WO2009096192A1 - バッファ回路及びそれを備えたイメージセンサチップ並びに撮像装置 - Google Patents

バッファ回路及びそれを備えたイメージセンサチップ並びに撮像装置 Download PDF

Info

Publication number
WO2009096192A1
WO2009096192A1 PCT/JP2009/000363 JP2009000363W WO2009096192A1 WO 2009096192 A1 WO2009096192 A1 WO 2009096192A1 JP 2009000363 W JP2009000363 W JP 2009000363W WO 2009096192 A1 WO2009096192 A1 WO 2009096192A1
Authority
WO
WIPO (PCT)
Prior art keywords
transistor
source
constant current
drain
buffer circuit
Prior art date
Application number
PCT/JP2009/000363
Other languages
English (en)
French (fr)
Inventor
Hiroshi Kimura
Masahiro Higuchi
Original Assignee
Panasonic Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corporation filed Critical Panasonic Corporation
Priority to JP2009551437A priority Critical patent/JPWO2009096192A1/ja
Priority to US12/809,921 priority patent/US20100289936A1/en
Publication of WO2009096192A1 publication Critical patent/WO2009096192A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/0175Coupling arrangements; Interface arrangements
    • H03K19/0185Coupling arrangements; Interface arrangements using field effect transistors only
    • H03K19/018507Interface arrangements
    • H03K19/018521Interface arrangements of complementary type, e.g. CMOS

Definitions

  • the present invention relates to a buffer circuit, and more particularly to a source follower type buffer circuit.
  • a source follower is often used as a buffer circuit for driving a large load at high speed.
  • a general source follower includes a constant current source and a driving transistor connected in series to the constant current source, and uses a gate voltage and a source voltage of the driving transistor as an input signal and an output signal, respectively.
  • the drain current of the driving transistor is ideally constant regardless of the drain-source voltage, but actually the drain current increases as the drain-source voltage increases due to the channel length modulation effect. This means that even when the driving transistor is biased with a constant current, the gate-source voltage changes according to the change in the drain-source voltage.
  • the gate-source voltage of the driving transistor changes according to the input signal, and a gain error or distortion occurs.
  • the gain error and distortion become larger. For this reason, the source follower has a problem that it is difficult to drive a large load with low gain error and low distortion.
  • a common source follower includes a transistor having a source and a gate connected to a drain and a source of a driving transistor, respectively, and a drain connected to a predetermined voltage node. It is known to additionally provide a constant current source connected to (see, for example, Patent Document 1). In this improved source follower, the gate-source voltage of the driving transistor is kept substantially constant even when the input signal changes, so that gain error and distortion can be improved.
  • JP 60-136405 A pages 6-7, FIG. 4
  • an object of the present invention is to realize a wide range input buffer circuit capable of driving a high load with high accuracy. It is another object of the present invention to realize a buffer circuit capable of driving a resistive load with high accuracy. It is another object of the present invention to provide an image sensor chip and an image pickup apparatus that include these buffer circuits.
  • the buffer circuit includes a first and second cascode constant current source, a constant current source, one end connected to the output of the first cascode constant current source, and the other end constant current.
  • a resistive load connected to the output of the source, a first transistor whose source is connected to the output of the second cascode constant current source, a source connected to a predetermined power supply node, and a drain connected to the first transistor.
  • a second transistor having a gate connected to a connection point between the first cascode constant current source and the resistive load; a source connected to the drain of the first transistor; and a drain connected to the constant current source
  • a third transistor having a gate connected to a source of the first transistor and connected to a connection point with the resistive load.
  • the gate voltage and the source voltage of the first transistor are an input signal and an output signal of the buffer circuit, respectively.
  • a buffer circuit includes first and second cascode constant current sources, a first cascode current mirror circuit whose output is connected to the output of the first cascode constant current source, and an output. Is connected to the input of the first cascode current mirror circuit, the first transistor is connected to the output of the second cascode constant current source, the source is a predetermined power supply node A second transistor having a drain connected to the drain of the first transistor, a gate connected to a connection point between the first cascode constant current source and the first cascode current mirror circuit, and a source connected to the first transistor 1 is connected to the drain of the first transistor, the drain is connected to the input of the second cascode current mirror circuit, and the gate is connected to the first transistor. And a third transistor connected to the data source. The gate voltage and the source voltage of the first transistor are an input signal and an output signal of the buffer circuit, respectively.
  • the first and third transistors each operate as a source follower, and the drain-source voltage of the first transistor matches the gate-source voltage of the third transistor and is kept substantially constant. It is. Furthermore, although the second transistor is connected to the drain of the first transistor in one stage, the second transistor is equivalent to a cascode constant current source by negative feedback control of the gate voltage of the second transistor. High-precision constant current flows. Therefore, these buffer circuits can drive a high load with high accuracy while ensuring a sufficiently large input range.
  • the buffer circuit further includes a constant current source connected in parallel to the second transistor, one end connected to the drain of the second transistor, and the other end connected to the gate of the second transistor. It is assumed that at least one of capacitive elements is provided. According to this, it is possible to suppress oscillation caused by the negative feedback control of the second transistor.
  • a buffer circuit in one embodiment, includes a first cascode constant current source, a first transistor having a source connected to an output of the second cascode constant current source, and a source having a first source.
  • the drain is connected to the drain of the first transistor, the gate is biased to the second transistor, the source is connected to the drain of the first transistor, and the drain is the first cascode constant current.
  • a third transistor having a gate connected to the source of the first transistor; a source connected to the second power supply node; a drain connected to the drain of the second transistor; And a fourth transistor connected to the drain of the third transistor.
  • the gate voltage and the source voltage of the first transistor are an input signal and an output signal of the buffer circuit, respectively. This makes it possible to drive a high load with high accuracy while ensuring a sufficiently large input range in the same manner as the buffer circuit, although the configuration is easier than that of the buffer circuit.
  • the buffer circuit includes a first cascode constant current source, a drain connected to the output of the first cascode constant current source, and a source connected to the second cascode constant current source.
  • a first transistor connected to the output; a second transistor having a source connected to the gate of the first transistor; a drain connected to the output of the second cascode constant current source; and a source having a predetermined power supply node
  • a third transistor having a drain connected to the source of the second transistor and a gate connected to the drain of the first transistor.
  • the gate voltage and the source voltage of the second transistor are an input signal and an output signal of the buffer circuit, respectively.
  • the buffer circuit includes a third cascode constant current source that supplies a constant current to the source of the second transistor.
  • each of the first and second transistors operates as a source follower, and the drain-source voltage of the second transistor is kept substantially constant in accordance with the gate-source voltage of the first transistor. It is. Further, when a resistive external load is connected, negative feedback control is performed on the gate voltage of the third transistor 24 so as to compensate the current flowing through the external load. Therefore, this buffer circuit can drive the resistive load with high accuracy.
  • an image sensor chip includes an image sensor and a column ADC.
  • the column ADC generates a ramp signal that supplies a ramp signal to any of the buffer circuits described above.
  • the imaging apparatus includes the image sensor chip described above.
  • a wide-range input buffer circuit capable of driving a high load with high accuracy and a buffer circuit capable of driving a resistive load with high accuracy can be realized. Further, it is possible to improve the quality of imaging data for an image sensor chip including such a buffer circuit and an imaging apparatus including the image sensor chip.
  • FIG. 1 is a configuration diagram of a buffer circuit according to the first embodiment.
  • FIG. 2 is a configuration diagram of a buffer circuit according to the second embodiment.
  • FIG. 3 is a configuration diagram of a buffer circuit according to the third embodiment.
  • FIG. 4 is a configuration diagram of a buffer circuit according to the fourth embodiment.
  • FIG. 5 is an overview of the imaging apparatus.
  • FIG. 6 is a configuration diagram of the image sensor chip.
  • Cascode constant current source (first cascode constant current source, second cascode constant current source) 12 cascode constant current source (second cascode constant current source, third cascode constant current source) 13 constant current source 14 constant current source 15 cascode constant current source (first cascode constant current source) 16 cascode current mirror circuit (first cascode current mirror circuit) 17 Cascode current mirror circuit (second cascode current mirror circuit) 20 Resistive load 21 PMOS transistor (first transistor, second transistor) 22 NMOS transistor (second transistor) 23 NMOS transistor (third transistor, first transistor) 24 PMOS transistor (fourth transistor, third transistor) 30 capacitive element 100 imaging device 101 image sensor chip 102 image sensor 103 column ADC 1032 Comparator 1034 Ramp generation circuit 1035 Buffer circuit
  • FIG. 1 shows a configuration of a buffer circuit according to the first embodiment.
  • the buffer circuit can be manufactured by a CMOS process.
  • the cascode constant current source 11 is configured by cascode connection of two NMOS transistors each having a bias voltage Vbn1 and Vbn2 applied to the gate, and supplies a constant current I11.
  • the cascode constant current source 12 is configured by cascode connection of two PMOS transistors each having a bias voltage Vbp1 and Vbp2 applied to the gate, and supplies a constant current I12.
  • the constant current source 13 includes a PMOS transistor having a gate to which a bias voltage Vbp1 is applied, and supplies a constant current I13.
  • the resistive load 20 is connected to the output of the cascode constant current source 11, and the other end of the resistive load 20 is connected to the output of the constant current source 13.
  • the resistive load 20 can be composed of a PMOS transistor, a resistance element, a variable resistance element, or the like with a bias voltage applied to the gate.
  • the source of the PMOS transistor 21 is connected to the output of the cascode constant current source 12.
  • the input signal Vin of the buffer circuit is applied to the gate of the PMOS transistor 21, and the output signal Vout of the buffer circuit is output from the source. That is, the PMOS transistor 21 operates as a source follower biased with a constant current I12.
  • the drain of the NMOS transistor 22 is connected to the drain of the PMOS transistor 21.
  • the source and gate of the NMOS transistor 22 are connected to a ground node and a connection point between the cascode constant current source 11 and the resistive load 20, respectively.
  • the gate and source of the NMOS transistor 23 are connected to the source and drain of the PMOS transistor 21, respectively.
  • the drain of the NMOS transistor 23 is connected to a connection point between the constant current source 13 and the resistive load 20. That is, the NMOS transistor 23 is biased with a constant current I13-I11 and operates as a source follower that receives the output signal Vout of the buffer circuit.
  • the constant current source 14 is connected in parallel to the NMOS transistor 22.
  • the constant current source 14 includes an NMOS transistor having a gate to which a bias voltage Vbn3 is applied, and supplies a constant current I14. Further, a capacitive element 30 for phase correction is connected between the gate and drain of the NMOS transistor 22.
  • the gate voltage of the NMOS transistor 22 is subjected to negative feedback control so that the constant current I13 ⁇ I11 + I12 ⁇ I14 flows through the NMOS transistor 22.
  • a voltage lower than the source voltage (output signal Vout) of the PMOS transistor 21 by the gate-source voltage of the NMOS transistor 23 is applied to the drain of the PMOS transistor 21. Therefore, the drain-source voltage of the PMOS transistor 21 matches the gate-source voltage of the NMOS transistor 23 regardless of the value of the input signal Vin, and is kept substantially constant.
  • the PMOS transistor 21 is biased with a high-accuracy constant current I12 supplied from the cascode constant current source 12.
  • the buffer circuit according to the present embodiment can drive a high load with high accuracy while ensuring a sufficiently large input range.
  • FIG. 2 shows a configuration of the buffer circuit according to the second embodiment.
  • the buffer circuit can also be manufactured by a CMOS process.
  • Each of the cascode constant current sources 12 and 15 is configured by cascode connection of two PMOS transistors having bias voltages Vbp1 and Vbp2 applied to their gates, respectively.
  • the former supplies a constant current I12
  • the latter supplies a constant current I15.
  • the cascode current mirror circuit 16 is configured by cascode-connecting two NMOS transistors on both the input side and the output side, and a bias voltage Vbn2 is applied to the gates of the NMOS transistors in the cascode stage on the input side and the output side. ing.
  • the cascode current mirror circuit 17 is configured by cascode-connecting two PMOS transistors on both the input side and the output side, and a bias voltage Vbp2 is applied to the gates of the PMOS transistors in the cascode stage on the input side and the output side. ing.
  • the output of the cascode current mirror circuit 17 is connected to the input of the cascode current mirror circuit 16.
  • the output of the cascode constant current source 15 is connected to the output of the cascode current mirror circuit 16.
  • the source of the PMOS transistor 21 is connected to the output of the cascode constant current source 12.
  • the input signal Vin of the buffer circuit is applied to the gate of the PMOS transistor 21, and the output signal Vout of the buffer circuit is output from the source. That is, the PMOS transistor 21 operates as a source follower biased with a constant current I12.
  • the drain of the NMOS transistor 22 is connected to the drain of the PMOS transistor 21.
  • the source and gate of the NMOS transistor 22 are connected to a ground node and a connection point between the cascode constant current source 15 and the cascode current mirror circuit 16, respectively.
  • the gate and source of the NMOS transistor 23 are connected to the source and drain of the PMOS transistor 21, respectively.
  • the drain of the NMOS transistor 23 is connected to the input of the cascode current mirror circuit 17.
  • the drain current of the NMOS transistor 23 is compared with the constant current I15, and negative feedback is applied to match it.
  • the NMOS transistor 23 operates as a source follower biased with a constant current I15 that receives the output signal Vout of the buffer circuit.
  • the constant current source 14 is connected in parallel to the NMOS transistor 22.
  • the constant current source 14 includes an NMOS transistor having a gate to which a bias voltage Vbn3 is applied, and supplies a constant current I14. Further, a capacitive element 30 for phase compensation is connected between the gate and drain of the NMOS transistor 22.
  • the gate voltage of the NMOS transistor 22 is subjected to negative feedback control so that the constant current I15 + I12 ⁇ I14 flows through the NMOS transistor 22.
  • the drain-source voltage of the PMOS transistor 21 matches the gate-source voltage of the NMOS transistor 23 regardless of the value of the input signal Vin, and is kept substantially constant. It is.
  • the PMOS transistor 21 is biased by the highly accurate constant current I12 supplied from the cascode constant current source 12, and the NMOS transistor 23 that determines the drain-source voltage is used as the NMOS transistor 23.
  • the buffer circuit according to this embodiment since there is only one transistor between the drain of the PMOS transistor 21 and the ground, the input signal Vin can be lowered to the ground voltage. Therefore, the buffer circuit according to the present embodiment can drive a high load with high accuracy while ensuring a sufficiently large input range.
  • the buffer circuit according to the present embodiment requires the cascode current mirror circuits 16 and 17, the circuit scale is larger than that of the buffer circuit according to the first embodiment.
  • the buffer circuit according to the first embodiment does not use a current mirror, the buffer circuit according to the first embodiment can be configured with a smaller number of elements than the buffer circuit according to the second embodiment, and is excellent in stability.
  • At least one of the constant current source 14 and the capacitive element 30 may be omitted.
  • the capacitive element 30 is provided for the purpose of preventing the negative feedback oscillation, but the oscillation phenomenon can be sufficiently suppressed by providing the constant current source 14 without the capacitive element 30. Even if neither the constant current source 14 nor the capacitor 30 is omitted, the oscillation phenomenon can be suppressed by adjusting the characteristics of the transistors to appropriate values.
  • FIG. 3 shows a configuration of the buffer circuit according to the third embodiment.
  • the buffer circuit can also be manufactured by a CMOS process.
  • Each of the cascode constant current sources 12 and 15 is configured by cascode connection of two PMOS transistors having bias voltages Vbp1 and Vbp2 applied to their gates, respectively.
  • the former supplies a constant current I12
  • the latter supplies a constant current I15.
  • the source of the PMOS transistor 21 is connected to the output of the cascode constant current source 12.
  • the input signal Vin of the buffer circuit is applied to the gate of the PMOS transistor 21, and the output signal Vout of the buffer circuit is output from the source. That is, the PMOS transistor 21 operates as a source follower biased with a constant current I12.
  • the drain of the NMOS transistor 22 is connected to the drain of the PMOS transistor 21.
  • the source of the NMOS transistor 22 is connected to the ground node, and the bias voltage Vbn1 is applied to the gate of the NMOS transistor 22. That is, the NMOS transistor 22 operates as a constant current source that supplies the constant current I22.
  • the gate and source of the NMOS transistor 23 are connected to the source and drain of the PMOS transistor 21, respectively.
  • the drain of the NMOS transistor 23 is connected to the output of the cascode constant current source 15. That is, the NMOS transistor 23 is biased with a constant current I15 and operates as a source follower that receives the output signal Vout of the buffer circuit.
  • the drain of the PMOS transistor 24 is connected to the drain of the NMOS transistor 22.
  • the source and gate of the PMOS transistor 24 are connected to the power supply voltage node and the drain of the NMOS transistor 23.
  • the gate voltage of the PMOS transistor 24 is subjected to negative feedback control so that the constant currents I22-I15-I12 flow through the PMOS transistor 24.
  • the drain-source voltage of the PMOS transistor 21 matches the gate-source voltage of the NMOS transistor 23 regardless of the value of the input signal Vin, and is kept substantially constant. It is.
  • the PMOS transistor 21 is biased by the highly accurate constant current I12 supplied from the cascode constant current source 12, and the NMOS transistor 23 that determines the drain-source voltage is used as the NMOS transistor 23.
  • the buffer circuit according to this embodiment since there is only one transistor between the drain of the PMOS transistor 21 and the ground, the input signal Vin can be lowered to the ground voltage. Therefore, the buffer circuit according to the present embodiment can drive a high load with high accuracy while ensuring a sufficiently large input range.
  • the phase compensation capacitive element 30 provided in the buffer circuits according to the first and second embodiments is unnecessary. Therefore, the circuit area can be remarkably reduced as compared with the buffer circuits according to the first and second embodiments.
  • FIG. 4 shows a configuration of the buffer circuit according to the fourth embodiment.
  • the buffer circuit can also be manufactured by a CMOS process.
  • the cascode constant current source 11 is configured by cascode connection of two NMOS transistors each having a bias voltage Vbn1 and Vbn2 applied to the gate, and supplies a constant current I11.
  • Each of the cascode constant current sources 12 and 15 is configured by cascode connection of two PMOS transistors having bias voltages Vbp1 and Vbp2 applied to their gates, respectively.
  • the former supplies a constant current I12, and the latter supplies a constant current I15.
  • the drain and source of the PMOS transistor 21 are connected to the outputs of the cascode constant current sources 11 and 12, respectively.
  • the input signal Vin of the buffer circuit is applied to the gate of the PMOS transistor 21, and the output signal Vout of the buffer circuit is output from the source.
  • the gate and source of the NMOS transistor 23 are connected to the source and drain of the PMOS transistor 21, respectively.
  • the drain of the NMOS transistor 23 is connected to the output of the cascode constant current source 15. That is, the NMOS transistor 23 is biased with a constant current I15 and operates as a source follower that receives the output signal Vout of the buffer circuit.
  • the PMOS transistor 21 is biased with a constant current I11-I15.
  • the drain of the PMOS transistor 24 is connected to the source of the PMOS transistor 21.
  • the source and gate of the PMOS transistor 24 are connected to the power supply voltage node and the drain of the NMOS transistor 23.
  • the drain-source voltage of the PMOS transistor 21 matches the gate-source voltage of the NMOS transistor 23 regardless of the value of the input signal Vin, and is kept substantially constant. It is. Further, in the buffer circuit according to the present embodiment, the PMOS transistor 21 is biased by I11-I15 which is a difference between the high-precision constant currents supplied from the cascode constant current sources 11 and 15, and between the drain and source thereof. Since the highly accurate constant current I15 supplied from the cascode constant current source 15 also flows through the NMOS transistor 23 that determines the voltage, the gain error and distortion can be greatly reduced. Therefore, the buffer circuit according to the present embodiment can drive a resistive external load with high accuracy.
  • the cascode constant current source 12 may be omitted. Even in this case, the above-described effect produced by the buffer circuit according to the present embodiment is not impaired.
  • the buffer circuit configured by reversing all the polarities of the transistors constituting the buffer circuit according to each of the above embodiments also has the same effect as described above.
  • FIG. 5 shows an overview of the imaging apparatus.
  • the imaging device 100 is a digital still camera, a digital video camera, or the like.
  • the imaging apparatus 100 has an image sensor chip 101 built therein.
  • FIG. 6 shows the configuration of the image sensor chip 101.
  • the image sensor chip 101 includes an image sensor 102 and a column ADC 103.
  • the column ADC 103 includes a counter 1031, a comparator 1032 provided corresponding to each pixel column of the image sensor 102, a digital memory 1033, a ramp generation circuit 1034, and a buffer circuit 1035.
  • the ramp generation circuit 1034 generates a ramp signal in synchronization with the clock signal CLK.
  • the counter 1031 counts pulses of the clock signal CLK and supplies a common count value to the plurality of digital memories 1033.
  • the buffer circuit 1035 receives the ramp signal from the ramp generation circuit 1034 and supplies a common ramp signal to the plurality of comparators 1032.
  • the comparator 1032 compares the signal output for each pixel column of the image sensor 102 with the output of the buffer circuit 1035.
  • Each digital memory 1033 stores the count value of the counter 1031 when the output of each comparator 1032 changes. Then, by sequentially shifting and outputting the values stored in the plurality of digital memories 1033, the electric signal output from the image sensor 102 is taken out as imaging data.
  • the buffer circuit 1035 must be capable of driving a high load with high accuracy in order to realize accurate A / D conversion and variable gain. Therefore, the buffer circuit according to the first to fourth embodiments may be used as the buffer circuit 1035. As a result, the electrical signal output from the image sensor 102 can be A / D converted with high accuracy, and the quality of the imaging data can be improved.
  • the buffer circuit according to the present invention has a large input range and can drive a high load with high accuracy, a ramp signal is supplied to a column ADC that performs A / D conversion on thousands of electrical signals output from the image sensor. It is useful as a buffer circuit for supplying

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Amplifiers (AREA)
  • Logic Circuits (AREA)

Abstract

 バッファ回路は、第1及び第2のカスコード定電流源(11,12)、定電流源(13)、一端が第1のカスコード定電流源(11)の出力に接続され、他端が定電流源(13)の出力に接続された抵抗性負荷(20)、ソースが第2のカスコード定電流源(12)の出力に接続された第1のトランジスタ(21)、ソースが所定の電源ノードに接続され、ドレインが第1のトランジスタ(21)のドレインに接続され、ゲートが第1のカスコード定電流源(11)と抵抗性負荷(20)との接続点に接続された第2のトランジスタ(22)、ソースが第1のトランジスタ(21)のドレインに接続され、ドレインが定電流源(13)と抵抗性負荷(20)との接続点に接続され、ゲートが第1のトランジスタ(21)のソースに接続された第3のトランジスタ(23)を備えている。

Description

バッファ回路及びそれを備えたイメージセンサチップ並びに撮像装置
 本発明は、バッファ回路に関し、特に、ソースフォロワ型のバッファ回路に関する。
 従来、CMOSプロセスでは、大きな負荷を高速に駆動するためのバッファ回路としてソースフォロワがよく用いられる。一般的なソースフォロワは、定電流源とそれに直列接続された駆動用トランジスタから構成され、駆動用トランジスタのゲート電圧及びソース電圧をそれぞれ入力信号及び出力信号とする。飽和領域では、理想的には駆動用トランジスタのドレイン電流はドレイン-ソース電圧にかかわらず一定であるが、実際にはチャネル長変調効果のためにドレイン-ソース電圧の上昇とともにドレイン電流は増大する。これは、駆動用トランジスタを定電流でバイアスしても、ドレイン-ソース間電圧の変化に応じてゲート-ソース間電圧が変化することを意味する。したがって、入力信号に応じて駆動用トランジスタのドレイン-ソース間電圧が変化するソースフォロワでは、入力信号に応じて駆動用トランジスタのゲート-ソース間電圧が変化して利得誤差や歪が発生する。特に、ソースフォロワの駆動能力を上げるために駆動用トランジスタのチャネル長を短くすると利得誤差や歪はより大きくなる。このため、ソースフォロワでは大きな負荷を低利得誤差、低歪で駆動しづらいといった問題がある。
 上記の欠点を克服するために、一般的なソースフォロワに、ソース及びゲートが駆動用トランジスタのドレイン及びソースにそれぞれ接続され、ドレインが所定の電圧ノードに接続されたトランジスタ、及び駆動用トランジスタのドレインに接続された定電流源を追加的に設けることが知られている(例えば、特許文献1参照)。この改善されたソースフォロワでは、入力信号が変化しても駆動用トランジスタのゲート-ソース間電圧はほぼ一定に保たれるため、利得誤差や歪を改善することができる。
特開昭60-136405号公報(第6-7頁、第4図)
 しかし、入力信号に応じて定電流源のドレイン-ソース間電圧が変化してその電流値が変わるため、それによる利得誤差や歪が発生する。したがって、ソースフォロワを高精度なものとするには定電流性に優れた定電流源を用いる必要がある。そのような定電流源としてカスコード定電流源がある。上記の改善されたソースフォロワにおける定電流源としてカスコード定電流源を用いることで、高精度のソースフォロワを構成することができる。しかし、カスコード定電流源は複数のトランジスタがカスコード接続されて構成されるため、上記の改善されたソースフォロワにカスコード定電流源を用いると、トランジスタの直列接続段数が増え、駆動用トランジスタのゲート電圧の入力レンジが制限されるといった別の問題が生じてしまう。
 また、一般的なソースフォロワで抵抗性の外部負荷を駆動すると、外部負荷に流れる電流によって駆動用トランジスタに流れる電流が変化し、駆動用トランジスタを定電流でバイアスすることができなくなり、やはり利得誤差や歪が発生する。この問題は上記の改良されたソースフォロワでも同様に発生する。
 上記問題に鑑み、本発明は、高負荷を高精度に駆動可能なワイドレンジ入力のバッファ回路を実現することを課題とする。また、抵抗性負荷を高精度に駆動可能なバッファ回路を実現することを課題とする。さらに、これらバッファ回路を備えたイメージセンサチップ並びに撮像装置を提供することを課題とする。
 上記課題を解決するために本発明は以下のような手段を講じた。すなわち、本発明の一態様として、バッファ回路は、第1及び第2のカスコード定電流源と、定電流源と、一端が第1のカスコード定電流源の出力に接続され、他端が定電流源の出力に接続された抵抗性負荷と、ソースが第2のカスコード定電流源の出力に接続された第1のトランジスタと、ソースが所定の電源ノードに接続され、ドレインが第1のトランジスタのドレインに接続され、ゲートが第1のカスコード定電流源と抵抗性負荷との接続点に接続された第2のトランジスタと、ソースが第1のトランジスタのドレインに接続され、ドレインが定電流源と抵抗性負荷との接続点に接続され、ゲートが第1のトランジスタのソースに接続された第3のトランジスタとを備えている。第1のトランジスタのゲート電圧及びソース電圧が、それぞれ、当該バッファ回路の入力信号及び出力信号となる。
 また、本発明の一態様として、バッファ回路は、第1及び第2のカスコード定電流源と、出力が第1のカスコード定電流源の出力に接続された第1のカスコードカレントミラー回路と、出力が第1のカスコードカレントミラー回路の入力に接続された第2のカスコードカレントミラー回路と、ソースが第2のカスコード定電流源の出力に接続された第1のトランジスタと、ソースが所定の電源ノードに接続され、ドレインが第1のトランジスタのドレインに接続され、ゲートが第1のカスコード定電流源と第1のカスコードカレントミラー回路との接続点に接続された第2のトランジスタと、ソースが第1のトランジスタのドレインに接続され、ドレインが第2のカスコードカレントミラー回路の入力に接続され、ゲートが第1のトランジスタのソースに接続された第3のトランジスタとを備えている。第1のトランジスタのゲート電圧及びソース電圧が、それぞれ、当該バッファ回路の入力信号及び出力信号となる。
 これらバッファ回路では、第1及び第3のトランジスタがそれぞれソースフォロワとして動作し、第1のトランジスタのドレイン-ソース間電圧が第3のトランジスタのゲート-ソース間電圧に一致してほぼ一定に保たれる。さらに、第1のトランジスタのドレインに第2のトランジスタが1段接続された構成でありながらも、第2のトランジスタのゲート電圧の負帰還制御によって、第2のトランジスタにはカスコード定電流源と同等の高精度な定電流が流れる。したがって、これらバッファ回路は、十分な大きさの入力レンジを確保しつつ高負荷を高精度に駆動することができる。
 好ましくは、上記バッファ回路は、さらに、第2のトランジスタに並列に接続された定電流源、及び一端が第2のトランジスタのドレインに接続され、他端が第2のトランジスタのゲートに接続された容量素子の少なくとも一つを備えているものとする。これによると、第2のトランジスタの負帰還制御に起因する発振を抑制することができる。
 また、本発明の一態様として、バッファ回路は、第1及び第2のカスコード定電流源と、ソースが第2のカスコード定電流源の出力に接続された第1のトランジスタと、ソースが第1の電源ノードに接続され、ドレインが第1のトランジスタのドレインに接続され、ゲートがバイアスされた第2のトランジスタと、ソースが第1のトランジスタのドレインに接続され、ドレインが第1のカスコード定電流源の出力に接続され、ゲートが第1のトランジスタのソースに接続された第3のトランジスタと、ソースが第2の電源ノードに接続され、ドレインが第2のトランジスタのドレインに接続され、ゲートが第3のトランジスタのドレインに接続された第4のトランジスタとを備えている。第1のトランジスタのゲート電圧及びソース電圧が、それぞれ、当該バッファ回路の入力信号及び出力信号となる。これによると、上記バッファ回路よりも構成が容易でありながらも、上記バッファ回路と同様に十分な大きさの入力レンジを確保しつつ高負荷を高精度に駆動することができる。
 また、本発明の一態様として、バッファ回路は、第1及び第2のカスコード定電流源と、ドレインが第1のカスコード定電流源の出力に接続され、ソースが第2のカスコード定電流源の出力に接続された第1のトランジスタと、ソースが第1のトランジスタのゲートに接続され、ドレインが第2のカスコード定電流源の出力に接続された第2のトランジスタと、ソースが所定の電源ノードに接続され、ドレインが第2のトランジスタのソースに接続され、ゲートが第1のトランジスタのドレインに接続された第3のトランジスタとを備えている。第2のトランジスタのゲート電圧及びソース電圧が、それぞれ、当該バッファ回路の入力信号及び出力信号となる。好ましくは、当該バッファ回路は、第2のトランジスタのソースに定電流を供給する第3のカスコード定電流源を備えているものとする。
 このバッファ回路では、第1及び第2のトランジスタがそれぞれソースフォロワとして動作し、第2のトランジスタのドレイン-ソース間電圧が第1のトランジスタのゲート-ソース間電圧に一致してほぼ一定に保たれる。さらに、抵抗性の外部負荷が接続された場合、当該外部負荷に流れる電流を補償するように、第3のトランジスタ24のゲート電圧が負帰還制御される。したがって、このバッファ回路は、抵抗性負荷を高精度に駆動することができる。
 また、本発明の一態様として、イメージセンサチップは、イメージセンサと、カラムADCとを備えており、当該カラムADCは、上記のいずれかのバッファ回路と、バッファ回路にランプ信号を供給するランプ発生回路と、イメージセンサの画素列ごとに出力される信号とバッファ回路の出力とを比較する複数の比較器とを有する。また、撮像装置は、上記のイメージセンサチップを備えている。
 本発明によると、高負荷を高精度に駆動可能なワイドレンジ入力のバッファ回路、及び抵抗性負荷を高精度に駆動可能なバッファ回路を実現することができる。また、そのようなバッファ回路を備えたイメージセンサチップ、さらには当該イメージセンサチップを備えた撮像装置について、撮像データの品質向上を図ることができる。
図1は、第1の実施形態に係るバッファ回路の構成図である。 図2は、第2の実施形態に係るバッファ回路の構成図である。 図3は、第3の実施形態に係るバッファ回路の構成図である。 図4は、第4の実施形態に係るバッファ回路の構成図である。 図5は、撮像装置の概観図である。 図6は、イメージセンサチップの構成図である。
符号の説明
11 カスコード定電流源(第1のカスコード定電流源、第2のカスコード定電流源)
12 カスコード定電流源(第2のカスコード定電流源、第3のカスコード定電流源)
13 定電流源
14 定電流源
15 カスコード定電流源(第1のカスコード定電流源)
16 カスコードカレントミラー回路(第1のカスコードカレントミラー回路)
17 カスコードカレントミラー回路(第2のカスコードカレントミラー回路)
20 抵抗性負荷
21 PMOSトランジスタ(第1のトランジスタ、第2のトランジスタ)
22 NMOSトランジスタ(第2のトランジスタ)
23 NMOSトランジスタ(第3のトランジスタ、第1のトランジスタ)
24 PMOSトランジスタ(第4のトランジスタ、第3のトランジスタ)
30 容量素子
100 撮像装置
101 イメージセンサチップ
102 イメージセンサ
103 カラムADC
1032 比較器
1034 ランプ発生回路
1035 バッファ回路
 以下、本発明を実施するための最良の形態について、図面を参照しながら説明する。
 (第1の実施形態)
 図1は、第1の実施形態に係るバッファ回路の構成を示す。当該バッファ回路はCMOSプロセスによって製造可能である。カスコード定電流源11は、ゲートにバイアス電圧Vbn1及びVbn2がそれぞれ印加された二つのNMOSトランジスタがカスコード接続されて構成されており、定電流I11を供給する。カスコード定電流源12は、ゲートにバイアス電圧Vbp1及びVbp2がそれぞれ印加された二つのPMOSトランジスタがカスコード接続されて構成されており、定電流I12を供給する。定電流源13は、ゲートにバイアス電圧Vbp1が印加されたPMOSトランジスタで構成されており、定電流I13を供給する。
 カスコード定電流源11の出力には抵抗性負荷20の一端が接続され、定電流源13の出力には抵抗性負荷20の他端が接続されている。抵抗性負荷20は、ゲートにバイアス電圧が印加されたPMOSトランジスタや抵抗素子、可変抵抗素子等で構成可能である。
 カスコード定電流源12の出力にはPMOSトランジスタ21のソースが接続されている。PMOSトランジスタ21のゲートには当該バッファ回路の入力信号Vinが印加され、ソースから当該バッファ回路の出力信号Voutが出力される。すなわち、PMOSトランジスタ21は定電流I12でバイアスされたソースフォロワとして動作する。
 PMOSトランジスタ21のドレインにはNMOSトランジスタ22のドレインが接続されている。NMOSトランジスタ22のソース及びゲートはグランドノード、及びカスコード定電流源11と抵抗性負荷20との接続点にそれぞれ接続されている。
 PMOSトランジスタ21のソース及びドレインにはNMOSトランジスタ23のゲート及びソースがそれぞれ接続されている。NMOSトランジスタ23のドレインは定電流源13と抵抗性負荷20との接続点に接続されている。すなわち、NMOSトランジスタ23は定電流I13-I11でバイアスされ、当該バッファ回路の出力信号Voutを入力とするソースフォロワとして動作する。
 NMOSトランジスタ22に並列に定電流源14が接続されている。定電流源14は、ゲートにバイアス電圧Vbn3が印加されたNMOSトランジスタで構成されており、定電流I14を供給する。また、NMOSトランジスタ22のゲート-ドレイン間には位相補正用の容量素子30が接続されている。
 本実施形態に係るバッファ回路では、NMOSトランジスタ22に定電流I13-I11+I12-I14が流れるように、NMOSトランジスタ22のゲート電圧が負帰還制御される。ここで、PMOSトランジスタ21のドレインにはPMOSトランジスタ21のソース電圧(出力信号Vout)よりもNMOSトランジスタ23のゲート-ソース間電圧分だけ低い電圧が印加される。したがって、PMOSトランジスタ21のドレイン-ソース間電圧は、入力信号Vinの値にかかわらず、NMOSトランジスタ23のゲート-ソース間電圧に一致し、ほぼ一定に保たれる。また、本実施形態に係るバッファ回路では、PMOSトランジスタ21は、カスコード定電流源12から供給される高精度な定電流I12でバイアスされている。さらに、そのドレイン-ソース間電圧を決定するNMOSトランジスタ23については、その電流値が増加するとカスコード定電流源13の出力ノードが下降し、それに伴ってNMOSトランジスタ22のゲート電圧が下降してNMOSトランジスタ23に流れる電流を減少させるよう作用するため、そのドレイン電流は常に一定に保持される。その結果、本実施形態に係るバッファ回路では利得誤差や歪を大幅に低減することが可能となる。しかも本実施形態に係るバッファ回路では、PMOSトランジスタ21のドレインとグランドとの間にはトランジスタが1段しかないため、入力信号Vinをグランド電圧にまで下げることができる。したがって、本実施形態に係るバッファ回路は、十分な大きさの入力レンジを確保しつつ高負荷を高精度に駆動することができる。
 (第2の実施形態)
 図2は、第2の実施形態に係るバッファ回路の構成を示す。当該バッファ回路もまたCMOSプロセスによって製造可能である。カスコード定電流源12及び15は、いずれも、ゲートにバイアス電圧Vbp1及びVbp2がそれぞれ印加された二つのPMOSトランジスタがカスコード接続されて構成されている。前者は定電流I12を供給し、後者は定電流I15を供給する。
 カスコードカレントミラー回路16は、入力側及び出力側のいずれも二つのNMOSトランジスタがカスコード接続されて構成されており、入力側及び出力側のカスコード段のNMOSトランジスタのゲートにはバイアス電圧Vbn2が印加されている。カスコードカレントミラー回路17は、入力側及び出力側のいずれも二つのPMOSトランジスタがカスコード接続されて構成されており、入力側及び出力側のカスコード段のPMOSトランジスタのゲートにはバイアス電圧Vbp2が印加されている。カスコードカレントミラー回路17の出力にはカスコードカレントミラー回路16の入力が接続されている。カスコードカレントミラー回路16の出力にはカスコード定電流源15の出力が接続されている。
 カスコード定電流源12の出力にはPMOSトランジスタ21のソースが接続されている。PMOSトランジスタ21のゲートには当該バッファ回路の入力信号Vinが印加され、ソースから当該バッファ回路の出力信号Voutが出力される。すなわち、PMOSトランジスタ21は定電流I12でバイアスされたソースフォロワとして動作する。
 PMOSトランジスタ21のドレインにはNMOSトランジスタ22のドレインが接続されている。NMOSトランジスタ22のソース及びゲートはグランドノード、及びカスコード定電流源15とカスコードカレントミラー回路16との接続点にそれぞれ接続されている。
 PMOSトランジスタ21のソース及びドレインにはNMOSトランジスタ23のゲート及びソースがそれぞれ接続されている。NMOSトランジスタ23のドレインはカスコードカレントミラー回路17の入力に接続されている。これにより、NMOSトランジスタ23のドレイン電流は定電流I15と比較され、それに一致するように負帰還がかかる。その結果、NMOSトランジスタ23は、当該バッファ回路の出力信号Voutを入力とする定電流I15でバイアスされたソースフォロワとして動作する。
 NMOSトランジスタ22に並列に定電流源14が接続されている。定電流源14は、ゲートにバイアス電圧Vbn3が印加されたNMOSトランジスタで構成されており、定電流I14を供給する。また、NMOSトランジスタ22のゲート-ドレイン間には位相補償用の容量素子30が接続されている。
 本実施形態に係るバッファ回路では、NMOSトランジスタ22に定電流I15+I12-I14が流れるように、NMOSトランジスタ22のゲート電圧が負帰還制御される。これにより、第1の実施形態と同様に、PMOSトランジスタ21のドレイン-ソース間電圧は、入力信号Vinの値にかかわらず、NMOSトランジスタ23のゲート-ソース間電圧に一致し、ほぼ一定に保たれる。また、本実施形態に係るバッファ回路では、PMOSトランジスタ21が、カスコード定電流源12から供給される高精度な定電流I12でバイアスされ、かつ、そのドレイン-ソース間電圧を決定するNMOSトランジスタ23にも、カスコード定電流源15から供給される定電流I15に一致する高精度な電流が流れるため、利得誤差や歪を大幅に低減することができる。しかも本実施形態に係るバッファ回路では、PMOSトランジスタ21のドレインとグランドとの間にはトランジスタが1段しかないため、入力信号Vinをグランド電圧にまで下げることができる。したがって、本実施形態に係るバッファ回路は、十分な大きさの入力レンジを確保しつつ高負荷を高精度に駆動することができる。
 本実施形態に係るバッファ回路は、カスコードカレントミラー回路16及び17を必要とするため、第1の実施形態に係るバッファ回路よりも回路規模は大きくなる。換言すると、第1の実施形態に係るバッファ回路はカレントミラーを使用しないため、第2の実施形態に係るバッファ回路よりも少ない素子数で構成することができ、安定性にも優れている。
 なお、第1及び第2の実施形態において、定電流源14及び容量素子30の少なくとも一方を省略してもよい。特に、容量素子30は上記負帰還の発振防止の目的で設けているものであるが、容量素子30がなくても定電流源14を設けることによって当該発振現象を十分に抑制することができる。また、定電流源14及び容量素子30のいずれも省略した場合であっても、各トランジスタの特性を適正値に調整することで当該発振現象の抑制が可能である。
 (第3の実施形態)
 図3は、第3の実施形態に係るバッファ回路の構成を示す。当該バッファ回路もまたCMOSプロセスによって製造可能である。カスコード定電流源12及び15は、いずれも、ゲートにバイアス電圧Vbp1及びVbp2がそれぞれ印加された二つのPMOSトランジスタがカスコード接続されて構成されている。前者は定電流I12を供給し、後者は定電流I15を供給する。
 カスコード定電流源12の出力にはPMOSトランジスタ21のソースが接続されている。PMOSトランジスタ21のゲートには当該バッファ回路の入力信号Vinが印加され、ソースから当該バッファ回路の出力信号Voutが出力される。すなわち、PMOSトランジスタ21は定電流I12でバイアスされたソースフォロワとして動作する。
 PMOSトランジスタ21のドレインにはNMOSトランジスタ22のドレインが接続されている。NMOSトランジスタ22のソースはグランドノードに接続され、NMOSトランジスタ22のゲートにはバイアス電圧Vbn1が印加されている。すなわち、NMOSトランジスタ22は定電流I22を供給する定電流源として動作する。
 PMOSトランジスタ21のソース及びドレインにはNMOSトランジスタ23のゲート及びソースがそれぞれ接続されている。NMOSトランジスタ23のドレインはカスコード定電流源15の出力に接続されている。すなわち、NMOSトランジスタ23は定電流I15でバイアスされ、当該バッファ回路の出力信号Voutを入力とするソースフォロワとして動作する。
 さらに、NMOSトランジスタ22のドレインにはPMOSトランジスタ24のドレインが接続されている。PMOSトランジスタ24のソース及びゲートは電源電圧ノード及びNMOSトランジスタ23のドレインに接続されている。
 本実施形態に係るバッファ回路では、PMOSトランジスタ24に定電流I22-I15-I12が流れるように、PMOSトランジスタ24のゲート電圧が負帰還制御される。これにより、第1の実施形態と同様に、PMOSトランジスタ21のドレイン-ソース間電圧は、入力信号Vinの値にかかわらず、NMOSトランジスタ23のゲート-ソース間電圧に一致し、ほぼ一定に保たれる。また、本実施形態に係るバッファ回路では、PMOSトランジスタ21が、カスコード定電流源12から供給される高精度な定電流I12でバイアスされ、かつ、そのドレイン-ソース間電圧を決定するNMOSトランジスタ23にも、カスコード定電流源15から供給される高精度な定電流I15が流れるため、利得誤差や歪を大幅に低減することができる。しかも本実施形態に係るバッファ回路では、PMOSトランジスタ21のドレインとグランドとの間にはトランジスタが1段しかないため、入力信号Vinをグランド電圧にまで下げることができる。したがって、本実施形態に係るバッファ回路は、十分な大きさの入力レンジを確保しつつ高負荷を高精度に駆動することができる。
 また、本実施形態に係るバッファ回路では、第1及び第2の実施形態に係るバッファ回路に設けたような位相補償用の容量素子30は不要である。したがって、第1及び第2の実施形態に係るバッファ回路よりも回路面積を格段に小さくすることができる。
 (第4の実施形態)
 図4は、第4の実施形態に係るバッファ回路の構成を示す。当該バッファ回路もまたCMOSプロセスによって製造可能である。カスコード定電流源11は、ゲートにバイアス電圧Vbn1及びVbn2がそれぞれ印加された二つのNMOSトランジスタがカスコード接続されて構成されており、定電流I11を供給する。カスコード定電流源12及び15は、いずれも、ゲートにバイアス電圧Vbp1及びVbp2がそれぞれ印加された二つのPMOSトランジスタがカスコード接続されて構成されている。前者は定電流I12を供給し、後者は定電流I15を供給する。
 カスコード定電流源11及び12の出力にはPMOSトランジスタ21のドレイン及びソースがそれぞれ接続されている。PMOSトランジスタ21のゲートには当該バッファ回路の入力信号Vinが印加され、ソースから当該バッファ回路の出力信号Voutが出力される。
 PMOSトランジスタ21のソース及びドレインにはNMOSトランジスタ23のゲート及びソースがそれぞれ接続されている。NMOSトランジスタ23のドレインはカスコード定電流源15の出力に接続されている。すなわち、NMOSトランジスタ23は定電流I15でバイアスされ、当該バッファ回路の出力信号Voutを入力とするソースフォロワとして動作する。また、PMOSトランジスタ21は、定電流I11-I15でバイアスされる。
 さらに、PMOSトランジスタ21のソースにはPMOSトランジスタ24のドレインが接続されている。PMOSトランジスタ24のソース及びゲートは電源電圧ノード及びNMOSトランジスタ23のドレインに接続されている。
 本実施形態に係るバッファ回路では、図示しない抵抗性の外部負荷が接続された場合でも、当該外部負荷に流れる電流を補償するように、PMOSトランジスタ24のゲート電圧が負帰還制御される。すなわち、入力信号Vinが上昇して外部負荷に流れる電流が増大すると、PMOSトランジスタ21に流れる電流は減少し、NMOSトランジスタ23に流れる電流は増大する。この結果、PMOSトランジスタ24のゲート電圧が下がり、PMOSトランジスタ24に流れる電流I24が増大して、常にI24=I11-I15-I12+IL(ただし、ILは外部負荷に流れる電流)となるように動作する。これにより、第1の実施形態と同様に、PMOSトランジスタ21のドレイン-ソース間電圧は、入力信号Vinの値にかかわらず、NMOSトランジスタ23のゲート-ソース間電圧に一致し、ほぼ一定に保たれる。また、本実施形態に係るバッファ回路では、PMOSトランジスタ21が、カスコード定電流源11及び15から供給される高精度な定電流の差分であるI11-I15でバイアスされ、かつ、そのドレイン-ソース間電圧を決定するNMOSトランジスタ23にも、カスコード定電流源15から供給される高精度な定電流I15が流れるため、利得誤差や歪を大幅に低減することができる。したがって、本実施形態に係るバッファ回路は、抵抗性の外部負荷を高精度に駆動することができる。
 なお、カスコード定電流源12を省略してもよい。この場合でも、本実施形態に係るバッファ回路が奏する上記効果は何ら損なわれない。また、上記の各実施形態に係るバッファ回路を構成するトランジスタの極性をすべて逆にして(すなわち、NMOSトランジスタのソースフォロワにする)構成されたバッファ回路もまた上記と同様の効果を奏する。
 (撮像装置及びイメージセンサチップの実施形態)
 図5は、撮像装置の概観を示す。具体的には、撮像装置100は、デジタルスチルカメラ、デジタルビデオカメラなどである。撮像装置100はイメージセンサチップ101を内蔵している。図6は、イメージセンサチップ101の構成を示す。イメージセンサチップ101は、イメージセンサ102及びカラムADC103を備えている。カラムADC103は、カウンタ1031、イメージセンサ102の各画素列に対応して設けられた比較器1032、デジタルメモリ1033、ランプ発生回路1034及びバッファ回路1035を備えている。
 ランプ発生回路1034は、クロック信号CLKに同期してランプ信号を発生させる。カウンタ1031は、クロック信号CLKのパルスをカウントし、複数のデジタルメモリ1033に共通のカウント値を供給する。バッファ回路1035は、ランプ発生回路1034からランプ信号を受け、複数の比較器1032に共通のランプ信号を供給する。比較器1032は、イメージセンサ102の画素列ごとに出力される信号とバッファ回路1035の出力とを比較する。各デジタルメモリ1033は、各比較器1032の出力が変化したときのカウンタ1031のカウント値を記憶する。そして、複数のデジタルメモリ1033に記憶された値を順次シフトして出力することで、イメージセンサ102から出力された電気信号が撮像データとなって取り出される。
 通常、イメージセンサ102は数千個の画素列を有するため、比較器1032は数千個必要となる。したがって、個々の比較器1032の入力端に寄生する容量はわずかであっても、数千個の比較器1032が集まると極めて大きな負荷となる。また、ランプ信号の傾きはカラムADC103の利得と等価であるため、正確なA/D変換及び可変利得を実現するには、バッファ回路1035は高負荷を高精度に駆動できるものでなければならない。そこで、バッファ回路1035として第1から第4の実施形態に係るバッファ回路を用いるとよい。これにより、イメージセンサ102から出力された電気信号を高精度にA/D変換することができ、撮像データの品質向上を図ることができる。
 本発明に係るバッファ回路は、入力レンジが大きく、また、高負荷を高精度に駆動することができるため、イメージセンサから出力される数千もの電気信号をA/D変換するカラムADCにランプ信号を供給するためのバッファ回路などとして有用である。

Claims (12)

  1.  第1及び第2のカスコード定電流源と、
     定電流源と、
     一端が前記第1のカスコード定電流源の出力に接続され、他端が前記定電流源の出力に接続された抵抗性負荷と、
     ソースが前記第2のカスコード定電流源の出力に接続された第1のトランジスタと、
     ソースが所定の電源ノードに接続され、ドレインが前記第1のトランジスタのドレインに接続され、ゲートが前記第1のカスコード定電流源と前記抵抗性負荷との接続点に接続された第2のトランジスタと、
     ソースが前記第1のトランジスタのドレインに接続され、ドレインが前記定電流源と前記抵抗性負荷との接続点に接続され、ゲートが前記第1のトランジスタのソースに接続された第3のトランジスタとを備え、
     前記第1のトランジスタのゲート電圧及びソース電圧を、それぞれ、入力信号及び出力信号とする
    ことを特徴とするバッファ回路。
  2.  第1及び第2のカスコード定電流源と、
     出力が前記第1のカスコード定電流源の出力に接続された第1のカスコードカレントミラー回路と、
     出力が前記第1のカスコードカレントミラー回路の入力に接続された第2のカスコードカレントミラー回路と、
     ソースが前記第2のカスコード定電流源の出力に接続された第1のトランジスタと、
     ソースが所定の電源ノードに接続され、ドレインが前記第1のトランジスタのドレインに接続され、ゲートが前記第1のカスコード定電流源と前記第1のカスコードカレントミラー回路との接続点に接続された第2のトランジスタと、
     ソースが前記第1のトランジスタのドレインに接続され、ドレインが前記第2のカスコードカレントミラー回路の入力に接続され、ゲートが前記第1のトランジスタのソースに接続された第3のトランジスタとを備え、
     前記第1のトランジスタのゲート電圧及びソース電圧を、それぞれ、入力信号及び出力信号とする
    ことを特徴とするバッファ回路。
  3. 請求項1及び2のいずれか一つのバッファ回路において、
     前記第2のトランジスタに並列に接続された定電流源を備えた
    ことを特徴とするバッファ回路。
  4. 請求項1、2及び3のいずれか一つのバッファ回路において、
     一端が前記第2のトランジスタのドレインに接続され、他端が前記第2のトランジスタのゲートに接続された容量素子を備えた
    ことを特徴とするバッファ回路。
  5. 請求項1に記載のバッファ回路において、
     前記抵抗性負荷は、ゲートがバイアスされたトランジスタである
    ことを特徴とするバッファ回路。
  6. 請求項1に記載のバッファ回路において、
     前記抵抗性負荷は、抵抗素子である
    ことを特徴とするバッファ回路。
  7. 請求項6に記載のバッファ回路において、
     前記抵抗素子は、抵抗値が可変の可変抵抗素子である
    ことを特徴とするバッファ回路。
  8.  第1及び第2のカスコード定電流源と、
     ソースが前記第2のカスコード定電流源の出力に接続された第1のトランジスタと、
     ソースが第1の電源ノードに接続され、ドレインが前記第1のトランジスタのドレインに接続され、ゲートがバイアスされた第2のトランジスタと、
     ソースが前記第1のトランジスタのドレインに接続され、ドレインが前記第1のカスコード定電流源の出力に接続され、ゲートが前記第1のトランジスタのソースに接続された第3のトランジスタと、
     ソースが第2の電源ノードに接続され、ドレインが前記第2のトランジスタのドレインに接続され、ゲートが前記第3のトランジスタのドレインに接続された第4のトランジスタとを備え、
     前記第1のトランジスタのゲート電圧及びソース電圧を、それぞれ、入力信号及び出力信号とする
    ことを特徴とするバッファ回路。
  9.  第1及び第2のカスコード定電流源と、
     ドレインが前記第1のカスコード定電流源の出力に接続され、ソースが前記第2のカスコード定電流源の出力に接続された第1のトランジスタと、
     ソースが前記第1のトランジスタのゲートに接続され、ドレインが前記第2のカスコード定電流源の出力に接続された第2のトランジスタと、
     ソースが所定の電源ノードに接続され、ドレインが前記第2のトランジスタのソースに接続され、ゲートが前記第1のトランジスタのドレインに接続された第3のトランジスタとを備え、
     前記第2のトランジスタのゲート電圧及びソース電圧を、それぞれ、入力信号及び出力信号とする
    ことを特徴とするバッファ回路。
  10. 請求項9のバッファ回路において、
     前記第2のトランジスタのソースに定電流を供給する第3のカスコード定電流源を備えた
    ことを特徴とするバッファ回路。
  11. イメージセンサと、カラムADCとを備えたイメージセンサチップであって、
     前記カラムADCは、
      請求項1から10のいずれか一つのバッファ回路と、
      前記バッファ回路にランプ信号を供給するランプ発生回路と、
      前記イメージセンサの画素列ごとに出力される信号と前記バッファ回路の出力とを比較する複数の比較器とを有する
    ことを特徴とするイメージセンサチップ。
  12.  請求項11に記載のイメージセンサチップを備えた
    ことを特徴とする撮像装置。
PCT/JP2009/000363 2008-01-31 2009-01-30 バッファ回路及びそれを備えたイメージセンサチップ並びに撮像装置 WO2009096192A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009551437A JPWO2009096192A1 (ja) 2008-01-31 2009-01-30 バッファ回路及びそれを備えたイメージセンサチップ並びに撮像装置
US12/809,921 US20100289936A1 (en) 2008-01-31 2009-01-30 Buffer circuit, image sensor chip comprising the same, and image pickup device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-021483 2008-01-31
JP2008021483 2008-01-31

Publications (1)

Publication Number Publication Date
WO2009096192A1 true WO2009096192A1 (ja) 2009-08-06

Family

ID=40912546

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/000363 WO2009096192A1 (ja) 2008-01-31 2009-01-30 バッファ回路及びそれを備えたイメージセンサチップ並びに撮像装置

Country Status (3)

Country Link
US (1) US20100289936A1 (ja)
JP (1) JPWO2009096192A1 (ja)
WO (1) WO2009096192A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101181310B1 (ko) * 2010-06-30 2012-09-11 에스케이하이닉스 주식회사 램프 신호 발생기 및 이미지 센서
KR20160121189A (ko) 2015-04-10 2016-10-19 삼성전자주식회사 아날로그-디지털 변환기의 선형성을 향상시키는 이미지 센서 및 이를 포함하는 이미지 처리 시스템
US10133292B1 (en) * 2016-06-24 2018-11-20 Cadence Design Systems, Inc. Low supply current mirror
CN106301379B (zh) * 2016-08-17 2023-05-05 宁波大学 一种输出光滑的dac单元电路
CN108063905B (zh) * 2016-11-09 2020-04-14 京东方科技集团股份有限公司 像素感应电路及其驱动方法、图像传感器、电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01125108A (ja) * 1987-11-10 1989-05-17 Nec Corp Fet負荷増幅回路
JPH05284008A (ja) * 1992-03-30 1993-10-29 Hitachi Ltd 半導体集積回路装置
JPH06152385A (ja) * 1992-10-30 1994-05-31 Oki Electric Ind Co Ltd 半導体論理回路
JPH09232936A (ja) * 1995-12-21 1997-09-05 Toshiba Corp 出力回路

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4495472A (en) * 1982-11-22 1985-01-22 At&T Bell Laboratories Stable fast-settling voltage reference buffer amplifier
US5198782A (en) * 1991-01-15 1993-03-30 Crystal Semiconductor Low distortion amplifier output stage for dac
US6924674B2 (en) * 2003-10-27 2005-08-02 Agere Systems Inc. Composite source follower
TWI474597B (zh) * 2006-05-31 2015-02-21 Intersil Americas LLC 用於轉移電荷的裝置
JP5251765B2 (ja) * 2009-07-15 2013-07-31 ソニー株式会社 固体撮像素子の出力回路、固体撮像素子及び撮像装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01125108A (ja) * 1987-11-10 1989-05-17 Nec Corp Fet負荷増幅回路
JPH05284008A (ja) * 1992-03-30 1993-10-29 Hitachi Ltd 半導体集積回路装置
JPH06152385A (ja) * 1992-10-30 1994-05-31 Oki Electric Ind Co Ltd 半導体論理回路
JPH09232936A (ja) * 1995-12-21 1997-09-05 Toshiba Corp 出力回路

Also Published As

Publication number Publication date
US20100289936A1 (en) 2010-11-18
JPWO2009096192A1 (ja) 2011-05-26

Similar Documents

Publication Publication Date Title
US7116161B2 (en) Differential amplifier circuit and drive circuit of liquid crystal display unit using the same
US7623054B2 (en) Differential amplifier, digital-to-analog converter, and display device
JP4921106B2 (ja) バッファ回路
JP5562172B2 (ja) 定電流回路及びそれを用いた固体撮像装置
US11770105B2 (en) Methods and apparatus for driver calibration
US9209822B2 (en) A/D converter and semiconductor integrated circuit
JP2005269611A (ja) 比較器、ad変換回路、半導体装置、および撮像装置
WO2009096192A1 (ja) バッファ回路及びそれを備えたイメージセンサチップ並びに撮像装置
US20080278200A1 (en) Current Weighted Voltage Interpolation Buffer
US9000966B2 (en) Integrated circuit, analog-digital converter and CMOS image sensor with the same
US7312741B2 (en) Analog-to-digital converter circuit and reference circuit
US20120182071A1 (en) Operational amplifier circuit
US7701370B2 (en) Current output circuit with bias control and method thereof
JP2005217870A (ja) A/d変換装置
JP4537840B2 (ja) 電流源セルおよびそれを用いたd/aコンバータ
US20140247202A1 (en) Level conversion circuit, multi-value output differential amplifier, and display unit
JP2010050590A (ja) コンパレータ回路
KR102153872B1 (ko) 비교 회로
JP2007243656A (ja) A/d変換器
JP6733540B2 (ja) 半導体集積回路および撮像装置
JP4635612B2 (ja) サンプル・ホールド回路
JP2008283284A (ja) Ad変換器
JP6482346B2 (ja) 半導体装置
US20100060324A1 (en) Voltage/current conversion circuit
JP2010148008A (ja) 固体撮像装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09706265

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009551437

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12809921

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09706265

Country of ref document: EP

Kind code of ref document: A1