JP5361143B2 - 固体酸化物型燃料電池およびその製造方法 - Google Patents

固体酸化物型燃料電池およびその製造方法 Download PDF

Info

Publication number
JP5361143B2
JP5361143B2 JP2007142173A JP2007142173A JP5361143B2 JP 5361143 B2 JP5361143 B2 JP 5361143B2 JP 2007142173 A JP2007142173 A JP 2007142173A JP 2007142173 A JP2007142173 A JP 2007142173A JP 5361143 B2 JP5361143 B2 JP 5361143B2
Authority
JP
Japan
Prior art keywords
electrode layer
solid electrolyte
sheet
fuel cell
anode electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007142173A
Other languages
English (en)
Other versions
JP2008300075A (ja
JP2008300075A5 (ja
Inventor
史雅 片桐
潤 吉池
安衛 徳武
茂明 菅沼
道夫 堀内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Electric Industries Co Ltd
Original Assignee
Shinko Electric Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Electric Industries Co Ltd filed Critical Shinko Electric Industries Co Ltd
Priority to JP2007142173A priority Critical patent/JP5361143B2/ja
Priority to US12/127,974 priority patent/US20080299434A1/en
Publication of JP2008300075A publication Critical patent/JP2008300075A/ja
Publication of JP2008300075A5 publication Critical patent/JP2008300075A5/ja
Application granted granted Critical
Publication of JP5361143B2 publication Critical patent/JP5361143B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8636Inert electrodes with catalytic activity, e.g. for fuel cells with a gradient in another property than porosity
    • H01M4/8642Gradient in composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/14Printing or colouring
    • B32B38/145Printing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • H01M4/8621Porous electrodes containing only metallic or ceramic material, e.g. made by sintering or sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • H01M4/8885Sintering or firing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/24Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer not being coherent before laminating, e.g. made up from granular material sprinkled onto a substrate
    • B32B2037/243Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/16Drying; Softening; Cleaning
    • B32B38/164Drying
    • B32B2038/168Removing solvent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/18Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Description

本発明は、固体酸化物型燃料電池およびその製造方法に関する。特に、カソード電極層およびアノード電極層が形成された固体電解質基板を有し、製造が容易で製造コストが低減された固体酸化物型燃料電池およびその製造方法に関する。
近年においては、種々の発電形式の燃料電池が開発されており、この中に、固体電解質を用いた形式の固体酸化物型燃料電池がある。この固体酸化物型燃料電池の一例を挙げると、イットリア(Y23)が添加された安定化ジルコニアからなる焼成体を酸素イオン伝導型の固体電解質層として用いたものがある。この固体電解質層の一面にカソード電極層を、そして、その反対面にアノード電極層を形成し、このカソード電極層側に酸素又は酸素含有気体が供給され、さらに、アノード電極層には、メタン等の燃料ガスが供給されるようになっている。
この固体酸化物型燃料電池内では、カソード電極層に供給された酸素(O2)が、カソード電極層と固体電解質層との境界で、還元反応により酸素イオン(O2-)にイオン化され、この酸素イオンが、固体電解質層によってアノード電極層に伝導され、アノード電極層に供給された、例えば、メタン(CH4)ガスと反応し、そこで、水(H2O)、二酸化炭素(CO2)、水素(H2)、一酸化炭素(CO)が、酸化反応により生成される。この反応において、酸素イオンが、電子を放出するため、カソード電極層とアノード電極層との間に電位差が生じる。そこで、カソード電極層とアノード電極層とにリード線を取り付ければ、アノード電極層の電子が、リード線を介してカソード電極層側に流れ、固体酸化物型燃料電池として発電することになる。なお、この固体酸化物型燃料電池の駆動温度は、約1000℃である。
しかし、この形式の固体酸化物型燃料電池による発電装置では、カソード電極層側に、酸素又は酸素含有ガス供給チャンバーを、そして、アノード電極層側に、燃料ガス供給チャンバーを夫々分離したセパレート型チャンバーを用意しなければならず、固体酸化物型燃料電池を密封構造の容器に収容する必要があった。
そこで、固体酸化物型燃料電池を密封構造の容器に収容する必要がない、開放型の固体酸化物型燃料電池が提案されている(例えば、特許文献1)。特許文献1に記載の固体酸化物型燃料電池では、固体酸化物型燃料電池への燃料供給に、火炎を直接利用する形態が開示されている。そのため、この固体酸化物型燃料電池は、起電時間が短縮でき、構造が簡単なので、固体酸化物型燃料電池発電装置の小型軽量化、低コスト化に有利であるといえる。そして火炎を直接利用する点で、一般の燃焼装置や焼却装置等に組み込むことが可能となり、電力供給装置として利用することが期待されている。
特開2004−139936号公報
ところで、特許文献1に記載したような従来の固体酸化物型燃料電池は、図11(a)〜(d)に示すように、2度以上の焼成工程を経て製造される。
この従来の固体酸化物型燃料電池の製造方法の例を、図11(a)〜(d)を参照して、以下に説明する。
まず、平板上に、固体電解質基板の形成材料からなる固体電解質ペーストを塗布し、固体電解質ペーストを乾燥した後、平板から剥がして、一度目の焼成を行って、図11(a)に示す固体電解質基板1を作製する。
次に、図11(b)および図11(c)に示すように、固体電解質基板1の一方の面に、カソード電極層の形成材料からなるカソード電極材ペーストを印刷すると共に、固体電解質基板1の他方の面に、アノード電極層の形成材料からなるアノード電極材ペーストを印刷して、両ペーストを乾燥した後に二度目の焼成を行うことにより、図11(d)に示す固体酸化物型燃料電池10を得る。
ここで、図11(b)に示すように、固体電解質基板1の一方の面に、カソード電極材ペーストを印刷して、一旦焼成した後に、固体電解質基板1の他方の面に、アノード電極材ペーストを印刷してもよい。この場合には、図11(d)に示す固体酸化物型燃料電池10を得るまでに計3度の焼成を行うことになる。
このように、従来の固体酸化物型燃料電池の製造工程では、少なくとも2度の焼成工程が必要であった。
一方、焼成の回数を減らして一度の焼成で固体酸化物型燃料電池を製造することも試みられていた。
つまり、まず、平板上に、固体電解質基板の形成材料からなる固体電解質ペーストを塗布し、この固体電解質ペーストを乾燥した後、平板からはがして、図12(a)に示すように、固体電解質シート100を作製する。
次に、図12(b)に示すように、固体電解質シート100の一方の面に、カソード電極材ペーストを印刷し、次に、図12(c)に示すように、固体電解質シートの他方の面に、アノード電極材ペーストを印刷する。
次に、図12(d)に示すように、両電極材ペーストを乾燥させて、固体電解質シート100の両面にカソード電極材シート200とアノード電極材シート300とが形成されたシート積層体400を作製する。
然る後、シート積層体400の焼成を一度行って、図12(e)に示す固体酸化物型燃料電池10を得る。
しかし、このように、固体電解質と、カソード電極材と、アノード電極材とを同時に焼成して、一回の焼成により製造された固体酸化物型燃料電池は、図12(e)に示すように、例えば、固体電解質基板1がカソード電極層2側に向かって凸に湾曲するように、固体酸化物型燃料電池10の全体にうねりが生じたり、または、ひび割れが生じたりしてしまう。
そして、固体酸化物型燃料電池が、うねりなどを有しており平らでないと、寸法が定まっている固体酸化物型燃料電池発電装置に、固体酸化物型燃料電池を配設できなくなる。また、固体酸化物型燃料電池が、ひび割れを有していると、その発電特性が低下してしまう。
上述したように、固体酸化物型燃料電池を一度の焼成で製造すると、うねりまたはひび割れが生じる理由は以下の通りである。
従来の固体酸化物型燃料電池10のカソード電極層2またはアノード電極層3は、酸化剤成分または燃料成分を、還元反応または酸化反応させるために、異なる電極形成材料により形成されている。そのため、カソード電極層2またはアノード電極層3は、それぞれの熱膨張係数などの熱特性が異なるので、焼成工程の高温処理により焼成されると、例えば、図13に示すように、アノード電極層3の焼結による収縮率σが、カソード電極層2の焼結による収縮率σよりも大きい場合には、図12(e)に示すように、固体電解質基板1がカソード電極層2側に向かって凸に湾曲するように、固体酸化物型燃料電池10の全体にうねりが生じてしまう。また、場合によっては、固体酸化物型燃料電池10にひび割れが発生する。
このような不具合を回避するために、従来の固体酸化物型燃料電池の製造においては、中央に位置する固体電解質基板1が、アノード電極層またはカソード電極層の内部応力を受け止められるように、事前に固体電解質基板1を焼成して剛性を高めておくことが必要であった。その後に、図11(b)または図11(c)の例に示すように、アノード電極層またはカソード電極層を焼成するので、2回以上の焼成工程が必要となった。
従って、本発明の目的は、上述した従来技術が有する欠点を解消し得る固体酸化物型燃料電池およびその製造方法を提供することにある。特に、製造が容易で製造コストが低減された固体酸化物型燃料電池およびその製造方法を提供することにある。
以上の課題を解決するために、本発明の固体酸化物型燃料電池は、固体電解質基板を有し、該基板の一方の面にはカソード電極層が形成され、他方の面にはアノード電極層が形成されており、上記カソード電極層と上記アノード電極層とが、同じ電極形成材料により形成されていることとした。
また、本発明は、上記電極形成材料が、フェライト、マンガナイトおよびコバルタイトから選択された1つまたは複数の酸化物によりなることが好ましい。
また、本発明は、上記カソード電極層および上記アノード電極層の一方または双方が、上記電極形成材料と、固体電解質とを含有し、上記カソード電極層または上記アノード電極層に含まれる上記固体電解質の濃度が、上記固体電解質基板に近づくに従って増加していることが好ましい。
また、本発明は、上記カソード電極層または上記アノード電極層が、異なる固体電解質濃度を持つ層による多層構造を有していることが好ましい。
また、本発明は、上記カソード電極層および上記アノード電極層が、多孔質に形成され、上記カソード電極層または上記アノード電極層における気孔率が、上記固体電解質基板から離れるに従って増加していることが好ましい。
また、本発明は、上記カソード電極層または上記アノード電極層が、異なる気孔率を持つ層による多層構造を有していることが好ましい。
また、本発明は、上記アノード電極層には、酸化ロジウム、酸化ルテニウムおよび酸化チタンから選択された1つまたは複数の酸化触媒が添加されていることが好ましい。
また、本発明の固体酸化物型燃料電池は、燃料成分と酸化剤成分とか混合された予混合燃料中に置かれることが好ましい。
また、本発明の固体酸化物型燃料電池は、上記アノード電極層が、燃料成分の燃焼による火炎に晒され、上記カソード電極層には、空気が供給されることが好ましい。
また、本発明は、固体電解質基板を有し、該基板の一方の面にはカソード電極層が形成され、他方の面にはアノード電極層が形成される固体酸化物型燃料電池の製造方法において、上記固体電解質基板の形成材料からなる固体電解質シートを作製し、上記固体電解質シートの両面に、電極形成材料からなる電極材ペーストをそれぞれ塗布し、上記電極材ペーストを乾燥させて、上記固体電解質シートの両面にカソード電極材シートとアノード電極材シートとが積層されたシート積層体を作製し、上記シート積層体を焼成して、上記固体酸化物型燃料電池を形成することとした。
さらに、本発明は、固体電解質基板を有し、該基板の一方の面にはカソード電極層が形成され、他方の面にはアノード電極層が形成される固体酸化物型燃料電池の製造方法において、上記固体電解質基板の形成材料からなる固体電解質シートを作製し、上記固体電解質シートの一方の面に、上記カソード電極層の形成材料からなるカソード電極材シートを載置し、上記固体電解質シートの他方の面に、上記カソード電極層の形成材料と同じ電極材形成材料からなるアノード電極材シートを載置して、シート積層体を作製し、上記シート積層体を焼成して、上記固体酸化物型燃料電池を形成することとした。
以上のように、本発明の固体酸化物型燃料電池およびその製造方法によれば、固体酸化物型燃料電池の製造が容易で製造コストが低減される。
以下、本発明の固体酸化物型燃料電池10をその好ましい第1実施形態に基づいて、図面を参照しながら説明する。
本実施形態の固体酸化物型燃料電池10は、図1(a)および図1(b)に示すように、平板状の固体電解質基板1を有し、該基板の一方の面には平板状にカソード電極層2が形成されており、他方の面には平板状にアノード電極層3が形成されており、カソード電極層2とアノード電極層3とが、同じ電極形成材料により形成されている。
固体酸化物型燃料電池10は、全体として、平板状である。固体酸化物型燃料電池10の平面視形状は、用途に応じて任意の形状とすることができるが、本実施形態では、円形状としており、固体電解質基板1、カソード電極層2およびアノード電極層3それぞれが、円形状を有している。カソード電極層2およびアノード電極層3の寸法は、同等であり、固体電解質基板1よりも若干小さく形成されている。
そして、固体酸化物型燃料電池10の寸法は、必要とされる発電特性に応じて適宜設計されることが好ましい。
固体酸化物型燃料電池10の固体電解質基板1は、発電時に、電子伝導性を実質的に有さないが、酸素イオンなどのイオンを透過する。また、カソード電極層2は、発電時に、酸化剤成分などの酸化性雰囲気に晒されており、例えば酸化剤である酸素に電子を与えて、還元反応を起こす触媒作用を有する。さらに、アノード電極層3は、発電時に、燃料成分などの還元性雰囲気に晒されており、例えば燃料成分である水素に対して、酸化反応を起こす触媒作用を有する。
本実施形態の固体酸化物型燃料電池10では、カソード電極層2とアノード電極層3とが、同じ電極形成材料により形成されている。この電極形成材料は、カソード電極層においては、酸化剤成分の還元反応を担っている。また、この電極形成材料は、アノード電極層においては、燃料成分の酸化反応を担っている。
詳しくは後述するが、本実施形態の固体酸化物型燃料電池10は、固体電解質基板1と、カソード電極層2と、アノード電極層3とが同時に焼成されて形成されたものであることが好ましい。本実施形態の固体酸化物型燃料電池10は、焼成を一度行うだけで、うねりまたはひび割れのない平らな形状を作製できるので、その製造が容易である。
また、カソード電極層2およびアノード電極層3の一方または双方が、電極形成材料と、固体電解質とを含有していることが、固体電解質基板1との接合性を向上し、且つ、固体電解質基板1と熱膨張系係数などの熱特性を近づける観点から好ましい。
カソード電極層2またはアノード電極層3に含まれる固体電解質の種類は、固体電解質基板1を形成する固体電解質とは異なっていてもよいが、同じであることが、上述した観点から、特に好ましい。
また、このようにカソード電極層2またはアノード電極層3それぞれに、固体電解質が含まれることにより、還元反応または酸化反応の化学的反応場が増加するので、発電特性を向上する。
カソード電極層2またはアノード電極層3における固体電解質の濃度は、一定であってもよいが、固体電解質の濃度が、固体電解質基板1に近づくに従って増加していることが、以下の理由から好ましい。
カソード電極層2またはアノード電極層3において、固体電解質の濃度を、固体電解質基板1側ほど高くすることにより、固体電解質基板1の界面において、固体電解質同士の焼結によって、接合強度が増加すると共に、固体電解質基板1と両電極層2,3との熱特性が近づく。そのため、カソード電極層2またはアノード電極層3と、固体電解質基板1との密着性および結合性が向上する。この固体電解質の濃度の変化は、連続的であっても、段階的であってもよい。一方、カソード電極層2またはアノード電極層3において、固体電解質の濃度を、固体電解質基板1から離れるに従って低くすることにより、酸化反応または還元反応を向上させることができる。
次に、固体酸化物型燃料電池10の形成材料について、以下に説明する。
固体電解質基板1の形成材料には、例えば、公知のものを採用でき、次に示す材料を使用できる。
a)YSZ(イットリア安定化ジルコニア)、ScSZ(スカンジア安定化ジルコニア)、これらにCe、Alなどをドープしたジルコニア系セラミックス。
b)SDC(サマリアドープドセリア)、SGC(ガドリアドープドセリア)などのセリア系セラミックス。
c)LSGM系(ランタンガレート系セラミックス)、酸化ビスマス系セラミックス。
このように本明細書では、固体酸化物は、固体電解質を含む概念である。
次に、カソード電極層2およびアノード電極層3の形成材料について、以下に説明する。
カソード電極層2およびアノード電極層3を形成する電極形成材料は、フェライト、マンガナイトおよびコバルタイトから選択された1つまたは複数の酸化物によりなることが好ましい。
フェライトとしては、ランタンストロンチウムフェライト(La0.6Sr0.4FeO:LSF)、ランタンストロンチウムコバルトフェライト(La0.6Sr0.4Co0.2Fe0.8:LSCF)を好ましく用いることができる。
マンガナイトとしては、ランタンストロンチウムマンガナイト(La0.8Sr0.2MnO3::LSM)を好ましく用いることができる。
コバルタイトとしては、ランタンストロンチウムコバルタイト(La0.8Sr0.2CoO:LSC)を好ましく用いることができる。
また、本実施形態の固体酸化物型燃料電池10において、カソード電極層2が、多孔質に形成されていることが好ましい。カソード電極層2を多孔質体にすることにより、該カソード電極層2の比表面積および細孔を増加させて、酸点などの化学的反応場を増やし、且つ、酸化剤成分が細孔を通って化学反応場にアクセスしやすくなるので、酸化剤成分の還元反応が促進する。また、カソード電極層2を多孔質体にすることにより、カソード電極層2の耐熱衝撃性が向上して、急激な温度変化によってひび割れなどが生じることを防止する。
カソード電極層2における気孔率は、固体電解質基板1から離れるに従って増加していることが、カソード電極層2の化学的反応場を確保しつつ、カソード電極層2の熱的安定性を維持し且つ固体電解質基板1との結合性を確保する上で好ましい。カソード電極層2における気孔率の変化は、連続的であっても、段階的であってもよい。
同様に、アノード電極層3も、多孔質に形成されており、その気孔率が、固体電解質基板1から離れるに従って増加していることが、上述したのと同じ観点から好ましい。
カソード電極層2またはアノード電極層3における気孔率は、10〜70体積%、特に20〜40体積%であることが好ましい。気孔率が、10体積%よりも大きいことにより、酸化剤成分または燃料成分の化学的反応場へのアクセスが十二分となり、且つ、電子およびイオンの導電性のバランスが向上する。一方、気孔率が、70体積%よりも大きいと、カソード電極層2またはアノード電極層3の剛性が低下して、機械的強度が不十分となる。
また、本実施形態の固体酸化物型燃料電池10は、カソード電極層2またはアノード電極層3に、メッシュ状金属またはワイヤ状金属を埋設、または、固着させてもよい。このような構成とすることにより、熱履歴などによってひび割れした固体酸化物型燃料電池10がバラバラになって崩れないように補強されることになり、さらに、メッシュ状金属やワイヤ状金属は、ひび割れした部分を電気的に接続することができるので、固体酸化物型燃料電池10の耐久性が高められる。
上述した本実施形態の固体酸化物型燃料電池10は、例えば、図2に示すように、アノード電極層3を火炎F側に向けた状態で、火炎F中または火炎Fの近傍に配設して発電を行うことができる。火炎Fは、燃料成分と酸化剤成分とか混合された予混合燃料ガスを燃焼して生成されることが好ましい。
固体酸化物型燃料電池10は、大気圧開放下で、アノード電極層3が、予混合燃料ガスの燃焼による火炎Fに晒され、この火炎F中に存在する炭化水素、水素、ラジカル(OH、CH、C、OH、CH)などを燃料成分として利用しやすくしている。一方、カソード電極層2には、空気が供給される。
固体酸化物型燃料電池10で発電された電力は、カソード電極層2とアノード電極層3とからそれぞれ引き出されたリード線L1、L2によって取り出される。リード線としては耐熱性のある白金製、或いは、白金を含む合金製のものが使用される。
また、本実施形態の固体酸化物型燃料電池10を、シングル型チャンバー内に配設して、燃料成分と酸化剤成分とか混合された予混合燃料中に置かれた状態で発電してもよい。
上述した本実施形態の固体酸化物型燃料電池10によれば、カソード電極層2とアノード電極層3とが、同じ電極形成材料により形成されているので、原材料の種類が少なく、原材料の調達および調整の観点から、その製造が容易で製造コストが低減される。特に、固体電解質基板1と、カソード電極層2と、アノード電極層3とを同時に焼成して形成することにより、製造コストを大幅に低減できる。また、固体酸化物型燃料電池10の製造において、固体電解質基板1を一度焼成した後に、両電極層2,3を形成した場合でも、該両電極層2,3の焼結による熱収縮により、固体電解質基板1が受ける応力が対称的なため、固体酸化物型燃料電池10としての耐久性が向上する。
また、カソード電極層2とアノード電極層3とに、固体電解質が含まれていることにより、固体電解質基板1と、カソード電極層2およびアノード電極層3との接合性を向上し、且つ、熱特性を近づけられる。そのため、固体電解質基板1と、カソード電極層2と、アノード電極層3とを同時に焼成しても、うねりまたはひび割れの発生が、確実に防止される。
さらに、カソード電極層2またはアノード電極層3が多孔質に形成されているため、発電特性および耐久性を高められる。
次に、本発明の他の実施形態の固体酸化物型燃料電池を、図3および図4を参照しながら以下に説明する。他の実施形態について特に説明しない点については、上述の第1実施形態に関して詳述した説明が適宜適用される。また、図3および図4において、図1および図2と同じ構成要素に同じ符号を付してある。
本発明の第2実施形態の固体酸化物型燃料電池10は、図3に示すように、カソード電極層2が、異なる気孔率を持つ層による多層構造を有している。具体的には、カソード電極層2は、固体電解質基板1側に位置する第1のカソード電極層2aと、外側に位置する第2のカソード電極層2bとが積層された2層構造を有している。
第2のカソード電極層2bは、造孔材が添加されて多孔質に形成されている。一方、第1のカソード電極層2aには、造孔材が添加されていない。
従って、本実施形態の固体酸化物型燃料電池10は、カソード電極層2の気孔率が、固体電解質基板1から離れるに従って段階的に増加している。
また、カソード電極層2において、第1のカソード電極層2aにおける固定電解質の濃度が、第2のカソード電極層2bよりも高くなっており、カソード電極層2が、異なる固体電解質濃度を持つ層による多層構造を有している。つまり、カソード電極層2における固定電解質の濃度が、固体電解質基板1に近づくに従って段階的に増加している。
その他の構成は、上述した第1実施形態と同様である。
上述した本実施形態の固体酸化物型燃料電池10によれば、カソード電極層2の外側に位置する第2のカソード電極層2bが、多孔質に形成されているため、酸化剤成分がカソード電極層2の内部にアクセスしやすくなっており、且つ、化学的反応場が増加しているので、発電特性が高められる。
また、カソード電極層2を多層構造にして、その層ごとに気孔率および固体電解質の濃度を調整しているので、気孔率および固体電解質の濃度が調整されたカソード電極層2の作製が容易である。
本発明の第3実施形態の固体酸化物型燃料電池10は、図4に示すように、アノード電極層3が、多層構造を有している。具体的には、アノード電極層3は、固体電解質基板1側に位置する第1のアノード電極層3aと、外側に位置する第2のアノード電極層3bとが積層された2層構造を有している。
そして、第2アノード電極層3bには、電極形成材料以外の触媒が添加されている。具体的には、第2アノード電極層3bには、酸化触媒が添加されている。
発電中に、アノード電極層3には、燃料成分の反応によって、煤が生成される場合がある。そして、アノード電極層3に煤が生成すると、細孔をふさいだり、酸点などの化学反応場を覆って発電性能を低減する。
本実施形態の固体酸化物型燃料電池10では、第2アノード電極層3bに、酸化ロジウム(Rh)、酸化ルテニウム(RuO)および酸化チタン(TiO)から選択された1つまたは複数の酸化触媒が添加されており、上述した煤の生成を防止している。
アノード電極層3に添加する酸化触媒の割合としては、1〜10質量%、特に1〜5質量%であることが好ましい。
アノード電極層3中の酸化触媒の割合が、1質量%より少ないと、煤の生成を十分に抑制できない。一方、アノード電極層3中の酸化触媒の割合が、1質量%よりも多ければ、十分な煤生成の抑制能力が発揮される。
また、アノード電極層3において、第1のアノード電極層3aにおける固定電解質の濃度が、第2のアノード電極層3bよりも高くなっており、アノード電極層3が、異なる固体電解質濃度を持つ層による多層構造を有している。つまり、アノード電極層3における固定電解質の濃度が、固体電解質基板1に近づくに従って段階的に増加している。
また、本実施形態の固体酸化物型燃料電池10のカソード電極層2は、上述した第2実施形態と同様の2層構造を有している。その他の構成については、上記の第1実施形態と同様である。
上述した本実施形態の固体酸化物型燃料電池10によれば、アノード電極層3の外側に位置する第2のアノード電極層3bには、酸化触媒が添加されているので、アノード電極層における煤の生成が抑制されるため、固体酸化物型燃料電池10の耐久性が高められる。
また、アノード電極層3を多層構造にして、その層ごとに酸化触媒および固体電解質の濃度を調整しているので、酸化触媒および固体電解質の濃度が調整されたアノード電極層3の作製が容易である。
次に、上述した本発明の固体酸化物型燃料電池の製造方法の例を、その好ましい第1実施態様に基づいて、図5を参照しながら以下に説明する。
本実施態様では、まず、図5(a)に示すように、固体電解質基板の形成材料からなる固体電解質ペーストを平板Pの面上に所定形状に塗布する。固体電解質ペーストは、例えば、固体電解質の粉末とバインダーと有機溶剤などを混ぜて作製できる。また、固体電解質ペーストの塗布には、例えば、スクリーン印刷法などの印刷法を用いることができる。所定形状とは、例えば、図1に示す固体電解質基板1のような円形の平板形状が挙げられる。
また、固体電解質基板1を多孔質に形成するために、固体電解質ペーストに、造孔材を添加してもよい。
次に、この固体電解質ペーストを乾燥した後、図5(b)に示すように、乾燥した固体電解質を、平板Pから剥がして所定形状の固体電解質シート100を作製する。また、この固体電解質シート100は、グリーンシート法を用いて作製してもよい。
次に、図5(c)に示すように、固体電解質シート100の両面に、同じ電極形成材料からなる電極材ペーストをそれぞれ塗布する。電極材ペーストは、例えば、電極形成材料の粉末とバインダーと有機溶剤などを混ぜて作製できる。この電極材ペーストの塗布にも、上述したスクリーン印刷法などの印刷法を用いることができる。
また、電極材ペーストに、酸化触媒、または、造孔材などを必要に応じて添加してもよい。この造孔材の添加量は、電極材ペーストに対して、50〜70体積%であることが、電極層内において、予混合燃料ガスなどの拡散性および電子・イオン伝導性を向上させる上で好ましい。
次に、電極材ペーストを乾燥させて、図5(d)に示すように、固体電解質シート100の両面にカソード電極材シート200とアノード電極材シート300とが積層されたシート積層体400を作製する。
然る後に、シート積層体400を一回焼成して、図5(e)に示すように、平板状の固体電解質基板1を有し、該基板の一方の面には平板状にカソード電極層2が形成されており、他方の面には平板状にアノード電極層3が形成される固体酸化物型燃料電池10を得る。
ここで、焼成温度、焼成時間、予備焼成等の焼成条件などを調整することによって、固体電解質基板1、カソード電極層2またはアノード電極層3における気孔率を調整することができる。
上述した本実施態様によれば、固体酸化物型燃料電池10のカソード電極層2およびアノード電極層3が、同じ電極形成材料により形成されているので、カソード電極層2およびアノード電極層3は、それぞれの熱特性が同じとなる。そのため、シート積層体400を焼成工程により焼結しても、図6に示すように、アノード電極層3の焼結による収縮率σと、カソード電極層2の焼結による収縮率σとが同じとなり、固体電解質基板1が湾曲などすることなく、全体が、焼成前の平らな形状のまま焼結される。
従って、固体電解質基板1と、カソード電極層2と、アノード電極層3とを同時に一回焼成するだけで、うねりやひび割れなどのない平らな固体酸化物型燃料電池10を製造できるので、その製造が容易であり、製造コストを低減できる。
また、カソード電極層2とアノード電極層3とに同じ電極形成材料を用いることにより、原材料の調達および調整の観点からも、製造コストを低減できる。
次に本発明の第2実施態様の固体酸化物型燃料電池の製造方法を、図7を参照しながら以下に説明する。第2実施形態について特に説明しない点については、上述の第1実施態様に関して詳述した説明が適宜適用される。また、図7において、図5および図6と同じ構成要素に同じ符号を付してある。
本実施態様では、まず、図7(a)に示すように、固体電解質基板1の形成材料からなる固体電解質ペーストを乾燥して形成した固体電解質シート100を作製する。また、カソード電極層2の形成材料からなるカソード電極材ペーストを乾燥して形成したカソード電極材シート200を作製する。また、カソード電極層2の形成材料と同じ電極材形成材料からなるアノード電極材ペーストを乾燥して形成したアノード電極材シート300を作製する。
固体電解質シート100、カソード電極材シート200またはアノード電極材シート300は、例えば、グリーンシート法により容易に作製できる。または、上述した第1実施態様の固体電解質シートと同様に作製してもよい。ここで、固体電解質シート100、カソード電極材シート200またはアノード電極材シート300は、乾燥されているが、焼成前の状態である。
次に、図7(b)に示すように、固体電解質シート100の一方の面に、カソード電極材シート200を載置し、固体電解質シート100の他方の面に、アノード電極材シート300を載置した後、圧着してシート積層体400を一体に作製する。
然る後に、シート積層体400を一回焼成して、図7(c)に示すように、平板状の固体電解質基板1を有し、該基板の一方の面には平板状にカソード電極層2が形成されており、他方の面には平板状にアノード電極層3が形成される固体酸化物型燃料電池10を得る。
上述した本実施態様によれば、上記の第1実施態様と同様の効果が得られる。
本発明の固体酸化物型燃料電池およびその製造方法は、上述した実施形態または実施態様に制限されることなく、本発明の趣旨を逸脱しない限り適宜変更が可能である。
例えば、カソード電極層2には、電極形成材料以外の触媒が添加されていてもよい。この触媒としては、例えば、酸化剤成分の還元反応を促進する触媒が好ましい。
また、本明細書において、カソード電極層2とアノード電極層3とが、同じ電極形成材料により形成されているとは、両電極層2,3において、全く同じ電極形成材料が用いられている場合と、全く同じではないが、一方の電極層に用いられている電極材料を若干変成したものを他方の電極層の形成に用いており、両電極形成材料の熱膨張係数などの熱特性が同等であり、焼成後の固体酸化物型燃料電池が、略平らであって、ひび割れを有さない場合とを含む意味である。
また、上述した第2実施形態または第3実施形態において、カソード電極層2またはアノード電極層3は、2層以上の多層構造を有していてもよい。また、電極層を多層構造にする際には、固体酸化物型燃料電池の発電特性および熱安定性を向上するように、各層における固体電解質濃度、気孔率、触媒濃度、または、厚さを調節することが好ましい。例えば、アノード電極層3における気孔率が、固体電解質基板から離れるに従って増加しており、アノード電極層3が、異なる気孔率を持つ層による多層構造を有していてもよい。
また、上述した第1実施形態では、一つの固体酸化物型燃料電池10が発電に用いられていたが、複数の固体酸化物型燃料電池10を直列接続または並列接続した固体酸化物型燃料電池ユニットとして用いてもよい。また、複数の固体酸化物型燃料電池10を直列接続して形成した固体酸化物型燃料電池ユニットを、並列接続して用いてもよい。さらに、複数の固体酸化物型燃料電池10を並列接続して形成した固体酸化物型燃料電池ユニットを、直列接続して用いてもよい。
また、上述した第1実施態様において、カソード電極材シート200またはアノード電極材シート300の上に、電極材ペーストをさらに塗布し乾燥して、電極材が多層構造を有するシート積層体400を作製してもよい。
同様に、上述した第2実施態様において、カソード電極材シート200またはアノード電極材シート300の上に、別に用意したカソード電極材シートまたはアノード電極材シートを積層して、電極材シートが多層構造を有するシート積層体400を作製してもよい。
上述した一の実施形態また実施態様における要件は、適宜、実施形態間または実施態様間で相互に置換可能である。
以下、本発明を、実施例を用いて更に説明する。ただし、本発明の範囲はかかる実施例に制限されるものではない。
1.両電極層に同じ電極形成材料を用いた固体酸化物型燃料電池の場合
[実施例1]
まず、固体電解質として、サマリアドープドセリア(Sm0.2Ce0.81.9:SDC)を用いた固体電解質シートを作製し焼成して、固体電解質基板を作製した。固体電解質基板の寸法は、直径15mm、厚さ150〜200μmであった。次に、電極形成材料としてのランタンストロンチウムコバルトフェライト(La0.6Sr0.4Co0.2Fe0.8:LSCF)に、固体電解質としてSDCを30質量%添加した電極材ペーストAを作製し、この電極材ペーストAを上記固体電解質基板の両面それぞれに塗布し乾燥してシート積層体を作製した後、このシート積層体を1300℃で焼成して、図1に示す固体酸化物型燃料電池を得て、実施例1とした。
[実施例2]
電極形成材料としてランタンストロンチウムフェライト(La0.6Sr0.4FeO:LSF)を用いた他は、実施例1と同様にして、固体酸化物型燃料電池を得て、実施例2とした。
[実施例3]
電極形成材料としてランタンストロンチウムマンガナイト(La0.8Sr0.2MnO:LSM)を用いた他は、実施例1と同様にして、固体酸化物型燃料電池を得て、実施例3とした。
[実施例4]
電極形成材料としてランタンストロンチウムコバルタイト(La0.8Sr0.2CoO:LSC)を用いた他は、実施例1と同様にして、固体酸化物型燃料電池を得て、実施例4とした。
表1に、実施例1〜4で用いた電極形成材料を示す。
Figure 0005361143
[発電について]
実施例1〜4の固体酸化物型燃料電池を用い、図2に示すように、アノード電極層を火炎に直接晒して発電の評価を行った。予混合燃料ガスは、燃料成分としてn−ブタンを用い、酸化剤成分として空気を用いた。予混合燃料ガス中のn−ブタン濃度は4体積%であった。また、予混合燃料ガスの流量は、600sccmに調節した。なお、sccmとは、1気圧(大気圧、1014hPa)、0℃で測定された1分間あたりの流量をml(10−3リットル)で表したものである。
その結果、実施例1〜4のすべて固体酸化物型燃料電池において、発電することを確認した。すなわち、固体電解質基板の両面それぞれに、同じ電極形成材料からなるカソード電極層とアノード電極層とが形成された固体酸化物型燃料電池が、燃料電池として発電することを確認した。
2.気孔率を制御した固体酸化物型燃料電池の場合
[実施例5]
まず、固体電解質として、サマリアドープドセリア(Sm0.2Ce0.81.9:SDC)を用いた固体電解質シートを作製し焼成して、固体電解質基板を作製した。固体電解質基板の寸法は、直径15mm、厚さ150〜200μmであった。次に、電極形成材料としてのLSCFに、固体電解質としてSDCを30質量%を添加した電極材ペーストAを作製し、この電極材ペーストAを上記固体電解質基板の一方の面に塗布し乾燥した。
次に、電極形成材料としてのLSCFに、固体電解質としてSDCを50質量%添加した電極材ペーストBを作製し、この電極材ペーストBを上記固体電解質基板の他方の面に塗布し乾燥した。
次に、電極形成材料としてのLSCFに、造孔材を65体積%添加した電極材ペーストCを作製し、この電極材ペーストCを、上記固体電解質基板の他方の面上において、乾燥した電極材ペーストBの上に、さらに塗布し乾燥して、シート積層体を作製した後、このシート積層体を1300℃で焼成して、図3に示す固体酸化物型燃料電池を得て、実施例5とした。つまり、カソード電極層が、2層構造を有する固体酸化物型燃料電池を作製した。
[実施例6]
電極形成材料としてLSFを用いた他は、実施例5と同様にして、固体酸化物型燃料電池を得て、実施例6とした。
[実施例7]
電極形成材料としてLSCを用いた他は、実施例5と同様にして、固体酸化物型燃料電池を得て、実施例7とした。
表1に、実施例5〜7で用いた電極形成材料を示す。
[発電出力特性について]
実施例5〜7および実施例1の固体酸化物型燃料電池を用い、図2に示すようにして、発電出力特性を評価した。予混合燃料ガスは、燃料成分としてn−ブタンを用い、酸化剤成分として空気を用いた。予混合燃料ガス中のn−ブタン濃度は4体積%であった。また、予混合燃料ガスの流量は、600sccmに調節した。
その結果を、図8および図9に示す。具体的には、電圧ー電流特性および電力ー電流特性を測定した。
図8に示すように、実施例5〜7は最大電力が、それぞれ、約180mW/cm、約110mW/cm、約70mW/cmを示し、従来の固体酸化物型燃料電池と同等の発電出力特性を示すことが分かった。
また、図9に示すように、実施例5は、実施例1よりも発電出力特性に優れており、カソード電極層の気孔率を制御することにより、発電出力特性が高められることが分かった。
3.酸化触媒を添加した固体酸化物型燃料電池の場合
[実施例8]
まず、固体電解質として、サマリアドープドセリア(Sm0.2Ce0.81.9:SDC)を用いた固体電解質シートを作製し焼成して、固体電解質基板を作製した。固体電解質基板の寸法は、直径15mm、厚さ150〜200μmであった。次に、電極形成材料としてのLSCFに、固体電解質としてSDCを30質量%添加した電極材ペーストAを作製し、この電極材ペーストAを上記固体電解質基板の一方の面に塗布し乾燥した。
次に、電極形成材料としてのLSCFに、酸化触媒として酸化ルテニウム(RuO)を5質量%添加した電極材ペーストDを作製し、この電極材ペーストDを、上記固体電解質基板の一方の面上において、乾燥した電極材ペーストAの上に、さらに塗布し乾燥した。
次に、電極形成材料としてのLSCFに、固体電解質としてSDCを50質量%添加した電極材ペーストBを作製し、この電極材ペーストBを上記固体電解質基板の他方の面に塗布し乾燥した。
次に、電極形成材料としてのLSCFに、造孔材を65体積%添加した電極材ペーストCを作製し、この電極材ペーストCを、上記固体電解質基板の他方の面上において、乾燥した電極材ペーストBの上に、さらに塗布し乾燥して、シート積層体を作製した後、このシート積層体を1300℃で焼成して、図4に示す固体酸化物型燃料電池を得て、実施例8とした。つまり、カソード電極層およびアノード電極層それぞれが、2層構造を有する固体酸化物型燃料電池を作製した。アノード電極層には、酸化触媒が添加されており、カソード電極層には、造孔材が添加されている。
[実施例9]
酸化触媒として、酸化チタン(TiO)を用いた他は、実施例8と同様にして、固体酸化物型燃料電池を得て、実施例9とした。
[実施例10]
電極形成材料としてLSFを用いた他は、実施例8と同様にして、固体酸化物型燃料電池を得て、実施例10とした。
[実施例11]
電極形成材料としてLSMを用い、酸化触媒として酸化ロジウム(Rh)を用いた他は、実施例8と同様にして、固体酸化物型燃料電池を得て、実施例11とした。
[実施例12]
アノード電極層の外側の層に酸化触媒を添加しなかった他は、実施例8と同様にして、固体酸化物型燃料電池を得て、実施例12とした。
[実施例13]
アノード電極層の外側の層に酸化触媒を添加しなかった他は、実施例10と同様にして、固体酸化物型燃料電池を得て、実施例13とした。
[実施例14]
アノード電極層の外側の層に酸化触媒を添加しなかった他は、実施例11と同様にして、固体酸化物型燃料電池を得て、実施例14とした。
表2に、実施例8〜14で用いた電極形成材料と、造孔材または酸化触媒の有無などを示す。
Figure 0005361143
[発電出力特性について]
実施例8〜14の固体酸化物型燃料電池を用いて、上述した発電出力特性の評価を行って、最大電力の値を調べた。
その結果を、図10に示す。
図10に示すように、酸化触媒がアノード電極層に添加された実施例8および9の最大電力の値が、同じ電極形成材料を用いているが、アノード電極層に酸化触媒が添加されていない実施例12よりも優れていることが分かった。実施例8および9の最大電力が向上した理由は、アノード電極層における煤の生成を抑制したことが原因と考えられる。
また、図10に示す実施例10と実施例13との関係、および、実施例11と実施例14との関係も同様である。特に、電極形成材料としてLSMを用いた実施例11は、アノード電極層に酸化触媒を添加したことによる発電特性の向上が著しい。
図1(a)および(b)は、本発明の固体酸化物型燃料電池の第1実施形態を示しており、図1(a)は平面図であり、図1(b)は、図1(a)のX−X線断面図である。 図2は図1の固体酸化物型燃料電池を直接火炎に晒して発電する様子を示す図である。 図3は、本発明の固体酸化物型燃料電池の第2実施形態を示す図である。 図4は、本発明の固体酸化物型燃料電池の第3実施形態を示す図である。 図5(a)〜(e)は、本発明の固体酸化物型燃料電池の製造方法の第1実施態様を示す図である。 図6は、図5の固体酸化物型燃料電池が焼成により収縮する様子を示す図である。 図7(a)〜(c)は、本発明の固体酸化物型燃料電池の製造方法の第2実施態様を示す図である。 図8は、実施例の発電出力特性を示す図である。 図9は、カソード電極層に造孔材を添加した場合と添加していない場合の実施例の発電出力特性を示す図である。 図10は、アノード電極層に酸化触媒を添加した場合と添加していない場合の実施例の発電出力特性を示す図である。 図11(a)〜(d)は、従来技術による固体酸化物型燃料電池の製造方法の例を示す図である。 図12(a)〜(e)は、従来技術による固体酸化物型燃料電池の製造方法の他の例を示す図である。 図13は、図12(e)の固体酸化物型燃料電池が焼成により収縮する様子を示す図である。
符号の説明
1 固体電解質基板
2 カソード電極層
2a 第1のカソード電極層
2b 第2のカソード電極層
3 アノード電極層
3a 第1のアノード電極層
3b 第2のアノード電極層
10 固体酸化物型燃料電池
100 固体電解質シート
200 カソード電極材シート
300 アノード電極材シート
400 シート積層体
P 平板
F 火炎

Claims (6)

  1. 固体電解質基板を有し、該基板の一方の面には多層構造のカソード電極層が形成され、他方の面には多層構造のアノード電極層が形成され、前記アノード電極層が、燃料成分の燃焼による火炎に晒され、前記カソード電極層には、空気が供給される固体酸化物型燃料電池であって、
    前記カソード電極層と前記アノード電極層とが、フェライト、マンガナイトおよびコバルタイトから選択された1つまたは複数の酸化物によりなる同じ電極形成材料により形成され、
    前記カソード電極層および前記アノード電極層が、前記電極形成材料と、固体電解質とを含有し、前記カソード電極層および前記アノード電極層に含まれる各層の前記固体電解質の濃度が、前記固体電解質基板に近づくに従って増加しており、
    前記カソード電極層および前記アノード電極層が、多孔質に形成され、前記カソード電極層および前記アノード電極層の各層における気孔率が、前記固体電解質基板から離れるに従って増加していることを特徴とする固体酸化物型燃料電池。
  2. 前記アノード電極層には、酸化ロジウム、酸化ルテニウムおよび酸化チタンから選択された1つまたは複数の酸化触媒が添加されていることを特徴とする請求項1に記載の固体酸化物型燃料電池。
  3. 固体電解質基板を有し、該基板の一方の面には多層構造のカソード電極層が形成され、他方の面には多層構造のアノード電極層が形成され、前記アノード電極層が、燃料成分の燃焼による火炎に晒され、前記カソード電極層には、空気が供給される固体酸化物型燃料電池の製造方法であって、
    前記固体電解質基板の形成材料からなる固体電解質シートを形成する工程と、
    フェライト、マンガナイトおよびコバルタイトから選択された1つまたは複数の酸化物よりなる電極形成材料を含み、固体電解質と造孔材が添加された電極材ペーストを準備する工程と、
    前記固体電解質シートの両面に同じ電極形成材料からなる前記電極材ペーストをそれぞれ多層に塗布し、前記固体電解質シートの一方の面に多層構造のカソード電極材シートを設けると共に、他方の面に多層構造のアノード電極材シートを設けて、シート積層体を形成する工程と、
    前記シート積層体を焼成して、前記固体酸化物型燃料電池を形成する工程と、を有し、
    前記シート積層体を形成する工程において、
    前記シート積層体の各層における前記固体電解質の添加量が前記固体電解質シートに近づくに従って増加し、且つ、前記シート積層体の各層における前記造孔材の添加量が前記固体電解質シートから離れるに従って増加するように、前記固体電解質及び前記造孔材の添加量が異なる前記電極材ペーストを多層に塗布して、多層構造のカソード電極材シート及び多層構造のアノード電極材シートを設ける、ことを特徴とする固体酸化物型燃料電池の製造方法。
  4. 前記固体電解質シートの内の前記アノード電極材層が形成される他方の面に塗布される前記電極材ペーストには、酸化ロジウム、酸化ルテニウムおよび酸化チタンから選択された1つまたは複数の酸化触媒が添加される請求項3に記載の固体酸化物型燃料電池の製造方法。
  5. 固体電解質基板を有し、該基板の一方の面には多層構造のカソード電極層が形成され、他方の面には多層構造のアノード電極層が形成され、前記アノード電極層が、燃料成分の燃焼による火炎に晒され、前記カソード電極層には、空気が供給される固体酸化物型燃料電池の製造方法であって、
    前記固体電解質基板の形成材料からなる固体電解質シートを形成する工程と、
    フェライト、マンガナイトおよびコバルタイトから選択された1つまたは複数の酸化物よりなる電極形成材料を含み、固体電解質と造孔材が添加された電極材シートを準備する工程と、
    前記固体電解質シートの両面に同じ電極形成材料からなる前記電極材シートをそれぞれ多層に積層し、前記固体電解質シートの一方の面に多層構造のカソード電極材シートを設けると共に、他方の面に多層構造のアノード電極材シートを設けて、シート積層体を形成する工程と、
    前記シート積層体を焼成して、前記固体酸化物型燃料電池を形成する工程と、を有し
    前記シート積層体を形成する工程において、
    前記シート積層体の各層における前記固体電解質の添加量が前記固体電解質シートに近づくに従って増加し、且つ、前記シート積層体の各層における前記造孔材の添加量が前記固体電解質シートから離れるに従って増加するように、前記固体電解質及び前記造孔材の添加量が異なる前記電極材シートを多層に積層して、多層構造のカソード電極材シート及び多層構造のアノード電極材シートを設ける、ことを特徴とする固体酸化物型燃料電池の製造方法。
  6. 前記アノード電極材シートには、酸化ロジウム、酸化ルテニウムおよび酸化チタンから選択された1つまたは複数の酸化触媒が添加される請求項5に記載の固体酸化物型燃料電池の製造方法。
JP2007142173A 2007-05-29 2007-05-29 固体酸化物型燃料電池およびその製造方法 Expired - Fee Related JP5361143B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007142173A JP5361143B2 (ja) 2007-05-29 2007-05-29 固体酸化物型燃料電池およびその製造方法
US12/127,974 US20080299434A1 (en) 2007-05-29 2008-05-28 Solid oxide type fuel cell and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007142173A JP5361143B2 (ja) 2007-05-29 2007-05-29 固体酸化物型燃料電池およびその製造方法

Publications (3)

Publication Number Publication Date
JP2008300075A JP2008300075A (ja) 2008-12-11
JP2008300075A5 JP2008300075A5 (ja) 2010-04-22
JP5361143B2 true JP5361143B2 (ja) 2013-12-04

Family

ID=40088622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007142173A Expired - Fee Related JP5361143B2 (ja) 2007-05-29 2007-05-29 固体酸化物型燃料電池およびその製造方法

Country Status (2)

Country Link
US (1) US20080299434A1 (ja)
JP (1) JP5361143B2 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010182425A (ja) * 2009-02-03 2010-08-19 Hitachi Ltd 固体酸化物形燃料電池
US8778560B2 (en) 2010-02-03 2014-07-15 University Of South Carolina Mixed ionic and electronic conductor based on Sr2Fe2-xM0XO6 perovskite
JP4773589B1 (ja) * 2010-06-15 2011-09-14 日本碍子株式会社 燃料電池セル
CN103155255B (zh) 2010-08-17 2015-09-30 博隆能源股份有限公司 固态氧化物燃料电池的制造方法
CN104170145B (zh) * 2012-03-15 2017-03-08 日产自动车株式会社 燃料电池
JP5826092B2 (ja) * 2012-03-30 2015-12-02 株式会社日本触媒 固体酸化物形燃料電池
KR101679910B1 (ko) * 2013-08-01 2016-11-28 주식회사 엘지화학 무기 산화물 분말 및 이의 소결체를 포함하는 전해질
JP6291962B2 (ja) * 2014-03-28 2018-03-14 東レ株式会社 ガス拡散電極の製造方法および製造装置
US11322768B2 (en) * 2018-12-12 2022-05-03 Phillips 66 Company Cathode for solid oxide fuel cell

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2695641B2 (ja) * 1988-03-04 1998-01-14 三菱重工業株式会社 固体電解質燃料電池の製造方法
JP2894737B2 (ja) * 1989-09-08 1999-05-24 株式会社フジクラ 固体電解質型燃料電池
JPH0414762A (ja) * 1990-05-07 1992-01-20 Mitsubishi Heavy Ind Ltd 固体電解質型燃料電池
JPH07118327B2 (ja) * 1990-07-07 1995-12-18 日本碍子株式会社 固体電解質型燃料電池及びこれに用いる多孔質電極体
US5750279A (en) * 1992-02-28 1998-05-12 Air Products And Chemicals, Inc. Series planar design for solid electrolyte oxygen pump
JP3057342B2 (ja) * 1992-07-09 2000-06-26 工業技術院長 固体電解質燃料電池
US5445903A (en) * 1993-09-09 1995-08-29 Technology Management, Inc. Electrochemical apparatus
GB0217794D0 (en) * 2002-08-01 2002-09-11 Univ St Andrews Fuel cell electrodes
JP4104418B2 (ja) * 2002-10-21 2008-06-18 新光電気工業株式会社 燃料電池
JP4395567B2 (ja) * 2002-11-06 2010-01-13 独立行政法人産業技術総合研究所 電気化学素子及び排気ガス浄化方法
US20040166397A1 (en) * 2002-11-08 2004-08-26 Valdez Thomas I. Cathode structure for direct methanol fuel cell
US20040166386A1 (en) * 2003-02-24 2004-08-26 Herman Gregory S. Fuel cells for exhaust stream treatment
JPWO2005020364A1 (ja) * 2003-08-21 2006-10-19 新光電気工業株式会社 固体電解質燃料電池による発電装置
JP4498728B2 (ja) * 2003-12-03 2010-07-07 日本電信電話株式会社 固体酸化物形燃料電池用燃料電極
JP2006179277A (ja) * 2004-12-22 2006-07-06 Shinko Electric Ind Co Ltd 燃料電池
JP2006253016A (ja) * 2005-03-11 2006-09-21 Shinko Electric Ind Co Ltd 固体酸化物燃料電池装置

Also Published As

Publication number Publication date
JP2008300075A (ja) 2008-12-11
US20080299434A1 (en) 2008-12-04

Similar Documents

Publication Publication Date Title
JP5361143B2 (ja) 固体酸化物型燃料電池およびその製造方法
JP5208518B2 (ja) 可逆式固体酸化物型燃料電池を製造する方法
US8021799B2 (en) High-performance ceramic anodes for use with strategic and other hydrocarbon fuels
US20070117006A1 (en) Direct Fabrication of Copper Cermet for Use in Solid Oxide Fuel Cell
JP2003132906A (ja) 燃料電池用単セル及び固体電解質型燃料電池
TW201900898A (zh) 電化學元件、電化學模組、電化學裝置、能源系統、固態氧化物型燃料電池、及電化學元件之製造方法
JP2006351405A (ja) Sofc燃料極およびその製造方法
JPWO2017013868A1 (ja) 固体酸化物形燃料電池、および電解質層−アノード接合体の製造方法
JP6045881B2 (ja) 電気化学セル及びその製造方法
WO2014208730A1 (ja) セル、セルスタック装置、モジュールおよびモジュール収納装置
JP2006351406A (ja) セリアコートsofc用空気極粉末、その製造方法および空気極の製造方法
JP6208315B2 (ja) 電気化学セル及びその製造方法
JP2014071937A (ja) 直接火炎型燃料電池単セル及びその製造方法
JP2008300269A (ja) 固体酸化物型燃料電池およびその製造方法
WO2018021424A1 (ja) 電気化学セルスタック
JP6018999B2 (ja) 燃料電池用アノードおよび燃料電池単セル
JP6134085B1 (ja) 電気化学セル
WO2021192412A1 (ja) 固体酸化物型燃料電池、固体酸化物型燃料電池スタック、及び固体酸化物型燃料電池の製造方法
JP2015056366A (ja) 燃料電池用アノードおよび燃料電池単セル
JP7330689B2 (ja) 燃料電池および燃料電池スタック
JP6088949B2 (ja) 燃料電池単セルおよびその製造方法
JP4426267B2 (ja) 炭素析出に耐性のあるsofc用燃料極およびその作製法
JP6311952B1 (ja) インターコネクタ、固体酸化物形燃料電池スタック、及び固体酸化物形燃料電池スタックの製造方法
WO2018021429A1 (ja) 電気化学セルスタック
JP6075924B2 (ja) 燃料電池単セルおよびその製造方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100308

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120814

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130903

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5361143

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees