JP4569718B2 - リチウムイオン二次電池用セパレーター及びリチウムイオン二次電池 - Google Patents

リチウムイオン二次電池用セパレーター及びリチウムイオン二次電池 Download PDF

Info

Publication number
JP4569718B2
JP4569718B2 JP2010518445A JP2010518445A JP4569718B2 JP 4569718 B2 JP4569718 B2 JP 4569718B2 JP 2010518445 A JP2010518445 A JP 2010518445A JP 2010518445 A JP2010518445 A JP 2010518445A JP 4569718 B2 JP4569718 B2 JP 4569718B2
Authority
JP
Japan
Prior art keywords
meth
separator
binder
group
monomer unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010518445A
Other languages
English (en)
Other versions
JPWO2010074202A1 (ja
Inventor
康尋 脇坂
真弓 福峯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Zeon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zeon Corp filed Critical Zeon Corp
Application granted granted Critical
Publication of JP4569718B2 publication Critical patent/JP4569718B2/ja
Publication of JPWO2010074202A1 publication Critical patent/JPWO2010074202A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/42Acrylic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、多孔膜を有するリチウムイオン二次電池用セパレーターに関し、さらに詳しくはセパレーターの平滑性や耐酸化性の改善に寄与しうる多孔膜を有するリチウムイオン二次電池用セパレーターに関する。また本発明は、かかる多孔膜付セパレーターを備えたリチウムイオン二次電池に関する。
実用化されている電池の中でも、リチウムイオン二次電池は最も高いエネルギー密度を示し、特に小型エレクトロニクス用に多く使用されている。また、小型用途に加えて自動車向けへの展開も期待されている。その中で、リチウムイオン二次電池の高容量化・長寿命化と、安全性のさらなる向上が要望されている。
リチウムイオン二次電池には、一般に正極と負極との間の短絡を防ぐ為にポリエチレンやポリプロピレン等のポリオレフィン系の有機セパレーターが用いられている。ポリオレフィン系の有機セパレーターは200℃以下で溶融する物性を有している為、内部及び/または外部の刺激により電池が高温になる場合、収縮や溶融などの体積変化がおこり、その結果、正極及び負極の短絡、電気エネルギーの放出などにより爆発などが起こる恐れがある。
そこで、このような問題を解決するため、ポリエチレン系有機セパレーター上に無機粒子などの非導電性粒子を含有させることが提案されている。
例えば、特許文献1では、無機粒子であるBaTiO粉末をポリビニリデンフルオライドークロロトリフルオロエチレン共重合体高分子(PVDF−CTFE)とともに分散媒に分散してスラリー化し、これをポリエチレンテレフタレート製の多孔性基材上に塗布・乾燥する方法が開示されている。この方法の場合、無機粒子を含有させることにより150℃以上の熱による有機セパレーターの熱収縮を抑えることはできるが、無機粒子を含むスラリーの塗布・乾燥時において有機セパレーターに皺等が発生する問題がある。
また、特許文献2では、ポリビニリデンフルオライドおよび/またはポリエチレンオキサイドと、炭酸カルシウム等の無機粒子とからなる多孔膜スラリーを、ポリエチレンからなる有機セパレーター上に塗布してなる多孔膜付きセパレーターが開示されている。特許文献2によれば、無機粒子を含有させることにより長期サイクルにおけるリチウム樹枝状結晶(デンドライト)成長を阻止し電気的短絡を防止させることができる旨記載されている。しかしながら、この方法で使用されているポリエチレンオキサイドは、高電位に弱く、長期サイクル特性や高温作動時において容量の劣化が著しい。
このように特許文献1や特許文献2によれば、無機粒子などの非導電性粒子を含む多孔膜を形成することにより電気的短絡の防止及び熱的な収縮の抑制を果たすことができるが、ポリオレフィン系有機セパレーター上に無機粒子を含む多孔膜を形成する時に発生する皺等の変形がみられ(すなわち膜平滑性が悪化する)、またこれを用いたリチウムイオン二次電池では長期サイクル特性が得られないという問題がある。
特表2008−503049号公報(対応米国特許出願公開第2006/8700号明細書) 特開2001−319634号公報(対応米国特許第6432586号明細書)
本発明は、上記のような従来技術に鑑みてなされたものであって、リチウムイオン二次電池に用いられる多孔膜付セパレーターにおいて、セパレーターの膜平滑性や長期サイクル特性に寄与しうる結着剤を有するリチウムイオン二次電池用セパレーターを提供することを目的としている。
本発明者らは、上記課題を解決すべく鋭意検討の結果、前記無機粒子などの非導電性粒子を含む多孔膜が、特定の結着剤を含有することにより、非導電性粒子を含む多孔膜の変形が抑えられ、それにより有機セパレーターの変形をも抑えることができ、それにより膜平滑性に優れること、さらに、前記結着剤が高い酸化安定性を有することにより長期サイクル特性を示すことを見出し、本発明を完成するに至った。
上記課題を解決する本発明は、下記事項を要旨として含む。
(1)有機セパレーター上に、非導電性粒子及び結着剤を含む多孔膜が積層されてなり、前記結着剤が(メタ)アクリロニトリル単量体単位及び(メタ)アクリル酸エステル単量体単位を含む共重合体を含んでなることを特徴とするリチウムイオン二次電池用セパレーター。
(2)前記結着剤において、共重合体中の(メタ)アクリロニトリル単量体単位と(メタ)アクリル酸エステル単量体単位との比率(=(メタ)アクリロニトリル単量体単位/(メタ)アクリル酸エステル単量体単位)が、質量比で5/95〜50/50の範囲にある(1)に記載のリチウムイオン二次電池用セパレーター。
(3)前記結着剤において、共重合体中の(メタ)アクリロニトリル単量体単位及び(メタ)アクリル酸エステル単量体単位の合計含有割合が50質量%以上である(1)又は(2)に記載のリチウムイオン二次電池用セパレーター。
(4)前記結着剤が、加熱またはエネルギー照射により架橋可能なものである(1)〜(3)のいずれかに記載のリチウムイオン二次電池用セパレーター。
(5)前記結着剤において、共重合体が、熱架橋性の架橋性基を含み、前記熱架橋性の架橋性基が、エポキシ基、N−メチロールアミド基、及びオキサゾリン基からなる群から選ばれる少なくとも1種である(1)〜(4)のいずれかに記載のリチウムイオン二次電池用セパレーター。
(6)前記結着剤において、共重合体が、更に、カルボン酸基、ヒドロキシル基及びスルホン酸基からなる群から選ばれる親水性基を少なくとも1種含むものである(1)〜(5)のいずれかに記載のリチウムイオン二次電池用セパレーター。
(7)非導電性粒子、(メタ)アクリロニトリル単量体単位及び(メタ)アクリル酸エステル単量体単位を含む共重合体を含んでなる結着剤、並びに溶媒を含む多孔膜用スラリーを、有機セパレーター上に塗布し、次いで乾燥することを特徴とするリチウムイオン二次電池用セパレーターの製造方法。
(8)正極、負極、電解液及び(1)〜(6)のいずれかに記載のセパレーターを備えてなるリチウムイオン二次電池。
以下に本発明を詳述する。
本発明のリチウムイオン二次電池用セパレーターは、有機セパレーター上に、非導電性粒子及び結着剤を含む多孔膜が積層されてなる。
(有機セパレーター)
本発明に用いる有機セパレーターとしては、電子伝導性がなくイオン伝導性があり、有機溶媒に対する耐性が高い、孔径の微細な多孔質膜が用いられ、例えばポリオレフィン系(ポリエチレン、ポリプロピレン、ポリブテン、ポリ塩化ビニル)、及びこれらの混合物あるいは共重合体等の樹脂からなる微多孔膜、ポリエチレンテレフタレート、ポリシクロオレフィン、ポリエーテルスルフォン、ポリアミド、ポリイミド、ポリイミドアミド、ポリアラミド、ポリシクロオレフィン、ナイロン、ポリテトラフルオロエチレン等の樹脂からなる微多孔膜またはポリオレフィン系の繊維を織ったもの、またはその不織布、絶縁性物質粒子の集合体等が挙げられる。これらの中でも、後述する非導電性粒子を含むスラリーの塗工性が優れ、セパレーター膜厚を薄くし電池内の活物質比率を上げて体積あたりの容量を上げることができるため、ポリオレフィン系の樹脂からなる微多孔膜が好ましい。
有機セパレーターの厚さは、通常0.5〜40μm、好ましくは1〜30μm、更に好ましくは1〜10μmである。この範囲であると電池内でのセパレーターによる抵抗が小さくなり、またセパレーターへの塗工時の作業性が良い。
本発明において、有機セパレーターの材料として用いるポリオレフィン系の樹脂としては、ポリエチレン、ポリプロピレン等のホモポリマー、コポリマー、更にはこれらの混合物が挙げられる。ポリエチレンとしては、低密度、中密度、高密度のポリエチレンが挙げられ、突き刺し強度や機械的な強度の観点から、高密度のポリエチレンが好ましい。また、これらのポリエチレンは柔軟性を付与する目的から2種以上を混合しても良い。これらポリエチレンの調製に用いる重合触媒も特に制限はなく、チーグラー・ナッタ系触媒やフィリップス系触媒やメタロセン系触媒などが挙げられる。機械強度と高透過性を両立させる観点から、ポリエチレンの粘度平均分子量は10万以上1200万以下が好ましく、より好ましくは20万以上300万以下である。ポリプロピレンとしては、ホモポリマー、ランダムコポリマー、ブロックコポリマーが挙げられ、一種類または二種類以上を混合して使用することができる。また重合触媒も特に制限はなく、チーグラー・ナッタ系触媒やメタロセン系触媒などが挙げられる。また立体規則性にも特に制限はなく、アイソタクチックやシンジオタクチックやアタクチックを使用することができるが、安価である点からアイソタクチックポリプロピレンを使用するのが望ましい。さらに本発明の効果を損なわない範囲で、ポリオレフィンにはポリエチレン或いはポリプロピレン以外のポリオレフィン及び酸化防止剤、核剤などの添加剤を適量添加してもよい。
ポリオレフィン系の有機セパレーターを作製する方法としては、公知公用のものが用いられ、例えば、ポリプロピレン、ポリエチレンを溶融押し出しフィルム製膜した後に、低温でアニーリングさせ結晶ドメインを成長させて、この状態で延伸を行い非晶領域を延ばす事で微多孔膜を形成する乾式方法;炭化水素溶媒やその他低分子材料とポリプロピレン、ポリエチレンを混合した後に、フィルム形成させて、次いで、非晶相に溶媒や低分子が集まり島相を形成し始めたフィルムを、この溶媒や低分子を他の揮発し易い溶媒を用いて除去する事で微多孔膜が形成される湿式方法;などが選ばれる。この中でも、抵抗を下げる目的で、大きな空隙を得やすい点で、乾式方法が好ましい。
本発明に用いる有機セパレーターは、強度や硬度、熱収縮率を制御する目的で、非導電性粒子以外の他のフィラーや繊維化合物を含んでも良い。また、非導電性粒子及び結着剤を含む多孔膜の層を積層する際に、密着性を向上させたり、電解液との表面張力を下げて液の含浸性を向上させる目的で、あらかじめ低分子化合物や高分子化合物で有機セパレーター表面を、被覆処理したり、紫外線などの電磁線処理、コロナ放電・プラズマガスなどのプラズマ処理を行っても良い。特に、電解液の含浸性が高く、非導電性粒子及び結着剤を含む多孔膜の層との密着性を得やすい点から、カルボン酸基、水酸基及びスルホン酸基などの極性基を含有する高分子化合物で被覆処理
するのが好ましい。
本発明に用いる有機のセパレーターは、引き裂き強度や、突き刺し強度を上げる目的で、前記有機セパレーター同士の多層構造であってもよい。具体的には、ポリエチレン微多孔膜とポリプロピレン微多孔膜の積層体、不織布とポリオレフィン系セパレーターとの積層体などがあげられる。
(非導電性粒子)
本発明に用いる非導電性粒子は、リチウムイオン二次電池の使用環境下で安定に存在し、電気化学的にも安定であることが望まれる。例えば各種の非導電性の無機粒子、有機粒子を使用することができる。
無機粒子としては、酸化鉄、酸化珪素、酸化アルミニウム、酸化マグネシウム、酸化チタン等の酸化物粒子;窒化アルミニウム、窒化硼素等の窒化物粒子;シリコン、ダイヤモンド等の共有結合性結晶粒子;硫酸バリウム、フッ化カルシウム、フッ化バリウム等の難溶性イオン結晶粒子等が用いられる。これらの粒子は必要に応じて元素置換、表面処理、固溶体化されていてもかまわず、また単独でも2種以上の組合せで用いてもよい。これらの中でも電解液中での安定性と電位安定性の観点から酸化物粒子であることが好ましい。
有機粒子としては、ポリスチレン、ポリエチレン、ポリイミド、メラミン系樹脂、フェノール系樹脂など各種高分子からなる粒子等が用いられる。粒子を形成する上記高分子は、混合物、変成体、誘導体、ランダム共重合体、交互共重合体、グラフト共重合体、ブロック共重合体、架橋体等であっても使用できる。粒子内が2種以上の高分子からなっても問題は無い。またカーボンブラック、グラファイト、SnO、ITO、金属粉末などの導電性金属及び導電性を有する化合物や酸化物の微粉末の表面を、非導電性の物質で表面処理することによって、電気絶縁性を持たせて使用することも可能である。これらの非導電性粒子は、2種以上併用して用いてもかわまない。
本発明に用いる非導電性粒子の平均粒子径(体積平均のD50平均粒子径)は、好ましくは5nm以上10μm以下、より好ましくは10nm以上5μm以下である。非導電性粒子の平均粒子径を前記範囲とすることにより、分散状態の制御と均質な所定の厚みの膜が得られ易くなる。非導電性粒子の平均粒子径を、50nm以上2μm以下の範囲にすると、分散、塗布の容易さ、空隙のコントロール性に優れるので特に好ましい。
また、これらの粒子のBET比表面積は、粒子の凝集を抑制し、スラリーの流動性を好適化する観点から具体的には、0.9〜200m/gであることが好ましく、1.5〜150m/gであることがより好ましい。
本発明に用いる非導電性粒子の形状は球状、針状、棒状、防錐状、板状、鱗片状等、特に限定されないが、球状、針状、防錐状等が好ましい。また多孔性粒子を使用することもできる。
多孔膜中における非導電性粒子の含有量は、好ましくは5〜99質量%、より好ましくは50〜98質量%である。多孔膜中における非導電性粒子の含有量を、前記範囲とすることにより、高い熱安定性と強度を示す多孔膜付セパレーターを得ることができる。
(結着剤)
本発明で用いる結着剤は、(メタ)アクリロニトリル単量体単位及び(メタ)アクリル酸エステル単量体単位を含む共重合体を含んでなる。この共重合体は、少なくとも、(メタ)アクリロニトリル単量体単位を与える単量体と、(メタ)アクリル酸エステル単量体単位を与える単量体とを共重合して得られるものである。本発明において、「(メタ)アクリル酸」は、アクリル酸、メタクリル酸を意味し、「(メタ)アクリロ」は、アクリロ、メタクリロを意味する。
(メタ)アクリル酸エステル単量体単位を与える単量体としては、(メタ)アクリル酸アルキルエステル、(メタ)アクリル酸パーフルオロアルキルエステルおよび側鎖に官能基を有する(メタ)アクリル酸エステルが挙げられる。中でも、(メタ)アクリル酸アルキルエステルが好ましく、電解液への膨潤によるリチウムイオンの伝導性を示すこと、小粒径の分散においてポリマーによる橋架け凝集を起こしにくいことから、(メタ)アクリル酸アルキルエステルまたは(メタ)アクリル酸パーフルオロアルキルエステルの非カルボニル性酸素原子に結合するアルキル基またはパーフルオロアルキル基の炭素数は好ましくは1〜14、更に好ましくは1〜5である。
非カルボニル性酸素原子に結合するアルキル基またはパーフルオロアルキル基の炭素数が1〜5である(メタ)アクリル酸アルキルエステルとしては、アクリル酸メチル、アクリル酸エチル、アクリル酸n−プロピル、アクリル酸イソプロピル、アクリル酸n−ブチル、およびアクリル酸t−ブチルなどのアクリル酸アルキルエステル;アクリル酸2−(パーフルオロブチル)エチル、アクリル酸2−(パーフルオロペンチル)エチルなどのアクリル酸2−(パーフルオロアルキル)エチル;メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n−プロピル、メタクリル酸イソプロピル、メタクリル酸n−ブチル、およびメタクリル酸t−ブチルなどのメタクリル酸アルキルエステル;および、メタクリル酸2−(パーフルオロブチル)エチル、メタクリル酸2−(パーフルオロペンチル)エチルメタクリル酸2−(パーフルオロアルキル)エチルなどのメタクリル酸2−(パーフルオロアルキル)エチル;が挙げられる。
その他の(メタ)アクリル酸アルキルエステルとしては、アクリル酸n−ヘキシル、アクリル酸2−エチルヘキシル、アクリル酸ノニル、アクリル酸ラウリル、アクリル酸ステアリル、アクリル酸シクロヘキシル、およびアクリル酸イソボルニルなどの非カルボニル性酸素原子に結合するアルキル基の炭素数が6〜18であるアクリル酸アルキルエステル;メタクリル酸n−ヘキシル、メタクリル酸2−エチルヘキシル、メタクリル酸オクチル、メタクリル酸イソデシル、メタクリル酸ラウリル、メタクリル酸トリデシル、メタクリル酸ステアリル、およびメタクリル酸シクロヘキシルなどの非カルボニル性酸素原子に結合するアルキル基の炭素数が6〜18であるメタクリル酸アルキルエステル;アクリル酸2−(パーフルオロヘキシル)エチル、アクリル酸2−(パーフルオロオクチル)エチル、アクリル酸2−(パーフルオロノニル)エチル、アクリル酸2−(パーフルオロデシル)エチル、アクリル酸2−(パーフルオロドデシル)エチル、アクリル酸2−(パーフルオロテトラデシル)エチル、アクリル酸2−(パーフルオロヘキサデシル)エチルなどの非カルボニル性酸素原子に結合するパーフルオロアルキル基の炭素数が6〜18であるアクリル酸2−(パーフルオロアルキル)エチル;メタクリル酸2−(パーフルオロヘキシル)エチル、メタクリル酸2−(パーフルオロオクチル)エチル、メタクリル酸2−(パーフルオロノニル)エチル、メタクリル酸2−(パーフルオロデシル)エチル、メタクリル酸2−(パーフルオロドデシル)エチル、メタクリル酸2−(パーフルオロテトラデシル)エチル、メタクリル酸2−(パーフルオロヘキサデシル)エチルなどの非カルボニル性酸素原子に結合するパーフルオロアルキル基の炭素数が6〜18であるメタクリル酸2−(パーフルオロアルキル)エチル;が挙げられる。
本発明に用いる(メタ)アクリロニトリル単量体単位を与える単量体としては、アクリロニトリル、メタクリロニトリルが挙げられる。
本発明において、共重合体中の(メタ)アクリロニトリル単量体単位と(メタ)アクリル酸エステル単量体単位との比率(=(メタ)アクリロニトリル単量体単位/(メタ)アクリル酸エステル単量体単位)は、質量比で、好ましくは5/95〜50/50、より好ましくは5/95〜30/70、さらに好ましくは10/90〜20/80の範囲である。(メタ)アクリロニトリル単量体単位と(メタ)アクリル酸エステル単量体単位との質量比率を前記範囲にすることにより、電解液への溶出を示さずに有機セパレーター上に塗工させた際の変形を生じにくくすることができる。さらに、高温においても電解液の膨潤性を保ちながら溶出しにくく、優れた高温特性を示す。
本発明において、共重合体中の(メタ)アクリロニトリル単量体単位及び(メタ)アクリル酸エステル単量体単位の合計含有割合が、50質量%以上であることが好ましく、60質量%以上であることがより好ましく、75質量%以上であることが特に好ましい。また、共重合体中の前記(メタ)アクリロニトリル単量体単位及び(メタ)アクリル酸エステル単量体単位の含有割合を前記範囲にすることで、後述するスラリーに用いる溶媒への非導電性粒子の分散性及び多孔膜の柔軟性を共に向上させることができる。
本発明で用いる結着剤は、加熱またはエネルギー線照射により架橋可能であることが好ましい。加熱またはエネルギー線照射により架橋可能な結着剤を架橋して用いることで、加熱やエネルギー線照射の強度により架橋密度を調節できる。また、架橋密度が高いほど膨潤度が小さくなるので、架橋密度を変えることにより膨潤度を調節することができる。
加熱またはエネルギー線照射により架橋可能な結着剤は、結着剤中に架橋剤を含有させる、及び/又は結着剤を構成する共重合体中に架橋性基を含有させることにより得ることができる。
これら中でも、結着剤中に、結着剤を構成する共重合体に加えて熱架橋性の架橋性基を含有する架橋剤を含有させる、及び/又は結着剤を構成する共重合体中に熱架橋性の架橋性基を含有させると、多孔膜形成後に多孔膜に加熱処理を行うことにより、多孔膜を架橋させることができ、さらに電解液への溶解を抑制できるので、強靱で柔軟な多孔膜が得られるので好ましい。
結着剤中に、結着剤を構成する共重合体に加えて架橋性基を含有する架橋剤を含有させる場合において、用いる架橋剤としては、特に限定されないが、有機過酸化物、熱や光により効果を発揮する架橋剤などが用いられる。これらの中でも、熱架橋性の架橋性基を含有する点で、有機過酸化物や熱により効果を発揮する架橋剤が好ましい。
有機過酸化物としては、例えば、メチルエチルケトンパーオキシド、シクロヘキサノンパーオキシドなどのケトンパーオキシド類;1,1−ビス(t−ブチルパーオキシ)3,3,5−トリメチルシクロヘキサン、2,2−ビス(t−ブチルパーオキシ)ブタンなどのパーオキシケタール類;t−ブチルハイドロパーオキシド、2,5−ジメチルヘキサン−2,5−ジハイドロパーオキシドなどのハイドロパーオキシド類;ジクミルパーオキシド、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキシン−3、α,α′−ビス(t−ブチルパーオキシ−m−イソプロピル)ベンゼンなどのジアルキルパーオキシド類:オクタノイルパーオキシド、イソブチリルパーオキシドなどのジアシルパーオキシド類;パーオキシジカーボネートなどのパーオキシエステル類;が挙げられる。これらの中でも、架橋後の樹脂の性能から、ジアルキルパーオキシドが好ましく、アルキル基の種類は、成形温度によって変えるのがよい。
熱により効果を発揮する架橋剤(硬化剤)は、加熱によって架橋反応させうるものであれば特に限定されないが、ジアミン、トリアミンまたはそれ以上の脂肪族ポリアミン、脂環族ポリアミン、芳香族ポリアミンビスアジド、酸無水物、ジオール、多価フェノール、ポリアミド、ジイソシアネート、ポリイソシアネートなどが挙げられる。具体的な例としては、例えば、ヘキサメチレンジアミン、トリエチレンテトラミン、ジエチレントリアミン、テトラエチレンペンタミンなどの脂肪族ポリアミン類;ジアミノシクロヘキサン、3(4),8(9)−ビス(アミノメチル)トリシクロ[5.2.1.02,6]デカン;1,3−(ジアミノメチル)シクロヘキサン、メンセンジアミン、イソホロンジアミンN−アミノエチルピペラジン、ビス(4−アミノ−3−メチルシクロヘキシル)メタン、ビス(4−アミノシクロヘキシル)メタンなどの脂環族ポリアミン類;4,4′−ジアミノジフェニルエーテル、4,4′−ジアミノジフェニルメタン、α,α′−ビス(4−アミノフェニル)−1,3−ジイソプロピルベンゼン、α,α′−ビス(4−アミノフェニル)−1,4−ジイソプロピルベンゼン、4,4′−ジアミノジフェニルスルフォン、メタフェニレンジアミン等の芳香族ポリアミン類;4,4−ビスアジドベンザル(4−メチル)シクロヘキサノン、4,4′−ジアジドカルコン、2,6−ビス(4′−アジドベンザル)シクロヘキサノン、2,6−ビス(4′−アジドベンザル)−4−メチル−シクロヘキサノン、4,4′−ジアジドジフェニルスルホン、4,4′−ジアジドジフェニルメタン、2,2′−ジアジドスチルベンなどのビスアジド類;無水フタル酸、無水ピロメリット酸、ベンゾフェノンテトラカルボン酸無水物、ナジック酸無水物、1,2−シクロヘキサンジカルボン酸、無水マレイン酸変性ポリプロピレン、無水マレイン酸変性ノルボルネン樹脂等の酸無水物類;フマル酸、フタル酸、マレイン酸、トリメリット酸、ハイミック酸等のジカルボン酸類;1,3′−ブタンジオール、1,4′−ブタンジール、ヒドロキノンジヒドロキシジエチルエーテル、トリシクロデカンジメタノールなどのジオール類;1,1,1−トリメチロールプロパンなどのトリオール類;フェノールノボラック樹脂、クレゾールノボラック樹脂などの多価フェノール類;トリシクロデカンジオール、ジフェニルシランジオール、エチレングリコール及びその誘導体、ジエチレングリコール及びその誘導体、トリエチレングリコール及びその誘導体などの多価アルコール類;ナイロン−6、ナイロン−66、ナイロン−610、ナイロン−11、ナイロン−612、ナイロン−12、ナイロン−46、メトキシメチル化ポリアミド、ポリヘキサメチレンジアミンテレフタルアミド、ポリヘキサメチレンイソフタルアミド等のポリアミド類;ヘキサメチレンジイソシアネート、トルイレンジイソシアネートなどのジイソシアネート類;ジイソシアネート類の2量体もしくは3量体、ジオール類もしくはトリオール類へのジイソシアネート類のアダクト物などのポリイソシアネート類;イソシアネート部をブロック剤により保護したブロック化イソシアネート類などが挙げられる。
これらは、1種でも2種以上の混合物として使用してもよい。これらの中でも、多孔膜の強度、密着性に優れるなどの理由により、芳香族ポリアミン類、酸無水物類、多価フェノール類、多価アルコール類が好ましく、中でも4,4−ジアミノジフェニルメタン(芳香族ポリアミン類)、無水マレイン酸変性ノルボルネン樹脂(酸無水物)、多価フェノール類などが特に好ましい。
光により効果を発揮する架橋剤(硬化剤)は、g線、h線、i線等の紫外線、遠紫外線、x線、電子線等の活性光線の照射により、本発明の共重合体と反応し、架橋化合物を生成する光反応性物質であれば特に限定されるものではないが、例えば、芳香族ビスアジド化合物、光アミン発生剤、光酸発生剤などが挙げられる。
芳香族ビスアジド化合物の具体例としては、4,4′−ジアジドカルコン、2,6−ビス(4′−アジドベンザル)シクロヘキサノン、2,6−ビス(4′−アジドベンザル)4−メチルシクロヘキサノン、4,4′−ジアジドジフェニルスルフォン、4,4′−ジアジドベンゾフェノン、4,4′−ジアジドジフェニル、2,7−ジアジドフルオレン、4,4′−ジアジドフェニルメタン等が代表例として挙げられる。これらは、1種類でも2種類以上組み合わせても使用できる。
光アミン発生剤の具体例としては、芳香族アミンあるいは脂肪族アミンのo−ニトロベンジロキシカルボニルカーバメート、2,6−ジニトロベンジロキシカルボニルカーバメートあるいはα,α−ジメチル−3,5−ジメトキシベンジロキシカルボニルカーバメート体等が挙げられる。より具体的には、アニリン、シクロヘキシルアミン、ピペリジン、ヘキサメチレンジアミン、トリエチレンテトラアミン、1,3−(ジアミノメチル)シクロヘキサン、4,4′−ジアミノジフェニルエーテル、4,4′−ジアミノジフェニルメタン、フェニレンジアミンなどのo−ニトロベンジロキシカルボニルカーバメート体が挙げられる。これらは、1種類でも2種類以上組み合わせても使用できる。
光酸発生剤とは、活性光線の照射によって、ブレンステッド酸あるいはルイス酸を生成する物質であって、例えば、オニウム塩、ハロゲン化有機化合物、キノンジアジド化合物、α,α−ビス(スルホニル)ジアゾメタン系化合物、α−カルボニル−α−スルホニル−ジアゾメタン系化合物、スルホン化合物、有機酸エステル化合物、有機酸アミド化合物、有機酸イミド化合物等が挙げられる。これらの活性光線の照射により解裂して酸を生成可能な化合物は、単独でも2種類以上混合して用いても良い。
これらの架橋剤は、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。架橋剤の配合量は、本発明に用いる共重合体100質量部に対して、通常0.001〜30質量部、好ましくは0.01〜25質量部、より好ましくは1〜20質量部の範囲である。これらの架橋剤の配合量がこの範囲にあるときに、架橋性及び架橋物の電解液中でのリチウム伝導度、電解液溶解性および多孔膜強度などの特性が高度にバランスされ好適である。
本発明において架橋剤を用いる場合に、さらに架橋助剤(硬化助剤)を使用することにより、架橋性及び配合剤の分散性をさらに高めることができるので好適である。本発明で使用する架橋助剤は、特に限定されるものではないが、特開昭62−34924号公報等に開示されている公知のものでよく、例えば、キノンジオキシム、ベンゾキノンジオキシム、p−ニトロソフェノール等のオキシム・ニトロソ系架橋助剤;N,N−m−フェニレンビスマレイミド等のマレイミド系架橋助剤;ジアリルフタレート、トリアリルシアヌレート、トリアリルイソシアヌレート等のアリル系架橋助剤;エチレングリコールジメタクリレート、トリメチロールプロパントリメタクリレート等のメタクリレート系架橋助剤;ビニルトルエン、エチルビニルベンゼン、ジビニルベンゼンなどのビニル系架橋助剤;等が例示される。これらの中でも、アリル系架橋助剤、メタクリレート系架橋助剤が、均一に分散させやすく好ましい。
架橋助剤の添加量は、架橋剤の種類により適宜選択されるが、架橋剤1質量部に対して、通常、0.1〜10質量部、好ましくは0.2〜5質量部である。架橋助剤の添加量は、少なすぎると架橋が起こりにくく、逆に、添加量が多すぎると、架橋した結着剤のリチウム伝導性、耐水性が低下するおそれが生じる。
結着剤を構成する共重合体中に熱架橋性の架橋性基を含有する場合において、熱架橋性の架橋性基としては、エポキシ基、N−メチロールアミド基、及びオキサゾリン基からなる群から選ばれる少なくとも1種が好ましく、エポキシ基が架橋及び架橋密度の調節が容易な点でより好ましい。
熱架橋性の架橋性基は、前記共重合体を製造する際に、(メタ)アクリロニトリル由来の単量体単位を与える単量体及び(メタ)アクリル酸エステル単量体単位を与える単量体に加え、熱架橋性の架橋基を含有する単量体、必要に応じこれらと共重合可能な他の単量体を共重合することで共重合体中に導入することができる。
エポキシ基を含有する単量体としては、炭素―炭素二重結合およびエポキシ基を含有する単量体とハロゲン原子およびエポキシ基を含有する単量体が挙げられる。
炭素―炭素二重結合およびエポキシ基を含有する単量体としては、たとえば、ビニルグリシジルエーテル、アリルグリシジルエーテル、ブテニルグリシジルエーテル、o−アリルフェニルグリシジルエーテルなどの不飽和グリシジルエーテル;ブタジエンモノエポキシド、クロロプレンモノエポキシド、4,5−エポキシ−2−ペンテン、3,4−エポキシ−1−ビニルシクロヘキセン、1,2−エポキシ−5,9−シクロドデカジエンなどのジエンまたはポリエンのモノエポキシド;3,4−エポキシ−1−ブテン、1,2−エポキシ−5−ヘキセン、1,2−エポキシ−9−デセンなどのアルケニルエポキシド;グリシジルアクリレート、グリシジルメタクリレート、グリシジルクロトネート、グリシジル−4−ヘプテノエート、グリシジルソルベート、グリシジルリノレート、グリシジル−4−メチル−3−ペンテノエート、3−シクロヘキセンカルボン酸のグリシジルエステル、4−メチル−3−シクロヘキセンカルボン酸のグリシジルエステル、などの、不飽和カルボン酸のグリシジルエステル類;が挙げられる。
ハロゲン原子およびエポキシ基を有する単量体としては、たとえば、エピクロロヒドリン、エピブロモヒドリン、エピヨードヒドリン、エピフルオロヒドリン、β−メチルエピクロルヒドリンなどのエピハロヒドリン;p−クロロスチレンオキシド;ジブロモフェニルグリシジルエーテル;が挙げられる。
N−メチロールアミド基を含有する単量体としては、N−メチロール(メタ)アクリルアミドなどのメチロール基を有する(メタ)アクリルアミド類が挙げられる。
オキサゾリン基を含有する単量体としては、2−ビニル−2−オキサゾリン、2−ビニル−4−メチル−2−オキサゾリン、2−ビニル−5−メチル−2−オキサゾリン、2−イソプロペニル−2−オキサゾリン、2−イソプロペニル−4−メチル−2−オキサゾリン、2−イソプロペニル−5−メチル−2−オキサゾリン、2−イソプロペニル−5−エチル−2−オキサゾリン等が挙げられる。
共重合体中の熱架橋性の架橋性基の含有量は、重合時の熱架橋性の架橋性基を含有する単量体量として、単量体全量100質量%に対して、好ましくは0.1〜10質量%、更に好ましくは0.1〜5質量%の範囲である。共重合体中の熱架橋性の架橋性基の含有量は、結着剤を構成する共重合体を製造する時の単量体仕込み比により制御できる。共重合体中の熱架橋性の架橋基の含有量が、上記範囲内にあることで電解液への溶出を抑制し、優れた多孔膜強度と長期サイクル特性を示すことができる。
本発明において、結着剤として用いる共重合体は、カルボン酸基、ヒドロキシル基及びスルホン酸基からなる群から選ばれる親水性基の少なくとも1種を更に含むものであることが好ましい。共重合体が前記親水性基を含むことにより、非導電性粒子の分散安定性及び非導電性粒子同士の結着性のいずれをも向上されることができる。また、非導電性粒子の表面が親水性を示しやすいことから、結着剤が前記親水性基を含有することにより、非導電性粒子の表面に結着剤が吸着しやすくなり、非導電性粒子の分散性が高く、有機セパレーター上に平滑な多孔膜を形成しうる。
親水性基は、カルボン酸基、ヒドロキシル基、及びスルホン酸基からなる群から少なくとも1種選ばれる。これらの中でも、非導電性粒子の分散性や結着性をさらに向上できる観点から、スルホン酸基又はカルボン酸基が好ましい。
親水性基は、前記共重合体を製造する際に、(メタ)アクリロニトリル単量体単位を与える単量体、(メタ)アクリル酸エステル単量体単位を与える単量体、親水性基を含有する単量体、必要に応じこれらと共重合可能な他の単量体とを共重合することで導入することができる。
カルボン酸基を含有する単量体としては、モノカルボン酸及びその誘導体やジカルボン酸、その酸無水物、及びこれらの誘導体などが挙げられる。
モノカルボン酸としては、アクリル酸、メタクリル酸、クロトン酸などが挙げられる。モノカルボン酸誘導体としては、2−エチルアクリル酸、2−エチルアクリル酸、イソクロトン酸、α―アセトキシアクリル酸、β−trans−アリールオキシアクリル酸、α−クロロ−β-E-メトキシアクリル酸、β-ジアミノアクリル酸などが挙げられる。
ジカルボン酸としては、マレイン酸、フマル酸、イタコン酸などが挙げられる。
ジカルボン酸の酸無水物としては、無水マレイン酸、アクリル酸無水物、メチル無水マレイン酸、ジメチル無水マレイン酸などが挙げられる。
ジカルボン酸誘導体としては、メチルマレイン酸、ジメチルマレイン酸、フェニルマレイン酸、クロロマレイン酸、ジクロロマレイン酸、フルオロマレイン酸などのマレイン酸誘導体;マレイン酸メチルアリル、マレイン酸ジフェニル、マレイン酸ノニル、マレイン酸デシル、マレイン酸ドデシル、マレイン酸オクタデシル、マレイン酸フルオロアルキルなどのマレイン酸エステル;が挙げられる。
ヒドロキシル基を含有する単量体としては、(メタ)アリルアルコール、3−ブテン−1−オール、5−ヘキセン−1−オールなどのエチレン性不飽和アルコール;アクリル酸−2−ヒドロキシエチル、アクリル酸−2−ヒドロキシプロピル、メタクリル酸−2−ヒドロキシエチル、メタクリル酸−2−ヒドロキシプロピル、マレイン酸−ジ−2−ヒドロキシエチル、マレイン酸ジ−4−ヒドロキシブチル、イタコン酸ジ−2−ヒドロキシプロピルなどのエチレン性不飽和カルボン酸のアルカノールエステル類;一般式CH=CR−COO−(C2nO)−H(mは2ないし9の整数、nは2ないし4の整数、Rは水素またはメチル基を表す)で表されるポリアルキレングリコールと(メタ)アクリル酸とのエステル類;
2−ヒドロキシエチル−2’−(メタ)アクリロイルオキシフタレート、2−ヒドロキシエチル−2’−(メタ)アクリロイルオキシサクシネートなどのジカルボン酸のジヒドロキシエステルのモノ(メタ)アクリル酸エステル類;2−ヒドロキシエチルビニルエーテル、2−ヒドロキシプロピルビニルエーテルなどのビニルエーテル類;(メタ)アリル−2−ヒドロキシエチルエーテル、(メタ)アリル−2−ヒドロキシプロピルエーテル、(メタ)アリル−3−ヒドロキシプロピルエーテル、(メタ)アリル−2−ヒドロキシブチルエーテル、(メタ)アリル−3−ヒドロキシブチルエーテル、(メタ)アリル−4−ヒドロキシブチルエーテル、(メタ)アリル−6−ヒドロキシヘキシルエーテルなどのアルキレングリコールのモノ(メタ)アリルエーテル類;ジエチレングリコールモノ(メタ)アリルエーテル、ジプロピレングリコールモノ(メタ)アリルエーテルなどのポリオキシアルキレングリコール(メタ)モノアリルエーテル類;グリセリンモノ(メタ)アリルエーテル、(メタ)アリル−2−クロロ−3−ヒドロキシプロピルエーテル、(メタ)アリル−2−ヒドロキシ−3−クロロプロピルエーテルなどの、(ポリ)アルキレングリコールのハロゲン及びヒドロキシ置換体のモノ(メタ)アリルエーテル;オイゲノール、イソオイゲノールなどの多価フェノールのモノ(メタ)アリルエーテル及びそのハロゲン置換体;(メタ)アリル−2−ヒドロキシエチルチオエーテル、(メタ)アリル−2−ヒドロキシプロピルチオエーテルなどのアルキレングリコールの(メタ)アリルチオエーテル類;などが挙げられる。
スルホン酸基を含有する単量体としては、ビニルスルホン酸、メチルビニルスルホン酸、(メタ)アリルスルホン酸、スチレンスルホン酸、(メタ)アクリル酸−2−スルホン酸エチル、2−アクリルアミド−2−メチルプロパンスルホン酸、3−アリロキシ−2−ヒドロキシプロパンスルホン酸などが挙げられる。
これらの中でも、親水性基としては、非導電性粒子の分散性や結着性がさらに向上できる観点から、スルホン酸基やカルボン酸基が好ましい。
共重合体中の親水性基の含有量は、重合時の親水性基を含有する単量体量で、単量体全量100質量%に対して、好ましくは0.1〜40質量%、更に好ましくは0.5〜20質量%の範囲である。共重合体中の親水性基の含有量は、結着剤を構成する共重合体を製造する時の単量体仕込み比により制御できる。共重合体中の親水性基が上記範囲内にあることで、非導電性粒子をより良好に分散させることができる。
本発明に用いる結着剤として用いる共重合体において、(メタ)アクリロニトリル単量体単位を与える単量体及び(メタ)アクリル酸エステル単量体単位を与える単量体の他に、前記した熱架橋性の架橋性基及び親水性基を含むことが好ましい。共重合体が、熱架橋性の架橋性基及び親水性基を含むことにより、より架橋密度をあげやすくなり、高強度な多孔膜を得ることができる。
本発明に用いる結着剤として用いる共重合体は、上記単量体以外に、その他のこれらと共重合可能な単量体を含んでもよい。その他の共重合可能な単量体としては、スチレン、クロロスチレン、ビニルトルエン、t−ブチルスチレンビニル安息香酸メチル、ビニルナフタレン、クロロメチルスチレン、α−メチルスチレン、ジビニルベンゼン等のスチレン系単量体;エチレン、プロピレン等のオレフィン類;ブタジエン、イソプレン等のジエン系単量体;塩化ビニル、塩化ビニリデン等のハロゲン原子含有単量体; 酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、等のビニルエステル類;メチルビニルエーテル、エチルビニルエーテル、ブチルビエルエーテル等のビニルエーテル類;メチルビニルケトン、エチルビニルケトン、ブチルビニルケトン、ヘキシルビニルケトン、イソプロペニルビニルケトン等のビニルケトン類; N−ビニルピロリドン、ビニルピリジン、ビニルイミダゾール等の複素環含有ビニル化合物;アクリルアミド、N−メチロールアクリルアミド、アクリルアミド−2−メチルプロパンスルホン酸などのアミド系単量体;が挙げられる。
上記共重合体の製造方法は特に限定はされず、溶液重合法、懸濁重合法、塊状重合法、乳化重合法などのいずれの方法も用いることができる。重合方法としては、イオン重合、ラジカル重合、リビングラジカル重合などいずれの方法も用いることができる。重合に用いる重合開始剤としては、たとえば過酸化ラウロイル、ジイソプロピルパーオキシジカーボネート、ジ−2−エチルヘキシルパーオキシジカーボネート、t−ブチルパーオキシピバレート、3,3,5−トリメチルヘキサノイルパーオキサイドなどの有機過酸化物、α,α’−アゾビスイソブチロニトリルなどのアゾ化合物、または過硫酸アンモニウム、過硫酸カリウムなどがあげられる。
本発明において、結着剤として用いる上記共重合体のガラス転移温度は、室温において多孔膜に柔軟性を与えることができ、ロール巻き取り時や捲回時のひびや、多孔膜層の欠け等を抑制することができる観点より、好ましくは15℃以下、さらに好ましくは0℃以下である。共重合体のガラス転移温度は、共重合体を構成する単量体の使用割合などを変更することによって調製可能である。
多孔膜中の結着剤の含有量は、好ましくは0.1〜10質量%、更に好ましくは0.5〜5質量%、最も好ましくは0.5〜3質量%である。多孔膜中の結着剤の含有量が、前記範囲にあることで、非導電性粒子同士の結着性及び有機セパレーターへの結着性と、柔軟性を維持しながらも、Liの移動を阻害することがなく、抵抗が増大することを抑制することができる。
多孔膜には、上記成分のほかに、さらに分散剤、レベリング剤、消泡剤や電解液分解抑制等の機能を有する電解液添加剤等の他の成分が含まれていてもよい。これらは電池反応に影響を及ぼさないものであれば特に限られない。
分散剤としてはアニオン性化合物、カチオン性化合物、非イオン性化合物、高分子化合物が例示される。分散剤は用いる非導電性粒子に応じて選択される。多孔膜中の分散剤の含有量は、電池特性に影響が及ばない範囲が好ましく、具体的には10質量%以下である。
レベリング剤としてはアルキル系界面活性剤、シリコーン系界面活性剤、フッ素系界面活性剤、金属系界面活性剤などの界面活性剤が挙げられる。前記界面活性剤を混合することにより、塗工時に発生するはじきを防止したり、電極の平滑性を向上させることができる。その他には、フュームドシリカやフュームドアルミナなどのナノ微粒子が挙げられる。前記ナノ微粒子を混合することにより多孔膜形成用スラリーのチキソ性をコントロールすることができ、さらにそれにより得られる多孔膜のレベリング性を向上させることができる。
多孔膜中のレベリング剤の含有量は、電池特性に影響が及ばない範囲が好ましく、具体的には10質量%以下である。
(リチウムイオン二次電池用セパレーターの製造方法)
本発明のリチウムイオン二次電池用セパレーターを製造する方法としては、1)後述する多孔膜用スラリーを有機セパレーター上に塗布し、次いで乾燥する方法;2)後述する多孔膜用スラリーに有機セパレーターを浸漬後、これを乾燥する方法;3)後述する多孔膜スラリーを、剥離フィルム上に塗布、成膜し、得られた多孔膜を有機セパレーター上に転写する方法;などが挙げられる。この中でも、1)多孔膜スラリーを有機セパレーターに塗布し、乾燥する方法が、多孔膜の膜厚制御をしやすいことから最も好ましい。
本発明のリチウムイオン二次電池用セパレーターの製造方法は、非導電性粒子、(メタ)アクリロニトリル単量体単位及び(メタ)アクリル酸エステル単量体単位を含む共重合体を含んでなる結着剤、並びに溶媒を含む多孔膜用スラリーを、有機セパレーター上に塗布し、次いで乾燥することを特徴とする。
本発明に用いる多孔膜用スラリーは、非導電性粒子、(メタ)アクリロニトリル単量体単位及び(メタ)アクリル酸エステル単量体単位を含む共重合体を含んでなる結着剤、及び溶媒を含む。
非導電性粒子、結着剤としては、多孔膜で例示したものを使用する。
溶媒としては、上記固形分(非導電性粒子及び結着剤)、を均一に分散し得るものであれば特に制限されない。
多孔膜用スラリーに用いる溶媒としては、水および有機溶媒のいずれも使用できる。有機溶媒としては、芳香族炭化水素系としてはベンゼン、トルエン、キシレン、エチルベンゼンなどが、塩素系脂肪族炭化水素としてはメチレンクロライド、クロロホルム、四塩化炭素等があげられる。その他にはピリジン、アセトン、ジオキサン、ジメチルホルムアミド、メチルエチルケトン、ジイソプロピルケトン、シクロヘキサノン、テトラヒドロフラン、n−ブチルフタレート、メチルフタレート、エチルフタレート、テトラヒドロフルフリルアルコール、エチルアセテート、ブチルアセテート、1−ニトロプロパン、二硫化炭素、りん酸トリブチル、シクロヘキサン、シクロペンタン、キシレン、メチルシクロヘキサン、エチルシクロヘキサン、N−メチルピロリドン等が例示される。これらの溶媒は単独でも混合溶媒でも使用することができる。
これらの溶媒は、単独で使用しても、これらを2種以上混合して混合溶媒として使用してもよい。これらの中でも特に、非導電性粒子の分散性にすぐれ、沸点が低く揮発性が高い溶媒が、短時間でかつ低温で溶媒を除去できるので好ましい。具体的には、アセトン、シクロヘキサノン、シクロペンタン、テトラヒドロフラン、シクロヘキサン、キシレン、水、若しくはN−メチルピロリドン、またはこれらの混合溶媒が好ましい。更に、揮発性が低くスラリー塗工時の作業性に優れる点から、シクロヘキサノン、キシレン、若しくはN−メチルピロリドン、またはこれらの混合溶媒が特に好ましい。
多孔膜用スラリーの固形分濃度は、塗布、浸漬が可能な程度でかつ、流動性を有する粘度になる限り特に限定はされないが、一般的には20〜50質量%程度である。
多孔膜用スラリーの製法は、特に限定はされず、非導電性粒子、(メタ)アクリロニトリル単量体単位及び(メタ)アクリル酸エステル単量体単位を含む共重合体を含んでなる結着剤、及び溶媒と必要に応じ添加される他の成分を混合して得られる。
混合装置は、上記成分を均一に混合できる装置であれば特に限定はされず、ボールミル、サンドミル、顔料分散機、擂潰機、超音波分散機、ホモジナイザー、プラネタリーミキサーなどを使用することができるが、高い分散シェアを加えることができる、ビーズミル、ロールミル、フィルミックス等の高分散装置を使用することが特に好ましい。多孔膜用スラリー状態でのスラリー粘度は均一塗工性、スラリー経時安定性の観点から、好ましくは50mPa・S〜10,000mPa・S、更に好ましくは50〜500mPa・sである。前記粘度は、B型粘度計を用いて25℃、回転数60rpmで測定した時の値である。
多孔膜用スラリーを有機セパレーター上へ塗布する方法は、特に制限されない。例えば、ドクターブレード法、ディップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、ハケ塗り法などの方法が挙げられる。中でも、均一な多孔膜が得られる点でディップ法やグラビア法が好ましい。乾燥方法としては例えば温風、熱風、低湿風による乾燥、真空乾燥、(遠)赤外線や電子線などの照射による乾燥法が挙げられる。乾燥温度は、使用する溶媒の種類によってかわる。溶媒を完全に除去するために、例えば溶媒にN−メチルピロリドン等の揮発性の低い溶媒を用いる場合には、送風式の乾燥機で120℃以上の高温で乾燥させることが好ましい。逆に揮発性の高い溶剤を用いる場合には100℃以下の低温において乾燥させることもできる。
得られる多孔膜の膜厚は、特に限定はされず、多孔膜が使用されるリチウムイオン二次電池の種類に応じて適宜設定できるが、薄すぎると均一な膜を形成できず、又厚すぎると電池内での体積(質量)あたりの容量(capacity)が減ることから、0.1〜50μmが好ましく、0.2〜10μmがより好ましく、0.5〜10μmが特に好ましい。
有機セパレーター上に形成される多孔膜は、非導電性粒子が結着剤を介して結着されてなり、非導電性粒子間の空隙が形成された構造を有する。この空隙中には電解液が浸透可能であるため、電池反応を阻害することはない。
本発明において、多孔膜が形成される有機セパレーターの面は特に限定されず、リチウムイオン二次電池の正極側、負極側の何れの表面に成膜されてもよく、正極側、負極側の両者に成膜されてもよい。
(リチウムイオン二次電池)
本発明のリチウムイオン二次電池は、正極、負極、電解液及びセパレーターを備えてなり、前記セパレーターが本発明のリチウムイオン二次電池用セパレーターである。
正極、負極は、一般に、電極活物質を必須成分として含む電極活物質層が、集電体に付着してなる。
(電極活物質)
リチウムイオン二次電池用電極に用いられる電極活物質は、電解質中で電位をかける事により可逆的にリチウムイオンを挿入放出できるものであればよく、無機化合物でも有機化合物でも用いることができる。
リチウムイオン二次電池正極用の電極活物質(正極活物質)は、無機化合物からなるものと有機化合物からなるものとに大別される。無機化合物からなる正極活物質としては、遷移金属酸化物、リチウムと遷移金属との複合酸化物、遷移金属硫化物などが挙げられる。上記の遷移金属としては、Fe、Co、Ni、Mn等が使用される。正極活物質に使用される無機化合物の具体例としては、LiCoO、LiNiO、LiMnO、LiMn、LiFePO、LiFeVOなどのリチウム含有複合金属酸化物;TiS、TiS、非晶質MoS等の遷移金属硫化物;Cu、非晶質VO−P、MoO、V、V13などの遷移金属酸化物が挙げられる。これらの化合物は、部分的に元素置換したものであってもよい。有機化合物からなる正極活物質としては、例えば、ポリアセチレン、ポリ−p−フェニレンなどの導電性高分子を用いることもできる。電気伝導性に乏しい、鉄系酸化物は、還元焼成時に炭素源物質を存在させることで、炭素材料で覆われた電極活物質として用いてもよい。また、これら化合物は、部分的に元素置換したものであってもよい。
リチウムイオン二次電池用の正極活物質は、上記の無機化合物と有機化合物の混合物であってもよい。正極活物質の粒子径は、電池の他の構成要件との兼ね合いで適宜選択されるが、負荷特性、サイクル特性などの電池特性の向上の観点から、50%体積累積径が、通常0.1〜50μm、好ましくは1〜20μmである。50%体積累積径がこの範囲であると、充放電容量が大きい二次電池を得ることができ、かつ電極用スラリーおよび電極を製造する際の取扱いが容易である。50%体積累積径は、レーザー回折で粒度分布を測定することにより求めることができる。
リチウムイオン二次電池負極用の電極活物質(負極活物質)としては、たとえば、アモルファスカーボン、グラファイト、天然黒鉛、メゾカーボンマイクロビーズ、ピッチ系炭素繊維などの炭素質材料、ポリアセン等の導電性高分子などがあげられる。また、負極活物質としては、ケイ素、錫、亜鉛、マンガン、鉄、ニッケル等の金属やこれらの合金、前記金属又は合金の酸化物や硫酸塩が用いられる。加えて、金属リチウム、Li−Al、Li−Bi−Cd、Li−Sn−Cd等のリチウム合金、リチウム遷移金属窒化物、シリコン等を使用できる。電極活物質は、機械的改質法により表面に導電付与材を付着させたものも使用できる。負極活物質の粒径は、電池の他の構成要件との兼ね合いで適宜選択されるが、初期効率、負荷特性、サイクル特性などの電池特性の向上の観点から、50%体積累積径が、通常1〜50μm、好ましくは15〜30μmである。
本発明において、電極活物質層は電極活物質の他に、結着剤(以下、「活物質層用結着剤」と記載することがある。)を含むことが好ましい。活物質層用結着剤を含むことにより電極中の電極活物質層の結着性が向上し、電極の捲回時等の工程上においてかかる機械的な力に対する強度が上がり、また電極中の電極活物質層が脱離しにくくなることから、脱離物による短絡等の危険性が小さくなる。
活物質層用結着剤としては様々な樹脂成分を用いることができる。例えば、ポリエチレン、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、ポリアクリル酸誘導体、ポリアクリロニトリル誘導体などを用いることができる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。
更に、下に例示する軟質重合体も活物質層用結着剤として使用することができる。
ポリブチルアクリレート、ポリブチルメタクリレート、ポリヒドロキシエチルメタクリレート、ポリアクリルアミド、ポリアクリロニトリル、ブチルアクリレート・スチレン共重合体、ブチルアクリレート・アクリロニトリル共重合体、ブチルアクリレート・アクリロニトリル・グリシジルメタクリレート共重合体などの、アクリル酸またはメタクリル酸誘導体の単独重合体またはそれと共重合可能な単量体との共重合体である、アクリル系軟質重合体;
ポリイソブチレン、イソブチレン・イソプレンゴム、イソブチレン・スチレン共重合体などのイソブチレン系軟質重合体;
ポリブタジエン、ポリイソプレン、ブタジエン・スチレンランダム共重合体、イソプレン・スチレンランダム共重合体、アクリロニトリル・ブタジエン共重合体、アクリロニトリル・ブタジエン・スチレン共重合体、ブタジエン・スチレン・ブロック共重合体、スチレン・ブタジエン・スチレン・ブロック共重合体、イソプレン・スチレン・ブロック共重合体、スチレン・イソプレン・スチレン・ブロック共重合体などジエン系軟質重合体;
ジメチルポリシロキサン、ジフェニルポリシロキサン、ジヒドロキシポリシロキサンなどのケイ素含有軟質重合体;
液状ポリエチレン、ポリプロピレン、ポリ−1−ブテン、エチレン・α−オレフィン共重合体、プロピレン・α−オレフィン共重合体、エチレン・プロピレン・ジエン共重合体(EPDM)、エチレン・プロピレン・スチレン共重合体などのオレフィン系軟質重合体;
ポリビニルアルコール、ポリ酢酸ビニル、ポリステアリン酸ビニル、酢酸ビニル・スチレン共重合体などビニル系軟質重合体;
ポリエチレンオキシド、ポリプロピレンオキシド、エピクロルヒドリンゴムなどのエポキシ系軟質重合体;
フッ化ビニリデン系ゴム、四フッ化エチレン−プロピレンゴムなどのフッ素含有軟質重合体;
天然ゴム、ポリペプチド、蛋白質、ポリエステル系熱可塑性エラストマー、塩化ビニル系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマーなどのその他の軟質重合体などが挙げられる。これらの軟質重合体は、架橋構造を有したものであってもよく、また、変性により官能基を導入したものであってもよい。
電極活物質層における活物質層用結着剤の量は、電極活物質100質量部に対して、好ましくは0.1〜5質量部、より好ましくは0.2〜4質量部、特に好ましくは0.5〜3質量部である。電極活物質層における活物質層用結着剤量が前記範囲であることにより、電池反応を阻害せずに、電極から活物質が脱落するのを防ぐことができる。
活物質層用結着剤は、電極を作製するために溶液もしくは分散液として調製される。その時の粘度は、通常1mPa・S〜300,000mPa・Sの範囲、好ましくは50mPa・S〜10,000mPa・Sである。前記粘度は、B型粘度計を用いて25℃、回転数60rpmで測定した時の値である。
本発明において、電極活物質層には、導電性付与材や補強材を含有していてもよい。導電付与材としては、アセチレンブラック、ケッチェンブラック、カーボンブラック、グラファイト、気相成長カーボン繊維、カーボンナノチューブ等の導電性カーボンを使用することができる。黒鉛などの炭素粉末、各種金属のファイバーや箔などが挙げられる。補強材としては、各種の無機および有機の球状、板状、棒状または繊維状のフィラーが使用できる。導電性付与材を用いることにより電極活物質同士の電気的接触を向上させることができ、リチウムイオン二次電池に用いる場合に放電レート特性を改善したり、することができる。導電性付与材の使用量は、電極活物質100質量部に対して通常0〜20質量部、好ましくは1〜10質量部である。
電極活物質層は、これ単独で存在していてもよいが、集電体に付着した形で存在している。
電極活物質層は、電極活物質及び溶媒を含むスラリー(以下、「合剤スラリー」と呼ぶことがある。)を集電体に付着させて形成することができる。
溶媒としては、電極活物質層に活物質層用結着剤を含有させる場合は、これを溶解または粒子状に分散するものであればよいが、溶解するものが好ましい。活物質層用結着剤を溶解する溶媒を用いると、活物質層用結着剤が表面に吸着することにより電極活物質などの分散が安定化する。
合剤スラリーは、溶媒を含有し、電極活物質、活物質層用結着剤及び導電性付与材を分散させる。溶媒としては、前記結着剤を溶解し得るものを用いると、電極活物質や導電性付与材の分散性に優れるので好ましい。活物質層用結着剤が溶媒に溶解した状態で用いることにより、活物質層用結着剤が電極活物質などの表面に吸着してその体積効果により分散を安定化させていると推測される。
合剤スラリーに用いる溶媒としては、水および有機溶媒のいずれも使用できる。有機溶媒としては、シクロペンタン、シクロヘキサンなどの環状脂肪族炭化水素類;トルエン、キシレンなどの芳香族炭化水素類;エチルメチルケトン、シクロヘキサノンなどのケトン類;酢酸エチル、酢酸ブチル、γ−ブチロラクトン、ε−カプロラクトンなどのエステル類;アセトニトリル、プロピオニトリルなどのアシロニトリル類;テトラヒドロフラン、エチレングリコールジエチルエーテルなどのエーテル類:メタノール、エタノール、イソプロパノール、エチレングリコール、エチレングリコールモノメチルエーテルなどのアルコール類;N−メチルピロリドン、N,N−ジメチルホルムアミドなどのアミド類があげられる。これらの溶媒は、単独または2種以上を混合して、乾燥速度や環境上の観点から適宜選択して用いることができる。中でも、本発明においては水への電極膨張特性の観点から、非水性溶媒を用いることが好ましい。
合剤スラリーには、さらに増粘剤などの各種の機能を発現する添加剤を含有させることができる。増粘剤としては、合剤スラリーに用いる有機溶媒に可溶な重合体が用いられる。具体的には、アクリロニトリル−ブタジエン共重合体水素化物などが用いられる。
さらに、合剤スラリーには、上記成分の他に、電池の安定性や寿命を高めるため、トリフルオロプロピレンカーボネート、ビニレンカーボネート、カテコールカーボネート、1,6−ジオキサスピロ[4,4]ノナン−2,7−ジオン、12−クラウン−4−エーテル等が使用できる。また、これらは後述する電解液に含有せしめて用いてもよい。
合剤スラリーにおける有機溶媒の量は、電極活物質や結着剤などの種類に応じ、塗工に好適な粘度になるように調整して用いる。具体的には、合剤スラリー中の、電極活物質、結着剤および他の添加剤を合わせた固形分の濃度が、好ましくは30〜90質量%、より好ましくは40〜80質量%となる量に調整して用いられる。
合剤スラリーは、電極活物質、必要に応じ添加される活物質層用結着剤、導電性付与材、その他の添加剤、および有機溶媒を、混合機を用いて混合して得られる。混合は、上記の各成分を一括して混合機に供給し、混合してもよい。合剤スラリーの構成成分として、電極活物質、活物質層用結着剤、導電性付与材及び増粘剤を用いる場合には、導電性付与材および増粘剤を有機溶媒中で混合して導電材を微粒子状に分散させ、次いで活物質層用結着剤、電極活物質を添加してさらに混合することがスラリーの分散性が向上するので好ましい。混合機としては、ボールミル、サンドミル、顔料分散機、擂潰機、超音波分散機、ホモジナイザー、プラネタリーミキサー、ホバートミキサーなどを用いることができるが、ボールミルを用いると導電性付与材、電極活物質の凝集を抑制できるので好ましい。
合剤スラリーの粒度は、好ましくは35μm以下であり、さらに好ましくは25μm以下である。スラリーの粒度が上記範囲にあると、導電材の分散性が高く、均質な電極が得られる。
集電体は、電気導電性を有しかつ電気化学的に耐久性のある材料であれば特に制限されないが、耐熱性を有するとの観点から、例えば、鉄、銅、アルミニウム、ニッケル、ステンレス鋼、チタン、タンタル、金、白金などの金属材料が好ましい。中でも、非水電解質リチウムイオン二次電池の正極用としてはアルミニウムが特に好ましく、負極用としては銅が特に好ましい。集電体の形状は特に制限されないが、厚さ0.001〜0.5mm程度のシート状のものが好ましい。集電体は、合剤の接着強度を高めるため、予め粗面化処理して使用するのが好ましい。粗面化方法としては、機械的研磨法、電解研磨法、化学研磨法などが挙げられる。機械的研磨法においては、研磨剤粒子を固着した研磨布紙、砥石、エメリバフ、鋼線などを備えたワイヤーブラシ等が使用される。また、電極合剤層の接着強度や導電性を高めるために、集電体表面に中間層を形成してもよい。
電極活物質層の製造方法は、前記集電体の少なくとも片面、好ましくは両面に電極活物質層を層状に結着させる方法であればよい。例えば、前記合剤スラリーを集電体に塗布、乾燥し、次いで、120℃以上で1時間以上加熱処理して電極活物質層を形成する。合剤スラリーを集電体へ塗布する方法は特に制限されない。例えば、ドクターブレード法、ディップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、ハケ塗り法などの方法が挙げられる。乾燥方法としては例えば温風、熱風、低湿風による乾燥、真空乾燥、(遠)赤外線や電子線などの照射による乾燥法が挙げられる。
次いで、金型プレスやロールプレスなどを用い、加圧処理により電極の合剤の空隙率を低くすることが好ましい。空隙率の好ましい範囲は5%〜15%、より好ましくは7%〜13%である。空隙率が高すぎると充電効率や放電効率が悪化する。空隙率が低すぎる場合は、高い体積容量が得難かったり、合剤が剥がれ易く不良を発生し易いといった問題を生じる。さらに、硬化性の重合体を用いる場合は、硬化させることが好ましい。
電極活物質層の厚みは、正極、負極とも、通常5〜300μmであり、好ましくは10〜250μmである。
(電解液)
電解液としては、有機溶媒に支持電解質を溶解した有機電解液が用いられる。支持電解質としては、リチウム塩が用いられる。リチウム塩としては、特に制限はないが、LiPF、LiAsF、LiBF、LiSbF、LiAlCl、LiClO、CFSOLi、CSOLi、CFCOOLi、(CFCO)NLi、(CFSONLi、(CSO)NLiなどが挙げられる。中でも、溶媒に溶けやすく高い解離度を示すLiPF、LiClO、CFSOLiが好ましい。これらは、二種以上を併用してもよい。解離度の高い支持電解質を用いるほどリチウムイオン伝導度が高くなるので、支持電解質の種類によりリチウムイオン伝導度を調節することができる。
電解液に使用する有機溶媒としては、支持電解質を溶解できるものであれば特に限定されないが、ジメチルカーボネート(DMC)、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、メチルエチルカーボネート(MEC)などのカーボネート類;γ−ブチロラクトン、ギ酸メチルなどのエステル類;1,2−ジメトキシエタン、テトラヒドロフランなどのエーテル類;スルホラン、ジメチルスルホキシドなどの含硫黄化合物類;が好適に用いられる。またこれらの溶媒の混合液を用いてもよい。中でも、誘電率が高く、安定な電位領域が広いのでカーボネート類が好ましい。用いる溶媒の粘度が低いほどリチウムイオン伝導度が高くなるので、溶媒の種類によりリチウムイオン伝導度を調節することができる。
電解液中における支持電解質の濃度は、通常1〜30質量%、好ましくは5質量%〜20質量%である。また、支持電解質の種類に応じて、通常0.5〜2.5モル/Lの濃度で用いられる。支持電解質の濃度が低すぎても高すぎてもイオン導電度は低下する傾向にある。用いる電解液の濃度が低いほど重合体粒子の膨潤度が大きくなるので、電解液の濃度によりリチウムイオン伝導度を調節することができる。
リチウムイオン二次電池の具体的な製造方法としては、例えば、正極と負極とを本発明のセパレーターを介して重ね合わせ、これを電池形状に応じて巻く、折るなどして電池容器に入れ、電池容器に電解液を注入して封口する方法が挙げられる。本発明のセパレーターは、両面または片面に多孔膜が塗布されてなる。また必要に応じてエキスパンドメタルや、ヒューズ、PTC素子などの過電流防止素子、リード板などを入れ、電池内部の圧力上昇、過充放電の防止をする事もできる。電池の形状は、コイン型、ボタン型、シート型、円筒型、角形、扁平型など何れであってもよい。
(実施例)
以下に、実施例を挙げて本発明を説明するが、本発明はこれに限定されるものではない。尚、本実施例における部および%は、特記しない限り質量基準である。
実施例および比較例において、各種物性は以下のように評価する。
<セパレーター変形性>
幅65mm、長さ500mm、厚さ25μmの乾式法により製造された単層のポリプロピレン製セパレーター上に多孔膜用スラリーを塗工し、90℃にて20分間乾燥して多孔膜付セパレーターを得る。この多孔膜付セパレーターについて、皺の有無を目視にて観察する。この観察を10枚の試験片に対して行い、皺が観察された試験片の枚数が、1枚以下である場合をA、2枚〜4枚である場合をB、5枚以上である場合をCとする。
また、乾燥後の多孔膜付セパレーターの長さa(mm)を測定し、セパレーター変形率(=a/500×100)%を求める。セパレーター変形率が98%以上のものをA、95%以上98%未満のものをB、90%以上95%未満のものをC、90%未満のものをDとして判断する。セパレーター変形率が大きいほど、セパレーターの変形が少なく、膜平滑性に優れることを示す。
<多孔膜用スラリーにおける無機粒子の分散性>
レーザー回折式粒度分布測定装置を用いて多孔膜用スラリー中の無機粒子の分散粒子径を測定し、体積平均粒子径D50を求める。下記基準で分散性を判断する。分散粒子径が1次粒子(無機粒子の体積平均粒子径)に近いほど凝集性が小さく分散が進んでいることを示している。
A:0.5μm未満
B:0.5μm以上〜1.0μm未満
C:1.0μm以上〜2.0μm未満
D:2.0以上〜5.0μm未満
E:5.0μm以上
<サイクル特性>
10セルのコイン型電池を0.2Cの定電流法によって4.3Vに充電し、3.0Vまで放電する充放電を繰り返し、電気容量を測定する。10セルの平均値を測定値とし、50サイクル終了時の電気容量と5サイクル終了時の電気容量の比(%)で表される充放電容量保持率を求め、下記基準でサイクル特性を評価する。この値が高いほど長期サイクル特性に優れている。
A:80%以上
B:70%以上80%未満
C:60%以上70%未満
D:50%以上60%未満
E:40%以上50%未満
F:30%以上40%未満
G:30%未満
(実施例1)
<重合体の作製>
撹拌機付きのオートクレーブに、イオン交換水300部、n−ブチルアクリレート41部、エチルアクリレート41.5部、アクリロニトリル15部、グリシジルメタクリレート2.0部、2−アクリルアミド2−メチルプロパンスルホン酸0.5部および分子量調整剤としてt−ドデシルメルカプタン0.05部、重合開始剤として過硫酸カリウム0.3部を入れ、十分に撹拌した後、70℃に加温して重合し、重合体粒子水分散液を得た。固形分濃度から求めた重合転化率はほぼ99%であった。この重合体粒子水分散液100部にN−メチルピロリドン(以下、「NMP」と記載することがある。)320部を加え、減圧下に水を蒸発させて、共重合体(以下、「重合体A」という。)のNMP溶液を得た。重合体Aの溶液の固形分濃度は8質量%であった。また、この重合体Aのガラス転移温度は−5℃であった。重合体A中の、(メタ)アクリロニトリル単量体単位と(メタ)アクリル酸エステル単量体単位との比率(=(メタ)アクリロニトリル単量体単位/(メタ)アクリル酸エステル単量体単位)は15/82.5、(メタ)アクリロニトリル単量体単位及び(メタ)アクリル酸エステル単量体単位の合計含有割合は97.5%、熱架橋性の架橋性基(エポキシ基)の含有割合は熱架橋性の架橋性基を含有する単量体(グリシジルメタクリレート)の割合で2%、親水性基(スルホン酸基)の含有割合は親水性基を含有する単量体(2−アクリルアミド2−メチルプロパンスルホン酸)の割合で0.5%であった。
<多孔膜用スラリーの作成>
無機粒子(アルミナ,体積平均粒径0.3μm)と重合体Aとを、100:3(固形分相当比)となるように混合し、更にN−メチルピロリドンを固形分濃度が40%になるように混合し、次いでビーズミルを用いて分散させて多孔膜用スラリー1を調製した。得られた多孔膜スラリー1の分散粒子径を測定した。結果を表1に示す。
<多孔膜付セパレーターの作製>
前記多孔膜用スラリー1を、幅65mm、長さ500mm、厚さ25μmの乾式法により製造された単層のポリプロピレン製セパレーター(気孔率55%)の片面に乾燥後の厚さが10μmになるようにワイヤーバーを用いて塗工し、次いで90℃で20分間乾燥することにより、多孔膜を形成し多孔膜付セパレーター1を得た。得られた多孔膜付セパレーター1のセパレーター変形性を評価した。その結果を表1に示す。
<負極電極の製造>
負極活物質として粒子径20μm、比表面積4.2m/gのグラファイトを98部と、活物質層用結着剤としてSBR(ガラス転移温度:−10℃)を固形分相当で1部とを混合し、更にカルボキシメチルセルロース(CMC)を1部加えてプラネタリーミキサーで混合してスラリー状の負極用電極組成物(負極用合剤スラリー)を調製した。この負極用電極組成物を厚さ0.01mmの銅箔の片面に塗布し、120℃で3時間乾燥した後、ロールプレスして負極活物質層の厚さが80μmの負極電極を得た。
<電池の作製>
次いで、得られた負極電極を直径13mmΦの円形に、厚さ0.5mmのリチウム金属箔を直径16mmΦの円形に、得られた多孔膜付セパレーターを18mmΦの円形に、それぞれ打ち抜いた。そして、負極電極の活物質層面に多孔膜付セパレーター1、正極としてリチウム金属膜をこの順に積層し、これをポリプロピレン製パッキンを設置したステンレス鋼製のコイン型外装容器中に収納した。なお、多孔膜付セパレーター1は、多孔膜層が負極電極の活物質層面側になるように積層した。この容器中に電解液(EC/DEC=1/2、1M LiPF)を空気が残らないように注入し、ポリプロピレン製パッキンを介して外装容器に厚さ0.2mmのステンレス鋼のキャップをかぶせて固定し、電池缶を封止して、直径20mm、厚さ約3.2mmのリチウムイオン二次電池を製造した(コインセルCR2032)。得られた電池についてサイクル特性を測定した。結果を表1に示す。
(実施例2)
撹拌機付きのオートクレーブに、イオン交換水300部、n−ブチルアクリレート51部、エチルアクリレート41.5部、アクリロニトリル5部、グリシジルメタクリレート2.0部、2−アクリルアミド2−メチルプロパンスルホン酸0.5部および分子量調整剤としてt−ドデシルメルカプタン0.05部、重合開始剤として過硫酸カリウム0.3部を入れ、十分に撹拌した後、70℃に加温して重合し、重合体粒子水分散液を得た。固形分濃度から求めた重合転化率はほぼ99%であった。この重合体粒子水分散液100部にNMP320部を加え、減圧下に水を蒸発させて、共重合体(以下、「重合体B」という。)のNMP溶液を得た。重合体Bの溶液の固形分濃度は8質量%であった。また、この重合体Bのガラス転移温度は−25℃であった。重合体B中の、(メタ)アクリロニトリル単量体単位と(メタ)アクリル酸エステル単量体単位との比率(=(メタ)アクリロニトリル単量体単位/(メタ)アクリル酸エステル単量体単位)は5/92.5、(メタ)アクリロニトリル単量体単位及び(メタ)アクリル酸エステル単量体単位の合計含有割合は97.5%、熱架橋性の架橋基(エポキシ基)の含有割合は熱架橋性の架橋性基を含有する単量体(グリシジルメタクリレート)の割合で2%、親水性基(スルホン酸基)の含有割合は親水性基を含有する単量体(2−アクリルアミド2−メチルプロパンスルホン酸)の割合で0.5%であった。
実施例1において、結着剤として重合体Aのかわりに重合体Bを用いた他は、実施例1と同様に多孔膜スラリー2、多孔膜付セパレーター2及び電池を作製した。そして、作製した多孔膜用スラリー2における無機粒子の分散性、多孔膜付セパレーター2のセパレーター変形性及び電池のサイクル特性を評価した。結果を表1に示す。
(実施例3)
撹拌機付きのオートクレーブに、イオン交換水300部、n−ブチルアクリレート83部、アクリロニトリル15部、グリシジルメタクリレート2.0部および分子量調整剤としてt−ドデシルメルカプタン0.05部、重合開始剤として過硫酸カリウム0.3部を入れ、十分に撹拌した後、70℃に加温して重合し、重合体粒子水分散液を得た。固形分濃度から求めた重合転化率はほぼ99%であった。この重合体粒子水分散液100部にNMP320部を加え、減圧下に水を蒸発させて、共重合体(以下、「重合体C」という。)のNMP溶液を得た。重合体Cの溶液の固形分濃度は9質量%であった。また、この重合体Cのガラス転移温度は−15℃であった。重合体C中の(メタ)アクリロニトリルの単量体単位と(メタ)アクリル酸エステル単量体単位との比率(=(メタ)アクリロニトリル単量体単位/(メタ)アクリル酸エステル単量体単位)は15/83、(メタ)アクリロニトリル単量体単位及び(メタ)アクリル酸エステル単量体単位の合計含有割合は98%、熱架橋性の架橋性基(エポキシ基)の含有割合は熱架橋性の架橋性基を含有する単量体(グリシジルメタクリレート)の割合で2%、親水性基の含有割合は0%であった。
実施例1において、結着剤として重合体Aのかわりに重合体Cを用いた他は、実施例1と同様に多孔膜用スラリー3、多孔膜付セパレーター3及び電池を作製した。そして、作製した多孔膜スラリー3における無機粒子の分散性、多孔膜付セパレーター3のセパレーター変形性及び電池のサイクル特性を評価した。結果を表1に示す。
(実施例4)
撹拌機付きのオートクレーブに、イオン交換水300部、エチルアクリレート84.5部、アクリロニトリル15部、アリルグリシジルエーテル0.5部および分子量調整剤としてt−ドデシルメルカプタン0.05部、重合開始剤として過硫酸カリウム0.3部を入れ、十分に撹拌した後、70℃に加温して重合し、重合体粒子水分散液を得た。固形分濃度から求めた重合転化率はほぼ99%であった。この重合体粒子水分散液100部にNMP320部を加え、減圧下に水を蒸発させて、共重合体(以下、「重合体D」という。)NMP溶液を得た。重合体Dの溶液の固形分濃度は10質量%であった。また、この重合体Dのガラス転移温度は2℃であった。重合体D中の、(メタ)アクリロニトリル単量体単位と(メタ)アクリル酸エステル単量体単位との比率(=(メタ)アクリロニトリル単量体単位/(メタ)アクリル酸エステル単量体単位)は15/84.5、(メタ)アクリロニトリル単量体単位及び(メタ)アクリル酸エステル単量体単位の合計含有割合は99.5%、熱架橋性の架橋性基(エポキシ基)の含有割合は熱架橋性基を含有する単量体(アリルグリシジルエーテル)の割合で0.5%、親水性基の含有割合は0%であった。
実施例1において、結着剤として重合体Aのかわりに重合体Dを用いた他は、実施例1と同様に多孔膜用スラリー4、多孔膜付きセパレーター4及び電池を作製した。そして、作製した多孔膜スラリー4における無機粒子の分散性、多孔膜付セパレーター4のセパレーター変形性及び電池のサイクル特性を評価した。結果を表1に示す。サイクル特性は、実用上問題ないレベルであるが、実施例1〜3に比べると劣る。
(比較例1〜4)
実施例1において、多孔膜用結着剤として重合体Aのかわりに表1記載のポリマーを用いた他は、実施例1と同様に多孔膜用スラリー、多孔膜付セパレーター及び電池を作製した。そして、作製した多孔膜スラリーにおける無機粒子の分散性、多孔膜付セパレーターのセパレーター変形性及び電池のサイクル特性を評価した。結果を表1に示す。
なお、表1中の「PBA」はポリブチルアクリレート、「PEO」はポリエチレンオキサイド、「PVDF」はポリフッ化ビニリデン、「PAN」はポリアクリロニトリルを表す。
Figure 0004569718
表1の結果より、多孔膜を構成する結着剤が(メタ)アクリロニトリル単量体単位及び(メタ)アクリル酸エステル単量体単位を含む共重合体である時に、多孔膜スラリー中の無機粒子の分散性に優れ、有機セパレーター上への塗工時の変形性を抑制することができ(すなわち、膜平滑性に優れる)、これを備えるリチウムイオン二次電池は高い長期サイクル特性を有する。実施例の中でも、結着剤を構成する共重合体として、(メタ)アクリロニトリル単量体単位と(メタ)アクリル酸エステル単量体単位との質量比率が10/90〜20/80の範囲であり、かつ、熱架橋性の架橋性基及び親水性基を含有するものを用いた実施例1では、セパレーター変形性(すなわち、膜平滑性)、無機粒子の分散性、長期サイクル特性が最も優れる。

Claims (8)

  1. 有機セパレーター上に、非導電性粒子及び結着剤を含む多孔膜が積層されてなり、
    前記結着剤が(メタ)アクリロニトリル単量体単位及び(メタ)アクリル酸エステル単量体単位を含む共重合体を含んでなることを特徴とするリチウムイオン二次電池用セパレーター。
  2. 前記結着剤において、共重合体中の(メタ)アクリロニトリル単量体単位と(メタ)アクリル酸エステル単量体単位との比率(=(メタ)アクリロニトリル単量体単位/(メタ)アクリル酸エステル単量体単位)が、質量比で5/95〜50/50の範囲にある請求項1に記載のリチウムイオン二次電池用セパレーター。
  3. 前記結着剤において、共重合体中の(メタ)アクリロニトリル単量体単位及び(メタ)アクリル酸エステル単量体単位の合計含有割合が50質量%以上である請求項1又は2に記載のリチウムイオン二次電池用セパレーター。
  4. 前記結着剤が、加熱またはエネルギー線照射により架橋可能なものである請求項1〜3のいずれかに記載のリチウムイオン二次電池用セパレーター。
  5. 前記結着剤において、共重合体が、熱架橋性の架橋性基を含み、前記熱架橋性の架橋性基が、エポキシ基、N−メチロールアミド基、及びオキサゾリン基からなる群から選ばれる少なくとも1種である請求項1〜4のいずれかに記載のリチウムイオン二次電池用セパレーター。
  6. 前記結着剤において、共重合体が、更に、カルボン酸基、ヒドロキシル基及びスルホン酸基からなる群から選ばれる親水性基を少なくとも1種含むものである請求項1〜5のいずれかに記載のリチウムイオン二次電池用セパレーター。
  7. 非導電性粒子、(メタ)アクリロニトリルの単量体単位及び(メタ)アクリル酸エステルの単量体単位を含む共重合体を含んでなる結着剤、並びに溶媒を含む多孔膜用スラリーを、有機セパレーター上に塗布し、次いで乾燥することを特徴とするリチウムイオン二次電池用セパレーターの製造方法。
  8. 正極、負極、電解液及び請求項1〜6のいずれかに記載のセパレーターを備えてなるリチウムイオン二次電池。
JP2010518445A 2008-12-26 2009-12-25 リチウムイオン二次電池用セパレーター及びリチウムイオン二次電池 Active JP4569718B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008334625 2008-12-26
JP2008334625 2008-12-26
PCT/JP2009/071546 WO2010074202A1 (ja) 2008-12-26 2009-12-25 リチウムイオン二次電池用セパレーター及びリチウムイオン二次電池

Publications (2)

Publication Number Publication Date
JP4569718B2 true JP4569718B2 (ja) 2010-10-27
JPWO2010074202A1 JPWO2010074202A1 (ja) 2012-06-21

Family

ID=42287807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010518445A Active JP4569718B2 (ja) 2008-12-26 2009-12-25 リチウムイオン二次電池用セパレーター及びリチウムイオン二次電池

Country Status (6)

Country Link
US (1) US20110318630A1 (ja)
EP (1) EP2372811B1 (ja)
JP (1) JP4569718B2 (ja)
KR (1) KR101499284B1 (ja)
CN (1) CN102334215B (ja)
WO (1) WO2010074202A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012070126A1 (ja) * 2010-11-24 2012-05-31 トヨタ自動車株式会社 電池および電池の製造方法
WO2012115252A1 (ja) * 2011-02-25 2012-08-30 日本ゼオン株式会社 二次電池用多孔膜、二次電池多孔膜用スラリー及び二次電池
JP2013522843A (ja) * 2010-03-17 2013-06-13 エルジー・ケム・リミテッド セパレータ及びこれを備えた電気化学素子
JPWO2014050708A1 (ja) * 2012-09-28 2016-08-22 日本ゼオン株式会社 二次電池用多孔膜セパレータ及びその製造方法、並びに二次電池
WO2018163969A1 (ja) 2017-03-08 2018-09-13 日本ゼオン株式会社 非水系二次電池機能層用バインダー組成物、非水系二次電池機能層用スラリー組成物、非水系二次電池用機能層、非水系二次電池用機能層付きセパレータ、非水系二次電池およびその製造方法
CN109378428A (zh) * 2011-11-18 2019-02-22 住友化学株式会社 层叠多孔质膜及制造方法、非水电解液二次电池用隔膜、层叠电极片和非水电解液二次电池

Families Citing this family (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5323590B2 (ja) * 2009-06-19 2013-10-23 旭化成イーマテリアルズ株式会社 多層多孔膜、樹脂製バインダおよび塗布液
JP5525193B2 (ja) * 2009-06-23 2014-06-18 旭化成イーマテリアルズ株式会社 多層多孔膜および塗布液
JP5765228B2 (ja) * 2009-09-30 2015-08-19 日本ゼオン株式会社 二次電池用多孔膜及び二次電池
JP5564954B2 (ja) * 2010-01-13 2014-08-06 日本ゼオン株式会社 多孔膜用スラリー及び二次電池
WO2012018675A1 (en) * 2010-08-02 2012-02-09 Celgard, Llc High melt temperature microporous lithium-ion rechargeable battery separators and methods of preparation and use
PL2605312T3 (pl) * 2010-08-09 2018-11-30 Zeon Corporation Porowata membrana do baterii akumulatorowej, sposób jej produkcji i jej zastosowanie
JP5433529B2 (ja) * 2010-08-25 2014-03-05 株式会社日立製作所 リチウムイオン二次電池
CN103081181B (zh) * 2010-08-31 2016-03-02 日本瑞翁株式会社 电池多孔膜用浆料组合物、二次电池用多孔膜的制造方法、二次电池用多孔膜、二次电池用电极、二次电池用隔板及二次电池
WO2012043729A1 (ja) * 2010-09-30 2012-04-05 日本ゼオン株式会社 二次電池多孔膜スラリー、二次電池多孔膜、二次電池電極、二次電池セパレーター、二次電池、及び二次電池多孔膜の製造方法
JP5522422B2 (ja) * 2010-09-30 2014-06-18 日本ゼオン株式会社 二次電池多孔膜スラリー、二次電池多孔膜、二次電池電極、二次電池セパレーター及び二次電池
EP2626930B1 (en) * 2010-10-07 2019-03-06 Zeon Corporation Slurry for secondary battery porous membrane, secondary battery porous membrane, secondary battery electrode, secondary battery separator, and secondary battery
KR101927700B1 (ko) * 2010-10-28 2018-12-11 제온 코포레이션 이차 전지 다공막, 이차 전지 다공막용 슬러리 및 이차 전지
CN105206774B (zh) * 2010-11-24 2018-09-11 丰田自动车株式会社 电池
KR101757671B1 (ko) * 2010-11-30 2017-07-14 제온 코포레이션 이차 전지 다공막 슬러리, 이차 전지 다공막, 이차 전지 전극, 이차 전지 세퍼레이터, 이차 전지 및 이차 전지 다공막의 제조 방법
WO2012098686A1 (ja) * 2011-01-21 2012-07-26 株式会社岐阜セラツク製造所 分散剤,分散体および分散体の粘度の調整方法
JP5861845B2 (ja) * 2011-03-18 2016-02-16 日本ゼオン株式会社 リチウムイオン二次電池負極用スラリー組成物、リチウムイオン二次電池負極、及びリチウムイオン二次電池
US20140141314A1 (en) * 2011-07-01 2014-05-22 Zeon Corporation Porous membrane for secondary batteries, method for producing same, and use of same
KR101777625B1 (ko) 2011-07-06 2017-09-13 제온 코포레이션 2 차 전지용 다공막, 2 차 전지용 세퍼레이터 및 2 차 전지
JP5751414B2 (ja) * 2011-07-11 2015-07-22 日本ゼオン株式会社 二次電池多孔膜用スラリー組成物
WO2013035795A1 (ja) * 2011-09-08 2013-03-14 日本ゼオン株式会社 二次電池用スラリー
WO2013042235A1 (ja) * 2011-09-22 2013-03-28 株式会社日立製作所 電気化学素子用セパレータ、その製造方法および電気化学素子
CN102443213B (zh) * 2011-09-22 2014-10-22 中国科学院长春应用化学研究所 取向碳纳米管/聚烯烃复合材料及其制备方法
US9911958B2 (en) 2012-02-24 2018-03-06 Research & Business Foundation Sungkyunkwan University Separator with enhanced heat resistance and electrochemical device containing the same
PL2835844T3 (pl) * 2012-04-05 2019-04-30 Zeon Corp Separator do akumulatora
JP5761576B2 (ja) * 2012-04-17 2015-08-12 株式会社デンソー 積層型電池および積層電極体の製造方法
WO2013180168A1 (ja) * 2012-05-30 2013-12-05 日本ゼオン株式会社 二次電池用負極及びその製造方法
US9178198B2 (en) * 2012-06-01 2015-11-03 Samsung Sdi Co., Ltd. Separator for rechargeable lithium battery and rechargeable lithium battery including the same
WO2014024991A1 (ja) * 2012-08-10 2014-02-13 日本ゼオン株式会社 リチウムイオン二次電池用多孔膜組成物、リチウムイオン二次電池用セパレータ、リチウムイオン二次電池用電極、リチウムイオン二次電池、リチウムイオン二次電池用セパレータの製造方法及びリチウムイオン二次電池用電極の製造方法
JP5488857B1 (ja) 2012-09-11 2014-05-14 Jsr株式会社 保護膜を作製するための組成物および保護膜、ならびに蓄電デバイス
KR101453785B1 (ko) * 2012-10-05 2014-10-22 주식회사 엘지화학 세퍼레이터 및 이를 구비한 전기화학소자
MY153875A (en) * 2013-03-05 2015-04-07 Univ Malaya A method of producing a polytetrafluoroethylene adhesive polymer membrane
WO2014196436A1 (ja) * 2013-06-04 2014-12-11 日本ゼオン株式会社 リチウムイオン二次電池用多孔膜スラリー組成物、リチウムイオン二次電池用セパレーター、リチウムイオン二次電池用電極及びリチウムイオン二次電池
CN104425788B (zh) 2013-08-28 2017-05-03 比亚迪股份有限公司 一种锂离子电池隔膜及其制备方法和含有该隔膜的锂离子电池
KR101738734B1 (ko) * 2013-09-26 2017-06-08 주식회사 엘지화학 파우치형 이차전지
JP6302400B2 (ja) * 2013-11-27 2018-03-28 旭化成株式会社 蓄電デバイス用セパレータ、蓄電デバイス及びリチウムイオン二次電池
KR101536062B1 (ko) * 2013-12-18 2015-07-10 한화토탈 주식회사 수지 조성물과, 이를 이용하여 제조된 이차전지용 분리막 및 상기 분리막을 적용한 이차전지
CN105960721B (zh) * 2014-02-27 2018-09-25 日本瑞翁株式会社 二次电池多孔膜用粘合剂组合物、二次电池多孔膜用浆料、二次电池用多孔膜及二次电池
JP6221875B2 (ja) * 2014-03-24 2017-11-01 日本ゼオン株式会社 非水系二次電池多孔膜用バインダー、非水系二次電池多孔膜用組成物、非水系二次電池用多孔膜および非水系二次電池
KR102424695B1 (ko) 2014-06-26 2022-07-25 바스프 에스이 옥사졸린 단량체를 함유하는 공중합체 및 이의 가교결합제로서의 용도
CN105449143A (zh) * 2014-10-13 2016-03-30 万向A一二三系统有限公司 一种锂离子电池涂层隔膜及其制备方法
CN108110194B (zh) * 2017-12-29 2021-09-10 上海恩捷新材料科技有限公司 一种过氧化物交联聚合物隔离膜及其制备方法
EP3751637A4 (en) * 2018-02-07 2021-10-13 Zeon Corporation COMPOSITION OF BINDER FOR ELECTROCHEMICAL ELEMENT, COMPOSITION OF SUSPENSION FOR ELECTROCHEMICAL ELEMENT, FUNCTIONAL LAYER FOR ELECTROCHEMICAL ELEMENT, AND ELECTROCHEMICAL ELEMENT
KR102338540B1 (ko) 2018-04-10 2021-12-14 주식회사 엘지에너지솔루션 리튬 이차 전지 및 이의 제조방법
KR102434068B1 (ko) 2018-04-27 2022-08-19 주식회사 엘지에너지솔루션 리튬 이차 전지용 분리막 및 이를 포함하는 리튬 이차 전지
KR102560825B1 (ko) * 2018-04-30 2023-07-31 현대자동차주식회사 리튬 이차전지 및 그 제조방법
CN108807821B (zh) 2018-06-20 2021-03-19 宁德新能源科技有限公司 隔离膜和电化学装置
KR20200032542A (ko) * 2018-09-18 2020-03-26 삼성에스디아이 주식회사 리튬 이차 전지용 분리막 및 이를 포함하는 리튬 이차 전지
CN109935769A (zh) * 2018-12-29 2019-06-25 深圳中兴新材技术股份有限公司 一种耐电解液陶瓷涂层隔膜及其制备方法
JP2020161279A (ja) * 2019-03-26 2020-10-01 三菱製紙株式会社 リチウムイオン二次電池用セパレータの製造方法
KR20210031080A (ko) * 2019-09-11 2021-03-19 주식회사 엘지화학 전해액 함침성이 우수한 이차전지용 분리막
US20220336799A1 (en) * 2019-09-30 2022-10-20 Panasonic Intellectual Property Management Co., Ltd. Negative electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
CN111244547B (zh) * 2020-01-21 2021-09-17 四川虹微技术有限公司 一种含芳香肟类添加剂的电解液及其制备方法和用途
CN114497900B (zh) * 2020-02-25 2023-09-22 江苏厚生新能源科技有限公司 一种高循环寿命锂离子电池隔膜及其制备方法
CN112159493B (zh) * 2020-08-26 2022-05-13 浙江衢州巨塑化工有限公司 一种锂电池粘结剂用共聚型pvdf树脂的制备方法
CN115365091B (zh) * 2021-05-17 2023-11-28 江苏星源新材料科技有限公司 一种涂层隔膜烘干工艺
AU2022314187A1 (en) * 2021-07-20 2024-01-18 Green Hydrogen Systems A/S Improved durability of diaphragm for higher temperature electrolysis
CN117397110A (zh) * 2021-07-30 2024-01-12 日本瑞翁株式会社 二次电池功能层用黏结剂、二次电池功能层用浆料组合物、二次电池用功能层以及二次电池
KR20240032714A (ko) * 2022-09-01 2024-03-12 컨템포러리 엠퍼렉스 테크놀로지 씨오., 리미티드 결합재, 분리막 및 해당 분리막을 사용한 리튬 이온 전지

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001319634A (ja) * 2000-04-10 2001-11-16 Celgard Inc 高エネルギー充電型リチウム電池用セパレーター
WO2007108426A1 (ja) * 2006-03-17 2007-09-27 Sanyo Electric Co., Ltd. 非水電解質電池及びその製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5856378B2 (ja) * 1976-09-08 1983-12-14 旭化成株式会社 アクリロニトリル系重合体乾燥膜およびその製造法
JPH0641523B2 (ja) 1985-08-08 1994-06-01 三井石油化学工業株式会社 環状オレフイン共重合体の架橋方法
CN1109085C (zh) * 2000-06-13 2003-05-21 湖北省化学研究所 多元共聚丙烯酸酯胶粘剂及制备和在聚酰亚胺覆铝板上的应用
US6656633B2 (en) * 2000-07-26 2003-12-02 Zeon Corporation Binder for electrode for lithium ion secondary battery, and utilization thereof
PL1782489T3 (pl) 2004-07-07 2021-05-31 Lg Chem, Ltd. Porowaty separator kompozytowy organiczno/nieorganiczny i urządzenie elektrochemiczne go zawierające
US7935442B2 (en) * 2005-05-17 2011-05-03 Lg Chem, Ltd. Polymer binder for electrochemical device comprising multiply stacked electrochemical cells
US20070060708A1 (en) * 2005-09-13 2007-03-15 Jian Wang Vinyl fluoride-based copolymer binder for battery electrodes
PL2116372T3 (pl) * 2007-01-30 2018-08-31 Asahi Kasei Kabushiki Kaisha Wielowarstwowa porowata membrana i sposób jej wytwarzania

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001319634A (ja) * 2000-04-10 2001-11-16 Celgard Inc 高エネルギー充電型リチウム電池用セパレーター
WO2007108426A1 (ja) * 2006-03-17 2007-09-27 Sanyo Electric Co., Ltd. 非水電解質電池及びその製造方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013522843A (ja) * 2010-03-17 2013-06-13 エルジー・ケム・リミテッド セパレータ及びこれを備えた電気化学素子
WO2012070126A1 (ja) * 2010-11-24 2012-05-31 トヨタ自動車株式会社 電池および電池の製造方法
JPWO2012070126A1 (ja) * 2010-11-24 2014-05-19 トヨタ自動車株式会社 電池および電池の製造方法
JP5652674B2 (ja) * 2010-11-24 2015-01-14 トヨタ自動車株式会社 電池および電池の製造方法
WO2012115252A1 (ja) * 2011-02-25 2012-08-30 日本ゼオン株式会社 二次電池用多孔膜、二次電池多孔膜用スラリー及び二次電池
US9293753B2 (en) 2011-02-25 2016-03-22 Zeon Corporation Porous membrane for secondary battery, slurry for secondary battery porous membrane and secondary battery
CN109378428A (zh) * 2011-11-18 2019-02-22 住友化学株式会社 层叠多孔质膜及制造方法、非水电解液二次电池用隔膜、层叠电极片和非水电解液二次电池
JPWO2014050708A1 (ja) * 2012-09-28 2016-08-22 日本ゼオン株式会社 二次電池用多孔膜セパレータ及びその製造方法、並びに二次電池
WO2018163969A1 (ja) 2017-03-08 2018-09-13 日本ゼオン株式会社 非水系二次電池機能層用バインダー組成物、非水系二次電池機能層用スラリー組成物、非水系二次電池用機能層、非水系二次電池用機能層付きセパレータ、非水系二次電池およびその製造方法

Also Published As

Publication number Publication date
US20110318630A1 (en) 2011-12-29
EP2372811A1 (en) 2011-10-05
CN102334215A (zh) 2012-01-25
EP2372811B1 (en) 2015-02-25
KR101499284B1 (ko) 2015-03-05
KR20110097864A (ko) 2011-08-31
CN102334215B (zh) 2015-07-01
JPWO2010074202A1 (ja) 2012-06-21
WO2010074202A1 (ja) 2010-07-01
EP2372811A4 (en) 2013-07-10

Similar Documents

Publication Publication Date Title
JP4569718B2 (ja) リチウムイオン二次電池用セパレーター及びリチウムイオン二次電池
JP5804048B2 (ja) 二次電池用多孔膜、二次電池多孔膜用スラリー及び二次電池
JP5569515B2 (ja) リチウムイオン二次電池用電極
JP5564954B2 (ja) 多孔膜用スラリー及び二次電池
JP5549739B2 (ja) 二次電池多孔膜スラリー、二次電池多孔膜、二次電池電極、二次電池セパレーター及び二次電池
JP5765228B2 (ja) 二次電池用多孔膜及び二次電池
JP5747919B2 (ja) 電池多孔膜用スラリー組成物、二次電池用多孔膜の製造方法、二次電池用多孔膜、二次電池用電極、二次電池用セパレーター及び二次電池
JP5522422B2 (ja) 二次電池多孔膜スラリー、二次電池多孔膜、二次電池電極、二次電池セパレーター及び二次電池
JP5561276B2 (ja) 多孔膜及び二次電池
JP6064986B2 (ja) 二次電池用多孔膜、二次電池用電極、二次電池用セパレーター及び二次電池
JP5605591B2 (ja) 二次電池多孔膜スラリー、二次電池多孔膜、二次電池電極、二次電池セパレーター、二次電池、及び二次電池多孔膜の製造方法
KR101777625B1 (ko) 2 차 전지용 다공막, 2 차 전지용 세퍼레이터 및 2 차 전지
WO2012073996A1 (ja) 二次電池多孔膜スラリー、二次電池多孔膜、二次電池電極、二次電池セパレーター、二次電池及び二次電池多孔膜の製造方法

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100713

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100726

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4569718

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250