WO2013168267A1 - 駆動装置 - Google Patents

駆動装置 Download PDF

Info

Publication number
WO2013168267A1
WO2013168267A1 PCT/JP2012/062043 JP2012062043W WO2013168267A1 WO 2013168267 A1 WO2013168267 A1 WO 2013168267A1 JP 2012062043 W JP2012062043 W JP 2012062043W WO 2013168267 A1 WO2013168267 A1 WO 2013168267A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
axis
along
base
axis direction
Prior art date
Application number
PCT/JP2012/062043
Other languages
English (en)
French (fr)
Inventor
純 鈴木
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to PCT/JP2012/062043 priority Critical patent/WO2013168267A1/ja
Publication of WO2013168267A1 publication Critical patent/WO2013168267A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/101Scanning systems with both horizontal and vertical deflecting means, e.g. raster or XY scanners
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
    • G02B26/085Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD the reflecting means being moved or deformed by electromagnetic means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/105Scanning systems with one or more pivoting mirrors or galvano-mirrors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • H02K33/18Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with coil systems moving upon intermittent or reversed energisation thereof by interaction with a fixed field system, e.g. permanent magnets

Definitions

  • the present invention relates to a technical field of a driving device such as a MEMS scanner that rotates a driven object such as a mirror.
  • MEMS Micro Electro Mechanical System
  • a display field in which light incident from a light source is scanned with respect to a predetermined screen region to embody an image, or light reflected by scanning light with respect to a predetermined screen region.
  • a micro-structured mirror driving device optical scanner or MEMS scanner
  • a mirror driving device includes a fixed main body serving as a base, a mirror that can rotate around a predetermined rotation axis, and a torsion bar (twisting member) that connects or joins the main body and the mirror.
  • the structure provided is known (refer patent document 1).
  • a configuration in which a mirror is driven using a coil and a magnet is generally used.
  • a configuration in which a coil is directly attached to the mirror so as to surround the mirror can be given as an example.
  • a force in the rotational direction is applied to the mirror by the interaction between the magnetic field generated by passing a current through the coil and the magnetic field of the magnet, and as a result, the mirror is rotated.
  • Patent Document 1 described above a configuration is adopted in which the coil and the magnet are arranged so as to cause distortion in the twisting direction (in other words, the rotation axis direction of the mirror) of the torsion bar.
  • the torsion bar is distorted in the twisting direction due to the interaction between the magnetic field generated by passing a current through the coil and the magnetic field of the magnet, and the distortion in the twisting direction of the torsion bar rotates the mirror.
  • the coil since the coil is arranged so as to surround the mirror, the coil becomes relatively large. As a result, the magnet for applying a magnetic field to the coil is also relatively large. This causes a technical problem that the magnetic gap between the coil and the magnet becomes large and the MEMS scanner cannot be downsized.
  • the coil since the coil is arranged so as to surround the mirror, the arrangement of the magnet is limited or it is difficult to arrange the magnet at a suitable position. Specifically, since the reflection of light by the mirror is hindered, it is possible to arrange a magnet above the center of the coil (specifically, above the inside of the coil winding (that is, above the mirror). Have difficulty.
  • the present invention uses a coil and a magnet to drive a mirror (or a driven object to be rotated) while driving a relatively small driving device (that is, It is an object to provide a MEMS scanner.
  • the drive device connects the first base portion, the second base portion supported by the first base portion, the first base portion and the second base portion, and A first elastic portion having elasticity that rotates the second base portion about an axis along another direction as a rotation axis, a rotatable driven portion, and the second base portion and the driven portion are connected to each other.
  • a second elastic part having elasticity that rotates the driven part about an axis along one direction different from the other direction as a rotation axis, and a coil disposed on the second base part
  • the driving apparatus of the present embodiment connects the first base portion, the second base portion supported by the first base portion, the first base portion and the second base portion, and the second base portion.
  • the first base portion serving as the base and the second base portion supported by the first base portion have the first elastic portion having elasticity (for example, a first torsion bar described later). Etc.) directly or indirectly.
  • the second base portion and a driven portion (for example, a mirror described later) rotatably arranged are directly or by a second elastic portion (for example, a second torsion bar described later) having elasticity. Connected indirectly.
  • the second base portion has elasticity of the first elastic portion (for example, elasticity that allows the second base portion to rotate about an axis along another direction (for example, an X-axis direction described later) as a rotation axis).
  • an axis along another direction different from one direction is rotated as a rotation axis. Therefore, the driven part connected via the second base part and the second elastic part also rotates about the axis along the other direction as the rotation axis.
  • the driven part is made by the elasticity of the second elastic part (for example, the elasticity that the driven part can be rotated about an axis along one direction (for example, a Y-axis direction described later) as a rotation axis).
  • the axis along one direction is rotated as a rotation axis. That is, the driving device of the present embodiment can perform biaxial driving of the driven part.
  • the drive apparatus of this embodiment may perform multi-axis drive (for example, 3-axis drive, 4-axis drive,...) Of the driven part.
  • the coil part is arranged so that the center of the coil part is located at a position offset along one direction from the rotation axis of the second base part.
  • the rotation axis of the coil portion along the other direction is located at a position shifted along one direction from the rotation axis of the second base portion along the other direction.
  • the second base portion (in other words, the second base portion) has an axis along the other direction as a rotation axis due to the force caused by the electromagnetic interaction between the coil portion and the magnetic field applying portion.
  • the driven part supported by the rotation.
  • the driving force for rotating the second base portion about the axis along the other direction as the rotation axis is an electromagnetic force resulting from the electromagnetic interaction between the coil portion and the magnetic field applying portion.
  • the driven part rotates about the axis along one direction as a rotation axis by the force caused by the electromagnetic interaction between the coil part and the magnetic field applying part.
  • the driving force for the driven part to rotate with the axis along one direction as the rotation axis is an electromagnetic force resulting from the electromagnetic interaction between the coil part and the magnetic field applying part.
  • the coil portion is supplied with a control current for rotating the second base portion about the axis along the other direction as the rotation axis.
  • This control current may be, for example, an alternating current having a frequency that is the same as or synchronized with a frequency (in other words, a cycle) at which the second base portion rotates about an axis along another direction as a rotation axis.
  • the coil portion is supplied with a control current for rotating the driven portion about the axis along one direction as a rotation axis.
  • This control current is preferably an alternating current having a frequency that is the same as or synchronized with a frequency (in other words, a cycle) at which the driven part rotates about an axis along one direction as a rotation axis.
  • the control current is the resonance frequency of the driven part determined by the driven part and the second elastic part (more specifically, the driven frequency determined by the moment of inertia of the driven part and the torsion spring constant of the second elastic part). It is preferable that the alternating current has the same frequency as the resonance frequency of the part or a synchronized frequency.
  • a magnetic field is applied to the coil unit from the magnetic field applying unit.
  • a Lorentz force is generated in the coil portion due to electromagnetic interaction between the control current supplied to the coil portion and the magnetic field applied by the magnetic field applying portion. Due to this Lorentz force, the second base portion rotates with an axis along the other direction as a rotation axis.
  • the rotation axis of the coil portion along the other direction is located at a position shifted along one direction from the rotation axis of the second base portion along the other direction. For this reason, it occurs in the rotating part (rotating body rotation support center) of the second base part along the other direction, the center of gravity of the whole second base part including the coil part (rotating body center of gravity), and the coil part. At least two of the Lorentz force centers (rotational force centers) are displaced along one direction. The Lorentz force generated in the coil portion due to such deviation (that is, unbalance) acts to cause the second base portion to deform and vibrate. As a result, along with the deformation vibration of the second base portion, the driven portion rotates about the axis along one direction as the rotation axis.
  • a couple of forces (in other words, a rotational force) is applied to the coil portion with the center of the coil portion as the rotation axis.
  • the center of the rotation axis of the second base portion is not a couple but a so-called translational force (that is, a coil portion winding). Force acting in a direction perpendicular to the plane including the line or the second base portion).
  • the coil portion is arranged on one side of the driven portion, the translational force is generated as a result of the deformation of the second base portion and the axis along one direction. The rotation of the driven part as the rotation axis is realized.
  • the coil portion is disposed on the second base portion so that the driven portion is disposed outside the winding.
  • the coil part is arranged on the second base part so that the driven part is not arranged inside the winding. That is, the coil part is disposed at a position offset in a predetermined direction (for example, another direction (for example, an X-axis direction described later)) from a position where the driven part is disposed. More specifically, the coil portion is arranged such that the center of the coil portion (for example, the center of the winding) is disposed at a position offset in a predetermined direction from the position where the center of the driven portion is disposed. Arranged on the part.
  • a coil part is arrange
  • the driven part is located outside the winding of the coil part. Therefore, the coil part may not be arranged so as to surround the driven part.
  • the size of the coil portion (for example, the diameter of the winding or the length of the winding) is relatively compared to the case where the coil portion is disposed so as to surround the driven portion. Can be small.
  • the size of the coil portion (for example, the diameter of the winding wire or the length of the winding wire) can be relatively reduced regardless of the size of the driven portion.
  • the size of the magnetic field application part for example, magnet for applying a magnetic field to the coil part can also be relatively reduced.
  • a magnetic gap between a coil part and a magnetism giving part is set. It can be made relatively small. Therefore, in the present embodiment, the size of the driving device can be suitably reduced as compared with the case where the coil portion is disposed so as to surround the driven portion.
  • the coil part does not have to be arranged so as to surround the driven part. Therefore, the arrangement of the magnetic field applying part is compared with the driving device in which the coil part is arranged so as to surround the driven part. The degree of freedom becomes relatively high. For this reason, a magnetic field provision part can be arrange
  • the coil portion is located at a position shifted along one direction from the rotation axis of the second base portion along the other direction. Therefore, in this embodiment, as will be described in detail later with reference to the drawings, a magnetic field applying unit for applying a magnetic field that crosses the coil unit along one direction and a magnetic field that crosses the coil unit along the other direction. Even if the magnetic field applying unit for applying the power is not separately and independently disposed, the driven portion is driven in two axes. In other words, in this embodiment, for example, if a magnetic field application unit that applies a magnetic field across the coil unit along one direction is disposed, the driven unit is driven in two axes.
  • the driven part in addition to the coil part in which the driven part is located outside the winding, the driven part may further include another coil part located inside the winding. That is, it is not required that the driven part is located outside the windings of all the coil parts included in the driving device. In other words, it suffices if the driven part is located outside the winding of at least one of the coil parts of the driving device.
  • a plurality of coil parts may be constituted by a single winding. Even in this case, after substantially distinguishing each of a plurality of coil parts constituted by a single winding according to the arrangement position, shape, etc., a plurality of coil parts constituted by a single winding While the driven part is located outside the winding of one of the coil parts, the driven part is driven inside the winding of the other coil part of a plurality of coil parts composed of a single winding. The part may be located.
  • the magnetic field application unit includes a pair of magnetic bodies that sandwich the coil unit along the one direction.
  • a magnetic field applying unit for applying a magnetic field crossing the coil unit along one direction and a magnetic field crossing the coil unit along the other direction are applied. Even if the magnetic field applying unit for performing this is not separately and independently arranged, the driven part is driven in two axes. In other words, in this embodiment, for example, if a magnetic field application unit that applies a magnetic field across the coil unit along one direction is disposed, the driven unit is driven in two axes.
  • the pair of magnetic bodies are (i) the two sides facing the one direction of the coil section. A magnetic field is applied, and the pair of magnetic bodies does not apply the magnetic field to (ii-1) two sides facing the other direction of the coil part, or (ii-2) the coil part
  • the leakage flux of the magnetic field applied to the two sides facing along the one direction of the coil portion is applied to the two sides facing along the other direction. May be.
  • the driven unit is driven in two axes.
  • the rotation axis of the coil portion along the one direction is different from the rotation axis of the driven portion along the one direction.
  • the rotation axis along one direction of the coil part (however, in this embodiment, (i) the actual rotation when the coil part actually rotates with the axis along one direction as the rotation axis) A rotation axis, or (ii) a virtual rotation axis when the coil portion is assumed to rotate with an axis along one direction as the rotation axis) and one of the driven parts It is not necessary to match the rotation axis along the direction. For this reason, compared with the drive device which needs to make the rotating shaft along one direction of a coil part and the rotating shaft along one direction of a driven part correspond, the freedom degree of arrangement of a driven part is Relatively high. For this reason, the driven part is easily located outside the winding of the coil part. Therefore, the various effects described above are suitably realized.
  • the rotation axis along one direction of the coil part is preferably shifted along the other direction from the rotation axis along one direction of the driven part. That is, the coil part is arranged on the second base part so that the center of the coil part (for example, the center of the winding) is arranged at a position shifted from the center of the driven part along the other direction. Preferably it is.
  • the Lorentz force generated in the coil unit due to the electromagnetic interaction between the control current supplied to the coil unit and the magnetic field applied by the magnetic field applying unit The coil portion rotates with the axis along the other direction as a rotation axis, and due to the rotation of the coil portion with the axis along the other direction as the rotation axis, the second base portion is The second base portion is rotated along the other direction due to the rotation of the coil portion with the axis along the other direction as the rotation axis and the axis along the other direction as the rotation axis.
  • the vibration is deformed in a standing wave shape, and the driven portion rotates about the axis along the one direction as a rotation axis due to the deformation vibration of the second base portion.
  • the driven part rotates about the axis along one direction as the rotation axis by the force caused by the electromagnetic interaction between the coil part and the magnetic field applying part, and along the other direction.
  • the second base portion rotates with the shaft as a rotation axis.
  • the coil portion is supplied with a control current for rotating the second base portion about the axis along the other direction as a rotation axis.
  • the coil portion is supplied with a control current for rotating the driven portion about the axis along one direction as a rotation axis.
  • a magnetic field is applied to the coil unit from the magnetic field applying unit. For this reason, due to the electromagnetic interaction between the control current supplied to the coil unit and the magnetic field applied by the magnetic field applying unit, a Lorentz force is generated in the coil unit.
  • the coil portion rotates about the axis along the other direction as a rotation axis (more specifically, reciprocatingly drives to rotate).
  • Lorentz forces acting in different directions are simultaneously applied to the two sides of the coil unit facing along one direction. It is preferable to add.
  • the Lorentz force applied to the coil portion at a certain timing is a force that acts as an upward force on one of the two sides of the coil portion that are opposed in one direction and is in one direction. It is preferable that the force acts as a downward force on the other side of the two sides of the coil portion facing along.
  • the Lorentz force applied to the coil portion at another timing that is in tandem with the one timing is a force that acts as a downward force on one of the two sides of the coil portion that are opposed along the one direction. It is preferable that the force acts as an upward force on the other of the two sides of the coil portion facing in the one direction.
  • the coil portion rotates with an axis along another direction as a rotation axis.
  • the second base part on which the coil part is arranged rotates about the axis along the other direction as the rotation axis.
  • the rotation axis of the coil portion along the other direction is shifted to the position shifted along the one direction from the rotation axis of the second base portion along the other direction. positioned. For this reason, it occurs in the rotating part (rotating body rotation support center) of the second base part along the other direction, the center of gravity of the whole second base part including the coil part (rotating body center of gravity), and the coil part. At least two of the Lorentz force centers (rotational force centers) are displaced along one direction. The Lorentz force generated in the coil portion due to such deviation (that is, unbalance) acts to cause the second base portion to deform and vibrate.
  • the second base portion on which the coil portion is disposed becomes a standing wave shape along the other direction (that is, the wave of the standing wave).
  • the coil portion includes not only a control current for rotating the second base portion with the axis along the other direction as a rotation axis, but also a driven portion with the axis along one direction as the rotation axis.
  • a control current for rotation is also supplied. That is, according to the control current for rotating the driven part about the axis along one direction as the rotation axis, the second base part has a standing wave shape along the other direction (that is, a standing wave shape).
  • Deformation vibration That is, the external appearance of the second base portion is deformed so that a part thereof becomes an antinode of deformation vibration and the other part becomes a node of deformation vibration. Due to the deformation vibration of the second base portion, a belly and a node appear along other directions. Since the deformation vibration of the second base portion is performed in accordance with a so-called standing wave waveform, the positions of its antinodes and nodes are substantially fixed. At this time, the deformation vibration of the second base portion may be resonance.
  • the resonance frequency at which the second base portion resonates that is, the frequency of deformation vibration of the base portion
  • the resonance frequency at which the second base portion resonates may be the same as the frequency at which the driven portion rotates (or the resonance frequency of the driven portion).
  • the driven part rotates about the axis along one direction as a rotation axis.
  • the driven part is driven by the resonance frequency of the driven part determined by the driven part and the second elastic part (more specifically, the driven frequency determined by the moment of inertia of the driven part and the torsion spring constant of the second elastic part). May be rotated with an axis along one direction as a rotation axis so as to resonate at a resonance frequency of the portion.
  • the rotation portion along the one direction of the coil portion and the rotation axis along the one direction of the driven portion are located at locations corresponding to the rotation axis.
  • the driven part is connected to the location corresponding to the node in the deformation vibration of the second base part.
  • a coil portion is disposed at a location corresponding to a node in the deformation vibration of the second base portion.
  • the driven part rotates the axis along the one direction using the deformation vibration of the second base part caused by the rotation of the coil part whose axis is the axis along the one direction. It preferably rotates as a shaft.
  • the second base portion deforms and vibrates in a higher order vibration mode, it corresponds to the rotational direction of the driven portion and the driven portion with the axis along one direction as the rotation axis (for example, the driven portion
  • the rotation direction of the second base portion may be reversed.
  • the rotation direction of the coil portion having the axis along one direction as the rotation axis and the rotation direction of the driven portion having the axis along the one direction as the rotation axis may be the same direction.
  • a relatively small driving device that drives the driven object using the coil unit and the magnetic field applying unit is provided.
  • FIG. 1 is a plan view conceptually showing the structure of the MEMS scanner 101 according to the first embodiment.
  • the MEMS scanner 101 includes a base 110, torsion bars 120a and 120b, a mirror 130, a coil 140, and magnets 151 and 152.
  • the base 110 has a frame shape with a gap inside. That is, the base 110 has two sides extending in the Y-axis direction in FIG. 1 and two sides extending in the X-axis direction (that is, a direction orthogonal to the Y-axis direction) in FIG. It has a frame shape having a gap surrounded by two sides extending in the axial direction and two sides extending in the X-axis direction.
  • the base 110 has a square shape, but is not limited thereto, and other shapes (for example, a rectangular shape such as a rectangle or a circular shape) may be used. You may have.
  • the base 110 is a structure that is the basis of the MEMS scanner 101 according to the first embodiment, and is fixed to a substrate or a support member (not shown) (in other words, the inside of the system called the MEMS scanner 100). Is preferably fixed). Alternatively, the base 110 may be suspended by a suspension (not shown).
  • FIG. 1 shows an example in which the base 110 has a frame shape
  • the base 110 may have a U-shape in which a part of the base 110 is an opening.
  • the base 110 may have a box shape with a gap inside. That is, the base 110 is defined by two surfaces distributed on a plane defined by the X axis and the Y axis, and the X axis and a Z axis (not shown) (that is, an axis orthogonal to both the X axis and the Y axis).
  • Each of the torsion bars 120a and 120b is an elastic member such as a spring made of silicon, copper alloy, iron alloy, other metal, resin, or the like.
  • Each of the torsion bars 120a and 120b is arranged to extend in the Y-axis direction in FIG.
  • each of the torsion bars 120a and 120b has a shape having a long side extending in the Y-axis direction and a short side extending in the X-axis direction.
  • each of the torsion bars 120a and 120b may have a shape having a short side extending in the Y-axis direction and a long side extending in the X-axis direction depending on the setting state of the resonance frequency described later. .
  • each of the torsion bars 120 a and 120 b is connected to the base 110.
  • the other end of each of the torsion bars 120 a and 120 b is connected to the mirror 130. That is, the torsion bars 120a and 120b suspend the mirror 130 so as to sandwich the mirror 130 therebetween.
  • the mirror 130 is arranged to be suspended or supported by the torsion bars 120a and 120b in the gap inside the base 110.
  • the mirror 130 is configured to rotate about the axis along the Y-axis direction as a rotation axis by the elasticity of the torsion bars 120a and 120b.
  • the coil 140 is a plurality of windings made of, for example, a material having relatively high conductivity (for example, gold or copper).
  • the coil 140 has a rectangular shape.
  • the length of two sides along the X-axis direction (that is, the direction orthogonal to the direction of the rotation axis of the mirror 130) among the four sides of the coil 140 is the Y-axis direction among the four sides of the coil 140. That is, it is shorter than the length of two sides along the direction of the rotation axis of the mirror 130.
  • the coil 140 includes two long sides facing each other along the X-axis direction and two short sides facing each other along the Y-axis direction. That is, in the first embodiment, the coil 140 has a rectangular shape.
  • the coil 140 may have any shape (for example, a square, a rhombus, a parallelogram, a circle, an ellipse, or any other loop shape).
  • the coil 140 is disposed on the base 110.
  • the coil 140 has an X-axis direction (that is, a direction orthogonal to the direction of the rotation axis of the mirror 130) with reference to the position where the mirror 130 is disposed (particularly, the position where the center or the center of gravity of the mirror 130 is disposed).
  • the coil 140 is located at a position shifted by a predetermined distance along the center of the coil 140 (particularly, the center or the center of gravity of the coil 140 is located).
  • the coil 140 has a base so that the coil 140 is positioned at a position shifted by a predetermined distance along the Y-axis direction (that is, the direction of the rotation axis of the mirror 130) with respect to the position where the mirror 130 is disposed. 110 may be arranged. In addition, the coil 140 is disposed on the base 110 so that the mirror 130 and the coil 140 are aligned along the X-axis direction. As a result, the mirror 130 is positioned outside the winding wire that constitutes the coil 140. In other words, the mirror 130 is not positioned inside the winding wire constituting the coil 140.
  • the coil 140 is supplied with a control current for rotating the mirror 130 from the power supply via the power supply terminal 141 formed on the base 110.
  • the control current is typically an alternating current that includes a signal component having a frequency that is the same as or synchronized with the frequency at which the mirror 130 rotates with the axis along the Y-axis direction as the rotation axis.
  • the power source may be a power source provided in the MEMS scanner 101 itself, or may be a power source prepared outside the MEMS scanner 101.
  • Magnets 151 and 152 are arranged such that magnet 151 and magnet 152 are arranged along the X-axis direction.
  • the magnets 151 and 152 are arranged such that the magnet 151 and the magnet 152 sandwich the coil 140 along the X-axis direction.
  • one of the magnets 151 and 152 is the magnetic flux exit side, and the other of the magnets 151 and 152 is the magnetic flux entrance side.
  • description will be given using an example in which the magnet 151 is on the magnetic flux incident side and the magnet 152 is on the magnetic flux exit side.
  • FIG. 2 is a plan view and a cross-sectional view conceptually showing an operation mode of the MEMS scanner 101 according to the first embodiment.
  • FIGS. 3A and 3B are a plan view and a cross-sectional view conceptually showing a mode of operation by the MEMS scanner 101 according to the first embodiment.
  • FIG. 4 is a sectional view conceptually showing an operation mode of the MEMS scanner 101 according to the first embodiment.
  • a control current is supplied to the coil 140.
  • the control current includes a current component for rotating the mirror 130 about the axis along the Y-axis direction as a rotation axis.
  • the mirror 130 has a resonance frequency determined by the mirror 130 and the torsion bars 120a and 120b (more specifically, a resonance frequency determined by the moment of inertia of the mirror 130 and the torsion spring constant of the torsion bars 120a and 120b). In order to resonate, it rotates with the axis along the Y-axis direction as the rotation axis.
  • the resonance frequency determined by the mirror 130 and the torsion bars 120a and 120b is finely corrected in consideration of the mass and the moment of inertia of the base 110 that supports the torsion bars 120a and 120b.
  • the control current is an alternating current including a signal component having a frequency that is the same as or synchronized with the resonance frequency of the mirror 130.
  • the mirror 130 may rotate around the axis along the Y-axis direction at a frequency different from or not synchronized with the resonance frequency determined by the mirror 130 and the torsion bars 120a and 120b.
  • the control current is an alternating current including a signal component having a frequency that is the same as or synchronized with the frequency at which the mirror 130 rotates with the axis along the Y-axis direction as the rotation axis.
  • a magnetic field is applied to the coil 140 from the magnets 151 and 152.
  • the magnets 151 and 152 preferably apply a magnetic field to the two sides of the coil 140 facing in the X-axis direction. In this case, the magnets 151 and 152 do not need to apply a magnetic field to the two sides of the coil 140 facing in the Y-axis direction.
  • the magnets 151 and 152 may apply a magnetic field to the two sides of the coil 140 facing each other along the Y-axis direction.
  • the magnets 151 and 152 leak the magnetic field applied to the two sides of the coil 140 facing in the Y-axis direction with respect to the two sides of the coil 140 facing in the Y-axis direction. Only magnetic flux may be applied.
  • FIG. 2A the control current flowing in the clockwise direction in FIG. 2A is supplied to the coil 140, and the magnetic field from the magnet 152 toward the magnet 151 is applied to the coil 140.
  • FIG. 2B which is a drawing of the MEMS scanner 101 shown in FIG. 2A observed from the direction of arrow II, the two long sides of the coils 140 facing each other along the X-axis direction are shown.
  • a Lorentz force in the lower direction in FIG. 2B is generated on the long side on the right side (that is, the outside in FIG. 2A).
  • FIG. 2B which is a drawing of the MEMS scanner 101 shown in FIG. 2A observed from the direction of arrow II
  • the control current is an alternating current
  • the control current flowing in the counterclockwise direction in FIG. 3A is supplied to the coil 140 as shown in FIG.
  • a situation in which a magnetic field directed to the magnet 151 is applied to the coil 140 occurs following the situation shown in FIG.
  • FIG. 3B which is a drawing of the MEMS scanner 101 shown in FIG. 3A observed from the direction of arrow III
  • the two long sides of the coil 140 facing each other along the X-axis direction are shown.
  • a Lorentz force in the upper direction in FIG. 3B is generated on the long side on the right side (that is, the outer side in FIG. 3A).
  • FIG. 3B which is a drawing of the MEMS scanner 101 shown in FIG. 3A observed from the direction of arrow III
  • the coil 140 rotates about the axis along the Y-axis direction as a rotation axis (more specifically, reciprocatingly drives to rotate).
  • the rotation axis of the coil 140 along the Y-axis direction is different from the rotation axis of the mirror 130 along the Y-axis direction.
  • the rotation axis of the coil 140 along the Y-axis direction exists at a position shifted by a predetermined distance in the X-axis direction with respect to the rotation axis of the mirror 130 along the Y-axis direction. For this reason, the rotation of the coil 140 with the axis along the Y-axis direction as the rotation axis does not directly rotate the mirror 130 with the axis along the Y-axis direction as the rotation axis.
  • a slight vibration propagates from the coil 140 to the base 110 along with the rotation of the coil 140 whose axis is the axis along the Y-axis direction.
  • the base 110 on which the coil 140 is disposed deforms and vibrates in a standing wave shape (that is, in a standing wave shape) along the X-axis direction.
  • the base 110 deforms and vibrates so as to wave along the X-axis direction.
  • the appearance of the base 110 is deformed so that one part thereof becomes an antinode of deformation vibration and the other part becomes a node of deformation vibration.
  • the mirror 130 rotates about the axis along the Y-axis direction as a rotation axis. At this time, the mirror 130 rotates so as to resonate at a resonance frequency (for example, 20 kHz) determined according to the mirror 130 and the torsion bars 120a and 120b.
  • a resonance frequency for example, 20 kHz
  • the mirror 130 is Resonance frequency (or (1 / (2 ⁇ )) ⁇ ⁇ (k / I) specified by (1 / (2 ⁇ )) ⁇ ⁇ (k / I) N times or 1 / N times (however, N is rotated about an axis along the Y-axis direction so as to resonate at a resonance frequency of 1).
  • the base 110 is not deformed and oscillated along the X-axis direction. For this reason, the mirror 130 is also not rotated about the axis along the Y-axis direction as the rotation axis.
  • the base 110 140 oscillates and deforms along the X-axis direction so that a position corresponding to the rotation axis along the Y-axis direction of 140 (ie, a position located on the rotation axis along the Y-axis direction of the coil 140) becomes a node.
  • the base 110 has a portion corresponding to the rotation axis along the Y-axis direction of the mirror 130 (that is, a position located on the rotation axis along the Y-axis direction of the mirror 130) as a node.
  • the base 110 has an antinode such that an antinode exists between a location corresponding to the rotation axis along the Y-axis direction of the coil 140 and a location corresponding to the rotation axis along the Y-axis direction of the mirror 130. It begins to deform and vibrate along the axial direction. That is, antinodes and nodes appear along the X-axis direction due to the deformation vibration of the base 110.
  • the deformation vibration of the base 110 is performed in accordance with a so-called standing wave waveform, the positions of the antinodes and nodes are substantially fixed. At this time, the frequency of deformation vibration of the base 110 is typically the same as the resonance frequency of the mirror 130 described above.
  • the rigidity of the base 110 may be adjusted.
  • the rigidity of the base 110 may be relatively high and the rigidity of the base 110 may be relatively low.
  • a rib may be formed at a node portion of the base 110 and a rib may not be formed at a belly portion of the base 110.
  • the portion of the base 110 where the rib is formed has a relatively high rigidity, it is difficult to bend as the coil 140 rotates, whereas the portion of the base 110 where the rib is not formed has a rigidity. Since it is relatively low, it tends to bend as the coil 140 rotates.
  • the base 110 deforms and vibrates so as to wave along the direction of the X axis, with a portion where the rib is formed as a node and a portion where the rib is not formed as a belly.
  • the base 110 deforms and vibrates to have an appearance like a standing wave. That is, the base 110 has an appearance such that a standing wave appears along a direction orthogonal to the rotation axis of the mirror 130 (that is, the X-axis direction).
  • the mirror 130 rotates with the axis along the Y-axis direction as the rotation axis in accordance with the deformation vibration of the base 110.
  • the rotation direction of the coil 140 and the rotation direction of the mirror 130 are opposite to each other.
  • the mirror 130 in a state where the coil 140 is rotated counterclockwise, the mirror 130 is rotated clockwise.
  • FIGS. 4C to 4G when the coil 140 is rotating clockwise, the mirror 130 rotates counterclockwise.
  • the coil 140, the base 110, and the mirror 130 in the state shown in FIG. 4G subsequently transition to the state shown in FIG. 4A after passing through the state shown in FIG. Thereafter, the coil 140, the base 110, and the mirror 130 are deformed or rotated according to the time series shown in FIGS. 4 (a) to 4 (g).
  • the deformation mode of the base 110 shown in FIGS. 4A to 4G is merely an example, and the base 110 is deformed in another deformation mode (for example, a deformation mode having more nodes). You may vibrate.
  • 4 (a) to 4 (g) show an example in which the rotating direction of the coil 140 and the rotating direction of the mirror 130 are opposite to each other. Strictly speaking, this example can be expressed as an example in which the rotation direction of the coil 140 and the rotation direction of the base 110 in the portion supporting the mirror 130 are opposite to each other.
  • the base 110 when the base 110 is deformed and oscillated in a higher-order vibration mode (for example, a vibration mode in which the number of nodes and abdomen increases as compared with the state shown in FIGS. 4A to 4G).
  • a higher-order vibration mode for example, a vibration mode in which the number of nodes and abdomen increases as compared with the state shown in FIGS. 4A to 4G.
  • the rotation direction of the mirror 130 and the rotation direction of the base 110 in the portion supporting the mirror 130 may be reversed. That is, the rotation direction of the coil 140 and the rotation direction of the mirror 130 may be the same.
  • the MEMS scanner 101 of the first embodiment can rotate the mirror 130 about the axis along the Y-axis direction as the rotation axis. That is, the MEMS scanner 101 of the first embodiment can drive the mirror 130 uniaxially.
  • the mirror 130 is located outside the winding of the coil 140. Therefore, the coil 140 may not be disposed so as to surround the mirror 130.
  • the size of the coil 140 (for example, the diameter of the winding, the length of the winding, etc.) compared to the MEMS scanner of the comparative example in which the coil 140 is disposed so as to surround the mirror 130. Can be made relatively small. In other words, in the first embodiment, the size of the coil 140 can be relatively reduced regardless of the size of the mirror 130. As a result, the sizes of the magnets 151 and 152 for applying a magnetic field to the coil 140 can also be made relatively small.
  • the coil 140 and the magnets 151 and 152 are not related to each other regardless of the size of the mirror 130.
  • the magnetic gap can be made relatively small. Therefore, in the first embodiment, the MEMS scanner 101 can be reduced in size as compared with the comparative MEMS scanner in which the coil 140 is disposed so as to surround the mirror 130.
  • the coil 140 need not be arranged so as to surround the mirror 130.
  • positioning of the magnets 151 and 152 becomes relatively high.
  • the magnets 151 and 152 can be disposed above the center of the coil 140 (specifically, above the inside of the winding of the coil 140).
  • the magnets 151 and 152 do not block the optical path above the mirror 130. Therefore, the freedom degree of arrangement
  • torsion bars 120 a and 120 b connected to the mirror 130 are connected to locations corresponding to nodes in the deformation vibration of the base 110. That is, the part corresponding to the node in the deformation vibration of the base 110 coincides with the rotation axis of the mirror 130 along the Y-axis direction.
  • the coil 140 is disposed at a location corresponding to a node in the deformation vibration of the base 110. That is, the part corresponding to the node in the deformation vibration of the base 110 coincides with the rotation axis of the coil 140 along the Y-axis direction.
  • the vertical direction of the mirror 130 and the coil 140 (specifically, the direction perpendicular to the X-axis direction and the Y-axis direction, respectively, and perpendicular to the surface of the base 110) Axial movement) can be prevented. Therefore, highly accurate rotational driving of the mirror 130 can be realized.
  • the Lorentz force generated in the coil 140 is, for example, as described in Japanese Patent No. 4827993, “a slight vibration (that is, a force having no directivity, and the torsion bars 120a and 120b are applied to the mirror 130. As a force that does not directly act to twist in the direction of rotation). In this case, the Lorentz force is propagated to the base 110 as a slight vibration, so that the base 110 undergoes deformation vibration. That is, the Lorentz force as fine vibration appears in the form of deformation vibration of the base 110.
  • the Lorentz force generated in the coil 140 is disclosed, for example, on the website of the National Institute of Advanced Industrial Science and Technology (http://www.aist.go.jp/aist_j/press_release/pr2010/pr20100209/pr20100209.html). As shown, it may be propagated to the base 110 as a “Lamb wave”. In this case, the Lorentz force is propagated to the base 110 as a Lamb wave, so that the base 110 undergoes deformation vibration. The same applies to the following second to sixth embodiments.
  • FIG. 5 is a plan view conceptually showing the structure of the MEMS scanner 102 according to the second embodiment.
  • the MEMS scanner 101 includes a first base 110-1, a first torsion bar 120a-1, a first torsion bar 120b-1, and a second base 110-2. And a second torsion bar 120a-2, a second torsion bar 120b-2, a mirror 130, a coil 140, magnets 151 and 152, and magnets 161 and 162.
  • the first base 110-1 has a frame shape with a gap inside. That is, the first base 110-1 has two sides extending in the Y-axis direction in FIG. 5 and two sides extending in the X-axis direction (that is, a direction orthogonal to the Y-axis direction) in FIG. And a frame shape having a gap surrounded by two sides extending in the Y-axis direction and two sides extending in the X-axis direction.
  • the first base 110-1 has a square shape.
  • the first base 110-1 is not limited to this. For example, other shapes (for example, a rectangular shape such as a rectangle or a circular shape) Shape etc.).
  • the first base 110-1 is a structure that is the basis of the MEMS scanner 102 according to the second embodiment, and is fixed to a substrate or a support member (not shown) (in other words, the MEMS scanner 102). It is preferably fixed inside the system. Alternatively, the first base 110-1 may be suspended by a suspension (not shown) or the like.
  • FIG. 5 shows an example in which the first base 110-1 has a frame shape, but it goes without saying that the first base 110-1 may have other shapes.
  • the first base 110-1 may have a U-shape in which a part of the first base 110-1 is an opening.
  • the first base 110-1 may have a box shape with a gap inside. That is, the first base 110-1 is orthogonal to the two surfaces distributed on the plane defined by the X axis and the Y axis, and the Z axis (not shown) (that is, both the X axis and the Y axis).
  • the shape of the first base 110-1 may be arbitrarily changed according to the manner in which the mirror 130 is disposed.
  • Each of the first torsion bars 120a-1 and 120b-1 is an elastic member such as a spring made of, for example, silicon, copper alloy, iron alloy, other metal, resin, or the like.
  • Each of the first torsion bars 120a-1 and 120b-1 is disposed so as to extend in the X-axis direction in FIG. In other words, each of the first torsion bars 120a-1 and 120b-1 has a shape having a long side extending in the X-axis direction and a short side extending in the Y-axis direction.
  • each of the first torsion bars 120a-1 and 120b-1 has a shape having a short side extending in the X-axis direction and a long side extending in the Y-axis direction depending on the setting state of the resonance frequency described later. You may have.
  • One end of each of the first torsion bars 120a-1 and 120b-1 is connected to the first base 110-1.
  • the other ends of the first torsion bars 120a-1 and 120b-1 are connected to the second base 110-2.
  • the first torsion bars 120a-1 and 120b-1 suspend the second base 110-2 so as to sandwich the second base 110-2 therebetween.
  • the second base 110-2 has a frame shape with a gap inside. That is, the second base 110-2 has two sides extending in the Y-axis direction in FIG. 5 and two sides extending in the X-axis direction in FIG. It has a frame shape having a gap surrounded by the side and two sides extending in the X-axis direction. In the example shown in FIG. 5, the second base 110-2 has a square shape. However, the second base 110-2 is not limited to this. For example, other shapes (for example, a rectangular shape such as a rectangle or a circular shape) Shape etc.).
  • the second base 110-2 is arranged to be suspended or supported by the first torsion bars 120a-1 and 120b-1 in the gap inside the first base 110-1.
  • the second base 110-2 is configured to rotate about the axis along the X-axis direction by the elasticity of the first torsion bars 120a-1 and 120b-1.
  • FIG. 5 shows an example in which the second base 110-2 has a frame shape
  • the second base 110-2 may have other shapes.
  • the second base 110-2 may have a U-shape in which a part of the second base 110-2 is an opening.
  • the second base 110-2 may have a box shape with a gap inside. That is, the second base 110-2 is orthogonal to the two surfaces distributed on the plane defined by the X axis and the Y axis, and the Z axis (not shown) (that is, both the X axis and the Y axis).
  • the shape of the second base 110-2 may be arbitrarily changed according to the manner in which the mirror 130 is disposed.
  • Each of the second torsion bars 120a-2 and 120b-2 is a member having elasticity such as a spring made of, for example, silicon, copper alloy, iron alloy, other metal, resin, or the like.
  • Each of second torsion bars 120a-2 and 120b-2 is arranged to extend in the Y-axis direction in FIG. In other words, each of the second torsion bars 120a-2 and 120b-2 has a shape having a long side extending in the Y-axis direction and a short side extending in the X-axis direction.
  • each of the second torsion bars 120a-2 and 120b-2 has a shape having a short side extending in the Y-axis direction and a long side extending in the X-axis direction, depending on the setting state of the resonance frequency described later. You may have.
  • One end of each of the second torsion bars 120a-2 and 120b-2 is connected to the second base 110-2.
  • the other ends of the second torsion bars 120 a-2 and 120 b-2 are connected to the mirror 130. That is, the second torsion bars 120a-2 and 120b-2 suspend the mirror 130 so as to sandwich the mirror 130 therebetween.
  • the mirror 130 is arranged to be suspended or supported by the second torsion bars 120a-2 and 120b-2 in the gap inside the second base 110-2.
  • the mirror 130 is configured to rotate about the axis along the Y-axis direction as a rotation axis by the elasticity of the second torsion bars 120a-2 and 120b-2.
  • the coil 140 is a plurality of windings made of, for example, a material having relatively high conductivity (for example, gold or copper).
  • the coil 140 has a rectangular shape.
  • the lengths of the four sides of the coil 140 are substantially the same. That is, in the second embodiment, the coil 140 has a square shape.
  • the coil 140 may have an arbitrary shape (for example, a rectangle, a rhombus, a parallelogram, a circle, an ellipse, or any other loop shape).
  • the coil 140 is disposed on the second base 110-2.
  • the coil 140 has an X-axis direction (that is, a direction orthogonal to the direction of the rotation axis of the mirror 130) with reference to the position where the mirror 130 is disposed (particularly, the position where the center or the center of gravity of the mirror 130 is disposed). Is arranged on the second base 110-2 so that the coil 140 is located at a position shifted by a predetermined distance along the center of the coil 140 (particularly, the center or center of gravity of the coil 140 is located).
  • the coil 140 is positioned so that the coil 140 is positioned at a position shifted by a predetermined distance along the Y-axis direction (that is, the direction of the rotation axis of the mirror 130) with respect to the position where the mirror 130 is disposed. 2 may be arranged on the base 110-2.
  • the coil 140 is disposed on the second base 110-2 so that the mirror 130 and the coil 140 are aligned along the X-axis direction.
  • the mirror 130 is positioned outside the winding wire that constitutes the coil 140. In other words, the mirror 130 is not positioned inside the winding wire constituting the coil 140.
  • the coil 140 is supplied with a control current for rotating the mirror 130 and the second base 110-2 from the power supply via the power supply terminal 141 formed on the second base 110-2.
  • the control current is typically a signal component having a frequency that is the same as or synchronized with the frequency of rotation of the mirror 130 about the axis along the Y-axis direction and the second axis about the axis along the X-axis direction. This is an alternating current including both signal components having the same or synchronized frequency as the frequency at which the base 110-2 rotates.
  • the power source may be a power source provided in the MEMS scanner 102 itself or a power source prepared outside the MEMS scanner 102.
  • a current component for rotating the mirror 130 with the axis along the Y-axis direction as a rotation axis in the control current is referred to as “Y-axis drive control current”.
  • a current component for rotating the second base 110-2 with the axis along the X-axis direction as the rotation axis in the control current is referred to as “X-axis drive control current”.
  • Magnets 151 and 152 are arranged such that magnet 151 and magnet 152 are arranged along the X-axis direction.
  • the magnets 151 and 152 are arranged such that the magnet 151 and the magnet 152 sandwich the coil 140 along the X-axis direction.
  • one of the magnets 151 and 152 is the magnetic flux exit side, and the other of the magnets 151 and 152 is the magnetic flux entrance side.
  • description will be given using an example in which the magnet 151 is on the magnetic flux incident side and the magnet 152 is on the magnetic flux exit side.
  • the magnetic field applied from the magnet 151 and the magnet 152 is mainly used to rotate the mirror 130 about the axis along the Y-axis direction as a rotation axis.
  • a magnetic field applied from the magnets 151 and 152 that is, a magnetic field for rotating the mirror 130 about the axis along the Y-axis direction
  • Y-axis drive a magnetic field applied from the magnets 151 and 152
  • Magnets 161 and 162 are arranged such that magnet 161 and magnet 162 are arranged along the Y-axis direction.
  • the magnets 161 and 162 are arranged such that the magnet 161 and the magnet 162 sandwich the coil 140 along the Y-axis direction.
  • one of the magnets 161 and 162 becomes the magnetic flux output side
  • the other of the magnets 161 and 162 becomes the magnetic flux incidence side.
  • description will be given using an example in which the magnet 161 is on the magnetic flux exit side and the magnet 162 is on the magnetic flux entrance side.
  • the magnetic field applied from the magnet 161 and the magnet 162 is mainly used to rotate the second base 110-2 about the axis along the X-axis direction as a rotation axis. Therefore, in the following description, for convenience of description, a magnetic field applied from the magnets 161 and 162 (that is, a magnetic field for rotating the second base 110-2 around the axis along the X-axis direction) This is referred to as “X-axis driving magnetic field”.
  • FIG. 6 is a plan view and a cross-sectional view conceptually showing a mode of operation by the MEMS scanner 102 according to the second embodiment.
  • FIGS. 7A and 7B are a plan view and a cross-sectional view conceptually showing a mode of operation by the MEMS scanner 102 according to the second embodiment.
  • FIG. 8 is a sectional view conceptually showing an operation mode of the MEMS scanner 102 according to the second embodiment.
  • a control current is supplied to the coil 140.
  • the control current includes a current component (that is, an X-axis drive control current) for rotating the second base 110-2 about the axis along the X-axis direction as a rotation axis.
  • the second base 110-2 rotates at an arbitrary frequency (for example, 60 Hz) with an axis along the X-axis direction as a rotation axis.
  • the X-axis drive control current is an alternating current including a signal component having a frequency that is the same as or synchronized with the frequency of rotation of the second base 110-2 whose axis is the axis along the X-axis direction.
  • the second base 110-2 is a suspended portion including the second base 110-2 (that is, a suspended portion including the second base portion 110-2, the second torsion bars 120a-2 and 120b-2, and the mirror 130).
  • Part) and the resonance frequency determined by the first torsion bars 120a-1 and 120b-1 (more specifically, the inertia moment of the suspended part including the second base 110-2 and the first torsion bars 120a-1 and 120b- (Resonance frequency determined by a torsion spring constant of 1) may be rotated about the axis along the X-axis direction as a rotation axis.
  • a magnetic field for driving the X axis is applied to the coil 140 from the magnets 161 and 162.
  • the magnets 161 and 162 preferably apply an X-axis driving magnetic field to the two sides of the coil 140 facing each other along the Y-axis direction. In this case, the magnets 161 and 162 do not need to apply the X-axis driving magnetic field to the two sides of the coil 140 facing in the X-axis direction.
  • the magnets 161 and 162 may apply an X-axis driving magnetic field to two sides of the coil 140 facing in the X-axis direction.
  • the magnets 161 and 162 may give the leakage flux of the magnetic field for X-axis driving to the two sides of the coil 140 facing in the X-axis direction.
  • FIG. 6A the X-axis drive control current flowing in the clockwise direction in FIG. 6A is supplied to the coil 140, and the X-axis from the magnet 161 toward the magnet 162 is supplied.
  • FIG. 6B which is a drawing of the MEMS scanner 102 shown in FIG. 6A observed from the direction of the arrow VI, of the two sides of the coil 140 facing along the Y-axis direction.
  • a Lorentz force toward the upper direction in FIG. 6B is generated on the right side (that is, the upper side in FIG. 6A).
  • FIG. 6B which is a drawing of the MEMS scanner 102 shown in FIG. 6A observed from the direction of the arrow VI, of the two sides of the coil 140 facing along the Y-axis direction.
  • a Lorentz force toward the upper direction in FIG. 6B is generated on the right side (that is, the upper side in FIG. 6A).
  • FIG. 6B which is a drawing of the MEMS scanner 102 shown in FIG. 6A observed from the direction of
  • FIG. 6B the left side of the two sides of the coil 140 facing in the Y-axis direction (that is, the lower side in FIG. 6A) is shown in FIG.
  • a Lorentz force toward the lower direction in (b) is generated. That is, Lorentz forces in different directions are generated on the two sides of the coil 140 facing each other along the Y-axis direction.
  • Lorentz force which is a couple, is generated on the two sides of the coil 140 facing each other along the Y-axis direction. Accordingly, the coil 140 rotates in the counterclockwise direction in FIG.
  • the X-axis drive control current is an alternating current
  • FIG. 7A the X-axis drive control current flowing in the counterclockwise direction in FIG.
  • FIG. 7B which is a drawing of the MEMS scanner 101 shown in FIG. 7A observed from the direction of the arrow VII, of the two sides of the coil 140 facing each other along the Y-axis direction.
  • a Lorentz force toward the lower side in FIG. 7B is generated on the right side (that is, the upper side in FIG. 7A).
  • FIG. 7B which is a drawing of the MEMS scanner 101 shown in FIG. 7A observed from the direction of the arrow VII
  • the coil 140 rotates about the axis along the X-axis direction as a rotation axis (more specifically, reciprocatingly drives to rotate).
  • the rotation axis of the coil 140 along the X-axis direction overlaps the rotation axis of the second base 110-2 along the X-axis direction.
  • the second base 110-2 also rotates with the axis along the X-axis direction as the rotation axis.
  • the second base 110-2 supports the mirror 130 via the second torsion bars 120a-2 and 120b-2. Therefore, as the second base 110-2 rotates with the axis along the X-axis direction as the rotation axis, the mirror 130 also rotates with the axis along the X-axis direction as the rotation axis.
  • the second base 110-2 also has the axis along the X-axis direction as the rotation axis. Not rotating as. For this reason, the mirror 130 is also not rotated about the axis along the X-axis direction as the rotation axis.
  • the second base 110- 2 when the coil 140 starts to rotate in the counterclockwise direction in FIG. 8B with the axis along the X-axis direction as the rotation axis, the second base 110- 2 also starts to rotate along the counterclockwise direction in FIG. 8B with the axis along the X-axis direction as the rotation axis.
  • the second base 110-2 also moves with the rotation of the coil 140 whose axis is the axis along the X-axis direction. Moreover, it rotates with an axis along the X-axis direction as a rotation axis. For this reason, as shown in FIG. 8 (a) to FIG.
  • the mirror 130 in time series, with the rotation of the second base 110-2 whose axis is the axis along the X-axis direction, the mirror 130 is also Moreover, it rotates with an axis along the X-axis direction as a rotation axis.
  • the coil 140, the second base 110-2, and the mirror 130 in the state shown in FIG. 8 (g) then transition to the state shown in FIG. 8 (a) after passing through the state shown in FIG. 8 (f). Thereafter, the coil 140, the second base 110-2, and the mirror 130 rotate according to the time series shown in FIGS. 8A to 8G.
  • the control current includes a current component (that is, a Y-axis drive control current) for rotating the mirror 130 about the axis along the Y-axis direction as a rotation axis.
  • the mirror 130 has a resonance frequency determined by the mirror 130 and the second torsion bars 120a-2 and 120b-2 (more specifically, the moment of inertia of the mirror 130 and the second torsion bars 120a-2 and 120b-2).
  • the axis rotates along the axis along the Y-axis direction.
  • the Y-axis drive control current is an alternating current including a signal component having a frequency that is the same as or synchronized with the resonance frequency of the mirror 130.
  • the mirror 130 may rotate around the axis along the Y-axis direction at a frequency different from or not synchronized with the resonance frequency determined by the mirror 130 and the second torsion bars 120a-2 and 120b-2.
  • the Y-axis drive control current is an alternating current including a signal component having a frequency that is the same as or synchronized with the frequency at which the mirror 130 rotates with the axis along the Y-axis direction as the rotation axis.
  • a magnetic field for Y-axis driving is applied to the coil 140 from the magnets 151 and 152.
  • the magnets 151 and 152 preferably apply a Y-axis driving magnetic field to the two sides of the coil 140 facing in the X-axis direction. In this case, the magnets 151 and 152 do not need to apply the Y-axis driving magnetic field to the two sides of the coil 140 facing in the Y-axis direction.
  • the magnets 151 and 152 may apply a Y-axis driving magnetic field to the two sides of the coil 140 facing each other along the Y-axis direction.
  • the magnets 151 and 152 may apply only the leakage magnetic flux of the Y-axis driving magnetic field to the two sides of the coil 140 facing in the Y-axis direction.
  • Lorentz force is generated in the coil 140 due to electromagnetic interaction between the Y-axis drive control current supplied to the coil 140 and the Y-axis drive magnetic field applied to the coil 140. Become.
  • the coil 140 rotates about the axis along the Y-axis direction as a rotation axis (more specifically, rotation). To reciprocate).
  • the rotation axis of the coil 140 along the Y-axis direction is different from the rotation axis of the mirror 130 along the Y-axis direction.
  • the rotation axis of the coil 140 along the Y-axis direction exists at a position shifted by a predetermined distance in the X-axis direction with respect to the rotation axis of the mirror 130 along the Y-axis direction. For this reason, the rotation of the coil 140 with the axis along the Y-axis direction as the rotation axis does not directly rotate the mirror 130 with the axis along the Y-axis direction as the rotation axis.
  • the second base 110-2 on which the coil 140 is disposed deforms and vibrates in a standing wave shape (that is, in a standing wave shape) along the X-axis direction.
  • the second base 110-2 is deformed and oscillated so as to wave along the X-axis direction. That is, the appearance of the second base 110-2 is deformed so that a part of the second base 110-2 becomes an antinode of deformation vibration and the other part becomes a node of deformation vibration.
  • the mirror 130 rotates about the axis along the Y-axis direction as a rotation axis. At this time, the mirror 130 rotates so as to resonate at a resonance frequency (for example, 20 kHz) determined according to the mirror 130 and the second torsion bars 120a-2 and 120b-2.
  • a resonance frequency for example, 20 kHz
  • the torsion spring constant when the moment of inertia about the axis along the Y-axis direction of the mirror 130 is I (Y) and the second torsion bars 120a-2 and 120b-2 are regarded as one spring is k ( Y)
  • the mirror 130 has a resonance frequency (or (1 / (2 ⁇ )) ⁇ specified by (1 / (2 ⁇ )) ⁇ ⁇ (k (Y) / I (Y)) ⁇
  • the rotational relationship is that the rotation of the coil 140 with the axis along the Y-axis direction as the rotation axis in the first embodiment, the deformation vibration of the base 110 along the X-axis direction, and the axis along the Y-axis direction as the rotation axis. This is the same as the relationship of rotation of the mirror 130 (see FIG. 4).
  • the MEMS scanner 102 of the second embodiment can rotate the mirror 130 about the axis along the Y-axis direction as the rotation axis.
  • the MEMS scanner 102 of the second embodiment can rotate the second base 110-2 with the axis along the X-axis direction as a rotation axis.
  • the first axis about the axis along the X-axis direction is the rotation axis.
  • the mirror 130 also rotates about the axis along the X-axis direction as the rotation axis. Therefore, the MEMS scanner 102 according to the second embodiment can rotate the mirror 130 about the axis along the X-axis direction as the rotation axis. That is, the MEMS scanner 102 of the second embodiment can drive the mirror 130 biaxially.
  • the mirror 130 is positioned outside the winding of the coil 140. Therefore, the coil 140 may not be disposed so as to surround the mirror 130.
  • the size of the coil 140 (for example, the diameter of the winding, the length of the winding, etc.) compared to the MEMS scanner of the comparative example in which the coil 140 is disposed so as to surround the mirror 130. Can be made relatively small. In other words, in the second embodiment, the size of the coil 140 can be relatively reduced regardless of the size of the mirror 130. As a result, the sizes of the magnets 151 and 152 and the magnets 161 and 162 for applying a magnetic field to the coil 140 can also be relatively reduced.
  • the coil 140, the magnets 151 and 152, and the magnet 161 are compared regardless of the size of the mirror 130, as compared with the MEMS scanner of the comparative example in which the coil 140 is disposed so as to surround the mirror 130.
  • And 162 can be made relatively small. Therefore, in the second embodiment, the size reduction of the MEMS scanner 102 is preferably realized as compared with the MEMS scanner of the comparative example in which the coil 140 is disposed so as to surround the mirror 130.
  • second torsion bars 120a-2 and 120b-2 connected to the mirror 130 are connected to locations corresponding to nodes in the deformation vibration of the second base 110-2. That is, the part corresponding to the node in the deformation vibration of the second base 110-2 coincides with the rotational axis of the mirror 130 along the Y-axis direction.
  • the coil 140 is disposed at a position corresponding to a node in the deformation vibration of the second base 110-2. That is, the portion corresponding to the node in the deformation vibration of the second base 110-2 coincides with the rotation axis of the coil 140 along the Y-axis direction.
  • the mirror 130 and the coil 140 in the vertical direction (specifically, the direction perpendicular to the X-axis direction and the Y-axis direction, respectively, the first base 110-1 or the second base). Movement or vibration in the direction of the Z axis perpendicular to the surface of 110-2 is prevented. Therefore, high-precision rotation of the mirror 130 can be realized.
  • FIG. 9 is a plan view conceptually showing the structure of the MEMS scanner 103 according to the third example.
  • the MEMS scanner 103 of the third embodiment is different from the MEMS scanner 102 of the second embodiment in that the arrangement positions of the magnet 161 and the magnet 162 are changed and the magnet 151 and the magnet 152 are changed. It is different in that it does not have.
  • the other components of the MEMS scanner 103 of the third embodiment may be the same as the other components of the MEMS scanner 102 of the second embodiment.
  • the magnets 161 and 162 are arranged so that the magnet 161 and the magnet 162 sandwich the coil 140 along the Y-axis direction, as in the second embodiment.
  • the magnets 161 and 162 are displaced along the X-axis direction between the magnet 161 (for example, the center of the magnet 161) and the magnet 162 (for example, the center of the magnet 162) (in other words, Offset).
  • the magnet 161 and the magnet 162 may sandwich the coil 140 along the X-axis direction, and the position where the magnet 161 is disposed and the position where the magnet 162 is disposed may be offset along the Y-axis direction.
  • the magnets 161 and 162 are preferably arranged at positions where the magnet 161 and the magnet 162 are point-symmetric with respect to the coil 140. In other words, the magnets 161 and 162 are preferably arranged at positions where the magnet 161 and the magnet 162 are point-symmetric with respect to the center of the winding wire constituting the coil 140.
  • FIG. 10 is a plan view conceptually showing an operation mode of the MEMS scanner 103 according to the third embodiment.
  • a control current (that is, an X-axis drive control current and a Y-axis drive control current) is supplied to the coil 140. Is supplied).
  • a magnetic field is applied to the coil 140 from the magnets 161 and 162.
  • the magnetic field applied from the magnets 161 and 162 is not only used for rotating the mirror 130 about the axis along the Y-axis direction but also the axis along the X-axis direction. Is also used to rotate the second base 110-2 about the rotation axis.
  • the magnets 161 and 162 are arranged in the Y-axis direction.
  • a magnetic field is applied to two sides of the coil 140 facing along the side so as to obliquely cross the two sides.
  • the magnets 161 and 162 apply a magnetic field that intersects the two sides of the coil 140 facing each other along the Y-axis direction at an angle other than 90 degrees with respect to the two sides. That is, the magnets 161 and 162 apply a magnetic field that intersects the two sides of the coil 140 facing each other along the Y-axis direction in the diagonal direction of the winding of the coil 140 to the two sides.
  • the magnets 161 and 162 do not apply a magnetic field to the two sides of the coil 140 facing each other along the X-axis direction.
  • the magnets 161 and 162 give only the leakage flux of the magnetic field to be applied to the two sides of the coil 140 facing in the Y-axis direction to the two sides of the coil 140 facing in the X-axis direction. May be. That is, it is preferable that the magnets 161 and 162 do not positively apply a magnetic field to the two sides of the coil 140 facing each other along the X-axis direction. However, the magnets 161 and 162 may positively apply a magnetic field to the two sides of the coil 140 facing in the X-axis direction.
  • a control current that flows in the clockwise direction in FIG. 10 is supplied to the coil 140, and a magnetic field from the magnet 161 toward the magnet 162 is applied to the coil 140.
  • a magnetic field from the magnet 161 toward the magnet 162 is applied to the coil 140.
  • one of the two sides of the coil 140 facing in the Y-axis direction (for example, the upper side in FIG. 10) is connected to the back side of the paper in FIG. 10.
  • Lorentz force toward the front side of the page is generated.
  • the magnetic field is applied so as to obliquely cross the two sides of the coil 140 facing along the Y-axis direction, this Lorentz force is applied to the two coils 140 facing along the Y-axis direction.
  • the position where the Lorentz force is generated is shifted along the Y-axis direction.
  • the Lorentz force generated in the coil 140 acts on the coil 140 as a rotational force having the axis along the X-axis direction as the rotation axis. become.
  • the coil 140 rotates using the axis along the X-axis direction as a rotation axis.
  • the second base 110-2 also rotates about the axis along the X-axis direction as the rotation axis.
  • vibration propagates to the second base 110-2 due to the rotation of the coil 140 whose axis is the axis along the X-axis direction. Due to this vibration, the second base 110-2 is deformed and oscillated along the X-axis direction as in the second embodiment. As a result, the mirror 130 rotates about the axis along the Y-axis direction as a rotation axis.
  • control current supplied to the coil 140 includes a Y-axis drive control current
  • a magnetic field is not applied to the two sides of the coil 140 facing in the X-axis direction.
  • the Lorentz force corresponding to the Y-axis drive control current is slightly generated in the coil 140.
  • the second base 110-2 is deformed and oscillated along the X-axis direction as in the second embodiment.
  • the mirror 130 rotates about the axis along the Y-axis direction as a rotation axis.
  • the position where the Lorentz force is generated on the other side of the two sides is shifted along the X-axis direction.
  • the Lorentz force generated in the coil 140 (particularly, the Lorentz force mainly according to the Y-axis drive control current) is substantially converted into the coil as a rotational force having the axis along the Y-axis direction as the rotation axis. 140 may be acted upon.
  • the coil 140 rotates with the axis along the Y-axis direction as the rotation axis, as in the second embodiment.
  • the second base 110-2 is deformed and oscillated along the X-axis direction as in the second embodiment.
  • the mirror 130 rotates about the axis along the Y-axis direction as a rotation axis.
  • the MEMS scanner 103 according to the third embodiment can preferably enjoy various effects that the MEMS scanner 102 according to the second embodiment enjoys.
  • the MEMS scanner 103 according to the third embodiment does not need to include the magnets 151 and 152 as compared with the MEMS scanner 102 according to the second embodiment. For this reason, further downsizing of the MEMS scanner 103 is realized.
  • FIG. 11 is a plan view conceptually showing the structure of the MEMS scanner 104 according to the fourth example.
  • the MEMS scanner 104 of the fourth embodiment is different from the MEMS scanner 103 of the third embodiment in that it further includes a magnetic yoke 170.
  • the other components of the MEMS scanner 104 of the fourth embodiment may be the same as the other components of the MEMS scanner 103 of the third embodiment.
  • the magnetic yoke 170 forms a magnetic field path in which the magnetic field emitted from the magnet 161 reaches the magnet 162 while being applied to the two sides of the coil 140 facing each other along the Y-axis direction. To do. That is, the magnetic yoke 170 has a shape extending from one end portion where the magnetic field emitted from the magnet 161 is incident toward the other end portion where the magnetic field incident on the magnet 162 is emitted.
  • FIG. 11 shows an example in which the magnetic yoke 170 has a shape extending along the X-axis direction.
  • FIG. 12 is a plan view and a cross-sectional view conceptually showing a mode of operation by the MEMS scanner 104 according to the fourth embodiment.
  • a control current (that is, an X-axis drive control current and a Y-axis drive control current) is supplied to the coil 140. Is supplied).
  • a magnetic field is applied to the coil 140 from the magnets 161 and 162.
  • the magnetic field applied from the magnets 161 and 162 is not only used for rotating the mirror 130 about the axis along the Y-axis direction but also the axis along the X-axis direction. Is also used to rotate the second base 110-2 about the rotation axis.
  • the position where the magnet 161 is disposed and the position where the magnet 162 is disposed are offset along the X-axis direction. Since the magnetic yoke 170 extending along the X-axis direction is disposed, the magnets 161 and 162 are arranged so that one of the two sides of the coil 140 facing along the Y-axis direction (for example, Relative to the side portion of one side (for example, the left side of FIG. 12 (a)) and the other side (for example, the upper side of FIG. 12 (a)) relative to the lower side of FIG. 12 (a).
  • a magnetic field is applied to the side portion on the other side (for example, the right side in FIG. 12A). That is, the magnets 161 and 162 are part of the two sides of the coil 140 facing each other along the Y-axis direction and are facing along the diagonal direction (that is, the diagonal direction) of the coil 140.
  • a magnetic field is applied to the two side portions.
  • the magnet 161 and one end of the magnetic yoke 170 face each other along the diagonal direction of the coil 140. It arrange
  • the magnet 162 and the other end of the magnetic yoke 170 are the two side portions of the coil 140 that face each other along the diagonal direction of the coil 140. It arrange
  • FIGS. 12A and 12B a control current flowing in the clockwise direction in FIG. 12A is supplied to the coil 140, and the magnet 161 moves the magnetic yoke 170.
  • FIGS. 12 (a) and 12 (b) one of the two sides of the coil 140 facing along the Y-axis direction (for example, the upper side of FIG. 12 (a)).
  • a Lorentz force is generated from the back side of the sheet of FIG. 12A toward the front side of the sheet (in other words, the upper side of FIG. 12B).
  • the Lorentz force is relatively outside of one of the two sides of the coil 140 facing in the Y-axis direction (that is, relative to the mirror 130). Will occur on the far side).
  • the other side of the two sides of the coil 140 facing along the Y-axis direction for example, the lower side of FIG. 12A
  • the Lorentz force is generated from the front side of FIG. 12A toward the back side of the paper surface (in other words, the lower side of FIG. 12B).
  • this Lorentz force is relatively inward of the other side of the two sides of the coil 140 facing along the Y-axis direction (that is, relative to the mirror 130). Will occur on the near side). Even when the direction (that is, polarity) of the control current supplied to the coil 140 is reversed, the same Lorentz force (however, the direction is reversed) is generated.
  • the position where the Lorentz force is generated is shifted along the Y-axis direction.
  • the Lorentz force generated in the coil 140 acts on the coil 140 as a rotational force having the axis along the X-axis direction as the rotation axis. become.
  • the coil 140 rotates using the axis along the X-axis direction as a rotation axis.
  • the second base 110-2 also rotates about the axis along the X-axis direction as the rotation axis.
  • vibration propagates to the second base 110-2 due to the rotation of the coil 140 whose axis is the axis along the X-axis direction. Due to this vibration, the second base 110-2 deforms and vibrates along the X-axis direction as in the third embodiment. As a result, the mirror 130 rotates about the axis along the Y-axis direction as a rotation axis.
  • control current supplied to the coil 140 includes a Y-axis drive control current
  • a magnetic field is not applied to the two sides of the coil 140 facing in the X-axis direction.
  • the Lorentz force corresponding to the Y-axis drive control current is slightly generated in the coil 140.
  • the second base 110-2 undergoes deformation vibration along the X-axis direction, as in the third embodiment.
  • the mirror 130 rotates about the axis along the Y-axis direction as a rotation axis.
  • the position where the Lorentz force is generated on one of the two sides of the coil 140 facing along the Y-axis direction and the coil facing along the Y-axis direction is shifted along the X-axis direction.
  • the Lorentz force generated in the coil 140 (particularly, the Lorentz force mainly according to the Y-axis drive control current) is substantially converted into the coil as a rotational force having the axis along the Y-axis direction as the rotation axis. 140 may be acted upon.
  • the coil 140 rotates with the axis along the Y-axis direction as the rotation axis, as in the second embodiment.
  • the second base 110-2 undergoes deformation vibration along the X-axis direction, as in the third embodiment.
  • the mirror 130 rotates about the axis along the Y-axis direction as a rotation axis.
  • the MEMS scanner 104 of the fourth embodiment can suitably enjoy various effects that the MEMS scanner 102 of the second embodiment enjoys.
  • the MEMS scanner 104 according to the fourth embodiment does not need to include the magnets 151 and 152 as compared with the MEMS scanner 102 according to the second embodiment. For this reason, further downsizing of the MEMS scanner 104 is realized.
  • FIG. 13 is a plan view conceptually showing the basic structure of the MEMS scanner 105 according to the fifth example.
  • the MEMS scanner 105 of the fifth embodiment is different from the MEMS scanner 102 of the second embodiment in that the arrangement position of the coil 140 is changed and the magnet 151 and the magnet 152 are not provided. It is different in that.
  • the other components of the MEMS scanner 105 of the fifth embodiment may be the same as the other components of the MEMS scanner 102 of the second embodiment.
  • the coil 140 includes a rotation axis of the coil 140 (specifically, a rotation axis along the X-axis direction) and a rotation axis of the second base 110-2 (specifically, in the X-axis direction). Along the rotation axis) is shifted (in other words, offset) along the Y-axis direction. In other words, the coil 140 corresponds to the rotation center of the coil 140 coincident with the rotation axis of the coil 140 along the X-axis direction and the second base 110- coincident with the rotation axis of the second base 110-2 along the X-axis direction.
  • the two rotation centers are arranged so as to be shifted along the Y-axis direction.
  • the coil 140 includes the center of the coil 140 where the Lorentz force is generated (the center of the rotational force), the center of gravity of the rotating body including the coil 140 and the second base 110-2, and the first that supports the rotating body. At least two of the centers (support centers) of the torsion bars 120a-1 and 120b-1 are arranged so as to be displaced along the Y-axis direction.
  • FIG. 14 is a plan view conceptually showing an operation mode of the MEMS scanner 105 according to the fifth embodiment.
  • a control current (that is, an X-axis drive control current and a Y-axis drive control current) is supplied to the coil 140. Is supplied).
  • a magnetic field is applied to the coil 140 from the magnets 161 and 162.
  • the magnetic field applied from the magnets 161 and 162 is not only used for rotating the mirror 130 about the axis along the Y-axis direction but also the axis along the X-axis direction. Is also used to rotate the second base 110-2 about the rotation axis.
  • Magnets 161 and 162 apply a magnetic field to the two sides of coil 140 facing each other along the Y-axis direction. On the other hand, it is preferable that the magnets 161 and 162 do not apply a magnetic field to the two sides of the coil 140 facing each other along the X-axis direction. However, the magnets 161 and 162 give only the leakage flux of the magnetic field to be applied to the two sides of the coil 140 facing in the Y-axis direction to the two sides of the coil 140 facing in the X-axis direction. May be. That is, it is preferable that the magnets 161 and 162 do not positively apply a magnetic field to the two sides of the coil 140 facing each other along the X-axis direction. However, the magnets 161 and 162 may positively apply a magnetic field to the two sides of the coil 140 facing each other along the X-axis direction.
  • the control current that flows in the clockwise direction in FIG. 14 is supplied to the coil 140, and the magnetic field from the magnet 161 toward the magnet 162 is applied to the coil 140.
  • one of the two sides of the coil 140 facing in the Y-axis direction (for example, the upper side in FIG. 14) is connected to the back side of the paper in FIG. 14.
  • Lorentz force toward the front side of the page is generated.
  • the other side (for example, the lower side of FIG. 12) of the two sides of the coil 140 facing in the Y-axis direction is on the front side of the sheet of FIG. Lorentz force is generated toward the back side of the page.
  • the direction (that is, polarity) of the control current supplied to the coil 140 is reversed, the same Lorentz force (however, the direction is reversed) is generated.
  • the Lorentz force generated in the coil 140 acts on the coil 140 as a rotational moment about the axis along the X-axis direction. become. For this reason, the coil 140 rotates using the axis along the X-axis direction as a rotation axis. As a result, similarly to the second embodiment, the second base 110-2 also rotates about the axis along the X-axis direction as the rotation axis.
  • the rotational axis of the coil 140 along the X-axis direction and the rotational axis of the second base 110-2 along the X-axis direction are displaced along the Y-axis direction. ing. Due to such imbalance caused by the rotation axis deviation, the rotation of the coil 140 having the axis along the X-axis direction as the rotation axis propagates to the second base 110-2 as vibration. Due to this vibration, the second base 110-2 is deformed and oscillated along the X-axis direction as in the second embodiment. As a result, the mirror 130 rotates about the axis along the Y-axis direction as a rotation axis.
  • the MEMS scanner 105 of the fifth embodiment can suitably enjoy various effects that the MEMS scanner 102 of the second embodiment enjoys.
  • the MEMS scanner 105 of the fifth embodiment does not need to include the magnets 151 and 152 as compared with the MEMS scanner 102 of the second embodiment. For this reason, further downsizing of the MEMS scanner 105 is realized.
  • FIG. 15 is a plan view conceptually showing the basic structure of the MEMS scanner 106 according to the sixth example.
  • the MEMS scanner 106 of the sixth embodiment is different from the MEMS scanner 102 of the second embodiment in that the magnet 151 and the magnet 152 are not provided.
  • Other configurations of the MEMS scanner 106 of the sixth embodiment may be the same as other configurations of the MEMS scanner 102 of the second embodiment.
  • FIG. 16 is a plan view conceptually showing an operation mode of the MEMS scanner 106 according to the sixth embodiment.
  • a control current (that is, an X-axis drive control current and a Y-axis drive control current) is supplied to the coil 140. Is supplied).
  • a magnetic field is applied to the coil 140 from the magnets 161 and 162.
  • the magnetic field applied from the magnets 161 and 162 is not only used for rotating the mirror 130 about the axis along the Y-axis direction but also the axis along the X-axis direction. Is also used to rotate the second base 110-2 about the rotation axis.
  • Magnets 161 and 162 apply a magnetic field to the two sides of coil 140 facing each other along the Y-axis direction. On the other hand, it is preferable that the magnets 161 and 162 do not apply a magnetic field to the two sides of the coil 140 facing each other along the X-axis direction. However, the magnets 161 and 162 give only the leakage flux of the magnetic field to be applied to the two sides of the coil 140 facing in the Y-axis direction to the two sides of the coil 140 facing in the X-axis direction. May be. That is, it is preferable that the magnets 161 and 162 do not positively apply a magnetic field to the two sides of the coil 140 facing each other along the X-axis direction.
  • the control current that flows in the clockwise direction in FIG. 16 is supplied to the coil 140, and the magnetic field from the magnet 161 toward the magnet 162 is applied to the coil 140.
  • one side (for example, the upper side in FIG. 16) of the two sides of the coil 140 facing along the Y-axis direction is formed from the back side of the paper surface in FIG. 16.
  • Lorentz force toward the front side of the page is generated.
  • the other side of the two sides of the coil 140 facing along the Y-axis direction (for example, the lower side of FIG. 16) is on the front side of the page of FIG.
  • Lorentz force is generated toward the back side of the page. Even when the direction (that is, polarity) of the control current supplied to the coil 140 is reversed, the same Lorentz force (however, the direction is reversed) is generated.
  • the Lorentz force generated in the coil 140 acts on the coil 140 as a rotational moment about the axis along the X-axis direction. become. For this reason, the coil 140 rotates using the axis along the X-axis direction as a rotation axis. As a result, similarly to the second embodiment, the second base 110-2 also rotates about the axis along the X-axis direction as the rotation axis.
  • the control current supplied to the coil 140 includes the Y-axis drive control current
  • the magnetic field is not applied to the two sides of the coil 140 facing each other along the X-axis direction.
  • a magnetic field is not applied to the two sides of the coil 140 facing each other along the X-axis direction. Even so, a Lorentz force corresponding to the Y-axis drive control current is generated on one of the two sides of the coil 140 facing in the Y-axis direction (for example, the upper side in FIG. 16). To do.
  • the second base 110-2 Due to the Lorentz force corresponding to the Y-axis drive control current, a slight vibration is generated in the coil 140 (or the second base 110-2 on which the coil 140 is disposed). As a result, the second base 110-2 is deformed and oscillated along the direction of the X-axis as in the second embodiment. As a result, the mirror 130 rotates about the axis along the Y-axis direction as a rotation axis.
  • the two sides of the coil 140 facing along the X-axis direction are A leakage flux of a magnetic field positively applied to the two sides of the coil 140 facing each other along the Y-axis direction may be applied.
  • a slight Lorentz force corresponding to the Y-axis drive control current is generated on the two sides of the coil 140 facing each other along the X-axis direction.
  • the second base 110-2 is deformed and oscillated along the direction of the X-axis as in the second embodiment.
  • the mirror 130 rotates about the axis along the Y-axis direction as a rotation axis.
  • the rotation gain of the mirror 130 when the magnetic field is positively applied to the two sides of the coil 140 facing in the X-axis direction is 60 dB. Met.
  • the gain of rotation of the mirror 130 when the magnetic field is not actively applied to the two sides of the coil 140 facing each other along the X-axis direction was 54 dB. That is, compared with a MEMS scanner in which a magnetic field is positively applied to the two sides of the coil 140 facing each other along the X-axis direction, a magnetic field is generated on the two sides of the coil 140 facing the X-axis direction.
  • the rotation gain of the mirror 130 is reduced by about 6 dB.
  • a gain reduction of about 6 dB does not correspond to a reduction that greatly affects the operation of the MEMS scanner.
  • the MEMS scanner 106 of the sixth embodiment can suitably enjoy various effects that the MEMS scanner 102 of the second embodiment enjoys.
  • the MEMS scanner 106 according to the sixth embodiment does not need to include the magnets 151 and 152 as compared with the MEMS scanner 102 according to the second embodiment. For this reason, further downsizing of the MEMS scanner 106 is realized.
  • FIG. 17 is a plan view conceptually showing the basic structure of the MEMS scanner 107 according to the seventh example.
  • the detailed description is abbreviate
  • the MEMS scanner 107 of the seventh embodiment has characteristics of the first torsion bar 120a-1 and the characteristics of the first torsion bar 120b-1 as compared with the MEMS scanner 102 of the second embodiment. Are different in that they do not match.
  • Other configurations of the MEMS scanner 107 of the seventh embodiment may be the same as other configurations of the MEMS scanner 102 of the second embodiment.
  • the length of the first torsion bar 120a-1 is equal to the length of the first torsion bar 120a-2 (ie, the length along the X-axis direction). May be different).
  • the width of the first torsion bar 120a-1 is different from the width of the first torsion bar 120a-2 (ie, the length along the Y-axis direction). Also good.
  • the mass of the first torsion bar 120a-1 may be different from the mass of the first torsion bar 120a-2.
  • the rigidity of the first torsion bar 120a-1 may be different from the rigidity of the first torsion bar 120a-2.
  • the shape of the first torsion bar 120a-1 for example, the external shape or the cross-sectional shape
  • the shape of the first torsion bar 120a-2 for example, the external shape or the cross-sectional shape
  • the characteristics of the first torsion bars 120a-1 and 120b-1 are appropriately adjusted from the viewpoint of setting the positions of the nodes and the abdomen in the deformation vibration of the second base 110-2 to appropriate positions. Is preferred. More specifically, the characteristics of the first torsion bar 120a-1 and the first torsion bar 120b-1 are such that the portions corresponding to the rotation axes along the Y-axis direction of the coil 140 and the mirror 130 are the first. It is preferable that the two bases 110-2 be appropriately adjusted so as to be nodes in the deformation vibration.
  • the MEMS scanner 107 according to the seventh embodiment can preferably enjoy various effects that the MEMS scanner 102 according to the second embodiment enjoys.
  • the MEMS scanner 107 of the seventh embodiment does not need to match the characteristics of the first torsion bar 120a-1 and the characteristics of the first torsion bar 120b-1. This increases the degree of freedom in designing the first torsion bars 120a-1 and 120b-1. If the characteristics of the first torsion bar 120a-1 and the characteristics of the first torsion bar 120b-1 are matched, the nodes and antinodes in the deformation vibration of the second base 110-2 are set to appropriate positions. Therefore, the characteristics of the second base 110-2 are adjusted. As a result, the second base 110-2 may be increased in size.
  • the positions of the nodes and the antinodes in the deformation vibration of the second base 110-2 can be adjusted to appropriate positions. Will be set. For this reason, further downsizing of the MEMS scanner 107 is realized.
  • the present invention can be appropriately changed without departing from the gist or concept of the present invention that can be read from the claims and the entire specification, and a drive device that includes such a change is also included in the technical concept of the present invention. It is.
  • MEMS scanner 110 base 110-1 first base 110-2 second base 120a, 120b torsion bar 120a-1, 120b-1 first torsion bar 120a-2, 120b-2 second torsion bar 130 mirror 140 coil 141 Power supply terminal 151, 152, 161, 162 Magnet 170 Magnetic yoke

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Micromachines (AREA)

Abstract

本発明は、ミラー等の被駆動物を回転させるMEMSスキャナ等の駆動装置において、ミラーを取り囲むようにコイルが配置されていたため、小型化や磁石の好適な位置への配置が困難になっていたという課題を解決するものである。本発明の駆動装置(105)は、第1ベース部(110-1)の内部に第1弾性部(120a-1,120b-1)を介してX軸まわりに回転する第2ベース部(110-2)と、前記第2ベース部の内部に第2弾性部(120a-2,120b-2)を介してY軸まわりに回転する被駆動部(130)とを備え、前記第2ベース上に配置されるコイル部(140)の巻き線の外側に前記被駆動部を配置されるようにした。さらに、コイル部に対して磁界を付与する磁界付与部(161,162)を設け、コイル部を、第2ベース部の回転軸からY軸に沿ってオフセットした位置にコイル部の中心が位置するように配置した。

Description

駆動装置
 本発明は、例えばミラー等の被駆動物を回転させるMEMSスキャナ等の駆動装置の技術分野に関する。
 例えば、ディスプレイ、プリンティング装置、精密測定、精密加工、情報記録再生などの多様な技術分野において、半導体工程技術によって製造されるMEMS(Micro Electro Mechanical System)デバイスについての研究が活発に進められている。このようなMEMSデバイスとして、例えば、光源から入射された光を所定の画面領域に対して走査して画像を具現するディスプレイ分野、または所定の画面領域に対して光を走査して反射された光を受光して画像情報を読み込むスキャニング分野では、微小構造のミラー駆動装置(光スキャナないしはMEMSスキャナ)が注目されている。
 ミラー駆動装置は、一般的には、ベースとなる固定された本体と、所定の回転軸の周りに回転可能なミラーと、本体とミラーとを接続する又は接合するトーションバー(ねじれ部材)とを備える構成が知られている(特許文献1参照)。
特表2007-522529号公報
 このような構成を有するミラー駆動装置では、コイルと磁石を用いてミラーを駆動する構成が一般的である。このような構成では、例えばミラーを取り囲むようにミラーにコイルを直接貼り付ける構成が一例としてあげられる。この場合、コイルに電流を流すことで生ずる磁界と磁石の磁界との間の相互作用によってミラーに対して回転方向の力が加えられ、その結果、ミラーが回転させられる。また、上述の特許文献1では、コイルと磁石とが、トーションバーにねじれ方向(言い換えれば、ミラーの回転軸方向)の歪みを生じさせるように配置される構成を採用している。この場合、コイルに電流を流すことで生ずる磁界と磁石の磁界との間の相互作用によってトーションバーがねじれ方向に歪み、トーションバーのねじれ方向の歪みがミラーを回転させることになる。
 しかしながら、ミラーを取り囲むようにコイルが配置されるがゆえに、コイルが比較的大きくなってしまう。その結果、当該コイルに対して磁界を付与するための磁石もまた比較的大きくなってしまう。このため、コイルと磁石との間の磁気ギャップが大きくなってしまうと共に、MEMSスキャナの小型化を図ることができなくなってしまうという技術的な問題点が生ずる。また、ミラーを取り囲むようにコイルが配置されるがゆえに、磁石の配置が限定されてしまう又は磁石を好適な位置に配置することが困難になってしまう。具体的には、ミラーによる光の反射が妨げられてしまうがゆえに、コイルの中心上方(具体的には、コイルの巻き線の内側の上方(つまり、ミラーの上方)へ磁石を配置することが困難である。
 このような従来のミラー駆動装置に対して、本発明は、例えば、コイルと磁石とを用いてミラー(或いは、回転する被駆動物)を駆動しつつも相対的に小型な駆動装置(つまり、MEMSスキャナ)を提供することを課題とする。
 上記課題を解決するために、駆動装置は、第1ベース部と、第1ベース部によって支持される第2ベース部と、前記第1ベース部と前記第2ベース部とを接続し、且つ前記第2ベース部を他の方向に沿った軸を回転軸として回転させるような弾性を有する第1弾性部と、回転可能な被駆動部と、前記第2ベース部と前記被駆動部とを接続し、且つ前記被駆動部を前記他の方向とは異なる一の方向に沿った軸を回転軸として回転させるような弾性を有する第2弾性部と、前記第2ベース部上に配置されるコイル部であって、且つ当該コイル部の巻き線の外側に前記被駆動部が配置されるコイル部と、前記コイル部に対して磁界を付与する磁界付与部とを備え、前記コイル部は、前記第2ベース部の回転軸から前記一の方向に沿ってオフセットした位置に前記コイル部の中心が位置するように、配置されている。
 本発明のこのような作用及び利得は次に説明する実施の形態から明らかにされる。
第1実施例に係るMEMSスキャナの構成を概念的に示す平面図である。 第1実施例に係るMEMSスキャナによる動作の態様を概念的に示す平面図及び断面図である。 第1実施例に係るMEMSスキャナによる動作の態様を概念的に示す平面図及び断面図である。 第2実施例に係るMEMSスキャナによる動作の態様を概念的に示す断面図である。 第2実施例に係るMEMSスキャナの構成を概念的に示す平面図である。 第2実施例に係るMEMSスキャナによる動作の態様を概念的に示す平面図及び断面図である。 第2実施例に係るMEMSスキャナによる動作の態様を概念的に示す平面図及び断面図である。 第2実施例に係るMEMSスキャナによる動作の態様を概念的に示す断面図である。 第3実施例に係るMEMSスキャナの構成を概念的に示す平面図である。 第3実施例に係るMEMSスキャナによる動作の態様を概念的に示す平面図である。 第4実施例に係るMEMSスキャナの構成を概念的に示す平面図である。 第4実施例に係るMEMSスキャナによる動作の態様を概念的に示す平面図である。 第5実施例に係るMEMSスキャナの構成を概念的に示す平面図である。 第5実施例に係るMEMSスキャナによる動作の態様を概念的に示す平面図である。 第6実施例に係るMEMSスキャナの構成を概念的に示す平面図である。 第6実施例に係るMEMSスキャナによる動作の態様を概念的に示す平面図である。 第7実施例に係るMEMSスキャナの構成を概念的に示す平面図である。
 以下、駆動装置に係る実施形態について順に説明する。
 <1>
 本実施形態の駆動装置は、第1ベース部と、第1ベース部によって支持される第2ベース部と、前記第1ベース部と前記第2ベース部とを接続し、且つ前記第2ベース部を他の方向に沿った軸を回転軸として回転させるような弾性を有する第1弾性部と、回転可能な被駆動部と、前記第2ベース部と前記被駆動部とを接続し、且つ前記被駆動部を前記他の方向とは異なる一の方向に沿った軸を回転軸として回転させるような弾性を有する第2弾性部と、前記第2ベース部上に配置されるコイル部であって、且つ当該コイル部の巻き線の外側に前記被駆動部が配置されるコイル部と、前記コイル部に対して磁界を付与する磁界付与部とを備え、前記コイル部は、前記第2ベース部の回転軸から前記一の方向に沿ってオフセットした位置に前記コイル部の中心が位置するように、配置されている。
 本実施形態の駆動装置によれば、基礎となる第1ベース部と当該第1ベース部に支持される第2ベース部とが、弾性を有する第1弾性部(例えば、後述する第1トーションバー等)によって直接的に又は間接的に接続されている。更に、第2ベース部と回転可能に配置される被駆動部(例えば、後述するミラー等)とが、弾性を有する第2弾性部(例えば、後述する第2トーションバー等)によって直接的に又は間接的に接続されている。第2ベース部は、第1弾性部の弾性(例えば、第2ベース部を他の方向(例えば、後述のX軸方向)に沿った軸を回転軸として回転させることができるという弾性)によって、一の方向とは異なる(好ましくは、交わる、より好ましくは、直交する)他の方向に沿った軸を回転軸として回転する。従って、第2ベース部と第2弾性部を介して接続されている被駆動部もまた、他の方向に沿った軸を回転軸として回転する。加えて、被駆動部は、第2弾性部の弾性(例えば、被駆動部を一の方向(例えば、後述のY軸方向)に沿った軸を回転軸として回転させることができるという弾性)によって、一の方向に沿った軸を回転軸として回転する。つまり、本実施形態の駆動装置は、被駆動部の2軸駆動を行うことができる。但し、本実施形態の駆動装置は、被駆動部の多軸駆動(例えば、3軸駆動、4軸駆動・・・)を行ってもよい。
 本実施形態では、コイル部は、第2ベース部の回転軸から一の方向に沿ってオフセットした位置にコイル部の中心が位置するように、配置されている。言い換えれば、他の方向に沿ったコイル部の回転軸が、他の方向に沿った第2ベース部の回転軸から一の方向に沿ってシフトした位置に位置する。
 本実施形態の駆動装置では、コイル部と磁界付与部との間の電磁相互作用に起因した力によって、他の方向に沿った軸を回転軸として第2ベース部(言い換えれば、第2ベース部によって支持されている被駆動部)が回転する。言い換えれば、他の方向に沿った軸を回転軸として第2ベース部が回転するための駆動力は、コイル部と磁界付与部との間の電磁相互作用に起因した電磁力である。加えて、コイル部と磁界付与部との間の電磁相互作用に起因した力によって、一の方向に沿った軸を回転軸として被駆動部が回転する。言い換えれば、一の方向に沿った軸を回転軸として被駆動部が回転するための駆動力は、コイル部と磁界付与部との間の電磁相互作用に起因した電磁力である。
 より具体的には、後に詳述するように、コイル部には、他の方向に沿った軸を回転軸として第2ベース部を回転させるための制御電流が供給される。この制御電流は、例えば、他の方向に沿った軸を回転軸として第2ベース部が回転する周波数(言い換えれば、周期)と同一の周波数を有する又は同期した周波数を有する交流電流であることが好ましい。加えて、コイル部には、一の方向に沿った軸を回転軸として被駆動部を回転させるための制御電流が供給される。この制御電流は、例えば、一の方向に沿った軸を回転軸として被駆動部が回転する周波数(言い換えれば、周期)と同一の周波数を有する又は同期した周波数を有する交流電流であることが好ましい。より好ましくは、制御電流は、被駆動部及び第2弾性部によって定まる被駆動部の共振周波数(より具体的には、被駆動部の慣性モーメント及び第2弾性部のねじりバネ定数によって定まる被駆動部の共振周波数)と同一の周波数を有する又は同期した周波数を有する交流電流であることが好ましい。
 一方で、コイル部には、磁界付与部から磁界が付与される。
 このため、コイル部に供給される制御電流と磁界付与部が付与する磁界との電磁相互作用に起因して、コイル部には、ローレンツ力が発生する。このローレンツ力によって、第2ベース部は、他の方向に沿った軸を回転軸として回転する。
 加えて、本実施形態では、他の方向に沿ったコイル部の回転軸が、他の方向に沿った第2ベース部の回転軸から一の方向に沿ってシフトした位置に位置している。このため、他の方向に沿った第2ベース部の回転軸(回転体回転支持中心)と、コイル部を含む第2ベース部全体の系の重心(回転体重心)と、コイル部に発生するローレンツ力の中心(回転力中心)とのうちの少なくとも2つが、一の方向に沿ってずれることになる。このようなずれ(つまり、アンバランス)に起因して、コイル部に発生するローレンツ力は、第2ベース部を変形振動させるように作用する。その結果、第2ベース部の変形振動に伴って、被駆動部は、一の方向に沿った軸を回転軸として回転する。
 より具体的には、コイル部には、当該コイル部の中心を回転軸とする偶力(言い換えれば、回転力)が作用する。しかしながら、偶力の中心と第2ベース部の回転軸との間にずれが存在するため、第2ベース部の回転軸の中心では、偶力ではなく、いわゆる並進力(つまり、コイル部の巻き線又は第2ベース部を含む平面に対して垂直方向に作用する力)が発生する。このとき、本実施形態では、コイル部が被駆動部の片側に配置されているがゆえに、このような並進力が発生する結果、第2ベース部の変形振動及び一の方向に沿った軸を回転軸とする被駆動部の回転が実現される。
 本実施形態では特に、コイル部は、巻き線の外側に被駆動部が配置されるように、第2ベース部上に配置される。言い換えれば、コイル部は、巻き線の内側に被駆動部が配置されないように、第2ベース部上に配置される。つまり、コイル部は、被駆動部が配置される箇所から所定方向(例えば、他の方向(例えば、後述のX軸方向))にオフセットした位置に配置される。より具体的には、コイル部は、被駆動部の中心が配置される箇所から所定方向にオフセットした位置にコイル部の中心(例えば、巻き線の中心)が配置されるように、第2ベース部上に配置される。尚、コイル部が第2ベース部上に配置されるため、第2ベース部の少なくとも一部の形状は、コイル部を配置可能な形状を有していることが好ましい。
 このように、本実施形態では、被駆動部は、コイル部の巻き線の外側に位置することになる。従って、コイル部は、被駆動部を取り囲むように配置されなくともよい。その結果、本実施形態では、コイル部が被駆動部を取り囲むように配置される場合と比較して、コイル部のサイズ(例えば、巻き線の径や巻き線の長さ等)を相対的に小さくすることができる。言い換えれば、本実施形態では、被駆動部の大きさに関係なく、コイル部のサイズ(例えば、巻き線の径や巻き線の長さ等)を相対的に小さくすることができる。その結果、当該コイル部に対して磁界を付与するための磁界付与部(例えば、磁石)のサイズもまた、相対的に小さくすることができる。このため、本実施形態では、コイル部が被駆動部を取り囲むように配置される場合と比較して、被駆動部の大きさに関係なく、コイル部と磁気付与部との間の磁気ギャップを相対的に小さくすることができる。従って、本実施形態では、コイル部が被駆動部を取り囲むように配置される場合と比較して、駆動装置の小型化が好適に実現される。
 加えて、本実施形態では、被駆動部を取り囲むようにコイル部が配置されなくともよくなるため、被駆動部を取り囲むようにコイル部が配置される駆動装置と比較して、磁界付与部の配置の自由度が相対的に高くなる。このため、コイル部の中心上方(具体的には、コイル部の巻き線の内側の上方に磁界付与部を配置することができる。
 加えて、本実施形態では、コイル部は、他の方向に沿った第2ベース部の回転軸から一の方向に沿ってシフトした位置に位置している。このため、本実施形態では、後に図面を用いて詳述するように、一の方向に沿ってコイル部を横切る磁界を付与するための磁界付与部と他の方向に沿ってコイル部を横切る磁界を付与するための磁界付与部とが別個独立に配置されなくとも、被駆動部の2軸駆動が行われる。言い換えれば、本実施形態では、例えば一の方向に沿ってコイル部を横切る磁界を付与する磁界付与部を配置すれば、被駆動部の2軸駆動が行われる。
 但し、本実施形態では、被駆動部が巻き線の外側に位置するコイル部に加えて、被駆動部が巻き線の内側に位置する他のコイル部を更に備えていてもよい。つまり、駆動装置が備える全てのコイル部の巻き線の外側に被駆動部が位置することが要求されているものではない。言い換えれば、駆動装置が備える全てのコイル部のうちの少なくとも1つのコイル部の巻き線の外側に被駆動部が位置していれば足りる。
 加えて、複数のコイル部が単一の巻き線によって構成されることがある。この場合であっても、配置位置や形状等によって単一の巻き線から構成される複数のコイル部の夫々を実質的に区別した上で、単一の巻き線から構成される複数のコイル部のうちの一のコイル部の巻き線の外側に被駆動部が位置する一方で、単一の巻き線から構成される複数のコイル部のうちの他のコイル部の巻き線の内側に被駆動部が位置していてもよい。
 <2>
 本実施形態の駆動装置の他の態様では、前記磁界付与部は、前記一の方向に沿って前記コイル部を挟み込む一対の磁性体を備えている。
 この態様によれば、後に図面を用いて詳述するように、一の方向に沿ってコイル部を横切る磁界を付与するための磁界付与部と他の方向に沿ってコイル部を横切る磁界を付与するための磁界付与部とが別個独立に配置されなくとも、被駆動部の2軸駆動が行われる。言い換えれば、本実施形態では、例えば一の方向に沿ってコイル部を横切る磁界を付与する磁界付与部を配置すれば、被駆動部の2軸駆動が行われる。
 <3>
 上述の如く磁界付与部が一対の磁性体を備えている駆動装置の態様では、前記一対の磁性体は、(i)前記コイル部のうち前記一の方向に沿って対向する2つの辺に前記磁界を付与し、前記一対の磁性体は、(ii-1)前記コイル部のうち前記他の方向に沿って対向する2つの辺に前記磁界を付与しない、又は(ii-2)前記コイル部のうち前記他の方向に沿って対向する2つの辺には、前記コイル部のうち前記一の方向に沿って対向する2つの辺に付与される前記磁界の漏れ磁束が付与されるように構成してもよい。
 このように構成すれば、例えば一の方向に沿ってコイル部を横切る磁界を付与する磁界付与部を配置すれば、被駆動部の2軸駆動が行われる。
 <4>
 本実施形態の駆動装置の他の態様では、前記コイル部の前記一の方向に沿った回転軸は、前記被駆動部の前記一の方向に沿った回転軸とは異なる。
 この態様によれば、コイル部の一の方向に沿った回転軸(但し、本実施形態では、(i)一の方向に沿った軸を回転軸としてコイル部が実際に回転した場合における実際の回転軸であってもよいし、(ii)一の方向に沿った軸を回転軸としてコイル部が回転したと仮定した場合における仮想的な回転軸であってもよい)と被駆動部の一の方向に沿った回転軸とを一致させなくともよくなる。このため、コイル部の一の方向に沿った回転軸と被駆動部の一の方向に沿った回転軸とを一致させる必要がある駆動装置と比較して、被駆動部の配置の自由度が相対的に高くなる。このため、被駆動部は、コイル部の巻き線の外側に位置しやすくなる。従って、上述した各種効果が好適に実現される。
 尚、コイル部の一の方向に沿った回転軸は、被駆動部の一の方向に沿った回転軸から、他の方向に沿ってシフトしていることが好ましい。つまり、コイル部は、コイル部の中心(例えば、巻き線の中心)が被駆動部の中心から他の方向に沿ってシフトした位置に配置されるように、第2ベース部上に配置されていることが好ましい。
 また、一の方向に沿った軸を回転軸とするコイル部の回転及び一の方向に沿った軸を回転軸とする被駆動部の回転については、後に詳述する。
 <5>
 本実施形態の駆動装置の他の態様では、前記コイル部に供給される制御電流と前記磁界付与部が付与する磁界との電磁相互作用に起因して前記コイル部に発生するローレンツ力によって、前記コイル部は、前記他の方向に沿った軸を回転軸として回転し、前記他の方向に沿った軸を回転軸とする前記コイル部の回転に起因して、前記第2ベース部は、前記他の方向に沿った軸を回転軸として回転し、前記他の方向に沿った軸を回転軸とする前記コイル部の回転に起因して、前記第2ベース部は、前記他の方向に沿って定常波状に変形振動し、前記第2ベース部の変形振動に起因して、前記被駆動部は、前記一の方向に沿った軸を回転軸として回転する。
 この態様によれば、コイル部と磁界付与部との間の電磁相互作用に起因した力によって、一の方向に沿った軸を回転軸として被駆動部が回転すると共に、他の方向に沿った軸を回転軸として第2ベース部が回転する。以下、一の方向に沿った軸を回転軸として被駆動部が回転する具体的な態様及び他の方向に沿った軸を回転軸として第2ベース部が回転する具体的な態様について説明を進める。
 コイル部には、他の方向に沿った軸を回転軸として第2ベース部を回転させるための制御電流が供給される。加えて、コイル部には、一の方向に沿った軸を回転軸として被駆動部を回転させるための制御電流が供給される。一方で、コイル部には、磁界付与部から磁界が付与される。このため、コイル部に供給される制御電流と磁界付与部が付与する磁界との電磁相互作用に起因して、コイル部には、ローレンツ力が発生する。
 このローレンツ力によって、コイル部は、他の方向に沿った軸を回転軸として回転する(より具体的には、回転するように往復駆動する)。このような他の方向に沿った軸を回転軸とするコイル部の回転を実現するために、一の方向に沿って対向するコイル部の2つの辺に、異なる方向に作用するローレンツ力が同時に加わることが好ましい。例えば、ある一のタイミングでコイル部に加わるローレンツ力は、一の方向に沿って対向するコイル部の2つの辺のうちの一方の辺に上向きの力として作用する力であり且つ一の方向に沿って対向するコイル部の2つの辺のうちの他方の辺に下向きの力として作用する力であることが好ましい。更に、当該一のタイミングに相前後する他のタイミングでコイル部に加わるローレンツ力は、一の方向に沿って対向するコイル部の2つの辺のうちの一方の辺に下向きの力として作用する力であり且つ一の方向に沿って対向するコイル部の2つの辺のうちの他方の辺に上向きの力として作用する力であることが好ましい。このようなローレンツ力がコイル部に発生することで、コイル部は、他の方向に沿った軸を回転軸として回転する。
 他の方向に沿った軸を回転軸とするコイル部の回転に伴って、コイル部が配置されている第2ベース部は、他の方向に沿った軸を回転軸として回転する。
 加えて、上述したように、本実施形態では、他の方向に沿ったコイル部の回転軸が、他の方向に沿った第2ベース部の回転軸から一の方向に沿ってシフトした位置に位置している。このため、他の方向に沿った第2ベース部の回転軸(回転体回転支持中心)と、コイル部を含む第2ベース部全体の系の重心(回転体重心)と、コイル部に発生するローレンツ力の中心(回転力中心)とのうちの少なくとも2つが、一の方向に沿ってずれることになる。このようなずれ(つまり、アンバランス)に起因して、コイル部に発生するローレンツ力は、第2ベース部を変形振動させるように作用する。つまり、他の方向に沿った軸を回転軸とするコイル部の回転に伴って、コイル部が配置されている第2ベース部は、他の方向に沿って定常波状に(つまり、定常波の波形状に)変形振動する。というのも、コイル部には、他の方向に沿った軸を回転軸として第2ベース部を回転させるための制御電流のみならず、一の方向に沿った軸を回転軸として被駆動部を回転させるための制御電流も供給されるからである。つまり、一の方向に沿った軸を回転軸として被駆動部を回転させるための制御電流に応じて、第2ベース部は、他の方向に沿って定常波状に(つまり、定常波の波形状に)変形振動する。つまり、第2ベース部は、そのある一部分が変形振動の腹となり且つその他の一部分が変形振動の節となるように、その外観を変形させる。このような第2ベース部の変形振動によって、他の方向に沿って腹及び節が現れる。第2ベース部の変形振動は、いわゆる定常波の波形に従って行われるため、その腹及び節の位置は実質的には固定されている。このとき、第2ベース部の変形振動は、共振となっていてもよい。また、第2ベース部が共振する共振周波数(つまり、ベース部の変形振動の周波数)は、被駆動部が回転する周波数(或いは、被駆動部の共振周波数)と同一となっていてもよい。
 このような第2ベース部の変形振動に起因して、被駆動部は、一の方向に沿った軸を回転軸として回転する。このとき、被駆動部は、被駆動部及び第2弾性部によって定まる被駆動部の共振周波数(より具体的には、被駆動部の慣性モーメント及び第2弾性部のねじりバネ定数によって定まる被駆動部の共振周波数)で共振するように、一の方向に沿った軸を回転軸として回転してもよい。
 <6>
 上述の如くローレンツ力によってコイル部が回転する駆動装置の態様では、前記コイル部の前記一の方向に沿った回転軸及び前記被駆動部の前記一の方向に沿った回転軸に対応する箇所には、前記第2ベース部の変形振動における節が現れ、前記コイル部の前記一の方向に沿った回転軸と前記被駆動部の前記一の方向に沿った回転軸との間の箇所には、前記第2ベース部の変形振動における腹が現れる。
 この態様によれば、第2ベース部の変形振動における節に対応する箇所に被駆動部が接続されている。また、第2ベース部の変形振動における節に対応する箇所にコイル部が配置されている。このため、被駆動部及びコイル部の上下方向(具体的には、一の方向及び他の方向の夫々に直交する方向であって、第2ベース部の表面に対して垂直な方向)の移動ないしは振動を防ぐことができる。従って、被駆動部の高精度な回転を実現することができる。
 <7>
 上述の如くローレンツ力によってコイル部が回転する駆動装置の態様では、前記一の方向に沿った軸を回転軸とする前記コイル部の回転方向と前記一の方向に沿った軸を回転軸とする前記被駆動部の回転方向とは、互いに逆になる。
 この態様によれば、一の方向に沿った軸を回転軸とするコイル部の回転に起因した第2ベース部の変形振動を用いて、被駆動部は、一の方向に沿った軸を回転軸として好適に回転する。
 尚、一の方向に沿った軸を回転軸とするコイル部の回転方向と一の方向に沿った軸を回転軸とする被駆動部の回転方向とが互いに逆向きとなる例は、厳密に言えば、一の方向に沿った軸を回転軸とするコイル部の回転方向と被駆動部に対応する(例えば、被駆動部を支持している部分に相当する)第2ベース部の回転方向(言い換えれば、変形振動に伴う疑似的な回転方向)とが互いに逆向きとなる例とも表現できる。
 但し、第2ベース部がより高次の振動モードで変形振動する場合には、一の方向に沿った軸を回転軸とする被駆動部の回転方向と被駆動部に対応する(例えば、被駆動部を支持している部分に相当する)第2ベース部の回転方向とが逆になってもよい。つまり、一の方向に沿った軸を回転軸とするコイル部の回転方向と一の方向に沿った軸を回転軸とする被駆動部の回転方向とが互いに同じ向きとなってもよい。
 本実施形態のこのような作用及び他の利得は次に説明する実施例から明らかにされる。
 以上説明したように、本実施形態の駆動装置によれば、第1ベース部と、第2ベース部と、第1弾性部と、コイル部の巻き線の外側に配置される被駆動部と、第2弾性部と、コイル部と、磁界付与部とを備え、コイル部は、第2ベース部の回転軸から一の方向に沿ってオフセットした位置にコイル部の中心が位置するように、配置されている。従って、コイル部と磁界付与部とを用いて被駆動物を駆動する、相対的に小型な駆動装置が提供される。
 以下、図面を参照しながら、駆動装置の実施例について説明する。尚、以下では、駆動装置をMEMSスキャナに適用した例について説明する。
 (1)第1実施例
 初めに、図1から図4を参照して、MEMSスキャナの第1実施例について説明する。
 (1-1)MEMSスキャナの構成
 初めに、図1を参照して、第1実施例に係るMEMSスキャナ101の構成について説明する。ここに、図1は、第1実施例に係るMEMSスキャナ101の構成を概念的に示す平面図である。
 図1に示すように、第1実施例に係るMEMSスキャナ101は、ベース110と、トーションバー120a及び120bと、ミラー130と、コイル140と、磁石151及び152とを備えている。
 ベース110は、内部に空隙を備える枠形状を有している。つまり、ベース110は、図1中のY軸方向に延伸する2つの辺と図1中のX軸方向(つまり、Y軸方向に直交する方向)に延伸する2つの辺とを有すると共に、Y軸方向に延伸する2つの辺とX軸方向に延伸する2つの辺とによって取り囲まれた空隙を有する枠形状を有している。図1に示す例では、ベース110は、正方形の形状を有しているが、これに限定されることはなく、例えばその他の形状(例えば、長方形等の矩形の形状や円形の形状等)を有していてもよい。また、ベース110は、第1実施例に係るMEMSスキャナ101の基礎となる構造体であって、不図示の基板ないしは支持部材に対して固定されている(言い換えれば、MEMSスキャナ100という系の内部においては固定されている)ことが好ましい。或いは、ベース110は、不図示のサスペンション等によって吊り下げられていてもよい。
 尚、図1では、ベース110が枠形状を有している例を示しているが、その他の形状を有していてもよいことは言うまでもない。例えば、ベース110は、その一部の辺が開口となるコの字型形状を有していてもよい。或いは、例えば、ベース110は、内部に空隙を備える箱型形状を有していてもよい。つまり、ベース110は、X軸及びY軸によって規定される平面上に分布する2つの面と、X軸及び不図示のZ軸(つまり、X軸及びY軸の双方に直交する軸)によって規定される平面上に分布する2つの面と、Y軸及び不図示のZ軸によって規定される平面上に分布する2つの面とを有すると共に、これらの6つの面によって取り囲まれた空隙を有する箱形状を有していてもよい。或いは、ミラー130が配置される態様に応じて適宜ベース110の形状を任意に代えてもよい。
 トーションバー120a及び120bの夫々は、例えばシリコン、銅合金、鉄系合金、その他金属、樹脂等を材料とするバネ等のような弾性を有する部材である。トーションバー120a及び120bの夫々は、図1中Y軸方向に延伸するように配置される。言い換えれば、トーションバー120a及び120bの夫々は、Y軸方向に延伸する長手を有すると共にX軸方向に延伸する短手を有する形状を有している。但し、後述する共振周波数の設定状況に応じて、トーションバー120a及び120bの夫々は、Y軸方向に延伸する短手を有すると共にX軸方向に延伸する長手を有する形状を有していてもよい。トーションバー120a及び120bの夫々の一方の端部は、ベース110に接続される。トーションバー120a及び120bの夫々の他方の端部は、ミラー130に接続される。つまり、トーションバー120a及び120bは、間にミラー130を挟み込むようにミラー130を吊り下げている。
 ミラー130は、ベース110の内部の空隙に、トーションバー120a及び120bによって吊り下げられる又は支持されるように配置される。ミラー130は、トーションバー120a及び120bの弾性によって、Y軸方向に沿った軸を回転軸として回転するように構成されている。
 コイル140は、例えば相対的に導電率の高い材料(例えば、金や銅等)から構成される複数の巻き線である。第1実施例では、コイル140は、矩形の形状を有している。特に、コイル140の4つの辺のうちX軸方向(つまり、ミラー130の回転軸の方向に直交する方向)に沿った2つの辺の長さが、コイル140の4つの辺のうちY軸方向(つまり、ミラー130の回転軸の方向)に沿った2つの辺の長さよりも短い。言い換えれば、コイル140は、X軸方向に沿って対向する2つの長辺と、Y軸方向に沿って対向する2つの短辺を含んでいる。つまり、第1実施例では、コイル140は、長方形状の形状を有している。但し、コイル140は、任意の形状(例えば、正方形やひし形や平行四辺形や円形や楕円形やその他の任意のループ形状)を有していてもよい。
 コイル140は、ベース110上に配置されている。特に、コイル140は、ミラー130が配置される位置(特に、ミラー130の中心ないしは重心が配置される位置)を基準として、X軸方向(つまり、ミラー130の回転軸の方向に直交する方向)に沿って所定距離だけシフトした位置にコイル140が位置する(特に、コイル140の中心又は重心が位置する)ように、ベース110上に配置されている。但し、コイル140は、ミラー130が配置される位置を基準として、Y軸方向(つまり、ミラー130の回転軸の方向)に沿って所定距離だけシフトした位置にコイル140が位置するように、ベース110上に配置されていてもよい。加えて、コイル140は、ミラー130とコイル140とがX軸方向に沿って並ぶように、ベース110上に配置されている。その結果、ミラー130は、コイル140を構成する巻き線の外側に位置することになる。言い換えれば、ミラー130は、コイル140を構成する巻き線の内側に位置することはない。
 コイル140には、ベース110上に形成されている電源端子141を介して、電源から、ミラー130を回転させるための制御電流が供給される。制御電流は、典型的には、Y軸方向に沿った軸を回転軸としてミラー130が回転する周波数と同一の又は同期した周波数の信号成分を含む交流電流である。尚、電源は、MEMSスキャナ101自身が備えている電源であってもよいし、MEMSスキャナ101の外部に用意される電源であってもよい。
 磁石151及び152は、磁石151と磁石152とがX軸方向に沿って配列するように配置される。特に、磁石151及び152は、磁石151と磁石152とがX軸方向に沿ってコイル140を挟み込むように配置される。加えて、磁石151及び152のいずれか一方が磁束の出射側になると共に、磁石151及び152のいずれか他方が磁束の入射側になる。尚、以下では、磁石151が磁束の入射側になり且つ磁石152が磁束の出射側になる例を用いて説明を進める。
 (1-2)MEMSスキャナの動作
 続いて、図2から図4を参照して、第1実施例に係るMEMSスキャナ101の動作の態様(具体的には、ミラー130を回転させる動作の態様)について説明する。ここに、図2は、第1実施例に係るMEMSスキャナ101による動作の態様を概念的に示す平面図及び断面図である。図3は、第1実施例に係るMEMSスキャナ101による動作の態様を概念的に示す平面図及び断面図である。図4は、第1実施例に係るMEMSスキャナ101による動作の態様を概念的に示す断面図である。
 第1実施例に係るMEMSスキャナ101の動作時には、まず、コイル140に制御電流が供給される。制御電流は、Y軸方向に沿った軸を回転軸としてミラー130を回転させるための電流成分を含んでいる。第1実施例では、ミラー130は、ミラー130とトーションバー120a及び120bによって定まる共振周波数(より具体的には、ミラー130の慣性モーメントとトーションバー120a及び120bのねじりバネ定数によって定まる共振周波数)で共振するように、Y軸方向に沿った軸を回転軸として回転する。尚、厳密に言えば、トーションバー120a及び120bを支持するベース110の質量及び慣性モーメントも考慮した上で、ミラー130とトーションバー120a及び120bによって定まる共振周波数が微修正されることが好ましい。但し、以下では(特に、第1実施例のみならず、その他の実施例も含めて)、説明の簡略化のため、共振周波数の微修正については省略して説明を進める。従って、制御電流は、ミラー130の共振周波数と同一の又は同期した周波数の信号成分を含む交流電流である。但し、ミラー130は、ミラー130とトーションバー120a及び120bによって定まる共振周波数とは異なる又は同期しない周波数で、Y軸方向に沿った軸を回転軸として回転してもよい。この場合には、制御電流は、Y軸方向に沿った軸を回転軸としてミラー130が回転する周波数と同一の又は同期した周波数の信号成分を含む交流電流である。
 一方で、コイル140には、磁石151及び152から磁界が付与されている。尚、磁石151及び152は、X軸方向に沿って対向するコイル140の2つの辺に対して、磁界を付与することが好ましい。この場合、磁石151及び152は、Y軸方向に沿って対向するコイル140の2つの辺に対しては、磁界を付与しなくともよい。或いは、磁石151及び152は、Y軸方向に沿って対向するコイル140の2つの辺に対して、磁界を付与してもよい。或いは、磁石151及び152は、Y軸方向に沿って対向するコイル140の2つの辺に対して、Y軸方向に沿って対向するコイル140の2つの辺に対して付与している磁界の漏れ磁束のみを付与してもよい。
 従って、コイル140には、コイル140に供給されている制御電流とコイル140に付与されている磁界との間の電磁相互作用に起因したローレンツ力が発生することになる。
 ここで、図2(a)に示すように、図2(a)中の時計周りの方向に流れる制御電流がコイル140に供給されており、磁石152から磁石151に向かう磁界がコイル140に付与されている状況について説明する。この場合、図2(a)に示すMEMSスキャナ101を矢印IIの方向から観察した図面である図2(b)に示すように、X軸方向に沿って対向するコイル140の2つの長辺のうちの右側(つまり、図2(a)では外側)の長辺には、図2(b)における下側の方向に向かうローレンツ力が発生する。同様に、図2(b)に示すように、X軸方向に沿って対向するコイル140の2つの長辺のうちの左側(つまり、図2(a)では内側)の長辺には、図2(b)における上側の方向に向かうローレンツ力が発生する。つまり、X軸方向に沿って対向するコイル140の2つの長辺には、相互に異なる方向のローレンツ力が発生する。言い換えれば、X軸方向に沿って対向するコイル140の2つの長辺には、偶力となるローレンツ力が発生する。従って、コイル140は、図2(b)における時計周りの方向に向かって回転する。
 一方で、制御電流が交流電流であるため、図3(a)に示すように、図3(a)中の反時計周りの方向に流れる制御電流がコイル140に供給されており、磁石152から磁石151に向かう磁界がコイル140に付与される状況が、図2(a)に示す状況に続けて生ずる。この場合、図3(a)に示すMEMSスキャナ101を矢印IIIの方向から観察した図面である図3(b)に示すように、X軸方向に沿って対向するコイル140の2つの長辺のうちの右側(つまり、図3(a)では外側)の長辺には、図3(b)における上側の方向に向かうローレンツ力が発生する。同様に、図3(b)に示すように、X軸方向に沿って対向するコイル140の2つの長辺のうちの左側(つまり、図2(a)では内側)の長辺には、図3(b)における下側の方向に向かうローレンツ力が発生する。つまり、X軸方向に沿って対向するコイル140の2つの長辺には、相互に異なる方向のローレンツ力が発生する。言い換えれば、X軸方向に沿って対向するコイル140の2つの長辺には、偶力となるローレンツ力が発生する。従って、コイル140は、図3(b)における半時計周りの方向に向かって回転する。
 このようなローレンツ力によって、コイル140は、Y軸方向に沿った軸を回転軸として回転する(より具体的には、回転するように往復駆動する)。このとき、Y軸方向に沿ったコイル140の回転軸は、Y軸方向に沿ったミラー130の回転軸とは異なっている。具体的には、Y軸方向に沿ったコイル140の回転軸は、Y軸方向に沿ったミラー130の回転軸を基準として、X軸方向に所定距離シフトした位置に存在する。このため、Y軸方向に沿った軸を回転軸とするコイル140の回転は、Y軸方向に沿った軸を回転軸としてミラー130を直接的に回転させることはない。
 一方で、Y軸方向に沿った軸を回転軸とするコイル140の回転に伴って、コイル140からベース110に対して微振動が伝搬する。その結果、コイル140が配置されているベース110は、X軸方向に沿って定常波状に(つまり、定常波の波形状に)変形振動する。言い換えれば、ベース110は、X軸方向に沿って波打つように変形振動する。つまり、ベース110は、そのある一部分が変形振動の腹となり且つその他の一部分が変形振動の節となるように、その外観を変形させる。
 このようなベース110の変形振動に起因して、ミラー130は、Y軸方向に沿った軸を回転軸として回転する。このとき、ミラー130は、ミラー130並びにトーションバー120a及び120bに応じて定まる共振周波数(例えば、20kHz)で共振するように回転する。例えば、ミラー130のY軸方向に沿った軸回り慣性モーメントがIであり且つトーションバー120a及び120bを1本のバネとみなした場合のねじりバネ定数がkであるとすれば、ミラー130は、(1/(2π))×√(k/I)にて特定される共振周波数(或いは、(1/(2π))×√(k/I)のN倍若しくはN分の1倍(但し、Nは1以上の整数)の共振周波数)で共振するように、Y軸方向に沿った軸を回転軸として回転する。
 ここで、Y軸方向に沿った軸を回転軸とするコイル140の回転とX軸方向に沿ったベース110の変形振動とY軸方向に沿った軸を回転軸とするミラー130の回転の関係について、図4を参照しながらより詳細に説明する。
 図4(a)に示すように、Y軸方向に沿った軸を回転軸としてコイル140が回転していない状態では、X軸方向に沿ってベース110は変形振動していない。このため、ミラー130もまた、Y軸方向に沿った軸を回転軸として回転していない。
 その後、図4(b)に示すように、Y軸方向に沿った軸を回転軸としてコイル140が図4(b)における反時計回りの方向に沿って回転し始めると、ベース110は、コイル140のY軸方向に沿った回転軸に対応する箇所(つまり、コイル140のY軸方向に沿った回転軸上に位置する箇所)が節となるように、X軸方向に沿って変形振動し始める。加えて、ベース110は、ミラー130のY軸方向に沿った回転軸に対応する箇所(つまり、ミラー130のY軸方向に沿った回転軸上に位置する箇所)が節となるように、X軸方向に沿って変形振動し始める。言い換えれば、ベース110は、コイル140のY軸方向に沿った回転軸に対応する箇所とミラー130のY軸方向に沿った回転軸に対応する箇所との間に腹が存在するように、X軸方向に沿って変形振動し始める。つまり、ベース110の変形振動によって、X軸方向に沿って腹及び節が現れる。尚、ベース110の変形振動は、いわゆる定常波の波形に従って行われるため、その腹及び節の位置は実質的には固定されている。このとき、ベース110の変形振動の周波数は、典型的には、上述したミラー130の共振周波数と同一になる。
 このようなベース110の変形振動を実現するために、ベース110の剛性が調整されてもよい。例えば、ベース110のうち節となる箇所の剛性が相対的に高くなると共に、ベース110のうち腹となる箇所の剛性が相対的に低くなっていてもよい。より具体的には、例えば、ベース110のうち節となる箇所にリブが形成されると共にベース110のうち腹となる箇所にリブが形成されなくともよい。この場合、リブが形成されているベース110の箇所は、剛性が相対的に高いため、コイル140の回転に伴って屈曲しにくい一方で、リブが形成されていないベース110の箇所は、剛性が相対的に低いため、コイル140の回転に伴って屈曲しやすい。その結果、ベース110は、リブが形成されている箇所を節とし且つリブが形成されていない箇所を腹にして、X軸の方向に沿って波打つように変形振動する。
 その結果、図4(a)から図4(g)に時系列的に示すように、コイル140の回転に伴って、ベース110は、定常波の如き外観を有するように変形振動する。つまり、ベース110は、ミラー130の回転軸に直交する方向(つまり、X軸方向)に沿って定常波が現れるような外観を有する。その結果、図4(a)から図4(g)に時系列的に示すように、ベース110の変形振動に合わせて、ミラー130は、Y軸方向に沿った軸を回転軸として回転する。
 尚、図4(a)から図4(g)に示すように、典型的には、コイル140の回転方向とミラー130の回転方向とは、互いに逆向きとなる。具体的には、図4(a)から図4(c)に示すように、コイル140が反時計回りに回転している状態では、ミラー130が時計回りに回転する。同様に、図4(c)から図4(g)に示すように、コイル140が時計回りに回転している状態では、ミラー130が反時計回りに回転する。尚、図4(g)に示す状態のコイル140、ベース110及びミラー130は、その後、図4(f)に示す状態を経てから図4(a)に示す状態に遷移する。以降、コイル140、ベース110及びミラー130は、図4(a)から図4(g)に示す時系列に従って変形振動ないしは回転する。但し、図4(a)から図4(g)に示すベース110の変形モードは、あくまで一例であって、ベース110は、他の変形モード(例えば、更に多くの節を有する変形モード)で変形振動してもよい。
 また、図4(a)から図4(g)は、コイル140の回転方向とミラー130の回転方向とが互いに逆向きとなる例を示している。この例は、厳密に言えば、コイル140の回転方向とミラー130を支持している部分におけるベース110の回転方向とが互いに逆向きとなる例とも表現できる。
 但し、ベース110がより高次の振動モード(例えば、図4(a)から図4(g)に示す状態と比較して、節や腹の数が増加する振動モード)で変形振動する場合には、ミラー130の回転方向とミラー130を支持している部分におけるベース110の回転方向とが逆になってもよい。つまり、コイル140の回転方向とミラー130の回転方向とが互いに同じ向きとなってもよい。
 以上説明したように、第1実施例のMEMSスキャナ101は、Y軸方向に沿った軸を回転軸としてミラー130を回転させることができる。つまり、第1実施例のMEMSスキャナ101は、ミラー130の1軸駆動を行うことができる。
 加えて、第1実施例のMEMSスキャナ101では、ミラー130は、コイル140の巻き線の外側に位置することになる。従って、コイル140は、ミラー130を取り囲むように配置されなくともよい。その結果、第1実施例では、コイル140がミラー130を取り囲むように配置される比較例のMEMSスキャナと比較して、コイル140のサイズ(例えば、巻き線の径や巻き線の長さ等)を相対的に小さくすることができる。言い換えれば、第1実施例では、ミラー130の大きさに関係なく、コイル140のサイズを相対的に小さくすることができる。その結果、当該コイル140に対して磁界を付与するための磁石151及び152のサイズもまた、相対的に小さくすることができる。このため、第1実施例では、コイル140がミラー130を取り囲むように配置される比較例のMEMSスキャナと比較して、ミラー130の大きさに関係なく、コイル140と磁石151及び152との間の磁気ギャップを相対的に小さくすることができる。従って、第1実施例では、コイル140がミラー130を取り囲むように配置される比較例のMEMSスキャナと比較して、MEMSスキャナ101の小型化が好適に実現される。
 加えて、第1実施例では、ミラー130を取り囲むようにコイル140が配置されなくともよくなる。このため、ミラー130を取り囲むようにコイル140が配置される比較例のMEMSスキャナと比較して、磁石151及び152の配置の自由度が相対的に高くなる。このため、コイル140の中心上方(具体的には、コイル140の巻き線の内側の上方)に磁石151及び152を配置することができる。特に、コイル140の中心上方に磁石151及び152を配置したとしても、当該磁石151及び152がミラー130の上方の光路を遮ることはない。従って、MEMSスキャナ101としての好適な動作を維持しつつ、磁石151及び152の配置の自由度が相対的に高くなる。
 加えて、第1実施例では、ベース110の変形振動における節に対応する箇所に、ミラー130につながるトーションバー120a及び120bが接続されている。つまり、ベース110の変形振動における節に対応する箇所が、ミラー130のY軸方向に沿った回転軸と一致する。また、ベース110の変形振動における節に対応する箇所に、コイル140が配置されている。つまり、ベース110の変形振動における節に対応する箇所が、コイル140のY軸方向に沿った回転軸と一致する。このため、第1実施例では、ミラー130及びコイル140の上下方向(具体的には、X軸方向及びY軸方向の夫々に直交する方向であって、ベース110の表面に対して垂直なZ軸方向)の移動を防ぐことができる。従って、ミラー130の高精度な回転駆動を実現することができる。
 尚、コイル140に発生するローレンツ力は、例えば、特許第4827993号公報に開示されているように、「微振動(つまり、方向性のない力であって、トーションバー120a及び120bを、ミラー130の回転方向に向かってねじれさせるように直接的に作用しない力)」として、ベース110に伝搬されてもよい。この場合には、ローレンツ力が微振動としてベース110に伝搬されることで、ベース110が変形振動する。つまり、微振動としてのローレンツ力は、ベース110の変形振動という形で発現する。或いは、コイル140に発生するローレンツ力は、例えば、独立行政法人産業総合研究所のホームページ(http://www.aist.go.jp/aist_j/press_release/pr2010/pr20100209/pr20100209.html)に開示されているように、「ラム波」として、ベース110に伝搬されてもよい。この場合には、ローレンツ力がラム波としてベース110に伝搬されることで、ベース110が変形振動する。以下の第2実施例から第6実施例においても同様である。
 (2)第2実施例
 続いて、図5から図8を参照して、MEMSスキャナの第2実施例について説明する。尚、上述の第1実施例のMEMSスキャナ101と同一の構成については、同一の参照符号を付することでその詳細な説明を省略する。
 (2-1)MEMSスキャナの構成
 初めに、図5を参照して、第2実施例に係るMEMSスキャナ102の構成について説明する。ここに、図5は、第2実施例に係るMEMSスキャナ102の構成を概念的に示す平面図である。
 図5に示すように、第2実施例に係るMEMSスキャナ101は、第1ベース110-1と、第1トーションバー120a-1と、第1トーションバー120b-1と、第2ベース110-2と、第2トーションバー120a-2と、第2トーションバー120b-2と、ミラー130と、コイル140と、磁石151及び152と、磁石161及び162とを備えている。
 第1ベース110-1は、内部に空隙を備える枠形状を有している。つまり、第1ベース110-1は、図5中のY軸方向に延伸する2つの辺と図5中のX軸方向(つまり、Y軸方向に直交する方向)に延伸する2つの辺とを有すると共に、Y軸方向に延伸する2つの辺とX軸方向に延伸する2つの辺とによって取り囲まれた空隙を有する枠形状を有している。図5に示す例では、第1ベース110-1は、正方形の形状を有しているが、これに限定されることはなく、例えばその他の形状(例えば、長方形等の矩形の形状や円形の形状等)を有していてもよい。また、第1ベース110-1は、第2実施例に係るMEMSスキャナ102の基礎となる構造体であって、不図示の基板ないしは支持部材に対して固定されている(言い換えれば、MEMSスキャナ102という系の内部においては固定されている)ことが好ましい。或いは、第1ベース110-1は、不図示のサスペンション等によって吊り下げられていてもよい。
 尚、図5では、第1ベース110-1が枠形状を有している例を示しているが、その他の形状を有していてもよいことは言うまでもない。例えば、第1ベース110-1は、その一部の辺が開口となるコの字型形状を有していてもよい。或いは、例えば、第1ベース110-1は、内部に空隙を備える箱型形状を有していてもよい。つまり、第1ベース110-1は、X軸及びY軸によって規定される平面上に分布する2つの面と、X軸及び不図示のZ軸(つまり、X軸及びY軸の双方に直交する軸)によって規定される平面上に分布する2つの面と、Y軸及び不図示のZ軸によって規定される平面上に分布する2つの面とを有すると共に、これらの6つの面によって取り囲まれた空隙を有する箱形状を有していてもよい。或いは、ミラー130が配置される態様に応じて適宜第1ベース110-1の形状を任意に代えてもよい。
 第1トーションバー120a-1及び120b-1の夫々は、例えばシリコン、銅合金、鉄系合金、その他金属、樹脂等を材料とするバネ等のような弾性を有する部材である。第1トーションバー120a-1及び120b-1の夫々は、図5中X軸方向に延伸するように配置される。言い換えれば、第1トーションバー120a-1及び120b-1の夫々は、X軸方向に延伸する長手を有すると共にY軸方向に延伸する短手を有する形状を有している。但し、後述する共振周波数の設定状況に応じて、第1トーションバー120a-1及び120b-1の夫々は、X軸方向に延伸する短手を有すると共にY軸方向に延伸する長手を有する形状を有していてもよい。第1トーションバー120a-1及び120b-1の夫々の一方の端部は、第1ベース110-1に接続される。第1トーションバー120a-1及び120b-1の夫々の他方の端部は、第2ベース110-2に接続される。つまり、第1トーションバー120a-1及び120b-1は、間に第2ベース110-2を挟み込むように第2ベース110-2を吊り下げている。
 第2ベース110-2は、内部に空隙を備える枠形状を有している。つまり、第2ベース110-2は、図5中のY軸方向に延伸する2つの辺と図5中のX軸方向に延伸する2つの辺とを有すると共に、Y軸方向に延伸する2つの辺とX軸方向に延伸する2つの辺とによって取り囲まれた空隙を有する枠形状を有している。図5に示す例では、第2ベース110-2は、正方形の形状を有しているが、これに限定されることはなく、例えばその他の形状(例えば、長方形等の矩形の形状や円形の形状等)を有していてもよい。
 また、第2ベース110-2は、第1ベース110-1の内部の空隙に、第1トーションバー120a-1及び120b-1によって吊り下げられる又は支持されるように配置される。第2ベース110-2は、第1トーションバー120a-1及び120b-1の弾性によって、X軸方向に沿った軸を回転軸として回転するように構成されている。
 尚、図5では、第2ベース110-2が枠形状を有している例を示しているが、その他の形状を有していてもよいことは言うまでもない。例えば、第2ベース110-2は、その一部の辺が開口となるコの字型形状を有していてもよい。或いは、例えば、第2ベース110-2は、内部に空隙を備える箱型形状を有していてもよい。つまり、第2ベース110-2は、X軸及びY軸によって規定される平面上に分布する2つの面と、X軸及び不図示のZ軸(つまり、X軸及びY軸の双方に直交する軸)によって規定される平面上に分布する2つの面と、Y軸及び不図示のZ軸によって規定される平面上に分布する2つの面とを有すると共に、これらの6つの面によって取り囲まれた空隙を有する箱形状を有していてもよい。或いは、ミラー130が配置される態様に応じて適宜第2ベース110-2の形状を任意に代えてもよい。
 第2トーションバー120a-2及び120b-2の夫々は、例えばシリコン、銅合金、鉄系合金、その他金属、樹脂等を材料とするバネ等のような弾性を有する部材である。第2トーションバー120a-2及び120b-2の夫々は、図5中Y軸方向に延伸するように配置される。言い換えれば、第2トーションバー120a-2及び120b-2の夫々は、Y軸方向に延伸する長手を有すると共にX軸方向に延伸する短手を有する形状を有している。但し、後述する共振周波数の設定状況に応じて、第2トーションバー120a-2及び120b-2の夫々は、Y軸方向に延伸する短手を有すると共にX軸方向に延伸する長手を有する形状を有していてもよい。第2トーションバー120a-2及び120b-2の夫々の一方の端部は、第2ベース110-2に接続される。第2トーションバー120a-2及び120b-2の夫々の他方の端部は、ミラー130に接続される。つまり、第2トーションバー120a-2及び120b-2は、間にミラー130を挟み込むようにミラー130を吊り下げている。
 ミラー130は、第2ベース110-2の内部の空隙に、第2トーションバー120a-2及び120b-2によって吊り下げられる又は支持されるように配置される。ミラー130は、第2トーションバー120a-2及び120b-2の弾性によって、Y軸方向に沿った軸を回転軸として回転するように構成されている。
 コイル140は、例えば相対的に導電率の高い材料(例えば、金や銅等)から構成される複数の巻き線である。第2実施例では、コイル140は、矩形の形状を有している。特に、コイル140の4つの辺の夫々の長さが略同一である。つまり、第2実施例では、コイル140は、正方形状の形状を有している。但し、コイル140は、任意の形状(例えば、長方形やひし形や平行四辺形や円形や楕円形やその他の任意のループ形状)を有していてもよい。
 コイル140は、第2ベース110-2上に配置されている。特に、コイル140は、ミラー130が配置される位置(特に、ミラー130の中心ないしは重心が配置される位置)を基準として、X軸方向(つまり、ミラー130の回転軸の方向に直交する方向)に沿って所定距離だけシフトした位置にコイル140が位置する(特に、コイル140の中心又は重心が位置する)ように、第2ベース110-2上に配置されている。但し、コイル140は、ミラー130が配置される位置を基準として、Y軸方向(つまり、ミラー130の回転軸の方向)に沿って所定距離だけシフトした位置にコイル140が位置するように、第2ベース110-2上に配置されていてもよい。加えて、コイル140は、ミラー130とコイル140とがX軸方向に沿って並ぶように、第2ベース110-2上に配置されている。その結果、ミラー130は、コイル140を構成する巻き線の外側に位置することになる。言い換えれば、ミラー130は、コイル140を構成する巻き線の内側に位置することはない。
 コイル140には、第2ベース110-2上に形成されている電源端子141を介して、電源から、ミラー130及び第2ベース110-2を回転させるための制御電流が供給される。制御電流は、典型的には、Y軸方向に沿った軸を回転軸としてミラー130が回転する周波数と同一の又は同期した周波数の信号成分及びX軸方向に沿った軸を回転軸として第2ベース110-2が回転する周波数と同一の又は同期した周波数の信号成分の双方を含む交流電流である。尚、電源は、MEMSスキャナ102自身が備えている電源であってもよいし、MEMSスキャナ102の外部に用意される電源であってもよい。尚、以下の説明では、説明の便宜上、制御電流のうちY軸方向に沿った軸を回転軸としてミラー130を回転させるための電流成分を、“Y軸駆動用制御電流”と称する。同様に、制御電流のうちX軸方向に沿った軸を回転軸として第2ベース110-2を回転させるための電流成分を、“X軸駆動用制御電流”と称する。
 磁石151及び152は、磁石151と磁石152とがX軸方向に沿って配列するように配置される。特に、磁石151及び152は、磁石151と磁石152とがX軸方向に沿ってコイル140を挟み込むように配置される。加えて、磁石151及び152のいずれか一方が磁束の出射側になると共に、磁石151及び152のいずれか他方が磁束の入射側になる。尚、以下では、磁石151が磁束の入射側になり且つ磁石152が磁束の出射側になる例を用いて説明を進める。
 尚、磁石151及び磁石152から付与される磁界は、主としてY軸方向に沿った軸を回転軸としてミラー130を回転させるために用いられる。このため、以下の説明では、説明の便宜上、磁石151及び152から付与される磁界(つまり、Y軸方向に沿った軸を回転軸としてミラー130を回転させるための磁界)を、“Y軸駆動用磁界”と称する。
 磁石161及び162は、磁石161と磁石162とがY軸方向に沿って配列するように配置される。特に、磁石161及び162は、磁石161と磁石162とがY軸方向に沿ってコイル140を挟み込むように配置される。加えて、磁石161及び162のいずれか一方が磁束の出射側になると共に、磁石161及び162のいずれか他方が磁束の入射側になる。尚、以下では、磁石161が磁束の出射側になり且つ磁石162が磁束の入射側になる例を用いて説明を進める。
 尚、磁石161及び磁石162から付与される磁界は、主としてX軸方向に沿った軸を回転軸として第2ベース110-2を回転させるために用いられる。このため、以下の説明では、説明の便宜上、磁石161及び162から付与される磁界(つまり、X軸方向に沿った軸を回転軸として第2ベース110-2を回転させるための磁界)を、“X軸駆動用磁界”と称する。
 (2-2)MEMSスキャナの動作
 続いて、図6から図8を参照して、第2実施例に係るMEMSスキャナ102の動作の態様(具体的には、ミラー130を回転させる動作の態様)について説明する。ここに、図6は、第2実施例に係るMEMSスキャナ102による動作の態様を概念的に示す平面図及び断面図である。図7は、第2実施例に係るMEMSスキャナ102による動作の態様を概念的に示す平面図及び断面図である。図8は、第2実施例に係るMEMSスキャナ102による動作の態様を概念的に示す断面図である。
 第2実施例に係るMEMSスキャナ102の動作時には、まず、コイル140に制御電流が供給される。制御電流は、X軸方向に沿った軸を回転軸として第2ベース110-2を回転させるための電流成分(つまり、X軸駆動用制御電流)を含んでいる。第2実施例では、第2ベース110-2は、任意の周波数(例えば、60Hz)で、X軸方向に沿った軸を回転軸として回転する。従って、X軸駆動用制御電流は、X軸方向に沿った軸を回転軸とする第2ベース110-2の回転の周波数と同一の又は同期した周波数の信号成分を含む交流電流である。但し、第2ベース110-2は、第2ベース110-2を含む被懸架部(つまり、第2ベース部110-2、第2トーションバー120a―2及び120b-2並びにミラー130を含む被懸架部)と第1トーションバー120a-1及び120b-1によって定まる共振周波数(より具体的には、第2ベース110-2を含む被懸架部の慣性モーメントと第1トーションバー120a-1及び120b-1のねじりバネ定数によって定まる共振周波数)で、X軸方向に沿った軸を回転軸として回転してもよい。
 一方で、コイル140には、磁石161及び162からX軸駆動用磁界が付与されている。尚、磁石161及び162は、Y軸方向に沿って対向するコイル140の2つの辺に対して、X軸駆動用磁界を付与することが好ましい。この場合、磁石161及び162は、X軸方向に沿って対向するコイル140の2つの辺に対しては、X軸駆動用磁界を付与しなくともよい。或いは、磁石161及び162は、X軸方向に沿って対向するコイル140の2つの辺に対して、X軸駆動用磁界を付与してもよい。或いは、磁石161及び162は、X軸方向に沿って対向するコイル140の2つの辺に対して、X軸駆動用磁界の漏れ磁束を付与してもよい。
 従って、コイル140には、コイル140に供給されているX軸駆動用制御電流とコイル140に付与されているX軸駆動用磁界との間の電磁相互作用に起因したローレンツ力が発生することになる。
 ここで、図6(a)に示すように、図6(a)中の時計周りの方向に流れるX軸駆動用制御電流がコイル140に供給されており、磁石161から磁石162に向かうX軸駆動用磁界がコイル140に付与されている状況について説明する。この場合、図6(a)に示すMEMSスキャナ102を矢印VIの方向から観察した図面である図6(b)に示すように、Y軸方向に沿って対向するコイル140の2つの辺のうちの右側(つまり、図6(a)では上側)の辺には、図6(b)における上側の方向に向かうローレンツ力が発生する。同様に、図6(b)に示すように、Y軸方向に沿って対向するコイル140の2つの辺のうちの左側(つまり、図6(a)では下側)の辺には、図6(b)における下側の方向に向かうローレンツ力が発生する。つまり、Y軸方向に沿って対向するコイル140の2つの辺には、相互に異なる方向のローレンツ力が発生する。言い換えれば、Y軸方向に沿って対向するコイル140の2つの辺には、偶力となるローレンツ力が発生する。従って、コイル140は、図6(b)における反時計周りの方向に向かって回転する。
 一方で、X軸駆動用制御電流が交流電流であるため、図7(a)に示すように、図7(a)中の反時計周りの方向に流れるX軸駆動用制御電流がコイル140に供給されており、磁石161から磁石162に向かうX軸駆動用磁界がコイル140に付与される状況が、図6(a)に示す状況に続けて生ずる。この場合、図7(a)に示すMEMSスキャナ101を矢印VIIの方向から観察した図面である図7(b)に示すように、Y軸方向に沿って対向するコイル140の2つの辺のうちの右側(つまり、図7(a)では上側)の辺には、図7(b)における下側の方向に向かうローレンツ力が発生する。同様に、図7(b)に示すように、Y軸方向に沿って対向するコイル140の2つの辺のうちの左側(つまり、図6(a)では下側)の長辺には、図7(b)における上側の方向に向かうローレンツ力が発生する。つまり、Y軸方向に沿って対向するコイル140の2つの辺には、相互に異なる方向のローレンツ力が発生する。言い換えれば、Y軸方向に沿って対向するコイル140の2つの辺には、偶力となるローレンツ力が発生する。従って、コイル140は、図7(b)における時計周りの方向に向かって回転する。
 このようなローレンツ力によって、コイル140は、X軸方向に沿った軸を回転軸として回転する(より具体的には、回転するように往復駆動する)。このとき、コイル140のX軸方向に沿った回転軸は、第2ベース110-2のX軸方向に沿った回転軸と重なっている。従って、X軸方向に沿った軸を回転軸とするコイル140の回転に伴って、第2ベース110-2もまた、X軸方向に沿った軸を回転軸として回転する。
 加えて、第2ベース110-2は、第2トーションバー120a-2及び120b-2を介してミラー130を支持している。このため、X軸方向に沿った軸を回転軸とする第2ベース110-2の回転に伴って、ミラー130もまたX軸方向に沿った軸を回転軸として回転することになる。
 ここで、X軸方向に沿った軸を回転軸とするコイル140の回転とX軸方向に沿った軸を回転軸とする第2ベース110-2の回転とX軸方向に沿った軸を回転軸とするミラー130の回転の関係について、図8を参照しながらより詳細に説明する。
 図8(a)に示すように、X軸方向に沿った軸を回転軸としてコイル140が回転していない状態では、第2ベース110-2もまた、X軸方向に沿った軸を回転軸として回転していない。このため、ミラー130もまた、X軸方向に沿った軸を回転軸として回転していない。
 その後、図8(b)に示すように、X軸方向に沿った軸を回転軸としてコイル140が図8(b)における反時計回りの方向に沿って回転し始めると、第2ベース110-2もまた、X軸方向に沿った軸を回転軸として図8(b)における反時計回りの方向に沿って回転し始める。その結果、図8(a)から図8(g)に時系列的に示すように、X軸方向に沿った軸を回転軸とするコイル140の回転に伴って、第2ベース110-2もまた、X軸方向に沿った軸を回転軸として回転する。このため、図8(a)から図8(g)に時系列的に示すように、X軸方向に沿った軸を回転軸とする第2ベース110-2の回転に伴って、ミラー130もまた、X軸方向に沿った軸を回転軸として回転する。尚、図8(g)に示す状態のコイル140、第2ベース110-2及びミラー130は、その後、図8(f)に示す状態を経てから図8(a)に示す状態に遷移する。以降、コイル140、第2ベース110-2及びミラー130は、図8(a)から図8(g)に示す時系列に従って回転する。
 他方で、制御電流は、Y軸方向に沿った軸を回転軸としてミラー130を回転させるための電流成分(つまり、Y軸駆動用制御電流)を含んでいる。第2実施例では、ミラー130は、ミラー130と第2トーションバー120a-2及び120b-2とによって定まる共振周波数(より具体的には、ミラー130の慣性モーメントと第2トーションバー120a-2及び120b-2のねじりバネ定数によって定まる共振周波数)で共振するように、Y軸方向に沿った軸を回転軸として回転する。従って、Y軸駆動用制御電流は、ミラー130の共振周波数と同一の又は同期した周波数の信号成分を含む交流電流である。但し、ミラー130は、ミラー130と第2トーションバー120a-2及び120b-2とによって定まる共振周波数とは異なる又は同期しない周波数で、Y軸方向に沿った軸を回転軸として回転してもよい。この場合には、Y軸駆動用制御電流は、Y軸方向に沿った軸を回転軸としてミラー130が回転する周波数と同一の又は同期した周波数の信号成分を含む交流電流である。
 一方で、コイル140には、磁石151及び152からY軸駆動用磁界が付与されている。尚、磁石151及び152は、X軸方向に沿って対向するコイル140の2つの辺に対して、Y軸駆動用磁界を付与することが好ましい。この場合、磁石151及び152は、Y軸方向に沿って対向するコイル140の2つの辺に対しては、Y軸駆動用磁界を付与しなくともよい。或いは、磁石151及び152は、Y軸方向に沿って対向するコイル140の2つの辺に対して、Y軸駆動用磁界を付与してもよい。或いは、磁石151及び152は、Y軸方向に沿って対向するコイル140の2つの辺に対して、Y軸駆動用磁界の漏れ磁束のみを付与してもよい。
 従って、コイル140には、コイル140に供給されているY軸駆動用制御電流とコイル140に付与されているY軸駆動用磁界との間の電磁相互作用に起因したローレンツ力が発生することになる。
 この場合には、第1実施例と同様に(つまり、図2及び図3と同様に)、コイル140は、Y軸方向に沿った軸を回転軸として回転する(より具体的には、回転するように往復駆動する)。このとき、Y軸方向に沿ったコイル140の回転軸は、Y軸方向に沿ったミラー130の回転軸とは異なっている。具体的には、Y軸方向に沿ったコイル140の回転軸は、Y軸方向に沿ったミラー130の回転軸を基準として、X軸方向に所定距離シフトした位置に存在する。このため、Y軸方向に沿った軸を回転軸とするコイル140の回転は、Y軸方向に沿った軸を回転軸としてミラー130を直接的に回転させることはない。
 一方で、X軸方向に沿った軸を回転軸とするコイル140の回転に伴って、コイル140から第2ベース110-2に対して微振動が伝搬する。その結果、コイル140が配置されている第2ベース110-2は、X軸方向に沿って定常波状に(つまり、定常波の波形状に)変形振動する。言い換えれば、第2ベース110-2は、X軸方向に沿って波打つように変形振動する。つまり、第2ベース110-2は、そのある一部分が変形振動の腹となり且つその他の一部分が変形振動の節となるように、その外観を変形させる。
 このような第2ベース110-2の変形振動に起因して、ミラー130は、Y軸方向に沿った軸を回転軸として回転する。このとき、ミラー130は、ミラー130並びに第2トーションバー120a-2及び120b-2に応じて定まる共振周波数(例えば、20kHz)で共振するように回転する。例えば、ミラー130のY軸方向に沿った軸回り慣性モーメントがI(Y)であり且つ第2トーションバー120a-2及び120b-2を1本のバネとみなした場合のねじりバネ定数がk(Y)であるとすれば、ミラー130は、(1/(2π))×√(k(Y)/I(Y))にて特定される共振周波数(或いは、(1/(2π))×√(k(Y)/I(Y))のN倍若しくはN分の1倍(但し、Nは1以上の整数)の共振周波数)で共振するように、Y軸方向に沿った軸を回転軸として回転する。
 尚、Y軸方向に沿った軸を回転軸とするコイル140の回転とX軸方向に沿った第2ベース110-2の変形振動とY軸方向に沿った軸を回転軸とするミラー130の回転の関係は、第1実施例におけるY軸方向に沿った軸を回転軸とするコイル140の回転とX軸方向に沿ったベース110の変形振動とY軸方向に沿った軸を回転軸とするミラー130の回転の関係(図4参照)と同様である。
 以上説明したように、第2実施例のMEMSスキャナ102は、Y軸方向に沿った軸を回転軸としてミラー130を回転させることができる。加えて、第2実施例のMEMSスキャナ102は、X軸方向に沿った軸を回転軸として第2ベース110-2を回転させることができる。このとき、第2トーションバー120a-2及び120b-2を介してミラー130が第2ベース110-2に支持されていることを考慮すれば、X軸方向に沿った軸を回転軸とする第2ベース110-2の回転に伴って、ミラー130もまた、X軸方向に沿った軸を回転軸として回転することになる。従って、第2実施例のMEMSスキャナ102は、X軸方向に沿った軸を回転軸としてミラー130を回転させることができる。つまり、第2実施例のMEMSスキャナ102は、ミラー130の2軸駆動を行うことができる。
 加えて、第2実施例のMEMSスキャナ102では、ミラー130は、コイル140の巻き線の外側に位置することになる。従って、コイル140は、ミラー130を取り囲むように配置されなくともよい。その結果、第2実施例では、コイル140がミラー130を取り囲むように配置される比較例のMEMSスキャナと比較して、コイル140のサイズ(例えば、巻き線の径や巻き線の長さ等)を相対的に小さくすることができる。言い換えれば、第2実施例では、ミラー130の大きさに関係なく、コイル140のサイズを相対的に小さくすることができる。その結果、当該コイル140に対して磁界を付与するための磁石151及び152並びに磁石161及び162のサイズもまた、相対的に小さくすることができる。このため、第2実施例では、コイル140がミラー130を取り囲むように配置される比較例のMEMSスキャナと比較して、ミラー130の大きさに関係なく、コイル140と磁石151及び152並びに磁石161及び162との間の磁気ギャップを相対的に小さくすることができる。従って、第2実施例では、コイル140がミラー130を取り囲むように配置される比較例のMEMSスキャナと比較して、MEMSスキャナ102の小型化が好適に実現される。
 加えて、第2実施例では、第2ベース110-2の変形振動における節に対応する箇所に、ミラー130につながる第2トーションバー120a-2及び120b-2が接続されている。つまり、第2ベース110-2の変形振動における節に対応する箇所が、ミラー130のY軸方向に沿った回転軸と一致する。また、第2ベース110-2の変形振動における節に対応する箇所に、コイル140が配置されている。つまり、第2ベース110-2の変形振動における節に対応する箇所が、コイル140のY軸方向に沿った回転軸と一致する。このため、第2実施例では、ミラー130及びコイル140の上下方向(具体的には、X軸方向及びY軸方向の夫々に直交する方向であって、第1ベース110-1又は第2ベース110-2の表面に対して垂直なZ軸方向)の移動ないしは振動が防止される。従って、ミラー130の高精度な回転を実現することができる。
 (3)第3実施例
 続いて、図9及び図10を参照して、MEMSスキャナの第3実施例について説明する。尚、上述の第2実施例のMEMSスキャナ102と同一の構成については、同一の参照符号を付することでその詳細な説明を省略する。
 (3-1)MEMSスキャナの構成
 初めに、図9を参照して、第3実施例に係るMEMSスキャナ103の構成について説明する。ここに、図9は、第3実施例に係るMEMSスキャナ103の構成を概念的に示す平面図である。
 図9に示すように、第3実施例のMEMSスキャナ103は、第2実施例のMEMSスキャナ102と比較して、磁石161及び磁石162の配置位置が変更されていると共に磁石151及び磁石152を備えていないという点で異なっている。第3実施例のMEMSスキャナ103のその他の構成要素は、第2実施例のMEMSスキャナ102のその他の構成要素と同一であってもよい。
 第3実施例では、磁石161及び162は、第2実施例と同様に、磁石161と磁石162とがY軸方向に沿ってコイル140を挟み込むように配置される。一方で、第3実施例では、磁石161及び162は、磁石161(例えば、磁石161の中心)と磁石162(例えば、磁石162の中心)とが、X軸方向に沿ってずれる(言い換えれば、オフセットされる)ように配置される。但し、磁石161と磁石162とがX軸方向に沿ってコイル140を挟み込むと共に磁石161が配置される位置と磁石162が配置される位置とがY軸方向に沿ってオフセットされていてもよい。
 磁石161及び162は、磁石161と磁石162とがコイル140に対して点対称となる位置に配置されることが好ましい。言い換えれば、磁石161及び162は、磁石161と磁石162とがコイル140を構成する巻き線の中心に対して点対称となる位置に配置されることが好ましい。
 (3-2)MEMSスキャナの動作
 続いて、図10を参照して、第3実施例に係るMEMSスキャナ103の動作の態様(具体的には、ミラー130を回転させる動作の態様)について説明する。ここに、図10は、第3実施例に係るMEMSスキャナ103による動作の態様を概念的に示す平面図である。
 第3実施例に係るMEMSスキャナ103の動作時には、第2実施例に係るMEMSスキャナ102の動作時と同様に、コイル140に制御電流(つまり、X軸駆動用制御電流及びY軸駆動用制御電流が重畳された制御電流)が供給される。
 一方で、コイル140には、磁石161及び162から磁界が付与されている。尚、第3実施例では、磁石161及び162から付与される磁界は、Y軸方向に沿った軸を回転軸としてミラー130を回転させるために用いられるのみならず、X軸方向に沿った軸を回転軸として第2ベース110-2を回転させるためにも用いられる。
 このとき、図10に示すように、磁石161が配置される位置と磁石162が配置される位置とがX軸方向に沿ってオフセットされているがゆえ、磁石161及び162は、Y軸方向に沿って対向するコイル140の2つの辺に対して、当該2つの辺を斜めに横切るように磁界を付与する。言い換えれば、磁石161及び162は、Y軸方向に沿って対向するコイル140の2つの辺に対して、当該2つの辺に対して90度以外の角度で交わる磁界を付与する。つまり、磁石161及び162は、Y軸方向に沿って対向するコイル140の2つの辺に対して、当該2つの辺に対してコイル140の巻き線の対角方向に交わる磁界を付与する。
 このとき、磁石161及び162は、X軸方向に沿って対向するコイル140の2つの辺には、磁界を付与しないことが好ましい。但し、磁石161及び162は、X軸方向に沿って対向するコイル140の2つの辺には、Y軸方向に沿って対向するコイル140の2つの辺に付与するべき磁界の漏れ磁束のみを付与してもよい。つまり、磁石161及び162は、X軸方向に沿って対向するコイル140の2つの辺には、積極的に磁界を付与しないことが好ましい。但し、磁石161及び162は、X軸方向に沿って対向するコイル140の2つの辺に、磁界を積極的に付与してもよい。
 ここで、図10に示すように、図10中の時計周りの方向に流れる制御電流がコイル140に供給されており、磁石161から磁石162に向かう磁界がコイル140に付与されている状況について説明する。この場合、図10に示すように、Y軸方向に沿って対向するコイル140の2つの辺のうちの一方の辺(例えば、図10の上側の辺)には、図10の紙面奥側から紙面手前側に向かうローレンツ力が発生する。このとき、Y軸方向に沿って対向するコイル140の2つの辺を斜めに横切るように磁界が付与されているがゆえに、このローレンツ力は、Y軸方向に沿って対向するコイル140の2つの辺のうちの一方の辺の相対的に外側(つまり、ミラー130から相対的に遠い側)に発生することになる。同様に、図10に示すように、Y軸方向に沿って対向するコイル140の2つの辺のうちの他方の辺(例えば、図10の下側の辺)には、図10の紙面手前側から紙面奥側に向かうローレンツ力が発生する。このとき、Y軸方向に沿って対向するコイル140の2つの辺を斜めに横切るように磁界が付与されているがゆえに、このローレンツ力は、Y軸方向に沿って対向するコイル140の2つの辺のうちの他方の辺の相対的に内側(つまり、ミラー130に相対的に近い側)に発生することになる。尚、コイル140に供給される制御電流の向き(つまり、極性)が逆転した場合にも、同様のローレンツ力(但し、その方向が逆になる)が発生する。
 その結果、Y軸方向に沿って対向するコイル140の2つの辺のうちの一方の辺においてローレンツ力が発生する位置と、Y軸方向に沿って対向するコイル140の2つの辺のうちの他方の辺においてローレンツ力が発生する位置とが、Y軸方向に沿ってずれている。このため、コイル140に発生するローレンツ力(特に、主として、X軸駆動用制御電流に応じたローレンツ力)は、X軸方向に沿った軸を回転軸とする回転力としてコイル140に作用することになる。このため、コイル140は、X軸方向に沿った軸を回転軸として回転する。その結果、第2実施例と同様に、第2ベース110-2もまた、X軸方向に沿った軸を回転軸として回転する。
 加えて、X軸方向に沿った軸を回転軸とするコイル140の回転に起因して、第2ベース110-2には振動が伝搬することになる。この振動に起因して、第2ベース110-2は、第2実施例と同様に、X軸方向に沿って変形振動する。その結果、ミラー130は、Y軸方向に沿った軸を回転軸として回転する。
 或いは、コイル140に供給される制御電流がY軸駆動用制御電流を含んでいる場合には、X軸方向に沿って対向するコイル140の2つの辺に磁界が付与されていない場合であっても、Y軸駆動用制御電流に応じたローレンツ力がわずかながらにコイル140に発生することが本願発明者等によって行われた実験で確認された。その結果、第2ベース110-2は、第2実施例と同様に、X軸方向に沿って変形振動する。その結果、ミラー130は、Y軸方向に沿った軸を回転軸として回転する。
 或いは、図10に示すように、Y軸方向に沿って対向するコイル140の2つの辺のうちの一方の辺においてローレンツ力が発生する位置と、Y軸方向に沿って対向するコイル140の2つの辺のうちの他方の辺においてローレンツ力が発生する位置とが、X軸方向に沿ってずれている。このため、コイル140に発生するローレンツ力(特に、主として、Y軸駆動用制御電流に応じたローレンツ力)は、実質的には、Y軸方向に沿った軸を回転軸とする回転力としてコイル140に作用し得る。このため、コイル140は、第2実施例と同様に、Y軸方向に沿った軸を回転軸として回転する。その結果、第2ベース110-2は、第2実施例と同様に、X軸方向に沿って変形振動する。その結果、ミラー130は、Y軸方向に沿った軸を回転軸として回転する。
 以上説明したように、第3実施例のMEMSスキャナ103は、第2実施例のMEMSスキャナ102が享受する各種効果を好適に享受することができる。加えて、第3実施例のMEMSスキャナ103は、第2実施例のMEMSスキャナ102と比較して、磁石151及び152を備えていなくともよくなる。このため、MEMSスキャナ103のより一層の小型化が実現される。
 (4)第4実施例
 続いて、図11及び図12を参照して、MEMSスキャナの第4実施例について説明する。尚、上述の第3実施例のMEMSスキャナ103と同一の構成については、同一の参照符号を付することでその詳細な説明を省略する。
 (4-1)MEMSスキャナの構成
 初めに、図11を参照して、第4実施例に係るMEMSスキャナ104の構成について説明する。ここに、図11は、第4実施例に係るMEMSスキャナ104の構成を概念的に示す平面図である。
 図11に示すように、第4実施例のMEMSスキャナ104は、第3実施例のMEMSスキャナ103と比較して、磁気ヨーク170を更に備えているという点で異なっている。第4実施例のMEMSスキャナ104のその他の構成要素は、第3実施例のMEMSスキャナ103のその他の構成要素と同一であってもよい。
 第4実施例では、磁気ヨーク170は、磁石161から出射される磁界が、Y軸方向に沿って対向するコイル140の2つの辺に付与されながら磁石162に到達するような磁界の経路を形成する。つまり、磁気ヨーク170は、磁石161から出射される磁界が入射する一方の端部から、磁石162に入射する磁界が出射する他方の端部に向かって延びる形状を有している。図11では、磁気ヨーク170がX軸方向に沿って延びる形状を有している例が示されている。
 (4-2)MEMSスキャナの動作
 続いて、図12を参照して、第4実施例に係るMEMSスキャナ104の動作の態様(具体的には、ミラー130を回転させる動作の態様)について説明する。ここに、図12は、第4実施例に係るMEMSスキャナ104による動作の態様を概念的に示す平面図及び断面図である。
 第4実施例に係るMEMSスキャナ104の動作時には、第3実施例に係るMEMSスキャナ103の動作時と同様に、コイル140に制御電流(つまり、X軸駆動用制御電流及びY軸駆動用制御電流が重畳された制御電流)が供給される。
 一方で、コイル140には、磁石161及び162から磁界が付与されている。尚、第4実施例では、磁石161及び162から付与される磁界は、Y軸方向に沿った軸を回転軸としてミラー130を回転させるために用いられるのみならず、X軸方向に沿った軸を回転軸として第2ベース110-2を回転させるためにも用いられる。
 このとき、図12(a)の平面図及び図12(b)の断面図に示すように、磁石161が配置される位置と磁石162が配置される位置とがX軸方向に沿ってオフセットされており且つX軸方向に沿って延びる磁気ヨーク170が配置されているがゆえ、磁石161及び162は、Y軸方向に沿って対向するコイル140の2つの辺のうちの一方の辺(例えば、図12(a)の下側の辺)の相対的に一方側(例えば、図12(a)の左側)の辺部分及び他方の辺(例えば、図12(a)の上側の辺)の相対的に他方側(例えば、図12(a)の右側)の辺部分に対して磁界を付与する。つまり、磁石161及び162は、Y軸方向に沿って対向するコイル140の2つの辺のうちの一部の辺部分であって且つコイル140の対角方向(つまり、斜め方向)に沿って対向する2つの辺部分に磁界を付与する。このような磁界を付与するために、磁石161と磁気ヨーク170の一方の端部(つまり、磁石161aから出射される磁界が入射する端部)とは、コイル140の対角方向に沿って対向するコイル140の2つの辺部分のうちの一方の辺部分に磁界を付与することができるように配置される。同様に、磁石162と磁気ヨーク170の他方の端部(つまり、磁石162に入射する磁界が出射する端部)とは、コイル140の対角方向に沿って対向するコイル140の2つの辺部分のうちの他方の辺部分に磁界を付与することができるように配置される。
 ここで、図12(a)及び図12(b)に示すように、図12(a)中の時計周りの方向に流れる制御電流がコイル140に供給されており、磁石161から磁気ヨーク170を介して磁石162に向かう磁界がコイル140に付与されている状況について説明する。この場合、図12(a)及び図12(b)に示すように、Y軸方向に沿って対向するコイル140の2つの辺のうちの一方の辺(例えば、図12(a)の上側の辺ないしは図12(b)の右側の辺)には、図12(a)の紙面奥側から紙面手前側(言い換えれば、図12(b)の上側)に向かうローレンツ力が発生する。このとき、図12(a)に示すように、このローレンツ力は、Y軸方向に沿って対向するコイル140の2つの辺のうちの一方の辺の相対的に外側(つまり、ミラー130から相対的に遠い側)に発生することになる。同様に、図12(a)及び図12(b)に示すように、Y軸方向に沿って対向するコイル140の2つの辺のうちの他方の辺(例えば、図12(a)の下側の辺ないしは図12(b)の左側の辺)には、図12(a)の紙面手前側から紙面奥側(言い換えれば、図12(b)の下側)に向かうローレンツ力が発生する。このとき、図12(b)に示すように、このローレンツ力は、Y軸方向に沿って対向するコイル140の2つの辺のうちの他方の辺の相対的に内側(つまり、ミラー130に相対的に近い側)に発生することになる。尚、コイル140に供給される制御電流の向き(つまり、極性)が逆転した場合にも、同様のローレンツ力(但し、その方向が逆になる)が発生する。
 その結果、Y軸方向に沿って対向するコイル140の2つの辺のうちの一方の辺においてローレンツ力が発生する位置と、Y軸方向に沿って対向するコイル140の2つの辺のうちの他方の辺においてローレンツ力が発生する位置とが、Y軸方向に沿ってずれている。このため、コイル140に発生するローレンツ力(特に、主として、X軸駆動用制御電流に応じたローレンツ力)は、X軸方向に沿った軸を回転軸とする回転力としてコイル140に作用することになる。このため、コイル140は、X軸方向に沿った軸を回転軸として回転する。その結果、第3実施例と同様に、第2ベース110-2もまた、X軸方向に沿った軸を回転軸として回転する。
 加えて、X軸方向に沿った軸を回転軸とするコイル140の回転に起因して、第2ベース110-2には振動が伝搬することになる。この振動に起因して、第2ベース110-2は、第3実施例と同様に、X軸方向に沿って変形振動する。その結果、ミラー130は、Y軸方向に沿った軸を回転軸として回転する。
 或いは、コイル140に供給される制御電流がY軸駆動用制御電流を含んでいる場合には、X軸方向に沿って対向するコイル140の2つの辺に磁界が付与されていない場合であっても、Y軸駆動用制御電流に応じたローレンツ力がわずかながらにコイル140に発生することが本願発明者等によって行われた実験で確認された。その結果、第2ベース110-2は、第3実施例と同様に、X軸方向に沿って変形振動する。その結果、ミラー130は、Y軸方向に沿った軸を回転軸として回転する。
 或いは、図12(a)に示すように、Y軸方向に沿って対向するコイル140の2つの辺のうちの一方の辺においてローレンツ力が発生する位置と、Y軸方向に沿って対向するコイル140の2つの辺のうちの他方の辺においてローレンツ力が発生する位置とが、X軸方向に沿ってずれている。このため、コイル140に発生するローレンツ力(特に、主として、Y軸駆動用制御電流に応じたローレンツ力)は、実質的には、Y軸方向に沿った軸を回転軸とする回転力としてコイル140に作用し得る。このため、コイル140は、第2実施例と同様に、Y軸方向に沿った軸を回転軸として回転する。その結果、第2ベース110-2は、第3実施例と同様に、X軸方向に沿って変形振動する。その結果、ミラー130は、Y軸方向に沿った軸を回転軸として回転する。
 以上説明したように、第4実施例のMEMSスキャナ104は、第2実施例のMEMSスキャナ102が享受する各種効果を好適に享受することができる。加えて、第4実施例のMEMSスキャナ104は、第2実施例のMEMSスキャナ102と比較して、磁石151及び152を備えていなくともよくなる。このため、MEMSスキャナ104のより一層の小型化が実現される。
 (5)第5実施例
 続いて、図13及び図14を参照して、MEMSスキャナの第5実施例について説明する。尚、上述の第2実施例のMEMSスキャナ102と同一の構成については、同一の参照符号を付することでその詳細な説明を省略する。
 (5-1)基本構成
 初めに、図13を参照して、第5実施例に係るMEMSスキャナ105の基本構成について説明する。ここに、図13は、第5実施例に係るMEMSスキャナ105の基本構成を概念的に示す平面図である。
 図13に示すように、第5実施例のMEMSスキャナ105は、第2実施例のMEMSスキャナ102と比較して、コイル140の配置位置が変更されていると共に磁石151及び磁石152を備えていないという点で異なっている。第5実施例のMEMSスキャナ105のその他の構成要素は、第2実施例のMEMSスキャナ102のその他の構成要素と同一であってもよい。
 第5実施例では、コイル140は、コイル140の回転軸(具体的には、X軸方向に沿った回転軸)と第2ベース110-2の回転軸(具体的には、X軸方向に沿った回転軸)とが、Y軸方向に沿ってずれる(言い換えれば、オフセットされる)ように配置される。言い換えれば、コイル140は、X軸方向に沿ったコイル140の回転軸と一致するコイル140の回転中心とX軸方向に沿った第2ベース110-2の回転軸と一致する第2ベース110-2の回転中心とが、Y軸方向に沿ってずれるように配置される。言い換えれば、コイル140は、ローレンツ力が発生するコイル140の中心(回転力の中心)と、コイル140及び第2ベース110-2を包含する回転体の重心と、当該回転体を支持する第1トーションバー120a-1及び120b-1の中心(支持中心)とのうちの少なくとも2つが、Y軸方向に沿ってずれるように配置される。
 (5-2)MEMSスキャナの動作
 続いて、図14を参照して、第5実施例に係るMEMSスキャナ105の動作の態様(具体的には、ミラー130を回転させる動作の態様)について説明する。ここに、図14は、第5実施例に係るMEMSスキャナ105による動作の態様を概念的に示す平面図である。
 第5実施例に係るMEMSスキャナ105の動作時には、第2実施例に係るMEMSスキャナ102の動作時と同様に、コイル140に制御電流(つまり、X軸駆動用制御電流及びY軸駆動用制御電流が重畳された制御電流)が供給される。
 一方で、コイル140には、磁石161及び162から磁界が付与されている。尚、第5実施例では、磁石161及び162から付与される磁界は、Y軸方向に沿った軸を回転軸としてミラー130を回転させるために用いられるのみならず、X軸方向に沿った軸を回転軸として第2ベース110-2を回転させるためにも用いられる。
 磁石161及び162は、Y軸方向に沿って対向するコイル140の2つの辺に対して磁界を付与する。一方で、磁石161及び162は、X軸方向に沿って対向するコイル140の2つの辺には、磁界を付与しないことが好ましい。但し、磁石161及び162は、X軸方向に沿って対向するコイル140の2つの辺には、Y軸方向に沿って対向するコイル140の2つの辺に付与するべき磁界の漏れ磁束のみを付与してもよい。つまり、磁石161及び162は、X軸方向に沿って対向するコイル140の2つの辺には、積極的に磁界を付与しないことが好ましい。但し、磁石161及び162は、X軸方向に沿って対向するコイル140の2つの辺に、積極的に磁界を付与してもよい。
 ここで、図14に示すように、図14中の時計周りの方向に流れる制御電流がコイル140に供給されており、磁石161から磁石162に向かう磁界がコイル140に付与されている状況について説明する。この場合、図14に示すように、Y軸方向に沿って対向するコイル140の2つの辺のうちの一方の辺(例えば、図14の上側の辺)には、図14の紙面奥側から紙面手前側に向かうローレンツ力が発生する。同様に、図14に示すように、Y軸方向に沿って対向するコイル140の2つの辺のうちの他方の辺(例えば、図12の下側の辺)には、図14の紙面手前側から紙面奥側に向かうローレンツ力が発生する。尚、コイル140に供給される制御電流の向き(つまり、極性)が逆転した場合にも、同様のローレンツ力(但し、その方向が逆になる)が発生する。
 その結果、コイル140に発生するローレンツ力(特に、主として、X軸駆動用制御電流に応じたローレンツ力)は、X軸方向に沿った軸を回転軸とする回転モーメントとしてコイル140に作用することになる。このため、コイル140は、X軸方向に沿った軸を回転軸として回転する。その結果、第2実施例と同様に、第2ベース110-2もまた、X軸方向に沿った軸を回転軸として回転する。
 加えて、第5実施例では、上述したように、X軸方向に沿ったコイル140の回転軸とX軸方向に沿った第2ベース110-2の回転軸とがY軸方向に沿ってずれている。このような回転軸のずれに起因したアンバランスによって、X軸方向に沿った軸を回転軸とするコイル140の回転が、第2ベース110-2に対して振動として伝搬することになる。この振動に起因して、第2ベース110-2は、第2実施例と同様に、X軸方向に沿って変形振動する。その結果、ミラー130は、Y軸方向に沿った軸を回転軸として回転する。
 以上説明したように、第5実施例のMEMSスキャナ105は、第2実施例のMEMSスキャナ102が享受する各種効果を好適に享受することができる。加えて、第5実施例のMEMSスキャナ105は、第2実施例のMEMSスキャナ102と比較して、磁石151及び152を備えていなくともよくなる。このため、MEMSスキャナ105のより一層の小型化が実現される。
 (6)第6実施例
 続いて、図15及び図16を参照して、MEMSスキャナの第6実施例について説明する。尚、上述の第2実施例のMEMSスキャナ102と同一の構成については、同一の参照符号を付することでその詳細な説明を省略する。
 (6-1)基本構成
 初めに、図15を参照して、第6実施例に係るMEMSスキャナ106の基本構成について説明する。ここに、図15は、第6実施例に係るMEMSスキャナ106の基本構成を概念的に示す平面図である。
 図15に示すように、第6実施例のMEMSスキャナ106は、第2実施例のMEMSスキャナ102と比較して、磁石151及び磁石152を備えていないという点で異なっている。第6実施例のMEMSスキャナ106のその他の構成は、第2実施例のMEMSスキャナ102のその他の構成と同一であってもよい。
 (6-2)MEMSスキャナの動作
 続いて、図16を参照して、第6実施例に係るMEMSスキャナ106の動作の態様(具体的には、ミラー130を回転させる動作の態様)について説明する。ここに、図16は、第6実施例に係るMEMSスキャナ106による動作の態様を概念的に示す平面図である。
 第6実施例に係るMEMSスキャナ106の動作時には、第2実施例に係るMEMSスキャナ102の動作時と同様に、コイル140に制御電流(つまり、X軸駆動用制御電流及びY軸駆動用制御電流が重畳された制御電流)が供給される。
 一方で、コイル140には、磁石161及び162から磁界が付与されている。尚、第6実施例では、磁石161及び162から付与される磁界は、Y軸方向に沿った軸を回転軸としてミラー130を回転させるために用いられるのみならず、X軸方向に沿った軸を回転軸として第2ベース110-2を回転させるためにも用いられる。
 磁石161及び162は、Y軸方向に沿って対向するコイル140の2つの辺に対して磁界を付与する。一方で、磁石161及び162は、X軸方向に沿って対向するコイル140の2つの辺には、磁界を付与しないことが好ましい。但し、磁石161及び162は、X軸方向に沿って対向するコイル140の2つの辺には、Y軸方向に沿って対向するコイル140の2つの辺に付与するべき磁界の漏れ磁束のみを付与してもよい。つまり、磁石161及び162は、X軸方向に沿って対向するコイル140の2つの辺には、積極的に磁界を付与しないことが好ましい。
 ここで、図16に示すように、図16中の時計周りの方向に流れる制御電流がコイル140に供給されており、磁石161から磁石162に向かう磁界がコイル140に付与されている状況について説明する。この場合、図16に示すように、Y軸方向に沿って対向するコイル140の2つの辺のうちの一方の辺(例えば、図16の上側の辺)には、図16の紙面奥側から紙面手前側に向かうローレンツ力が発生する。同様に、図16に示すように、Y軸方向に沿って対向するコイル140の2つの辺のうちの他方の辺(例えば、図16の下側の辺)には、図16の紙面手前側から紙面奥側に向かうローレンツ力が発生する。尚、コイル140に供給される制御電流の向き(つまり、極性)が逆転した場合にも、同様のローレンツ力(但し、その方向が逆になる)が発生する。
 その結果、コイル140に発生するローレンツ力(特に、主として、X軸駆動用制御電流に応じたローレンツ力)は、X軸方向に沿った軸を回転軸とする回転モーメントとしてコイル140に作用することになる。このため、コイル140は、X軸方向に沿った軸を回転軸として回転する。その結果、第2実施例と同様に、第2ベース110-2もまた、X軸方向に沿った軸を回転軸として回転する。
 加えて、コイル140に供給される制御電流がY軸駆動用制御電流を含んでいる場合には、X軸方向に沿って対向するコイル140の2つの辺に磁界が付与されていない場合であっても、以下の現象が発生することが本願発明者等によって行われた実験で確認された。具体的には、コイル140に供給される制御電流がY軸駆動用制御電流を含んでいる場合には、X軸方向に沿って対向するコイル140の2つの辺に磁界が付与されていない場合であっても、Y軸駆動用制御電流に応じたローレンツ力が、Y軸方向に沿って対向するコイル140の2つの辺のうちの一方の辺(例えば、図16の上側の辺)に発生する。このY軸駆動用制御電流に応じたローレンツ力に起因して、コイル140(或いは、当該コイル140が配置されている第2ベース110-2)に微振動が発生する。その結果、第2ベース110-2は、第2実施例と同様に、X軸の方向に沿って変形振動する。その結果、ミラー130は、Y軸方向に沿った軸を回転軸として回転する。
 加えて、X軸方向に沿って対向するコイル140の2つの辺に磁界が積極的に付与されていない場合であっても、X軸方向に沿って対向するコイル140の2つの辺には、Y軸方向に沿って対向するコイル140の2つの辺に積極的に付与した磁界の漏れ磁束が付与されることがある。その結果、X軸方向に沿って対向するコイル140の2つの辺には、Y軸駆動用制御電流に応じたローレンツ力がわずかながらに発生する。その結果、第2ベース110-2は、第2実施例と同様に、X軸の方向に沿って変形振動する。その結果、ミラー130は、Y軸方向に沿った軸を回転軸として回転する。
 尚、本願発明者等によって行われた実験によれば、X軸方向に沿って対向するコイル140の2つの辺に磁界が積極的に付与されているときのミラー130の回転のゲインは、60dBであった。一方で、X軸方向に沿って対向するコイル140の2つの辺に磁界が積極的に付与されていないときのミラー130の回転のゲインは、54dBであった。つまり、X軸方向に沿って対向するコイル140の2つの辺に磁界が積極的に付与されているMEMSスキャナと比較して、X軸方向に沿って対向するコイル140の2つの辺に磁界が積極的に付与されていないMEMSスキャナでは、ミラー130の回転のゲインが6dB程度減少する。しかしながら、本願発明者等によって行われた実験によれば、6dB程度のゲインの減少は、MEMSスキャナの動作に大きな悪影響を与える程度の減少には相当しない。
 以上説明したように、第6実施例のMEMSスキャナ106は、第2実施例のMEMSスキャナ102が享受する各種効果を好適に享受することができる。加えて、第6実施例のMEMSスキャナ106は、第2実施例のMEMSスキャナ102と比較して、磁石151及び152を備えていなくともよくなる。このため、MEMSスキャナ106のより一層の小型化が実現される。
 (7)第7実施例
 続いて、図17を参照して、MEMSスキャナの第7実施例について説明する。ここに、図17は、第7実施例に係るMEMSスキャナ107の基本構成を概念的に示す平面図である。尚、上述の第2実施例のMEMSスキャナ102と同一の構成については、同一の参照符号を付することでその詳細な説明を省略する。
 図17に示すように、第7実施例のMEMSスキャナ107は、第2実施例のMEMSスキャナ102と比較して、第1トーションバー120a-1の特性と第1トーションバー120b-1の特性とが一致しないという点で異なっている。第7実施例のMEMSスキャナ107のその他の構成は、第2実施例のMEMSスキャナ102のその他の構成と同一であってもよい。
 より具体的には、第1トーションバー120a-1の長さ(つまり、X軸方向に沿った長さ)が、第1トーションバー120a-2の長さ(つまり、X軸方向に沿った長さ)と異なっていてもよい。或いは、第1トーションバー120a-1の幅(つまり、Y軸方向に沿った長さ)が、第1トーションバー120a-2の幅(つまり、Y軸方向に沿った長さ)と異なっていてもよい。或いは、第1トーションバー120a-1の質量が、第1トーションバー120a-2の質量と異なっていてもよい。或いは、第1トーションバー120a-1の剛性が、第1トーションバー120a-2の剛性と異なっていてもよい。或いは、第1トーションバー120a-1の形状(例えば、外観形状や、断面形状等)が、第1トーションバー120a-2の形状形状(例えば、外観形状や、断面形状等)と異なっていてもよい。
 このとき、第1トーションバー120a-1及び120b-1の夫々の特性は、第2ベース110-2の変形振動における節及び腹の位置を適切な位置に設定するという観点から適宜調整されることが好ましい。より具体的には、第1トーションバー120a-1及び第1トーションバー120b-1の夫々の特性は、コイル140及びミラー130の夫々のY軸方向に沿った回転軸に対応する箇所が、第2ベース110-2の変形振動における節となるように、適宜調整されることが好ましい。
 以上説明したように、第7実施例のMEMSスキャナ107は、第2実施例のMEMSスキャナ102が享受する各種効果を好適に享受することができる。加えて、第7実施例のMEMSスキャナ107は、第1トーションバー120a-1の特性と第1トーションバー120b-1の特性とを揃えなくともよくなる。このため、第1トーションバー120a-1及び120b-1の設計の自由度が高まる。仮に、第1トーションバー120a-1の特性と第1トーションバー120b-1の特性とを揃えるとすれば、第2ベース110-2の変形振動における節及び腹の位置を適切な位置に設定するために、第2ベース110-2の特性が調整されることになる。その結果、第2ベース110-2の大型化を招いてしまいかねない。しかるに、第7実施例では、第1トーションバー120a-1及び120b-1の夫々の特性を適宜調整することで、第2ベース110-2の変形振動における節及び腹の位置が適切な位置に設定されることになる。このため、MEMSスキャナ107のより一層の小型化が実現される。
 尚、第1実施例から第7実施例で説明した各構成の一部を適宜組み合わせてもよい。この場合であっても、第1実施例から第7実施例で説明した各構成の一部を適宜組み合わせることで得られるアクチュエータは、上述した各種効果を好適に享受することができる。
 また、本発明は、請求の範囲及び明細書全体から読み取るこのできる発明の要旨又は思想に反しない範囲で適宜変更可能であり、そのような変更を伴う駆動装置もまた本発明の技術思想に含まれる。
 101~107 MEMSスキャナ
 110 ベース
 110-1 第1ベース
 110-2 第2ベース
 120a、120b トーションバー
 120a-1、120b-1 第1トーションバー
 120a-2、120b-2 第2トーションバー
 130 ミラー
 140 コイル
 141 電源端子
 151、152、161、162 磁石
 170 磁気ヨーク

Claims (7)

  1.  第1ベース部と、
     第1ベース部によって支持される第2ベース部と、
     前記第1ベース部と前記第2ベース部とを接続し、且つ前記第2ベース部を他の方向に沿った軸を回転軸として回転させるような弾性を有する第1弾性部と、
     回転可能な被駆動部と、
     前記第2ベース部と前記被駆動部とを接続し、且つ前記被駆動部を前記他の方向とは異なる一の方向に沿った軸を回転軸として回転させるような弾性を有する第2弾性部と、
     前記第2ベース部上に配置されるコイル部であって、且つ当該コイル部の巻き線の外側に前記被駆動部が配置されるコイル部と、
     前記コイル部に対して磁界を付与する磁界付与部と
     を備え、
     前記コイル部は、前記第2ベース部の回転軸から前記一の方向に沿ってオフセットした位置に前記コイル部の中心が位置するように、配置されていることを特徴とする駆動装置。
  2.  前記磁界付与部は、前記一の方向に沿って前記コイル部を挟み込む一対の磁性体を備えていることを特徴とする請求項1に記載の駆動装置。
  3.  前記一対の磁性体は、(i)前記コイル部のうち前記一の方向に沿って対向する2つの辺に前記磁界を付与し、
     前記一対の磁性体は、(ii-1)前記コイル部のうち前記他の方向に沿って対向する2つの辺に前記磁界を付与しない、又は(ii-2)前記コイル部のうち前記他の方向に沿って対向する2つの辺には、前記コイル部のうち前記一の方向に沿って対向する2つの辺に付与される前記磁界の漏れ磁束が付与されることを特徴とする請求項2に記載の駆動装置。
  4.  前記コイル部の前記一の方向に沿った回転軸は、前記被駆動部の前記一の方向に沿った回転軸とは異なることを特徴とする請求項1に記載の駆動装置。
  5.  前記コイル部に供給される制御電流と前記磁界付与部が付与する磁界との電磁相互作用に起因して前記コイル部に発生するローレンツ力によって、前記コイル部は、前記他の方向に沿った軸を回転軸として回転し、
     前記他の方向に沿った軸を回転軸とする前記コイル部の回転に起因して、前記第2ベース部は、前記他の方向に沿った軸を回転軸として回転し、
     前記他の方向に沿った軸を回転軸とする前記コイル部の回転に起因して、前記第2ベース部は、前記他の方向に沿って定常波状に変形振動し、
     前記第2ベース部の変形振動に起因して、前記被駆動部は、前記一の方向に沿った軸を回転軸として回転することを特徴とする請求項1に記載の駆動装置。
  6.  前記コイル部の前記一の方向に沿った回転軸及び前記被駆動部の前記一の方向に沿った回転軸に対応する箇所には、前記第2ベース部の変形振動における節が現れ、
     前記コイル部の前記一の方向に沿った回転軸と前記被駆動部の前記一の方向に沿った回転軸との間の箇所には、前記第2ベース部の変形振動における腹が現れることを特徴とする請求項5に記載の駆動装置。
  7.  前記一の方向に沿った軸を回転軸とする前記コイル部の回転方向と前記一の方向に沿った軸を回転軸とする前記被駆動部の回転方向とは、互いに逆になることを特徴とする請求項5に記載の駆動装置。
PCT/JP2012/062043 2012-05-10 2012-05-10 駆動装置 WO2013168267A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/062043 WO2013168267A1 (ja) 2012-05-10 2012-05-10 駆動装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/062043 WO2013168267A1 (ja) 2012-05-10 2012-05-10 駆動装置

Publications (1)

Publication Number Publication Date
WO2013168267A1 true WO2013168267A1 (ja) 2013-11-14

Family

ID=49550350

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/062043 WO2013168267A1 (ja) 2012-05-10 2012-05-10 駆動装置

Country Status (1)

Country Link
WO (1) WO2013168267A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008122955A (ja) * 2006-11-01 2008-05-29 Samsung Electro Mech Co Ltd 電磁気マイクロアクチュエータ
JP2008203497A (ja) * 2007-02-20 2008-09-04 Canon Inc 揺動体装置、その駆動方法、光偏向器、及び光偏向器を用いた画像表示装置
US20110199172A1 (en) * 2008-09-25 2011-08-18 Tjalf Pirk Magnetic yoke, micromechanical component, and method for the manufacture thereof
JP2011180322A (ja) * 2010-03-01 2011-09-15 Brother Industries Ltd 光スキャナ、光スキャナ制御方法、及び光スキャナを用いた画像表示装置。

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008122955A (ja) * 2006-11-01 2008-05-29 Samsung Electro Mech Co Ltd 電磁気マイクロアクチュエータ
JP2008203497A (ja) * 2007-02-20 2008-09-04 Canon Inc 揺動体装置、その駆動方法、光偏向器、及び光偏向器を用いた画像表示装置
US20110199172A1 (en) * 2008-09-25 2011-08-18 Tjalf Pirk Magnetic yoke, micromechanical component, and method for the manufacture thereof
JP2011180322A (ja) * 2010-03-01 2011-09-15 Brother Industries Ltd 光スキャナ、光スキャナ制御方法、及び光スキャナを用いた画像表示装置。

Similar Documents

Publication Publication Date Title
WO2013168266A1 (ja) 駆動装置
WO2013168264A1 (ja) 駆動装置
JP5085476B2 (ja) 2軸駆動電磁気スキャナー
US8988750B2 (en) Optical scanner, mirror chip, method of manufacturing optical scanner, and image forming apparatus
JP5099020B2 (ja) 光走査装置および画像形成装置
JP6805225B2 (ja) 駆動装置
US20120228460A1 (en) Driving apparatus
WO2012172652A1 (ja) 駆動装置
JP6014234B2 (ja) 駆動装置
JP2009104102A (ja) ミラーから分離されたアクチュエータを備えたmemsスキャナ
JP2013246361A (ja) 2軸偏向電磁駆動型光偏向器
WO2013168271A1 (ja) 駆動装置
JP2014199326A (ja) 駆動装置
WO2013168273A1 (ja) 駆動装置
JP2019015934A (ja) 駆動装置
JP6208772B2 (ja) 駆動装置
WO2013168269A1 (ja) 駆動装置
WO2013168275A1 (ja) 駆動装置
WO2013168267A1 (ja) 駆動装置
WO2013168268A1 (ja) 駆動装置
WO2013168265A1 (ja) 駆動装置
WO2014020769A1 (ja) 駆動装置
WO2013168274A1 (ja) 駆動装置
JP5447283B2 (ja) 光スキャナーおよび画像形成装置
WO2013168272A1 (ja) 駆動装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12876225

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12876225

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP