JP5327229B2 - 燃料電池の発電制御装置及び発電制御方法 - Google Patents

燃料電池の発電制御装置及び発電制御方法 Download PDF

Info

Publication number
JP5327229B2
JP5327229B2 JP2010536743A JP2010536743A JP5327229B2 JP 5327229 B2 JP5327229 B2 JP 5327229B2 JP 2010536743 A JP2010536743 A JP 2010536743A JP 2010536743 A JP2010536743 A JP 2010536743A JP 5327229 B2 JP5327229 B2 JP 5327229B2
Authority
JP
Japan
Prior art keywords
fuel cell
current
target generated
power
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010536743A
Other languages
English (en)
Other versions
JPWO2010053027A1 (ja
Inventor
充彦 松本
敬介 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2010536743A priority Critical patent/JP5327229B2/ja
Publication of JPWO2010053027A1 publication Critical patent/JPWO2010053027A1/ja
Application granted granted Critical
Publication of JP5327229B2 publication Critical patent/JP5327229B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04604Power, energy, capacity or load
    • H01M8/04619Power, energy, capacity or load of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04302Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04895Current
    • H01M8/0491Current of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04388Pressure; Ambient pressure; Flow of anode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04395Pressure; Ambient pressure; Flow of cathode reactants at the inlet or inside the fuel cell
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Description

本発明は、燃料ガス及び酸化剤ガスの供給により発電する燃料電池の発電制御装置及び発電制御方法に関する。
従来、燃料電池の発電制御装置として、下記特許文献1に記載されたものが知られている。この特許文献1に記載の発電制御装置では、過渡状態でのガス供給不足などによる燃料電池の応答遅れを考慮して、燃料電池から取り出す電流の変化速度を燃料電池が追従できる速度に制限することにより燃料電池の発電効率低下を抑制するようにしている。
特開平5−151983号公報
ところで、燃料電池の発電効率が低下する要因としては、ガス供給不足によるもののほか、低温環境下で燃料電池から短時間で急激に電流を取り出した場合に、例えばカソード触媒層のポア内に水詰まりが発生して酸素拡散性能が低下するなどの要因が考えられる。しかしながら、特許文献1に記載の燃料電池の発電制御装置では、このような低温環境下での発電効率低下については考慮されていないため、低温環境下で燃料電池から電流を取り出す場合の過渡状態において、大幅な発電効率低下を招いてしまう懸念がある。
本発明は上記問題点に鑑みてなされたものであり、その目的は、燃料電池の運転温度と相関のある運転状態パラメータに基づいて、燃料電池から取り出す目標発電電流の変化速度を制限することにある。
本発明の第1態様にかかる燃料電池の発電制御装置は、燃料電池に接続された電気負荷装置の負荷状態に基づいて、前記燃料電池の目標発電電力を算出する目標発電電力演算部と、前記目標発電電力に基づいて、前記燃料電池から取り出す目標発電電流を算出する目標発電電流演算部と、前記燃料電池の運転温度と相関のある運転状態パラメータに基づいて、前記目標発電電流の変化速度に対する制限値を算出する電流変化速度制限値演算部と、前記目標発電電流の前記変化速度が前記電流変化速度制限値演算部で算出した前記制限値を越えないように前記目標発電電流を制限する電流制限部と、を備えることを特徴とする。
本発明の第2態様にかかる燃料電池の発電制御方法は、燃料電池の運転温度と相関のある運転状態パラメータに基づいて、燃料電池から取り出す目標発電電流の変化速度を制限することを特徴とする。
本発明の第3態様にかかる燃料電池の発電制御装置は、燃料電池に接続された電気負荷装置の負荷状態に基づいて、前記燃料電池の目標発電電力を算出する目標発電電力演算部と、前記目標発電電力に基づいて、前記燃料電池から取り出す目標発電電流を算出する目標発電電流演算部と、所定要求負荷に対して決められる低温起動時の目標発電電流値を、暖機時に前記要求負荷に対して決められる目標発電電流値よりも小さくして発電を行うように制限する電流制限部と、を備えることを特徴とする。
本発明の第4態様にかかる燃料電池の発電制御方法は、燃料電池に接続された電気負荷装置の負荷状態に基づいて、前記燃料電池の目標発電電力を算出することと、前記目標発電電力に基づいて、前記燃料電池から取り出す目標発電電流を算出することと、前記燃料電池の運転温度と相関のある運転状態パラメータに基づいて、前記目標発電電流の変化速度に対する制限値を算出することと、前記目標発電電流の前記変化速度が、前記算出することによる前記制限値を越えないように前記目標発電電流を制限することと、を備えることを特徴とする。
本発明の第5態様にかかる燃料電池の発電制御装置は、燃料電池に接続された電気負荷装置の負荷状態に基づいて、前記燃料電池の目標発電電力を算出する目標発電電力演算手段と、前記目標発電電力に基づいて、前記燃料電池から取り出す目標発電電流を算出する目標発電電流演算手段と、前記燃料電池の運転温度と相関のある運転状態パラメータに基づいて、前記目標発電電流の変化速度に対する制限値を算出する電流変化速度制限値演算手段と、前記目標発電電流の前記変化速度が前記電流変化速度制限値演算手段で算出した前記制限値を越えないように前記目標発電電流を制限する電流制限手段と、を備えることを特徴とする。
本発明によれば、燃料電池内部の温度上昇による水詰まり解消状況を考慮しながら目標発電電流の変化速度に制限を加えることができるので、低温環境下で燃料電池を発電させる場合であっても過渡状態での大幅な発電効率低下を防止することができる。
図1は、本発明の実施形態に係る燃料電池システムの構成を示す図である。 図2は、燃料電池スタックから取り出す目標発電電流の最大値のみを制限した場合の目標発電電力に対する実発電電力の追従結果を示す従来のタイムチャートである。 図3は、コントローラが本発明を適用した発電制御処理を実施した場合の目標発電電力に対する実発電電力の追従結果を示すタイムチャートである。 図4は、コントローラにより実施される発電制御処理の流れを示すフローチャートである。 図5は、走行可能時の発電制御である通常発電制御を実現するためのコントローラの機能構成を示すブロック図である。 図6は、通常発電制御の概要を示すフローチャートである。 図7は、図6のステップS201における目標発電電力演算処理の詳細を示すフローチャートである。 図8は、アクセル操作量と車両速度とに基づいて要求発電電力を算出するためのマップデータを示す図である。 図9は、図6のステップS202における実発電電力演算処理の詳細を示すフローチャートである。 図10は、図6のステップS203におけるガス供給制御の詳細を示すフローチャートである。 図11は、目標発電電力と燃料電池スタックの運転温度とに基づいてガス指令電流を算出するためのマップデータを示す図である。 図12は、ガス指令電流に基づいて目標ガス圧力を算出するためのテーブルデータを示す図である。 図13は、ガス指令電流に基づいて目標空気流量を算出するためのテーブルデータを示す図である。 図14は、目標空気流量と目標ガス圧力とに基づいてコンプレッサ指令回転数を算出するためのマップデータを示す図である。 図15は、図6のステップS204における電流変化速度制限値演算処理の詳細を示すフローチャートである。 図16は、燃料電池スタックの運転温度に基づいて電流変化上昇変化速度の制限値を算出するためのテーブルデータを示す図である。 図17は、図6のステップS205における最大電流制限演算処理の詳細を示すフローチャートである。 図18は、図6のステップS206における目標発電電流演算処理の詳細を示すフローチャートである。 図19は、目標発電電力増加代の演算方法の一例を説明する図である。 図20は、制限後目標発電電流に基づいて定常推定電力を算出するためのテーブルデータを示す図である。 図21は、補正後目標発電電力の演算方法の一例を説明する図である。 図22は、補正後目標発電電力に基づいて目標発電電流を算出するためのテーブルデータを示す図である。 図23は、図6のステップS207における電流制限処理の詳細を示すフローチャートである。 図24は、図6のステップS208における電力変動抑制処理の詳細を示すフローチャートである。 図25は、低域通過フィルタの特性を説明する図である。 図26は、図6のステップS209における目標発電電圧演算処理の詳細を示すフローチャートである。
以下、本発明の具体的な実施形態について、図面を参照しながら詳細に説明する。
図1は、本実施形態に係る燃料電池システム100の構成を示す図である。この燃料電池システム100は、例えば、ハイブリッド型電気自動車に電力供給源として搭載され、ハイブリッド型電気自動車の駆動モータ(燃料電池システム100外部)や補機(燃料電池システム100内部)などの電気負荷装置に電力供給するものであり、複数の燃料電池セルが積層されて構成される燃料電池スタック1を備える。
燃料電池スタック1を構成する各燃料電池セルは、例えば、燃料ガスの供給を受ける燃料極(アノード)と酸化剤ガスの供給を受ける酸化剤極(カソード)とが固体高分子電解質膜を挟んで対向配置されてなる膜電極接合体をセパレータで挟持した構成とされる。この燃料電池スタック1を構成する各燃料電池セルのセパレータには、燃料ガスが流れる燃料ガス流路がアノード側に、酸化剤ガスが流れる酸化剤ガス流路がカソード側にそれぞれ設けられている。そして、燃料電池スタック1は、水素を含有する燃料ガスが各燃料電池セルのアノード側に供給され、酸素を含有する酸化剤ガス(空気)が各燃料電池セルのカソード側に供給されることで、以下式(1)及び式(2)に示す電気化学反応によって発電が行われる。
アノード(燃料極):H→2H+2e ・・・(1)
カソード(酸化剤極):2H+2e+(1/2)O→HO ・・・(2)
本実施形態に係る燃料電池システム100は、発電を行う燃料電池スタック1のほかに、燃料電池スタック1に燃料ガス(以下、燃料ガスとして純水素を用いるものとする。)を供給するための水素供給系と、燃料電池スタック1に酸化剤ガスである空気を供給するための空気供給系と、燃料電池スタック1を冷却するための冷却系と、燃料電池スタック1からの電力の取り出しを制御する電力制御装置2と、当該燃料電池システム100における動作を統括的に制御するコントローラ3(発電制御装置)とを備えている。
水素供給系は、燃料ガスである水素を貯蔵する水素タンク4と、水素タンク4から供給される水素の圧力を調整する水素圧力制御弁5と、水素タンク4から供給された水素と再循環してきた水素とを混合するエゼクタ6と、燃料電池スタック1で消費されなかった水素を再循環させる水素循環流路7と、燃料電池スタック1における反応で使用されない不純物を排出する水素パージ弁8と、水素タンク4内の温度を検出するタンク温度センサ9と、水素タンク4内の圧力を検出するタンク圧力センサ10と、燃料電池スタック1のアノード入口における水素温度を検出する水素入口温度センサ11と、燃料電池スタック1のアノード入口における水素圧力を検出する水素入口圧力センサ12とを備える。
この水素供給系では、水素タンク4に水素が貯蔵されており、この水素タンク4内の温度及び圧力はそれぞれタンク温度センサ9とタンク圧力センサ10によって測定される。水素タンク4から取り出された高圧の水素は、水素圧力制御弁5によって圧力が制御されてエゼクタ6に供給され、エゼクタ6において水素循環流路7を通過してきた水素と混合される。そして、エゼクタ6で混合された水素が燃料電池スタック1のアノードに供給される。ここで、燃料電池スタック1のアノード入口における水素の温度と圧力はそれぞれ水素入口温度センサ11と水素入口圧力センサ12とによって検出され、コントローラ3に送信される。そして、水素入口圧力センサ12で測定された圧力に基づいて水素圧力制御弁5の制御がコントローラ3において行われる。また、燃料電池スタック1から排出された水素は、通常、水素パージ弁8を閉じておくことにより水素循環流路7へ流れるようになっている。ただし、燃料電池スタック1内に水溢れ(フラッディング)等が発生した場合や、燃料電池スタック1の運転圧を低下させる場合などには水素パージ弁8が開放され、水素循環流路7及び燃料電池スタック1内に存在する水素が排出される。ここで、燃料電池スタック1の運転圧力は可変である。すなわち、燃料電池スタック1から取り出される出力や温度によってガス圧力を適切に設定している。
空気供給系は、酸化剤ガスである空気を加圧して送出するコンプレッサ13と、コンプレッサ13から送出される空気の流量を検出する空気流量センサ14と、コンプレッサ13から送出された空気を燃料電池スタック1のカソードへ供給する空気供給流路15と、燃料電池スタック1のカソード入口における空気圧力を検出する空気入口圧力センサ16と、燃料電池スタック1のカソードから空気を排出する排空気流路17と、燃料電池スタック1における空気の圧力を制御する空気圧力制御弁18とを備える。
この空気供給系では、コンプレッサ13が外気から空気を吸入し、吸入した空気を加圧して送出する。コンプレッサ13から送出された空気は空気流量センサ14で計量された後に空気供給流路15へ送られ、燃料電池スタック1のカソードへ供給される。このとき、燃料電池スタック1のカソード入口における空気の圧力を空気入口圧力センサ16によって検出し、検出された圧力に基づいて空気圧力制御弁18の開度をコントローラ3が制御する。
冷却系は、燃料電池スタック1を冷却するための冷却液を循環させる冷却液循環ポンプ19と、燃料電池スタック1から排出された冷却液の温度を検出する冷却液温度センサ20と、循環する冷却液を放熱させて冷却する熱交換器21とを備える。
この冷却系では、燃料電池スタック1を冷却するための冷却液が冷却液循環ポンプ19によって循環されており、燃料電池スタック1の熱を吸収して暖められた冷却液は冷却液温度センサ20によって温度が計測された後に熱交換器21へ送られ、熱交換器21で放熱して冷却される。
電力制御装置2は昇降圧型のDC/DCコンバータである。燃料電池スタック1と、駆動モータなどのシステム外部の電気負荷装置と、の間に配置されて、電力制御装置2は燃料電池スタック1からの電力の取り出しを制御する。このDC/DCコンバータでは、昇圧変換と降圧変換のときにはそれぞれ動作させるスイッチング素子が異なっており、スイッチング素子へ加える制御信号のデューティ比に応じて所望の電圧を出力させることができる。したがって、昇圧時には入力電圧以上の電圧を出力するようにスイッチング素子が制御され、降圧時には入力電圧以下の電圧を出力するようにスイッチング素子が制御される。
また、燃料電池システム100には、燃料電池スタック1の発電電流を検出する電流センサ22と、燃料電池スタック1の発電電圧を検出する電圧センサ23とが設けられており、これら電流センサ22及び電圧センサ23の検出値がコントローラ3に出力される。
コントローラ3は、例えば中央演算ユニット(CPU)、ランダムアクセスメモリ(RAM)、リードオンリーメモリ(ROM)、及び入出力インターフェース(I/Oインターフェース)を有するマイクロコンピュータによって構成され、所定の制御プログラムを実行することによって、燃料電池システム100の動作を統括的に制御する。具体的には、コントローラ3は、上述した燃料電池システム100内部のすべてのセンサからの出力を受信し、コンプレッサ13や水素パージ弁8などの各種補機を駆動するアクチュエータに対して駆動信号を出力することで、燃料電池システム100の動作を制御する。また、このコントローラ3は、詳細を後述する発電制御処理を実施することによって、DC/DCコンバータよりなる電力制御装置2の動作を制御して、発電効率の大幅な低下を招くことなく、燃料電池スタック1の実発電電力が目標発電電力に精度良く追従できるようにしている。つまり、このコントローラ3(発電制御装置)に対して本発明が適用されている。なお、このコントローラ3は、複数のマイクロコンピュータによって構成することも可能であり、後述する発電制御処理の制御の他にも複数の制御を実行する装置として構成するようにしてもよい。
ここで、以上のように構成される本実施形態の燃料電池システム100において、後述する発電制御処理をコントローラ3が実施した場合の燃料電池スタック1の目標発電電力に対する実発電電力の追従結果について説明する{図3(a)、図3(b)}。その際、燃料電池スタック1から取り出す目標発電電流の最大値のみを制限した場合{図2(a)、図2(b)}と対比しながら説明する。
燃料電池スタック1から取り出す目標発電電流の最大値のみを制限する場合には、低温環境下において燃料電池スタック1から発電電流を取り出す際に、図2(b)に示すように、過渡状態において燃料電池スタック1の発電電圧は急激に低下してしまう場合がある。そして、この過渡状態における発電電圧の急激な低下により、燃料電池スタック1から取り出される実発電電力が、図2(a)に示すように、目標発電電力に対して大きく乖離してしまう。
これに対して、後述する発電制御処理をコントローラ3が実施した場合には、低温環境下(零下も含む)において燃料電池スタック1から発電電流を取り出す際に、図3(b)に示すように、過渡状態における燃料電池スタック1の発電電圧低下を抑制することができる。これは、例えば、カソード触媒層のポア内に水詰まりが発生している状況下で酸素拡散性能が低下している影響と、燃料電池スタック1から取り出される発電電流によって、燃料電池内部の温度上昇による水詰まり解消状況を考慮しながら、燃料電池スタック1から取り出す目標発電電流の変化速度(上昇変化速度)を制限しているためである。また、目標発電電流の変化速度を制限値の近傍を維持した上で、目標発電電力に対して、実発電電力を追従させることができることから、燃料電池スタック1の運転温度に応じた最短の電力応答性を実現することができる。
次に、本発明を適用したコントローラ3による発電制御処理について、図4のフローチャートを参照して説明する。この図4のフローチャートで示す一連の処理は、所定時間周期(例えば10ms周期)でコントローラ3により実行される。
図4のフローが開始されると、コントローラ3は、まずステップS101において、燃料電池スタック1の運転温度を検出する。ここでは、燃料電池スタック1の運転温度として、燃料電池スタック1の運転温度と相関のある運転状態パラメータ、例えば、燃料電池スタック1の温度を吸熱した冷却液の温度を用いる。つまり、コントローラ3は、冷却液温度センサ20の温度検出値を入力し、この冷却液温度センサ20の温度検出値を燃料電池スタック1の運転温度として用いる。
次に、ステップS102では、燃料電池スタック1が、走行可能な発電状態にあるか否かを判断する。ここでは、ステップS101で検出した燃料電池スタック1の運転温度がT1以上であり、且つ、暖機完了フラグが「1」の場合に、走行可能な発電状態に燃料電池スタック1があると判断してステップS103に移行する。一方、上記の条件が成立しない場合には走行可能な発電状態に燃料電池スタック1がないと判断してステップS104に移行する。なお、暖機完了フラグとは、後述するステップS105の処理を実施する必要がないことを表すフラグである。また、温度閾値T1は、例えば、ステップS101で用いた冷却液温度センサ20と燃料電池スタック1との位置誤差を考慮して、燃料電池スタック1が凍結している可能性がある温度に設定される。
ステップS103では、走行可能時の発電制御である通常発電制御を実施する。この通常発電制御の具体的な制御内容については、詳細を後述する。
一方、ステップS104では、暖機完了フラグを「0」に設定するとともに、暖機運転を実施することを判断するために暖機運転実施フラグを「1」に設定する。
次に、ステップS105では、燃料電池スタック1を走行可能な発電状態にするための暖機運転を実施する。ここでの暖機運転は、例えば、燃料電池スタック1を発電させることによって発生する自己発熱により、燃料電池スタック1の温度を上昇させる運転である。
次に、ステップS106では、暖機運転を終了するかどうかの判断を行う。ここでは、例えば、ステップS101で検出した燃料電池スタック1の運転温度がT2以上であれば、燃料電池スタック1が走行可能な発電状態になったと判断し、暖機運転を終了させる。そして、次のステップS107において暖機完了フラグに「1」を設定し、発電制御の処理を終了する。一方、ステップS101で検出した燃料電池スタック1の運転温度がT2未満の場合は、暖機運転を継続させて、発電制御の処理を終了する。ここで、温度閾値T2は、例えば、ステップS101で用いた冷却液温度センサ20と燃料電池スタック1との位置誤差、及び、暖機運転中に発生した膜中生成水詰まりによる発電状態の変化を考慮して、燃料電池スタック1が走行可能な発電状態であると判断できる温度、もしくは、その後の燃料電池スタック1が再度暖機運転を必要とする状態に陥らない温度に設定される。
次に、図4のフローチャートにおけるステップS103の通常発電制御について、更に詳しく説明する。
図5は、通常発電制御を実現するためのコントローラ3の機能構成を示すブロック図である。この通常発電制御は、燃料電池スタック1に接続された電気負荷装置の負荷状態に基づいて行われる制御であるが、以下では、例えばハイブリッド型電気自動車に燃料電池システムを搭載した場合を念頭において、通常発電制御の一例について説明する。
コントローラ3は、通常発電制御を実現するための機能構成として、図5に示すように、目標発電電力演算部31と、実発電電力演算部32と、ガス供給制御部33と、目標発電電流演算部34と、電流変化速度制限値演算部35と、最大電流制限演算部36(電流上限値演算部)と、電流制限部37と、電力変動抑制部38と、目標発電電圧演算部39と、発電電圧制御部40とを備える。
目標発電電力演算部31は、ドライバの要求により駆動される駆動モータの負荷パラメータ等に基づいて、燃料電池スタック1の目標発電電力を演算する。
実発電電力演算部32は、電力制御装置2により燃料電池スタック1から取り出される実発電電力を、電流センサ22の電流検出値と、電圧センサ23の電圧検出値とに基づいて演算する。
ガス供給制御部33は、目標発電電力演算部31により算出された目標発電電力に基づき、燃料電池スタック1に対する水素及び空気の供給制御を行う。
目標発電電流演算部34は、目標発電電力に対して実発電電力が精度良く追従できるように、目標発電電力演算部31で算出された目標発電電力と、実発電電力演算部32で算出された実発電電力と、電流制限部37の出力とに基づいて、電力制御装置2により燃料電池スタック1から取り出す電流の目標値である目標発電電流を算出する。
電流変化速度制限値演算部35は、目標発電電流の変化速度に対する制限値として、目標発電電流の上昇変化速度の制限値及び目標発電電流の下降変化速度の制限値を算出する。
最大電流制限演算部36は、目標発電電流の上限値(最大電流制限)を算出する。
電流制限部37は、電流変化速度制限値演算部35で算出された電流変化速度の制限値と、最大電流制限演算部36で算出された最大電流制限とに基づいて、目標発電電流演算部34で算出された目標発電電流に制限を加え、制限を加えた後の目標発電電流を出力する。
電力変動抑制部38は、電流制限部37の出力である制限後目標発電電流に対して、燃料電池スタック1の膜中生成水詰まりなどの影響によりIV特性(電流−電圧特性)が瞬時に変動することによって、実発電電力の振動が助長されないように、低域通過フィルタ処理を行う。
目標発電電圧演算部39は、電力変動抑制部38により低域通過フィルタ処理が行われた後の目標発電電流を、電力制御装置2で制御する目標発電電圧に変換する。
発電電圧制御部40は、目標発電電圧演算部39で算出された目標発電電圧に基づいて、電力制御装置2の動作を制御する。
以上のように構成されるコントローラ3は、例えば図6のフローチャートで示す手順に従って、通常発電制御を実施する。
すなわち、まずステップS201において、目標発電電力演算部31により燃料電池スタック1の目標発電電力を算出する。
次に、ステップS202において、実発電電力演算部32により燃料電池スタック1の実発電電力を算出する。
次に、ステップS203において、ガス供給制御部33により、ステップS201で算出された目標発電電力に基づいて燃料電池スタック1に対する水素及び空気の供給制御を実施する。
次に、ステップS204において、電流変化速度制限値演算部35により、目標発電電流の上昇変化速度の制限値、及び、目標発電電流の下降変化速度の制限値を算出する。
次に、ステップS205において、最大電流制限演算部36により、ステップS202で算出された実発電電力に基づいて目標発電電流の上限値(最大電流制限)を算出する。
次に、ステップS206において、目標発電電流演算部34により、燃料電池スタック1の目標発電電流を算出する。
次に、ステップS207において、電流制限部37により、ステップS204で算出された目標発電電流の上昇変化速度の制限値及び下降変化速度の制限値と、ステップS205で算出された目標発電電流の上限値(最大電流制限)とに基づいて、ステップS206で算出された目標発電電流に対して制限を加える。
次に、ステップS208において、電力変動抑制部38により、ステップS207で制限が加えられた後の目標発電電流に対して、低域通過フィルタ処理を実施する。
次に、ステップS209において、目標発電電圧演算部39により、ステップS208で低域通過フィルタ処理が行われた目標発電電流を目標発電電圧に変換する。
次に、ステップS210において、発電電圧制御部40により、ステップS209で求めた目標発電電圧が実現されるように電力制御装置2の動作を制御することで、通常発電制御の処理を終了する。
図7は、図6のステップS201の目標発電電力演算部31による処理の詳細を示すフローチャートである。
目標発電電力演算部31は、まずステップS301において、車両に設置されているアクセルセンサの出力に基づいてドライバのアクセル操作量を検出し、ステップS302において、車両に設置された車速センサの出力に基づいて車両の速度を検出する。
次に、ステップS303において、ステップS301で検出したアクセル操作量とステップS302で検出した車両速度とに基づき、図8に示すマップデータを用いて駆動モータに供給する電力目標値(目標駆動モータ電力)を算出する。
次に、ステップS304において、実際に燃料電池システム100内の補機で消費されている電力(実補機消費電力)を算出する。この実補機消費電力とは、燃料電池スタック1の発電を行うための各補機の電圧と電流を検出し、これらを乗じて演算した補機消費電力や、冷却液ポンプ19、及び、コンプレッサ13などであれば回転数とトルクとを検出し、これら乗じた演算値を求め、これらの値に損失電力を加えて演算したものである。この損失電力は損失マップデータへ回転数とトルクを入力して推定したものである。
次に、ステップS305において、ステップS303で算出した目標駆動モータ電力とステップS304で算出した実補機消費電力とを加算して、燃料電池スタック1で発電する電力の目標値である目標発電電力を算出する。以上で、目標発電電力演算部31による処理が終了する。
図9は、図6のステップS202の実発電電力演算部32による処理の詳細を示すフローチャートである。
実発電電力演算部32は、まずステップS401において、電流センサ22の出力に基づいて燃料電池スタック1の発電電流を検出し、ステップS402において、電圧センサ23の出力に基づいて燃料電池スタック1の発電電圧を検出する。
次に、ステップS403において、ステップS401で検出した燃料電池スタック1の発電電流に、ステップS402で検出した燃料電池スタック1の発電電圧を乗算して、燃料電池スタック1の実発電電力を算出する。以上で、実発電電力演算部32による処理が終了する。
図10は、図6のステップS203のガス供給制御部33による処理の詳細を示すフローチャートである。
ガス供給制御部33は、まずステップS501において、暖機運転実施フラグが「1」となっているか否かにより暖機運転中かどうかを判断する。そして、暖機運転実施フラグが「1」、つまり暖機運転中であれば、ステップS502において、例えば図11に示すようなマップデータを用いて、ガス圧力、ガス流量を決定する際のガス指令電流を算出する。ここで用いるマップデータは、例えばIV特性の温度感度、及び、暖機運転中に燃料電池スタック1により発生した膜中生成水詰まりなどの影響による定常状態でのIV特性低下を実験データなどで把握し、電力制御装置2により取り出される発電電流に対してガス指令電流が下回らないように設計する。
一方、暖機運転実施フラグが「0」、つまり暖機運転を実施していない場合は、ステップS503において、ステップS502同様、マップデータを用いてガス指令電流を演算する。ここで用いるマップデータは、暖機運転中に燃料電池スタック1により発生した膜中生成水詰まりなどの影響による定常状態でのIV特性低下代を含めずに、実験などの計測値に基づいて設計する。
次に、ステップS504において、目標ガス圧力の算出を行なう。この目標ガス圧力は、ステップS502又はステップS503で算出したガス指令電流に基づいて、図12に示すテーブルデータを用いて算出する。このテーブルデータは、例えば、燃料電池スタック1の発電効率などを考慮して設定されている。
次に、ステップS505において、水素の圧力制御を行う。この水素の圧力制御は、ステップS504で算出した目標ガス圧力に基づいて水素圧力制御弁5を操作することにより、アノードの水素圧力を制御するものである。このとき、水素圧力制御弁5の操作は、水素入口圧力センサ12で検出された燃料電池スタック1の水素圧力と目標ガス圧力との偏差に基づくフィードバック制御により水素圧力制御弁5の指令開度を決定して、実行している。なお、このフィードバック制御は、PI制御やモデル規範型制御など一般的によく知られているその他の方法によって構成することもできる。また、ここで算出される水素圧力制御弁5の指令開度は、コントローラ3から水素圧力制御弁5の駆動回路に対して指示されて、水素圧力制御弁5が指令開度に従って駆動される。
次に、ステップS506において、空気の流量制御を行う。この空気の流量制御は、例えば以下のように行う。まず、ステップS502又はステップS503で算出したガス指令電流に基づいて、図13に示すテーブルデータを用いて目標空気流量を算出する。このテーブルデータは、燃料電池スタック1の内部で局所的な空気供給不足が起きないような空気利用率となるように設定されている。次に、目標空気流量を算出したら、この目標空気流量と目標ガス圧力とに基づいて、図14に示すマップデータを用いてコンプレッサ指令回転数を算出する。なお、このマップデータは、コンプレッサ13の回転数と圧力比に対する空気流量の特性に基づいて設定されている。また、ここで算出したコンプレッサ指令回転数は、コントローラ3からコンプレッサ駆動回路に対して指示されて、コンプレッサ13が指令回転数に従って駆動される。
次に、ステップS507において、空気の圧力制御を行う。この空気の圧力制御は、ステップS504で算出した目標ガス圧力に基づいて空気圧力制御弁18を操作することにより、空気圧力を制御するものである。空気圧力制御弁18の操作は、空気入口圧力センサ16で検出した燃料電池スタック1の空気圧力と、目標ガス圧力との、偏差に基づくフィードバック制御によって空気圧力制御弁18の指令開度を決定して、実行している。なお、このフィードバック制御は、PI制御やモデル規範型制御など一般的によく知られている方法により構成することができる。また、ここで算出された空気圧力制御弁18の指令開度は、コントローラ3から空気圧力制御弁18の駆動回路に対して指示されて、空気圧力制御弁18が指令開度に従って駆動される。以上で、ガス供給制御部33による処理が終了する。
図15は、図6のステップS204の電流変化速度制限値演算部35による処理の詳細を示すフローチャートである。
電流変化速度制限値演算部35は、まずステップS601において、暖機運転実施フラグが「1」となっているか否かにより暖機運転中かどうかを判断する。そして、暖機運転実施フラグが「1」、つまり暖機運転中であれば、ステップS602において、暖機運転実施後の燃料電池スタック1から取り出す目標発電電流の上昇変化速度の制限値を算出する。ここでは、図4のステップS101で検出した燃料電池スタック1の運転温度に基づいて、図16のテーブルデータを用いて目標発電電流の上昇変化速度の制限値を算出する。つまり、燃料電池スタック1の運転温度が上昇するに従い、目標発電電流の上昇変化速度の制限値としては高い値が算出される、即ち、上昇速度の制限値が緩和される。このテーブルデータは、暖機運転後の過渡状態での大幅な発電効率低下を防止する観点で設計する。具体的には、例えば、暖機運転中に発生したカソード触媒層の水詰まり量と、電力制御装置2により燃料電池スタック1から取り出す発電電流の変化速度に対する燃料電池スタック1内部の温度上昇時の水詰まり解消状況を、机上設計に基づいて設定する。また、燃料電池スタック1の運転温度以外にも、暖機運転中に電力制御装置2により取り出した目標発電電流、あるいは、実発電電流の積算値などを加えたマップデータを用いるようにしてもよい。
一方、暖機運転実施フラグが「0」、つまり暖機運転を実施していない場合は、ステップS603において、暖機運転不実施用の目標発電電流の上昇変化速度の制限値として固定値を設定する。この固定値は、駆動モータ電力などに要求される過渡応答性などを踏まえて、実発電電力が目標発電電力から大きく乖離しないように設定する。
次に、ステップS604において、目標発電電流の下降変化速度の制限値を算出する。ここでは、図6のステップS201で求めた目標発電電力が、演算に用いた負荷パラメータの計測振動などによって変動した場合においても、実発電電力が目標発電電力と定常偏差を生じないように、即ち、目標発電電力と実発電電力とが所定値以上乖離しないように、目標発電電流の下降変化速度についても制限値を設定する。この下降変化速度の制限値は、例えば、ステップS602又はステップS603で算出した上昇変化速度の制限値に−1を乗じた値とすることで設定する。その他にも、燃料電池スタック1のIV特性と、目標発電電流の上昇変化速度制限の関係を、実験データに基づき調べた上で、目標発電電力と実発電電力に所定値以上の定常偏差が生じないように設定するようにしてもよい。以上で、電流変化速度制限値演算部35による処理が終了する。
図17は、図6のステップS205の最大電流制限演算部36による処理の詳細を示すフローチャートである。この最大電流制限演算部36による処理は、詳細を後述するように、燃料電池スタック1の発電電圧が所定の下限値を下回らないように目標発電電力を制限することに対応させて、目標発電電流の最大値を制限するためのものである。
最大電流制限演算部36は、まずステップS701において、所定時間前までの実発電電力(図6のステップS202で算出した実発電電力)を全て記憶する。ここで、所定時間としては、例えば、実発電電力の演算に用いる電流センサ22、電圧センサ23の定常状態における計測振動、及び、外乱振動などを考慮し、最も遅い周期の振動要素が1周期以上含まれる時間を設定する。
次に、ステップS702において、目標発電電流の上限値(最大電流制限)を演算するために用いる実発電電力(最大電流演算用電力)を、ステップS701で記憶した所定時間前までの実発電電力の中から選択する。ここでは、発電電圧制御部40にて目標発電電圧の下限値が制限されていないシーンにおいて、目標発電電流の最大電流を必要以上に制限してしまうことを抑制する観点で、記憶した実発電電力のうちの最大値を最大電流演算用電力として選択する。
次に、ステップS703において、発電電圧の下限値として固定値を設定する。ここでの固定値は、燃料電池スタック1のセル電圧転極防止による劣化防止、及び、燃料電池スタック1と接続されている駆動モータなどの電気負荷装置の電源電圧低下による動作不良防止の観点で下限電圧を設定する。また、燃料電池スタック1の運転温度、あるいは、暖機運転の実施状態などに応じて、発電電圧の下限値を可変に設定してもよい。可変に設定することで、燃料電池スタック1のIV特性が高い場合において、より発電電圧の下限値を低く設定できるため、発電電力の最大値を上昇させることができる。
次に、ステップS704において、ステップS702で選択した最大電流演算用電力を、S703で求めた発電電圧の下限値で除算することにより、燃料電池スタック1から取り出す目標発電電流の上限値(最大電流制限)を算出する。なお、このステップS704での目標発電電流の上限値(最大電流制限)の演算は、図6のステップS209で算出する目標発電電圧と、電圧センサ23を用いて検出した実発電電圧との関係に応じて、有効、無効を切り替えるようにしてもよい。この場合には、目標発電電圧と実発電電圧との関係から、目標発電電流の最大値を制限する必要が無いシーンでは演算を無効にすることで、コントローラ3と電力制御装置2との通信遅れにて生じる演算遅れなどによって、必要以上に目標発電電流が制限されることを防止することができる。以上で、最大電流制限演算部36による処理が終了する。
図18は、図6のステップS206の目標発電電流演算部34による処理の詳細を示すフローチャートである。
目標発電電流演算部34は、まずステップS801において、図6のステップS201で算出された目標発電電力に対して、ステップS202で算出された実発電電力を一致させるために、目標発電電力に対して、実発電電力を所定時間先にどの程度増加させるかを決める目標発電電力増加代を目標発電電力増加代34Aによって算出する。ここでは、燃料電池スタック1に接続された電気負荷装置である駆動モータの動特性を時定数Aの1次遅れ特性と見做した場合の目標発電電力増加代の演算方法について、図19を用いて説明する。
駆動モータの動特性を1次遅れ特性と見做せるため、所定時間先[k+H]での目標発電電力増加代は、目標発電電力と実発電電力との偏差に基づいて、下記式(3)により算出できる。
目標発電電力増加代[k+H]=(目標発電電力[k]−実発電電力[k])×(1−exp(−制御周期/時定数A)) ・・・(3)
ただし、kは現在の演算タイミング、Hは制御周期のステップ数
ここでの所定時間先のパラメータを決めるHは、1を下限として、下限値の整数倍で設定する。なお、駆動モータの動特性を1次では見做せない場合は、1次より高い次数の関数を用いて目標発電電力増加代を算出してもよい。また、本実施形態においては、10ms周期でフローチャートを実行するので、制御周期は秒換算して0.01となる。
次に、ステップS802において、電流制限部37の出力である制限後目標発電電流を入力とし、定常状態のIV特性に基づいて、制限後目標発電電力を電力に変換した定常推定電力を算出する。ここでは、図20のテーブルデータに基づいて定常推定電力を算出する。このテーブルデータは、燃料電池スタック1の定常状態のIV特性の中で、製造バラツキなども考慮した上限のIV特性を、机上設計及び実験により計測して設定したものである。このように、上限特性を設定することによって、目標発電電力に対して実発電電力がオーバーシュートしづらい応答となり、ドライバのアクセル要求に対して違和感なく駆動モータを作動させることが可能となる。また、テーブルデータではなく、計算式、あるいは、燃料電池スタック1のIV特性の運転温度感度を更に加えたマップデータなどを用いるようにしてもよい。
次に、ステップS803において、ステップS802で算出した定常推定電力を入力として、過渡状態での発電電力の推定値である動的推定電力を、発電電力の過渡応答を推定した過渡応答モデルを用いて算出する。ここで、過渡応答モデルとは、コントローラ3の電流制限部37の出力である制限後目標発電電流を入力とし、実発電電力演算部32の出力である実発電電力を出力とした動特性を表現したものである。ここでは、この動特性を時定数Bの1次遅れ特性と見做した場合の動的推定電力を、下記式(4)を用いて算出する。
動的推定電力[k]=(1−exp(−制御周期/時定数B))×定常発電電力[k−1]+(exp(−制御周期/時定数B))×動的推定電力[k−1] ・・・(4)
なお、過渡応答モデルを1次では見做せない場合は、1次より高次の関数を用いて動的推定電力を算出してもよい。
次に、ステップS804において、ステップS801で算出した目標発電電力増加代と、ステップS803で算出した動的推定電力とを用いて、目標発電電力に対して実発電電力を一致させるために補正した補正後目標発電電力を算出する。ここでの詳細な演算方法を、図21を用いて説明する。まず、所定時間先[k+H]の動的推定電力の増加代である過渡応答モデル増加代(過渡応答モデル増加代演算部34Bによって演算)は下記式(5)で表すことができる。
過渡応答モデル増加代[k+H]=動的推定電力[k+H]−動的推定電力[k] ・・・(5)
更に、上述した発電電力の過渡応答モデルを用いて上記式(5)を置き換えると、下記式(6)で表すことができる。
過渡応答モデル増加代[k+H]=動的推定電力[k]×exp(−制御周期/時定数B)+補正後目標発電電力×(1−exp(−制御周期/時定数B))−動的推定電力[k] ・・・(6)
上記式(6)で求まる過渡応答モデル増加代と、ステップS801で算出した目標発電電力増加代が等価となる(一致する)ように、補正後目標発電電力を算出する。
次に、ステップS805において、ステップS804で算出した補正後目標発電電力を入力とし、定常状態のIV特性に基づいて、電流に変換した目標発電電流を算出する。ここでは、図22のテーブルデータに基づいて目標発電電流を算出する。このテーブルデータは、ステップS802で用いたテーブルデータのIV特性と同じIV特性に基づいて設定する。結果、目標発電電力と実発電電力の定常偏差を生じさせない目標発電電流が得られる。以上で、目標発電電流演算部34による処理が終了する。
図23は、図6のステップS207の電流制限部37による処理の詳細を示すフローチャートである。
電流制限部37は、まずステップS901において、図6のステップS206で算出された目標発電電流を、下記式(7)及び下記式(8)に示すように、今回の演算タイミング[k]と前回[k−1]との偏差と、図6のステップS204で算出された上昇変化速度の制限値とに基づいて制限する。
目標発電電流[k]−目標発電電流[k−1]>上昇変化速度の制限値[k]の場合、
目標発電電流TA1[k]=目標発電電流[k−1]+上昇変化速度の制限値[k] ・・・(7)
目標発電電流[k]−目標発電電流[k−1]≦上昇変化速度の制限値[k]の場合、
目標発電電流TA1[k]=目標発電電流[k] ・・・(8)
次に、ステップS902において、ステップS901で算出した目標発電電流TA1を、下記式(9)及び下記式(10)に示すように、今回の演算タイミング[k]と前回[k−1]との偏差と、図6のステップS204で算出された下降変化速度の制限値とに基づいて制限する。
目標発電電流TA1[k]−目標発電電流TA1[k−1]<下降変化速度の制限値[k]の場合、
目標発電電流TA2[k]=目標発電電流TA1[k−1]+下降変化速度の制限値[k] ・・・(9)
目標発電電流TA1[k]−目標発電電流TA2[k−1]≧下降変化速度の制限値[k]の場合、
目標発電電流TA2[k]=目標発電電流TA1[k] ・・・(10)
次に、ステップS903において、ステップS902で算出した目標発電電流TA2を、図6のステップS205で算出された目標発電電流の上限値(最大電流制限)に基づいて、下記式(11)及び下記式(12)に示すように制限する。
目標発電電流TA2[k]> 最大電流制限[k]の場合、
目標発電電流TA3[k]=最大電流制限[k] ・・・(11)
目標発電電流TA2[k]≦最大電流制限[k]の場合、
目標発電電流TA3[k]=目標発電電流TA2[k] ・・・(12)
以上で、電流制限部37による処理が終了する。
図24は、図6のステップS208の電力変動抑制部38による処理の詳細を示すフローチャートである。
電力変動抑制部38は、まずステップS1001において、電流制限部37の出力である制限後目標発電電流を入力とし、定常状態のIV特性に基づいて、制限後目標発電電力を電力に変換した定常推定電力を算出する。ここでは、図18のステップS802で用いた定常状態のIV特性と同じテーブルデータ(図20)を用いる。
次に、ステップS1002において、ステップS1001で算出した定常推定電力を、低域通過フィルタに透過させる。ここで用いる低域通過フィルタの特性を、図25を用いて説明する。まず、この低域通過フィルタは、周波数領域F1でのゲイン特性が十分に低くなるように設定される。換言すると、周波数領域F1(高周波域)に燃料電池がもつピークゲインを、この低域通過フィルタは所定値まで抑制する。ここで、周波数領域F1とは、燃料電池スタック1の膜中生成水詰まりの瞬時の変化による発電電力変動が、図6のステップS205における目標発電電流の演算によって助長してしまう周波数領域である。例えば、実験により低温環境下での定常状態における実発電電力の変動成分の周波数帯を確認し、この周波数帯に設定する。次に、周波数領域F2に、燃料電池スタック1に接続された駆動モータの過渡要求を満足させる周波数領域を含ませる。これにより、ドライバのアクセル要求に対して違和感なく駆動モータを作動させることが可能となる。
次に、ステップS1003において、定常状態のIV特性に基づいて、ステップS1002で低域通過フィルタ処理を行った定常推定電力を電流(目標発電電流)に変換する。ここでは、図18のステップS805で用いた定常状態のIV特性と同じテーブルデータ(図22)を用いる。以上のように、電力変動抑制部38は、電流制限部37の出力である制限後目標発電電流を電力に変換した上で低域通過フィルタを透過させるようにしている。このため、目標発電電流演算部34で目標発電電流を算出する際に用いる発電電力の過渡応答モデルを、ステップS1002で設定した低域通過フィルタから推定することができ、過渡応答モデルの推定精度を向上できるといった効果も得られる。以上で、電力変動抑制部38による処理が終了する。
図26は、図6のステップS209の目標発電電圧演算部39による処理の詳細を示すフローチャートである。
目標発電電圧演算部39は、まずステップS1101において、電力制御装置2で制御する目標発電電圧の発電電圧の下限値を設定する。ここでは、図6のステップS205の最大電流制限を算出する過程で用いた発電電圧下限値と同じ値を使用する。
次に、ステップS1102において、電力変動抑制部38により低域通過フィルタ処理が行われた後の目標発電電流に対して、電流センサ22で検出された実発電電流を追従させる目標発電電圧を算出する。ここでは、例えば、目標発電電流と実発電電流との偏差に基づくフィードバック制御を行なって目標発電電圧を決定する。なお、このフィードバック制御は、PI制御やモデル規範型制御など、一般的によく知られている方法により構成することができる。なお、この際、目標発電電圧がステップS1101で設定した下限値を下回らないように制限を加える。以上で、目標発電電圧演算部39による処理が終了する。
以上、具体的な例を挙げながら詳細に説明したように、本実施形態の燃料電池システム100においては、本発明を適用したコントローラ3により発電制御を行うことで、以下のような効果が得られる。
燃料電池スタック1の低温環境下の特性として、短時間で急激に燃料電池スタック1から電流の取り出しを行うと、過渡状態での大幅な発電効率低下が生じてしまう。これは、例えば、カソード触媒層のポア内に水詰まりが発生している状況下での酸素拡散性能低下などによるものと考えられる。ここで、本実施形態の燃料電池システム100では、コントローラ3が、燃料電池スタック1の運転温度と相関のある運転状態パラメータ(例えば、冷却液温度センサ20による温度検出値)に基づいて燃料電池スタック1から取り出す目標発電電流の変化速度の制限値を算出し、目標発電電流の変化速度がこの制限値を越えないように、目標発電電流に対して制限を加えるようにしている。したがって、燃料電池スタック1内部の温度上昇による水詰まり解消状況を考慮しながら、燃料電池スタック1から過度に急激な電流の取り出しが行われないように制御することができ、低温環境下で燃料電池スタック1を発電させる場合であっても、過渡状態での大幅な発電効率低下を防止しながら、目標発電電力に対して実発電電力を精度良く追従させることができる。
また、燃料電池スタック1から電流を取り出す場合の過渡状態での発電効率低下代は、燃料電池スタック1の運転温度が高くなるにつれて、小さくなる。これは、例えば、燃料電池スタック1内部の温度上昇によりカソード触媒層の水詰まりが解消していくためと考えられる。ここで、本実施形態の燃料電池システム100では、コントローラ3が、燃料電池スタック1の運転温度と相関のある温度検出値(例えば、冷却液温度センサ20による温度検出値)が上昇するに従い、目標発電電流の上昇変化速度の制限値を高い値に設定するようにしているので、大幅な発電効率低下を招かない範囲で最速の過渡性能を実現しながら、目標発電電力に対して実発電電力を精度良く追従させることができる。
また、低温発電時による生成水凍結、水詰まりなどによって定常状態においてIV性能が低下してしまい、目標発電電流の上昇変化速度制限を守ったとしても、目標発電電力に対して、実発電電力に定常偏差が発生してしまう懸念がある。また、このIV性能低下は、燃料電池セル間の配流バラツキ、放置状況などによっても異なることから推定することが困難である。ここで、本実施形態の燃料電池システム100では、コントローラ3が、電流変化速度に制限を加えた後の目標発電電流に基づいて、目標発電電力と実発電電力との偏差がなくなるように目標発電電流を算出するようにしているので、低温環境下で燃料電池スタック1を発電させる場合のIV性能の低下も考慮しながら目標発電電流を適切に算出することができ、IV性能低下による定常偏差を生じさせずに、目標発電電力に対して実発電電力を精度良く追従させることができる。
また、目標発電電力に実発電電力を追従させるフィードバック制御を実施し、目標発電電流の変化速度を制限する場合、PI制御をはじめとする積分器を持つフィードバック制御では、目標発電電流の変化速度を制限する際の積分器の演算が適正に行われず、目標発電電力の変化に、短時間で実発電電力を追従させることができない。あるいは、目標発電電力に対して実発電電力がオーバーシュートする懸念がある。オーバーシュートが発生することによって、例えば、2次電池を有するシステムにおいては、燃料電池スタック1と接続された駆動モータなどの電気負荷装置の実発電電力が目標発電電力から大幅に乖離して2次電池内部に過電流が流れ、保護モードに至る可能性がある。また、積分器を設けなければ、実発電電力が目標発電電力に対して定常偏差が発生してしまうため、低温環境下においては、発電による自己発熱による迅速な温度上昇を妨げてしまう可能性がある。ここで、本実施形態の燃料電池システム100では、コントローラ3が、目標発電電力と実発電電力の偏差から、実発電電力に対して上昇すべき所定時間先の目標発電電力増加代を算出し、電流変化速度に制限を加えた後の目標発電電力を入力として、発電電力の過渡応答モデルを用いることで、所定時間先の過渡応答モデル増加代と、目標発電電力増加代とが一致する(等価となる)ように目標発電電流を算出するようにしているので、電流変化速度を制限する場合にも連続的に目標発電電流を算出することが可能となる。その結果、目標発電電流の上昇変化速度が制限を受けているシーンにおいても、目標発電電力に対して、実発電電力を制限された変化速度近傍での追従、及び、オーバーシュートを抑制した上で、一致させることができる。
また、低温環境下での発電時などは、瞬時の触媒層内の水詰まり状況の変化により、IV特性が瞬時に変動する可能性があり、その結果、実発電電力の振動が助長されてしまう場合がある。ここで、本実施形態の燃料電池システムでは、コントローラ3が、瞬時の触媒層内の水詰まり状況の変化による実発電電力変動の高周波成分を除去する低域通過フィルタを設定し、電流変化速度を制限した後の目標発電電流に対して低域通過フィルタ処理を実施するようにしてるので、実発電電力の振動を有効に抑制することができ、また、発電電力の過渡応答モデルを、設定した低域通過フィルタに基づいて設定することができるため、実発電電力の過渡応答に対して、発電電力の過渡応答モデルの精度が向上する。その結果、瞬時の実発電電力の変動が発生した場合においても、目標発電電力に対して、実発電電力のオーバーシュート量を最小限に抑制した上で実発電電力を追従させることができる。
また、目標発電電力を電気負荷装置の負荷パラメータ検出値に基づいて精度良く算出しようとすると、計測ノイズなどによる振動成分が加味されてしまい、その結果、目標発電電力近傍に実発電電力が追従しているシーンにおいて、目標発電電力と実発電電力に偏差が生じてしまう場合がある。ここで、本実施形態の燃料電池システム100では、コントローラ3が、目標発電電流の上昇変化速度の制限を考慮した上で、目標発電電力と実発電電力が所定値以上乖離しないように下降変化速度の制限値を設定し、目標発電電力の上昇速度だけでなく下降速度も制限するようにしているので、実発電電力の計測ノイズなどにより目標発電電力に振動成分が加味された場合でも、目標発電電力に対して実発電電力を定常偏差なく追従させることができる。
また、上述したように、低温環境下による生成水凍結、生成水詰まりなどによって燃料電池スタック1のIV性能は低下してしまう場合がある。このIV性能低下は、燃料電池セル間の配流バラツキ、放置状況などによっても異なることから、推定することが困難である。そのため、目標発電電流の上昇変化速度を制限していたとしても、接続した電気負荷装置が正常に作動しない電圧になる可能性、あるいは、燃料電池セル電圧転極による劣化が生じる可能性がある。ここで、本実施形態の燃料電池システム100では、コントローラ3が、燃料電池スタック1の発電電圧が所定の下限値を下回らないように目標発電電圧を算出するようにしているので、接続した電気負荷装置が正常に作動しない電圧にならない、あるいは、燃料電池セル電圧転極による劣化が生じない下限電圧を守ることができる。また、実発電電力の振動成分により目標発電電流が必要以上制限されないように、所定時間前までの実発電電力の中から選択した値を目標発電電圧の下限値で除算した値に基づいて目標発電電流の上限値(最大電流制限)を算出して、目標発電電流の最大値を制限するようにしている。従って、目標発電電力の変化に対して、発電電圧の制限時においても短時間で追従可能となる。その結果、燃料電池セル電圧の転極による劣化防止、あるいは、燃料電池スタック1と接続された電気負荷装置の動作を損なわない電圧を下回らない範囲で、目標発電電力に対して実発電電力を精度良く追従させることができる。
また、燃料電池スタック1は、低温環境下で発電状態が低下している状態を経験することにより、経験しない場合と比べて、発電効率低下が顕著に現れる傾向にある。これは、例えば、低温時の低い排水性能の中で発電することで、カソード触媒層のポア内に水詰まりが詰まりやすくなるなどの影響があると考えられる。ここで、本実施形態の燃料電池システム100では、起動時における燃料電池スタック1の発電状態を判断し、発電状態が低下している可能性があると判断した場合のみ目標発電電流の制限を電流制限部37によって実施するようにしているので、過渡状態での発電効率低下が顕著に発生しないシーンにおいて、より短時間で、目標発電電力に対して実発電電力を精度良く追従させることができる。
以上、本発明の実施形態としての燃料電池システムについて詳細に説明したが、以上の実施形態は本発明の一適用例を例示的に示したものであり、本発明の技術的範囲が以上の実施形態で説明した内容に限定されることを意図するものではない。つまり、本発明の技術的範囲は、以上の実施形態で開示した具体的な技術事項に限らず、この開示から容易に導きうる様々な変形、変更、代替技術なども含むものである。
日本国特許出願2008−283149(出願日2008年11月4日)の全内容がここに援用され、誤訳や記載漏れから保護される。
以上、実施形態によって本発明の内容を記載したが、本発明はこれら記載に限定されるものではなく、種々の変形及び改良が可能であることは、当業者に自明である。
本発明によれば、燃料電池内部の温度上昇による水詰まり解消状況を考慮しながら目標発電電流の変化速度に制限を加えることができるので、低温環境下で燃料電池を発電させる場合であっても過渡状態での大幅な発電効率低下を防止できる。

Claims (10)

  1. 燃料電池に接続された電気負荷装置の負荷状態に基づいて、前記燃料電池の目標発電電力を算出する目標発電電力演算部と、
    前記目標発電電力に基づいて、前記燃料電池から取り出す目標発電電流を算出する目標発電電流演算部と、
    前記燃料電池の運転温度に基づいて、前記目標発電電流の変化速度に対する制限値を算出する電流変化速度制限値演算部と、
    前記目標発電電流の前記変化速度が前記電流変化速度制限値演算部で算出した前記制限値を越えないように前記目標発電電流を制限する電流制限部と、
    を備えることを特徴とする燃料電池の発電制御装置。
  2. 前記電流変化速度制限値演算部は、前記燃料電池の前記運転温度に基づいて、前記目標発電電流の上昇変化速度の制限値を算出し、
    前記燃料電池の前記運転温度が上昇するに従い、前記電流変化速度制限値演算部が算出する前記目標発電電流の前記上昇変化速度の前記制限値が緩和されることを特徴とする請求項1に記載の燃料電池の発電制御装置。
  3. 前記燃料電池の発電電流の検出値及び発電電圧の検出値に基づいて、前記燃料電池の実発電電力を算出する実発電電力演算部を更に備え、
    前記目標発電電流演算部は、前記電流制限部の出力である制限後目標発電電流と、前記目標発電電力と前記実発電電力との偏差に基づいて、前記目標発電電力と前記実発電電力とが一致するように前記目標発電電流を算出することを特徴とする請求項1に記載の燃料電池の発電制御装置。
  4. 前記目標発電電流演算部は、
    前記目標発電電力と前記実発電電力との前記偏差に基づいて、所定時間先までの実発電電力の目標発電電力増加代を算出する目標発電電力増加代演算部と、
    前記制限後目標発電電流と、発電電力の過渡応答モデルとに基づいて、前記所定時間先での過渡応答モデル増加代を算出する過渡応答モデル増加代演算部とを有し、
    前記目標発電電力増加代と前記過渡応答モデル増加代とが一致するように前記目標発電電流を算出することを特徴とする請求項3に記載の燃料電池の発電制御装置。
  5. 前記燃料電池が高周波域にもつピークゲインを所定値まで抑制する低域通過フィルタに、前記電流制限部の出力である制限後目標発電電流を透過させる電力変動抑制部を、更に備えることを特徴とする請求項1に記載の燃料電池の発電制御装置。
  6. 前記電流変化速度制限値演算部は前記目標発電電力と前記実発電電力が所定値以上乖離しないように、前記目標発電電流の下降変化速度の制限値を算出することを特徴とする請求項3に記載の燃料電池の発電制御装置。
  7. 前記燃料電池の前記発電電圧が所定下限値を下回らないように、前記目標発電電流に基づいて前記燃料電池の目標発電電圧を算出する目標発電電圧演算部と、
    所定時間前までの実発電電力の中から選択した値を前記発電電圧の前記所定下限値で除算して求めた値に基づいて、前記目標発電電流の上限値を算出する電流上限値演算部と、を更に備え、
    前記電流制限部は、前記目標発電電流の最大値が前記電流上限値演算部で算出した前記上限値を越えないように前記目標発電電流を制限することを特徴とする請求項3に記載の燃料電池の発電制御装置。
  8. 前記燃料電池の前記運転温度に基づいて起動時における前記燃料電池の発電状態を判断し、前記発電状態が低下している可能性があると判断した場合に前記電流制限部による前記目標発電電流の制限を実施することを特徴とする請求項1に記載の燃料電池の発電制御装置。
  9. 燃料電池に接続された電気負荷装置の負荷状態に基づいて、前記燃料電池の目標発電電力を算出することと、
    前記目標発電電力に基づいて、前記燃料電池から取り出す目標発電電流を算出することと、
    前記燃料電池の運転温度に基づいて、前記目標発電電流の変化速度に対する制限値を算出することと、
    前記目標発電電流の前記変化速度が、前記算出することによる前記制限値を越えないように前記目標発電電流を制限することと、
    を備えることを特徴とする燃料電池の発電制御方法。
  10. 燃料電池に接続された電気負荷装置の負荷状態に基づいて、前記燃料電池の目標発電電力を算出する目標発電電力演算手段と、
    前記目標発電電力に基づいて、前記燃料電池から取り出す目標発電電流を算出する目標発電電流演算手段と、
    前記燃料電池の運転温度に基づいて、前記目標発電電流の変化速度に対する制限値を算出する電流変化速度制限値演算手段と、
    前記目標発電電流の前記変化速度が前記電流変化速度制限値演算手段で算出した前記制限値を越えないように前記目標発電電流を制限する電流制限手段と、
    を備えることを特徴とする燃料電池の発電制御装置。
JP2010536743A 2008-11-04 2009-10-28 燃料電池の発電制御装置及び発電制御方法 Expired - Fee Related JP5327229B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010536743A JP5327229B2 (ja) 2008-11-04 2009-10-28 燃料電池の発電制御装置及び発電制御方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008283149 2008-11-04
JP2008283149 2008-11-04
JP2010536743A JP5327229B2 (ja) 2008-11-04 2009-10-28 燃料電池の発電制御装置及び発電制御方法
PCT/JP2009/068464 WO2010053027A1 (ja) 2008-11-04 2009-10-28 燃料電池の発電制御装置及び発電制御方法

Publications (2)

Publication Number Publication Date
JPWO2010053027A1 JPWO2010053027A1 (ja) 2012-04-05
JP5327229B2 true JP5327229B2 (ja) 2013-10-30

Family

ID=42152836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010536743A Expired - Fee Related JP5327229B2 (ja) 2008-11-04 2009-10-28 燃料電池の発電制御装置及び発電制御方法

Country Status (8)

Country Link
US (1) US9246182B2 (ja)
EP (2) EP2355219B1 (ja)
JP (1) JP5327229B2 (ja)
CN (1) CN102204000B (ja)
BR (1) BRPI0921807B1 (ja)
CA (1) CA2742611C (ja)
RU (1) RU2482577C2 (ja)
WO (1) WO2010053027A1 (ja)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120037837A (ko) * 2010-10-12 2012-04-20 삼성에스디아이 주식회사 연료 전지 시스템 및 그것의 운전 방법
JP5627106B2 (ja) * 2011-02-16 2014-11-19 アズビル株式会社 制御装置および制御方法
WO2012117937A1 (ja) * 2011-03-01 2012-09-07 日産自動車株式会社 燃料電池システム
WO2013065132A1 (ja) * 2011-11-01 2013-05-10 トヨタ自動車株式会社 燃料電池の出力制御装置
JP5783974B2 (ja) * 2012-08-28 2015-09-24 本田技研工業株式会社 燃料電池システムの起動方法および燃料電池システム
KR101481310B1 (ko) * 2013-08-21 2015-01-09 현대자동차주식회사 연료전지 시스템의 수소 퍼지 장치 및 방법
JP6156041B2 (ja) * 2013-10-08 2017-07-05 日産自動車株式会社 燃料電池システム
JP6090468B2 (ja) * 2013-10-09 2017-03-15 日産自動車株式会社 燃料電池システム
JP6044620B2 (ja) * 2014-11-13 2016-12-14 トヨタ自動車株式会社 燃料電池車両
DE102015004677B4 (de) 2015-04-09 2021-03-18 Daimler Ag Verfahren zur Leistungsregelung eines Brennstoffzellensystems
JP2016225043A (ja) * 2015-05-27 2016-12-28 トヨタ自動車株式会社 燃料電池車両
GB2543031A (en) * 2015-09-29 2017-04-12 Intelligent Energy Ltd Fuel cell system controller and associated method
GB2546729B (en) * 2016-01-19 2022-02-16 Intelligent Energy Ltd Fuel cell controller, fuel cell system and method of operation
FR3065298B1 (fr) * 2017-04-18 2019-04-12 Continental Automotive France Procede de determination d'une limite de courant de cellule d'une batterie de traction et d'un reseau de bord dans un vehicule automobile
JP6995635B2 (ja) * 2018-01-15 2022-02-04 株式会社豊田自動織機 燃料電池システム
JP6958419B2 (ja) * 2018-02-22 2021-11-02 トヨタ自動車株式会社 燃料電池システムおよびその制御方法
JP7159929B2 (ja) * 2019-03-14 2022-10-25 トヨタ自動車株式会社 燃料電池システム
CN113841273A (zh) * 2019-05-27 2021-12-24 京瓷株式会社 燃料电池装置
JP7452242B2 (ja) * 2020-05-21 2024-03-19 トヨタ自動車株式会社 燃料電池車
CN116154239B (zh) * 2023-04-14 2023-11-21 湖南省计量检测研究院 一种基于多层次实现的氢燃料电池能量转换方法和装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0757753A (ja) * 1993-08-16 1995-03-03 Fuji Electric Co Ltd 燃料電池発電装置とその運転制御方法
JP2005085622A (ja) * 2003-09-09 2005-03-31 Honda Motor Co Ltd 燃料電池発電システム
JP2006100095A (ja) * 2004-09-29 2006-04-13 Honda Motor Co Ltd 燃料電池の起動方法
JP2006147234A (ja) * 2004-11-17 2006-06-08 Nissan Motor Co Ltd 燃料電池の制御装置
JP2007194223A (ja) * 2007-03-26 2007-08-02 Toyota Motor Corp 電源システム
JP2007227160A (ja) * 2006-02-23 2007-09-06 Nissan Motor Co Ltd 燃料電池システムおよび燃料電池スタックの加湿不足判定方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2989353B2 (ja) 1991-11-29 1999-12-13 三洋電機株式会社 ハイブリッド燃料電池システム
JP4487231B2 (ja) 2001-01-15 2010-06-23 カシオ計算機株式会社 発電モジュール、電源システム及びデバイス
DE10109151B4 (de) 2001-02-24 2008-04-30 Flexiva Automation & Robotik Gmbh Verfahren und System zur Regelung der Ausgangsgrößen eines Brennstoffzellen-Strom- oder -Spannungsgenerators
US6893755B2 (en) * 2002-10-28 2005-05-17 Cellex Power Products, Inc. Method and system for controlling the operation of a hydrogen generator and a fuel cell
CN1879251B (zh) * 2003-07-02 2011-10-12 伊顿动力品质有限公司 电池浮充管理
JP4595297B2 (ja) * 2003-08-22 2010-12-08 日産自動車株式会社 燃料電池システム
JP5000073B2 (ja) * 2003-09-08 2012-08-15 本田技研工業株式会社 燃料電池スタックの氷点下起動方法、燃料電池スタックの氷点下起動システム、および燃料電池スタックの設計方法
JP4309323B2 (ja) * 2004-09-29 2009-08-05 本田技研工業株式会社 燃料電池の起動方法
KR100664074B1 (ko) 2005-09-28 2007-01-03 엘지전자 주식회사 연료전지 시스템의 운전 제어방법
KR100664073B1 (ko) 2005-09-28 2007-01-03 엘지전자 주식회사 연료전지 시스템의 운전 제어 방법
KR100823921B1 (ko) 2005-09-30 2008-04-22 엘지전자 주식회사 연료전지의 전력변환장치
JP4905642B2 (ja) * 2005-12-05 2012-03-28 トヨタ自動車株式会社 燃料電池システム及び移動体
US7867642B2 (en) * 2006-10-27 2011-01-11 GM Global Technology Operations LLC Fuel cell start optimization
US20080241608A1 (en) * 2007-04-02 2008-10-02 Gm Global Technology Operations, Inc. Method of starting up a fuel cell under conditions in which water may freeze
JP4973309B2 (ja) 2007-05-14 2012-07-11 株式会社村田製作所 保持治具
JP5024889B2 (ja) 2008-04-07 2012-09-12 トヨタ自動車株式会社 燃料電池システム、燃料電池システムの起動制御方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0757753A (ja) * 1993-08-16 1995-03-03 Fuji Electric Co Ltd 燃料電池発電装置とその運転制御方法
JP2005085622A (ja) * 2003-09-09 2005-03-31 Honda Motor Co Ltd 燃料電池発電システム
JP2006100095A (ja) * 2004-09-29 2006-04-13 Honda Motor Co Ltd 燃料電池の起動方法
JP2006147234A (ja) * 2004-11-17 2006-06-08 Nissan Motor Co Ltd 燃料電池の制御装置
JP2007227160A (ja) * 2006-02-23 2007-09-06 Nissan Motor Co Ltd 燃料電池システムおよび燃料電池スタックの加湿不足判定方法
JP2007194223A (ja) * 2007-03-26 2007-08-02 Toyota Motor Corp 電源システム

Also Published As

Publication number Publication date
JPWO2010053027A1 (ja) 2012-04-05
US9246182B2 (en) 2016-01-26
EP2355219A1 (en) 2011-08-10
CN102204000B (zh) 2015-03-18
BRPI0921807B1 (pt) 2019-10-01
WO2010053027A1 (ja) 2010-05-14
EP2355219A4 (en) 2015-04-08
RU2482577C2 (ru) 2013-05-20
EP2355219B1 (en) 2017-07-19
RU2011122613A (ru) 2012-12-20
BRPI0921807A2 (pt) 2016-01-12
CA2742611C (en) 2014-07-29
CN102204000A (zh) 2011-09-28
US20110217608A1 (en) 2011-09-08
CA2742611A1 (en) 2010-05-14
EP3240076A1 (en) 2017-11-01

Similar Documents

Publication Publication Date Title
JP5327229B2 (ja) 燃料電池の発電制御装置及び発電制御方法
JP5488605B2 (ja) 燃料電池システムの制御装置及び制御方法
KR101046559B1 (ko) 연료전지시스템, 그 제어방법 및 이동체
JP4972943B2 (ja) 燃料電池システムの制御装置及び燃料電池システムの制御方法
JP4923551B2 (ja) 燃料電池システム
JP4940569B2 (ja) 燃料電池システム
JP2007280827A (ja) 燃料電池用の温度制御システム
JP2013239290A (ja) 燃料電池システム及びその制御方法
JP2014225399A (ja) 燃料電池システムおよびその制御方法
JP2006324058A (ja) 燃料電池システム及び燃料電池システムのパージ制御方法
JP6160313B2 (ja) 燃料電池システム
CN105518919A (zh) 燃料电池系统以及燃料电池系统的控制方法
JP2019129089A (ja) 燃料電池システム
JP2009117066A (ja) 燃料電池システムおよび燃料電池システムの制御方法
JP4935125B2 (ja) 流体制御システム
JP2007042566A (ja) 燃料電池システムとその起動方法
JP5034191B2 (ja) 燃料電池システム
JP2019145358A (ja) 燃料電池システム及びその制御方法
JP2006339103A (ja) 燃料電池システム
JP2013178911A (ja) 燃料電池システムの起動制御方法
JP5223624B2 (ja) 燃料電池システム及びそれを用いた燃料電池システムの制御方法
JP2010123427A (ja) 燃料電池システム
JP2005209467A (ja) 燃料電池システム
JP2023031581A (ja) 燃料電池システム
JP4858746B2 (ja) 燃料電池システムとその運転停止方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130708

R150 Certificate of patent or registration of utility model

Ref document number: 5327229

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees