JP4928301B2 - 揺動体装置、その駆動方法、光偏向器、及び光偏向器を用いた画像表示装置 - Google Patents

揺動体装置、その駆動方法、光偏向器、及び光偏向器を用いた画像表示装置 Download PDF

Info

Publication number
JP4928301B2
JP4928301B2 JP2007039072A JP2007039072A JP4928301B2 JP 4928301 B2 JP4928301 B2 JP 4928301B2 JP 2007039072 A JP2007039072 A JP 2007039072A JP 2007039072 A JP2007039072 A JP 2007039072A JP 4928301 B2 JP4928301 B2 JP 4928301B2
Authority
JP
Japan
Prior art keywords
coil
current signal
oscillator
gimbal
optical deflector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007039072A
Other languages
English (en)
Other versions
JP2008203497A5 (ja
JP2008203497A (ja
Inventor
安志 溝口
康宏 添田
信一郎 渡辺
康弘 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2007039072A priority Critical patent/JP4928301B2/ja
Priority to US12/032,246 priority patent/US7777927B2/en
Priority to KR1020080015222A priority patent/KR100942338B1/ko
Publication of JP2008203497A publication Critical patent/JP2008203497A/ja
Publication of JP2008203497A5 publication Critical patent/JP2008203497A5/ja
Application granted granted Critical
Publication of JP4928301B2 publication Critical patent/JP4928301B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
    • G02B26/085Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD the reflecting means being moved or deformed by electromagnetic means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/101Scanning systems with both horizontal and vertical deflecting means, e.g. raster or XY scanners
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/105Scanning systems with one or more pivoting mirrors or galvano-mirrors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/04Optical MEMS
    • B81B2201/042Micromirrors, not used as optical switches
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/74Projection arrangements for image reproduction, e.g. using eidophor
    • H04N5/7416Projection arrangements for image reproduction, e.g. using eidophor involving the use of a spatial light modulator, e.g. a light valve, controlled by a video signal
    • H04N5/7458Projection arrangements for image reproduction, e.g. using eidophor involving the use of a spatial light modulator, e.g. a light valve, controlled by a video signal the modulator being an array of deformable mirrors, e.g. digital micromirror device [DMD]

Description

本発明は、複数の揺動体を有する揺動体装置、その駆動方法、光偏向器、及び光偏向器を用いた画像表示装置に関する。特に、本発明は、マイクロメカニクスの手法などにて作製することができる光偏向器、及びその駆動方法とこれらを用いた画像表示装置に関するものである。
光偏向器は、例えば、レーザー光を偏向する用途などに利用されるものである。レーザー光を偏向走査する走査ミラーとしては、ガルバノミラーがある。ガルバノミラーの駆動原理は、次の様なものである。
磁界中に配置した可動コイルに電流を流すと、電流と磁束との相互作用で電磁力が発生して電流に比例したトルクが生じる。このトルクとバネ力とが平衡する角度まで可動コイルが回転し、この可動コイルを介して指針を振らせて可動コイルの電流の有無や大小を検出する。上記走査ミラーは、この原理を利用したもので、可動コイルと一体に回転する軸に、前記指針の代わりに反射鏡を設けて構成される。
また、半導体製造技術を応用して微小機械を半導体基板上に一体形成するマイクロマシニング技術で作製した光偏向器がある。例えば、K.E.Petersen等により、シリコンで形成されるTorsional Scanning Mirrorが提案されている(非特許文献1参照)。この光偏向器では、図22に示す様に、機械可動部3が、光偏向板としてのミラー3aと該ミラー3aを支持する梁3bからなる。そして、ミラー3aと基板上に形成した固定電極2との間に駆動電圧を印加して生じる静電引力により、梁3bにねじりモーメントを与えて梁3bをねじり回転させ、ミラー3aの偏向角度を変える。
また、上記の如きミラーを二軸の回りに偏向可能に配置した構造の図23に示すスキャナ10も提案されている(特許文献1参照)。これは、ミラー16を持つ可動板(可動ミラー)12Bが2つのトーションバー13Bでジンバル12Aに支持され、ジンバル12Aが2つのトーションバー13Aで基板11に支持され、可動ミラーとジンバルとの回転軸が直交する構造を有する。そして、この構成のジンバル12Aと可動ミラー12B上の周縁部に駆動コイル15A、15Bを形成し、可動ミラーとジンバルの1つの対角線方向にこれらを挟んで同一面内に永久磁石4、5を配置することで、可動ミラー及びジンバルを駆動する。
IBMJ.RES. DEVELOP., VOL.24,NO5,9,1980.P631-637 特開平8-322227号公報
しかし、前述のガルバノミラーは機械巻きの可動コイルと磁界発生のための大型ヨークが必要であり、また図23に示すアクチュエータにおいては、永久磁石4、5が可動ミラー及びジンバルを挟み込む様に同一面内で配置されることから、小型化が困難である。
上記課題に鑑み、本発明の揺動体装置は、第1の揺動体と、第2の揺動体と、支持体と、コイルと、コイルに電流信号を印加する電流印加手段と、コイルに磁場を作用させる磁場発生手段とを有する。第2の揺動体は、第1の揺動体を第1のトーションスプリングにより第1の回転軸の回りにねじり回転可能に支持する。支持体は、第2の揺動体を第2のトーションスプリングにより第1の揺動体の第1の回転軸と角度を成す第2の回転軸の回りにねじり回転可能に支持する。コイルは、第2の揺動体に配置される。更に、コイルは、第1の揺動体を周回せず、且つ第1及び第2の回転軸の延長線により4分割された第2の揺動体の領域の少なくとも1つに局在して設けられる。
また、上記課題に鑑み、本発明の画像表示装置は、光源と、光偏向器として構成される上記揺動体装置と、光照射面とを有し、光源からの光を揺動体装置により偏向し、光の少なくとも一部を光照射面上に入射させることを特徴とする。
また、上記課題に鑑み、本発明の揺動体装置の駆動方法は、次の様にして第1のコイル乃至第4のコイルに電流を印加することで第1の揺動体と第2の揺動体を揺動させる。電流信号を、第1の揺動体を第2の揺動体に対してねじり回転させる第1の周期信号を有する周期信号の第1の駆動電流信号と、第2の揺動体を支持体に対してねじり回転させる第2の周期を有する周期信号の第2の駆動電流信号とから成る様にする。第1の駆動電流信号による第1のコイル乃至第4のコイルの電流変化量は等しくこれを電流変化量1とし、第2の駆動電流信号による第1のコイル乃至第4のコイルの電流変化量は等しくこれを電流変化量2とする。この前提で、第1のコイルと第2のコイルの電流変化量を、電流変化量1と電流変化量2の加算とし、第3のコイルと第4のコイルの電流変化量を、電流変化量1と電流変化量2の減算として、第1のコイル乃至第4のコイルに電流を印加する。
本発明により、ジンバル構造による二軸駆動の光偏向器などの揺動体装置において、永久磁石などの磁場発生手段がコイルに対向する面に配置されるのみであり、小型化が容易である。
以下、より具体的な実施形態を挙げて本発明を詳細に説明する。以下で説明する実施形態は、本発明の揺動体装置を二軸駆動の光偏向器に適応させて構成したものである。ただし、本発明の揺動体装置は、こうした構成を必要とするどの様な装置にも適応させることができる。
(実施形態1)
実施形態1を図を用いて説明する。図1(a)と図2(a)は、本発明の光偏向器の実施形態1とその変形例の構成を示す上面図である。図1(b)は、図1(a)の実施形態の構成を示すA‐A’断面図である。図2(b)は、図2(a)の変形例の構成を示す図2(a)の断面図である。図3は、図1(a)と図2(a)に示す光偏向器のコイルが発生する磁場方向を説明する図である。図4(a)乃至(c)は電流信号を説明する図である。図5(b)乃至(d)は、図5(a)の破線A‐A’における断面を用いて駆動方法を説明する図である。
図1に示す実施形態は、第1の揺動体である可動ミラー102と、第2の揺動体であるジンバル101と、支持体104と、ジンバル101上に配置されるコイル106、107と、磁場発生手段である永久磁石110とを有する。可動ミラー102には、ミラーなどの光偏向素子が設けられている。ジンバル101は、可動ミラー102を第1のトーションスプリングである梁状のトーションバー103により第1の回転軸(破線B‐B’で示す)の回りにねじり回転可能に支持する。支持体104は、ジンバル101を第2のトーションスプリングである梁状のトーションバー105により可動ミラー102の第1の回転軸と角度(ここでは直角)を成す第2の回転軸(破線A‐A’で示す)の回りにねじり回転可能に支持する。永久磁石110は、可動ミラー102をジンバル101に対してねじり回転させ、且つジンバル101を支持体104に対してねじり回転させるために、コイル106、107に磁場を作用させる。前記磁場発生手段としては、電磁コイルを用いることもできる。
更に、コイル106、107は、可動ミラー102を周回せず、且つ第1及び第2の回転軸の延長線により4分割される領域の少なくとも1つ(ここでは2つ)に局在して設けられる。すなわち、上記ジンバル構造を有する二次元光偏向器において、中心位置が第1及び第2のトーションバー103、105の延長線上にない態様でコイル106、107はジンバル101上に配置される。コイル106、107の巻き方向は互いに逆になっている。
図2に示す変形例は、図1の実施形態と次の点で異なる。この変形例では、磁石110は、N極又はS極の一方が、コイル106が作る磁界の中でコイル106の略中心を通る磁界上に配置され、磁極の他方がコイル107が作る磁界の中でコイル107の略中心を通る磁界上に配置されている。そして図2(b)に示す方向に着磁されている。すなわち、コイル106に対向する側がS極であり、コイル107に対向する側がN極になっている。また、コイル106、107の巻き方向は同じになっている。
本実施形態の構成及び作用について更に説明する。本実施形態において、ジンバル101、可動ミラー102、第1のトーションバー103、支持体104、第2のトーションバー105は単結晶シリコンを除去加工して一体形成することができる。コイル106、107とジンバル101の間には、絶縁層が形成されて、両者間は絶縁されている。また、コイル106、107の配線は、絶縁層(不図示)を形成した第2のトーションバー105上を通って支持体104上のコンタクトパッド108に接続されている。コイル106、107の最内周からの配線取り出し部には、外周部のコイルとの電気的な接続を避けるために中間絶縁層109が形成されている。中間絶縁層109には、例えば、ポリイミドを用いることができる。
ジンバル101上に形成されたコイル106、107に対向する位置には、上述した様に、永久磁石110が配置される。コイルは複数であってもよく、本実施形態では、上述した様に、第1のトーションバー103を挟んで、一対の対角な位置関係にある領域に2つ配置されている。コイルを複数設ける場合には、コイル106、107に対向して配置される永久磁石110の磁極との組合せを考慮する必要がある。図1(a)の様に、第1のトーションバー103を挟んで対向位置に2つ配置し、コイル106、107の巻き方向が逆向きである場合には、対向配置される永久磁石110は、磁極方向が同じになる様に配置される(図1(b))。また、図2(a)の様に第1のトーションバー103を挟んで対向位置に2つ配置し、コイルの巻き方向が同じである場合には、対向配置される永久磁石110は、磁極方向が逆になる様に配置される(図2(b)参照)。
図2(a)に示す様に、コイル106、107の巻き方向が同じ場合には、永久磁石110は1つでもよく、図2(b)の様に配置される。このとき、当然に、コイル106、107に夫々対向する磁極は異なる。
コイル106、107と永久磁石110との間にはスペーサー111が配置される。従って、可動ミラー102及びジンバル101がねじり回転した場合でも、永久磁石111と可動ミラー102とが干渉することはない。支持体104とスペーサー111、スペーサー111と永久磁石110の支持基板115とは、夫々、接着剤(不図示)で固定することができる。
上記構成において、ジンバル101が支持体104に対して第2のトーションバー105により角変位するとき、ジンバル101に第1のトーションバー103で連結している可動ミラー102もジンバル101と同様の方向に角変位する。つまり、可動ミラー102は、ジンバル104に対して第1のトーションバー103により角変位し、第2のトーションバー105により支持体104に対して角変位することができる。例えば、第1のトーションバー103と第2のトーションバー105とが略直交する方向に配置され、光源からの光を可動ミラー102で走査する場合には、2次元の光走査が可能となる。
可動ミラー102及びジンバル101は、コイル106、107への電流信号の印加で生じる磁場と永久磁石110との間で働く電磁力により、夫々、第1及び第2のトーションバーによりジンバル、支持体に対して角変位する。例えば、図1(a)に示した構成を用いて電流1を矢印の方向へ印加するとき、コイル106とコイル107には夫々図3に示す様な磁場1、磁場2を生じる。このとき、コイル106に対向する位置に配置される永久磁石110と磁場1(紙面の表方向に向いている)は電磁力により引き合い、また永久磁石110と磁場2(紙面の裏方向に向いている)は反発し合う。
ここで、図4を用いてコイルに印加される駆動電流信号、及び可動ミラー102とジンバル101のねじり回転運動の一例を説明する。コイル106、107に印加する信号は、第1の駆動電流信号と第2の駆動電流信号を重ね合わせた電流信号である。第1の駆動電流信号は、可動ミラー102(第1の揺動体)をジンバル101(第2の揺動体)に対して第1のトーションバー103によりねじり回転させるためのものである。第2の駆動電流信号は、ジンバル101(第2の揺動体)を支持体104に対して第2のトーションバー105によりねじり回転させるためのものである。
例えば、第1の駆動電流信号は、可動ミラー102及び第1のトーションバー103のねじり共振周波数と略同じ周波数の正弦波であってもよく、周波数を、例えば、20KHzに設定することができる(図4(a)参照)。この第1の駆動電流信号のみをコイル106、107に印加した場合は、図5(b)に示す様に、可動ミラー102がジンバル101に対して第1のトーションバー103によりねじり共振運動する。第2の駆動電流信号は、例えば、ジンバル101の角変位がノコギリ波状になるような電流信号であってもよく、周波数を、例えば、60Hzに設定することができる(図4(b)参照)。この第2の駆動電流信号のみをコイル106、107に印加した場合は、図5(c)に示す様にジンバル101が第2のトーションバー105により支持体104に対して角変位する。駆動信号波形は、図4(c)に示すような第1の駆動電流信号と第2の駆動電流信号を重ね合わせた波形となる。この駆動電流信号をコイル106、107に印加した場合は、図5(d)に示す様に、可動ミラー102はジンバル101に対して、ジンバル101は支持体104に対して夫々ねじり回転運動する。
上記の如く第1の駆動電流信号と第2の駆動電流信号の周波数は充分離れているので、可動ミラー102とジンバル101のねじり回転運動は交じり合うことなく励起されることになる。また、上記構成では、こうしたねじり回転運動をバランス良く正確に行わせるために、各揺動体(可動ミラー102ジンバル101)の重心が上記2つの回転軸の略交点にある様になっている。そして、上記の如き局在配置のコイルとなっているので、電磁力が各回転軸の回りで効果的に発生して所望の揺動体の揺動が励起されることになる。
上記構成の光偏向器においては、永久磁石110がコイル106、107に対向する面に配置されるのみであり、小型化が容易である。また、ジンバル101上に形成されるコイルに電流信号を印加するだけで可動ミラー102を2次元に角変位させることができる。その為、可動ミラー102上にコイルなどの駆動手段を設ける必要がなく、可動ミラー102の平坦性が良い。
(実施形態2)
実施形態2を説明する。本実施形態は、図6と図7に示すジンバル構造を有する光偏向器に係る。図6は本実施形態の光偏向器の構成を示す上面図、図7は図6の光偏向器のA‐A’断面図である。本実施形態は、1つの局在したコイル510を備える。
本実施形態では、絶縁層501が第1及び第2のシリコン層502、503で挟まれたSOI基板を用いる。第1のシリコン層502の厚さは100μm、第2のシリコン層503の厚さは250μmである。可動ミラー504、ジンバル505、第1のトーションバー506、第2のトーションバー507、支持体508はSOI基板の第1のシリコン層502を除去加工して形成される。第2のシリコン層503には貫通孔509が設けられており、可動ミラー504、ジンバル505の回転運動を妨げることはない。支持体508は、絶縁層501を挟んで、第2のシリコン層503で形成される支持枠514に固定されている。支持枠514はスペーサーとしても働く。
本実施形態でも、ジンバル505は、可動ミラー504を第1のトーションバー506によりねじり回転可能に支持する。また、支持体508はジンバル505を第2のトーションバー507によりねじり回転可能に支持する。中心位置が前記第1及び第2のトーションバーの延長線上にないコイル510は、絶縁層(不図示)を形成したジンバル505上に形成される。コイル510の配線は、絶縁層(不図示)を形成した第2のトーションバー507上を通って支持体508上のコンタクトパッド511に接続している。コイル510の最内周からの配線取り出し部には、外周部のコイル510との電気的な接続を避けるために、ポリイミドからなる中間絶縁層512が形成されている。永久磁石513は支持基板515上にあって、コイル510と対向する位置に配置されている。
ここでも、可動ミラー504とジンバル505は、コイル510への電流信号の印加で生じる磁場と永久磁石513の磁場との間で働く電磁力により、夫々、第1及び第2のトーションバー506、507によりジンバル、支持体に対して角変位する。
可動ミラー504をジンバル505に対して角変位運動させるために、コイル510に正弦波の駆動電流1を印加する。この正弦波の周波数は、可動ミラー504及び第1のトーションバー506のジンバル505に対するねじり共振周波数に設定する。これにより、可動ミラー504は、ジンバル505に対して、角変位量が正弦波となる角変位運動をする。また、ジンバル505を支持体508に対して角変位運動させるために、コイル510にノコギリ波形状の電流信号2を印加する。この駆動周波数は60Hzに設定する。このとき、ジンバル505の角変位はノコギリ波になる。電流信号2のみをコイル510に印加するとき、可動ミラー504は第1のトーションバー506でジンバル505と連結しているため、ジンバルと一緒に第2のトーションバー507により支持体508に対して角変位運動をする。また、電流信号1及び電流信号2を重畳してコイル510に印加することで、可動ミラー504は支持体508に対して2次元的に角変位運動することが可能となる。
この構成の光偏向器においては、1つの永久磁石513が1つのコイル510に対向する面に配置されるのみであり、小型化が可能となる。また、ジンバル505上に形成される1つのコイル510に電流信号を印加するだけで、可動ミラー504を2次元に角変位させることが可能となった。その他の点は、実施形態1と同様である。
(実施形態3)
実施形態3を説明する。本実施形態は、図8に示すジンバル構造を有する光偏向器の例である。図8(a)は本実施形態の光偏向器の構成を示す上面図、図8(b)は一部の構成部材を不図示とした下面図、図8(c)はこの光偏向器のB‐B’断面図である。図9と図10は、夫々、永久磁石の2つの配置例を示す一部の構成部材を不図示とした上面図である。図11と図12は、夫々、本実施形態の駆動方法を説明する図である。図13は駆動電流信号を説明する図である。更に、図14は本実施形態の光偏向器の2次元走査を説明する図、図15は本実施形態の電流印加手段である駆動回路を説明する図である。
本実施形態において、ジンバル601は可動ミラー602を第1のトーションバー603によりねじり回転可能に支持する。また、支持体604はジンバル601を第2のトーションバー605によりねじり回転可能に支持する。ジンバル601、可動ミラー602、第1のトーションバー603、支持体604、第2のトーションバー605は単結晶シリコンを除去加工して一体形成することができる。図8(a)に示す様に、中心位置が前記第1及び第2のトーションバーの延長線上にない態様で、第1及び第2のコイル606、607がジンバル601の上面(一方の面)に配置される。また、図8(b)に示す様に、中心位置が前記第1及び第2のトーションバーの延長線上にない態様で、第3及び第4のコイル609、610がジンバル601の下面(他方の面)に配置される。勿論、適当な中間絶縁層を設けて、4つのコイル全てをジンバル601の同一面に配置することもできる。
各コイルとジンバル601の間には絶縁層が形成されている。また、コイル606、607は電気的に接続されていて、その両端は絶縁層(不図示)を形成した第2のトーションバー605の上面を通って支持体604上のコンタクトパッド608に接続している。コイル609、610も電気的に接続されていて、その両端も絶縁層(不図示)を形成した第2のトーションバー605の下面を通って支持体604上のコンタクトパッド611に接続している。
各コイルの最内周からの配線取り出し部には、外周部のコイルとの電気的な接続を避けるために、コイル606、607には中間絶縁層612が、コイル609、610には中間絶縁層613が形成されている。中間絶縁層612、613には、例えば、ポリイミドを用いることができる。
ジンバル601上に形成された各コイルに対向する位置に、永久磁石614が配置される。コイルはジンバル601の四隅に配置される。各コイルに対向して配置される永久磁石614の磁極の向きは、コイルの巻き方向との組合せを考慮する必要がある。
図8に示す様に、ジンバル601の四隅のうち、コイル606とコイル607は、前記第1及び第2のトーションバーの延長線で4分割された領域のうち対角な位置関係にある一対の領域にある。また、コイル609とコイル610は、4分割された領域のうち対角な位置関係にある他対の領域に配置される。そして、図8の構成では、コイル606とコイル607の巻き方向が逆向きであり、コイル609とコイル610の巻き方向も逆向きである。こうした場合は、コイル606に対向配置される永久磁石614とコイル607に対向配置される永久磁石614は磁極方向が同じになる様に配置される。コイル609に対向配置される永久磁石613とコイル610に対向配置される永久磁石613も、磁極方向が同じになる様に配置される(図9)。
図9では、全ての永久磁石614は、N極が現れて配置されているが、対角位置の永久磁石614の磁極方向が同じであればよいので、異なる対角位置の永久磁石614の磁極方向同士は異なっていてもよい。図8(a)、(b)のコイル配置の場合には、永久磁石613の図9の配置以外の配置例として、次のものがある。図10に示す様な永久磁石1個(ここではN極が現れているが、S極が現れていてもよい)でもよい。或いは、着磁方向を逆にして平行に並べた永久磁石2個でもよい。永久磁石の磁極の向きと配置態様、及びコイルの巻き方向の組合せは種々可能であり、後述の動作を実現する組み合わせであればどの様なものでもよい。
本実施形態でも、コイルと永久磁石614との間にはスペーサー615が配置され、可動ミラー602及びジンバル601がねじり回転した場合でも永久磁石614と可動ミラー602とが干渉することはない。支持体604とスペーサー615、スペーサー615と永久磁石614を載置した支持基板616とは、夫々、接着剤(不図示)で固定することができる。
可動ミラー602とジンバル601は、各コイルに電流信号を印加することで生じる磁場と永久磁石614との間で働く電磁力で、夫々、第1及び第2のトーションバーによりジンバル601と支持体604に対して角変位する。
本実施形態の作用・動作を説明する。
図8に示した本実施形態において、電流2及び電流3を矢印の正方向へ印加するとき、コイル606、607、609、610には夫々図11(a)に示すような磁場1乃至4を生じる。このとき、各コイルに対向する位置に配置される永久磁石614と磁場1、磁場4は電磁力により引き合い、また永久磁石614と磁場2、磁場3は反発し合う。従って、図11(c)に示す様に、可動ミラー601及びジンバル602には、第1のトーションバー603を軸とした矢印方向のねじり回転力が働き、角変位する。同様の理由により、電流2及び電流3を矢印とは逆の方向へ印加するときは、図11(b)に示すような磁場1乃至4を生じ、図11(d)に示す様に、図11(c)と比して逆方向のねじり回転力が働き角変位する。
また、本実施形態において、電流2を矢印の正方向へ、電流3を矢印とは逆の方向へ印加するとき、コイル606、607、609、610には夫々図12(a)に示すような磁場1乃至4を生じる。このとき、コイルに対向する位置に配置される永久磁石614と磁場1、磁場3は電磁力により引き合い、また永久磁石と磁場2、磁場4は反発し合う。従って、図12(c)に示す様に、可動ミラー601及びジンバル602には、第2のトーションバー605を軸とした矢印方向のねじり回転力が働き、角変位する。同様の理由により、電流2を矢印の逆方向へ、電流3を矢印の正方向へ印加するときは、図12(b)に示すような磁場1乃至4を生じ、図12(d)に示す様に、図12(c)と比して逆方向のねじり回転力が働き角変位する。
ここで、図13を用いて駆動信号の一例を説明する。コイルに印加する信号は、第1の駆動電流信号と第2の駆動電流信号を重ね合わせた電流信号である。第1の駆動電流信号は、可動ミラー601(第1の揺動体)をジンバル602(第2の揺動体)に対して第1のトーションバーによりねじり回転させるための電流信号である。第2の駆動電流信号は、ジンバル602(第2の揺動体)を支持体604に対して第2のトーションバーによりねじり回転させるための電流信号である。
図8に示した実施形態では、第1の駆動電流信号は電流2と電流3の向きを矢印の正方向または逆方向の同じ方向に流した場合である。そして第2の駆動電流信号は電流2と電流3の向きを一方の電流は矢印の正方向に、他方の電流は逆方向に流した場合である。第1の駆動電流信号または第2の駆動電流信号が周期的に変化する場合は、第1の駆動電流信号は電流2と電流3の同位相電流成分(図13(a)、(b))、第2の駆動電流信号は電流2と電流3の逆位相電流成分(図13(c)、(d))である。
そして、第1の駆動電流信号は、可動ミラー及び第1のトーションバーのねじり共振周波数と略同じ周波数の正弦波であってもよく、例えば20KHzに設定することもできる(図13(a)、(b))。この第1の駆動電流信号のみをコイルに印加した場合は、図11に示す様に可動ミラー602がジンバル601に対して第1のトーションバー603によりねじり共振運動する。第2の駆動電流信号は、例えば、ジンバルの角変位がノコギリ波状になるような電流信号であってもよく、周波数を60Hzに設定することもできる(図13(c)、(d))。この第2の駆動電流信号のみをコイルに印加した場合は、図12に示す様にジンバル601が第2のトーションバー605により支持体604に対して角変位する。
駆動信号波形は、図13(e)、図13(f)に示すような第1の駆動電流信号と第2の駆動電流信号を重ね合わせた波形となる。このとき図14(a)、(b)に示す様に可動ミラー602はジンバル601に対して、ジンバル601は支持体604に対して夫々ねじり回転運動する。
図13に示す電流を印加する電流印加手段である回路としては、例えば、Hブリッジ回路がある(図15)。Hブリッジ回路は、コイルの端点(コンタクトパッド)を高電位側に接続するトランジスタ701、702、及びコイルの端点(コンタクトパッド)を低電位側に接続するトランジスタ703、704で構成される。コイルに流れる電流の向きと大きさはトランジスタ701乃至704の動作で調整できる。例えば、図15(a)の様に、トランジスタ701を高電位側に接続し、トランジスタ704を低電位側に接続した場合は、コイルの電流は矢印の方向に増加する。また、図15(b)の様に、トランジスタ703を低電位側に接続し、トランジスタ702を高電位側に接続した場合は、コイルの電流は図15(a)とは逆方向に増加する。従って、図15(a)と図15(b)の時間割合を変化させると、コイルに流れる電流の向きと大きさが調整できる。図8に示した実施形態では、コンタクトパッド608、611の夫々に図15に示したHブリッジ回路を接続すればよい。
なお、図8に示すジンバル構造を有する光偏向器の変形例として、コイル606、607、及びコイル609、610が、夫々、電気的に接続されていない構成も考えられる。この構成では、コイル606、607、609、610の各端点に図15に示すHブリッジ回路を設ければよい。こうした電流印加手段である回路は、他の実施形態でも用いることができる。
上記揺動体装置の駆動方法は、次の様になっている。前記電流信号を、第1の周期(例えば20KHz)を有する周期信号の第1の駆動電流信号と、第2の周期(例えば、60Hz)を有する周期信号の第2の駆動電流信号とから成る様にする。そして、第1の駆動電流信号による前記第1のコイル乃至第4のコイルの電流変化量は等しくこれを電流変化量1とし、前記第2の駆動電流信号による前記第1のコイル乃至第4のコイルの電流変化量は等しくこれを電流変化量2とする。この前提で、第1及び第2のコイルの電流変化量を、電流変化量1と電流変化量2の加算とし、第3及び第4のコイルの電流変化量を、電流変化量1と電流変化量2の減算として、第1のコイル乃至第4のコイルに電流を印加するのである。つまり、前述の図13(a)〜図13(f)に言及した説明から明らかなように、前記第1のコイルと前記第2のコイルには、前記第1の駆動電流信号と前記第2の駆動電流信号とを加算して重ね合わせた電流信号を印加し、前記第3のコイルと前記第4のコイルには、前記第1の駆動電流信号から前記第2の駆動電流信号を減算して重ね合わせた電流信号を印加するのである。
本実施形態の光偏向器においても、永久磁石がコイルに対向する面に配置されるのみであり、小型化が容易である。また、2つの回転軸に対して独立にねじり回転力を発生させることができ、更にねじり回転力の向きと回転軸のねじりの向きが一致するため、ねじり回転力の損失が無い。また、本実施形態でも、ジンバル上に形成されるコイルに電流信号を印加するだけで可動ミラーを2次元に角変位させることができる。その為、可動ミラー上にコイルなどの駆動手段を設ける必要がなく、可動ミラーの平坦性が良い。
(実施形態4)
実施形態4を説明する。本実施形態は、図16に示すジンバル構造を有する光偏向器の例である。図16(a)は本実施形態の光偏向器の構成を示す上面図であり、図16(b)は一部の構成部材を不図示とした下面図である。図16(c)は、図16の光偏向器のc‐c’断面図である。図17は、永久磁石の配置例を示す一部の構成部材を不図示とした上面図である。
本実施形態では、図16(a)乃至(c)に示す様に、ジンバル601の四隅のうち、コイル606とコイル607が一対の対角位置となり、またコイル609とコイル610が他対の対角位置となる様に配置する。そして、コイル606とコイル607の巻き方向が同じ向きになる様に形成し、コイル609とコイル610の巻き方向も同じ向きになる様に形成する。従って、コイル606に対向配置される永久磁石とコイル607に対向配置される永久磁石は、磁極方向が逆になる様に配置される。コイル609に対向配置される永久磁石とコイル610に対向配置される永久磁石も、磁極方向が逆になる様に配置される。このコイルの巻き方向が同じ場合にも、永久磁石は1つでもよく、例えば、図17の様に配置される。その他の点は、実施形態3と同じである。
(実施形態5)
実施形態5を説明する。本実施形態では、図18と図19に示すジンバル構造を有する光偏向器を設計、製作した。本実施形態は、実施形態1で説明した構造に薄膜構造体1101、1102を付加したことを特徴する。図18は本実施形態の光偏向器の構成を示す上面図、図19は図18の光偏向器のA‐A’断面図である。図20は、薄膜構造体の効果を説明する図である。これらの図では、コイルと薄膜構造体以外の要素には符号を付していない。
薄膜構造体1101、1102を除く構成は実施形態1の構成と同じであり、実施形態1で説明した電流信号と駆動方法を用いて同様の作用・効果が得られる。
本実施形態において、薄膜構造体1101、1102とコイル1103、1104とは、同じ材料で構成され、且つ形状も両者は略同じであり、ジンバルとの間に生じる形成時の残留応力及び熱膨張変形は等しい。すなわち、後述する効果を充分発揮するために、薄膜構造体1101、1102は、コイル1103、1104と同じ金属材料で構成され、コイルの形状となっている。ジンバルは熱伝導性能の良い単結晶シリコンで構成することができる。従って、コイル1103、1104に電流を印加することで熱が生じた場合、コイルとジンバルと薄膜構造体とは略同じ温度になる。また、コイル1103、1104がジンバルの表面に形成されるのに対して、薄膜構造体1101、1102は、ジンバルの下面に形成される。更に、コイル1103、1104と薄膜構造体1101、1102とは、夫々、第1のトーションバー及び第2のトーションバーの延長線により4分割される領域の対角位置に局在する。
このコイルと薄膜構造体の上記配置の例では、次の効果も期待できる。
(1)コイルとジンバルの間に生じる形成時の残留応力による撓みと、薄膜構造体とジンバルの間に生じる形成時の残留応力による撓みとが、ミラーと第1及び第2のトーションバーにおいて打ち消し合って、撓みを生じない。また、(2)コイルに電流を印加することで生じる熱によってジンバルとの間に生じる熱膨張変形と、薄膜構造体とジンバルとの間に生じる熱膨張変形とが、ミラーと第1及び第2のトーションバーにおいて打ち消し合って、撓みを生じない。これにより、第1及び第2のトーションバーによる回転軸の位置が変化せず、ミラーの平坦性が維持される。この模様が図 20(a)に示されている。
この(1)、(2)の効果により、ミラーは第1及び第2のトーションバーを回転軸として所望の態様で角変位運動することが可能となり、可動ミラーにより光ビームを2次元に正確に走査できる。これに対して、薄膜構造体1101、1102を形成しない場合には、残留応力及び熱膨張変形により、図20(b)に示す如くミラーと第1及び第2のトーションバーは撓みを生じることがある。
(実施形態6)
実施形態6は、本発明による光偏向器を用いた画像表示装置である画像表示装置の例である。図21に本実施形態の構成を示す。本実施形態の画像表示装置では、光源変調駆動部1001から出た変調信号1002により、直接変調光源1003の変調を行なう。ここでは、直接変調光源1003として、赤色の半導体レーザーを用いた。直接変調光源1003は、赤色、青色、緑色の直接変調可能な光源を用い、これらを混色光学系にて混色して用いてもよい。直接変調光源1003から直接変調された出力光1004は、光偏向器1005の反射面に照射される。光偏向器1005により偏向された反射光は、補正光学系1006を通って、画像表示体1007上に画像として表示される。補正光学系1006は、共振走査による画像の歪みを補正する光学系である。
光偏向器1005は上記実施形態による光偏向器であり、光偏向器1005を用いて出力光1004をラスタ走査することにより、光照射面である画像表示体1007に画像を表示することができる。
この様に、光源からの光を本発明のコンパクトな揺動体装置により偏向し、光の少なくとも一部を光照射面上に入射させる本実施形態の画像表示装置は、コンパクトな構成を有する。また、低電圧で駆動でき、偏向角が大きく高精細な画像が得られる画像表示装置を実現できる。
本発明の揺動体装置の応用例である光偏向器の実施形態1の一例を示す図である。 図1の光偏向器の変形例を示す図である。 図1の光偏向器の実施形態1のコイルが発生する磁場方向を説明する図である。 図1の光偏向器の実施形態1の駆動電流を説明する図である。 図1の光偏向器の実施形態1の駆動方法を説明する図である。 本発明の光偏向器の実施形態2の一例を示す上面図である。 本発明の光偏向器の実施形態2の断面図である。 本発明の光偏向器の実施形態3の一例を示す下面図である。 本発明の光偏向器の実施形態3の永久磁石の配置例を示す図である。 本発明の光偏向器の実施形態3の永久磁石の他の配置例を示す図である。 本発明の光偏向器の実施形態3の駆動方法の一例を説明する図である。 本発明の光偏向器の実施形態3の駆動方法の一例を説明する図である。 本発明の光偏向器の実施形態3の駆動電流の一例を説明する図である。 本発明の光偏向器の実施形態3の2次元走査の一例を説明する図である。 本発明の光偏向器の駆動回路の例を説明する図である。 本発明の光偏向器の実施形態4の一例を示す図である。 本発明の光偏向器の実施形態4の永久磁石の配置例を示す図である。 本発明の光偏向器の実施形態5の一例を示す上面図である。 本発明の光偏向器の実施形態5の断面図である。 本発明の光偏向器の実施形態5の作用効果を説明する図である。 本発明の光偏向器を用いた画像表示装置の一例を示す図である。 従来例を示す図である。 その他の従来例を示す図である。
符号の説明
101、505、601 第2の揺動体(ジンバル)
102、504、602 第1の揺動体(可動ミラー)
103、506、603 第1のトーションスプリング
104、508、604 支持体
105、507、605 第2のトーションスプリング
106、107、510、606、607、609、610、1103、1104 コイル
110、513、614 磁場発生手段(永久磁石)
701、702、703、704 電流印加手段(トランジスタ)
1003 光源(直接変調光源)
1005 揺動体装置(光偏向器)
1007 光照射面(画像表示体)

Claims (10)

  1. 第1の揺動体と、
    前記第1の揺動体を第1のトーションスプリングにより第1の回転軸の回りにねじり回転可能に支持する第2の揺動体と、
    前記第2の揺動体を第2のトーションスプリングにより前記第1の揺動体の第1の回転軸と角度を成す第2の回転軸の回りにねじり回転可能に支持する支持体と、
    前記第2の揺動体に配置されるコイルと、
    前記コイルに電流信号を印加する電流印加手段と、
    前記コイルに磁場を作用させる磁場発生手段と、
    を有する揺動体装置であって、
    前記コイルが、前記第1の揺動体を周回せず、且つ前記第1及び第2の回転軸の延長線により4分割された前記第2の揺動体の領域の少なくとも1つに局在して設けられる、
    ことを特徴とする揺動体装置。
  2. 前記コイルが、2つのコイルからなり、
    前記2つのコイルが、夫々、前記4分割された領域のうち一対の対角な位置関係にある領域に配置される、
    ことを特徴とする請求項1に記載の揺動体装置。
  3. 2つの薄膜構造体を有し、
    前記2つのコイルが、前記第2の揺動体の一方の面に配置され、
    前記2つの薄膜構造体が、前記第2の揺動体の他方の面において、前記コイルが形成される領域と異なる他対の対角な位置関係にある領域に局在して設けられる、
    ことを特徴とする請求項2に記載の揺動体装置。
  4. 前記コイルが、第1のコイルと第2のコイルと第3のコイルと第4のコイルからなり、
    前記4分割された領域のうち、第1のコイルと第2のコイルが一対の対角な位置関係にある領域に配置され、第3のコイルと第4のコイルが他対の対角な位置関係にある領域に配置される、
    ことを特徴とする請求項1に記載の揺動体装置。
  5. 前記第1のコイルと前記第2のコイルが電気的に接続され、前記第3のコイルと前記第4のコイルとが電気的に接続されている、
    ことを特徴とする請求項4に記載の揺動体装置。
  6. 前記磁場発生手段が永久磁石である、
    ことを特徴とする1乃至5のいずれかに記載の揺動体装置。
  7. 前記電流信号が、前記第1の揺動体を前記第2の揺動体に対してねじり回転させる第1の駆動電流信号と、前記第2の揺動体を前記支持体に対してねじり回転させる第2の駆動電流信号から成る、
    ことを特徴とする請求項1乃至6のいずれかに記載の揺動体装置。
  8. 請求項1乃至7のいずれかに記載の揺動体装置の前記第1の揺動体に、光偏向素子を設けたことを特徴とする光偏向器。
  9. 光源と、請求項8に記載の光偏向器として構成される揺動体装置と、光照射面とを有し、
    前記光源からの光を前記揺動体装置により偏向し、該光の少なくとも一部を光照射面上に入射させることを特徴とする画像表示装置。
  10. 請求項4または5に記載の揺動体装置の駆動方法であって、
    前記電流信号を、前記第1の揺動体を前記第2の揺動体に対してねじり回転させる第1の周期を有する周期信号の第1の駆動電流信号と、前記第2の揺動体を前記支持体に対してねじり回転させる第2の周期を有する周期信号の第2の駆動電流信号とから成る様にし、
    前記第1のコイルと前記第2のコイルには、前記第1の駆動電流信号と前記第2の駆動電流信号とを加算して重ね合わせた電流信号を印加し、前記第3のコイルと前記第4のコイルには、前記第1の駆動電流信号から前記第2の駆動電流信号を減算して重ね合わせた電流信号を印加する、
    ことを特徴とする揺動体装置の駆動方法。
JP2007039072A 2007-02-20 2007-02-20 揺動体装置、その駆動方法、光偏向器、及び光偏向器を用いた画像表示装置 Expired - Fee Related JP4928301B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007039072A JP4928301B2 (ja) 2007-02-20 2007-02-20 揺動体装置、その駆動方法、光偏向器、及び光偏向器を用いた画像表示装置
US12/032,246 US7777927B2 (en) 2007-02-20 2008-02-15 Oscillator device, method of driving the same, optical deflector and image display device using the same
KR1020080015222A KR100942338B1 (ko) 2007-02-20 2008-02-20 요동체 장치, 이의 구동 방법, 광 편향기, 및 이를 이용한화상 표시 장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007039072A JP4928301B2 (ja) 2007-02-20 2007-02-20 揺動体装置、その駆動方法、光偏向器、及び光偏向器を用いた画像表示装置

Publications (3)

Publication Number Publication Date
JP2008203497A JP2008203497A (ja) 2008-09-04
JP2008203497A5 JP2008203497A5 (ja) 2010-04-08
JP4928301B2 true JP4928301B2 (ja) 2012-05-09

Family

ID=39774396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007039072A Expired - Fee Related JP4928301B2 (ja) 2007-02-20 2007-02-20 揺動体装置、その駆動方法、光偏向器、及び光偏向器を用いた画像表示装置

Country Status (3)

Country Link
US (1) US7777927B2 (ja)
JP (1) JP4928301B2 (ja)
KR (1) KR100942338B1 (ja)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100141366A1 (en) 2008-12-04 2010-06-10 Microvision, Inc. Magnetically Actuated System
JP5157857B2 (ja) * 2008-12-05 2013-03-06 船井電機株式会社 振動ミラー素子
EP2194417B1 (en) * 2008-12-05 2012-04-18 Funai Electric Co., Ltd. Vibrating mirror element
US8159320B2 (en) 2009-09-14 2012-04-17 Meichun Ruan Latching micro-magnetic relay and method of operating same
US8305672B2 (en) * 2010-02-23 2012-11-06 Microvision, Inc. Magnetically actuated system
DE102010062591A1 (de) * 2010-12-08 2012-06-14 Robert Bosch Gmbh Magnetischer Aktor
CN103582840A (zh) * 2011-07-06 2014-02-12 日本电气株式会社 光学扫描装置、图像显示设备和光学扫描方法
JP5942225B2 (ja) * 2012-02-27 2016-06-29 ミツミ電機株式会社 アクチュエータ及び光走査装置
JP5850245B2 (ja) * 2012-03-26 2016-02-03 ブラザー工業株式会社 光スキャナ
WO2013168268A1 (ja) * 2012-05-10 2013-11-14 パイオニア株式会社 駆動装置
WO2013168271A1 (ja) * 2012-05-10 2013-11-14 パイオニア株式会社 駆動装置
WO2013168267A1 (ja) * 2012-05-10 2013-11-14 パイオニア株式会社 駆動装置
WO2013168275A1 (ja) * 2012-05-10 2013-11-14 パイオニア株式会社 駆動装置
WO2013168265A1 (ja) * 2012-05-10 2013-11-14 パイオニア株式会社 駆動装置
WO2013168269A1 (ja) * 2012-05-10 2013-11-14 パイオニア株式会社 駆動装置
WO2013168270A1 (ja) * 2012-05-10 2013-11-14 パイオニア株式会社 駆動装置
JPWO2013168485A1 (ja) * 2012-05-10 2016-01-07 パイオニア株式会社 駆動装置
JP6014234B2 (ja) * 2012-05-10 2016-10-25 パイオニア株式会社 駆動装置
WO2013168264A1 (ja) 2012-05-10 2013-11-14 パイオニア株式会社 駆動装置
WO2013168272A1 (ja) * 2012-05-10 2013-11-14 パイオニア株式会社 駆動装置
WO2013168274A1 (ja) * 2012-05-10 2013-11-14 パイオニア株式会社 駆動装置
WO2014020769A1 (ja) * 2012-08-03 2014-02-06 パイオニア株式会社 駆動装置
JP5949345B2 (ja) * 2012-09-04 2016-07-06 セイコーエプソン株式会社 アクチュエーター、光スキャナー、画像表示装置およびヘッドマウントディスプレイ
CN104919356B (zh) 2012-12-13 2017-06-06 苹果公司 用于监控扫描镜的方法以及机械扫描镜器件
KR101511145B1 (ko) * 2013-05-27 2015-04-10 주식회사 센플러스 전자력 구동 액추에이터
WO2014192123A1 (ja) * 2013-05-30 2014-12-04 パイオニア株式会社 剛体構造体
JP6550207B2 (ja) 2013-10-29 2019-07-24 セイコーエプソン株式会社 光スキャナー、画像表示装置、ヘッドマウントディスプレイおよびヘッドアップディスプレイ
JP2015087444A (ja) 2013-10-29 2015-05-07 セイコーエプソン株式会社 光スキャナー、画像表示装置、ヘッドマウントディスプレイおよびヘッドアップディスプレイ
JP2015090431A (ja) * 2013-11-06 2015-05-11 キヤノン株式会社 表示装置
JPWO2015092907A1 (ja) * 2013-12-19 2017-03-16 パイオニア株式会社 駆動装置
US11555892B2 (en) * 2017-03-13 2023-01-17 Pioneer Corporation Drive device and distance measurement apparatus
JP7044498B2 (ja) * 2017-08-25 2022-03-30 日本信号株式会社 アクチュエータ
JP7386671B2 (ja) 2019-11-15 2023-11-27 日本信号株式会社 駆動装置及び駆動方法
CN214503997U (zh) * 2020-03-06 2021-10-26 台湾东电化股份有限公司 光学元件驱动机构

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3214583B2 (ja) * 1993-07-07 2001-10-02 富士電機株式会社 光偏向子
JP2987750B2 (ja) * 1995-05-26 1999-12-06 日本信号株式会社 プレーナ型電磁アクチュエータ
US7064879B1 (en) * 2000-04-07 2006-06-20 Microsoft Corporation Magnetically actuated microelectrochemical systems actuator
US6388789B1 (en) * 2000-09-19 2002-05-14 The Charles Stark Draper Laboratory, Inc. Multi-axis magnetically actuated device
JP2002307396A (ja) * 2001-04-13 2002-10-23 Olympus Optical Co Ltd アクチュエータ
US6765215B2 (en) * 2001-06-28 2004-07-20 Agilent Technologies, Inc. Super alloy ionization chamber for reactive samples
JP2003066362A (ja) * 2001-08-23 2003-03-05 Olympus Optical Co Ltd 光偏向器
JP3808756B2 (ja) 2001-11-09 2006-08-16 日本信号株式会社 プレーナ型電磁アクチュエータ
KR20030050798A (ko) * 2001-12-19 2003-06-25 주식회사 엘지이아이 자기구동 마이크로미러 및 그 제조방법과, 그를 이용한광스위치
US6894823B2 (en) * 2002-04-26 2005-05-17 Corning Intellisense Llc Magnetically actuated microelectromechanical devices and method of manufacture
US6989614B2 (en) 2002-08-21 2006-01-24 Canon Kabushiki Kaisha Oscillating device
JP3974068B2 (ja) * 2003-03-27 2007-09-12 日本信号株式会社 プレーナー型電磁アクチュエータ
JP2005287254A (ja) 2004-03-30 2005-10-13 Miyota Kk プレーナ型電磁アクチュエータ
US7442918B2 (en) * 2004-05-14 2008-10-28 Microvision, Inc. MEMS device having simplified drive
KR100694599B1 (ko) * 2006-03-29 2007-03-14 삼성전자주식회사 메카닉 필터를 구비한 엑츄에이터

Also Published As

Publication number Publication date
US20080231930A1 (en) 2008-09-25
KR100942338B1 (ko) 2010-02-12
KR20080077580A (ko) 2008-08-25
US7777927B2 (en) 2010-08-17
JP2008203497A (ja) 2008-09-04

Similar Documents

Publication Publication Date Title
JP4928301B2 (ja) 揺動体装置、その駆動方法、光偏向器、及び光偏向器を用いた画像表示装置
JP4232835B2 (ja) アクチュエータ、光スキャナおよび画像形成装置
JP2005173411A (ja) 光偏向器
WO2012070610A1 (ja) 光走査装置
US7684102B2 (en) Oscillator device and image forming apparatus using the same
KR20140145074A (ko) 광학 디바이스, 광스캐너 및 화상 표시 장치
JP2005148459A (ja) 2次元光スキャナ及び光学装置
JP4392410B2 (ja) 電磁力駆動スキャニングマイクロミラー及びこれを使用した光スキャニング装置
JP6075062B2 (ja) アクチュエーター、光スキャナーおよび画像形成装置
JP4720723B2 (ja) 光学デバイス、光スキャナ、および画像形成装置
KR100941798B1 (ko) 스캐닝 마이크로미러
JP2009109778A (ja) ミラーデバイス
JP2008228436A (ja) アクチュエータ、光スキャナおよび画像形成装置
JP2009198702A (ja) 揺動構造体、及び揺動構造体を用いた揺動体装置
JP2012242595A (ja) 光走査装置、および、画像表示装置
JP2006072251A (ja) プレーナ型アクチュエータ
JP5092406B2 (ja) アクチュエータ、光スキャナおよび画像形成装置
JP2014048615A (ja) アクチュエーター、光スキャナー、画像表示装置およびヘッドマウントディスプレイ
JP2013097026A (ja) アクチュエーター、光スキャナーおよび画像形成装置
JP5045611B2 (ja) アクチュエータ、光スキャナおよび画像形成装置
JP4720729B2 (ja) 光学デバイス、光スキャナ、および画像形成装置
WO2013121774A1 (ja) 光走査素子および画像表示装置
JP4984988B2 (ja) アクチュエータ、光スキャナおよび画像形成装置
KR100789574B1 (ko) 스캐닝 마이크로미러
JP2009210947A (ja) 光走査装置、及びこれを用いた光学機器

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100218

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees