WO2018123972A1 - 高周波モジュール及び通信装置 - Google Patents

高周波モジュール及び通信装置 Download PDF

Info

Publication number
WO2018123972A1
WO2018123972A1 PCT/JP2017/046436 JP2017046436W WO2018123972A1 WO 2018123972 A1 WO2018123972 A1 WO 2018123972A1 JP 2017046436 W JP2017046436 W JP 2017046436W WO 2018123972 A1 WO2018123972 A1 WO 2018123972A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
frequency band
filter circuit
frequency
signal
Prior art date
Application number
PCT/JP2017/046436
Other languages
English (en)
French (fr)
Inventor
優佑 浪花
武藤 英樹
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2018123972A1 publication Critical patent/WO2018123972A1/ja
Priority to US16/435,645 priority Critical patent/US10797741B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/50Circuits using different frequencies for the two directions of communication
    • H04B1/52Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa
    • H04B1/525Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa with means for reducing leakage of transmitter signal into the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • H04B1/12Neutralising, balancing, or compensation arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/203Strip line filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/02Coupling devices of the waveguide type with invariable factor of coupling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P7/00Resonators of the waveguide type
    • H01P7/08Strip line resonators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • H04B1/1027Means associated with receiver for limiting or suppressing noise or interference assessing signal quality or detecting noise/interference for the received signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • H04B1/163Special arrangements for the reduction of the damping of resonant circuits of receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • H04B1/18Input circuits, e.g. for coupling to an antenna or a transmission line

Definitions

  • the present invention relates to a high-frequency module and a communication device, and more particularly, to a high-frequency module for simultaneously transmitting and receiving signals of two or more waves and a communication device configured using the same.
  • FIG. 8 is a block diagram showing the configuration of the system disclosed in Patent Document 1.
  • a system 900 shown in FIG. 8 includes tunable RF modules 950 and 960 in the secondary reception system 920.
  • the tunable RF module 950 converts a received signal in a frequency band belonging to a 1.7 to 2.7 GHz MB / HB (middle band / high band) group into a “low noise amplifier (hereinafter also referred to as“ LNA ”). Amplify at 954.
  • the tunable RF module 960 amplifies the received signal in the frequency band belonging to the LB (low band) group of 0.7 to 1.0 GHz by the LNA 964.
  • the system 900 can perform CA operation using, for example, a frequency band belonging to the MB / HB band group and a frequency band belonging to the LB band group.
  • Patent Document 1 points out that it is a problem to attenuate an out-of-band signal from a desired received signal in CA that receives a plurality of signals having different frequency bands, and a transmission signal that wraps around from an antenna is given as an example of an out-of-band signal. ing.
  • a spurious component generated in one receiving circuit for example, a spurious component generated based on a transmission signal that has passed from the transmitting circuit to the receiving circuit
  • a spurious component may wrap around through the wiring or the terminal, and the reception sensitivity of the other reception circuit may be deteriorated.
  • high integration of RF parts is progressing, and the distance between modules and wirings becomes close, causing a problem that signals wrap around.
  • Patent Document 1 does not mention the problem that the reception sensitivity of the other receiving circuit is deteriorated due to the spurious component wrapping around.
  • a filter is arranged at the latter stage of the LNA.
  • a spurious component may wrap around through a wiring or a terminal and deteriorate the reception sensitivity of the other receiving circuit. There is.
  • the present invention provides a high-frequency module that can effectively suppress deterioration in reception sensitivity caused by spurious components generated in an LNA from one receiving circuit to the other receiving circuit during simultaneous transmission and reception of two or more waves. With the goal.
  • a high frequency module for simultaneously transmitting and receiving a plurality of signals including at least a reception signal in a first frequency band and a reception signal in a second frequency band.
  • a first receiving circuit for processing a received signal in the first frequency band comprising: a first substrate; a first low noise amplifier mounted on a main surface of the first substrate; A first filter circuit connected to an output terminal of the first low noise amplifier and at least a part of which is formed on the main surface of the first substrate, wherein the first filter circuit has the first frequency band. It has a frequency band that is included in the transmission signal of the first frequency band and that overlaps with the frequency band of the reception signal of the second frequency band, which is generated when the transmission signal is input to the first low noise amplifier. Attenuate that spurious components.
  • the first filter circuit having an attenuation characteristic with respect to the spurious component of the transmission signal in the first frequency band is connected to the output terminal of the first LNA, and the first LNA and the first filter circuit are configured in the same package.
  • the spurious component of the transmission signal in the first frequency band output from the first LNA module is attenuated by the first filter circuit.
  • configuring the first LNA and the first filter circuit in the same package indicates, for example, that the first LNA and the first filter circuit are mounted on the same surface of the substrate.
  • the connection wiring length between the first LNA and the first filter circuit is shortened, and the insertion loss of the first filter circuit is reduced.
  • the first reception circuit From this, the spurious component that wraps around the second receiving circuit that processes the received signal in the second frequency band is attenuated, and as a result, it is possible to suppress the deterioration of the receiving sensitivity in the second frequency band.
  • the isolation between the first receiving circuit and the second receiving circuit is an isolation between the wirings in the subsequent stage of the LNA module and between the RFIC terminals.
  • the first filter circuit may include a variable capacitor and have a variable attenuation frequency.
  • the attenuation frequency of the first filter circuit is set to the target spurious component. Can easily adjust to frequency.
  • the attenuation frequency is adjusted using a variable capacitor.
  • the circuit scale can be reduced as compared with a circuit in which a plurality of filter elements (for example, SAW filters) whose attenuation frequency is fixed to a spurious component for each frequency band are switched by a switch.
  • the control of the variable capacitor can be performed by an IC (integrated circuit) built in the switch.
  • IC integrated circuit
  • the control wiring is simplified and the miniaturization is achieved.
  • the attenuation pole can be made variable by using a variable capacitor, it is necessary to provide a filter corresponding to each frequency band at the output terminal when multiple signals in different frequency bands are output alternatively from the same output terminal. Disappear. Therefore, downsizing, cost reduction, and loss reduction are achieved by reducing the number of elements.
  • the filter pole can be adjusted by the IC, the design margin may be small.
  • another part of the first filter circuit may be formed inside the first substrate.
  • the first Electromagnetic field coupling may occur between the elements constituting the filter circuit and the elements arranged in the previous stage of the first LNA, which may degrade isolation.
  • the isolation between the first filter circuit and the element arranged in the previous stage of the first LNA is insufficient, the attenuation characteristic is deteriorated, or an element (for example, an inductor) constituting a part of the first filter circuit and the previous stage of the first LNA.
  • an element for example, an inductor
  • electromagnetic coupling can be suppressed by forming at least a part of the first filter circuit in the substrate.
  • an element for example, an inductor
  • a part of the first filter circuit formed in the first substrate may be a built-in inductor formed by a wiring pattern.
  • the first filter circuit is connected between the output terminal of the first low noise amplifier and a ground potential, and has a transmission line that exhibits a short-circuit characteristic with respect to even-order spurious components of the transmission signal in the first frequency band.
  • a short stub may be included.
  • the phrase “connected to the ground potential” means that it is connected to a power supply node that supplies the ground potential, and the same term is used in the following description.
  • the short stub including the transmission line is formed with respect to the spurious component output from the first LNA, the first filter circuit having the attenuation pole in the frequency of the spurious component and having a small insertion loss is provided. It can be configured with a small number of parts.
  • the high frequency module further includes a second receiving circuit that processes a received signal in the second frequency band, and the second receiving circuit is connected to a second low noise amplifier and an output terminal of the second low noise amplifier.
  • a second reception circuit including a second filter circuit having an attenuation characteristic with respect to a spurious component of the transmission signal in the second frequency band.
  • the same effect as described for the first receiving circuit can be obtained in the second receiving circuit. That is, even when two or more signals are simultaneously transmitted and received, even if the spurious component of the transmission signal in the second frequency band and the reception signal in the first frequency band fall within the same frequency range, the second receiving circuit The spurious component that wraps around the first receiving circuit is attenuated, and as a result, it is possible to suppress the deterioration of the receiving sensitivity in the first frequency band.
  • a first transmission line having a first end connected to the output end of the first low noise amplifier; a second transmission line having a first end connected to the output end of the second low noise amplifier; A variable capacitor connected to a ground potential; and a switch that selectively connects the second end of the variable capacitor to one of the output end of the first low noise amplifier and the output end of the second low noise amplifier.
  • a second end of the first transmission line is connected to a second end of the second transmission line, and the first transmission line, the second transmission line, and the variable capacitor are: (i) the variable capacitor In a first state in which the second end of the second low-noise amplifier and the output end of the second low-noise amplifier are connected, a ground potential, the variable capacitor, and the second transmission line are electrically connected to each other.
  • Frequency band A first filter circuit having a short-circuit characteristic with respect to an even-order spurious component of the received signal; and (ii) a second connected to the second end of the variable capacitor and the output end of the first low-noise amplifier.
  • the second filter exhibiting a short-circuit characteristic with respect to the even-order spurious component of the transmission signal in the second frequency band by electrically connecting the ground potential, the variable capacitor, and the first transmission line.
  • a circuit may be configured.
  • the second transmission line and the variable capacitor become short stubs with respect to the spurious component of the transmission signal in the first frequency band, so that the second transmission line and the variable capacitor have attenuation characteristics with respect to the spurious component.
  • One filter circuit is configured. Therefore, the first spurious component output from the first LNA is attenuated by the first filter circuit, and the first spurious component at the connection point between the second end of the first transmission line and the second end of the second transmission line is attenuated. To do.
  • the first transmission line and the variable capacitor become short stubs with respect to the spurious component of the transmission signal in the second frequency band, so that the second filter circuit having attenuation characteristics with respect to the spurious component is obtained. Composed. Therefore, the second spurious component output from the second LNA is attenuated by the second filter circuit, and the second spurious component at the connection point between the second end of the first transmission line and the second end of the second transmission line is attenuated. To do.
  • one of the first spurious component and the second spurious component can be selectively attenuated in accordance with the state of the switch with the minimum number of parts by combining the first transmission line, the second transmission line, and the variable capacitor.
  • a filter circuit is configured.
  • variable capacitor it is possible to switch and finely adjust the attenuation frequency, and to construct a filter circuit with a small insertion loss and a small circuit scale.
  • a communication apparatus includes the high-frequency module and an RF signal processing circuit that receives a high-frequency reception signal from the high-frequency module.
  • the simultaneous transmission / reception of signals of two or more waves is performed by using the high-frequency module that can effectively suppress the spurious component that causes deterioration in reception sensitivity in the case of simultaneous transmission / reception of signals of two or more waves.
  • a communication device having excellent reception sensitivity can be obtained.
  • the high-frequency module and the communication device According to the high-frequency module and the communication device according to the present invention, the high-frequency module that can effectively suppress the deterioration of the reception sensitivity when simultaneously transmitting and receiving signals of two or more waves, and the simultaneous transmission and reception of signals of two or more waves A communication device having excellent reception sensitivity can be obtained.
  • FIG. 1 is a block diagram illustrating an example of a configuration of a communication apparatus according to Embodiment 1.
  • FIG. 2 is a block diagram illustrating an example of a configuration of a communication apparatus according to a modification of the first embodiment.
  • FIG. 3A is a side view showing a configuration example of a first receiving circuit according to Embodiment 2.
  • FIG. 3B is a side view showing a configuration example of the first receiving circuit according to Embodiment 2.
  • FIG. 3C is a perspective view illustrating a configuration example of an RF module according to Embodiment 2.
  • FIG. 4 is a circuit diagram showing an example of a filter circuit according to the third embodiment.
  • FIG. 5 is a graph illustrating an example of the attenuation characteristic of the filter circuit according to the third embodiment.
  • FIG. 6 is a circuit diagram illustrating another example of the filter circuit according to the third embodiment.
  • FIG. 7 is a block diagram illustrating an example of a functional configuration of the communication apparatus according to the fourth embodiment.
  • FIG. 8 is a block diagram showing an example of the configuration of a system having a conventional tunable RF module.
  • the high-frequency module according to Embodiment 1 (hereinafter also referred to as “RF module”) is a front-end circuit that performs simultaneous transmission and reception of two or more signals in a first frequency band and a second frequency band.
  • FIG. 1 is a block diagram illustrating a functional example of the communication apparatus according to the first embodiment.
  • FIG. 1 shows a main part of a communication apparatus including an RFIC (integrated circuit) 50, a front-end circuit 10, diplexers 71 and 72, and antenna terminals (not shown) connected to the antennas 81 and 82.
  • the front end circuit 10 includes a first transmission / reception circuit 11, a second transmission / reception circuit 12, a first reception circuit 21, and a second reception circuit 22.
  • the RF module 2 includes a first receiving circuit 21 and a second receiving circuit 22.
  • the first transmission / reception circuit 11 amplifies the transmission signal Tx1 in the first frequency band supplied from the RFIC 50 and supplies the amplified signal to the diplexer 71.
  • the second transmission / reception circuit 12 amplifies the transmission signal Tx2 in the second frequency band supplied from the RFIC 50 and supplies the amplified signal to the diplexer 71.
  • the frequency of the transmission signal Tx1 in the first frequency band is expressed as fTx1
  • the frequency of the transmission signal Tx2 in the second frequency band is expressed as fTx2 .
  • the diplexer 71 is an element that shares an antenna 81 having a function of demultiplexing or combining transmission / reception signals in the first frequency band and the second frequency band.
  • the antenna 81 transmits and receives signals.
  • the antenna 82 receives a signal including the reception signal Rx1 in the first frequency band and the reception signal Rx2 in the second frequency band, and supplies the signal to the diplexer 72.
  • the frequency of the reception signal Rx1 in the first frequency band is expressed as fRx1
  • the frequency of the reception signal Rx2 in the second frequency band is expressed as fRx2 .
  • the diplexer 72 separates the received signal Rx1 of the first frequency band and the received signal Rx2 of the second frequency band from the antenna signal, and the separated received signal Rx1 of the first frequency band and the received signal Rx2 of the second frequency band. Are supplied to the first receiving circuit 21 and the second receiving circuit 22, respectively.
  • the first receiving circuit 21 has a first LNA 211 and a first filter circuit 212.
  • the first receiving circuit 21 may further include a first matching element 231.
  • the first reception circuit 21 amplifies the reception signal Rx1 in the first frequency band by the first LNA 211, attenuates an undesired frequency component signal included in the reception signal Rx1 after amplification by the first filter circuit 212, and sends it to the RFIC 50 Supply.
  • the first matching element 231 constitutes a first matching circuit for impedance matching at the input end of the first LNA 211.
  • the first matching element 231 is connected between the input end of the first receiving circuit 21 and the input end of the first LNA 211, but is not limited to this example.
  • the first matching element 231 may be connected between a signal path connecting the input end of the first receiving circuit 21 and the input end of the first LNA 211 and the ground potential.
  • the first matching circuit may be composed of a plurality of elements including the first matching element 231.
  • the first filter circuit 212 having an attenuation characteristic for the spurious component of the transmission signal in the first frequency band is connected to the output terminal of the first LNA 211, and the first LNA 211 and the first filter circuit 212 are configured in the same package. Thereby, the first filter circuit 212 attenuates the spurious component of the transmission signal in the first frequency band output from the first LNA 211.
  • configuring the first LNA 211 and the first filter circuit 212 in the same package indicates, for example, that the first LNA 211 and the first filter circuit 212 are mounted on the same surface of the substrate.
  • the first receiving circuit 21 mounts other elements including the first LNA 211, the first filter circuit 212, and the first matching element 231 on a substrate, and seals the mounted elements and circuits after resin sealing. It may be formed by forming a shield film on the resin. The structural features and effects of the first receiving circuit 21 will be described in detail later.
  • the second receiving circuit 22 has a second LNA 221 and a first filter circuit 222.
  • the second receiving circuit 22 may further include a second matching element 232.
  • the second reception circuit 22 amplifies the reception signal Rx2 in the second frequency band by the second LNA 221 and attenuates an undesired frequency component signal included in the amplified reception signal Rx2 by the second filter circuit 222 to the RFIC 50. Supply.
  • the second matching element 232 forms a second matching circuit for impedance matching at the input end of the second LNA 221.
  • the second matching element 232 is connected between a signal path connecting the input terminal of the second receiving circuit 22 and the input terminal of the second LNA 221 and the ground potential, but the present invention is not limited to this example.
  • the second matching element 232 may be connected between the input terminal of the second receiving circuit 22 and the input terminal of the second LNA 221.
  • the second matching circuit may be composed of a plurality of elements including the second matching element 232.
  • a second filter circuit 222 having an attenuation characteristic with respect to a spurious component of the transmission signal in the second frequency band is connected to the output terminal of the second LNA 221, and the second LNA 221 and the second filter circuit 222 are configured in the same package. As a result, the spurious component of the transmission signal in the second frequency band output from the second LNA 221 is attenuated.
  • configuring the second LNA 221 and the second filter circuit 222 in the same package means, for example, that the second LNA 221 and the second filter circuit 222 are mounted on the same surface of the substrate.
  • the second receiving circuit 22 mounts other elements including the second LNA 221, the second filter circuit 222, and the second matching element 232 on a substrate, and seals the mounted elements and circuits after resin sealing. It may be formed by forming a shield film on the resin. The structural features and effects of the second receiving circuit 22 will be described in detail later.
  • the communication apparatus configured as described above, it is possible to simultaneously transmit and receive signals of two or more waves in the first frequency band and the second frequency band, such as CA and COEX (Co-Existence).
  • CA and COEX Co-Existence
  • the RF module 2 uses the first filter circuit 212 having an attenuation characteristic with respect to the spurious component of the transmission signal Tx1 in the first frequency band.
  • the attenuation characteristic with respect to the spurious component of the transmission signal Tx1 in the first frequency band refers to a characteristic in which the frequency nf Tx1 (n is a natural number of 2 or more) of the spurious component is outside the passband.
  • the specific configuration of the first filter circuit 212 is not limited as long as it has an attenuation characteristic with respect to the spurious component of the transmission signal Tx1.
  • the first filter circuit 212 connects a resonance circuit between the output terminal of the first LNA 211 and the ground potential, and has a notch filter (a low-pass filter having an attenuation pole and an attenuation pole provided with an attenuation pole at a frequency of a target spurious component). Including a high-pass filter) (not shown).
  • the low-pass filter is also referred to as LPF.
  • the high-pass filter is also called HPF. Since the notch filter attenuates the target spurious component pinpoint, it is possible to minimize the deterioration of the insertion loss.
  • the first filter circuit 212 is not limited to a notch filter, and may be a low-pass filter (hereinafter also referred to as LPF), a high-pass filter (hereinafter also referred to as HPF), or a bandpass filter (hereinafter also referred to as BPF). .
  • LPF low-pass filter
  • HPF high-pass filter
  • BPF bandpass filter
  • the first receiving circuit 21 is configured to suppress deterioration of receiving sensitivity when two or more signals are simultaneously transmitted / received by the attenuation characteristic of the first filter circuit 212.
  • the RF module 2 since the first filter circuit 212 attenuates the spurious component, the requirement for anti-spurious measures against isolation between the antenna 81 and the first receiving circuit 21 is alleviated. As a result, the degree of freedom in designing the component arrangement and the wiring pattern is increased.
  • the spurious component can be attenuated by reducing the amplification distortion of the first LNA 211.
  • the transistor of the first LNA 211 needs to be enlarged and driven with a large current, and the module is increased in size and the battery is sustained. Another problem arises, such as time savings.
  • the spurious component is attenuated by the first filter circuit 212, it is allowed that a certain amount of spurious component is generated from the first LNA 211. Accordingly, when simultaneous transmission / reception of signals of two or more waves is performed without excessively increasing the size of the first LNA 211 and increasing the current consumption, spurious components generated in the LNA circulate from the first receiving circuit to the second receiving circuit.
  • the first receiving circuit 21 that can suppress the deterioration of the receiving sensitivity is obtained.
  • the second receiving circuit 22 has the same configuration as that of the first receiving circuit 21.
  • the wiring and terminals are used.
  • Signals used in two-wave simultaneous transmission / reception include, for example, Band 13 (Tx: 777 to 787 MHz) and GPS, Band 26 (Tx: 814 to 849 MHz), Wi-Fi (registered trademark) 2G, Band 27 (Tx: 807 to 824 Mhz) And Wi-Fi (registered trademark) 2G, Band 28 (Tx: 703 to 748 MHz) and Band 1, Band 3 (Tx: 1710 to 1785 MHz) and Band 42, Band 1 (Tx: 1920 to 1980 MHz) and Band 43, Band 7 (Tx: 2500 to 2570 MHz) ) And Wi-Fi (registered trademark) 5G.
  • two-wave simultaneous transmission / reception with Co-Existence such as Wi-Fi (registered trademark) and LTE is also possible.
  • the transmission signal goes around from the transmission / reception circuit to the reception circuit
  • the present invention is not limited to this.
  • a transmission signal circulates to the reception side via a duplexer, and a spurious component generated by the LNA wraps around the reception system or reception module of another transmission / reception module, thereby receiving sensitivity. May deteriorate.
  • the reception circuit of the transmission / reception module has the above-described configuration, it is possible to suppress deterioration in reception sensitivity.
  • the RF module 2 is not limited to the example in FIG.
  • an RF module including a receiving circuit using a filter circuit having a variable frequency characteristic will be described.
  • FIG. 2 is a block diagram illustrating a functional example of the communication apparatus according to the modification of the first embodiment.
  • the front end circuit 10a shown in FIG. 2 is different from the front end circuit 10 of FIG. 1 in that the RF module 2a uses the first filter circuit 212a for the first receiving circuit 21a and the second receiving circuit 22a for the second. The difference is that the filter circuit 222a is used.
  • the first filter circuit 212a and the second filter circuit 222a are filter circuits each including a variable element (for example, a variable capacitor or a variable inductor) that can adjust the attenuation frequency.
  • a variable element for example, a variable capacitor or a variable inductor
  • the first reception circuit 21a and the second reception circuit 22a each receive a reception signal in a target frequency band selected from a plurality of frequency bands.
  • the attenuation frequency can be easily adjusted to the frequency of the target spurious component.
  • the attenuation frequency of the first filter circuit 212a and the second filter circuit 222a By adjusting the attenuation frequency of the first filter circuit 212a and the second filter circuit 222a by using a variable capacitor, for example, it has a wide attenuation band capable of collectively attenuating a plurality of spurious components in different frequency bands. Compared with the filter circuit, the insertion loss can be reduced. In addition, the circuit scale can be reduced as compared with a circuit in which a plurality of filter elements (for example, SAW filters) whose attenuation frequency is fixed to a spurious component for each frequency band are switched by a switch.
  • a plurality of filter elements for example, SAW filters
  • the first filter circuit 212a connects a resonance circuit including a variable capacitor between the output terminal of the first LNA 211 and the ground potential, and a variable notch filter (attenuation) capable of moving the attenuation pole to the frequency of the target spurious component. (Including LPF and HPF having poles) (not shown).
  • the second filter circuit 222a may also be a variable notch filter configured similarly. Since the variable notch filter attenuates the target spurious component at a pinpoint, it is possible to minimize the deterioration of the insertion loss and NF (noise figure).
  • the first filter circuit 212a and the second filter circuit 222a in addition to selecting a target spurious component from a plurality of spurious components in different frequency bands, for example, compensating for characteristic variation for each receiving circuit. Fine adjustment of the frequency is possible. Thereby, the attenuation characteristics of a plurality of receiving circuits can be easily unified even after the receiving circuits are completed.
  • FIG. 3A is a side view showing an example of the configuration of the first receiving circuit 21.
  • the first receiving circuit 21 is configured by arranging the first LNA 211, the first filter circuit 212, and the matching element 231 on the same surface of the same substrate 210.
  • the first LNA 211 is a surface-mount type chip transistor, and is bonded to one main surface of the first substrate 210 via a conductive bonding material such as solder.
  • the first filter circuit 212 is configured by connecting an LC resonance circuit in which a capacitor element 213 and an inductor 214 are connected in series between the output terminal of the first LNA 211 and the ground potential.
  • the capacitor element 213 is a surface mount type chip capacitor, and is bonded to the one main surface of the substrate 210 via a conductive bonding material such as solder.
  • the inductor 214 is a substrate built-in type inductor, and is formed of a conductor pattern disposed on the inner layer of the substrate 210.
  • the matching element 231 is a surface-mount type chip inductor, and is bonded to the one main surface of the substrate 210 via a conductive bonding material such as solder.
  • the connection wiring between the first LNA 211 and the first filter circuit 212 is shortened, and the first filter The insertion loss of the circuit 212 is reduced.
  • the first filter circuit 212 in the example of FIG. 3A
  • an element for example, the matching element 231 disposed in front of the first LNA and the first filter Isolation with the circuit 212 can be secured, and problems such as deterioration of attenuation characteristics and oscillation due to insufficient isolation can be suppressed.
  • the second receiving circuit 22 is configured similarly to the first receiving circuit 21 of FIG. 3A. Further, the first receiving circuit 21a and the second receiving circuit 22a change the capacitor element 213 of the first receiving circuit 21 in FIG. 3A to a variable capacitor (which may include a control IC or a driver for changing the capacitance). Configured.
  • the second LNA 221, the second filter circuit 222, and the second matching element 232 are arranged on the same main surface of the same substrate, or at least a part of the second filter circuit 222 is disposed.
  • the substrate By forming in the substrate, it is possible to obtain an effect of reducing insertion loss and suppressing defects such as deterioration of attenuation characteristics and oscillation.
  • the first LNA 211, the first filter circuit 212a, and the first matching element 231 are disposed on the same main surface of the same substrate, or at least a part of the first filter circuit 212a is disposed.
  • the substrate By forming in the substrate, it is possible to obtain an effect of reducing insertion loss and suppressing defects such as deterioration of attenuation characteristics and oscillation.
  • the second LNA 221, the second filter circuit 222a, and the second matching element 232 are disposed on the same main surface of the same substrate, or at least a part of the second filter circuit 222a is disposed.
  • the substrate By forming in the substrate, it is possible to obtain an effect of reducing insertion loss and suppressing defects such as deterioration of attenuation characteristics and oscillation.
  • the first receiving circuit 21 and the second receiving circuit 22 are provided on different substrates, and isolation is performed, whereby a spurious component and a second component that wrap around from the first receiving circuit 21 to the second receiving circuit 22 are obtained. Any spurious component that wraps around from the receiving circuit 22 to the first receiving circuit 21 can be reduced.
  • FIG. 3B is a side view showing an example of the configuration of the first receiving circuit 21b.
  • the first LNA 211, the capacitor element 213, and the matching element 231 are sealed with a resin 233, and a conductive shield film 234 is formed on the surface of the resin 233.
  • first receiving circuit 21 and the second receiving circuit 22 are formed of different substrates.
  • FIG. 3C is a perspective view showing an example of the package structure of the RF module 2b in which the first receiving circuit 21 and the second receiving circuit 22 are formed on the same main surface of the same substrate.
  • the first receiving circuit 21 and the second receiving circuit 22 are formed in the first region R1 and the second region R2, respectively.
  • a shield film 234 is formed on the surface of the resin 233 that seals the first receiving circuit 21 and the second receiving circuit 22, and a shield wall 235 is formed inside the resin 233.
  • the shield wall 235 is provided with a groove in the resin 233 between the first region R1 and the second region R2, and is filled with a conductive paste mainly composed of copper (Cu) or silver (Ag). It may be formed by doing.
  • the shield wall 235 is connected to the shield film 234.
  • the RF module in which the first receiving circuit 21 and the second receiving circuit 22 are formed on the same main surface of the same substrate and the isolation between the first receiving circuit 21 and the second receiving circuit 22 is ensured. 2 is obtained.
  • FIG. 4 is a circuit diagram showing an example of a filter circuit according to the third embodiment.
  • FIG. 4 corresponds to the first receiving circuit 21 a of FIG. 2, and shows a specific configuration example of the first filter circuit 212 a together with the first LNA 211.
  • the first filter circuit 212a in FIG. 4 includes a transmission line 215, a switch 216, and a variable capacitor 217.
  • the transmission line 215 is a transmission line that exhibits short characteristics with respect to the even-order spurious component of the transmission signal Tx1 in the first frequency band.
  • the first end of the transmission line 215 is connected to the output end of the first LNA 211, and the second end is connected to the ground potential via the variable capacitor 217 depending on the state of the switch 216.
  • the first filter circuit 212a is connected between the output terminal of the LNA 211 and the ground potential, and has the transmission line 215 that exhibits a short-circuit characteristic with respect to the spurious component of the transmission signal Tx1 in the first frequency band. Good.
  • the first filter circuit 212a is connected between the ground potential GND, the output terminal of the first LNA 211, and the ground potential GND, and exhibits a short characteristic with respect to the even-order spurious component of the transmission signal Tx1 in the first frequency band.
  • a short stub A including the transmission line 215 is included.
  • the short stub A including the transmission line 215 is formed for the spurious component output from the first LNA 211. Therefore, the first filter has an attenuation pole at the frequency of the spurious component and has a small insertion loss.
  • the circuit 212a is configured with a small number of parts.
  • FIG. 5 is a graph showing an example of the attenuation characteristic of the first filter circuit 212a.
  • the attenuation pole can be made variable as shown in FIG. 5 by directly connecting the transmission line 215 to the ground potential and changing the capacitance of the variable capacitor 217.
  • FIG. 6 is a circuit diagram showing another example of the filter circuit according to the third embodiment.
  • FIG. 6 corresponds to a circuit in which the first receiving circuit 21a and the second receiving circuit 22a of FIG. 2 are integrated so as to share the output terminal, and specific examples of the first filter circuit 212a and the second filter circuit 222a.
  • the first LNA 211 and the second LNA 221 are shown.
  • the first filter circuit 212a and the second filter circuit 222a in FIG. 6 include a first transmission line 225, a second transmission line 215a, a variable capacitor 218, and a switch 219.
  • the first end of the first transmission line 225 is connected to the output end of the first LNA 211.
  • the first end of the second transmission line 215a is connected to the output end of the second LNA 221.
  • the variable capacitor 218 has a first end connected to the ground potential GND.
  • the switch 219 selectively connects the second end of the variable capacitor 218 to one of the output end of the first LNA 211 and the output end of the second LNA 221.
  • the second end of the first transmission line 225 and the second end of the second transmission line 215a are connected to each other.
  • a first filter circuit 212a including a short stub B showing a short characteristic with respect to an even-order spurious component (hereinafter referred to as a first spurious component) of the transmission signal Tx1 in the first frequency band is configured.
  • the first spurious component output from the first LNA 211 is attenuated by the first filter circuit 212a, and at the connection point between the second end of the first transmission line 215a and the second end of the second transmission line 225.
  • the first spurious component is attenuated.
  • a second filter circuit 222a including a stub C showing a short characteristic with respect to the even-order spurious component (hereinafter referred to as a second spurious component) of the transmission signal Tx2 is configured.
  • the second spurious component output from the second LNA 221 is attenuated by the second filter circuit 222a, and at the connection point between the second end of the first transmission line 215a and the second end of the second transmission line 225.
  • the second spurious component is attenuated.
  • the first transmission line 215a, the second transmission line 225, and the variable capacitor 218 constitute one of the first filter circuits 212a and 222a depending on the state of the switch 219.
  • one of the first spurious component and the second spurious component is selected according to the state of the switch 219 with the minimum number of parts by combining the first transmission line 215a, the second transmission line 225, and the variable capacitor 218.
  • a filter circuit that can be attenuated is configured.
  • FIG. 7 is a block diagram illustrating an example of a functional configuration of the communication device 1 according to the third embodiment.
  • the communication device 1 includes a baseband signal processing circuit 40, an RF signal processing circuit 50, a front end circuit 60, diplexers 71 and 72, and antennas 81 and 82.
  • the front-end circuit 60 the front-end circuit 10 or 10a including the RF module described in the first embodiment and its modification is used.
  • the baseband signal processing circuit 40 converts transmission data generated by an application device / application software that performs voice call or image display into a transmission signal and supplies the signal to the RF signal processing circuit 50.
  • the conversion may include data compression, multiplexing, and error correction code addition.
  • the received signal received from the RF signal processing circuit 50 is converted into received data and supplied to the application device / application software. Such conversion may include data decompression, demultiplexing, and error correction.
  • the baseband signal processing circuit 40 may be composed of a baseband integrated circuit (BBIC) chip.
  • BBIC baseband integrated circuit
  • the RF signal processing circuit 50 converts the transmission signal generated by the baseband signal processing circuit 40 into a transmission RF signal and supplies it to the front end circuit 60.
  • the conversion may include signal modulation and up-conversion.
  • the RF signal processing circuit 50 converts the received RF signal received from the front end circuit 60 into a received signal and supplies the received signal to the baseband signal processing circuit 40.
  • the conversion may include signal demodulation and down-conversion.
  • the RF signal processing circuit 50 may be composed of a high frequency integrated circuit (RFIC) chip.
  • the RF signal processing circuit 50 generates transmission signals Tx1 and Tx2 in different frequency bands in parallel in order to perform simultaneous transmission and reception of signals of two or more waves, and receives signals Rx1 in different frequency bands from the front end circuit 60. , Rx2 are received in parallel.
  • the front end circuit 60 amplifies the transmission signals Tx1 and Tx2 for each frequency band generated by the RF signal processing circuit 50 with a power amplifier.
  • the diplexer 71 combines the transmission RF signals Tx1 and Tx2 for each frequency band and transmits them by the antenna 81.
  • the diplexer 72 separates the received signals Rx1 and Rx2 for each frequency band from the signal received by the antenna 82.
  • the front-end circuit 60 amplifies the received signals Rx1 and Rx2 for each separated frequency band with an LNA, attenuates spurious components of the transmission signals Tx1 and Tx2, and then supplies the signals to the RF signal processing circuit 50.
  • the communication device by using the front-end circuit 60 or 60a including an RF module that effectively suppresses spurious components that cause deterioration in reception sensitivity when signals of two or more waves are simultaneously transmitted and received, 2 A communication device having excellent reception sensitivity in the case of simultaneous transmission / reception of signals exceeding a wave can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Transceivers (AREA)

Abstract

第1周波数帯の受信信号と第2周波数帯の受信信号とを少なくとも含む複数の信号を同時に送受信するための高周波モジュール(2)は、前記第1周波数帯の受信信号を処理する第1受信回路(21)を備え、第1受信回路(21)は、第1基板と、前記第1基板の主面に実装された第1ローノイズアンプ(211)と、第1ローノイズアンプ(211)の出力端に接続され、少なくとも一部が前記第1基板の前記主面に形成された第1フィルタ回路(212)と、を含み、第1フィルタ回路(212)は、前記第1周波数帯の送信信号が第1ローノイズアンプ(211)に入力されることによって発生した、前記第1周波数帯の送信信号に含まれかつ前記第2周波数帯の受信信号の周波数帯域と重複する周波数帯域を有するスプリアス成分を減衰させる。

Description

高周波モジュール及び通信装置
 本発明は高周波モジュール及び通信装置に関し、特に、2波以上の信号の同時送受信を行うための高周波モジュール及びそれを用いて構成される通信装置に関する。
 近年、キャリアアグリゲーション(以下CAとも記す)など、周波数帯が異なる複数の電波を同時に用いて高速かつ大容量の無線通信を行う技術が導入されている。例えば、チューナブルRF(高周波)フロントエンド構造を有し、CA動作可能なシステムが公知となっている(特許文献1)。
 図8は、特許文献1に開示されるシステムの構成を示すブロック図である。図8に示されるシステム900は、セカンダリ受信システム920内に、チューナブルRFモジュール950、960を備えている。チューナブルRFモジュール950は、1.7~2.7GHzのMB/HB(ミドルバンド/ハイバンド)グループに属する周波数帯の受信信号を、「ローノイズアンプ(以下、「LNA」ということもある。)954で増幅する。チューナブルRFモジュール960は、0.7~1.0GHzのLB(ローバンド)グループに属する周波数帯の受信信号を、LNA964で増幅する。
 システム900は、例えば、MB/HBバンドグループに属する周波数帯と、LBバンドグループに属する周波数帯とを用いてCA動作することができる。特許文献1は、周波数帯が異なる複数の信号を受信するCAでは、所望の受信信号から帯域外信号を減衰することが課題になると指摘し、アンテナから回り込む送信信号を帯域外信号の一例として挙げている。
米国特許出願公開第2015/0214985号明細書
 2波以上の信号の同時送受信を行う場合であって、ひとつの受信回路で発生するスプリアス成分(たとえば、送信回路から受信回路に回りこんだ送信信号を基に発生するスプリアス成分)が、他方の受信回路の受信周波数と重なる場合、配線や端子を介してスプリアス成分が回り込んで他方の受信回路の受信感度を劣化させる場合がある。また、RF部品の高集積化が進んでおり、モジュール同士や配線同士の距離が近くなり、信号が回り込むことが問題となっている。
 しかしながら、特許文献1では、スプリアス成分が回り込むことによって他方の受信回路の受信感度を劣化させるという課題に言及していない。例えば、特許文献1の図4では、LNA後段にフィルタが配置されているが、フィルタによる減衰の前に配線や端子を介してスプリアス成分が回り込んで他方の受信回路の受信感度を劣化させる恐れがある。
 そこで、本発明は、2波以上の同時送受信時において、LNAで発生するスプリアス成分が一方の受信回路から他方の受信回路に回り込むことによる受信感度劣化を効果的に抑制できる高周波モジュールを提供することを目的とする。
 上記目的を達成するために、本発明の一態様に係る高周波モジュールは、第1周波数帯の受信信号と第2周波数帯の受信信号とを少なくとも含む複数の信号を同時に送受信するための高周波モジュールであって、前記第1周波数帯の受信信号を処理する第1受信回路を備え、前記第1受信回路は、第1基板と、前記第1基板の主面に実装された第1ローノイズアンプと、前記第1ローノイズアンプの出力端に接続され、少なくとも一部が前記第1基板の前記主面に形成された第1フィルタ回路と、を含み、前記第1フィルタ回路は、前記第1周波数帯の送信信号が前記第1ローノイズアンプに入力されることによって発生した、前記第1周波数帯の送信信号に含まれかつ前記第2周波数帯の受信信号の周波数帯域と重複する周波数帯域を有するスプリアス成分を減衰させる。
 上記の構成により、第1LNAの出力端に、第1周波数帯の送信信号のスプリアス成分に対する減衰特性を有する第1フィルタ回路を接続し、第1LNAと第1フィルタ回路とを同一パッケージで構成することによって、第1LNAモジュールから出力される第1周波数帯の送信信号のスプリアス成分を第1フィルタ回路で減衰させる。なお、第1LNAと第1フィルタ回路とを同一パッケージで構成するとは、例えば、第1LNAと第1フィルタ回路とが基板の同一面上に実装されていることを表す。
 第1LNAと第1フィルタ回路とを同一パッケージで構成することにより、第1LNAと第1フィルタ回路との接続配線長が短縮され、第1フィルタ回路の挿入損失が低減する。
 これにより、2波以上の信号の同時送受信を行う場合において第1周波数帯の送信信号のスプリアス成分と第2周波数帯の受信信号とが同じ周波数範囲に入る場合であっても、第1受信回路から第2周波数帯の受信信号を処理する第2受信回路に回り込むスプリアス成分を減衰し、その結果、第2周波数帯の受信感度の劣化を抑制することができる。
 上記の構成によれば、第1周波数帯のLNAで発生するスプリアス成分は第1フィルタ回路によって減衰されるので、第1受信回路と第2受信回路との間のアイソレーションに対するスプリアス対策のための要求は緩和される。その結果、部品配置や配線パターンなどの設計の自由度が高まる。ここで、第1受信回路と第2受信回路との間のアイソレーションとは、LNAモジュールの後段の配線同士や、RFIC端子間のアイソレーションのことである。
 また、前記第1フィルタ回路は、可変キャパシタを含み、可変の減衰周波数を有してもよい。
 この構成によれば、例えば、第1受信回路が複数の周波数帯の中から選ばれる目的の周波数帯の受信信号を受信する場合などにおいて、第1フィルタ回路の減衰周波数を、目的のスプリアス成分の周波数に容易に調整できる。
 上記の第1フィルタ回路によれば、可変キャパシタを使って減衰周波数を調整するので、例えば、複数の周波数帯のスプリアス成分を一括して減衰させることができる広い減衰帯域を持つフィルタ回路と比べて、挿入損失を小さくできる。また、減衰周波数が周波数帯ごとのスプリアス成分に固定されている複数のフィルタ素子(例えば、SAWフィルタ)をスイッチで切り替えて使う回路と比べて、回路規模を小さくできる。
 可変キャパシタの制御はスイッチに内蔵されているIC(集積回路)で行うことができる。可変キャパシタをIC内に内蔵することによって、制御配線が簡単になって小型化が達成される。また、可変キャパシタを使うことで減衰極を可変化できるので、異なる周波数帯の複数の信号を同じ出力端子から択一的に出力する場合、各周波数帯に対応するフィルタを出力端子に設ける必要がなくなる。そのため、素子数削減による小型化、低コスト化、及び低ロス化が達成される。さらには、フィルタの極の調整がICでできるので、設計マージンが少なくてよい。
 また、前記第1フィルタ回路の他の一部は前記第1基板の内部に形成されていてもよい。
 例えば、第1フィルタ回路の一部を構成する素子(例えばインダクタ)が実装部品であって、第1LNAの前段に配置される素子(例えば整合用のインダクタ素子)が実装部品である場合、第1フィルタ回路を構成する素子と、第1LNAの前段に配置される素子とで電磁界結合が発生し、アイソレーションを劣化させることがある。
 第1フィルタ回路と第1LNAの前段に配置される素子とのアイソレーションが不十分だと、減衰特性の劣化や、第1フィルタ回路の一部を構成する素子(例えばインダクタ)と第1LNAの前段に配置される素子(例えばインダクタ)との間で発振が生じる懸念がある。
 これに対し、上記の構成によれば、第1フィルタ回路の少なくとも一部を基板内に形成することで電磁界結合を抑制することができる。その結果、第1LNAの前段に配置される素子(例えば、インダクタ)と第1フィルタ回路との間のアイソレーションを確保することができ、アイソレーション不足に起因する減衰特性の劣化や発振などの不具合を抑制できる。なお、第1基板内に形成される第1フィルタ回路の一部は、一例として、配線パターンで形成された内蔵インダクタであってもよい。
 また、前記第1フィルタ回路は、前記第1ローノイズアンプの出力端とグランド電位との間に接続され、前記第1周波数帯の送信信号の偶数次スプリアス成分に対してショート特性を示す伝送線路を含むショートスタブを含んでもよい。ここで、グランド電位に接続されるという文言は、グランド電位を供給する電源ノードに接続されることを意味し、以下の説明においても同様の文言を用いる。
 この構成によれば、第1LNAから出力されるスプリアス成分に対して、伝送線路を含むショートスタブが形成されるので、スプリアス成分の周波数に減衰極を有しかつ挿入損失の小さい第1フィルタ回路を、少ない部品点数で構成できる。
 また、前記高周波モジュールは、前記第2周波数帯の受信信号を処理する第2受信回路をさらに備え、前記第2受信回路は、第2ローノイズアンプと、前記第2ローノイズアンプの出力端に接続され、前記第2周波数帯の送信信号のスプリアス成分に対する減衰特性を有する第2フィルタ回路と、を含む第2受信回路を、さらに備えてもよい。
 この構成によれば、第1受信回路について説明した効果と同様の効果を、第2受信回路において得ることができる。すなわち、2波以上の信号の同時送受信を行う場合において第2周波数帯の送信信号のスプリアス成分と第1周波数帯の受信信号とが同じ周波数範囲に入る場合であっても、第2受信回路から第1受信回路に回り込むスプリアス成分を減衰し、その結果、第1周波数帯の受信感度の劣化を抑制することができる。
 また、第1端が前記第1ローノイズアンプの出力端に接続された第1伝送線路と、第1端が前記第2ローノイズアンプの出力端に接続された第2伝送線路と、第1端がグランド電位に接続された可変キャパシタと、前記可変キャパシタの第2端を、前記第1ローノイズアンプの出力端及び前記第2ローノイズアンプの出力端の何れか一方に選択的に接続するスイッチと、を備え、前記第1伝送線路の第2端と前記第2伝送線路の第2端とが接続され、前記第1伝送線路、前記第2伝送線路、及び前記可変キャパシタは、(i)前記可変キャパシタの第2端と前記第2ローノイズアンプの前記出力端とが接続された第1状態で、グランド電位と前記可変キャパシタと前記第2伝送線路とが電気的に接続されることにより、前記第1周波数帯の送信信号の偶数次スプリアス成分に対してショート特性を示す前記第1フィルタ回路を構成し、(ii)前記可変キャパシタの第2端と前記第1ローノイズアンプの前記出力端とが接続された第2状態で、グランド電位と前記可変キャパシタと前記第1伝送線路とが電気的に接続されることにより、前記第2周波数帯の送信信号の偶数次スプリアス成分に対してショート特性を示す前記第2フィルタ回路を構成してもよい。
 この構成によれば、第1状態では、第2伝送線路と可変キャパシタとが、第1周波数帯の送信信号のスプリアス成分に対してショートスタブとなることで、当該スプリアス成分に対する減衰特性を有する第1フィルタ回路が構成される。そのため、第1LNAから出力される第1スプリアス成分は第1フィルタ回路によって減衰され、第1伝送線路の第2端と第2伝送線路の第2端との接続点での第1スプリアス成分が減衰する。
 また、第2状態では、第1伝送線路と可変キャパシタとが、第2周波数帯の送信信号のスプリアス成分に対してショートスタブとなることで、当該スプリアス成分に対する減衰特性を有する第2フィルタ回路が構成される。そのため、第2LNAから出力される第2スプリアス成分は第2フィルタ回路によって減衰され、第1伝送線路の第2端と第2伝送線路の第2端との接続点での第2スプリアス成分が減衰する。
 これにより、第1伝送線路、第2伝送線路、及び可変キャパシタの兼用による最小限の部品点数で、スイッチの状態に応じて、第1スプリアス成分及び第2スプリアス成分の一方を選択的に減衰できるフィルタ回路が構成される。
 なお、可変キャパシタを用いることで、減衰周波数の切り替え及び微調整が可能で、挿入損失が小さく、かつ回路規模が小さいフィルタ回路が構成できる。
 また、本発明の一態様に係る通信装置は、前記高周波モジュールと、前記高周波モジュールから高周波受信信号を受信するRF信号処理回路と、を備える。
 この構成によれば、2波以上の信号の同時送受信を行う場合における受信感度の劣化要因となるスプリアス成分を効果的に抑制できる高周波モジュールを用いることで、2波以上の信号の同時送受信を行う場合の受信感度に優れた通信装置が得られる。
 本発明に係る高周波モジュール及び通信装置によれば、2波以上の信号の同時送受信を行う場合における受信感度の劣化を効果的に抑制できる高周波モジュール、及び2波以上の信号の同時送受信を行う場合の受信感度に優れた通信装置が得られる。
図1は、実施の形態1に係る通信装置の構成の一例を示すブロック図である。 図2は、実施の形態1の変形例に係る通信装置の構成の一例を示すブロック図である。 図3Aは、実施の形態2に係る第1受信回路の構成例を示す側面図である。 図3Bは、実施の形態2に係る第1受信回路の構成例を示す側面図である。 図3Cは、実施の形態2に係るRFモジュールの構成例を示す斜視図である。 図4は、実施の形態3に係るフィルタ回路の一例を示す回路図である。 図5は、実施の形態3に係るフィルタ回路の減衰特性の例を示すグラフである。 図6は、実施の形態3に係るフィルタ回路の他の例を示す回路図である。 図7は、実施の形態4に係る通信装置の機能的な構成の一例を示すブロック図である。 図8は、従来のチューナブルRFモジュールを有するシステムの構成の一例を示すブロック図である。
 以下、本発明の実施の形態について、図面を用いて詳細に説明する。なお、以下で説明する実施の形態は、いずれも包括的又は具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置および接続形態などは、一例であり、本発明を限定する主旨ではない。
 (実施の形態1)
 実施の形態1に係る高周波モジュール(以下、「RFモジュール」ということもある)は、第1周波数帯と第2周波数帯とによる2波以上の信号の同時送受信を行うフロントエンド回路である。
 図1は、実施の形態1に係る通信装置の機能的な一例を示すブロック図である。図1には、RFIC(集積回路)50、フロントエンド回路10、ダイプレクサ71、72、及びアンテナ81、82につながるアンテナ端子(図示せず)を備える通信装置の要部が示されている。フロントエンド回路10は、第1送受信回路11、第2送受信回路12、第1受信回路21、及び第2受信回路22を有する。RFモジュール2は、第1受信回路21及び第2受信回路22を含む。
 第1送受信回路11は、RFIC50から供給される第1周波数帯の送信信号Tx1を増幅してダイプレクサ71へ供給する。第2送受信回路12は、RFIC50から供給される第2周波数帯の送信信号Tx2を増幅してダイプレクサ71へ供給する。ここで、第1周波数帯の送信信号Tx1の周波数をfTx1と表記し、第2周波数帯の送信信号Tx2の周波数をfTx2と表記する。
 ダイプレクサ71は、第1周波数帯と第2周波数帯の送受信信号を分波もしくは合波する機能を有するアンテナ81を共用する素子である。アンテナ81は、信号を送受信する。
 アンテナ82は、第1周波数帯の受信信号Rx1と第2周波数帯の受信信号Rx2とを含む信号を受信し、ダイプレクサ72へ供給する。ここで、第1周波数帯の受信信号Rx1の周波数をfRx1と表記し、第2周波数帯の受信信号Rx2の周波数をfRx2と表記する。
 ダイプレクサ72は、アンテナ信号から第1周波数帯の受信信号Rx1と第2周波数帯の受信信号Rx2とを分離し、分離された第1周波数帯の受信信号Rx1及び第2周波数帯の受信信号Rx2を、それぞれ第1受信回路21及び第2受信回路22へ供給する。
 第1受信回路21は、第1LNA211と第1フィルタ回路212とを有している。第1受信回路21は、さらに第1整合素子231を有していてもよい。第1受信回路21は、第1周波数帯の受信信号Rx1を第1LNA211で増幅し、増幅後の受信信号Rx1に含まれる非所望の周波数成分信号を第1フィルタ回路212で減衰させて、RFIC50へ供給する。
 第1整合素子231は、第1LNA211の入力端におけるインピーダンス整合を取るための第1整合回路を構成する。第1整合素子231は、一例として、第1受信回路21の入力端と第1LNA211の入力端の間に接続されているが、この例には限られない。第1整合素子231は、第1受信回路21の入力端と第1LNA211の入力端とを結ぶ信号経路とグランド電位との間に接続されていてもよい。第1整合回路は、第1整合素子231を含む複数の素子で構成されていてもよい。
 第1LNA211の出力端に、第1周波数帯の送信信号のスプリアス成分に対する減衰特性を有する第1フィルタ回路212を接続し、第1LNA211と第1フィルタ回路212とを同一パッケージで構成する。これによって、第1LNA211から出力される第1周波数帯の送信信号のスプリアス成分を第1フィルタ回路212で減衰させる。
 なお、第1LNA211と第1フィルタ回路212とを同一パッケージで構成するとは、例えば、第1LNA211と第1フィルタ回路212とが基板の同一面上に実装されていることを表す。
 第1受信回路21は、例えば、第1LNA211、第1フィルタ回路212、および第1整合素子231を含むその他の素子を基板に実装し、実装された素子および回路を樹脂封止した後、封止樹脂にシールド膜を成膜することによって形成されていてもよい。第1受信回路21の構造上の特徴及び効果については、後ほど詳しく説明する。
 第2受信回路22は、第2LNA221と第1フィルタ回路222とを有している。第2受信回路22は、さらに第2整合素子232を有していてもよい。第2受信回路22は、第2周波数帯の受信信号Rx2を第2LNA221で増幅し、増幅後の受信信号Rx2に含まれる非所望の周波数成分信号を第2フィルタ回路222で減衰させて、RFIC50へ供給する。
 第2整合素子232は、第2LNA221の入力端におけるインピーダンス整合を取るための第2整合回路を構成する。第2整合素子232は、一例として、第2受信回路22の入力端と第2LNA221の入力端とを結ぶ信号経路とグランド電位との間に接続されているが、この例には限られない。第2整合素子232は、第2受信回路22の入力端と第2LNA221の入力端の間に接続されていてもよい。第2整合回路は、第2整合素子232を含む複数の素子で構成されていてもよい。
 第2LNA221の出力端に、第2周波数帯の送信信号のスプリアス成分に対する減衰特性を有する第2フィルタ回路222を接続し、第2LNA221と第2フィルタ回路222とを同一パッケージで構成する。これによって、第2LNA221から出力される第2周波数帯の送信信号のスプリアス成分を減衰させる。
 なお、第2LNA221と第2フィルタ回路222とを同一パッケージで構成するとは、例えば、第2LNA221と第2フィルタ回路222とが基板の同一面上に実装されていることを表す。
 第2受信回路22は、例えば、第2LNA221、第2フィルタ回路222、および第2整合素子232を含むその他の素子を基板に実装し、実装された素子および回路を樹脂封止した後、封止樹脂にシールド膜を成膜することによって形成されていてもよい。第2受信回路22の構造上の特徴及び効果については、後ほど詳しく説明する。
 このように構成された通信装置によれば、CA、COEX(Co-Existence)等、第1周波数帯と第2周波数帯とによる2波以上の信号の同時送受信を行うことが可能である。
 RFモジュール2では、第1周波数帯の送信信号Tx1のスプリアス成分に対する減衰特性を有する第1フィルタ回路212を用いる。ここで、第1周波数帯の送信信号Tx1のスプリアス成分に対する減衰特性とは、当該スプリアス成分の周波数nfTx1(nは2以上の自然数)が通過帯域外となる特性を言う。
 第1フィルタ回路212は、送信信号Tx1のスプリアス成分に対する減衰特性を有していれば、具体的な構成は限定されない。第1フィルタ回路212は、一例として、第1LNA211の出力端とグランド電位との間に共振回路を接続し、目的のスプリアス成分の周波数に減衰極を設けたノッチフィルタ(減衰極を有するローパスフィルタ及びハイパスフィルタを含む)であってもよい(図示せず)。以下、ローパスフィルタをLPFともいう。また、ハイパスフィルタをHPFともいう。ノッチフィルタは、目的のスプリアス成分をピンポイントで減衰させるので、挿入損失の劣化を最小限に抑えることができる。第1フィルタ回路212は、ノッチフィルタには限られず、ローパスフィルタ(以下、LPFとも言う)、ハイパスフィルタ(以下、HPFともいう)、又はバンドパスフィルタ(以下、BPFともいう)であってもよい。
 RFモジュール2では、第1フィルタ回路212の減衰特性によって、2波以上の信号の同時送受信を行う場合における受信感度の劣化を抑制する第1受信回路21を構成している。
 RFモジュール2では、第1フィルタ回路212がスプリアス成分を減衰させるので、アンテナ81と第1受信回路21との間のアイソレーションに対するスプリアス対策のための要求は緩和される。その結果、部品配置や配線パターンなどの設計の自由度が高まる。
 スプリアス成分は、例えば、第1LNA211の増幅歪を低減することによっても減衰できるが、そのためには、第1LNA211のトランジスタを大型化し、大電流で駆動する必要があり、モジュールの大型化やバッテリーの持続時間の短縮といった別の問題が生じる。
 その点、RFモジュール2では、スプリアス成分を第1フィルタ回路212で減衰させるので、第1LNA211からある程度のスプリアス成分が発生することは許容される。これにより、第1LNA211を過度に大型化し消費電流を増大させることなく、2波以上の信号の同時送受信を行う場合、LNAで発生するスプリアス成分が第1受信回路から第2受信回路に回り込むことによる受信感度の劣化を抑制できる第1受信回路21が得られる。
 なお、図1のRFモジュール2では、第2受信回路22にも、第1受信回路21と同様の構成を設けている。これにより、2波以上の信号の同時送受信を行う場合において、第2周波数帯の送信信号Tx2のスプリアス成分とさらに別の周波数帯の受信信号とが同じ周波数範囲に入る場合、配線や端子を介して送信信号Tx2のスプリアス成分が別の周波数帯の受信信号を受信する別の受信回路に回りこんで別の受信回路における受信感度を劣化させることを抑制できる。
 2波同時送受信で用いられる信号としては、例えば、Band13(Tx:777~787MHz)とGPS、Band26(Tx:814~849MHz)とWi‐Fi(登録商標)2G、Band27(Tx:807~824Mhz)とWi‐Fi(登録商標)2G、Band28(Tx:703~748MHz)とBand1、Band3(Tx:1710~1785MHz)とBand42、Band1(Tx:1920~1980MHz)とBand43、Band7(Tx:2500~2570MHz)とWi‐Fi(登録商標)5Gがあげられる。この他にも、Wi‐Fi(登録商標)とLTEといった、Co-Existenceでの2波同時送受信も可能である。
 上記では、送信信号が送受信回路から受信回路に回り込む場合について言及したが、これに限定されない。例えば、送受信回路と受信回路とを備える送受信モジュール内において、デュプレクサを介して送信信号が受信側に回り込み、LNAで発生したスプリアス成分が別の送受信モジュールの受信系や受信モジュールに回りこんで受信感度を劣化させる場合がある。送受信モジュールの受信回路において、上述の構成を有する場合、受信感度劣化を抑制可能である。
 なお、RFモジュール2は、図1の例には限られない。以下では、周波数特性が可変のフィルタ回路を用いた受信回路を含むRFモジュールについて説明する。
 図2は、実施の形態1の変形例に係る通信装置の機能的な一例を示すブロック図である。図2に示されるフロントエンド回路10aは、図1のフロントエンド回路10と比べて、RFモジュール2aにおいて、第1受信回路21aに第1フィルタ回路212aが用いられ、第2受信回路22aに第2フィルタ回路222aが用いられている点が相違する。
 第1フィルタ回路212a、第2フィルタ回路222aは、それぞれ、減衰周波数が調整できる可変素子(例えば、可変容量や可変インダクタ)を含むフィルタ回路である。
 第1フィルタ回路212a、第2フィルタ回路222aを用いることで、例えば、第1受信回路21a、第2受信回路22aが、それぞれ複数の周波数帯の中から選ばれる目的周波数帯の受信信号を受信する場合などにおいて、減衰周波数を、目的のスプリアス成分の周波数に容易に調整できる。
 第1フィルタ回路212a、第2フィルタ回路222aの減衰周波数を、可変キャパシタを使って調整することで、例えば、異なる周波数帯の複数のスプリアス成分を一括して減衰させることができる広い減衰帯域を持つフィルタ回路と比べて、挿入損失を小さくできる。また、減衰周波数が周波数帯ごとのスプリアス成分に固定されている複数のフィルタ素子(例えば、SAWフィルタ)をスイッチで切り替えて使う回路と比べて、回路規模を小さくできる。
 第1フィルタ回路212aは、一例として、第1LNA211の出力端とグランド電位との間に可変キャパシタを含む共振回路を接続し、目的のスプリアス成分の周波数に減衰極を移動可能な可変ノッチフィルタ(減衰極を有するLPF及びHPFを含む)であってもよい(図示せず)。第2フィルタ回路222aもまた、同様に構成された可変ノッチフィルタであってもよい。可変ノッチフィルタは、目的のスプリアス成分をピンポイントで減衰させるので、挿入損失及びNF(雑音指数)の劣化を最小限に抑えることができる。
 なお、第1フィルタ回路212a、第2フィルタ回路222aでは、異なる周波数帯の複数のスプリアス成分の中から目的のスプリアス成分を選択する以外に、例えば、受信回路ごとの特性ばらつきを補償するといった、減衰周波数の微調整が可能である。これにより、複数の受信回路の減衰特性を、受信回路ができ上った後からでも、容易に統一することができる。
 (実施の形態2)
 実施の形態2では、上記で説明したRFモジュール2のパッケージ構造について、第1受信回路21の構成例を挙げて説明する。
 図3Aは、第1受信回路21の構成の一例を示す側面図である。図3Aの例によれば、第1受信回路21は、同一の基板210の同一面に第1LNA211と第1フィルタ回路212と整合素子231とを配置して構成されている。
 第1LNA211は、表面実装型のチップトランジスタであり、第1基板210の一方主面に、はんだなどの導電性接合材を介して接合される。
 第1フィルタ回路212は、キャパシタ素子213とインダクタ214とを直列に接続したLC共振回路を、第1LNA211の出力端とグランド電位との間に接続して構成される。キャパシタ素子213は、表面実装型のチップコンデンサであり、基板210の前記一方主面に、はんだなどの導電性接合材を介して接合されている。インダクタ214は、基板内蔵型のインダクタであり、基板210の内層に配置された導体パターンで形成されている。
 整合素子231は、表面実装型のチップインダクタであり、基板210の前記一方主面に、はんだなどの導電性接合材を介して接合されている。
 第1受信回路21によれば、第1LNA211と第1フィルタ回路212とを同一の基板210の同一面に配置するので、第1LNA211と第1フィルタ回路212との接続配線が短縮され、第1フィルタ回路212の挿入損失が低減する。
 また、第1フィルタ回路212の少なくとも一部(図3Aの例ではインダクタ214)を基板210内に形成することで、第1LNAの前段に配置される素子(例えば、整合素子231)と第1フィルタ回路212との間のアイソレーションを確保し、アイソレーション不足に起因する減衰特性の劣化や発振などの不具合を抑制できる。
 なお、図示はしていないが、第2受信回路22も、図3Aの第1受信回路21と同様に構成される。また、第1受信回路21a、第2受信回路22aは、図3Aの第1受信回路21のキャパシタ素子213を、可変キャパシタ(容量を変更するための制御ICやドライバを含んでもよい)に変更して構成される。
 つまり、第2受信回路22においては、第2LNA221と第2フィルタ回路222と第2整合素子232とを、同一基板の同一主面上に配置すること、または第2フィルタ回路222の少なくとも一部を基板内に形成することにより、挿入損失を低減しかつ減衰特性の劣化や発振などの不具合を抑制する効果が得られる。
 また、第1受信回路21aにおいては、第1LNA211と第1フィルタ回路212aと第1整合素子231とを、同一基板の同一主面上に配置すること、または第1フィルタ回路212aの少なくとも一部を基板内に形成することにより、挿入損失を低減しかつ減衰特性の劣化や発振などの不具合を抑制する効果が得られる。
 また、第2受信回路22aにおいては、第2LNA221と第2フィルタ回路222aと第2整合素子232とを、同一基板の同一主面上に配置すること、または第2フィルタ回路222aの少なくとも一部を基板内に形成することにより、挿入損失を低減しかつ減衰特性の劣化や発振などの不具合を抑制する効果が得られる。
 RFモジュール2では、第1受信回路21と第2受信回路22とを互いに別の基板に設けてアイソレーションを取ることにより、第1受信回路21から第2受信回路22に回り込むスプリアス成分及び第2受信回路22から第1受信回路21に回り込むスプリアス成分の何れをも低減することができる。
 図3Bは、第1受信回路21bの構成の一例を示す側面図である。図3Bの例によれば、第1LNA211とキャパシタ素子213と整合素子231とは、樹脂233にて封止され、樹脂233の表面には導電性のシールド膜234が成膜されている。
 第1受信回路21が設けられた基板を封止する樹脂と第2受信回路22が設けられた基板を封止する樹脂とに、それぞれシールド膜を形成することで、さらに良好なアイソレーションを確保することができる。このような効果は、RFモジュール2aにおいても同様に得られる。
 第1受信回路21と第2受信回路22とが、異なる基板で形成されている態様を説明したが、この例には限られない。
 図3Cは、第1受信回路21と第2受信回路22とが同じ基板の同一主面に形成されているRFモジュール2bのパッケージ構造の例を示す斜視図である。
 RFモジュール2bでは、基板210を平面視した場合、第1領域R1及び第2領域R2に、第1受信回路21及び第2受信回路22がそれぞれ形成される。第1受信回路21及び第2受信回路22を封止する樹脂233の表面にはシールド膜234が形成され、樹脂233のの内部にはシールド壁235が形成される。シールド壁235は、例えば、第1領域R1と第2領域R2との間で樹脂233に溝を設け、銅(Cu)や銀(Ag)などを主成分とする導電性ペーストを当該溝に充填することにより形成されてもよい。シールド壁235は、シールド膜234と接続される。
 これにより、第1受信回路21と第2受信回路22とを同じ基板の同一主面に形成しつつ、第1受信回路21と第2受信回路22との間のアイソレーションが確保されたRFモジュール2が得られる。
 (実施の形態3)
 実施の形態3では、フィルタ回路の具体的な構成例について説明する。
 図4は、実施の形態3に係るフィルタ回路の一例を示す回路図である。図4は、図2の第1受信回路21aに対応し、第1フィルタ回路212aの具体的な構成例を第1LNA211とともに示している。図4の第1フィルタ回路212aは、伝送線路215、スイッチ216、及び可変キャパシタ217を含む。
 伝送線路215は、第1周波数帯の送信信号Tx1の偶数次スプリアス成分に対してショート特性を示す伝送線路である。伝送線路215の第1端は、第1LNA211の出力端に接続され、第2端は、スイッチ216の状態に応じて、可変キャパシタ217を介在するか、又は直接に、グランド電位に接続される。つまり、第1フィルタ回路212aは、LNA211の出力端とグランド電位との間に接続され、第1周波数帯の送信信号Tx1のスプリアス成分に対してショート特性を示す伝送線路215を有していてもよい。
 つまり、第1フィルタ回路212aは、グランド電位GNDと、第1LNA211の出力端とグランド電位GNDとの間に接続され、第1周波数帯の送信信号Tx1の偶数次スプリアス成分に対してショート特性を示す伝送線路215を含むショートスタブAを含む。
 図4の例では、第1LNA211から出力されるスプリアス成分に対して、伝送線路215を含むショートスタブAが形成されるので、スプリアス成分の周波数に減衰極を有しかつ挿入損失の小さい第1フィルタ回路212aが、少ない部品点数で構成される。
 図5は、第1フィルタ回路212aの減衰特性の一例を示すグラフである。第1フィルタ回路212aでは、伝送線路215を直接グランド電位に接続すること、及び可変キャパシタ217の容量を変えることで、図5に示されるように減衰極を可変にできる。
 なお、フィルタ回路の具体的な構成は、図4の例には限られない。以下では、フィルタ回路の他の具体的な構成例について説明する。
 図6は、実施の形態3に係るフィルタ回路の他の例を示す回路図である。図6は、図2の第1受信回路21a、第2受信回路22aを、出力端を共用するように一体化した回路に対応し、第1フィルタ回路212a、第2フィルタ回路222aの具体例を、第1LNA211、第2LNA221とともに示している。図6の第1フィルタ回路212a、第2フィルタ回路222aは、第1伝送線路225、第2伝送線路215a、可変キャパシタ218、及びスイッチ219を含む。
 第1伝送線路225の第1端は、第1LNA211の出力端に接続されている。
 第2伝送線路215aの第1端は、第2LNA221の出力端に接続されている。
 可変キャパシタ218は、第1端がグランド電位GNDに接続されている。
 スイッチ219は、可変キャパシタ218の第2端を、第1LNA211の出力端及び第2LNA221の出力端の何れか一方に選択的に接続する。
 第1伝送線路225の第2端と第2伝送線路215aの第2端とは互いに接続されている。
 このような構成において、可変キャパシタ218の第2端と第2LNA221の出力端とが接続された第1状態で、グランド電位GNDと可変キャパシタ218と第2伝送線路215aとが電気的に接続して前記第1周波数帯の送信信号Tx1の偶数次スプリアス成分(以下、第1スプリアス成分と言う)に対してショート特性を示すショートスタブBを含む第1フィルタ回路212aが構成される。
 第1状態では、第1LNA211から出力される第1スプリアス成分は第1フィルタ回路212aによって減衰され、第1伝送線路215aの第2端と第2伝送線路225の第2端との接続点での第1スプリアス成分が減衰する。
 また、可変キャパシタ218の第2端と第1LNA211の出力端とが接続された第2状態で、グランド電位GNDと可変キャパシタ218と第1伝送線路225とが電気的に接続して第2周波数帯の送信信号Tx2の偶数次スプリアス成分(以下、第2スプリアス成分と言う)に対してショート特性を示すスタブCを含む第2フィルタ回路222aが構成される。
 第2状態では、第2LNA221から出力される第2スプリアス成分は第2フィルタ回路222aによって減衰され、第1伝送線路215aの第2端と第2伝送線路225の第2端との接続点での第2スプリアス成分が減衰する。
 このように、第1伝送線路215a、第2伝送線路225、及び可変キャパシタ218は、スイッチ219の状態に応じて、第1フィルタ回路212a、222aの何れか一方を構成する。これにより、第1伝送線路215a、第2伝送線路225、及び可変キャパシタ218の兼用による最小限の部品点数で、スイッチ219の状態に応じて、第1スプリアス成分及び第2スプリアス成分の一方を選択的に減衰できるフィルタ回路が構成される。
 (実施の形態4)
 実施の形態4では、実施の形態1及びその変形例に係るRFモジュールを含むフロントエンド回路を備えた通信装置について説明する。
 図7は、実施の形態3に係る通信装置1の機能的な構成の一例を示すブロック図である。図7に示されるように、通信装置1は、ベースバンド信号処理回路40、RF信号処理回路50、フロントエンド回路60、ダイプレクサ71、72、及びアンテナ81、82を備える。フロントエンド回路60には、実施の形態1及びその変形例で説明したRFモジュールを含むフロントエンド回路10又は10aが用いられる。
 ベースバンド信号処理回路40は、音声通話や画像表示などを行う応用装置/応用ソフトウェアで生成された送信データを送信信号に変換し、その信号をRF信号処理回路50へ供給する。当該変換は、データの圧縮、多重化、誤り訂正符号の付加を含んでもよい。また、RF信号処理回路50から受信した受信信号は受信データに変換され、応用装置/応用ソフトウェアへ供給される。当該変換は、データの伸長、多重分離、誤り訂正を含んでもよい。ベースバンド信号処理回路40は、ベースバンド集積回路(BBIC)チップで構成されてもよい。
 RF信号処理回路50は、ベースバンド信号処理回路40で生成された送信信号を送信RF信号に変換し、フロントエンド回路60へ供給する。当該変換は、信号の変調及びアップコンバートを含んでもよい。また、RF信号処理回路50は、フロントエンド回路60から受信した受信RF信号を受信信号に変換し、ベースバンド信号処理回路40へ供給する。当該変換は、信号の復調及びダウンコンバートを含んでもよい。RF信号処理回路50は、高周波集積回路(RFIC)チップで構成されてもよい。
 RF信号処理回路50は、2波以上の信号の同時送受信を行うために、異なる周波数帯の送信信号Tx1、Tx2を並行して生成し、また、フロントエンド回路60から異なる周波数帯の受信信号Rx1、Rx2を並行して受信する。
 フロントエンド回路60は、RF信号処理回路50で生成された周波数帯ごとの送信信号Tx1、Tx2をパワーアンプで増幅する。ダイプレクサ71は、周波数帯ごとの送信RF信号Tx1、Tx2を合成し、アンテナ81で送信する。
 ダイプレクサ72は、アンテナ82で受信された信号から周波数帯ごとの受信信号Rx1、Rx2を分離する。フロントエンド回路60は、分離された周波数帯ごとの受信信号Rx1、Rx2をLNAで増幅し、送信信号Tx1、Tx2のスプリアス成分を減衰させてから、RF信号処理回路50へ供給する。
 通信装置1によれば、2波以上の信号の同時送受信を行う場合における受信感度の劣化要因となるスプリアス成分を効果的に抑制するRFモジュールを含むフロントエンド回路60又は60aを用いることにより、2波以上の信号の同時送受信を行う場合の受信感度に優れた通信装置が得られる。
 以上、本発明の実施の形態に係るRFモジュール及び通信装置について説明したが、本発明は、個々の実施の形態には限定されない。本発明の趣旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態に施したものや、異なる実施の形態における構成要素を組み合わせて構築される形態も、本発明の一つ又は複数の態様の範囲内に含まれてもよい。
  1 通信装置
  2、2a、2b RFモジュール
  10、10a フロントエンド回路
  11 第1送受信回路
  12 第2送受信回路
  21、21a、21b 第1受信回路
  22、22a 第2受信回路
  40 ベースバンド信号処理回路
  50 RF信号処理回路
  60 フロントエンド回路
  71、72 ダイプレクサ
  81、82 アンテナ
  210 基板
  211 第1LNA
  212、212a 第1フィルタ回路
  213 キャパシタ素子
  214 インダクタ
  215、215a 第1伝送線路
  216、219 スイッチ
  217 第1可変キャパシタ
  218 第2可変キャパシタ
  221 第2LNA
  222、222a 第2フィルタ回路
  225 第2伝送線路
  231 第1整合素子
  232 第2整合素子
  233 樹脂
  234 シールド膜
  235 シールド壁
  900 システム
  920 セカンダリ受信システム
  950、960 チューナブルRFモジュール
  952、956、962、966 フィルタ
  954、964 LNA

Claims (7)

  1.  第1周波数帯の受信信号と第2周波数帯の受信信号とを少なくとも含む複数の信号を同時に送受信するための高周波モジュールであって、
     前記第1周波数帯の受信信号を処理する第1受信回路を備え、
     前記第1受信回路は、
      第1基板と、
      前記第1基板の主面に実装された第1ローノイズアンプと、
      前記第1ローノイズアンプの出力端に接続され、少なくとも一部が前記第1基板の前記主面に形成された第1フィルタ回路と、を含み、
     前記第1フィルタ回路は、前記第1周波数帯の送信信号が前記第1ローノイズアンプに入力されることによって発生した、前記第1周波数帯の送信信号に含まれかつ前記第2周波数帯の受信信号の周波数帯域と重複する周波数帯域を有するスプリアス成分を減衰させる、
     高周波モジュール。
  2.  前記第1フィルタ回路は、可変キャパシタを含み、可変の減衰周波数を有する、
     請求項1に記載の高周波モジュール。
  3.  前記第1フィルタ回路の他の一部は、前記第1基板の内部に形成されている、
     請求項1又は2に記載の高周波モジュール。
  4.  前記第1フィルタ回路は、前記第1ローノイズアンプの出力端とグランド電位との間に接続され、前記第1周波数帯の送信信号の偶数次スプリアス成分に対してショート特性を示す伝送線路を含むショートスタブを含む、
     請求項1から3の何れか1項に記載の高周波モジュール。
  5.  前記高周波モジュールは、前記第2周波数帯の受信信号を処理する第2受信回路をさらに備え、
     前記第2受信回路は、
      第2ローノイズアンプと、
      前記第2ローノイズアンプの出力端に接続され、前記第2周波数帯の送信信号のスプリアス成分に対する減衰特性を有する第2フィルタ回路と、を含む、
     請求項1から4の何れか1項に記載の高周波モジュール。
  6.  第1端が前記第1ローノイズアンプの出力端に接続された第1伝送線路と、
     第1端が前記第2ローノイズアンプの出力端に接続された第2伝送線路と、
     第1端がグランド電位に接続された可変キャパシタと、
     前記可変キャパシタの第2端を、前記第1ローノイズアンプの出力端及び前記第2ローノイズアンプの出力端の何れか一方に選択的に接続するスイッチと、を備え、
     前記第1伝送線路の第2端と前記第2伝送線路の第2端とが接続され、
     前記第1伝送線路、前記第2伝送線路、及び前記可変キャパシタは、
     (i)前記可変キャパシタの第2端と前記第2ローノイズアンプの前記出力端とが接続された第1状態で、グランド電位と前記可変キャパシタと前記第2伝送線路とが電気的に接続されることにより、前記第1周波数帯の送信信号の偶数次スプリアス成分に対してショート特性を示す前記第1フィルタ回路を構成し、
     (ii)前記可変キャパシタの第2端と前記第1ローノイズアンプの前記出力端とが接続された第2状態で、グランド電位と前記可変キャパシタと前記第1伝送線路とが電気的に接続されることにより、前記第2周波数帯の送信信号の偶数次スプリアス成分に対してショート特性を示す前記第2フィルタ回路を構成する、
     請求項5に記載の高周波モジュール。
  7.  請求項1から6の何れか1項に記載の高周波モジュールと、
     前記高周波モジュールから高周波受信信号を受信するRF信号処理回路と、
     を備える通信装置。
PCT/JP2017/046436 2016-12-27 2017-12-25 高周波モジュール及び通信装置 WO2018123972A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/435,645 US10797741B2 (en) 2016-12-27 2019-06-10 Radio frequency module and communication device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-254510 2016-12-27
JP2016254510 2016-12-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/435,645 Continuation US10797741B2 (en) 2016-12-27 2019-06-10 Radio frequency module and communication device

Publications (1)

Publication Number Publication Date
WO2018123972A1 true WO2018123972A1 (ja) 2018-07-05

Family

ID=62710590

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/046436 WO2018123972A1 (ja) 2016-12-27 2017-12-25 高周波モジュール及び通信装置

Country Status (2)

Country Link
US (1) US10797741B2 (ja)
WO (1) WO2018123972A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018168653A1 (ja) * 2017-03-14 2018-09-20 株式会社村田製作所 高周波モジュール
KR102438424B1 (ko) * 2017-11-24 2022-09-01 삼성전자 주식회사 전자 장치 및 전자 장치의 안테나 제어 방법
JP2019192992A (ja) * 2018-04-20 2019-10-31 株式会社村田製作所 フロントエンドモジュールおよび通信装置
CN110278011B (zh) * 2019-06-12 2021-04-27 京信通信系统(中国)有限公司 分布式天线系统、方法和装置
JP2021052376A (ja) * 2019-09-20 2021-04-01 株式会社村田製作所 高周波モジュールおよび通信装置
JP2021175031A (ja) * 2020-04-21 2021-11-01 株式会社村田製作所 高周波信号送受信回路
JP2022019182A (ja) * 2020-07-17 2022-01-27 株式会社村田製作所 高周波モジュール及び通信装置
CN116938278A (zh) * 2022-03-30 2023-10-24 华为技术有限公司 一种射频前端装置和信号处理方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007128939A (ja) * 2005-11-01 2007-05-24 Taiyo Yuden Co Ltd 高周波モジュール
US20150214985A1 (en) * 2014-01-24 2015-07-30 Qualcomm Incorporated Tunable Radio Frequency (RF) Front-End Architecture Using Filter Having Adjustable Inductance And Capacitance

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103098370B (zh) * 2010-09-14 2016-06-15 日立金属株式会社 具备滤波器及平衡不平衡转换器的层叠体型电子部件
GB2514543B (en) * 2013-04-23 2017-11-08 Gurulogic Microsystems Oy Server node arrangement and method
US9455755B2 (en) 2014-10-06 2016-09-27 Skyworks Solutions, Inc. Aggregate signal amplification device and method
US9595935B2 (en) * 2015-05-12 2017-03-14 Qualcomm Incorporated Active notch filter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007128939A (ja) * 2005-11-01 2007-05-24 Taiyo Yuden Co Ltd 高周波モジュール
US20150214985A1 (en) * 2014-01-24 2015-07-30 Qualcomm Incorporated Tunable Radio Frequency (RF) Front-End Architecture Using Filter Having Adjustable Inductance And Capacitance

Also Published As

Publication number Publication date
US10797741B2 (en) 2020-10-06
US20190296783A1 (en) 2019-09-26

Similar Documents

Publication Publication Date Title
WO2018123972A1 (ja) 高周波モジュール及び通信装置
US10148249B2 (en) High frequency circuit and communication apparatus
JP6471810B2 (ja) 分波装置及びその設計方法
US9985681B2 (en) Front end circuit, module, and communication device
US9917615B2 (en) Radio-frequency module
US9780735B1 (en) High-frequency signal amplifier circuit, power amplifier module, front-end circuit, and communication apparatus
US11043983B2 (en) Radio frequency module and communication device including the same
US20210091803A1 (en) Radio frequency module and communication device
US11418158B2 (en) Radio-frequency module and communication device
WO2017057568A1 (ja) 電力増幅モジュール、フロントエンド回路および通信装置
WO2021044691A1 (ja) 高周波モジュール及び通信装置
JP2017208656A (ja) スイッチモジュール及び高周波モジュール
US20210384925A1 (en) Multiplexer, radio-frequency module, and communication apparatus
JP2012070267A (ja) 高周波信号処理装置
US20210152195A1 (en) Radio frequency module and communication device
JP2021048565A (ja) 高周波モジュールおよび通信装置
JP2010147589A (ja) 高周波回路、高周波部品及び通信装置
US11431363B2 (en) Radio frequency module and communication device
CN110710119B (zh) 高频模块
US11528044B2 (en) Radio frequency module and communication device
JP4702620B2 (ja) 高周波スイッチモジュール
JP2010010765A (ja) 移動通信端末用電子回路モジュール及びこれを備えた移動通信端末用回路
US20230163803A1 (en) Radio-frequency circuit and communication apparatus
US20200021275A1 (en) Filter device, high-frequency module, and communication device
US20220368442A1 (en) Multiplexer and communication device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17885593

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17885593

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP