。デコーダ40は、これに応じて制御信号SM2を生成し、可変抵抗R1の抵抗値を順次増加していく。
表1は、カウンタ20のカウント値と、可変抵抗R1を構成する各トランジスタのオンオフの状態および可変抵抗R1の抵抗値との対応関係を示したものである。表1の右欄は、可変抵抗R1と抵抗R2の抵抗値の差分、すなわち非反転入力側の負荷抵抗と反転入力側の負荷抵抗の差分(R1−R2)を示している。
Figure 0005502549
カウンタ20のカウント値が順次カウントアップされる毎に、可変抵抗R1の抵抗値は、1から4まで1刻みで増加する。可変抵抗R1と抵抗R2(抵抗値は2.5一定)の抵抗値の差分、すなわちR1−R2は、−1.5から1.5まで1刻みで変化する。このようにカウントアップ毎にオペアンプ10の非反転入力側の負荷抵抗R1と反転入力側の負荷抵抗R2の差分を変化させることにより、カウントアップ毎に入力トランジスタのQ2とQ3のバランスが変動する。かかるバランス変動がオペアンプ10のオフセットを完全に相殺するように働いたとき、つまり、オペアンプ10のオフセットが補正されたときにオペアンプ10の出力電圧Soutは、高レベルに反転する(ステップS5 Yes)。かかる高レベルの出力電圧Soutは、ラッチ回路30のセット入力に供給される。
ラッチ回路30は、かかるセット入力に基づいて、出力信号Soutの反転時におけるカウント値Sを保持する。ラッチ回路30は、制御部50よりリセット信号SRSが供給されるまでそのカウント値Sを保持し、出力し続ける(ステップS6)。デコーダ40は、ラッチ回路30から継続的に出力されるカウント値に応じた制御信号SM2を駆動部12に供給する。これにより、可変抵抗R1は、オペアンプ10のオフセット量に応じた抵抗値に維持され、オフセット補正が完了する。
オペアンプ10の出力反転を契機として、制御部50は、トランジスタQ3のゲートを出力端子OUT側に接続すべき制御信号SM1をスイッチSW1に供給する。スイッチSW1は、かかる制御信号SM1を受信すると、接点を端子T2側に切替えて、トランジスタQ3のゲートを出力端子OUTに接続する。これにより、オペアンプ10は、図4(b)に示されるように、ボルテージフォロアを構成する(ステップS7)。以上でオフセット補正モードにおける動作が終了する。尚、本実施例においては、オフセット補正の完了後にオペアンプ10でボルテージフォロアを構成することとしたが、これに限定されない。本発明の電圧出力装置の用途に応じて適宜好適な回路構成とすることができる。オペアンプ10は、オフセット補正後は、例えばコンパレータや演算回路として機能するべく、回路が構成されるようにしてもよい。
このように、本発明の実施例に係る電圧出力装置によれば、オフセット補正モードにおいてオペアンプの反転入力端子と非反転入力端子を短絡させたときの出力電圧に基づいて非反転入力側の負荷抵抗R1と反転入力側の負荷抵抗R2の差分を調整してオフセット補正を行うので、入力トランジスタを交互に入れ替えながら動作させるといった動作を要しない。また、ゲイン調整用の複数のキャパシタやオフセット検出のためのコンパレータを設ける必要もないため、従来構成と比較して回路規模の増大を抑制することができる。
図5に本発明の実施例に係る電圧出力装置1を液晶パネルの駆動回路に適用した液晶表示装置の構成を示す。
液晶パネル200には、m本の信号線S1〜Sm及びこれと交差して配列されたn本の走査線A1〜Anが形成されており、信号線及び走査線の各交差部には薄膜トランジスタ(TFT)を介して画素を担う液晶容量が形成されている。TFTの各々は、ソースが信号線S1〜Smに接続され、ゲートが走査線A1〜Anに接続される。液晶容量の各々は、TFTに接続された画素電極と、画素電極に対向配置された対向電極と、画素電極と対抗電極の間に配向膜を介して液晶材料が挟持されて構成される。
信号線駆動回路100は、外部より供給されるディジタル表示信号R、G、Bを格納するレジスタ110と、ストローブ信号STに同期してディジタル表示信号を保持するラッチ回路120と、ディジタル表示信号をアナログ変換するA/D変換器140と、を含んでいる。ボルテージフォロアを構成する本発明の実施例に係る電圧出力装置1は、信号線S1〜SmとA/D変換器140との間に設けられ、A/D変換器140から出力される表示信号をインピーダンス変換して各信号線S1〜Smに出力する。
各走査線A1〜Anには走査線駆動回路110からフレーム期間ごとに順次走査パルスが印加される。この走査パルスにより選択されたTFTを介して、信号線駆動回路100から対応信号線を経由して供給される表示信号が液晶容量に印加される。その結果、画素電極および対向電極に挟持された液晶材料は、供給された表示信号の電圧レベルに応じた光透過率を示す。これにより、選択された走査ライン上の全ての液晶画素にデータが書き込まれる。かかる書き込み動作は全ての走査線A1〜Anに対して行われ、1フレームの画面が完成する。液晶画素に書き込まれたデータは画素内の静電容量に蓄積され、次にデータを書き込むまでその電圧が保持される。
このように、本発明の実施例に係る電圧出力装置1を液晶パネルの駆動回路に適用した場合、オフセット補正は例えばフレーム期間毎に実行される。
(実施例2)
本発明の実施例2に係る電圧出力装置について以下に説明する。実施例2に係る電圧出力装置は、可変抵抗R1を構成するPチャンネルトランジスタQ101、Q102、Q103、Q104の抵抗値および抵抗比の設定が実施例1とは異なる。それ以外の他の構成は、実施例1と同様である。
本実施例においては、トランジスタQ101の抵抗値を2.4としたときに、トランジスタQ102の抵抗値は4、トランジスタQ103の抵抗値は12、トランジスタQ104の抵抗値は4に設定される。つまり、本実施例においては、トランジスタQ101〜Q104の抵抗比は、2.4:4:12:4となっている。負荷抵抗回路11を構成する固定抵抗R2は、単一のPチャンネルトランジスタQ105により構成され、その抵抗値は2.5である。
実施例2に係る電圧出力装置の動作は、実施例1と同様、図4に示すフローチャートに準ずる。すなわち、オフセット補正モードにおいて、オペアンプの反転入力端子と非反転入力端子を短絡させたときの出力電圧に基づいて非反転入力側の負荷抵抗R1と反転入力側の負荷抵抗R2の差分を調整してオフセット補正を行う。表2は、カウンタ20のカウント値と、可変抵抗R1を構成する各トランジスタのオンオフの状態および可変抵抗R1の抵抗値との対応関係を示したものである。表2の右欄は、非反転入力側の負荷抵抗と反転入力側の負荷抵抗の差分(R1−R2)を示している。
Figure 0005502549
表2に示すように、カウント値と可変抵抗R1の抵抗値との対応関係は実施例1と同様であるが、各抵抗値に設定する際のトランジスタQ101〜Q104のオンオフの状態が実施例1とは異なる。
カウンタ20は、クロック信号を係数する毎に「00」、「01」、「10」、「11」で表されるカウント値Sを順次出力する。デコーダ40は、ラッチ回路30を介してカウント値「00」を受信すると、駆動部12のスイッチSW11〜SW14を全て接地電位Gnd側に接続すべき制御信号SM2を生成し、これを負荷抵抗回路11の駆動部12に供給する。これにより、トランジスタQ101〜Q104が全てオン状態となり、合成された可変抵抗R1の抵抗値は「1」となる。デコーダ40は、ラッチ回路30を介してカウント値「01」を受信すると、駆動部12のスイッチSW12およびSW14を接地電位Gnd側、スイッチSW11およびSW14を電源電圧Vdd側に接続すべき制御信号SM2を生成し、これを負荷抵抗回路11の駆動部12に供給する。これにより、トランジスタQ102およびQ102がオン状態となり、合成された可変抵抗R1の抵抗値は「2」となる。デコーダ40は、ラッチ回路30を介してカウント値「10」を受信すると、駆動部12のスイッチSW13およびSW14を接地電位Gnd側、スイッチSW11およびSW12を電源電圧Vdd側に接続すべき制御信号SM2を生成し、これを負荷抵抗回路11の駆動部12に供給する。これにより、トランジスタQ103およびQ104がオン状態となり、合成された可変抵抗R1の抵抗値は「3」となる。デコーダ40は、ラッチ回路30を介してカウント値「11」を受信すると、駆動部12のスイッチSW14を接地電位Gnd側、スイッチSW11〜SW13を電源電圧Vdd側に接続すべき制御信号SM2を生成し、これを負荷抵抗回路11の駆動部12に供給する。これにより、トランジスタQ104がオン状態となり、可変抵抗R1の抵抗値は「4」となる。このように、実施例2に係る電圧出力装置においては、可変抵抗R1は、1つ又は2つ以上のトランジスタの合成抵抗により構成される。可変抵抗R1と抵抗R2(抵抗値は2.5一定)の抵抗値の差分(R1−R2)は、−1.5から1.5まで1刻みで変化する。
オペアンプ10の非反転入力側の負荷抵抗R1と反転入力側のR2の差分を変化させることにより入力トランジスタQ2およびQ3のバランスを変化させてオフセット補正を行う点は、実施例1と同様である。かかるバランス変動がオペアンプ10のオフセットを完全に相殺するように働いたとき、つまり、オペアンプ10のオフセットが補正されたときにオペアンプ10の出力電圧Soutは、高レベルに反転し、反転時におけるカウント値がラッチ回路30に保持される。ラッチ回路30は、制御部50よりリセット信号SRSが供給されるまでそのカウント値を保持し、出力し続ける。デコーダ40は、ラッチ回路30から継続的に出力されるカウント値に応じた制御信号SM2を駆動部12に供給する。これにより、可変抵抗R1およびR2は、オペアンプ10のオフセット量に応じた抵抗値に維持され、オフセット補正が完了する。
ここで、実施例1の場合と実施例2の場合でトランジスタQ101〜104のサイズを比較した結果を表3に示す。
Figure 0005502549
トランジスタのオン抵抗は、トランジスタの素子サイズ(面積)に反比例する。本実施例のように、抵抗素子をトランジスタで構成した場合、その抵抗値はトランジスタのサイズによって設定することができ、素子サイズを小さくすれば抵抗値を高く設定することができる。例えばオン抵抗が1のトランジスタの面積は、オン抵抗が4のトランジスタの面積の4倍となる。
実施例1の場合、抵抗値が1であるトランジスタQ101の素子サイズを12とすると、トランジスタQ102の素子サイズは6、トランジスタQ103の素子サイズは4、トランジスタQ104の素子サイズは3となり、合計の素子サイズが25となる。一方、実施例2の場合、トランジスタQ101の素子サイズは5、トランジスタQ102の素子サイズは3、トランジスタQ103の素子サイズは1、トランジスタQ104の素子サイズは3となり、合計の素子サイズが12となり、実施例1の場合の半分以下となる。
このように、実施例2に係る電圧出力装置によれば、カウンタ20のカウント値に対応して可変抵抗R1の抵抗値を変化させる場合において、可変抵抗を構成するトランジスタQ101〜Q104のうちの1つ又は2つ以上をオン状態として合成抵抗を形成するので、単一のトランジスタのみをオン状態として抵抗値1〜4を設定する実施例1の場合と比較して素子サイズを大幅に小さくすることが可能となる。
(実施例3)
本発明の実施例3に係る電圧出力装置について以下に説明する。図6に実施例3に係る負荷抵抗回路11の構成を示す。上記した実施例1および実施例2に係る電圧出力装置においては、オペアンプ10の非反転入力側の負荷抵抗R1を可変抵抗で構成し、反転入力側の負荷抵抗R2を固定抵抗で構成した。実施例3においては、非反転入力側の負荷抵抗をなす抵抗R1と反転入力側の負荷抵抗をなす抵抗R2の双方を可変抵抗で構成している。それ以外の構成は、実施例1と同様である。
可変抵抗R1は、PチャンネルトランジスタQ101、Q102、Q103、Q104が並列接続されて構成される。可変抵抗R2も同様に、PチャンネルトランジスタQ111、Q112、Q113、Q114が並列接続されて構成される。駆動部12は、これらのトランジスタQ101〜Q104およびQ110〜Q114のゲート電位を電源電位Vddまたは接地電位Gndのいずれかに切替えるスイッチSW11〜SW14およびSW21〜SW24を有している。これらのスイッチSW11〜SW24は、デコーダ40から供給される制御信号SM2に応じて独立に駆動されるようになっている。トランジスタQ101〜Q104およびQ110〜Q114は、それぞれゲートが電源電圧Vdd側に接続されたときにオフ状態となる。一方、ゲートが接地電位Gnd側に接続されたときにオン状態となり抵抗素子として機能する。
トランジスタQ101〜Q104およびQ110〜Q114は、所定の抵抗比を有するように形成される。例えばトランジスタQ101の抵抗値を2.4としたときに、トランジスタQ102の抵抗値は4、トランジスタQ103の抵抗値は12、トランジスタQ104の抵抗値は4、トランジスタQ111の抵抗値は2.4、トランジスタQ112の抵抗値は4、トランジスタQ113の抵抗値は12、トランジスタQ114の抵抗値は4に設定される。尚、抵抗値は、トランジスタのオン抵抗の値に相当する。
実施例3に係る電圧出力装置の動作は、実施例1と同様、図4に示すフローチャートに準ずる。すなわち、オフセット補正モードにおいてオペアンプの反転入力端子と非反転入力端子を短絡させたときの出力電圧に基づいて非反転入力側の負荷抵抗R1と反転入力側の負荷抵抗R2の差分を調整してオフセット補正を行う。表4は、カウンタ20のカウント値と、可変抵抗R1、R2を構成する各トランジスタのオンオフの状態および可変抵抗R1、R2の抵抗値との対応関係を示したものである。表4の右欄は、可変抵抗R1とR2の抵抗値の差分、すなわちオペアンプ10の比反転入力側の負荷抵抗R1と反転入力側の負荷抵抗R2の差分(R1−R2)を示している。
Figure 0005502549
本実施例においては、オフセット補正モードにおいて、抵抗R1と抵抗R2の双方の抵抗値を1〜4に設定することが可能となる。従って、オペアンプ10の非反転入力側の負荷抵抗R1と反転入力側の負荷抵抗R2の差分の調整範囲が上記実施例1および実施例2の場合よりも拡大する。また、負荷抵抗の差分の調整は7段階で行うことが可能となる。
カウンタ20から出力されるカウント値Sは、3ビットの2進数で表される。カウンタ20は、クロック信号を係数する毎に「000」〜「110」で表されるカウント値Sを順次出力する。デコーダ40は、ラッチ回路30を介してカウント値「000」を受信すると、トランジスタQ101〜Q104、Q114をオン状態とするべく制御信号SM2を生成し、駆動部12のスイッチSW11〜SW24を駆動する。これにより、可変抵抗R1の抵抗値が「1」、可変抵抗R2の抵抗値が「4」に設定される。デコーダ40は、以降出力電圧Soutが反転するまでカウントアップされる毎に抵抗R1および抵抗R2の抵抗値をそれぞれ「2」および「4」、「3」および「4」、「4」および「4」、「4」および「3」、「4」および「2」、「4」および「1」に設定するべく制御信号SM2を生成して駆動部12に供給する。これにより、抵抗R1と抵抗R2の抵抗値の差分、すなわち、非反転入力側の負荷抵抗R1と反転入力側の負荷抵抗R2の差分(R1−R2)は、カウントアップされる毎に−3から3まで1刻みで変化する。
負荷抵抗R1とR2の差分を変化させることにより、オペアンプ10の入力トランジスタQ2およびQ3のバランスを変化させてオフセット補正を行う点は、実施例1および実施例2と同様である。かかるバランス変動がオペアンプ10のオフセットを完全に相殺するように働いたとき、つまり、オペアンプ10のオフセットが補正されたときにオペアンプ10の出力電圧Soutは、高レベルに反転し、反転時におけるカウント値がラッチ回路30に保持される。ラッチ回路30は、制御部50よりリセット信号SRSが供給されるまでそのカウント値を保持し、出力し続ける。デコーダ40は、ラッチ回路30から継続的に出力されるカウント値に応じた制御信号SM2を駆動部12に供給する。これにより、可変抵抗R1およびR2は、オペアンプ10のオフセット量に応じた抵抗値に維持され、オフセット補正が完了する。
このように、実施例3においては、実施例1および実施例2の場合と比較して、オペアンプ10の非反転入力側の負荷抵抗R1と反転入力側の負荷抵抗R2の差分の設定範囲が拡大し、また負荷抵抗の差分設定を7段階で行うことが可能となる。仮に、本実施例と同様の負荷抵抗の差分設定を、実施例1および2のように抵抗R1を可変抵抗、抵抗R2を固定抵抗で構成して実現しようとする場合、可変抵抗R1は、例えば抵抗値1〜7まで設定できるようにしておく必要がある。この場合、可変抵抗R1の最大値が高くなり、カレントミラー回路を構成するトランジスタQ4のバックバイアスが大きくなる。すると、入力トランジスタQ2およびQ3に流れる電流バランスが崩れ、オペアンプ10の動作が不安定となる。一方、本実施例のように、抵抗R1と抵抗R2の双方を可変抵抗で構成することにより、抵抗R1と抵抗R2の最大値を低く抑えることができ、オペアンプ10の動作安定性を維持しつつオフセット補正範囲を拡大することが可能となる。
(実施例4)
本発明の実施例4に係る電圧出力装置について以下に説明する。図7に本施例に係るオペアンプ10aの等価回路図を示す。
NチャンネルトランジスタQ2およびQ3は、オペアンプ10aの入力トランジスタである。オペアンプ10の入力端子INは、トランジスタQ2のゲート端子に接続される。トランジスタQ3のゲートは、スイッチSW1に接続される。スイッチSW1は、制御部50から供給される制御信号SM1に基づいて、トランジスタQ3のゲートを出力端子OUTまたは入力端子INのいずれかに接続する。NチャンネルトランジスタQ1のドレインは、トランジスタQ2およびQ3のソースに接続される。トランジスタQ1のソースは、接地電位Gndに接続される。トランジスタQ1は、ゲートにバイアス電圧Vb1が供給されることによりオン状態となり、オペアンプ10aに回路電流を供給する。PチャンネルトランジスタQ4およびQ5は、カレントミラー回路を構成し、トランジスタQ2およびQ3に同一の電流を供給する。
トランジスタQ4およびQ5と電源ラインとの間には、負荷抵抗回路11aが接続されている。負荷抵抗回路11aは、可変抵抗R1、固定抵抗R3〜R6およびスイッチSW2〜SW5により構成される。抵抗R1、R3およびスイッチSW2からなる直列回路は、電源ラインとトランジスタQ4のソースの間に接続される。抵抗R5とスイッチSW5からなる直列回路は、電源ラインとトランジスタQ5のソースの間に接続される。抵抗R4とスイッチSW3からなる直列回路は、抵抗R1とR3の中点と、トランジスタQ5のソースの間に接続される。抵抗R6とスイッチSW4からなる直接回路は、電源ラインとトランジスタQ4のソースの間に接続される。可変抵抗R1は、デコーダ40より供給される制御信号SM2に基づいて抵抗値が変化するように構成されている。スイッチSW2〜SW4もデコーダ40より供給される制御信号SM2に基づいて駆動されるように構成されている。負荷抵抗回路11aの詳細な構成については後述する。
PチャンネルトランジスタQ7とNチャンネルトランジスタQ6は、オペアンプ10aの出力回路を構成している。トランジスタQ7のソースは電源ラインに接続され、トランジスタQ6のソースは接地電位に接続される。トランジスタQ7のドレインとトランジスタQ6のドレインは接続されており、かかる接続点はオペアンプ10aの出力端子OUTに接続されている。トランジスタQ2のドレインはトランジスタQ7のゲートに接続されるとともにノイズを除去するためのキャパシタC1を介して出力端子OUTに接続される。トランジスタQ6のゲートには、バイアス電圧Vb2が印加される。
図8は、負荷抵抗回路11aの具体的な構成を示す回路図である。可変抵抗R1は、PチャンネルトランジスタQ101、Q102、Q103、Q104が並列接続されて構成される。抵抗R3〜R6は、それぞれPチャンネルトランジスタQ121〜124により構成される。負荷抵抗回路11aは、デコーダ40から供給される制御信号SM2に基づいてトランジスタQ101〜Q104およびQ121〜124のオンオフを個別に切替える駆動部12を有している。駆動部12は、トランジスタQ101〜Q104およびQ121〜124のゲート電位を電源電位Vddまたは接地電位Gndのいずれかに接続するスイッチSW11〜SW14およびSW31〜SW34を有している。これらのスイッチは、デコーダ40から供給される制御信号SM2に応じて独立に駆動されるようになっている。トランジスタQ101〜Q104およびQ121〜Q124は、それぞれゲートが電源電圧Vdd側に接続されたときにオフ状態となる。一方、ゲートが接地電位Gnd側に接続されたときにオン状態となり抵抗素子として機能する。すなわち、各トランジスタのオン抵抗を利用して抵抗素子が構成される。スイッチSW2〜SW5は、それぞれ抵抗R3〜R6を構成するトランジスタQ121〜Q124のオンオフ制御により実現される。
トランジスタQ101〜Q104およびQ121〜Q124は、所定の抵抗比を有するように形成される。例えばトランジスタQ101の抵抗値を2.4としたときに、トランジスタQ102の抵抗値は4、トランジスタQ103の抵抗値は12、トランジスタQ104の抵抗値は4、トランジスタQ121の抵抗値は4、トランジスタQ122の抵抗値は4、トランジスタQ123の抵抗値は8.5、トランジスタQ124の抵抗値は8.5に設定される。尚、抵抗値とはトランジスタのオン抵抗のことをいう。トランジスタのオン抵抗は、トランジスタのサイズにより設定することができる。オペアンプ10a以外の他の部分の構成は、上記した実施例1〜3と同様である。
実施例4に係る電圧出力装置の動作は、実施例1と同様、図4に示すフローチャートに準ずる。すなわち、オフセット補正モードにおいてオペアンプの反転入力端子と非反転入力端子を短絡させたときの出力電圧に基づいて非反転入力側の負荷抵抗と反転入力側の負荷抵抗の差分を調整してオフセット補正を行う。表5は、カウンタ20のカウント値と、抵抗R1、R3〜R6を構成する各トランジスタのオンオフの状態およびオペアンプ10aの非反転入力側(+入力側)の負荷抵抗の抵抗値並びにオペアンプ10aの反転入力側(−入力側)の負荷抵抗の抵抗値との対応関係を示したものである。表5の右欄は、負荷抵抗との抵抗値の差分を示している。
Figure 0005502549
本実施例においては、オペアンプ10aの非反転入力側の負荷抵抗と反転入力側の負荷抵抗を構成する抵抗素子がカウント値に応じて切り替わる。カウンタ20から出力されるカウント値Sは、3ビットの2進数で表される。カウンタ20は、クロック信号を係数する毎に「000」〜「111」で表されるカウント値Sを順次出力する。カウント値が「000」〜「011」のときは、スイッチSW2を接続状態、スイッチSW4を開放状態とすることによりオペアンプ10aの非反転入力側の負荷抵抗を抵抗R1と抵抗R3の直列抵抗により構成し、スイッチSW3を開放状態、スイッチSW5を接続状態にすることにより反転入力側の負荷抵抗を抵抗R5により構成する。この場合において、非反転入力側の負荷抵抗を構成する可変抵抗R1は、カウントアップされる毎に抵抗値が増加するように制御される。一方、カウント値が「100」〜「111」のときは、スイッチSW2を開放状態、スイッチSW4を接続状態にすることによりオペアンプ10aの非反転入力側の負荷抵抗を抵抗R6により構成し、スイッチSW3を短絡状態、スイッチSW5を開放状態にすることにより反転入力側の負荷抵抗を抵抗R1と抵抗R4の直列抵抗により構成する。この場合において、非反転入力側の負荷抵抗を構成する可変抵抗R1は、カウントアップされる毎に抵抗値が減少するように制御される。
デコーダ40は、ラッチ回路30を介してカウント値「000」を受信すると、トランジスタQ101〜Q104、Q121およびQ124をオン状態とするべく制御信号SM2を生成し、駆動部12のスイッチSW11〜14およびSW31〜SW34を駆動する。これにより、可変抵抗R1の抵抗値が「1」に設定されるとともにオペアンプ10aの非反転入力側の負荷抵抗が抵抗R1と抵抗R3(抵抗値は4)の直列抵抗により構成される。その結果、オペアンプ10aの非反転入力側の負荷抵抗の抵抗値は「5」に設定される。また、オペアンプ10aの反転入力側の負荷抵抗が抵抗R5により構成され、その抵抗値は8.5に設定される。デコーダ40は、カウント値が「000」〜「011」の期間、カウントアップ毎に可変抵抗R1の抵抗値を1ずつ増加させるように制御する。すなわち、カウント値が「000」〜「011」の期間において、非反転入力側の負荷抵抗の抵抗値は、カウントアップされる毎に5から8の間を1ずつ増加し、反転入力側の負荷抵抗の抵抗値は8.5に維持される。従って、カウント値が「000」〜「011」の期間において、非反転入力側の負荷抵抗と反転入力側の負荷抵抗の抵抗値の差分は、カウントアップ毎に−3.5から−0.5の間を1刻みで変化する。
デコーダ40は、ラッチ回路30を介してカウント値「100」を受信すると、トランジスタQ104、Q122およびQ123をオン状態とするべく制御信号SM2を生成し、駆動部12のスイッチSW11〜14およびSW31〜SW34を駆動する。これにより、オペアンプの非反転入力側の負荷抵抗が抵抗R6により構成され、その抵抗値が「8.5」に設定される。また、可変抵抗R1の抵抗値が「4」に設定されるとともに、オペアンプ10aの反転入力側の負荷抵抗は、抵抗R1と抵抗R4(抵抗値は4)の直列抵抗により構成される。その結果、オペアンプ10aの反転入力側の負荷抵抗の抵抗値は「8」に設定される。デコーダ40は、カウント値が「011」〜「111」の期間、カウントアップ毎に可変抵抗R1の抵抗値を1ずつ減少させるように制御する。すなわち、カウント値が「100」〜「111」の期間において、反転入力側の負荷抵抗の抵抗値は、カウントアップ毎に8から5の間を1ずつ減少し、非反転入力側の負荷抵抗の抵抗値は8.5に維持される。従って、カウント値が「100」〜「111」の期間において、非反転入力側の負荷抵抗と反転入力側の負荷抵抗の抵抗値の差分は、カウントアップ毎に0.5から3.5の間を1刻みで変化する。
反転入力側と非反転入力側の負荷抵抗の差分を変化させることにより、オペアンプ10aの入力トランジスタQ2およびQ3のバランスを変化させてオフセット補正を行う点は、上記実施例1〜3と同様である。かかるバランス変動がオペアンプ10のオフセットを完全に相殺するように働いたとき、つまり、オペアンプ10aのオフセットが補正されたときにオペアンプ10aの出力電圧Soutは、高レベルに反転し、反転時におけるカウント値がラッチ回路30に保持される。ラッチ回路30は、制御部50よりリセット信号SRSが供給されるまでそのカウント値を保持し、出力し続ける。デコーダ40は、ラッチ回路30から継続的に出力されるカウント値に応じた制御信号SM2を駆動部12に供給する。これにより、非反転入力側の負荷抵抗および反転入力側の負荷抵抗は、オペアンプ10aのオフセット量に応じた抵抗値に維持され、オフセット補正が完了する。
このように、本実施例においては、オペアンプ10aの非反転入力側の負荷抵抗と反転入力側の負荷抵抗を構成する抵抗素子を切替えることが可能となっている。これにより、オペアンプ10aの非反転入力側の負荷抵抗と反転入力側の負荷抵抗の抵抗値の差分が−3.5〜3.5の間を1ずつ8段階で変化させることが可能となる。本実施例に係るオペアンプ10aの構成によれば、負荷抵抗回路11aの抵抗素子を構成するトランジスタの数は、上記した実施例3の構成と同じであるが、反転入力側と非反転入力側の負荷抵抗の抵抗値の差分を実施例3の場合よりも1段階多く設定することができ、面積効率に優れる。また、可変抵抗R1は、非反転入力側の負荷抵抗と反転入力側の負荷抵抗のいずれをも構成し得るので、各抵抗素子の抵抗値ばらつきを吸収することができる。
10 オペアンプ
11 負荷抵抗回路
12 駆動部
20 カウンタ
30 ラッチ回路
40 デコーダ
50 制御部

Claims (12)

  1. 反転入力端子および非反転入力端子を有するオペアンプと、
    前記反転入力端子の前記非反転入力端子への接続、非接続を切替える接続切換手段と、
    前記反転入力端子と前記非反転入力端子の接続時において、前記オペアンプの反転入力側の負荷抵抗と非反転入力側の負荷抵抗の一方または双方の抵抗値を順次変化させる負荷抵抗変更手段と、を含み、
    前記負荷抵抗変更手段は、前記オペアンプの出力電圧のレベルが変化したときに、前記反転入力側の負荷抵抗と前記非反転入力側の負荷抵抗の抵抗値を維持させることを特徴とする電圧出力装置。
  2. 前記反転入力側の負荷抵抗と前記非反転入力側の負荷抵抗は、オン状態のトランジスタにより構成されることを特徴とする請求項1に記載の電圧出力装置。
  3. 前記反転入力側の負荷抵抗と前記非反転入力側の負荷抵抗の少なくとも一方は、並列接続された複数のトランジスタを含むことを特徴とする請求項2に記載の電圧出力装置。
  4. 前記反転入力側の負荷抵抗と前記非反転入力側の負荷抵抗の双方は、並列接続された複数のトランジスタを含むことを特徴とする請求項2に記載の電圧出力装置。
  5. 前記複数のトランジスタは、互いに異なるオン抵抗を有していることを特徴とする請求項3又は4に記載の電圧出力装置。
  6. 前記負荷抵抗変更手段は、所定のクロックパルスを計数したカウント値を出力するカウンタと、前記カウント値に応じた制御信号生成するデコーダと、前記制御信号に応じて前記複数のトランジスタを選択的にオン駆動せしめる駆動部とを含むことを特徴とする請求項3乃至5のいずれか1つに記載の電圧出力装置。
  7. 前記駆動部は、前記制御信号に応じて1又は2以上のトランジスタをオン駆動せしめることを特徴とする請求項6に記載の電圧出力装置。
  8. 前記負荷抵抗変更手段は、前記オペアンプの出力電圧の電圧レベルに応じて前記カウンタのカウント値を保持し、保持しているカウント値を前記デコーダに供給する保持回路を含むことを特徴とする請求項6又は7に記載の電圧出力装置。
  9. 前記保持回路は、前記出力電圧が所定の第1の電圧レベルを維持している場合には、前記カウンタから供給されたカウント値を順次前記デコーダに供給し、前記出力電圧が前記第1の電圧レベルから所定の第2の電圧レベルに変化したときに、当該変化の時点におけるカウント値を保持し、保持した前記カウント値を前記デコーダに供給し続けることを特徴とする請求項8に記載の電圧出力装置。
  10. 抵抗素子を前記オペアンプの反転入力側及び非反転入力側のいずれかに選択的に接続せしめる負荷抵抗切換手段を更に有することを特徴とする請求項1乃至9のいずれか1つに記載の電圧出力装置。
  11. 前記接続切換手段は、前記オペアンプの出力電圧のレベルの変化を契機として、前記反転入力端子と前記非反転入力端子とを非接続に切替え、前記反転入力端子又は前記非反転入力端子の一方を前記オペアンプの出力端子に接続させることを特徴とする請求項1乃至10のいずれか1つに記載の電圧出力装置。
  12. オペアンプのオフセット補正方法であって、
    前記オペアンプの反転入力端子と非反転入力端子を接続し、
    前記オペアンプの出力電圧をモニタしつつ前記オペアンプの反転入力側の負荷抵抗と非反転入力側の負荷抵抗の少なくとも一方の抵抗値を順次変化させ、
    前記オペアンプの出力電圧のレベルが変化したときに、前記反転入力側の負荷抵抗と前記非反転入力側の負荷抵抗の抵抗値を、前記オペアンプの出力電圧のレベルが変化したときの抵抗値に設定することを特徴とするオフセット補正方法。
JP2010072349A 2010-03-26 2010-03-26 電圧出力装置 Active JP5502549B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010072349A JP5502549B2 (ja) 2010-03-26 2010-03-26 電圧出力装置
US13/050,641 US8203381B2 (en) 2010-03-26 2011-03-17 Voltage output device having an operational amplifier
US13/488,315 US8384473B2 (en) 2010-03-26 2012-06-04 Voltage output device having an operational amplifier
US13/754,451 US8729961B2 (en) 2010-03-26 2013-01-30 Voltage output device having an operational amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010072349A JP5502549B2 (ja) 2010-03-26 2010-03-26 電圧出力装置

Publications (2)

Publication Number Publication Date
JP2011205515A JP2011205515A (ja) 2011-10-13
JP5502549B2 true JP5502549B2 (ja) 2014-05-28

Family

ID=44655715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010072349A Active JP5502549B2 (ja) 2010-03-26 2010-03-26 電圧出力装置

Country Status (2)

Country Link
US (3) US8203381B2 (ja)
JP (1) JP5502549B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6223672B2 (ja) * 2012-09-28 2017-11-01 ラピスセミコンダクタ株式会社 電圧出力装置及び電圧出力装置のオフセットキャンセル方法
JP6382561B2 (ja) * 2014-04-17 2018-08-29 新日本無線株式会社 電気化学計測装置
JP6413715B2 (ja) * 2014-12-05 2018-10-31 富士電機株式会社 増幅装置およびオフセット電圧補正方法
CN107134982B (zh) * 2016-02-29 2023-08-11 上海鸣志自动控制设备有限公司 增加运放输入电压采集补偿运放失调电压的装置
US9954495B1 (en) * 2016-10-24 2018-04-24 Synaptics Incorporated PVT invariant peaking stage for continuous time linear equalizer

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3851270A (en) * 1968-03-06 1974-11-26 R Vosteen Transistorized operational amplifier
US3988689A (en) * 1975-02-07 1976-10-26 National Semiconductor Corporation Offset corrected amplifier
JPS5967704A (ja) * 1982-10-07 1984-04-17 Seiko Instr & Electronics Ltd Mosfet演算増幅器
JPS62247611A (ja) * 1986-04-20 1987-10-28 Asahi Kasei Micro Syst Kk オフセツト補償演算増幅回路
JP3514111B2 (ja) * 1997-07-09 2004-03-31 株式会社デンソー オフセット電圧補正回路
JPH11305735A (ja) 1998-04-17 1999-11-05 Sharp Corp 差動増幅回路及びそれを用いた演算増幅器回路並びにその演算増幅器回路を用いた液晶駆動回路
JPH11338954A (ja) * 1998-05-22 1999-12-10 Nissan Motor Co Ltd 演算増幅器
US6459335B1 (en) * 2000-09-29 2002-10-01 Microchip Technology Incorporated Auto-calibration circuit to minimize input offset voltage in an integrated circuit analog input device
US6466090B1 (en) * 2000-11-06 2002-10-15 Oki America, Inc. Digitally programmable continuous-time modules for signal processing
US7072427B2 (en) * 2001-11-09 2006-07-04 Parkervision, Inc. Method and apparatus for reducing DC offsets in a communication system
DE10231181A1 (de) * 2002-07-10 2004-01-29 Infineon Technologies Ag Verstärkerschaltung mit einstellbarer Verstärkung und Sendeanordnung mit der Verstärkerschaltung
GB2393055B (en) * 2002-09-10 2006-08-30 Wolfson Ltd Transconductance amplifiers
US7970811B2 (en) * 2003-04-04 2011-06-28 Shen David H Continuous-time multi-gigahertz filter using transmission line delay elements
JP4277599B2 (ja) 2003-07-14 2009-06-10 ヤマハ株式会社 オフセット補正方法、オフセット補正回路及び電子ボリューム
JP2005218115A (ja) * 2004-01-29 2005-08-11 Samsung Electronics Co Ltd 演算増幅器のオフセット電圧を無効化する装置及び方法
JP4628881B2 (ja) * 2005-06-15 2011-02-09 ルネサスエレクトロニクス株式会社 可変利得増幅回路及びそのdcオフセット補正方法並びに無線受信装置
US7532065B2 (en) * 2005-07-12 2009-05-12 Agere Systems Inc. Analog amplifier having DC offset cancellation circuit and method of offset cancellation for analog amplifiers
JP4556824B2 (ja) * 2005-09-27 2010-10-06 日本電気株式会社 差動増幅器とデジタル・アナログ変換器、並びに表示装置
JP2007116493A (ja) 2005-10-21 2007-05-10 Oki Electric Ind Co Ltd オフセットキャンセル装置
JP4978022B2 (ja) * 2006-02-16 2012-07-18 富士通セミコンダクター株式会社 演算増幅器
US7348839B2 (en) * 2006-08-23 2008-03-25 Newport Media, Inc. Method and apparatus for DC offset cancellation in amplifiers
JP4861791B2 (ja) * 2006-10-27 2012-01-25 ルネサスエレクトロニクス株式会社 演算増幅器及び表示装置
JP5253753B2 (ja) 2007-04-02 2013-07-31 ラピスセミコンダクタ株式会社 オフセットキャンセル装置
US7724081B2 (en) * 2008-08-01 2010-05-25 Analog Devices, Inc. Amplifier front-end with low-noise level shift
US7944288B2 (en) * 2008-09-29 2011-05-17 Infineon Technologies Ag Switched-capacitor amplifier arrangement having a low input current
US7973684B2 (en) * 2008-10-27 2011-07-05 Microchip Technology Incorporated Self auto-calibration of analog circuits in a mixed signal integrated circuit device

Also Published As

Publication number Publication date
US8203381B2 (en) 2012-06-19
US20130141164A1 (en) 2013-06-06
JP2011205515A (ja) 2011-10-13
US8384473B2 (en) 2013-02-26
US8729961B2 (en) 2014-05-20
US20110234320A1 (en) 2011-09-29
US20120306571A1 (en) 2012-12-06

Similar Documents

Publication Publication Date Title
US7116161B2 (en) Differential amplifier circuit and drive circuit of liquid crystal display unit using the same
JP4234159B2 (ja) オフセット補正装置、半導体装置および表示装置ならびにオフセット補正方法
US7623054B2 (en) Differential amplifier, digital-to-analog converter, and display device
JP4836469B2 (ja) 階調電圧発生回路
US7358946B2 (en) Offset cancel circuit of voltage follower equipped with operational amplifier
JP4797734B2 (ja) 差動増幅器とデジタル・アナログ変換器、並びに表示装置
KR100790977B1 (ko) 출력편차가 개선된 출력버퍼 및 이를 구비한평판표시장치용 소오스 드라이버
JP5502549B2 (ja) 電圧出力装置
US20090040165A1 (en) Amplifying circuit and display unit
JP4647448B2 (ja) 階調電圧発生回路
JP4851192B2 (ja) 差動信号受信回路
JP2010136039A (ja) 信号増幅装置、及び磁気センサ装置
JP3801112B2 (ja) 画像読取信号処理装置
WO2009096192A1 (ja) バッファ回路及びそれを備えたイメージセンサチップ並びに撮像装置
US7564397B2 (en) High slew rate amplifier, analog-to-digital converter using same, CMOS imager using the analog-to-digital converter and related methods
JP2014171114A (ja) レベル変換回路、多値出力型差動増幅器及び表示装置
JP2012104948A (ja) 増幅回路
JP4614218B2 (ja) 液晶ディスプレイの駆動装置
JPH07115334A (ja) ボルテージフォロア回路
JP2011003123A (ja) 定電圧発生回路および液晶表示装置
JP2006129107A (ja) 信号増幅装置
JP2013207697A (ja) サンプル・ホールド回路
TWI384443B (zh) 驅動電壓產生電路
JP2020096233A (ja) 可変抵抗回路
JPH02194365A (ja) オフセット補償型比較回路

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131008

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140313

R150 Certificate of patent or registration of utility model

Ref document number: 5502549

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150