JP4521602B2 - マルチモード高周波回路 - Google Patents

マルチモード高周波回路 Download PDF

Info

Publication number
JP4521602B2
JP4521602B2 JP2005165098A JP2005165098A JP4521602B2 JP 4521602 B2 JP4521602 B2 JP 4521602B2 JP 2005165098 A JP2005165098 A JP 2005165098A JP 2005165098 A JP2005165098 A JP 2005165098A JP 4521602 B2 JP4521602 B2 JP 4521602B2
Authority
JP
Japan
Prior art keywords
circuit
frequency
transmission
reception
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005165098A
Other languages
English (en)
Other versions
JP2006340257A (ja
JP2006340257A5 (ja
Inventor
寛 岡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Electronics Corp
Original Assignee
Renesas Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Electronics Corp filed Critical Renesas Electronics Corp
Priority to JP2005165098A priority Critical patent/JP4521602B2/ja
Priority to CN2006100850213A priority patent/CN1881810B/zh
Priority to US11/444,398 priority patent/US8391821B2/en
Publication of JP2006340257A publication Critical patent/JP2006340257A/ja
Publication of JP2006340257A5 publication Critical patent/JP2006340257A5/ja
Application granted granted Critical
Publication of JP4521602B2 publication Critical patent/JP4521602B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/58Structural electrical arrangements for semiconductor devices not otherwise provided for
    • H01L2223/64Impedance arrangements
    • H01L2223/66High-frequency adaptations
    • H01L2223/6661High-frequency adaptations for passive devices
    • H01L2223/6677High-frequency adaptations for passive devices for antenna, e.g. antenna included within housing of semiconductor device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16227Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1517Multilayer substrate
    • H01L2924/15192Resurf arrangement of the internal vias
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15313Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a land array, e.g. LGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16152Cap comprising a cavity for hosting the device, e.g. U-shaped cap
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19105Disposition of discrete passive components in a side-by-side arrangement on a common die mounting substrate

Description

本発明は、無線通信装置に用いられる高周波回路、特に複数の通信方式の送受信回路を同一基板に配置したマルチモード高周波回路に関する。
時分割多重接続(以下「TDMA:Time Division Multiple Access」という)と符号分割多重接続(以下「CDMA:Code Division Multiple Access」という)の2方式に対応させるようにしたフロントエンドモジュールの例が特許文献1に開示されている。同例では、アンテナに接続されるダイプレクサと、同ダイプレクサに接続される高周波スイッチ及びデュプレクサとが1個の集積用多層基板上に集積される。ダイプレクサでTDMA方式とCDMA方式が分離され、高周波スイッチでTDMA方式の送受信が分離され、デュプレクサでCDMA方式の送受信が分離される。
また、GSM(Global System for Mobile communications)とDCS(Digital Communication System)の2通信方式に対応させるようにしたフロントエンドモジュールの例が特許文献2に開示されている。同例では、アンテナに接続されるダイプレクサと、同ダイプレクサの一方の端子に接続されるGSM側の低域通過フィルタ(以下「LPF:Low Pass Filter」という)と、他方の端子に接続されるDCS側のLPFとがそれぞれセラミック基板に積層したチップ部品として構成され、これら3個のチップ部品と、GSM側のLPFに接続される高周波スイッチと、DCS側のLPFに接続される高周波スイッチとが樹脂多層基板上に搭載される。
特開2004−32674号公報 特開2003−249868号公報
一般的な携帯電話の回路構成を図15に示す。携帯電話の回路は、高周波信号即ち無線周波数(以下「RF:Radio Frequency」という)信号を扱う高周波回路部(RF部)とデジタル信号を扱うベースバンド(以下「BB:Base Band」という)部に大別される。図15において、RF部2には電波の送受信を行なうアンテナ1と基準周波数信号源となる水晶振動子(以下「Xtal:Crystal unit」という)が接続され、更にベースバンド大規模集積回路4(以下「BB−LSI:Base Band−Large Scale Integrated circuit」という)が接続される。BB−LSI4にはマイク、スピーカ、アプリケーションプロセッサ等などが接続される。アプリケーションプロセッサには、キーパッド(Key)、液晶表示装置(LCD)、カメラ、スタティックメモリ(SRAM)、不揮発性メモリ(NVM)等が接続される。携帯電話における送受信動作の概略は以下の通りである。
まず、送信時には、マイクから入力された音声がBB-LSI4により符号化、変調されてBB送信信号となる。BB送信信号はRF部2に送られ、RF送信信号に変換されてアンテナ1から放射される。後でも述べるが、RF部2において、BB送信信号は、送信回路により周波数変換されてRF送信信号となり、続いて、RF送信信号は、電力増幅器(以下「PA:Power Amplifier」という)により増幅され、送信フィルタにより不要な高調波が除去され、アンテナ1にから放射される。
次に、受信時には、アンテナ1によって受信されたRF受信信号はRF部2に送られ、BB受信信号に変換されてからBB−LSI4に送られ、復調、復号されてスピーカから出力される。後でも述べるが、RF部2において、RF受信信号は受信フィルタにより不要な妨害波が除去され、低雑音増幅器(以下「LNA:Low Noise Amplifier」という)で増幅され、受信回路により周波数変換されてBB受信信号となる。
ここで、送信回路及び受信回路による周波数変換には、電圧制御発信器(以下「VCO:Voltage Control Oscillator」という)が発生する特定の周波数を有する局部発振信号が用いられる。VCOは、Xtalが発生する基準周波数信号を用いて局部発振信号の周波数を設定する。
携帯電話には地域によってさまざまな通信方式が採用されており、また使用される周波数帯も異なっている。現在、主流の通信方式は、欧州を中心にした上記のGSMと、米国及び日本を中心にしたW−CDMA(Wide-band−CDMA)である。携帯電話内での送受信動作において、GSMでは送受信が交互に行なわれる時分割複信(以下「TDD:Time Division Duplex」という)方式が採用され、W−CDMAでは送受信が同時に行なわれる周波数分割複信(以下「FDD:Frequency Division Duplex」という)方式が採用される。
近年、複数の地域に跨って携帯電話を使用できるように、複数の周波数帯や通信方式に対応したマルチバンド/マルチモード携帯電話が実現されつつある。この両方式を一つにまとめたマルチモード高周波回路の回路構成を図16に示す。なお、以降では、GSMを「G−」、W−CDMAを「W−」と表すこととする。
図16において、W−高周波回路は、W−送信回路(Tx)130、帯域通過フィルタ(以下「BPF:Band Pass Filter」という)であるW−段間フィルタ125、W−PA121、アイソレータ115、デュプレクサ(Dup)100、W−受信回路(Rx)150で構成される。W−送信回路130は、BB送信信号を周波数変換してRF送信信号を生成し、W−段間フィルタ125は、W−送信回路130が生成したRF送信信号から不要な周波数成分を除去する。RF送信信号を増幅するW−PA121は、一般的には出力整合回路等と一緒にモジュール化され、W−電力増幅器モジュール120(以下「PAM:PA Module」という)の形で用いられることが多い。アイソレータ115は、信号を一方向にしか通さない回路であり、アンテナ側の負荷が変動した場合に、送信電力がPAに戻ってPAを破壊することを防止する。デュプレクサ100は、周波数の異なる信号を二つの経路それぞれに分配する回路であり、周波数の異なるW−RF送信信号とW−RF受信信号に対して、RF送信信号は送信回路側からアンテナ側のみに送り、RF受信信号はアンテナ側から受信回路側のみに送る動作をする。デュプレクサにはPAが増幅したRF送信信号から不要な周波数成分を除去する機能や、アンテナが受信した信号から不要な周波数成分を除去する機能もある。W−受信回路150にはLNAが含まれ、受信したRF受信信号を増幅し、更にBB受信信号へと周波数変換する。
次に、G−高周波回路は、G−送信回路230、G−PA221、LPFであるG−送信フィルタ210、スイッチ(SW)90、BPFであるG−受信フィルタ240、G−受信回路250で構成される。本例ではGSMは4つの周波数帯に対応するクワッドバンド構成となっている。G−送信回路230は、BB送信信号を周波数変換してRF送信信号を生成する。ここで、GSMでは送信回路にオフセットPLL(Phase Lock Loop)回路など不要な周波数成分を発生しにくい回路形式を用いることで、W−CDMAのような段間フィルタを不要とする場合が多い。RF送信信号を増幅するG−PA221は、二つの周波数帯毎にそれぞれ用意されており、双方ともW−CDMAの場合と同様に出力整合回路等と一緒にモジュール化され、G−PAM220の形で用いられることが多い。ここで、GSMではPAに破壊耐圧の高いデバイスを用いることで、アイソレータを不要とする場合が多い。G−送信フィルタはPAが増幅したRF送信信号から不要な周波数成分を除去する機能があり、ここではG−PAが二つの周波数帯毎の二系統用意されているため、二つ用意されている。G−受信フィルタ240は4つの周波数帯のそれぞれに対して設けられ、アンテナが受信した信号から不要な周波数成分を除去してG−受信回路250に送る。G−受信回路250にはLNAが含まれ、受信したRF受信信号を増幅し、更にBB受信信号へと周波数変換する。
GSMではTDD方式が採用されるので、送信時には送信系のみ、受信時には受信系のみが動作する。そこで、スイッチ90によって、送信時にはアンテナと必要な周波数帯の送信系を、受信時にはアンテナと必要な周波数帯の受信系を接続することで、送受信で同じアンテナを共用している。更に、本例ではスイッチ90によってアンテナ1とデュプレクサ100とが接続されるため、GSMとW−CDMAも同じアンテナを共用することができる。スイッチ90と送信フィルタ210及び受信フィルタ240をモジュール化した回路がフロントエンドモジュール(以下「FEM:Front End Module」という)200である。
以上のようなマルチモード高周波回路を携帯電話上に実現するための従来の手法を図17を用いて説明する。図17に、携帯電話に実装される、従来のマルチモード高周波回路を搭載したマザーボード5のレイアウトを示す。携帯電話のマザーボード5上には図16で説明した高周波回路及びXtal3が配置されており、FEM200のアンテナ端子がマザーボード上のアンテナ端子6と電気的に接続される。アンテナ端子6にはアンテナ(図示せず)が接続されて、高周波回路とアンテナとの信号の授受が行なわれる。
高周波回路における受信系回路に対して、BB部(図示せず)が発生するデジタル信号の高調波が干渉すると受信感度が劣化する。また、高周波回路における送信系回路が発生する送信信号以外の不要波が配線などから放射すると、放射した不要波は、BB部や他の機器に誤動作を起こさせるような影響を与える。このため、RF部全体を覆うようにシールドを設けて、RF部へのノイズの干渉及びRF部からのノイズの放射を抑えることが一般的に行なわれる。更に、マルチモード高周波回路では、各回路が互いに影響を与え合わないように、それぞれの回路間にシールドを設けることが一般的である。特に、送信系回路と受信系回路が同時に動作するFDD方式のW−CDMA用の高周波回路では、RF送信信号の主成分である送信周波数信号が受信系回路に流入すると、LNAが飽和するため受信感度が低下し、RF送信信号における受信周波数帯雑音が受信系回路に流入すると、信号対雑音比が劣化して受信感度が低下する。このため、送信系回路の出力が空間を介して受信系回路に影響を与えないように、送信系回路と受信系回路の間にシールドが設けられる。その他、RF部におけるシールドには、電力増幅器の出力が送信回路へと帰還して発振することを防止するために、電力増幅器と送信回路を分離するように設けるものなどがある。
図17に示す従来のマルチモード高周波回路の例では、FEM200及びG−PAM220の組と、GSMの送受信回路が集積されたG−高周波集積回路(以下「RF−IC:Radio Frequency Integrated Circuit」という)300と、W−CDMA用のデュプレクサ100と、アイソレータ115及びW−PAM120の組と、W−段間フィルタ及び集積回路化されたW−送信回路(Tx)であるW−RF−IC130の組と、集積化されたW−受信回路(Rx)であるW−RF−IC150と、Xtal3とが、シールド7(点線で示される)によってお互いに分離されるとともに外部の回路からも遮蔽されている。
このような従来のマルチモード高周波回路では、シールドによって分離された回路それぞれが他の回路からの信号干渉を受けることなく動作するという利点があるものの、シールドの厚さ及びシールドとシールド内の回路とが接触しないために必要な位置合わせ余裕が必要となるため、RF部全体の面積が大きくなるという問題があった。更に、RF部に用いられるフィルタは表面弾性波フィルタに代表されるが、そのようなフィルタは、温度変化によって周波数特性が変化するため、携帯電話内で最大の電力を消費し、最大の発熱源となるPAから離して配置する必要があるため、これもRF部の面積を増加させる要因となっていた。
また、特許文献1,2の手法では、各回路間の信号干渉の問題が考慮されていないため、部品間隔を狭くしてモジュールを小型化すると回路間の信号干渉が増大し、性能が劣化することが避けられない。
本発明の目的は、回路間の信号干渉を抑えつつ小型化したマルチモード高周波回路を実現することにある。
上記目的を達成するための本発明の代表的なものの一例を示せば以下のようになる。即ち、本発明のマルチモード高周波回路は、複数の通信方式に対応するマルチモード高周波回路であって、上記複数の通信方式に含まれる第1の通信方式の高周波送信信号を扱う第1の回路と、上記第1の通信方式の高周波受信信号を扱う第2の回路とを具備してなり、上記マルチモード高周波回路が基板に搭載されるときに、上記第1の回路と上記第2の回路との最短距離間に上記第1の通信方式の回路動作とは無関係な第3の回路が配置されることを特徴とする。第1の回路と第2の回路との間に信号干渉を起こさない十分な距離を設け、かつその間に第1,2の回路の動作とは無関係な第3の回路が配置されるので、回路間の信号干渉を抑えつつ基板を有効利用することが可能になり、小型化したマルチモード高周波回路の実現が期待される。通常、第3の回路のいずれかの部分は接地されるので、第3の回路は第1,2の回路から見て接地導体に近いものとなり、第1,2の回路間の遮蔽がより効果的となる。本発明は、第1の通信方式が同時に送受信が行なわれる周波数分割複信方式である場合に特に効果的である。
上記目的を達成するための本発明の別の代表的なものの一例を示せば以下のようになる。即ち、本発明のマルチモード高周波回路は、複数の通信方式に対応するマルチモード高周波回路であって、上記複数の通信方式に含まれる第1の通信方式の高周波送信信号を出力する送信回路と、上記送信回路が出力する上記高周波送信信号を増幅する電力増幅器とを具備して成り、上記マルチモード高周波回路が基板に搭載されるときに、上記送信回路と上記電力増幅器との最短距離間に上記第1の通信方式の回路動作とは無関係な第7の回路が配置されることを特徴とする。電力増幅器と送信回路との間に信号干渉を起こさない十分な距離を設け、かつその間に電力増幅器及び送信回路の動作とは無関係な第7の回路が配置されるので、回路間の信号干渉を抑えつつ基板を有効利用することが可能になり、小型化したマルチモード高周波回路の実現が期待される。これにより、電力増幅器と送信回路の間で生じるおそれがある発振を回避することができる。なお、上記送信回路が出力する高周波送信信号の低域を制限する第1のフィルタと上記電力増幅器の最短距離間に上記第1の通信方式の回路動作とは無関係な第8の回路が配置されることが望ましい。第8の回路が電力増幅器から第1のフィルタへの熱伝達を妨げるので、電力増幅器が発する熱による第1のフィルタの温度上昇が抑えられ、第1のフィルタの性能を維持することができる。
本発明によれば、回路間の信号干渉が抑えられた小型のマルチモード高周波回路の実現が期待される。
以下、本発明に係るマルチモード高周波回路を図面に示した幾つかの実施形態を参照して更に詳細に説明する。なお、実施形態を説明するための全図において、同一もしくは類似の機能を有する部材には同一の符号を付し、その繰り返しの説明は省略する。
<実施形態1>
図1A,1B及び図2に本発明の実施形態1を示す。本実施形態のマルチモード高周波回路は、モジュール基板に搭載された高周波回路モジュールとして構成される。図1Aは、マルチモード高周波回路の構成図、図1Bは高周波回路モジュールのレイアウト図、図2は高周波回路モジュールのA−A線断面図である。本実施形態における第1の通信方式はW−CDMA、第2の通信方式はGSMである。GSMには周波数帯の違いにより、GSM1(G1)とGSM2(G2)がある。
図1Aにおいて、W−高周波回路は、W−送信回路(W−Tx)130、W−段間フィルタ(BPF)125、W−PA121、W−出力整合回路(W−MN)123、アイソレータ115、デュプレクサ(Dup)100、及びW−受信回路(W−Rx)150で構成される。また、G−高周波回路は、G−送信回路230、G−PA222、G1−出力整合回路(G1−MN)223a、G2−出力整合回路(G2−MN)223b、G−送信フィルタ(DualLPF)211、スイッチ(SW)90、−受信フィルタ(DualBPF)241a、G−受信フィルタ(DualBPF)241b、及びG−受信回路250で構成される。本実施形態では、GSMは4つの周波数帯に対応するクワッドバンド構成となっている。
以上のように、本実施形態のマルチモード高周波回路は、図16に示したマルチモード高周波回路と類似点が多いが、相違点を以下に纏めて述べる。相違点は3点有り、第1に、GSMのフロントエンド部がFEMに代わってSP7T(Single Pole 7 Throw:1極7投)によるスイッチ(SW)90と、送信フィルタが2系統まとめられたG−デュアルバンド送信フィルタ(DualLPF)211と、受信フィルタが2周波数帯毎に纏められたG−デュアルバンド受信フィルタ(DualBPF)241a及びG−デュアルバンド受信フィルタ(DualBPF)241bとで構成される。
第2に、GSM及びW−CDMAの送信電力増幅部は、PAMに代わって、GSM側がG−デュアルバンドPA−IC(G−PA−ICDual)222とG1−出力整合回路(G1−MN)223a及びG2−出力整合回路(G2−MN)223bとで構成され、W−CDMA側がW−PA−IC121とW−出力整合回路(W−MN)123とで構成される。
第3に、W−送信回路(Tx)130と、W−受信回路(W−Rx)150と、G−M送信回路(G−Tx)230と、G−受信回路(G−Rx)250とがマルチモードRF−IC310に集積化されている
これらの回路が図1Bに示すようにモジュール基板20上に配置され、マルチモード高周波回路モジュール10が構成される。モジュール基板20はガラスセラミック多層基板であるが、ガラスエポキシ基板などを用いてもよい。図2に示すように、モジュール基板20内には接地導体30が設けられ、高周波回路を覆うように搭載されるシールド7は、モジュール基板20内に設けられるビアホールを介して接地導体30に接続される。接地導体30は更に別のビアホールによりモジュール基板20裏面の接地端子に接続される。
図1Bにおいて、W−PA121で増幅されたW−CDMAのRF送信信号は、W−出力整合回路123、アイソレータ(Iso)115及び第1の配線31を経由してデュプレクサ(Dup)100に伝えられる。W−PA121から第1の配線31までの回路(第1の回路)とマルチモードRF−IC310上のW−受信回路150(第2の回路)との最短距離間にW−CDMAの回路動作とは無関係な回路(第3の回路)であるG−PA222と、G1−出力整合回路223aと、G2−出力整合回路223bとが配置される。また、及びW−PA121から第1の配線31までの回路とマルチモードRF−IC310上のW−送信回路130との最短距離間にW−CDMAの回路動作とは無関係な回路(第7の回路)であるG−PA222と、G1−出力整合回路223aと、G2−出力整合回路223bとが配置される。また、W−PA121とW−段間フィルタ125(第1のフィルタ)との最短距離間にW−CDMAの回路動作とは無関係な回路(第8の回路)であるG−PA222及びG2−出力整合回路223bが配置される。
以上の構成によれば、送受信が同時に動作するFDD方式のW−CDMA用高周波回路において、最大電力のRF送信信号を扱うW−PA121から第1の配線31までの回路と微小振幅のRF受信信号を扱うW−受信回路150との間に信号干渉を起こさない十分な距離を設けることで、W−CDMA送受信回路に高い性能を維持させた。更にそれに加えて、距離を設けた部分にW−CDMA動作とは無関係なG−PA222及びG1,G2−出力整合回路223a,223bを配置することで、モジュール基板20上の面積を有効に活用し、本発明を適用しない場合に比べて大幅な小型化を実現することができた。また、W−CDMA動作とは無関係なG−PA222及びG1,G2−出力整合回路223a,223bは、接地部分を持つので、接地導体に近いものとなり、信号干渉がより効果的抑圧される。
また、本実施形態によれば、W−PA121からW−送信回路130への信号干渉も小さく抑えられるため、送信系回路が発振を起こすことがなかった。更に、W−PA121からW−段間フィルタ125間の熱伝導も小さいため、W−段間フィルタ125が温度上昇によって周波数特性が劣化することを避けることができた。従って、本実施形態により、回路間の信号干渉及び熱干渉を発生させずに、複数の通信方式に対応する複数の送受信回路を配置したマルチモード高周波回路モジュールを高い性能を維持しつつ小型化することができた。本実施形態の高周波回路モジュールを用いた携帯電話は、高い性能を持つRF部が小型に実現されるため、携帯電話自体の大きさをより小型に実現することができた。
また、本実施形態の高周波回路モジュールを用いた別の携帯電話において、高い性能を持つRF部を小型に実現することができるため、マザーボード上の余った空間にマイクロハードディスクドライブなどのその他の回路を追加することが可能になる。
いずれの場合にも、本実施形態の高周波回路モジュールはRF部全ての機能を有しながら、その全体がシールドによって覆われているので、BB部を近くに配置しても、RF部とBB部との間の信号干渉が発生せず、マザーボード上の実装密度を高くすることができた。
なお、本実施形態ではGSMとW−CDMAの切り替えをスイッチにより実現したが、GSMとW−CDMAそれぞれのアンテナを持つ携帯電話の場合には、スイッチはGSMアンテナに、デュプレクサはW−CDMAアンテナに接続すれば良く、この場合SP7Tスイッチより簡単な構成のSP6Tスイッチを使用することができるほか、W−CDMA用高周波回路とアンテナとの間の損失を減らすことができる。また、SP7Tスイッチを用いる代わりに、周波数の低い信号と高い信号を別々の系統に分配するダイプレクサとSP3T及びSP4Tスイッチの組合せを用いても良い。いずれの構成においても、本発明を適用することにより本実施形態と同様な効果が得られる。
ここで、本発明の効果を5種類の基板を例に採って説明する。図3A〜3Eは基板断面図であり、図3Aは基板22上に互いに隣接して配線31,32を形成した場合、図3Bは更に浮き導体33を挟んだ場合、図3Cは接地導体33を挟んだ場合、図3Dは接地導体34aを片側に備えた浮き導体33を挟んだ場合、図3Eは接地導体34a,34bを両脇に備えた浮き導体33を挟んだ場合を示している。
基板22は、比誘電率が7.8、tanδが0.002のガラスセラミック基板であり、厚さは400μmである。基板22の裏面には接地導体30が設けられる。基板22の表面には第1の配線31と第2の配線32が間隔Dを隔てて設けられている。第1の配線31及び第2の配線32の幅は300μmである。配線導体の導電率は4×10S/mで、厚さは10μmである。また、第1の配線31と第2の配線32との間に導体パターン33を設けただけの場合、導体パターン33は電位の不定な浮き導体となる。導体パターン33をビアホール41a、41bにて接地導体30に接続すると、導体パターン33は接地導体となる。更に、導体パターン34a、34bを設け、これをビアホール41a、41bにて接地導体30に接続し、導体パターン34a、34bの間に導体パターン33を設けると、導体パターン33は接地導体に挟まれた浮き導体となる。ここで、導体パターン34aを設け、これをビアホール41aにて接地導体30に接続し、導体パターン34aと第2の配線32との間に導体パターン33を設けると、導体パターン33は接地導体を片側に備えた浮き導体となる。導体パターン33と第1の配線31、第2の配線32それぞれの間の間隔は100μm、導体パターン34a、34bの幅はそれぞれ200μm、導体パターン34aと第1の配線31の間隔、導体パターン34bと第2の配線32の間隔、導体パターン33と導体パターン34a、34bそれぞれの間の間隔は100μmに設定される。
干渉低減の効果は、クロストークの量で表される。図3A〜3Eの構成の配線を5mmの長さに渡って設けた場合の、第1の配線31と第2の配線32の配線間距離D[mm]とクロストーク[dB]の関係を電磁界解析により求めた結果のグラフを図4に示す。本グラフに示すクロストークはW−CDMAの受信周波数帯である2.11〜2.17GHzにおいて、第1の配線31の信号入力端から第2の配線32の第1の配線31の信号入力端に最も近い端に現れるクロストーク、いわゆる近端クロストークの最大値である。図4に示されるように、配線のみの場合に比べて浮き導体がある場合は同じ配線間距離でもクロストークはより大きくなる。これは、浮き導体になっている導体パターン33を介して、第1の配線31と第2の配線32が容量性結合を起こすためである。これに対して、導体パターン33を接地導体にした場合には、接地導体がシールドの役目を果たし、配線のみの場合に比べてクロストークが小さくなる。両脇に接地導体を備えた浮き導体がある場合には、配線間距離が2mm以上では、接地導体のみがある場合とほぼ等しいクロストークが得られる。また、接地導体を片側に備えた浮き導体がある場合には、配線間距離が3mm以上では配線のみの場合に近いクロストークが得られる。
図3A〜3Eのような基板断面は高周波回路モジュール基板や、携帯電話のマザーボードに相当するものである。第1の配線をW−CDMAのRF送信信号を扱う回路、第2の配線をW−CDMAのRF受信信号を扱う回路とすると、従来は両者の間の信号干渉を防ぐために図3Aの構成で配線間距離を広く取るか、図3Cの構成で、配線間に接地導体を設けることが一般的であった。図3Cの場合、W−CDMAの回路動作とは無関係な回路は、配線の外側に配置せざるを得なくなり、基板面積の増大が避けられない。
これに対して、本実施形態では、W−CDMAの回路動作とは無関係な回路が第1の配線31と第2の配線32の間に設けられる。初めに、2個のW−CDMAの回路がそれぞれ第1の配線31と第2の配線32に相当し、更にW−CDMAの回路動作とは無関係な回路が導体パターン33に相当し、導体パターン33が浮き導体であると仮定して考える。図3Bの構成において、第1の配線31と第2の配線32との間の干渉を40dB以下にする場合、配線間距離Dを5mmにすれば十分であることが、図4のA点からわかる。この5mmの配線間距離である配線間の領域22aに、例えば幅d1が4mmの導体パターン33を配置することができる。一方、図3Aの構成において、第1の配線31と第2の配線32との間の干渉を40dB以下にする場合、配線間距離Dは2mm必要であることが、図4のB点から分かる。更に、図3Aの構成の場合では、配線間の領域22a以外の場所、例えば図3Aの22bで示す基板22上の領域に、導体パターン33を配置せねばならず、導体パターン33の幅d1が4mmであるとすると、導体パターン33と第1の配線31もしくは第2の配線32とが接触しないように設ける間隙も含めて、配線間方向に計6mm以上の幅が必要となる。ここで、配線間方向というのは、配線間距離Dと平行な方向であり、d1は導体パターン33の配線間方向の幅である。このように、導体パターン33が例えば幅が4mmと広い場合は、導体パターン33を第1の配線31と第2の配線32の間に配置する図3Bの方が図3Aよりも配線間方向の基板幅を小さくすることができる。即ち、W−CDMAの回路動作とは無関係な回路が十分に大きい、即ち導体パターン33の幅が十分に広く取れる場合や、第1の配線31と第2の配線32の間の信号干渉を十分に低減しなくても良い場合、又は配線長が短い場合などでは、図3Bのように第1の配線31と第2の配線32の間に浮き導体のみを設けることで、基板上の面積を有効活用することができる。
浮き導体である導体パターン33の幅d1が狭い場合や、第1の配線31と第2の配線32との間の信号干渉を十分に低減しなければならない場合には、図3Dや図3Eの構成を取れば良い。少なくとも第1の配線31と浮き導体である導体パターン33の間に接地導体34aを設けると、配線間距離3mm以上では配線のみの場合とほぼ同等のクロストークを実現しながら基板上の面積を有効活用することができる。更に、第1の配線31と第2の配線32の間に両側に接地導体34a、34bを備えた浮き導体である導体パターン33を設けると、配線間距離2mm以上では配線間に接地導体がある場合とほぼ同等のクロストークを実現しながら基板上の面積を有効活用することができる。
以上では、導体パターン33が浮き導体であると仮定した。しかし、一般的に、導体パターン33に相当する、W−CDMAの回路動作とは無関係な回路は接地部分を持つため接地導体に近いものとなり、図3Bの構成においてより高い干渉低減の効果が得られ、従ってより基板面積の有効活用が促進される。なお、図3D及び図3Eの構成は、後で図8B及び図9を用いて説明する例に相当する。ここで、図3D,3Eの構成と図3A,3Cの構成におけるクロストーク量の関係は、基板の誘電率、厚さ及び配線長によって変化するため、本実施形態で述べた配線間距離などの数値はあくまでも一例であり、本発明の適用範囲を制限するものではない。
続いて、マルチモードRF−IC310については、W−送信回路130(第1の送信回路)とW受信回路150(第1の受信回路)とは、それぞれマルチモードRF−IC310チップの対角線上のそれぞれの角に配置されている。更に、両者の最短距離間に、W−CDMAの回路動作とは無関係な回路(第11の回路)であるGSM送信回路230及びその他の図示しない回路が配置されている。このような構成により、W−送信回路130とW−受信回路150との間にマルチモードRF−IC310のチップ上で取り得る最大の距離が実現され、信号干渉を最も低減して高い性能を維持したまま、空いた空間にW−動作には影響を与えない回路を設けてチップ面積を有効に活用し、マルチモード高周波回路を集積したマルチモードRF−ICを小型に実現することができた。
なお、本実施形態のマルチモードRF−ICは、これが用いられる装置の基板上にフェースアップで搭載されることを前提とする場合には、図5に示すように、W−送信回路130上には出力パッド61が、W−受信回路150上には入力パッド62が設けられる。出力パッド61とマルチモードRF−IC310が搭載される基板上の配線とは、出力ワイヤ71によってボンディング接続され、入力パッド62とマルチモードRF−ICが搭載される基板上の別の配線とは、入力ワイヤ72によってボンディング接続される。ここで、出力ワイヤ71と入力ワイヤ72の向きが直交する向きに設けられているため、両ワイヤ間の磁界結合を低く抑えることができる。そのため、マルチモードRF−IC310を基板に搭載した実使用状態においても、送信系から受信系への信号の漏れ込みを増加させることがなかった。なお、本実施形態で出力パッド61、入力パッド62とマルチモードRF−IC310が搭載される基板上の配線との接続にボンディングワイヤを用いたが、フレキシブルプリント基板上に設けた配線でチップ上のパッドと基板上の配線とを接続する構成などにおいても、同様な効果が得られる。
<実施形態2>
図6及び図7A,7Bに本発明の実施形態2を示す。本実施形態のマルチモード高周波回路は、実施形態1に対して、デュプレクサ100を含めたフロントエンド部、即ちマルチモードフロントエンド部を干渉低減の観点からモジュール化したもので、図6はその回路構成図、図7A,7BはマルチモードFEM11のそれぞれレイアウト図と内層パターン図である。
デュプレクサ100は、W−送信フィルタ(TxBPF)110、W−受信フィルタ(RxBPF)140、移相回路(−φ)101、及び移相線路(+φ)102を含んで構成される。移相回路101は、図6に示すように、直列接続した2個の容量Cの接続点に接地に接続したインダクタを接続して構成される。本実施形態ではW−送信フィルタ110及びW−受信フィルタ140は共にBPFであるが、用いる通信方式によってはLPFと高域通過フィルタの組合せにしても良い。W−送信フィルタ110は一端がW−送信系回路への接続端子となり、他端が移相回路101に接続される。W−受信フィルタ140は、一端がW−受信系回路(W−受信回路150)への接続端子となり、他端が移相線路102に接続される。ここで、本実施形態では、W−受信フィルタ140のW−受信回路150への接続端子を耐ノイズ性に優れる差動構成としたが、耐ノイズ性能があまり要求されない用途では、不平衡構成を用いても良い。移相回路101と移相線路102の接続点であるデュプレクサの共通端子9は、スイッチ90を介してアンテナ1に接続される。
なお、G−送信フィルタ211は、一端がG−送信回路系への接続端子となり、他端がスイッチ90に接続され、G−受信フィルタ241a,241bは、一端がG−受信回路系(G−受信回路250)への接続端子となり、他端がスイッチ90に接続される。
デュプレクサ100がRF送信信号を送信系回路からアンテナ側のみへ、RF受信信号をアンテナから受信系回路側のみへと分配する原理を以下に説明する。移相回路101は、W−送信周波数においては、アンテナ(本実施形態ではスイッチ90を介したアンテナ1)のインピーダンス及びW−送信フィルタ110のインピーダンスの両者に整合の取れた特性インピーダンスを有し、W−送信フィルタ110からアンテナに殆んど損失なく電力を伝える。一方、W−受信周波数においては、W−送信フィルタ110のインピーダンスが送信周波数におけるインピーダンスと異なるため、このインピーダンスが共通端子9において開放に見えるように位相を回転させる。
同様に、移相線路102は、W−受信周波数においては、アンテナのインピーダンス及びW−受信フィルタ140のインピーダンスの両者に整合の取れた特性インピーダンスを有し、アンテナからW−受信フィルタ140にほとんど損失なく電力を伝える。一方、W−送信周波数においては、W−受信フィルタ140のインピーダンスが共通端子9において開放に見えるように位相を回転させる。これにより、W−送信周波数、W−受信周波数それぞれの周波数において、共通端子9からは使用しないフィルタが開放に見える、即ち接続されていないように見えるため、デュプレクサ100においては、RF送信信号は送信系回路からアンテナ側のみへ、RF受信信号はアンテナから受信系回路側のみへと分配される。
ここで、本実施形態ではフィルタと共通端子9間の位相を回転させる回路に、送信側では位相が進むタイプの移相回路を、受信側では位相が遅れる移相線路を使用したが、回転させるべき位相量は用いるフィルタの帯域外インピーダンスの値によって異なるため、用いるフィルタに合わせて本実施形態の組合せ以外の組合せを採用しても良い。また、フィルタと共通端子9間の位相を遅らせたい場合には本例のような移相線路の他、本例の移相回路においてCとLとを入れ替えた回路に代表される位相が遅れるタイプの移相回路を用いても良い。
以上の構成のマルチモードフロントエンド部が、図7Aに示すようにモジュール基板21上に搭載され、マルチモードFEM11として実装される。但し、移相線路102及びG−デュアルバンド送信フィルタ212は、図7Bに示すようにモジュール基板21内に導体パターンで形成される。また、モジュール基板21の部品を搭載する表層と、移相線路102及びG−デュアルバンド送信フィルタ211を形成する内層との間には、表層−内層間の信号干渉が起こらないように、接地導体面(図示せず)が設けられる。
マルチモードFEM11では、W−CDMA方式のRF送受信信号を扱うデュプレクサ100のW−送信フィルタ110とW−受信フィルタ140との最短距離間にW−CDMA方式の回路動作とは無関係な回路(第4の回路)であるG−デュアルバンド受信フィルタ241aが配置される。このような構成を取ることで、送受信が同時に動作するFDD方式のRF送信信号を扱うW−送信フィルタ110とRF受信信号を扱うW−受信フィルタ140との間に信号干渉を起こさないだけの十分な距離をとることが可能になった。それによって高い性能を維持したまま、空いた空間にW−CDMA動作には影響を与えないG−デュアルバンド受信フィルタ241aを設けることができたため、モジュール基板21の面積を有効に活用し、マルチモード高周波回路が搭載されたマルチモードFEMを小型に実現することができた。
次に、W−送信フィルタ110とG−デュアルバンド受信フィルタ241aの間に接地導体パターンを設け、W−受信フィルタ140とG−デュアルバンド受信フィルタ241aの間に別の接地導体パターンを設けることにより、更に干渉低減の効果を高めることができる。そのような構成のマルチモードFEM11を図8A,8Bに示す。図8AはFEMのレイアウト図であり、図8Bは基板21の表層パターン図である。表層に接地導体パターン35aと接地導体パターン35bとが形成されている。なお、移相回路101は、受動素子103で構成される。接地導体パターン35aは、W−送信フィルタ110とG−デュアルバンド受信フィルタ241aの間、接地導体パターン35bはG−デュアルバンド受信フィルタ241aとW−受信フィルタ140の間に配置される。
接地導体パターン35a、35bは、ビアホール(図示せず)によってモジュール基板21内層の接地導体面(図示せず)に接続されている。また、G−デュアルバンド受信フィルタ241aの接地端子は、それぞれ接地導体パターン35a、35bに接続されるように導体パターンが設けられている。
このような構成により、図7AのFEM21と同様に、W−CDMA送信フィルタ110とW−CDMA受信フィルタ140との間に信号干渉を起こさないだけの十分な距離をとることで高い性能を維持したまま、モジュール基板面積を有効に活用し、マルチモード高周波回路が搭載されたマルチモードFEMを小型に実現することができた。加えて、実施形態1で説明したように、W−送信フィルタ110、G−デュアルバンド受信フィルタ241a、及び第4の回路であるW−CDMA受信フィルタ140それぞれの間に接地導体が設けられていることから、送信系から受信系への信号の漏れ込みを更に低減させることができた。なお、干渉低減の目標によっては、接地導体パターンの設置は、接地導体パターン35a又は接地導体パターン35bのいずれか一方としても良い。
<実施形態3>
図9に本発明の実施形態3を示す。本実施形態のマルチモード高周波回路は、実施形態1に対して、マルチモードRF−IC310において接地効果を高めたものである。本実施形態では、W−送信回路130(第1の送信回路))とW−受信回路150(第2の受信回路)との最短距離間にはW−CDMAの回路動作とは無関係な回路(第10の回路)であるG−受信回路250が配置されている。それにより、W−CDMA送信回路130とW−CDMA受信回路150との間に信号干渉を起こさないだけの十分な距離をとることで高い性能を維持したまま、空いた空間にW−CDMA動作には影響を与えないGSM受信回路250を設けることができたため、チップ面積を有効に活用し、マルチモード高周波回路を集積したマルチモードRF−ICを小型に実現することができた。
更に、本実施形態のマルチモードRF−IC310は、これが用いられる装置の基板上にフリップチップ実装されることを前提としており、W−送信回路130上には出力バンプ51が、W−受信回路150上には入力バンプ52が、G−送信回路230上には接地バンプ53が設けられている。接地バンプ53は、W−送信回路130側及びW−受信回路150側それぞれに設けられており、これをマルチモードRF−IC310が用いられる装置の基板上の接地導体に接続することにより、接地バンプ53は接地導体と同等となる。それにより、実施形態1で説明したように、第1の送信回路であるW−送信回路130、第10の回路であるG−受信回路250、第1の受信回路であるW−受信回路150それぞれの回路の間に少なくとも1個の接地導体を設けた場合と同等の効果が得られ、送信系から受信系への信号の漏れ込みを更に低減させることができた。なお、干渉低減の目標によっては、接地バンプ53の設置は、W−送信回路130側又はW−受信回路150側のいずれか一方としても良い。
<実施形態4>
図10に本発明の実施形態4を示す。本実施形態のマルチモード高周波回路は、実施形態1に対して、マルチモードRF−IC310と図15に示したBB−LSI4とを集積化し、改めてBB−LSI400としたものである。BB−LSI400におけるマルチモード高周波部の配置は、図1B又は図5に示したマルチモードRF−IC310における配置と同様である。なお、BB−LSI400は、例えば、図1BにおけるマルチモードRF−IC310の位置に配置される。
以上のBB−LSI400の構成により、W−送信回路130とW−受信回路150との間の信号干渉を低減したまま、空いた空間にW−CDMA動作には影響を与えない回路を設けてチップ上の面積を有効活用することで、BB−LSI400チップ上のマルチモード高周波回路部を高性能かつ小面積で実現することができた。そのため、マルチモード高周波回路を集積したBB−LSI400チップを小面積で実現することができた。このように実現したBB−LSI400チップは、小型であることから、一回のウェハプロセスでより多くの個数を得ることができるため、チップ価格を低減することができる。
<実施形態5>
図11に本発明の第5の実施形態を示す。本実施形態のマルチモード高周波回路の構成は、図1Aに示したのと同様である。図11は、そのマルチモード高周波回路を搭載した高周波回路モジュールのレイアウト図である。本実施形態における第1の通信方式はW−CDMA、第2の通信方式はGSMである。実施形態1における図1A,1Bに示した高周波回路モジュールとの違いは以下の4点である。第1に、デュプレクサ100の代わりに、デュプレクサ回路の構成要素であるW−送信フィルタ(TxBPF)110、W−受信フィルタ(RxBPF)140、移相回路(−φ)101、及び移相線路102が用いられる。第2に、W−PA121とG−デュアルバンドPA222の代わりに、両者を一つのチップに集積したマルチモードPA−IC320が用いられる。第3に、W−PA121の破壊耐圧を高めることにより、アイソレータが不要になっている。第4に、G−デュアルバンド送信フィルタ211の代わりに二個のG−送信フィルタ210a,210bが用いられる。G−デュアルバンドPAは、G1−PA221aとG2−PA221bとで構成される。
本実施形態の高周波回路モジュール10は、W−CDMA方式とGSM方式の高周波回路がモジュール基板20上に以下のように配置される。まず、W−CDMAのRF送信信号を扱うW−PA121、W−出力整合回路123、W−送信フィルタ110、及び移相回路101と、W−CDMAのRF受信信号を扱うW−受信回路150との最短距離間に、W−CDMAの回路動作とは無関係なGSM方式の回路であるG1−PA221a、G1出力整合回路233a、G−送信フィルタ210a、G−送信回路230、及びG−受信回路250が配置されている。
次に、W−CDMAのRF送信信号を出力するW−送信回路130と、W−送信回路130から出力されたRF送信信号を増幅するW−PA121との最短距離間に、W−CDMAの回路動作とは無関係なGSM方式の回路であるG1−PA221a及びG1−出力MN223aが配置されている。また、W−PA121とW−CDMAのRF送信信号を帯域制限するW−段間フィルタ125との最短距離間に、W−CDMAの回路動作とは無関係なGSM方式の回路であるG1−PA221aが配置されている。更に、W−PA121とW−CDMAのRF受信信号を帯域制限するW−受信フィルタ140(第2のフィルタ)との最短距離間に、W−CDMAの回路動作とは無関係なGSM方式の回路(第9の回路)であるG1出力整合回路233a、G−送信回路230及びG−受信回路250が配置されている。
本実施形態では、GSM方式の送受信回路はバンド1、2、3、4の4つの周波数帯に対応している。GSMのバンド1、2(第1の周波数帯)のRF送信信号を扱う回路(第5の回路)であるG1−PA221a、G1−出力整合回路223a、及びG1−送信フィルタ210aは、上述のW−CDMAのRF送信信号を扱うW−PA121、W−出力整合回路123、W−送信フィルタ110、及び移相回路101とW−CDMAのRF受信信号を扱うW−受信回路150との最短距離間に配置される回路に含まれる。GSMのバンド3、4(第2の周波数帯)のRF送信信号を扱う回路(第6の回路)であるG2−PA221b、G2−出力整合回路223b、及びG2−送信フィルタ210bは、これらの回路に含まれないため、結果として、GSMのバンド1、2のRF送信信号を扱うG1−PA221a、G1−出力整合回路223a、及びG1−送信フィルタ210aと、GSMのバンド3、4のRF送信信号を扱うG2−PA221b、G2−出力整合回路223b、及びG2−送信フィルタ210bとの最短距離間には、GSMの回路動作とは無関係なW−CDMA方式の回路であるW−PA121、W−出力整合回路123、W−送信フィルタ110、及び移相回路101が配置される構成になる。
このような構成により、W−CDMA動作において、W−CDMAの送信系から受信系への信号干渉、W−CDMAの電力増幅器から送信回路への信号干渉、W−CDMAの電力増幅器から段間フィルタや受信フィルタへの熱伝導をそれぞれ低減することが可能になる。そのため、良好な受信感度、発振現象が起きない出力特性、低いスプリアス放射などの優れた性能を実現しつつ、マルチモード高周波モジュールの面積を小型化することができた。
更に、GSM動作において、GSMのバンド1、2のRF送信信号を扱う回路とバンド3、4のRF送信信号を扱う回路との最短距離間がGSM動作に関係のない回路を設けることによって十分に離れ、バンド3、4のRF送信信号の高調波がバンド1、2のRF送信信号を扱う回路に結合する、いわゆるクロスバンドカップリングを低減することができたため、GSM動作においてもスプリアス放射が低いという優れた性能を実現することができた。
また、本実施形態の高周波回路モジュール10では、W−CDMAのデュプレクサを構成するW−送信フィルタ110と、W−受信フィルタ140との最短距離間にW−CDMA動作とは関係のない回路であるG1−送信フィルタ210aやG−デュアルバンド受信フィルタ241bなどが配置されている。更に、モジュール基板20の内層に導体パターンで形成される移相線路102がデュプレクサの共通端子9からW−受信フィルタ140へと向かうRF受信信号経路と、W−CDMAのRF送信信号を増幅するW−PA121の出力端子からW−出力整合回路123、W−送信フィルタ110、及び移相回路101を経由して共通端子9へと向かうRF送信信号経路とが大半の区間で殆んど直交する向きに配置されている。
このような構成により、W−CDMA動作において、W−CDMAの送信フィルタから受信フィルタへの信号干渉を低減することができるため、良好な受信感度を実現しつつマルチモード高周波モジュールの面積を小型化することができた。更に、本実施形態の高周波回路モジュールにおけるW−CDMA動作において最も大きなRF送信信号を扱う経路と最も小さなRF受信信号を扱う経路との間の磁界結合を低減することができたため、より高い受信感度を実現することができた。
<実施形態6>
図12に本発明の実施形態6を示す。本実施形態においては、マルチモード高周波回路が携帯電話におけるマザーボードに搭載される。図12は、そのレイアウト図である。本高周波回路モジュールに搭載される高周波回路は、図1Aで説明した回路構成と同じであり、本実施形態における第1の通信方式はW−CDMA、第2の通信方式はGSMである。
マザーボード5上に搭載されるマルチモード高周波回路は、マルチモードFEM11、アイソレータ115、W−PA121とG−デュアルバンドPA222及びそれぞれの整合回路など(図示せず)を搭載したマルチモードPAM12、W−段間フィルタ125、マルチモードRF−IC310、Xtal3、そしてその他回路8を含んで構成される。
これらの回路はシールド7によってシールドされ、BB部(図示せず)との電磁干渉が防止される。マルチモードFEM11のアンテナ端子はマザーボード上のアンテナ端子6と電気的に接続され、アンテナ端子6にはアンテナ1(図示せず)が接続されて、RF部とアンテナとの信号の授受が行なわれる。なお、本実施形態で用いたマルチモードFEM11は、図8A,8Bに示した実施形態2で説明したものである。また、マルチモードRF−IC310は、図5に示した実施形態1で説明したものをリードフレーム上に搭載してプラスチック封止することによりパッケージ化したものである。
本実施形態では、W−CDMAのRF送信信号を扱うW−PA121、アイソレータ115とW−CDMAのRF受信信号を扱うW−受信回路150との最短距離間には、W−CDMAの回路動作とは無関係な回路であるその他回路8及びG−受信回路250が配置されている。次に、W−CDMAのRF送信信号を出力するW−送信回路130と、W−送信回路130から出力されたRF送信信号を増幅するW−PA121との最短距離間に、W−CDMAの回路動作とは無関係なGSM方式の回路であるG−デュアルバンドPA222が配置されている。また、W−CDMAのRF送信信号を増幅するW−PA121とW−CDMAのRF送信信号を帯域制限するW−段間フィルタ125との最短距離間に、W−CDMAの回路動作とは無関係なGSM方式の回路であるG−PA222が配置されている。
このような構成により、W−CDMA動作において、W−CDMAの送信系から受信系への信号干渉、W−CDMAの電力増幅器から送信回路への信号干渉、W−CDMAの電力増幅器から段間フィルタへの熱伝導をそれぞれ低減することができた。そのため、良好な受信感度、発振現象が起きない出力特性、低いスプリアス放射などの優れた性能を実現しつつ、携帯電話のマザーボードにおけるRF部を小型化することができた。
本実施形態におけるその他回路8には、W−CDMA動作と関係のない、G−受信回路250やG−送信回路230又はG−デュアルバンドPA222などのための電源バイパスコンデンサを用いても良く、マザーボードのレイアウトの都合上空間ができるような場合には接地導体を設けても良い。また、その他回路8の位置において、シールド7とマザーボード5との間隔を維持する補強導体をシールド7とマザーボード5との間に設けても良い。このような補強導体は、G−受信回路250などによってW−PA121及びアイソレータ115とW−受信回路150との最短距離間が信号干渉が起きない程度に十分に隔てられているため、マルチモードPAM12とマルチモードRF−IC310との空間を完全に分離するシールド効果がなくても差し支えない。
<実施形態7>
図13,14に本発明の実施形態7を示す。本実施形態のマルチモード高周波回路は、周波数帯が異なる二つのW−CDMAに対応しており、図13はその回路構成図、図14は同マルチモード高周波回路を搭載した高周波回路モジュールのレイアウト図である。本実施形態における第1の通信方式は第1の周波数帯を用いるW−CDMAであり、第2の通信方式は第2の周波数帯を用いるW−CDMAである。
本高周波回路モジュールに搭載される高周波回路は、第1の周波数帯を用いるW−CDMA用の回路が、デュプレクサ(Dup1)100a、W−PA121a、W−段間フィルタ(BPF1)125a、W−送信回路(W1−Tx)130a、及びW−受信回路(W1−Rx)150aを含んで構成される。また、第2の周波数帯を用いるW−CDMA用の回路が、デュプレクサ(Dup2)100b、W−PA121b、W−段間フィルタ(BPF2)125b、W−送信回路(W2−Tx)130b、及びW−受信回路(W2−Rx)150bを含んで構成される。デュプレクサ100aとデュプレクサ100bの共通端子はそれぞれスイッチ(SW)95に接続され、スイッチ95によりアンテナ1と、どちらのデュプレクサを接続するかが切り替えられる。また、W−PAM121aとW−PAM121bとはW−デュアルバンドPA122上に集積されており、W−送信回路130a,130b及びW−受信回路150a,150bはW−デュアルバンドRF−IC305上に集積されている。なお、本実施形態ではPAに耐圧を高めたデバイスを用いたため、本構成においてアイソレータは使用されない。また、デュプレクサ100aは、図6に示したのと同様に、W−送信フィルタ110a、移相回路(−φ1)101a、及び図示しない移相線路(+φ1)で構成される。次に、デュプレクサ100bは、W−送信フィルタ110b、移相回路(−φ2)101b、及び図示しない別の移相線路(+φ2)で構成される。
本実施形態では、図14に示すように、以上の回路及びXtal3がモジュール基板23上に以下のように搭載されてマルチモード高周波回路モジュール13が構成される。まず、第1の周波数帯を用いるW−CDMA方式の動作を基準に考えると、第1の周波数帯を用いるW−CDMAのRF送信信号を扱うW−PA121a、W−出力整合回路123a、及びW−送信フィルタ110a、移相回路101aと、第1の周波数帯を用いるW−CDMAのRF受信信号を扱うW−受信回路150aとの最短距離間に、第1の周波数帯を用いるW−CDMAの回路動作とは無関係な第2の周波数帯を用いるW−CDMAの回路であるW−PA121b、W−出力整合回路123b、W−送信フィルタ110b、及び移相回路101bが配置されている。また、第1の周波数帯を用いるW−CDMAのRF送信信号を出力するW−送信回路130aと、W−送信回路130aから出力されたRF送信信号を増幅するW−PA121aとの最短距離間に、第1の周波数帯を用いるW−CDMAの回路動作とは無関係な第2の周波数帯を用いるW−CDMAの回路であるW−PA121b、及びW−デュアルバンドRF−IC305上のその他の回路などが配置されている。更に、第1の周波数帯を用いるW−CDMAのRF送信信号を増幅するW−PA121aと第1の周波数帯を用いるW−CDMAのRF送信信号を帯域制限するW−段間フィルタ125aとの最短距離間に、第1の周波数帯を用いるW−CDMAの回路動作とは無関係な第2の周波数帯を用いるW−CDMAの回路であるW−PA121bが配置されている。
次に、第2の周波数帯を用いるW−CDMA方式の動作を基準に考えると、第2の周波数帯を用いるW−CDMAのRF送信信号を扱うW−PA121b、W−出力整合回路123b、W−送信フィルタ110b、及び移相回路101bと、第2の周波数帯を用いるW−CDMAのRF受信信号を扱うW−受信回路150bとの最短距離間に、第2の周波数帯を用いるW−CDMAの回路動作とは無関係な第1の周波数帯を用いるW−CDMAの回路であるW−受信回路150a、W−デュアルバンドRF−IC305上の付加回路、及びその他回路8などが配置されている。また、第2の周波数帯を用いるW−CDMAのRF送信信号を出力するW−送信回路130bと、W−送信回路130bから出力されたRF送信信号を増幅するW−PA121bとの最短距離間に、第2の周波数帯を用いるW−CDMAの回路動作とは無関係な回路であるW−デュアルバンドRF−IC305上の付加回路、及びその他回路8などが配置されている。更に、第2の周波数帯を用いるW−CDMAのRF送信信号を増幅するW−PA121bと第2の周波数帯を用いるW−CDMAのRF送信信号を帯域制限するW−段間フィルタ125bとの最短距離間に、第2の周波数帯を用いるW−CDMAの回路動作とは無関係な回路であるその他回路8が配置されている。ここで、本実施形態におけるその他回路8には、W−CDMAデュアルバンドRF−IC305の第1の周波数帯を用いるW−CDMA回路などに給電する電源回路のバイパスコンデンサが適用される。
以上の構成により、第1の周波数帯を用いるW−CDMA高周波回路、第2の周波数帯を用いるW−CDMA高周波回路のどちらにおいても、一方の高周波回路を動作させた場合に、送信系から受信系への信号干渉、電力増幅器から送信回路への信号干渉、電力増幅器から段間フィルタへの熱伝導をそれぞれ低減することができた。そのため、良好な受信感度、発振現象が起きない出力特性、低いスプリアス放射などの優れた性能を実現しつつ、2つのW−CDMA周波数帯に対応するマルチモード高周波回路を搭載した高周波モジュールを小型化することができた。
本発明に係るマルチモード高周波回路の実施形態1を説明するための構成図。 実施形態1のマルチモード高周波回路を搭載した高周波回路モジュールを説明するためのレイアウト図。 図1Bの高周波回路モジュールのA−A線断面図。 本発明のマルチモード高周波回路の効果を比較するための第1の断面図。 本発明のマルチモード高周波回路の効果を比較するための第2の断面図。 本発明のマルチモード高周波回路の効果を比較するための第3の断面図。 本発明のマルチモード高周波回路の効果を比較するための第4の断面図。 本発明のマルチモード高周波回路の効果を比較するための第5の断面図。 本発明のマルチモード高周波回路の効果の比較結果を説明するための図。 本発明の実施形態1を説明するための別のレイアウト図。 本発明の実施形態2を説明するためのフロントエンドモジュールの構成図。 実施形態2のフロントエンドモジュールを説明するためのレイアウト図。 実施形態2のフロントエンドモジュールを説明するためのパターン図。 実施形態2のフロントエンドモジュールを説明するための別のレイアウト図。 実施形態2のフロントエンドモジュールを説明するための別のパターン図。 本発明の実施形態3を説明するための集積回路チップのレイアウト図。 本発明の実施形態4を説明するための集積回路チップのレイアウト図。 本発明の実施形態5を説明するための高周波回路モジュールのレイアウト図。 本発明の実施形態6を説明するための携帯電話におけるマザーボードのレイアウト図。 本発明の実施形態7を説明するための構成図。 実施形態7のマルチモード高周波回路を搭載した高周波回路モジュールを説明するためのレイアウト図。 一般的な携帯電話の構成図。 一般的な携帯電話のマルチモード高周波回路を説明するための構成図。 図16のマルチモード高周波回路を搭載したマザーボードの従来例を説明するためのレイアウト図。
符号の説明
400…ベースバンド大規模集積回路、5…マザーボード、9…共通端子、10,13…マルチモード高周波回路モジュール、11…マルチモードフロントエンドモジュール、20,21,22,23…モジュール基板、30…接地導体、31…第1の配線、32…第2の配線、33,34a,34b…導体パターン、35a,35b…接地導体パターン、53…接地バンプ、71…出力ワイヤ、72…入力ワイヤ、90,95…スイッチ、100,100a,100b…デュプレクサ、101,101a,101b…移相回路、102…移相線路、110,110a,110b…W−CDMA送信フィルタ、115…アイソレータ、121,121a,121b…W−CDMA電力増幅器、122…W−CDMAデュアルバンド増幅器、123,123a,123b…W−CDMA出力整合回路、125,125a,125b…W−CDMA段間フィルタ、130,130a,130b…W−CDMA送信回路、140,140a,140b…W−CDMA受信フィルタ、150,150a,150b…W−CDMA受信回路、200…フロントエンドモジュール、210,210a,210b…GSM送信フィルタ、211,212…GSMデュアルバンド送信フィルタ、221a,221b…GSM電力増幅器、222…GSMデュアルバンド電力増幅器、223a,223b…GSM出力整合回路、230…GSM送信回路、241a,241b…GSMデュアルバンド受信フィルタ、250…GSM受信回路、305…W−CDMAデュアルバンド高周波集積回路、310…マルチモード高周波集積回路、320…マルチモード増幅器集積回路。

Claims (16)

  1. 複数の通信方式に対応する高周波回路において、
    上記複数の通信方式に含まれる第1の通信方式における上記高周波回路内で最大の高周波送信信号を扱う第1の回路と、
    上記第1の通信方式における上記高周波回路内で最小の高周波受信信号を扱う第2の回路とを具備してなり、
    上記高周波回路が基板に搭載されるときに、上記第1の回路と上記第2の回路との最短距離間に上記複数の通信方式に含まれ、上記第1の通信方式とは同時に動作しない第2の通信方式の信号を扱う第3の回路が配置される
    ことを特徴とする高周波回路。
  2. 請求項1において、
    上記第1の通信方式が周波数分割複信方式である
    ことを特徴とする高周波回路。
  3. 請求項1において、
    上記第1の通信方式の送受信信号を扱うデュプレクサを具備し、
    上記デュプレクサは、送信フィルタと受信フィルタとを備え、
    上記送信フィルタと上記受信フィルタとの最短距離間に上記複数の通信方式に含まれ、上記第1の通信方式とは同時に動作しない第2の通信方式の信号を扱う第4の回路が配置される
    ことを特徴とする高周波回路。
  4. 請求項3において、
    上記送信フィルタと上記第4の回路の間及び上記第4の回路と上記受信フィルタの間の少なくとも一方に接地導体が設けられている
    ことを特徴とする高周波回路。
  5. 請求項3において、
    上記デュプレクサの共通端子から上記受信フィルタへ向かう高周波受信信号経路と、上記第1の通信方式の送信信号を扱う電力増幅器の出力端子から上記送信フィルタを経由して上記共通端子へ向かう高周波送信信号経路とが、大半の区間でほぼ直交している
    ことを特徴とする高周波回路。
  6. 請求項1において、
    上記第3の回路は、上記複数の通信方式に含まれる第2の通信方式の高周波送信信号を扱う回路及び高周波受信信号を扱う回路の少なくともいずれか一方である
    ことを特徴とする高周波回路。
  7. 請求項6において、
    上記第2の通信方式が時分割複信方式である
    ことを特徴とする高周波回路。
  8. 請求項1において、
    上記複数の通信方式に含まれる第2の通信方式の第1の周波数帯の高周波送信信号を扱う第5の回路と、
    上記第2の通信方式の第2の周波数帯の高周波送信信号を扱う第6の回路とを更に具備し、
    上記第5の回路が上記第3の回路に含まれ、上記第6の回路が上記第3の回路に含まれない
    ことを特徴とする高周波回路。
  9. 請求項8において、
    上記第2の回路は、上記第5の回路と上記第6の回路との最短距離間に配置される
    ことを特徴とする高周波回路。
  10. 請求項1において、
    上記第1の回路と上記第2の回路と上記第3の回路とが集積回路チップ上に集積されている
    ことを特徴とする高周波回路。
  11. 請求項10において、
    上記第1の回路と上記第2の回路とが互いに上記集積回路チップの対角線上のそれぞれの角に形成されている
    ことを特徴とする高周波回路。
  12. 請求項11において、
    上記第1の回路と上記第3の回路との間及び上記第3の回路と上記第2の回路の間の少なくとも一方に、少なくとも1個の接地導体が設けられている
    ことを特徴とする高周波回路。
  13. 請求項10において、
    上記第1の回路の出力端子と上記第2の回路の入力端子とにそれぞれ接続されるワイヤの向きが直交している
    ことを特徴とする高周波回路。
  14. 請求項10において、
    上記高周波回路が、上記高周波回路に入力されるベースバンド送信信号を生成し、かつ上記高周波回路から出力されるベースバンド受信信号を入力するベースバンド大規模集積回路に集積されている
    ことを特徴とする高周波回路。
  15. 少なくとも符号分割多重接続方式と時分割多重接続方式とに対応する高周波回路において、
    基板上に搭載された符号分割多重接続方式における上記高周波回路内で最大の送信信号を扱う第1の回路と、
    上記基板上に搭載された符号分割多重接続方式における上記高周波回路内で最小の受信信号を扱う第2の回路と、
    上記基板に搭載され、上記第1の回路と上記第2の回路との最短距離間に配置された第3の回路を具備してなり、
    上記第3の回路は、時分割多重接続方式の送信信号を扱う回路及び受信信号を扱う回路の少なくともいずれか一方である
    ことを特徴とする高周波回路。
  16. 請求項15において、
    上記第1の回路は上記符号分割多重接続方式の送信信号を扱う電力増幅器を含んでなり、
    上記第3の回路は上記時分割多重接続方式の送信信号を扱う電力増幅器を含んでなり、
    上記第2の回路は半導体回路チップ上に集積されている
    ことを特徴とする高周波回路。
JP2005165098A 2005-06-06 2005-06-06 マルチモード高周波回路 Expired - Fee Related JP4521602B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005165098A JP4521602B2 (ja) 2005-06-06 2005-06-06 マルチモード高周波回路
CN2006100850213A CN1881810B (zh) 2005-06-06 2006-05-30 多模式高频电路
US11/444,398 US8391821B2 (en) 2005-06-06 2006-06-01 Radio frequency circuit for multi-mode operation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005165098A JP4521602B2 (ja) 2005-06-06 2005-06-06 マルチモード高周波回路

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010060265A Division JP4709316B2 (ja) 2010-03-17 2010-03-17 マルチモード高周波回路

Publications (3)

Publication Number Publication Date
JP2006340257A JP2006340257A (ja) 2006-12-14
JP2006340257A5 JP2006340257A5 (ja) 2007-12-27
JP4521602B2 true JP4521602B2 (ja) 2010-08-11

Family

ID=37494776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005165098A Expired - Fee Related JP4521602B2 (ja) 2005-06-06 2005-06-06 マルチモード高周波回路

Country Status (3)

Country Link
US (1) US8391821B2 (ja)
JP (1) JP4521602B2 (ja)
CN (1) CN1881810B (ja)

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1555864A1 (en) * 2004-01-14 2005-07-20 Thomson Licensing S.A. RF circuit with stacked printed circuit boards
US7383024B2 (en) * 2005-09-30 2008-06-03 Avago Technologies Wireless Ip Pte Ltd Multi-band handset architecture
TWI355840B (en) * 2006-12-07 2012-01-01 Wistron Neweb Corp Communication device capable of simultaneously ope
JP2008219174A (ja) * 2007-02-28 2008-09-18 Matsushita Electric Ind Co Ltd 携帯端末装置
US9723709B2 (en) * 2007-10-22 2017-08-01 Todd Steigerwald Method for assigning control channels
US7729724B2 (en) * 2007-11-19 2010-06-01 Broadcom Corporation RF front-end and applications thereof
US8279913B2 (en) * 2008-03-19 2012-10-02 Intel Mobile Communications GmbH Configurable transceiver
TWI388144B (zh) * 2008-12-23 2013-03-01 Wistron Neweb Corp 用於一無線訊號收發器之射頻電路及其相關無線訊號收發器
CN101771424B (zh) * 2009-01-05 2013-03-27 启碁科技股份有限公司 用于一无线信号收发器的射频电路及相关无线信号收发器
JP5625453B2 (ja) * 2009-05-26 2014-11-19 株式会社村田製作所 高周波スイッチモジュール
WO2010137405A1 (ja) * 2009-05-27 2010-12-02 株式会社村田製作所 高周波モジュール
KR101565995B1 (ko) * 2009-07-16 2015-11-05 삼성전자주식회사 듀얼-입력 듀얼-출력의 필터를 이용한 멀티-대역의 라디오 주파수 신호 송수신 시스템
US8369250B1 (en) * 2009-10-07 2013-02-05 Rf Micro Devices, Inc. Multi-mode split band duplexer architecture
US9319214B2 (en) 2009-10-07 2016-04-19 Rf Micro Devices, Inc. Multi-mode power amplifier architecture
JP5386342B2 (ja) * 2009-12-28 2014-01-15 株式会社日立製作所 Lsi,鉄道用フェールセーフlsi,電子装置,鉄道用電子装置
US8768267B2 (en) * 2010-02-03 2014-07-01 Hollinworth Fund, L.L.C. Switchless band separation for transceivers
CN101882941A (zh) * 2010-07-07 2010-11-10 中兴通讯股份有限公司 一种全球移动通讯系统四频收发的装置及设备
JP5590134B2 (ja) * 2010-09-29 2014-09-17 株式会社村田製作所 高周波モジュール
JP5660450B2 (ja) * 2010-12-28 2015-01-28 日立金属株式会社 回路基板およびそれを用いた通信装置
CN102123466B (zh) * 2011-01-18 2014-01-08 华为技术有限公司 多模终端减少频段干扰方法、多模终端及网络设备
WO2012118874A2 (en) * 2011-03-03 2012-09-07 Thomson Licensing Apparatus and method for processing a radio frequency signal
JP5143972B1 (ja) * 2012-08-16 2013-02-13 太陽誘電株式会社 高周波回路モジュール
CN103490793B (zh) * 2012-06-12 2015-08-19 太阳诱电株式会社 高频电路模块
KR101516930B1 (ko) 2012-07-13 2015-05-04 스카이워크스 솔루션즈, 인코포레이티드 라디오 주파수 차폐 응용들에서의 레이스트랙 구성한 패키지 모듈 및 무선 디바이스
JP5285806B1 (ja) 2012-08-21 2013-09-11 太陽誘電株式会社 高周波回路モジュール
JP5117632B1 (ja) 2012-08-21 2013-01-16 太陽誘電株式会社 高周波回路モジュール
JP5342704B1 (ja) * 2012-11-12 2013-11-13 太陽誘電株式会社 高周波回路モジュール
US9419667B2 (en) 2013-04-16 2016-08-16 Skyworks Solutions, Inc. Apparatus and methods related to conformal coating implemented with surface mount devices
WO2015008557A1 (ja) * 2013-07-16 2015-01-22 株式会社村田製作所 フロントエンド回路
JP5456935B1 (ja) * 2013-10-30 2014-04-02 太陽誘電株式会社 回路モジュール
JP5949753B2 (ja) * 2013-12-27 2016-07-13 株式会社村田製作所 フロントエンド回路
US9344140B2 (en) * 2014-02-25 2016-05-17 Skyworks Solutions, Inc. Systems, devices and methods related to improved radio-frequency modules
CN110224705B (zh) 2014-07-15 2021-09-28 株式会社村田制作所 高频模块
US10447458B2 (en) 2014-08-13 2019-10-15 Skyworks Solutions, Inc. Radio-frequency front-end architecture for carrier aggregation of cellular bands
JP6057024B2 (ja) * 2014-12-25 2017-01-11 株式会社村田製作所 高周波モジュール
WO2016104145A1 (ja) * 2014-12-25 2016-06-30 株式会社村田製作所 高周波モジュール
WO2016194924A1 (ja) 2015-06-03 2016-12-08 株式会社村田製作所 高周波フロントエンド回路
CN108886378B (zh) * 2016-03-31 2020-10-09 株式会社村田制作所 前置电路和高频模块
WO2018061952A1 (ja) * 2016-09-30 2018-04-05 株式会社村田製作所 高周波モジュールおよび通信装置
JP2018098677A (ja) * 2016-12-14 2018-06-21 株式会社村田製作所 送受信モジュール
JP2018101943A (ja) * 2016-12-21 2018-06-28 株式会社村田製作所 高周波モジュール
KR102624466B1 (ko) * 2017-01-12 2024-01-15 삼성전자주식회사 다중 대역 안테나를 구비한 전자 장치 및 다중 대역 안테나를 구비한 전자 장치에서 스위칭 방법
CN110710118B (zh) * 2017-06-02 2021-08-20 株式会社村田制作所 高频模块以及通信装置
CN107332573B (zh) * 2017-07-25 2021-04-13 Oppo广东移动通信有限公司 一种射频电路、天线装置及电子设备
DE102018127148A1 (de) * 2017-11-30 2019-06-06 Intel Corporation Grabenisolierung zur herstellung einer fortschrittlichen integrierten schaltungsstruktur
US10659086B2 (en) * 2018-06-13 2020-05-19 Qorvo Us, Inc. Multi-mode radio frequency circuit
CN109743072B (zh) * 2018-12-26 2021-04-16 深圳市万普拉斯科技有限公司 一种移动终端信号收发装置及其控制方法
JP2020170944A (ja) * 2019-04-03 2020-10-15 株式会社村田製作所 高周波モジュール及び通信装置
KR102584103B1 (ko) * 2019-08-28 2023-10-04 가부시키가이샤 무라타 세이사쿠쇼 고주파 모듈 및 통신 장치
JP2021190772A (ja) * 2020-05-27 2021-12-13 株式会社村田製作所 高周波モジュールおよび通信装置
US11764822B2 (en) 2020-08-06 2023-09-19 Analog Devices, Inc. Radio transceiver control interface
DE112021002738T5 (de) * 2020-08-13 2023-03-02 Murata Manufacturing Co., Ltd. Hochfrequenzmodul
CN116097570A (zh) * 2020-08-13 2023-05-09 株式会社村田制作所 高频模块
KR20220037191A (ko) * 2020-09-17 2022-03-24 삼성전자주식회사 적층 구조의 다이플렉서를 갖는 전자 장치

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001244416A (ja) * 2000-02-29 2001-09-07 Hitachi Ltd 信号処理用半導体集積回路
JP2001267952A (ja) * 2000-03-22 2001-09-28 Matsushita Electric Ind Co Ltd 無線端末装置
JP2006524026A (ja) * 2003-04-16 2006-10-19 キョウセラ ワイヤレス コーポレイション 通信帯域を選択するためのシステムおよび方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6212147A (ja) * 1985-07-10 1987-01-21 Hitachi Ltd マスタ−スライス方式の半導体装置
JP3543508B2 (ja) * 1996-01-22 2004-07-14 株式会社デンソー 半導体装置
JP3258922B2 (ja) * 1997-01-08 2002-02-18 三洋電機株式会社 デュアルバンド無線通信装置
US6584090B1 (en) * 1999-04-23 2003-06-24 Skyworks Solutions, Inc. System and process for shared functional block CDMA and GSM communication transceivers
JP3583337B2 (ja) * 1999-12-24 2004-11-04 島田理化工業株式会社 高周波回路ユニット
US6780696B1 (en) * 2000-09-12 2004-08-24 Alien Technology Corporation Method and apparatus for self-assembly of functional blocks on a substrate facilitated by electrode pairs
US20050003789A1 (en) 2001-03-22 2005-01-06 Georg Busch Shield for high-frequency transmitter/receiver systems of electronic devices, especially of devices for wireless telecommunication
JP3851184B2 (ja) 2002-02-25 2006-11-29 Tdk株式会社 フロントエンドモジュール
JP3752232B2 (ja) 2002-03-27 2006-03-08 Tdk株式会社 フロントエンドモジュール
JP4212557B2 (ja) * 2002-12-20 2009-01-21 株式会社ルネサステクノロジ 送信回路およびそれを用いた送受信機
JP3514453B1 (ja) * 2003-01-16 2004-03-31 日本特殊陶業株式会社 高周波部品
US20040240420A1 (en) 2003-02-14 2004-12-02 Tdk Corporation Front end module and high-frequency functional module
JP4418250B2 (ja) 2004-02-05 2010-02-17 株式会社ルネサステクノロジ 高周波回路モジュール

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001244416A (ja) * 2000-02-29 2001-09-07 Hitachi Ltd 信号処理用半導体集積回路
JP2001267952A (ja) * 2000-03-22 2001-09-28 Matsushita Electric Ind Co Ltd 無線端末装置
JP2006524026A (ja) * 2003-04-16 2006-10-19 キョウセラ ワイヤレス コーポレイション 通信帯域を選択するためのシステムおよび方法

Also Published As

Publication number Publication date
JP2006340257A (ja) 2006-12-14
US20060276158A1 (en) 2006-12-07
CN1881810A (zh) 2006-12-20
CN1881810B (zh) 2010-08-18
US8391821B2 (en) 2013-03-05

Similar Documents

Publication Publication Date Title
JP4521602B2 (ja) マルチモード高周波回路
JP4709316B2 (ja) マルチモード高周波回路
US7515879B2 (en) Radio frequency circuit module
JP5505915B1 (ja) 通信モジュール
US11476226B2 (en) Radio-frequency module and communication device
US7941103B2 (en) Duplexer
TWI493893B (zh) 高頻電路模組
US7053731B2 (en) Duplexer using surface acoustic wave filters
JP5677499B2 (ja) 高周波回路モジュール
US7239217B2 (en) Antenna duplexer
JP5143972B1 (ja) 高周波回路モジュール
US20070066243A1 (en) Rf circuit module
JP5912808B2 (ja) 半導体装置
JP5456935B1 (ja) 回路モジュール
WO2018123972A1 (ja) 高周波モジュール及び通信装置
JP3910187B2 (ja) 分波器及び電子装置
JP4527570B2 (ja) 高周波モジュ−ル及びそれを搭載した無線通信装置
US20210135695A1 (en) Radio frequency module and communication device
CN104602366B (zh) 通信模块
JP2010022030A (ja) 高周波回路モジュール
JP2006203470A (ja) 高周波モジュール及び無線通信機器
JP2006211144A (ja) 高周波モジュール及び無線通信機器
JP2005136887A (ja) 高周波モジュール及び無線通信機器
JP2002300006A (ja) 高周波部品及びアンテナ共用器
JP2008034980A (ja) 複合高周波部品

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071109

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100510

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140604

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees