JP5453729B2 - モータ制御装置および電動パワーステアリング装置 - Google Patents

モータ制御装置および電動パワーステアリング装置 Download PDF

Info

Publication number
JP5453729B2
JP5453729B2 JP2008104688A JP2008104688A JP5453729B2 JP 5453729 B2 JP5453729 B2 JP 5453729B2 JP 2008104688 A JP2008104688 A JP 2008104688A JP 2008104688 A JP2008104688 A JP 2008104688A JP 5453729 B2 JP5453729 B2 JP 5453729B2
Authority
JP
Japan
Prior art keywords
axis
voltage
value
current
command
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008104688A
Other languages
English (en)
Other versions
JP2009261066A (ja
Inventor
武史 上田
茂樹 長瀬
航也 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2008104688A priority Critical patent/JP5453729B2/ja
Priority to EP09157862A priority patent/EP2110941B1/en
Priority to US12/423,393 priority patent/US8115429B2/en
Publication of JP2009261066A publication Critical patent/JP2009261066A/ja
Application granted granted Critical
Publication of JP5453729B2 publication Critical patent/JP5453729B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/06Arrangements for speed regulation of a single motor wherein the motor speed is measured and compared with a given physical value so as to adjust the motor speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/022Synchronous motors
    • H02P25/024Synchronous motors controlled by supply frequency

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Power Steering Mechanism (AREA)
  • Control Of Ac Motors In General (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Description

本発明は、ブラシレスモータを駆動するためのモータ制御装置およびそのようなモータ制御装置を備えた電動パワーステアリング装置に関する。
従来から、運転者がハンドル(ステアリングホイール)に加える操舵トルクに応じて電動モータを駆動することにより車両のステアリング機構に操舵補助力を与える電動パワーステアリング装置が用いられている。電動パワーステアリング装置の電動モータには従来ブラシモータが広く使用されてきたが、信頼性および耐久性の向上や慣性の低減などの観点から、近年ではブラシレスモータも使用されるようになってきた。
一般にモータ制御装置は、モータで発生させるトルクを制御するために、モータに流れる電流値を検出し、モータに供給すべき目標電流値と検出した電流値との差に基づきPI制御(比例積分制御)を行う。例えば、3相ブラシレスモータを駆動するモータ制御装置は、2相以上の電流値を検出するために、2個または3個の電流センサを備えている。
しかし、電動パワーステアリング装置に含まれるモータ制御装置では、100A以上の大電流を検出する電流センサを設ける必要がある。このような電流センサはサイズが大きいので、モータ制御装置の小型化を妨げている。また、電流センサを設ければ、モータ制御装置の製造コストが高くなり、消費電力も増加するという問題もある。これらの問題を解決するための1つの方法として、モータ制御装置から電流センサを削減し、モータ制御装置をモータの回路方程式に従ってオープンループ制御することが考えられている。
なお、本願発明に関連して、特許文献1には、電源電圧とブラシレス直流モータが消費する電力とに基づいてモータ駆動回路に供給される電源電流の値を推定する発明が開示されている。特許文献2には、バッテリの電圧、モータの回転速度などから演算によって求められた電流推定値と設定された電流目標値との偏差に基づいて、モータをフィードバック制御するモータ制御装置が開示されている。特許文献3には、電流指令値とモータ電流値とに基づいて、モータの設計特性と実際の制御特性との差を演算し、その差をフィードバックするモータ制御装置が開示されている。特許文献4には、ブラシレスモータの回転角、配線抵抗値などに基づいて、電源とブラシレスモータとの間に流れる電流値を推定し、推定した電流値が検出電流値と所定値以上離れているとき、異常であるとするブラシレスモータの駆動回路が開示されている。
特開2006−14474号公報 特開2001−268980号公報 特開2002−234457号公報 特開2005−229768号公報
しかしながら、電流センサが削減されたモータ制御装置では、ブラシレスモータに実際に流れる電流値(以下、「実電流値」という)を検出することができないので、実電流値が電流指令値からかけ離れることによる電圧降下の変動などの影響を受け、ブラシレスモータを高い精度で制御することができないという問題がある。
そこで、本発明の目的は、電流センサを備えていなくても、電流推定値を用いてブラシレスモータに印加すべき電圧を示す電圧指令値を求めることにより、ブラシレスモータを高精度で制御することができるモータ制御装置を提供することである。また、本発明の他の目的は、そのようなモータ制御装置を備えた電動パワーステアリング装置を提供することである。
第1の発明は、d軸電流指令値をゼロとして、ブラシレスモータを駆動するモータ制御装置であって、
前記ブラシレスモータに供給すべき電流を示すq軸電流指令値を決定する指令電流設定手段と、
前記q軸電流指令値によって示される電流を前記ブラシレスモータに流すために、モータの回路方程式を用いて前記ブラシレスモータに印加すべき電圧を示すd軸およびq軸電圧指令値を求める電圧指令値算出手段と、
前記d軸電圧指令値をd軸電圧成分とし、前記q軸電圧指令値をq軸電圧成分とする指令電圧ベクトルの大きさが所定電圧値よりも大きいか否かを判定する判定手段と、
前記判定手段によって前記指令電圧ベクトルの大きさが前記所定電圧値よりも大きいと判定されたとき、前記d軸およびq軸電圧指令値に基づいて調整された電圧値をd軸およびq軸電圧推定値とし、前記指令電圧ベクトルの大きさが前記所定電圧値以下である判定されたとき、前記d軸およびq軸電圧指令値をそれぞれd軸およびq軸電圧推定値とする電圧制限手段と、
前記d軸およびq軸電圧推定値に基づいて相電圧推定値を求める相電圧変換手段と、
前記相電圧推定値の電圧レベルに応じたデュ−ティ比を有するPWM信号を生成するPWM変調手段と、
前記PWM信号および当該PWM信号の否定信号によって、相ごとに直列に接続された2個のスイッチング素子の導通状態を制御することにより、前記ブラシレスモータに駆動電流を供給するモータ駆動手段とを備え、
前記電圧制限手段は、前記指令電圧ベクトルの大きさが前記所定電圧値よりも大きいと前記判定手段により判定されたとき、前記指令電圧ベクトルを構成q軸電流に依存する電圧ベクトルの大きさを、前記指令電圧ベクトルの大きさが前記所定電圧値になるように調整し、当該q軸電流に依存する電圧ベクトルの大きさを調整した後の前記指令電圧ベクトルのd軸およびq軸電圧成分をそれぞれ前記d軸およびq軸電圧推定値とすることを特徴とする。
第2の発明は、第1の発明において、
前記指令電圧ベクトルの大きさが前記所定電圧値よりも大きいと前記判定手段によって判定されたとき、q軸電流推定値を求める電流推定手段と、
前記q軸電流推定値とパラメータ値との対応関係を示すデータを格納する記憶手段と、
前記q軸電流推定値に対応する前記データを前記記憶手段から読み出し、読み出した前記データと前記電流推定手段によって求められた前記q軸電流推定値とに基づいて推定パラメータ値を算出するパラメータ値算出手段と、
前記ブラシレスモータのロータの回転位置を検出する位置検出センサと、
前記位置検出センサによって検出された前記回転位置に基づいて前記ブラシレスモータのロータの角速度を求める角速度決定手段とをさらに備え、
前記電圧制限手段は、前記指令電圧ベクトルの大きさが前記所定電圧値よりも大きいと前記判定手段により判定されたとき、前記q軸電流に依存する電圧ベクトルの調整後の大きさと調整前の大きさとの比率を更に求め、
前記電流推定手段は、前記比率を前記q軸電流指令値に乗算することにより前記q軸電流推定値を求め、
前記電圧指令値算出手段は、前記推定パラメータ値と前記角速度とを前記モータの回路方程式に代入して前記d軸およびq軸電圧指令値を求めることを特徴とする。
第3の発明は、第1の発明において、
操舵トルクを検出して出力するトルクセンサと、
車速を検出して出力する車速センサと、
前記車速をパラメータとして、前記操舵トルクと前記q軸電流指令値の対応関係を格納するアシストマップとをさらに備え、
前記指令電流設定手段は、前記アシストマップを用いて前記q軸電流指令値を求めることを特徴とする。
第4の発明は、第1〜第のいずれかの発明に係るモータ制御装置を備えた、電動パワーステアリング装置である。
上記第1の発明によれば、指令電圧ベクトルの大きさが所定電圧値よりも大きい場合には、指令電圧ベクトルを構成しq軸電流に依存する電圧ベクトルの傾きを変えることなく、電圧ベクトルの終端が所定電圧値を表す円周上に位置するように調整してd軸およびq軸電圧推定値を求める。これにより、d軸およびq軸電圧推定値を容易かつ短時間に求めることができるので、モータ制御装置はブラシレスモータを高い精度で制御することができる。
上記第2の発明によれば、q軸電流推定値に対応づけられたデータ値を用いて推定パラメータ値が算出されるので、正確なパラメータ値を求めることができる。また、ブラシレスモータが高速回転しているときのロータの角速度を求めることができる。これにより、電流センサを備えていなくても、電圧指令値算出手段は、正確なパラメータ値と角速度を用いて正確なd軸およびq軸電圧指令値を算出することができるので、モータ制御装置はブラシレスモータを高い精度で制御することができる。
上記第3の発明によれば、アシストマップを用いることによって、ある大きさの操舵トルクが与えられたときに、その大きさに応じた適切な大きさの操舵補助力を発生させるためにブラシレスモータに供給すべきq軸電流指令値を求めることができる。
上記第の発明によれば、電流指令値が実電流値からかけ離れていても、電流指令値の代りに電流推定値を用いることによって、ブラシレスモータを高い精度で駆動してスムーズな操舵補助を可能にする。
<1.電動パワーステアリング装置>
図1は、本発明の実施形態に係る電動パワーステアリング装置の構成を、それに関連する車両の構成とともに示す概略図である。図1に示す電動パワーステアリング装置は、ブラシレスモータ1、減速機2、トルクセンサ3、車速センサ4、位置検出センサ5、およびECU(Electronic Control Unit:以下「ECU」という)10を備えたコラムアシスト型の電動パワーステアリング装置である。
図1に示すように、ステアリングシャフト102の一端にはハンドル(ステアリングホイール)101が固着されており、ステアリングシャフト102の他端はラックピニオン機構103を介してラック軸104に連結されている。ラック軸104の両端は、タイロッドおよびナックルアームからなる連結部材105を介して車輪106に連結されている。運転者がハンドル101を回転させると、ステアリングシャフト102は回転し、これに伴いラック軸104は往復運動を行う。ラック軸104の往復運動に伴い、車輪106の向きが変わる。
電動パワーステアリング装置は、運転者の負荷を軽減するために、以下に示す操舵補助を行う。トルクセンサ3は、ハンドル101の操作によってステアリングシャフト102に加えられる操舵トルクTを検出する。車速センサ4は、車速Sを検出する。位置検出センサ5は、ブラシレスモータ1のロータの回転位置Pを検出する。位置検出センサ5は、例えばレゾルバで構成されている。
ECU10は、車載バッテリ100から電力の供給を受け、操舵トルクT、車速Sおよび回転位置Pに基づいてブラシレスモータ1を駆動する。ブラシレスモータ1は、ECU10によって駆動されると、操舵補助力を発生させる。減速機2は、ブラシレスモータ1とステアリングシャフト102との間に設けられている。ブラシレスモータ1で発生した操舵補助力は、減速機2を介して、ステアリングシャフト102を回転させるように作用する。
この結果、ステアリングシャフト102は、ハンドル101に加えられる操舵トルクと、ブラシレスモータ1で発生する操舵補助力の両方によって回転する。このように電動パワーステアリング装置は、ブラシレスモータ1で発生した操舵補助力を車両のステアリング機構に与えることにより操舵補助を行う。
本発明の実施形態に係る電動パワーステアリング装置は、ブラシレスモータ1を駆動するモータ制御装置に特徴がある。そこで以下では、電動パワーステアリング装置に含まれるモータ制御装置について説明する。
<2.モータ制御装置>
図2は、本発明の実施形態に係るモータ制御装置の構成を示すブロック図である。図2に示すモータ制御装置は、ECU10を用いて構成されており、u相、v相およびw相の3相巻線(図示せず)を有するブラシレスモータ1を駆動する。ECU10は、位相補償器11、マイクロコンピュータ(以下、マイコンと略称する)20、3相/PWM(Pulse Width Modulation)変調器12およびモータ駆動回路13を備えている。
ECU10には、トルクセンサ3から出力された操舵トルクT、車速センサ4から出力された車速S、および位置検出センサ5から出力された回転位置Pが入力される。位相補償器11は、操舵トルクTに対して位相補償を施す。マイコン20は、ブラシレスモータ1の駆動に用いられる電圧指令値を求める。マイコン20の機能の詳細については、後述する。
マイコン20は、ECU10に内蔵されたメモリ(図示せず)に格納されたプログラムを実行することにより、指令電流設定部21、d軸指令電流算出部21a、オープンループ制御部22、電圧制限部24、dq軸/3相変換部25、dq軸電流推定部26、インダクタンス修正部27、角度算出部28および角速度算出部29として機能する。
マイコン20は、以下に示すように、ブラシレスモータ1に供給すべき電流を示す電流指令値とブラシレスモータ1のロータの角速度とに基づき、モータの回路方程式に従って、モータ駆動回路13に与えるべき電圧を示す電圧指令値を求める。
角度算出部28は、位置検出センサ5で検出した回転位置Pに基づき、ブラシレスモータ1のロータの回転角(電気角)(以下、「角度θ」という)を求める。角速度算出部29は、角度θに基づき、ブラシレスモータ1のロータの角速度(電気角の角速度)ωを求める。なお、角度θは、図3に示すようにブラシレスモータ1に対してu軸、v軸およびw軸を設定し、ブラシレスモータ1のロータ6に対してd軸およびq軸を設定したとき、u軸とd軸のなす角度である。角速度算出部29は角速度決定手段として機能する。
指令電流設定部21は、位相補償後の操舵トルクT(位相補償器11の出力信号)と車速Sとに基づき、ブラシレスモータ1に供給すべき電流のq軸成分(以下「q軸電流指令値Iq*」という)を求め、求めたq軸電流指令値Iq*を後述するオープンループ制御部22とdq軸電流推定部26とに出力する。より詳細には、指令電流設定部21は、車速Sをパラメータとして、操舵トルクTと指令電流との対応関係を格納したテーブル(以下、「アシストマップ」という)を内蔵しており、アシストマップを参照してq軸電流指令値Iq*を求める。このようにアシストマップを用いることによって、ある大きさの操舵トルクTが与えられたときに、その大きさに応じた適切な大きさの操舵補助力を発生させるためにブラシレスモータ1に供給すべきq軸電流指令値Iq*を求めることができる。
また、d軸指令電流算出部21aは、指令電流設定部21から与えられるq軸電流指令値Iq*と角速度算出部29から与えられる角速度ωとに基づき、ブラシレスモータ1に供給すべき電流のd軸成分(以下「d軸電流指令値Id*」という)を求める。そして、求めたd軸電流指令値Id*をオープンループ制御部22と後述するdq軸電流推定部26とに出力する。d軸電流指令値Id*はトルクの発生に寄与しないので、d軸指令電流算出部21aは、q軸電流指令値Iq*と角速度算出部29から与えられる角速度ωにかかわらず、d軸電流指令値Id*としてゼロを出力することもできる。
なお、指令電流設定部21で求められるq軸電流指令値Iq*は符号付きの電流値であり、その符号は操舵補助の方向を示す。例えば、符号がプラスのときには右方向へ曲がるための操舵補助が行われ、符号がマイナスのときには左方向へ曲がるための操舵補助が行われる。
オープンループ制御部22は、指令電流設定部21で求めたq軸電流指令値Iq*、d軸指令電流算出部21aで求めたd軸電流指令値Id*および角速度算出部29で求めた角速度ωとに基づき、ブラシレスモータ1に印加すべき電圧のd軸成分とq軸成分を求める(以下、前者の値を「d軸電圧指令値Vd」、後者の値を「q軸電圧指令値Vq」という)。d軸電圧指令値Vdとq軸電圧指令値Vqは、次式(1)と(2)に示すモータの回路方程式を用いて算出される。
Vd=(R+P・Ld)・Id*−ω・Lq・Iq* …(1)
Vq=(R+P・Lq)・Iq*+ω・Ld・Id*+ω・Φ …(2)
ただし、式(1)と(2)において、Vdはd軸電圧指令値、Vqはq軸電圧指令値、Id*はd軸電流指令値、Iq*はq軸電流指令値、ωはロータの角速度、Rは電機子巻線抵抗を含む回路抵抗、Ldはd軸の自己インダクタンス、Lqはq軸の自己インダクタンス、Φはu、v、w相電機子巻線鎖交磁束数の最大値の√(3/2)倍、Pは微分演算子である。このうち、R、Ld、LqおよびΦは既知のパラメータとして扱われ、記憶部23に格納されている。なお、Rで示される回路抵抗には、ブラシレスモータ1とECU10との間の配線抵抗やECU10内でのモータ駆動回路13の抵抗および配線抵抗などが含まれる。このようにオープンループ制御部22は、電圧指令値算出手段として機能する。
電圧制限部24は判定部24aを含み、判定部24aは、オープンループ制御部22で求めたd軸電圧指令値Vdをd軸電圧成分とし、q軸電圧指令値Vqをq軸電圧成分とする指令電圧ベクトルの大きさ√(Vd2+Vq2)と、車載バッテリ100から与えられる電源電圧値VBとを比較する。
判定部24aで指令電圧ベクトルの大きさ√(Vd2+Vq2)が電源電圧値VB以下であると判定された場合、電圧制限部24は、オープンループ制御部22で求めたd軸およびq軸電圧指令値Vd、Vqをそれぞれd軸およびq軸電圧推定値Vd’、Vq’としてdq軸/3相変換部25に出力する。
一方、判定部24aで指令電圧ベクトルの大きさ√(Vd2+Vq2)が電源電圧値VBよりも大きいと判定された場合には、電圧制限部24は、後で詳細に説明する方法によってd軸およびq軸電流推定値Id’、Iq’を求めるために必要な比率を算出してdq軸電流推定部26に与える。
dq軸電流推定部26は、指令電流設定部21から与えられたq軸電流指令値Iq*、およびd軸指令電流算出部21aから与えられたd軸電流指令値Id*に、電圧制限部24から与えられた比率を掛けることにより、q軸電流推定値Iq’およびd軸電流推定値Id’をそれぞれ求める。このように判定部24aを除く電圧制限部24とdq軸電流推定部26は、電流推定手段として機能する。
d軸の自己インダクタンスLdは主としてd軸電流の変化によって変化し、q軸電流の変化による影響も受ける。また、q軸の自己インダクタンスLqは主としてq軸電流の変化によって変化し、d軸電流の変化による影響も受ける。このため、記憶部23には、q軸の自己インダクタンスLqとq軸電流およびd軸電流との対応関係を表すデータが記載されたテーブル、およびd軸の自己インダクタンスLdとd軸電流およびq軸電流との対応関係を表すデータが記載されたテーブルがあらかじめ格納されている。なお、テーブルに記載されたデータは、あらかじめ実験、シミュレーションなどによって求められる。また、データの形式は、テーブルに限定されず、d軸電流値およびq軸電流値を方程式に代入することによって自己インダクタンスLd、Lqを求める場合には、その方程式の係数などであってもよく、他の形式でもよい。
インダクタンス修正部27は、dq軸電流推定部26からq軸電流推定値Iq’またはd軸電流推定値Id’が与えられると、記憶部23に格納されたデータから、q軸電流推定値Iq’とd軸電流推定値Id’に対応づけられたd軸の自己インダクタンスおよびq軸の自己インダクタンスを読み出す。この読み出されたq軸の自己インダクタンスおよびd軸の自己インダクタンスをそれぞれ「修正後のq軸の自己インダクタンスLq’」(推定パラメータ値)および「修正後のd軸の自己インダクタンスLd’」(推定パラメータ値)という。インダクタンス修正部27は、修正後のq軸の自己インダクタンスLq’およびd軸の自己インダクタンスLd’をオープンループ制御部22に出力する。このように、インダクタンス修正部27はパラメータ値算出手段として機能する。
dq軸/3相変換部25は、オープンループ制御部22および電圧制限部24で求めたd軸電圧推定値Vd’とq軸電圧推定値Vq’を3相交流座標軸上の電圧指令値に変換する。より詳細には、dq軸/3相変換部25は、d軸電圧推定値Vd’とq軸電圧推定値Vq’に基づき、次式(3)〜(5)を用いてu相電圧推定値Vu’、v相電圧推定値Vv’およびw相電圧推定値Vw’を求める。
Vu’=√(2/3)×{Vd’×cosθ−Vq’×sinθ} …(3)
Vv’=√(2/3)×{Vd’×cos(θ−2π/3)
−Vq’×sin(θ−2π/3)} …(4)
Vw’=−Vu’−Vv’ …(5)
上記の式(3)(4)に含まれる角度θは、角度算出部28で求めた電気角である。なお、u相電圧推定値Vu’、v相電圧推定値Vv’、w相電圧推定値Vw’を総称して「相電圧推定値Vu’、Vv’、Vw’」ともいう。
dq軸/3相変換部25により得られた相電圧推定値Vu’、Vv’、Vw’は、マイコン20から3相/PWM変調器12に与えられる。3相/PWM変調器12は、マイコン20で求めた3相の電圧のレベルに応じたデューティ比を有する3種類のPWM信号(図2に示すU、V、W)を生成する。モータ駆動回路13は、スイッチング素子として6個のMOS−FET(Metal Oxide Semiconductor Field Effect Transistor )を含むPWM電圧型インバータ回路である。6個のMOS−FETは、3種類のPWM信号とその否定信号によって制御される。PWM信号を用いてMOS−FETの導通状態を制御することにより、ブラシレスモータ1に対して3相の駆動電流(u相電流、v相電流およびw相電流)を供給する。この結果、ブラシレスモータ1の3相巻線に、各相の相電圧推定値Vu’、Vv’、Vw’に応じた正弦波状の電流が流れ、ブラシレスモータ1のロータが回転する。これに伴って、ブラシレスモータ1の回転軸には、ブラシレスモータ1を流れる電流に応じたトルクが発生する。発生したトルクは補助操舵に用いられる。
<3.電流推定値を求める方法>
<3.1 Id*=0の場合>
まず、トルクの発生に寄与しないd軸電流指令値Id*がゼロの場合について説明する。図4は、ブラシレスモータ1の回転数と、ブラシレスモータ1に実際に流れるq軸電流の電流値(以下、「q軸実電流値Iq」という)のうち最大のq軸実電流値(以下、「最大q軸実電流値Iqm」という)との関係を示すグラフである。図4に示すように、q軸電流指令値Iq*のうち最大のq軸電流指令値(以下、「最大電流指令値Iqm*」という)は、回転数によらず一定である。また、最大q軸実電流値Iqmは、回転数が所定値Na以下の場合には一定であるが、所定値Naよりも大きくなると回転数が大きくなるに伴って小さくなる。
図4の領域は、領域Aと領域Bに分かれている。領域Aは、q軸電流指令値Iq*が最大q軸電流指令値Iqm*および最大q軸実電流値Iqmよりも小さい領域である。一方、領域Bは、q軸電流指令値Iq*が最大q軸電流指令値Iqm*よりは小さいが、最大q軸実電流値Iqmよりも大きい領域である。q軸実電流値Iqは最大q軸実電流値Iqmおよび最大q軸電流指令値Iqm*よりも小さいので、領域Aではq軸実電流値Iqはq軸電流指令値Iq*と一致していると推定される。
しかし、領域Bでは、ブラシレスモータ1の回転数、すなわち角速度ωが大きくなるにつれて、式(2)の角速度ωに比例する誘導起電力(ωΦ)が大きくなるとともに、q軸実電流値Iqによる成分(R+P・Lq)・Iqが小さくなる。このため、ブラシレスモータ1の回転数が増加すれば、それに応じて最大q軸実電流値Iqmも小さくなる。したがって、最大q軸実電流値Iqmよりも大きなq軸電流指令値Iq*が設定されても、q軸実電流値Iqを電源電圧値VBによって決まる最大q軸実電流値Iqmよりも大きくすることはできない。このため、最大q軸実電流値Iqmより大きく、最大q軸電流指令値Iqm*よりも小さなq軸電流指令値Iq*が設定されても、q軸実電流値Iqは、そのようなq軸電流指令値Iq*になることはできず、最大q軸実電流値Iqmよりも小さくなると推定される。
そこで、q軸電流指令値Iq*が図4の領域A内の値である場合について説明する。図5は、図4に示す領域Aにおけるd軸電圧とq軸電圧との関係を示すベクトル図である。d軸電流指令値Id*がゼロであるため、式(1)(2)は次式(6)(7)になる。
Vd=−ω・Lq・Iq* …(6)
Vq=(R+P・Lq)・Iq*+ω・Φ …(7)
図5に示すように、横軸をq軸電圧、縦軸をd軸電圧とするdq軸座標上で、d軸電圧指令値Vdをd軸電圧成分とし、q軸電圧指令値Vqをq軸電圧成分とする指令電圧ベクトルの大きさは√(Vd2+Vq2)なので、その終端は電源電圧値VBを示す電圧制限円の内部にある。このため、指令電圧ベクトルの大きさ√(Vd2+Vq2)は電源電圧値VBよりも大きくなることはなく、また図4から領域Aのq軸電流指令値Iq*は、常に最大q軸実電流値Iqm以下である。したがって、領域Aでは、q軸実電流値Iqはq軸電流指令値Iq*に等しいと推定される。そこで、推定されるq軸電流の電流値(以下、「q軸電流推定値Iq’」という)は、次式(8)に示すようにq軸電流指令値Iq*に等しいとする。
Iq’=Iq* …(8)
次に、q軸電流指令値Iq*が領域B内にある場合について説明する。図6は、図4に示す領域Bにおけるd軸電圧とq軸電圧との関係を示すベクトル図である。図6に示すように、式(6)と(7)によって求められるd軸電圧指令値Vdをd軸電圧成分とし、q軸電圧指令値Vqをq軸電圧成分とする指令電圧ベクトルの大きさ√(Vd2+Vq2)は電源電圧値VBよりも大きいので、指令電圧ベクトルの終端は電圧制限円の外側に位置する。そこで、指令電圧ベクトルの終端が電圧制限円周上またはその内部に位置するように指令電圧ベクトルの大きさを調整する必要がある。
式(6)のd軸電圧指令値Vdである−ω・Lq・Iq*をd軸電圧成分(以下、「Vd1」ともいう)とし、式(7)のq軸電圧指令値Vqのうちq軸電流指令値Iq*による成分(R+P・Lq)・Iq*をq軸電圧成分(以下、「Vq1」ともいう)とするベクトルをベクトルV1とすれば、その傾きk1は次式(9)によって求められる。
k1=Vd1/Vq1
=−ω・Lq・Iq*/(R+P・Lq)・Iq*
=−ω・Lq/(R+P・Lq) …(9)
式(9)において、ω、Lq、Rは、既述のようにいずれも一定であるとみなされるので、ベクトルV1の傾きk1はq軸電流の量にかかわらず一定と考えられる。また、ベクトルV1の大きさ|V1|は次式(10)によって表される。
|V1|=√(Vq12+Vd12) …(10)
そこで、指令電圧ベクトルを、傾きを一定に保った状態で、その大きさ√(Vd2+Vq2)が電源電圧値VBになるように調整する。すなわち、指令電圧ベクトルの終端が電源電圧値VB以下の所定電圧値Vaを示す電圧制限円の円周上に位置するように調整すると、ベクトルV1の終端は傾きk1を一定に保った状態で、電圧制限円の円周上に位置するようになる。このときのq軸電流をIqとすると、−ω・Lq・Iqをd軸電圧成分(以下、「Vd2」ともいう)とし、q軸電流による成分(R+P・Lq)・Iqをq軸電圧成分(以下、「Vq2」ともいう)とするベクトルV2が得られる。このようにして得られたベクトルV2の傾きも、ベクトルV1の傾きk1と同じになる。
ベクトルV1のd軸およびq軸電圧成分をVd1、Vq1、ベクトルV2のd軸およびq軸電圧成分をVd2、Vq2、q軸誘導起電力をVqe(=ωΦ)、d軸電圧推定値をVd’、q軸電圧推定値をVq’としたとき、上述の調整法は次式(11)〜(14)によって表される。
Vd=Vd2 …(11)
Vq=Vqe+Vq2 …(12)
√{(Vqe+Vq2)2+Vd22}=Va …(13)
k1=Vd1/Vq1=Vd2/Vq2 …(14)
式(11)〜(14)において、Vqe、Vd1、Vq1は既知であるため、式(11)〜(14)からVd2、Vq2が求まる。さらに、ベクトルV1のq軸電圧成分Vq1とベクトルV2のq軸電圧成分Vq2との比率、またはベクトルV1のd軸電圧成分Vd1とベクトルV2のd軸電圧成分Vd2との比率を求めると、それらの関係は次式(15)のようになる。
Vq2/Vq1=Vd2/Vd1=|V2|/|V1| …(15)
ただし、|V2|はベクトルV2の大きさ√(Vd22+Vq22)である。
そこで、このようにして求めた比率Vq2/Vq1とq軸電流指令値Iq*とを用い、q軸電流推定値Iq’を次式(16)に従って求めることができる。
Iq’=(Vq2/Vq1)×Iq* …(16)
このように、指令電圧ベクトルの大きさ√(Vd2+Vq2)が電源電圧値VBよりも大きい場合、q軸電流推定値Iq’は、q軸電流指令値Iq*に、ベクトルV1のq軸電圧成分Vq1とベクトルV2のq軸電圧成分Vq2との比率Vq2/Vq1を掛けることによって求めることができる。
なお、比率Vd2/Vd1を用いる場合には、q軸電流推定値Iq’を次式(17)によって求めることもできる。
Iq’=(Vd2/Vd1)×Iq*…(17)
この場合、本実施形態によるモータ制御装置によれば、電流センサを備えていなくても、q軸電流指令値Iq*に基づいて、q軸実電流値に近いq軸電流推定値Iq’を容易に求めることができる。また、求めたq軸電流推定値Iq’を使用して正確なq軸およびd軸インダクタンスLq’、Ld’を求めることができるので、オープンループ制御部22は正確なd軸およびq軸電圧指令値を算出することができる。このため、このようにして求めたd軸およびq軸電圧指令値を電圧推定値として使用することによって、ブラシレスモータ1を高い精度で制御することができる。また、モータ駆動回路13やブラシレスモータ1の故障を検知するために、求めたq軸電流推定値Iq’を使用し、ブラシレスモータ1をフェイルセーフとなるように制御することもできる。
<3.2 Id*≠0の場合>
d軸電流はトルクに寄与しないため、上述の実施形態では、d軸電流指令値Id*がゼロの場合について説明した。しかし、ブラシレスモータ1を弱め磁束制御したり、高回転状態にしたりする場合にはd軸電流が用いられる。そこで、次にd軸電流指令値Id*がゼロではない場合について説明する。
d軸電流指令値Id*は、指令電流設定部21から与えられるq軸電流指令値Iq*と、位置検出センサ5から与えられる位置情報に基づいて角速度算出部29で算出されるロータの回転角速度ωとに基づいて、d軸指令電流算出部21aで求められる。そして、指令電流設定部21で決定されたq軸電流指令値Iq*とd軸指令電流算出部21aで求められたd軸電流指令値Id*とがオープンループ制御部22に与えられると、オープンループ制御部22はd軸電圧指令値Vdとq軸電圧指令値Vqとを求める。
図7(A)はd軸電流指令値Id*がゼロではないときの指令電圧ベクトルを示すベクトル図であり、図7(B)はd軸電流指令値Id*によるd軸電圧指令値Vdとq軸電圧指令値Vqとが所定電圧値Vb以下となるように制限する方法を示すベクトル図である。図7(A)に示すように、Id=0のときの指令電圧ベクトルとd軸電流による電圧ベクトルとを合成した指令電圧ベクトルの終端が、電源電圧値VBを示す電圧制限円の円周上またはその内部に位置するようにするため、d軸電流による電圧ベクトルの大きさは所定電圧値Vb以下に調整される。
その調整方法は上述のId=0の場合と同様であるので、図7(B)を参照して簡単に説明する。d軸電流による電圧ベクトルの大きさを所定電圧値Vb以下に制限するために、d軸電流指令値Id*のときのd軸電圧指令値Vdのうちd軸電流指令値Id*による成分(R+P・Ld)・Id*(以下、「Vd3」ともいう)をd軸電圧成分とし、q軸電圧指令値Vqのうちd軸電流指令値Id*による成分ω・Ld・Id*をq軸電圧成分(以下「Vq3」ともいう)とするベクトルをベクトルV3とする。ベクトルV3の傾きk2は(R+P・Ld)/ω・Ldであるため、d軸電流の量にかかわらず一定と考えられる。
したがって、ベクトルV3の大きさ|V3|を所定電圧値Vb以下になるように調整するには、傾きをk2に保った状態でd軸電流の量を変えることによって、ベクトルV3の大きさ|V3|だけを調整すればよい。調整後のd軸電流をIdとしたとき、d軸電流Idによる成分(R+P・Ld)・Id(以下、「Vd4」ともいう)をd軸電圧成分とし、d軸電流Idによるω・Ld・Id(以下、「Vq4」ともいう)をq軸電圧成分とするベクトルV4が得られる。そこで、d軸電流指令値Id*がゼロの場合と同様にして、ベクトルV3、V4のd軸電圧成分Vd3、Vd4、q軸電圧成分Vq3、Vq4の関係を求めれば、次式(18)のようになる。
Vd4/Vd3=Vq4/Vq3=|V4|/|V3| …(18)
ただし、|V3|および|V4|はそれぞれベクトル3およびベクトル4の大きさである。
そこで、このようにして求めた比率とd軸電流指令値Id*を用いて、d軸電流推定値Id’を次式(19)によって求めることができる。
Id’=(Vd4/Vd3)×Id* …(19)
このように、d軸電流による電圧ベクトルの大きさが所定電圧値Vbよりも大きい場合、d軸電流推定値Id’は、d軸電流指令値Id*に、ベクトルV3のd軸電圧成分Vd3とベクトルV4のd軸電圧成分Vd4との比率を掛けることによって求めることができる。
なお、比率Vq4/Vq3を用いる場合には、d軸電流推定値Id’を次式(20)によって求めることもできる。
Id’=(Vq4/Vq3)×Id*…(20)
この場合、d軸電流指令値Id*がゼロではない場合にも、d軸電流指令値Id*に基づいてd軸実電流値に近いd軸電流推定値Id’を容易に求めることができる。また、求めたd軸電流推定値Id’を用いることによってd軸およびq軸電圧推定値Vd’、Vq’を算出し、それらを電圧指令値Vd、Vqとして使用することによってブラシレスモータ1を高精度で制御することができる。また、モータ駆動回路13やブラシレスモータ1の故障を検知するために、求めたd軸電流推定値Id’を使用し、ブラシレスモータ1をフェイルセーフとなるように制御することもできる。
<4.変形例>
上述の実施例では、モータ制御装置をオープンループ制御する場合について説明したが、フィードバック制御する場合にも同様にしてd軸およびq軸の電流推定値を求め、d軸およびq軸の電流推定値を用いることによって、モータ駆動回路に印加する電圧指令値を補正することができる。
<5.応用例>
モータ制御装置をオープンループ制御するときに求めた電流推定値Id’、Iq’を利用してブラシレスモータ1を制御する場合について以下に説明する。
<5.1 第1の応用例>
図8は、第1の応用例で使用されるマイコン30によって実現される機能的構成を示すブロック図である。マイコン30は、図2のモータ制御装置に使用されるマイコン20の代りに用いられるもので、その機能的構成要素の一部が変更されている。そこで、マイコン20と同じ機能的構成要素には同じ参照符号を付してその説明を省略し、異なる機能的構成要素について説明する。図8に示すように、マイコン30には、マイコン20に含まれていた記憶部23およびインダクタンス修正部27がなく、その代わりに相電流変換部31、相電圧補正値算出部32、加算器33および記憶部34が追加されている。また、相電圧補正値算出部32は記憶部34から必要なデータを読み出して演算する。
相電流変換部31は、dq軸電流推定部26で求められたd軸およびq軸電流推定値Id’、Iq’をモータの回路方程式を用いて3相の相電流推定値Iu’、Iv’、Iw’に変換する。相電圧補正値算出部32は、相電流変換部31で求められた相電流推定値Iu’、Iv’、Iw’と記憶部34から読み出したデータに基づいて、dq軸/3相変換部25で変換された3相の相電圧指令値Vu、Vv、Vwを補正するための相電圧補正値ΔVu、ΔVv、ΔVwを求めて加算器33に出力する。加算器33は、3相の相電圧指令値Vu、Vv、Vwに相電圧補正値ΔVu、ΔVv、ΔVwを加えることによって、補正された相電圧指令値Vuc、Vvc、Vwcを求め、マイコン30の外部に設けられた3相/PWM変調器12に出力する。この場合、d軸およびq軸電流推定値Id’、Iq’を3相の相電流推定値にIu’、Iv’、Iw’に変換した後に、相電圧補正値ΔVu、ΔVv、ΔVwを求めているので、マイコン30の演算負荷は大きくなるが、ブラシレスモータ1を高精度で制御することができる。
このようなマイコン30を使用する場合の例として、モータ駆動回路13内の電源端子から節点Nまでの電圧降下を抑制する方法を説明する。モータ駆動回路13は、各相ごとにMOS−FETが2個ずつ直列に接続されており、その節点がブラシレスモータ1の入力端子に接続されている。このため、電源端子からブラシレスモータ1の入力端子に電流が流れると、電源端子とブラシレスモータ1の入力端子間の配線抵抗およびMOS−FETのオン抵抗による抵抗値と、電源端子とブラシレスモータ1との間に流れる電流とによって決まる電圧降下が生じる。
電流センサを削減したモータ制御装置をモータの回路方程式に従ってオープンループ制御する場合、電源端子とブラシレスモータ1の入力端子との間に流れる電流を検出することができないので、電流値が指令値から変化することによる電圧降下の変動を補正することができない。そこで、電源端子とブラシレスモータ1間の抵抗値と電流との対応関係をあらかじめ求めてテーブルなどの形式で記憶部34に格納しておく。相電流変換部31は、dq軸電流推定部26から与えられたd軸およびq軸電流推定値Id’、Iq’を、相電流推定値Iu’、Iv’、Iw’に変換する。この場合、変換された相電流推定値Iu’、Iv’、Iw’は、電源端子とブラシレスモータ1の入力端子との間に流れる相電流に相当すると考えられる。
相電圧補正値算出部32は、相電流推定値Iu’、Iv’、Iw’に対応づけられた抵抗値を記憶部34から読み出し、読み出した抵抗値と相電流推定値Iu’、Iv’、Iw’とに基づいて、各相ごとの相電圧補正値ΔVu、ΔVv、ΔVw(第2の推定パラメータ値)を求める。次に、加算器33は、3相の相電圧指令値Vu、Vv、Vwに相電圧補正値ΔVu、ΔVv、ΔVwを加算することによって、電圧降下分だけ補正された相電圧指令値Vuc、Vvc、Vwcを求める。そして、補正後の相電圧指令値Vuc、Vvc、Vwcに基づいてモータ駆動回路13を制御するので、ブラシレスモータ1に供給される電流が電圧降下によって変動するのを抑制することができる。
なお、この応用例では、電源端子から節点Nまでの電圧降下を抑制する方法について述べたが、節点Nから接地端子までの電圧降下を抑制する場合にも同様に適用することができる。
また、この応用例では、d軸およびq軸電流推定値Id’,Iq’を変換した相電流推定値Iu’、Iv’、Iw’を用いて相電圧補正値ΔVu、ΔVv、ΔVwを求めたが、相電流推定値Iu’、Iv’、Iw’を用いて他の回路を直接制御してもよい。この場合には、記憶部34は不要となる。
<5.2 第2の応用例>
図9は、第2の応用例で使用されるマイコン40によって実現される機能的構成を示すブロック図である。マイコン40は、図2のモータ制御装置に使用されるマイコン20の代りに使用されるもので、その機能的構成要素の一部が変更されている。そこで、マイコン20と同じ機能的構成要素には同じ参照符号を付してその説明を省略し、異なる機能的構成要素について説明する。図9に示すように、マイコン40は、マイコン20に含まれる機能的構成要素のうち、記憶部23およびインダクタンス修正部27がなく、その代わりに電圧補正値算出部41、加算器42および記憶部43が追加されている。また、電圧補正値算出部41は記憶部43から必要なデータを読み出して演算する。
電圧補正値算出部41は、dq軸電流推定部26で求められたd軸電流推定値Id’、q軸電流推定値Iq’および記憶部43から読み出したデータに基づいて、d軸およびq軸電圧指令値Vd、Vqを補正するための電圧補正値ΔVd、ΔVqを求めて加算器42に出力する。加算器42は、電圧制限部24から与えられるd軸およびq軸指令電圧Vd、Vqにそれらの電圧補正値ΔVd、ΔVqを加えることによって、補正されたd軸およびq軸指令電圧Vdc、Vqcを求め、dq軸/3相変換部25に出力する。この場合、d軸およびq軸電流推定値Id’,Iq’を相電流に変換することなくd軸およびq軸電圧で演算しているので、マイコン40の演算負荷を軽減することができる。なお、電圧補正値算出部41および加算器42は指令電圧補正手段として機能する。
このようなマイコン40を使用する場合の例として、モータ駆動回路13内のMOS−FETのデッドタイム期間における節点Nの電位の変動を抑制する方法を説明する。節点Nの電位の変動を高い精度で抑制するためには、第1の応用例で説明した電圧降下の抑制の場合と同様に、d軸およびq軸電流推定値Id’、Iq’を変換した相電流推定値Iu’、Iv’、Iw’を用いるのが好ましい。しかし、マイコン40の演算負荷を軽減するために、d軸およびq軸電流推定値Id’、Iq’を用いてd軸およびq軸電圧指令値Vd、Vqを補正することにより、節点Nの電位の変動を抑制することもできる。そこで、d軸およびq軸電流推定値Id’,Iq’を相電流推定値Iu’、Iv’、Iw’に変換することなく節点Nの電位の変動を抑制する方法について説明する。
モータ駆動回路13は、u相、v相、w相の各相ごとにMOS−FETが2個ずつ直列に接続されている。図10(A)は、x相(x=u、v、w)のMOS−FET13a、13bを介してブラシレスモータ1に電流が流れ込むことを示す回路図であり、図10(B)は、ブラシレスモータ1からx相(x=u、v、w)のMOS−FET13a、13bを介して電流が流れ出すことを示す回路図である。
MOS−FET13a、13bが同時にオン状態になることによって、電源端子から接地端子に貫通電流が流れないようにするため、MOS−FET13a、13bを同時にオフ状態にするデッドタイム期間が設けられている。本来であれば、このデッドタイム期間には、MOS−FET13a、13bに電流は流れない。しかし、各MOS−FET13a、13bにはそれぞれ寄生ダイオードD1、D2が付随しており、またブラシレスモータ1の電機子巻線がインダクタとして作用する。
このため、図10(A)に示すように、ブラシレスモータ1に電流が流れ込んでいるときに、MOS−FET13a、13bを同時にオフ状態にしても、引き続き接地端子からMOS−FET13bの寄生ダイオードD2を介してブラシレスモータ1に電流が流れ込む。このため、MOS−FET13aとMOS−FET13bの接続点(以下、「節点N」という)の電位は、接地電位GNDよりも寄生ダイオードD2による電圧降下による電位差だけ低い値になる。しかし、この電圧降下による電位差は小さいため、節点Nの電位は接地電位GNDにほぼ等しくなる。
一方、図10(B)に示すように、ブラシレスモータ1から電流が流れ出しているときに、MOS−FET13a、13bを同時にオフ状態にしても、引き続きブラシレスモータ1からMOS−FET13aの寄生ダイオードD1を介して電源端子に電流が流れ出す。このため、節点Nの電位は、電源電圧値VBよりも寄生ダイオードD1による電圧降下による電位差だけ高い値になる。しかし、この電圧降下による電位差は小さいため、節点Nの電位は電源電圧値VBにほぼ等しくなる。
ブラシレスモータ1は、本来3相/PWM変調器12から与えられる相電圧指令値Vu、Vv、Vwに応じたデューティ比を有する3種類のPWM信号とその否定信号によって制御されるモータ駆動回路13によって駆動される。このとき、節点Nの電位は、3相/PWM変調器12から与えられるPWM信号とその否定信号とによって決まる。しかし、デッドタイム期間では、その直前にブラシレスモータ1に流れていた電流の方向により、節点Nの電位は、接地電位GNDになったり、電源電圧値VBになったりして、PWM信号とその否定信号によって決まる電位とは無関係に変動する。
そこで、マイコン40の記憶部に、MOS−FET13a、13bを流れる方向も含めたd軸およびq軸電流値とそのときの節点Nの電圧補正値との対応関係を示すデータをテーブルなどの形式で記憶部43に格納しておけば、電圧補正値算出部41は、d軸およびq軸電流推定値Id’、Iq’に応じたd軸およびq軸の電圧補正値ΔVd、ΔVqを求める。そして、加算器42は、d軸およびq軸の電圧指令値Vd,Vqに、電圧補正値ΔVd、ΔVqを加算して補正後の電圧指令値Vdc,Vqcを求める。モータ駆動回路13は、補正後の電圧指令値Vdc、Vqcに基づいて駆動される。この場合、デッドタイム期間における節点Nの電位の変動を抑制するのに必要なマイコン40の演算負荷を軽減することができる。
本発明の実施形態に係る電動パワーステアリング装置の構成を示すブロック図である。 本発明の実施形態に係るモータ制御装置の構成を示すブロック図である。 3相ブラシレスモータにおける3相交流座標とdq軸座標の関係を示す図である。 ブラシレスモータの回転数と、ブラシレスモータに流れる最大実電流値との関係を示すグラフである。 図4に示す領域Aにおけるd軸電圧とq軸電圧との関係を示すベクトル図である。 図4に示す領域Bにおけるd軸電圧とq軸電圧との関係を示すベクトル図である。 (A)はd軸電流指令値がゼロではないときの指令電圧ベクトルを示すベクトル図であり、(B)はd軸電流指令値によるd軸電圧指令値とq軸電圧指令値とが所定電圧値以下となるように制限する方法を示すベクトル図である。 第1の応用例で使用されるマイコンによって実現される機能的構成を示すブロック図である。 第2の応用例で使用されるマイコンによって実現される機能的構成を示すブロック図である。 (A)はx相のMOS−FETを介してブラシレスモータに電流が流れ込むことを示す回路図であり、(B)はブラシレスモータからx相のMOS−FETを介して電流が流れ出すことを示す回路図である。
1…ブラシレスモータ、10…ECU(モータ制御装置)、13…モータ駆動回路、20、30、40…マイコン、21…指令電流設定部、21a…d軸指令電流算出部、22…オープンループ制御部(電圧指令値算出手段)、23、34、43…記憶部、24…電圧制限部(電流推定手段)、24a…判定部、26…dq軸電流推定部(電流推定手段)、27…インダクタンス修正部(パラメータ値算出手段)、31…相電流変換部、32…相電圧補正値算出部(相電圧補正手段)、33…加算器(相電圧補正手段)、41…電圧補正値算出部(指令電圧補正手段)、42…加算器(指令電圧補正手段)

Claims (4)

  1. d軸電流指令値をゼロとして、ブラシレスモータを駆動するモータ制御装置であって、
    前記ブラシレスモータに供給すべき電流を示すq軸電流指令値を決定する指令電流設定手段と、
    前記q軸電流指令値によって示される電流を前記ブラシレスモータに流すために、モータの回路方程式を用いて前記ブラシレスモータに印加すべき電圧を示すd軸およびq軸電圧指令値を求める電圧指令値算出手段と、
    前記d軸電圧指令値をd軸電圧成分とし、前記q軸電圧指令値をq軸電圧成分とする指令電圧ベクトルの大きさが所定電圧値よりも大きいか否かを判定する判定手段と、
    前記判定手段によって前記指令電圧ベクトルの大きさが前記所定電圧値よりも大きいと判定されたとき、前記d軸およびq軸電圧指令値に基づいて調整された電圧値をd軸およびq軸電圧推定値とし、前記指令電圧ベクトルの大きさが前記所定電圧値以下である判定されたとき、前記d軸およびq軸電圧指令値をそれぞれd軸およびq軸電圧推定値とする電圧制限手段と、
    前記d軸およびq軸電圧推定値に基づいて相電圧推定値を求める相電圧変換手段と、
    前記相電圧推定値の電圧レベルに応じたデュ−ティ比を有するPWM信号を生成するPWM変調手段と、
    前記PWM信号および当該PWM信号の否定信号によって、相ごとに直列に接続された2個のスイッチング素子の導通状態を制御することにより、前記ブラシレスモータに駆動電流を供給するモータ駆動手段とを備え、
    前記電圧制限手段は、前記指令電圧ベクトルの大きさが前記所定電圧値よりも大きいと前記判定手段により判定されたとき、前記指令電圧ベクトルを構成q軸電流に依存する電圧ベクトルの大きさを、前記指令電圧ベクトルの大きさが前記所定電圧値になるように調整し、当該q軸電流に依存する電圧ベクトルの大きさを調整した後の前記指令電圧ベクトルのd軸およびq軸電圧成分をそれぞれ前記d軸およびq軸電圧推定値とすることを特徴とする、モータ制御回路。
  2. 前記指令電圧ベクトルの大きさが前記所定電圧値よりも大きいと前記判定手段によって判定されたとき、q軸電流推定値を求める電流推定手段と、
    前記q軸電流推定値とパラメータ値との対応関係を示すデータを格納する記憶手段と、
    前記q軸電流推定値に対応する前記データを前記記憶手段から読み出し、読み出した前記データと前記電流推定手段によって求められた前記q軸電流推定値とに基づいて推定パラメータ値を算出するパラメータ値算出手段と、
    前記ブラシレスモータのロータの回転位置を検出する位置検出センサと、
    前記位置検出センサによって検出された前記回転位置に基づいて前記ブラシレスモータのロータの角速度を求める角速度決定手段とをさらに備え、
    前記電圧制限手段は、前記指令電圧ベクトルの大きさが前記所定電圧値よりも大きいと前記判定手段により判定されたとき、前記q軸電流に依存する電圧ベクトルの調整後の大きさと調整前の大きさとの比率を更に求め、
    前記電流推定手段は、前記比率を前記q軸電流指令値に乗算することにより前記q軸電流推定値を求め、
    前記電圧指令値算出手段は、前記推定パラメータ値と前記角速度とを前記モータの回路方程式に代入して前記d軸およびq軸電圧指令値を求めることを特徴とする、請求項1に記載のモータ制御回路。
  3. 操舵トルクを検出して出力するトルクセンサと、
    車速を検出して出力する車速センサと、
    前記車速をパラメータとして、前記操舵トルクと前記q軸電流指令値の対応関係を格納するアシストマップとをさらに備え、
    前記指令電流設定手段は、前記アシストマップを用いて前記q軸電流指令値を求めることを特徴とする、請求項1に記載のモータ制御装置。
  4. 請求項1〜のいずれか1項に記載のモータ制御装置を備えた、電動パワーステアリング装置。
JP2008104688A 2008-04-14 2008-04-14 モータ制御装置および電動パワーステアリング装置 Expired - Fee Related JP5453729B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008104688A JP5453729B2 (ja) 2008-04-14 2008-04-14 モータ制御装置および電動パワーステアリング装置
EP09157862A EP2110941B1 (en) 2008-04-14 2009-04-14 Motor control apparatus and electric power steering system
US12/423,393 US8115429B2 (en) 2008-04-14 2009-04-14 Motor control apparatus and electric power steering system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008104688A JP5453729B2 (ja) 2008-04-14 2008-04-14 モータ制御装置および電動パワーステアリング装置

Publications (2)

Publication Number Publication Date
JP2009261066A JP2009261066A (ja) 2009-11-05
JP5453729B2 true JP5453729B2 (ja) 2014-03-26

Family

ID=40810872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008104688A Expired - Fee Related JP5453729B2 (ja) 2008-04-14 2008-04-14 モータ制御装置および電動パワーステアリング装置

Country Status (3)

Country Link
US (1) US8115429B2 (ja)
EP (1) EP2110941B1 (ja)
JP (1) JP5453729B2 (ja)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8395345B2 (en) * 2009-01-28 2013-03-12 Mitsubishi Electric Corporation Valve control device
JP2011041343A (ja) * 2009-08-06 2011-02-24 Toshiba Corp モータ駆動装置及びモータ駆動方法
JP2011135641A (ja) * 2009-12-22 2011-07-07 Denso Corp モータ制御装置
JP5314643B2 (ja) * 2010-07-16 2013-10-16 國立台北科技大學 三相交流誘導モーター駆動器の制御システム
US8831854B2 (en) * 2010-08-16 2014-09-09 Chrysler Group Llc Active shimmy mitigation
JP5703998B2 (ja) * 2010-09-06 2015-04-22 株式会社ジェイテクト 電動パワーステアリング装置
JP5626702B2 (ja) * 2010-11-10 2014-11-19 日本精工株式会社 電動パワーステアリング装置
US8450962B2 (en) * 2011-02-28 2013-05-28 Deere & Company System for controlling a motor
JP5923365B2 (ja) * 2012-03-30 2016-05-24 本田技研工業株式会社 電動機の出力制御装置
JP5590076B2 (ja) * 2012-07-04 2014-09-17 株式会社デンソー 多相回転機の制御装置
JP6003924B2 (ja) * 2014-02-25 2016-10-05 株式会社安川電機 回転電機制御装置、回転電機の制御方法
JP6355835B2 (ja) * 2015-05-01 2018-07-11 三菱電機株式会社 電動パワーステアリング制御装置および電動パワーステアリング制御方法
JP6396869B2 (ja) * 2015-09-09 2018-09-26 日立オートモティブシステムズ株式会社 モータ制御装置
WO2018051433A1 (ja) * 2016-09-14 2018-03-22 国立大学法人横浜国立大学 電力供給システム
JP6774622B2 (ja) * 2016-09-26 2020-10-28 株式会社ジェイテクト モータ制御装置
EP3651339B1 (en) * 2017-07-04 2022-09-14 Mitsubishi Electric Corporation Inverter device and electric power steering device
JP6990118B2 (ja) * 2018-01-31 2022-01-12 オークマ株式会社 電動機の制御装置
KR102040706B1 (ko) 2018-03-27 2019-11-05 현대모비스 주식회사 전동식 조향장치 및 그 제어방법
CN111416560B (zh) * 2020-04-27 2024-04-05 廖铉泓 一种无电流传感器的永磁同步电机控制方法及系统
JP2023161406A (ja) * 2022-04-25 2023-11-07 日立Astemo株式会社 同期機制御装置、同期機制御方法、および電気車

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3455017B2 (ja) 1996-06-24 2003-10-06 財団法人鉄道総合技術研究所 車両駆動用永久磁石同期電動機の制御装置
JPH10257789A (ja) * 1997-03-14 1998-09-25 Mitsubishi Heavy Ind Ltd モータ制御装置
JP3714843B2 (ja) * 2000-03-21 2005-11-09 光洋精工株式会社 電動パワーステアリング装置および電動ポンプ式パワーステアリング装置
JP4221906B2 (ja) 2001-02-09 2009-02-12 日本精工株式会社 電動パワーステアリング装置の制御装置
JP2002272196A (ja) * 2001-03-13 2002-09-20 Toyo Electric Mfg Co Ltd 同期電動機の制御装置
JP2004229487A (ja) * 2002-11-29 2004-08-12 Toyoda Mach Works Ltd モータ制御装置及びモータ制御方法
JP2004208364A (ja) * 2002-12-24 2004-07-22 Yaskawa Electric Corp 同期電動機の電流センサレス制御方法および制御装置
JP3789895B2 (ja) * 2003-02-28 2006-06-28 三菱電機株式会社 巻線界磁型同期モータの制御装置および巻線界磁型同期モータの回転位置ずれ補正方法
JP4379702B2 (ja) * 2004-02-10 2009-12-09 株式会社デンソー ブラシレスモータ制御装置
JP4371844B2 (ja) 2004-02-16 2009-11-25 株式会社デンソー ブラシレスモータ駆動装置
JP2006014431A (ja) * 2004-06-23 2006-01-12 Yaskawa Electric Corp 電動機の電流センサレス制御装置および制御方法
JP2006014474A (ja) 2004-06-25 2006-01-12 Favess Co Ltd モータ制御装置および電動パワーステアリング装置
JP4581508B2 (ja) * 2004-06-25 2010-11-17 富士電機システムズ株式会社 電圧形インバータの制御装置
KR100645809B1 (ko) 2004-12-20 2006-11-23 엘지전자 주식회사 영구자석형 모터의 약계자 운전을 위한 진각 제어장치 및그 방법
JP5131432B2 (ja) * 2007-02-08 2013-01-30 株式会社ジェイテクト モータ用制御装置
JP4961292B2 (ja) * 2007-07-27 2012-06-27 三洋電機株式会社 モータ制御装置

Also Published As

Publication number Publication date
US8115429B2 (en) 2012-02-14
EP2110941B1 (en) 2012-05-30
EP2110941A1 (en) 2009-10-21
JP2009261066A (ja) 2009-11-05
US20090256503A1 (en) 2009-10-15

Similar Documents

Publication Publication Date Title
JP5453729B2 (ja) モータ制御装置および電動パワーステアリング装置
JP5228578B2 (ja) モータ制御装置および電動パワーステアリング装置
JP5200628B2 (ja) モータ制御装置および電動パワーステアリング装置
JP5168448B2 (ja) モータ制御装置及び電動パワーステアリング装置
JP5130716B2 (ja) モータ制御装置および電気式動力舵取装置
JP5453714B2 (ja) モータ制御装置および電動パワーステアリング装置
WO2009087991A1 (ja) モータ制御装置および電動パワーステアリング装置
WO2009123107A1 (ja) モータ制御装置および電動パワーステアリング装置
JP5092760B2 (ja) モータ制御装置および電動パワーステアリング装置
JP2008168669A (ja) 電動パワーステアリング装置
JP4603340B2 (ja) モータ制御装置、および操舵装置
US20230116678A1 (en) Motor control device and steering system
JP5136839B2 (ja) モータ制御装置
JP5412825B2 (ja) モータ制御装置および電動パワーステアリング装置
JP5315709B2 (ja) モータ制御装置および電動パワーステアリング装置
JP5719177B2 (ja) 電動パワーステアリング装置
JP2010029027A (ja) モータ制御装置
JP5444697B2 (ja) モータ制御装置および電動パワーステアリング装置
JP5412824B2 (ja) モータ制御装置および電動パワーステアリング装置
JP5743133B2 (ja) 電動パワーステアリング装置
JP5434216B2 (ja) モータ制御装置および電動パワーステアリング装置
JP7412106B2 (ja) モータ制御装置及びモータ制御方法
JP2020092559A (ja) ステアリング装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130409

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130917

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131223

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5453729

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees