WO2017057568A1 - 電力増幅モジュール、フロントエンド回路および通信装置 - Google Patents

電力増幅モジュール、フロントエンド回路および通信装置 Download PDF

Info

Publication number
WO2017057568A1
WO2017057568A1 PCT/JP2016/078808 JP2016078808W WO2017057568A1 WO 2017057568 A1 WO2017057568 A1 WO 2017057568A1 JP 2016078808 W JP2016078808 W JP 2016078808W WO 2017057568 A1 WO2017057568 A1 WO 2017057568A1
Authority
WO
WIPO (PCT)
Prior art keywords
band
filter
chip
amplification
stage
Prior art date
Application number
PCT/JP2016/078808
Other languages
English (en)
French (fr)
Inventor
秀典 帯屋
礼滋 中嶋
伸也 人見
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2017057568A1 publication Critical patent/WO2017057568A1/ja
Priority to US15/941,078 priority Critical patent/US10340971B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/56Modifications of input or output impedances, not otherwise provided for
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • H03F3/195High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only in integrated circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • H03F3/245Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/72Gated amplifiers, i.e. amplifiers which are rendered operative or inoperative by means of a control signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • H04B1/0053Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band
    • H04B1/0057Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band using diplexing or multiplexing filters for selecting the desired band
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B1/0458Arrangements for matching and coupling between power amplifier and antenna or between amplifying stages
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • H04B1/18Input circuits, e.g. for coupling to an antenna or a transmission line
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/44Transmit/receive switching
    • H04B1/48Transmit/receive switching in circuits for connecting transmitter and receiver to a common transmission path, e.g. by energy of transmitter
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/111Indexing scheme relating to amplifiers the amplifier being a dual or triple band amplifier, e.g. 900 and 1800 MHz, e.g. switched or not switched, simultaneously or not
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/168Two amplifying stages are coupled by means of a filter circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/294Indexing scheme relating to amplifiers the amplifier being a low noise amplifier [LNA]
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/387A circuit being added at the output of an amplifier to adapt the output impedance of the amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/411Indexing scheme relating to amplifiers the output amplifying stage of an amplifier comprising two power stages
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/451Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/72Indexing scheme relating to gated amplifiers, i.e. amplifiers which are rendered operative or inoperative by means of a control signal
    • H03F2203/7209Indexing scheme relating to gated amplifiers, i.e. amplifiers which are rendered operative or inoperative by means of a control signal the gated amplifier being switched from a first band to a second band

Definitions

  • the present invention relates to a power amplification module, a front end circuit, and a communication device that amplify a high frequency signal.
  • Recent cellular phones are required to support a plurality of frequencies with one terminal (multiband) and to support a plurality of wireless systems with one terminal (multimode).
  • Front-end circuits that support multi-band and multi-mode are required to process a plurality of transmission / reception signals at high speed without degrading quality. Further, the front end circuit of a wireless communication terminal typified by a mobile phone is required to be downsized.
  • Patent Document 1 discloses a power amplifier (hereinafter sometimes referred to as PA) module used in a transmission circuit compatible with multiband and multimode transmission.
  • PA power amplifier
  • FIG. 10 is a circuit configuration diagram of the PA module described in Patent Document 1.
  • the PA module 510 includes a plurality of amplifying elements 511a and 511b, a variable filter circuit 512, and a matching circuit 513.
  • Amplifying elements 511a and 511b can amplify a transmission signal in a frequency range including a plurality of communication bands.
  • the variable filter circuit 512 includes switch circuits 521a and 521b and filter components 522a to 522c.
  • a control IC (not shown) included in the PA module 510 selects a filter component having a transmission band as a pass band and a reception band as an attenuation band among the selected used communication bands among the filter components 522a to 522c.
  • switch circuits 521a and 521b for switching selection of the filter components 522a to 522c are separately required. For this reason, if the switch circuits 521a and 521b, the amplifier elements 511a and 511b, and the filter components 522a to 522c are all configured as separate chips, the size is increased.
  • the amplifying elements 511a and 511b are formed on the same chip for miniaturization, the quality of the transmission signal is deteriorated due to oscillation generated due to the strong mutual interference of the amplified high frequency signals.
  • the present invention has been made to solve the above-described problem, and an object thereof is to provide a power amplification module, a front-end circuit, and a communication device that are reduced in size while maintaining the quality of a high-frequency signal. To do.
  • a power amplification module includes a front-stage amplification element that amplifies a high-frequency signal, a rear-stage amplification element that amplifies the high-frequency signal amplified by the front-stage amplification element, and the front-stage amplification element.
  • a variable filter circuit disposed between the amplifying element and the subsequent-stage amplifying element and configured to vary a pass band or an attenuation band according to a frequency band of the high-frequency signal, and the variable filter circuit includes one or more filter elements;
  • a filter band selection unit that changes a pass band or an attenuation band of the variable filter circuit by being switched according to a frequency band of the high-frequency signal, and at least a part of the filter band selection unit and the preceding stage
  • the amplifying element is made into one chip by the first chip, and the latter amplifying element is included in a second chip different from the first chip.
  • the mutual interference of the amplified high-frequency signals can be suppressed by configuring the front stage amplification element and the rear stage amplification element in separate chips. Further, downsizing is possible by forming the pre-stage amplifying element and the filter band selection unit into one chip with the first chip. Therefore, it is possible to reduce the size while maintaining the quality of the high-frequency signal.
  • the one or more filter elements are a plurality of filter elements having different pass bands or attenuation bands
  • the filter band selection unit is disposed between the pre-stage amplifying element and the plurality of filter elements
  • a first switch element that switches a connection between an output terminal of a pre-stage amplifying element and the plurality of filter elements; and is disposed between the post-stage amplifying element and the plurality of filter elements
  • a second switch element that switches connection to the filter element, and at least one of the first switch element and the second switch element and the pre-amplifying element are integrated into one chip by the first chip. Also good.
  • the filter element corresponding to the communication band to be used is connected between the front-stage amplifying element and the rear-stage amplifying element.
  • the filter element and the second switch element and the pre-amplifier are integrated into one chip, it is possible to reduce the size while maintaining the quality of the high-frequency signal.
  • the one or more filter elements are resonators, and the filter band selection unit is connected to a plurality of capacitive elements connected to the resonators, corresponding to each of the plurality of capacitive elements, And at least one of a plurality of capacitive elements, and a plurality of switching elements for switching connection between the resonator, the front stage amplifying element and the rear stage amplifying element, and at least one of the plurality of capacitive elements and the plurality of switching elements,
  • the pre-stage amplifying element may be integrated into one chip with the first chip.
  • the capacitive element corresponding to the communication band to be used among the plurality of capacitive elements is connected to the resonator, the pre-stage amplifying element, and the post-stage amplifying element.
  • the resonance frequency and anti-resonance frequency of the resonator vary in accordance with the communication band to be used.
  • at least one of the plurality of capacitive elements and the plurality of switch elements and the previous stage amplification element are integrated into one chip, it is possible to reduce the size while maintaining the quality of the high-frequency signal.
  • the power amplification module further includes an amplification control unit that controls amplification characteristics of the front stage amplification element and the rear stage amplification element according to a frequency band of the high frequency signal, and the amplification control unit includes the first chip. May be included.
  • the amplification control unit that controls the amplification characteristics of each amplification element according to the communication band to be used is integrated into a single chip with a part of the previous stage amplification element and the filter band selection unit, so that further downsizing is possible. It becomes.
  • first wiring that connects the amplification control unit and the previous amplification element and the second wiring that connects the previous amplification element and the filter band selection unit may be formed in the first chip. Good.
  • the wiring length of the first wiring and the second wiring can be shortened. Therefore, signal transmission loss can be reduced and the size can be reduced. Furthermore, since the wiring to the outside of the first chip and the second chip can be reduced to two wirings of the third wiring and the fourth wiring, it is possible to further reduce the size.
  • the front stage amplifying element, the filter band selection unit, and the rear stage amplifying element are arranged on a mounting surface of a substrate, and the one or more filter elements are the front stage amplifying element, the filter band selecting unit, and the rear stage amplifying element. And at least one of the substrate and the substrate may be stacked so as to overlap when viewed in plan.
  • This not only saves the area by integrating at least a part of the filter band selection unit and the previous stage amplification element into one chip, but also includes at least one of the one or more filter elements, the previous stage amplification element, the filter band selection unit, and the subsequent stage amplification element. Further area saving of the power amplifying module is achieved by stacking the two. Therefore, further downsizing is possible while maintaining the quality of the high frequency signal.
  • the one or more filter elements may overlap with at least one of the front-stage amplifying element and the filter-band selection section among the front-stage amplifying element, the filter band selection unit, and the rear-stage amplifying element in the plan view. May be laminated.
  • the post-stage amplifying element has a high power level of the high-frequency signal to be amplified, if one or more filter elements are arranged close to the post-stage amplifying element, the filter characteristics of the filter element deteriorate due to interference of the high-frequency signal. On the other hand, since one or more filter elements are stacked and arranged so as not to overlap with the subsequent amplification element in plan view, it is possible to reduce the size without deteriorating the characteristics of the filter element.
  • the one or more filter elements may be stacked so as to overlap only the filter band selection unit in the plan view among the front stage amplification element, the filter band selection unit, and the rear stage amplification element.
  • the power level of the front-stage amplifying element is not so much as that of the rear-stage amplifying element, but is higher than other high-frequency signals. Therefore, it is more preferable that the one or more filter elements are not arranged close to not only the post-stage amplifying element but also the pre-stage amplifying element. According to the above configuration, one or more filter elements are stacked and arranged so as not to overlap with the subsequent-stage amplification element and the previous-stage amplification element in plan view, and thus it is possible to reduce the size without deteriorating the characteristics of the filter element. . Furthermore, since the one or more filter elements are arranged closest to the filter band selection unit, the wiring length of the variable filter circuit can be shortened.
  • the front stage amplifying element amplifies a high-frequency signal in a frequency range including a plurality of communication bands
  • the rear stage amplifying element is composed of a plurality of amplifying elements corresponding to each of the plurality of communication bands
  • the amplification element selected corresponding to the communication band used among the plurality of communication bands among the plurality of amplification elements may amplify the high-frequency signal amplified by the preceding amplification element.
  • a high-frequency signal in a frequency range including a plurality of communication bands can be configured with a single front-stage amplifying element, thereby contributing to downsizing of the power amplifying module and supporting a pass band as a back-stage amplifying element.
  • the first chip may be composed of CMOS
  • the second chip may be composed of GaAs.
  • the post-stage amplification element having a high power level of the high-frequency transmission signal is made of a GaAs-based material, so that a high-frequency transmission signal having high-quality amplification characteristics and noise characteristics can be output.
  • One embodiment of the present invention provides a power amplification module having a characteristic configuration as described above, a reception amplification circuit, and a reception signal from an antenna element to the reception amplification circuit. It may be a front-end circuit including a duplexer that outputs the amplified high-frequency signal as a transmission signal to the antenna element.
  • the pass band is a transmission band corresponding to a use communication band selected from the plurality of communication bands, and the attenuation band is a reception band corresponding to the use communication band. Also good.
  • Another embodiment of the present invention is a front-end circuit having the above-described characteristic configuration, and an RF signal that outputs a high-frequency transmission signal to the front-end circuit and inputs a high-frequency reception signal from the front-end circuit.
  • a processing circuit and a baseband signal processing circuit that converts a high frequency received signal received from the RF signal processing circuit into an intermediate frequency signal, performs signal processing, and converts the intermediate frequency signal into a high frequency signal and outputs the signal to the RF signal processing circuit
  • the communication apparatus provided with.
  • the power amplifying module of the present invention it is possible to reduce the size of the high-frequency signal while maintaining the quality of the high-frequency signal by integrating the pre-stage amplifying element and the filter band selection unit into one chip and using the chip as the post-stage amplifying element. .
  • FIG. 1 is a functional block configuration diagram of a communication apparatus according to Embodiment 1.
  • FIG. 2 is a circuit configuration diagram of the PA module according to the first embodiment.
  • FIG. 3 is a circuit configuration diagram of a PA module according to the first modification of the first embodiment.
  • 4A is a wiring configuration diagram of a PA module according to Modification 1 of Embodiment 1.
  • FIG. 4B is a wiring configuration diagram of a PA module according to a comparative example.
  • FIG. 5A is a circuit configuration diagram of a PA module according to the second modification of the first embodiment.
  • FIG. 5B is a circuit configuration diagram of a PA module according to Modification 3 of Embodiment 1.
  • 6A is a circuit configuration diagram of a PA module according to Modification 4 of Embodiment 1.
  • FIG. 1 is a functional block configuration diagram of a communication apparatus according to Embodiment 1.
  • FIG. 2 is a circuit configuration diagram of the PA module according to the first embodiment.
  • FIG. 3 is a
  • FIG. 6B is a circuit configuration diagram of a PA module according to Modification 5 of Embodiment 1.
  • FIG. 7 is a circuit configuration diagram of the PA module according to the second embodiment.
  • FIG. 8A is a plan configuration diagram of a PA module according to Embodiment 3.
  • FIG. 8B is a cross-sectional configuration diagram of the PA module according to Embodiment 3.
  • FIG. 9A is a plan configuration diagram of a PA module according to Modification 1 of Embodiment 3.
  • FIG. 9B is a plan configuration diagram of a PA module according to the second modification of the third embodiment.
  • FIG. 9C is a plan configuration diagram of a PA module according to Modification 3 of Embodiment 3.
  • FIG. 10 is a circuit configuration diagram of the PA module described in Patent Document 1.
  • FIG. 1 is a functional block configuration diagram of a communication device 200 according to the first embodiment.
  • the communication device 200 includes a front end circuit 1, an RF signal processing circuit 3, a baseband signal processing circuit 4, and a display unit 5.
  • the front end circuit 1 is disposed, for example, in a front end portion of a multi-mode / multi-band mobile phone.
  • the front end circuit 1 includes a PA (Power Amplifier) module 10, a low noise amplifier circuit 20, an antenna matching circuit 30, and an antenna switch 40.
  • PA Power Amplifier
  • the antenna matching circuit 30 is connected to the antenna element 2 and the antenna switch 40, and is a circuit for matching the antenna element 2 and the front end circuit 1. As a result, the front end circuit 1 can receive the received signal from the antenna element 2 with low loss and output the transmission signal to the antenna element 2 with low loss.
  • the antenna matching circuit 30 includes one or more high-frequency circuit components, and includes, for example, an inductor formed in a chip shape or a pattern and a capacitor formed in a chip shape or a pattern.
  • the antenna matching circuit 30 is not an essential component of the front end circuit 1. Further, the antenna matching circuit 30 may be a variable matching circuit that corresponds to multiband and multimode and varies the impedance according to the selected band or mode.
  • the antenna switch 40 connects the antenna element 2 (and the antenna matching circuit 30) to one of the transmission-side signal path and the reception-side signal path, thereby switching the connection between the antenna element 2 and the plurality of signal paths. It is. More specifically, the antenna switch 40 includes an input terminal connected to the antenna matching circuit 30 and an output terminal connected to the transmission side signal path or the reception side signal path.
  • the antenna switch 40 is a single-pole double-throw high-frequency switch, but when a plurality of transmission-side signal paths and reception-side signal paths are arranged, the antenna switch 40 is It is not limited to the 1-input 2-output type. Instead of the antenna switch 40, a multiplexer including a duplexer and a triplexer that demultiplexes a transmission wave and a reception wave may be arranged.
  • the PA module 10 is a power amplification module that amplifies the high-frequency transmission signal output from the RF signal processing circuit 3 and outputs the amplified signal toward the antenna switch 40.
  • the PA module 10 is a main part of the present invention and will be described in detail later.
  • the low noise amplifier circuit 20 is a high frequency amplification circuit that amplifies the high frequency reception signal output from the antenna switch 40 and outputs the amplified signal to the RF signal processing circuit 3.
  • the RF signal processing circuit 3 performs signal processing on the high-frequency received signal input from the antenna element 2 via the reception-side signal path by down-conversion or the like, and the received signal generated by the signal processing is a baseband signal processing circuit Output to 4.
  • the RF signal processing circuit 3 is, for example, an RFIC (Radio Frequency Integrated Circuit). Further, the RF signal processing circuit 3 performs signal processing on the transmission signal input from the baseband signal processing circuit 4 by up-conversion or the like, and outputs a high-frequency transmission signal generated by the signal processing to the PA module 10.
  • the baseband signal processing circuit 4 is a circuit that performs signal processing using an intermediate frequency band that is lower in frequency than the high-frequency signal in the front end portion.
  • the image signal processed by the baseband signal processing circuit 4 is used, for example, for image display on the display unit 5, and the audio signal processed by the baseband signal processing circuit 4 is, for example, a call through a speaker Used for.
  • the front-end circuit 1 may include a transmission-side filter circuit that can vary the pass characteristic according to the selected frequency band in the transmission-side signal path between the antenna switch 40 and the PA module 10.
  • the front-end circuit 1 may include a reception-side filter circuit that can vary the pass characteristic according to the selected frequency band in the reception-side signal path between the antenna switch 40 and the low-noise amplifier circuit 20.
  • FIG. 2 is a circuit configuration diagram of the PA module 10A according to the first embodiment.
  • the PA module 10A is applied to the PA module 10 of the front end circuit 1 shown in FIG.
  • the PA module 10 ⁇ / b> A includes a control IC 11, a front stage amplifying element 12, a back stage amplifying element 13, switches 14 and 15, and a filter unit 16.
  • the pre-stage amplifying element 12 and the post-stage amplifying element 13 are multimode / multiband compatible power amplifiers that can be used in a plurality of communication systems and a plurality of communication bands.
  • the input terminal of the preamplifier 12 is an input terminal of the PA module 10 ⁇ / b> A, and the output terminal of the preamplifier 12 is connected to the common terminal of the switch 14.
  • the input terminal of the rear stage amplifying element 13 is connected to the common terminal of the switch 15, and the output terminal of the rear stage amplifying element 13 is the output terminal of the PA module 10A.
  • the filter unit 16 includes filter elements 161, 162, 163, and 164 having different pass bands and attenuation bands.
  • Filter elements 161 to 164 are typically band-pass filters, but may be low-pass filters, high-pass filters, or band elimination filters depending on the frequency arrangement relationship of a plurality of pass bands.
  • Examples of the filter elements 161 to 164 include a surface acoustic wave filter, a boundary acoustic wave filter, an acoustic wave filter using a BAW (Bulk Acoustic Wave), and an LC filter composed of an inductance element and a capacitor element.
  • the number of filter elements constituting the filter unit 16 is not limited to four, and is determined according to the number of bands or modes scheduled to be used. Further, at least one of the filter elements 161 to 164 may be a through path.
  • the through path is a distributed constant type transmission line.
  • the switch 14 is a first switch element that is disposed between the upstream amplification element 12 and the filter unit 16 and switches the connection between the output terminal of the upstream amplification element 12 and the filter unit 16.
  • the switch 14 has one common terminal and four selection terminals, and one common terminal is connected to the output terminal of the pre-amplifier element 12, and the four selection terminals are one of the filter elements 161 to 164, respectively. Connected to the terminal.
  • the switch 15 is a second switch element that is arranged between the post-stage amplifying element 13 and the filter unit 16 and switches the connection between the input terminal of the post-stage amplifying element 13 and the filter unit 16.
  • the switch 15 has one common terminal and four selection terminals. The one common terminal is connected to the input terminal of the post-amplifier element 13, and the four selection terminals are the other ones of the filter elements 161 to 164, respectively. Connected to the terminal.
  • the switches 14 and 15 and the filter unit 16 are arranged in a signal path from the output terminal of the front stage amplifying element 12 to the input terminal of the back stage amplifying element 13, and vary the pass band and the attenuation band according to the frequency band of the high frequency signal.
  • a variable filter circuit is configured.
  • the switches 14 and 15 constitute a filter band selection unit that changes the pass band and the attenuation band of the variable filter circuit by being switched according to the frequency band of the high-frequency signal.
  • the control IC 11 is an amplification controller that controls the amplification characteristics of the pre-stage amplifying element 12 and the post-stage amplifying element 13 according to the communication band (frequency band of the high-frequency signal) used.
  • the amplification characteristics of the pre-stage amplifying element 12 and the post-stage amplifying element 13 are, for example, gains (amplification factors) of the pre-stage amplifying element 12 and the post-stage amplifying element 13.
  • the control IC 11 controls the switches 14 and 15 based on a control signal supplied from the RF signal processing circuit 3 or the baseband signal processing circuit 4 and indicating a communication band (frequency band of a high frequency signal) to be used selectively. To do.
  • the control IC 11 uses the filter element 161 that uses the band A transmission band as the pass band and the band A reception band as the attenuation band.
  • the switches 14 and 15 are controlled so as to be connected to the front stage amplification element 12 and the rear stage amplification element 13.
  • the high-frequency transmission signal input from the RF signal processing circuit 3 to the PA module 10 is amplified by the preamplifier 12.
  • the amplified high frequency transmission signal is input to the variable filter circuit.
  • the high-frequency transmission signal input to the variable filter circuit passes through a filter element suitable for the communication method and communication band.
  • the high-frequency transmission signal that has passed through the variable filter circuit is further amplified by the post-stage amplification element 13 and output from the PA module 10A.
  • the reception band component of the frequency band is also amplified by the pre-amplifier element 12, but the amplified reception band component is the selected frequency. It attenuates by passing through a filter element selected based on the band. Therefore, it is possible to effectively and effectively suppress the amplified reception band component from entering the low noise amplifier circuit 20 and the like into reception band noise in the PA module 10A.
  • the size is reduced. Has a limit, and cannot contribute to downsizing of the front end portion. Further, when the amplifying elements 511a and 511b are formed on the same chip for further miniaturization, the quality of the transmission signal is deteriorated due to oscillation or the like that occurs due to the strong mutual interference of high-frequency signals.
  • the preamplifier 12 and the switches 14 and 15 are made into one chip by a chip A (first chip). Further, the post-stage amplification element 13 is included in a chip different from the chip A.
  • the front stage amplifying element 12 and the rear stage amplifying element 13 are configured as separate chips, whereby mutual interference of high frequency signals can be suppressed. Further, by making the preamplifier 12 and the switches 14 and 15 into one chip with the chip A, it is possible to reduce the size as compared with the case where the preamplifier 12 and the switches 14 and 15 are configured as separate chips. Become. Therefore, it is possible to reduce the size while maintaining the quality of the high-frequency signal.
  • FIG. 3 is a circuit configuration diagram of a PA module 10B according to the first modification of the first embodiment.
  • the PA module 10B according to this modification has the same components as the PA module 10A according to the first embodiment, but the range of components that are made into one chip is different from that of the PA module 10A.
  • description of individual components constituting the PA module 10B will be omitted, and description will be made focusing on differences from the PA module 10A.
  • the pre-amplifier 12, the switches 14 and 15, and the control IC 11 are made into one chip by a chip B (first chip). Further, the post-stage amplification element 13 is included in a chip different from the chip B.
  • control IC 11 is made into one chip together with the pre-stage amplifying element 12 and the switches 14 and 15, further miniaturization is possible as compared with the PA module 10A according to the first embodiment. Further, the power level of the control signal processed by the control IC 11 is much lower than the power level of the high-frequency signal processed by the front stage amplification element 12 and the rear stage amplification element 13. Therefore, even if the control IC 11 is made into one chip together with the front stage amplifying element 12 and the switches 14 and 15, it is possible to ensure the quality of the high frequency signals of the front stage amplifying element 12 and the rear stage amplifying element 13.
  • FIG. 4A is a wiring configuration diagram of a PA module 10B according to the first modification of the first embodiment.
  • the figure shows a wiring configuration for connecting to the front stage amplifying element 12, the switches 14 and 15, and the chip B including the control IC 11.
  • the chip B and the RF signal processing circuit 3 (baseband signal processing circuit 4) are connected by wirings L1 and L2, and the chip B and the subsequent amplification element 13 are connected by wiring L3 (third wiring).
  • the part 16 is connected by wirings L4 and L5 (fourth wiring). That is, five off-chip wirings are arranged, and there are two on-chip wirings in the PA module 10B, the third wiring and the fourth wiring.
  • the first wiring connecting the control IC 11 and the previous amplification element 12 and the second wiring connecting the previous amplification element 12 and the switch 14 are formed in the chip B, the first wiring and the second wiring are formed. It is possible to reduce the wiring length of the wiring.
  • FIG. 4B is a wiring configuration diagram of a PA module according to a comparative example.
  • the PA module according to the comparative example shown in FIG. 4B does not have a single chip except for the pre-amplifier and the post-amplifier.
  • the control IC and the RF signal processing circuit (baseband signal processing circuit) are connected by the wiring L1
  • the control IC and the switch SW1 are connected by the wiring L2
  • the control IC and the switch SW2 are connected by the wiring L3.
  • the control IC and the preamplifier are connected by a wiring L4
  • the preamplifier and the RF signal processing circuit baseband signal processing circuit
  • the preamplifier and the switch SW1 are connected by a wiring L6.
  • the control IC and the subsequent amplification element are connected by a line L7
  • the subsequent amplification element and the switch SW2 are connected by a line L8
  • the filter unit and the switch SW1 are connected by a line L9
  • the filter unit and the switch SW2 Are connected by a wiring L10. That is, ten off-chip wires are arranged, and seven off-chip wires in the PA module according to the comparative example are seven wires L2, L3, L4, L6, L7, L8, and L9 (and L10).
  • the first wiring and the second wiring are formed in the first chip, so that the wiring length of the first wiring and the second wiring can be shortened. It becomes. Therefore, signal transmission loss can be reduced and the size can be reduced. Furthermore, the number of wirings outside the chip is seven in the PA module according to the comparative example, but can be reduced to two wirings of the third wiring and the fourth wiring, so that the size can be further reduced.
  • FIG. 5A is a circuit configuration diagram of a PA module 10C according to the second modification of the first embodiment.
  • the PA module 10C according to the present modification has the same components as the PA module 10A according to the first embodiment. However, the range of the components that are made into one chip compared to the PA module 10A and the control IC Control target is different.
  • description of individual components constituting the PA module 10C will be omitted, and description will be made focusing on differences from the PA module 10A.
  • the pre-amplifier element 12, the switch 14, and the control IC 11C are integrated into one chip by a chip C (first chip). That is, the switch 14 and the pre-stage amplifying element 12 which are at least part of the filter band selection unit are integrated into one chip by the chip C. Further, the post-stage amplifying element 13 is included in a chip different from the chip C.
  • control IC 11C is made into one chip together with the pre-amplifier 12 and the switch 14, it is possible to reduce the size.
  • the control IC 11C included in the chip C does not control the switch 15, and the RF signal processing circuit 3 (or the baseband signal processing circuit 4) controls the switch 15. ing. Thereby, the wiring outside the chip from the chip C can be reduced.
  • FIG. 5B is a circuit configuration diagram of a PA module 10D according to the third modification of the first embodiment.
  • the PA module 10D according to this modification is different from the PA module 10C according to modification 2 only in the control target of the control IC.
  • description of individual components constituting the PA module 10D will be omitted, and description will be made focusing on differences from the PA module 10C.
  • the control IC 11D included in the chip D controls not only the front amplification element 12, the rear amplification element 13, and the switch 14, but also the switch 15. Thereby, since the switches 14 and 15 are controlled by the same control IC 11D, timing control such as switching of communication bands can be facilitated.
  • FIG. 6A is a circuit configuration diagram of a PA module 10E according to Modification 4 of Embodiment 1.
  • the PA module 10E according to this modification is different from the PA module 10B according to modification 1 in the configuration of the subsequent stage amplification element.
  • description of the same points as the PA module 10B will be omitted, and different points from the PA module 10B will be mainly described.
  • the preamplifier 12, the switches 14 and 15, and the control IC 11E are integrated into one chip by a chip E (first chip). That is, the switches 14 and 15 as the filter band selection unit and the pre-stage amplifying element 12 are made into one chip by the chip E. Further, the amplifying elements 131 to 133 constituting the latter stage amplifying element are included in a chip different from the chip E.
  • a high-frequency transmission signal When a high-frequency transmission signal is amplified with high quality by the PA module, it is effective to provide a difference in amplification characteristics between the cascaded front-stage amplification element and the rear-stage amplification element. That is, in the former stage amplification element, it is desired to amplify the high frequency transmission signal over a wide band from the viewpoint that the power level of the input high frequency transmission signal is not so high.
  • the latter stage amplification element is disposed in the final stage of the PA module, and it is desired that the high frequency transmission signal amplified by the previous stage amplification element is amplified with high quality from the viewpoint that the power level of the high frequency transmission signal is high.
  • the high-frequency amplifying element generally has a trade-off relationship between the frequency characteristics and the gain and noise characteristics. That is, it may be required to select whether to give priority to amplification over a wide band over gain and noise characteristics or to give priority to gain and noise characteristics in a narrow band.
  • one amplifying element capable of amplifying a high-frequency signal over a wide band rather than the gain characteristic and the noise characteristic is arranged in the pre-stage amplifying element.
  • the post-stage amplifying element is required to have high gain characteristics and low noise characteristics rather than wideband characteristics, a plurality of amplifying elements having high gain characteristics and low noise characteristics are arranged in parallel in each frequency band.
  • the PA module 10E has amplification elements 131, 132, and 133 that are connected in parallel to the switch 15 as a subsequent stage amplification element.
  • the PA module 10E is further arranged between the switch 18 for switching the selection of the amplification elements 131 to 133 according to the selected frequency band, and the switches 15 and 18, and the transmission side filter element connected to the amplification element 131. 171, a transmission filter element 172 connected to the amplification element 132, and a transmission filter element 173 connected to the amplification element 133.
  • the front-stage amplifying element is configured by a single amplifying element, which can contribute to downsizing of the PA module 10E, and a plurality of the rear-stage amplifying elements are arranged corresponding to the passband, so that the PA module is provided. It becomes possible to maintain the high quality of the high frequency transmission signal output from 10E.
  • control IC 11E included in the chip E controls not only the preamplifier 12 and the switches 14 and 15, but also the switch 18. Thereby, since the switches 14, 15 and 18 are controlled by the same control IC 11E, timing control such as switching of communication bands can be facilitated.
  • FIG. 6B is a circuit configuration diagram of a PA module 10F according to the fifth modification of the first embodiment.
  • the PA module 10F according to the present modification has the same components as the PA module 10E according to the modification 4, but the range of components that are made into one chip compared to the PA module 10E and the control of the control IC The target is different.
  • description of individual components constituting the PA module 10F will be omitted, and description will be made focusing on differences from the PA module 10E.
  • the pre-amplifier element 12, the switch 14, and the control IC 11F are made into one chip by a chip F (first chip). That is, the switch 14 and the pre-stage amplifying element 12 which are at least part of the filter band selection unit are integrated into one chip by the chip F. Further, the amplification elements 131 to 133 are included in a chip different from the chip F.
  • control IC 11F is made into one chip together with the pre-stage amplifying element 12 and the switch 14, so that the size can be reduced.
  • the pre-stage amplifying element by configuring the pre-stage amplifying element with one amplifying element, it is possible to contribute to downsizing of the PA module 10F, and by arranging a plurality of post-stage amplifying elements corresponding to the pass band, the output is output from the PA module 10F. It is possible to maintain high quality of the high frequency transmission signal.
  • the RF signal processing circuit 3 (or the baseband signal processing circuit 4) controls the switch 18 without the control IC 11F included in the chip F controlling the switch 18. Thereby, the wiring outside the chip from the chip F can be reduced.
  • the first chip (chips A to F) is preferably composed of a complementary metal oxide semiconductor (CMOS), and the second chip is composed of GaAs. It is preferable.
  • CMOS complementary metal oxide semiconductor
  • control IC 11 11A to 11F
  • pre-amplifying element 12 that do not require power handling can be manufactured at a low cost by being composed of CMOS.
  • the post-stage amplifying element 13 (and the amplifying elements 131 to 133) having a high power level of the high-frequency transmission signal is made of a GaAs material, and outputs a high-frequency transmission signal having high quality amplification characteristics and noise characteristics. Is possible.
  • the power amplifying module 10G according to the present embodiment is different from the power amplifying module 10A according to the first embodiment in the configuration of the variable filter circuit arranged between the front stage amplifying element 12 and the rear stage amplifying element 13. .
  • description of points that are the same as those of the PA module 10A according to Embodiment 1 will be omitted, and differences from the PA module 10A will be mainly described.
  • FIG. 7 is a circuit configuration diagram of the PA module 10G according to the second embodiment.
  • the PA module 10G is applied to the PA module 10 of the front end circuit 1 shown in FIG.
  • the PA module 10G includes a control IC 11G, a front stage amplifying element 12, a rear stage amplifying element 13, a resonator 16G, and a filter band selection unit 60.
  • the pre-stage amplifying element 12 and the post-stage amplifying element 13 are multimode / multiband compatible power amplifiers that can be used in a plurality of communication systems and a plurality of communication bands.
  • the input terminal of the preamplifier 12 is an input terminal of the PA module 10 ⁇ / b> G, and the output terminal of the preamplifier 12 is connected to the input terminal of the filter band selector 60.
  • the input terminal of the rear stage amplifying element 13 is connected to the output terminal of the resonator 16G, and the output terminal of the rear stage amplifying element 13 is the output terminal of the PA module 10G.
  • the resonator 16G is a capacitive surface acoustic wave resonator including, for example, a piezoelectric substrate and a comb-shaped electrode formed on the piezoelectric substrate, and is determined by the physical properties of the piezoelectric substrate and the shape of the comb-shaped electrode. A filter element having a point and an anti-resonance point.
  • the resonator 16G may not be a surface acoustic wave resonator, but may be an boundary acoustic wave resonator, an acoustic wave resonator using a BAW (Bulk Acoustic Wave), an LC composed of an inductance element and a capacitor element. It may be a resonator.
  • the filter band selection unit 60 has an input terminal and an output terminal, and the output terminal is connected to the input terminal of the resonator 16G.
  • the filter band selector 60 is connected to the capacitive elements 601, 602, 603, 604, and 605 connected in parallel to the resonator 16G and the capacitive elements 601 to 605, and at least one of the capacitive elements 601 to 605.
  • switch elements 611, 612, 613, 614, and 615 for switching the connection between the resonator 16 G, the front stage amplifying element 12, and the back stage amplifying element 13.
  • the filter band selection unit 60 changes the pass band and the attenuation band of the variable filter circuit by switching the switch elements 611 to 615 by the control signal supplied from the control IC 11G.
  • the plurality of capacitive elements connected to the resonator 16G may not be configured to be connected in parallel to the resonator 16G.
  • the plurality of capacitive elements may be configured to be connected in series to the resonator 16G.
  • a switch element is provided in parallel with each capacitive element corresponding to each capacitive element, and an electrical path that passes through the capacitive element and an electrical path that passes through the switch element without passing through the capacitive element are provided. By selecting, it becomes possible to vary the combined capacitance added to the resonator 16G.
  • the resonator 16G, the capacitive elements 601 to 605, and the switch elements 611 to 615 are arranged in a signal path from the output terminal of the front stage amplifying element 12 to the input terminal of the back stage amplifying element 13, and pass according to the frequency band of the high frequency signal.
  • a variable filter circuit that varies the band and the attenuation band is configured.
  • Capacitance elements 601 to 605 and switch elements 611 to 615 selectively switch a resonance point (for example, a pass band) and an anti-resonance point (for example, an attenuation band) of resonator 16G according to the frequency band of the high frequency signal.
  • a filter band selection unit 60 is configured.
  • variable filter circuit is not limited to the above-described configuration, and has a configuration in which the resonator 16G is connected to the front-stage amplifying element 12 and the filter band selection unit 60 is connected to the back-stage amplifying element 13. Also good. Further, the capacitive elements 601 to 605 may be disposed on the front stage amplifying element 12 side, and the switch elements 611 to 615 may be disposed on the rear stage amplifying element 13 side.
  • the control IC 11G is an amplification controller that controls the amplification characteristics of the pre-stage amplifying element 12 and the post-stage amplifying element 13 in accordance with the communication band (frequency band of the high-frequency signal) that is selected and used.
  • the control IC 11G controls the switch elements 611 to 615 based on the control signal indicating the communication band (frequency band of the high frequency signal) to be used selectively supplied from the RF signal processing circuit 3 or the baseband signal processing circuit 4. . More specifically, for example, when the control signal indicates that band B is selected, the control IC 11G has a filter characteristic in which the transmission band of band B is a pass band and the reception band of band B is an attenuation band.
  • the switch elements 611 to 615 are controlled so as to be configured by the resonator 16G and at least one of the capacitive elements 601 to 605.
  • the high-frequency transmission signal input from the RF signal processing circuit 3 or the baseband signal processing circuit 4 to the PA module 10G is amplified by the preamplifier 12.
  • the amplified high frequency transmission signal is input to the variable filter circuit.
  • the high-frequency transmission signal input to the variable filter circuit passes through at least one of the capacitive elements 601 to 605 and the resonator 16G in the communication method and communication band.
  • the high-frequency transmission signal that has passed through the variable filter circuit is further amplified by the post-stage amplification element 13 and output from the PA module 10G.
  • the reception band component of the frequency band is also amplified by the pre-amplifier element 12, but the amplified reception band component is the selected frequency. It attenuates by passing through a capacitive element and a resonator selected based on the band. Therefore, it is possible to effectively and effectively suppress the amplified reception band component from entering the low noise amplifier circuit 20 and the like into reception band noise in the PA module 10G.
  • the pre-stage amplifying element 12 and the filter band selection unit 60 are made into one chip by a chip G (first chip). Further, the post-stage amplification element 13 is included in a chip different from the chip G.
  • the mutual interference of the high-frequency signals can be suppressed by configuring the front-stage amplifying element 12 and the rear-stage amplifying element 13 as separate chips.
  • the pre-stage amplifying element 12 and the filter band selection unit 60 are made into one chip with the chip G, it is possible to reduce the size as compared with the case where the pre-stage amplifying element 12 and the variable filter circuit are configured as separate chips. Become. Therefore, it is possible to reduce the size while maintaining the quality of the high-frequency signal.
  • all of the filter band selection unit 60 and the pre-stage amplifying element 12 are integrated into one chip with the chip G.
  • the present invention is not limited to this.
  • the switch elements 611 to 615 or the capacitive elements 601 to 605 and the preamplifier element 12 may be integrated into one chip by the chip G. That is, a part of the filter band selection unit 60 and the preamplifier 12 may be integrated into one chip by the chip G.
  • control IC 11G is not included in the chip G, but the control IC 11G may be integrated into one chip with the chip G together with the pre-amplifier 12 and the filter band selection unit 60.
  • a configuration in which the subsequent amplification elements are selected according to the pass band that is, a configuration in which a plurality of the subsequent amplification elements are arranged may be employed.
  • the first chip (chip G) is preferably composed of CMOS, and the second chip is preferably composed of GaAs.
  • control IC 11G and the pre-stage amplifying element 12 that do not require power handling can be manufactured at low cost by being configured with CMOS.
  • the post-amplifying element 13 having a high power level of the high-frequency transmission signal is made of a GaAs-based material, so that a high-frequency transmission signal having high-quality amplification characteristics and noise characteristics can be output.
  • the filter unit 16 further overlaps at least one of the front stage amplifying element 12, the filter band selection unit, and the rear stage amplifying element 13.
  • the configuration is different in that the layers are arranged in a stacked manner.
  • the PA module according to the present embodiment will not be described for the same points as the PA module according to the first embodiment, and will be described mainly with respect to different points.
  • FIG. 8A is a plan configuration diagram of a PA module 10H according to the third embodiment
  • FIG. 8B is a cross-sectional configuration diagram of the PA module 10H according to the third embodiment.
  • FIG. 8B is a cross-sectional view taken along the line IIIB-IIIB in FIG. 8A.
  • the front stage amplifying element 12 As shown in FIGS. 8A and 8B, in the PA module 10H according to the present embodiment, on the substrate 100 (in the z-axis direction in the figure), the front stage amplifying element 12, the rear stage amplifying element 13, and the switches 14 and 15 Is mounted.
  • the preamplifier 12 and the switches 14 and 15 are made into one chip by a chip H (first chip). Further, the post-stage amplification element 13 is included in a chip different from the chip H.
  • the filter unit 16 is mounted on the switches 14 and 15 (in the z-axis direction). That is, the filter unit 16 is stacked and stacked so as to overlap the switches 14 and 15 and the substrate 100 when viewed in plan.
  • Examples of the substrate 100 include a ceramic substrate, a glass epoxy substrate, a flexible substrate, and the like.
  • the electrode pattern formed on the surface of the substrate 100, the preamplifier 12, the postamplifier 13, and the switches 14 and 15 are: Bonded by solder or bumps.
  • the switches 14 and 15 and the filter portion 16 are joined to each other by an electrode pattern formed on the upper portion of the switches 14 and 15 and an electrode pattern formed on the lower portion of the filter portion 16 by solder or bumps. .
  • the front stage amplifying element 12 and the rear stage amplifying element 13 are configured as separate chips, whereby mutual interference of high frequency signals can be suppressed. Further, by making the preamplifier 12 and the switches 14 and 15 into one chip with the chip H, it is possible to reduce the size as compared with the case where the preamplifier 12 and the switches 14 and 15 are configured as separate chips. Become. Furthermore, the PA module 10H on the substrate 100 can be reduced in area by arranging the filter unit 16 and the switches 14 and 15 so as to overlap when the substrate 100 is viewed in plan. Therefore, further downsizing is possible while maintaining the quality of the high frequency signal.
  • 9A, 9B, and 9C are plan configuration diagrams of PA modules 10J, 10K, and 10L according to Modifications 1, 2, and 3 of Embodiment 3, respectively.
  • the PA modules 10J to 10L according to these modified examples have the same constituent elements as the PA module 10H according to the third embodiment, but are different from each other in the manner of stacking arrangement as compared with the PA module 10H.
  • the description of the individual components constituting the PA modules 10J to 10L will be omitted, and the description will focus on the differences from the PA module 10H.
  • the pre-amplifier 12 and the switches 14 and 15 are made into one chip by a chip J (first chip). Further, the post-stage amplifying element 13 is included in a chip different from the chip J.
  • the front amplification element 12, the rear amplification element 13, and the switches 14 and 15 are mounted and disposed on the substrate 100 (in the z-axis direction in the drawing). Further, the filter unit 16 is mounted on the switch 14 (in the z-axis direction). That is, the filter unit 16 is stacked and stacked so as to overlap when the switch 14 and the substrate 100 are viewed in plan.
  • the pre-amplifying element 12 and the switches 14 and 15 are made into one chip by a chip K (first chip). Further, the post-stage amplifying element 13 is included in a chip different from the chip K.
  • the front amplification element 12, the rear amplification element 13, and the switches 14 and 15 are mounted on the substrate 100 (in the z-axis direction in the drawing). Further, the filter unit 16 is mounted on the switch 15 (in the z-axis direction). That is, the filter unit 16 is stacked and stacked so as to overlap when the switch 15 and the substrate 100 are viewed in plan.
  • the pre-amplifier 12 and the switches 14 and 15 are integrated into one chip by a chip L (first chip). Further, the post-stage amplification element 13 is included in a chip different from the chip L.
  • the front amplification element 12, the rear amplification element 13, and the switches 14 and 15 are mounted and disposed on the substrate 100 (in the z-axis direction in the drawing). Furthermore, the filter unit 16 is mounted on the upstream amplification element 12 (in the z-axis direction). That is, the filter unit 16 is stacked and stacked so as to overlap when the front-stage amplifying element 12 and the substrate 100 are viewed in plan.
  • the post-amplifying element 13 generates a large amount of heat because the power level of the high-frequency signal to be amplified is large. Therefore, when the filter unit 16 is disposed close to the post-stage amplification element 13, the filter characteristics of the filter unit 16 deteriorate due to interference with the high-frequency signal.
  • the filter unit 16 is not stacked on the post-stage amplifying element 13, so that the deterioration of the characteristics of the filter unit 16 is effective. Therefore, it is possible to reduce the size while suppressing the operation.
  • the filter unit 16 is not further laminated on the front stage amplifying element 12.
  • the power level of the front-stage amplifying element 12 is not so high as that of the rear-stage amplifying element 13, but is higher than other high-frequency signals. Therefore, it is more preferable that the filter unit 16 is not disposed close to the upstream amplifier element 12 as well as the downstream amplifier element 13. According to the configurations of the first and second modifications, the filter unit 16 is stacked so as not to overlap the rear-stage amplifying element 13 and the front-stage amplifying element 12 in a plan view, so that it is compared with the PA module 10L illustrated in FIG. 9C. Further, it is possible to reduce the size without deteriorating the characteristics of the filter unit 16.
  • the filter unit 16 is disposed so as to be closest to the switches 14 and 15 constituting the filter band selection unit.
  • the length can be shortened.
  • the preamplifier 12 and the switches 14 and 15 are integrated into one chip by the first chip.
  • the switch 14 or 15 is included in the first chip. It does not have to be.
  • control IC 11 may be included in the first chip.
  • the PA module can be further reduced in size.
  • the first chip is preferably composed of CMOS, and the second chip is preferably composed of GaAs.
  • control IC 11 and the pre-stage amplifying element 12 that do not require power handling can be manufactured at low cost by being configured with CMOS.
  • the post-amplifying element 13 having a high power level of the high-frequency transmission signal is made of a GaAs-based material, so that a high-frequency transmission signal having high-quality amplification characteristics and noise characteristics can be output.
  • the power amplification (PA) module according to the embodiment of the present invention has been described with reference to the embodiment and the modification.
  • the power amplification (PA) module according to the present invention is not limited to the above embodiment and modification. It is not limited.
  • the configuration of the third embodiment and its modifications 1 to 3 may be applied to the PA module 10G according to the second embodiment.
  • PA power amplification
  • the variable filter circuit provided in the power amplification (PA) module may be a filter circuit that attenuates the reception frequency band as described above. With such a configuration, if there is a signal in the reception frequency band among the transmission signal components amplified by the pre-stage amplification element 12, the signal in the reception frequency band can be attenuated by the variable filter circuit. Can be prevented from entering the receiving circuit.
  • PA power amplification
  • variable filter circuit may be a filter circuit that attenuates frequency bands other than the used channel used in the TV vacant channel and / or IMD noise.
  • the frequency of the adjacent channel of the channel to be used can be attenuated in the system that uses the unused channel in the TV channel for other communications, so that the unused channel of the TV channel can be effectively used.
  • the present invention also includes a power amplification (PA) module 10 having a characteristic configuration as described above, a reception amplification circuit (low noise amplifier circuit) 20, and a reception signal from the antenna element 2 as a reception amplification circuit (low noise).
  • PA power amplification
  • the attenuation band may be the front end circuit 1 which is a reception band corresponding to the used communication band.
  • the present invention also includes a front end circuit 1 having the above-described characteristic configuration, and an RF signal processing circuit that outputs a high frequency transmission signal to the front end circuit 1 and inputs a high frequency reception signal from the front end circuit 1. 3 and a baseband signal processing circuit 4 that converts the high frequency received signal received from the RF signal processing circuit 3 into an intermediate frequency signal and performs signal processing, and converts the intermediate frequency signal into a high frequency signal and outputs the signal to the RF signal processing circuit 3
  • the communication apparatus 200 provided with these may be sufficient.
  • control IC 11, 11C to 11G
  • the control IC may be realized as an integrated circuit IC or LSI (Large Scale Integration).
  • the method of circuit integration may be realized by a dedicated circuit or a general-purpose processor.
  • An FPGA Field Programmable Gate Array
  • a reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
  • integrated circuit technology comes out to replace LSI's as a result of the advancement of semiconductor technology or a derivative other technology, it is naturally also possible to carry out function block integration using this technology.
  • the present invention can be widely used in communication equipment such as a mobile phone as a power amplification module disposed in a multi-band / multi-mode compatible front-end unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Amplifiers (AREA)
  • Transceivers (AREA)

Abstract

PAモジュール(10A)は、高周波信号を増幅する前段増幅素子(12)と、前段増幅素子(12)で増幅された高周波信号を増幅する後段増幅素子(13)と、前段増幅素子(12)と後段増幅素子(13)との間に配置され、高周波信号の周波数帯域に応じて通過帯域および減衰帯域を可変させる可変フィルタ回路とを備え、可変フィルタ回路は、フィルタ部(16)と、可変フィルタ回路の通過帯域および減衰帯域を可変させるスイッチ(14および15)とを有し、スイッチ(14および15)の少なくとも一部と前段増幅素子(12)とはチップAで1チップ化され、後段増幅素子(13)はチップAとは異なる第2チップに含まれる。

Description

電力増幅モジュール、フロントエンド回路および通信装置
 本発明は、高周波信号を増幅する電力増幅モジュール、フロントエンド回路および通信装置に関する。
 近年の携帯電話には、1つの端末で複数の周波数に対応すること(マルチバンド化)、および1つの端末で複数の無線方式に対応すること(マルチモード化)が要求される。マルチバンド化およびマルチモード化に対応したフロントエンド回路には、複数の送受信信号を品質劣化させずに高速処理することが求められている。さらに、携帯電話などに代表される無線通信端末のフロントエンド回路には、小型化が要求される。
 特許文献1には、マルチバンド化およびマルチモード化に対応した送信回路に用いられるパワーアンプ(以下PAと記すことがある)モジュールが開示されている。
 図10は、特許文献1に記載されたPAモジュールの回路構成図である。同図に示すように、PAモジュール510は、複数の増幅素子511aおよび511b、可変フィルタ回路512、ならびに整合回路513を備える。増幅素子511aおよび511bは、複数の通信帯域を含む周波数範囲において送信信号を増幅することが可能である。可変フィルタ回路512は、スイッチ回路521aおよび521b、ならびに、フィルタ部品522a~522cを有する。PAモジュール510が有するコントロールIC(図示せず)は、フィルタ部品522a~522cのうち、選択された使用通信帯域のうちの送信帯域を通過帯域とし受信帯域を減衰帯域とするフィルタ部品を選択する。
 上記構成により、送信信号をPAモジュール510で増幅する際に発生し得る、受信回路に入り込む受信帯雑音を、PAモジュール510内で効果的に抑制することが可能となる。
国際公開第2015/002127号
 しかしながら、特許文献1に記載されたPAモジュールをフロントエンド回路に用いた場合、フィルタ部品522a~522cの選択を切り替えるスイッチ回路521aおよび521bが別途必要である。このため、スイッチ回路521aおよび521b、増幅素子511aおよび511b、ならびに、フィルタ部品522a~522cを、全て別チップで構成した場合、大型化してしまう。
 また、小型化のために、増幅素子511aおよび511bを同一チップにした場合、増幅された高周波信号の相互干渉が強くなることで発生する発振等により、送信信号の品質が劣化してしまう。
 そこで、本発明は、上記課題を解決するためになされたものであって、高周波信号の品質を維持しつつ、小型化された電力増幅モジュール、フロントエンド回路および通信装置を提供することを目的とする。
 上記目的を達成するために、本発明の一態様に係る電力増幅モジュールは、高周波信号を増幅する前段増幅素子と、前記前段増幅素子で増幅された高周波信号を増幅する後段増幅素子と、前記前段増幅素子と前記後段増幅素子との間に配置され、前記高周波信号の周波数帯域に応じて通過帯域または減衰帯域を可変させる可変フィルタ回路とを備え、前記可変フィルタ回路は、1以上のフィルタ素子と、前記高周波信号の周波数帯域に応じて切り替えられることにより、前記可変フィルタ回路の通過帯域または減衰帯域を可変させるフィルタ帯域選択部と、を有し、前記フィルタ帯域選択部の少なくとも一部と前記前段増幅素子とは、第1チップで1チップ化され、前記後段増幅素子は、前記第1チップとは異なる第2チップに含まれる。
 これにより、前段増幅素子と後段増幅素子とを別チップで構成することで、増幅された高周波信号の相互干渉を抑制できる。また、前段増幅素子とフィルタ帯域選択部とを第1チップで1チップ化することで小型化が可能となる。よって、高周波信号の品質を維持しつつ小型化することが可能となる。
 また、前記1以上のフィルタ素子は、前記通過帯域または減衰帯域が異なる複数のフィルタ素子であり、前記フィルタ帯域選択部は、前記前段増幅素子と前記複数のフィルタ素子との間に配置され、前記前段増幅素子の出力端子と前記複数のフィルタ素子との接続を切り替える第1スイッチ素子と、前記後段増幅素子と前記複数のフィルタ素子との間に配置され、前記後段増幅素子の入力端子と前記複数のフィルタ素子との接続を切り替える第2スイッチ素子と、を備え、前記第1スイッチ素子および前記第2スイッチ素子の少なくとも一方と前記前段増幅素子とは、前記第1チップで1チップ化されていてもよい。
 これにより、第1スイッチ素子および第2スイッチ素子が作動することで、使用される通信帯域に対応したフィルタ素子が前段増幅素子と後段増幅素子との間に接続される。また、第1スイッチ素子および第2スイッチ素子の少なくとも一方と前段増幅素子とが1チップ化されているので、高周波信号の品質を維持しつつ小型化することが可能となる。
 また、前記1以上のフィルタ素子は、共振子であり、前記フィルタ帯域選択部は、前記共振子に接続された複数の容量素子と、前記複数の容量素子のそれぞれに対応して接続され、前記複数の容量素子の少なくとも1つと、前記共振子、前記前段増幅素子および前記後段増幅素子との接続を切り替える複数のスイッチ素子とを備え、前記複数の容量素子および前記複数のスイッチ素子の少なくとも一方と前記前段増幅素子とは、前記第1チップで1チップ化されていてもよい。
 これにより、上記複数のスイッチ素子が作動することで、上記複数の容量素子のうち使用される通信帯域に対応した容量素子が、共振子、前段増幅素子および後段増幅素子と接続される。これにより、共振子の共振周波数および反共振周波数は、使用される通信帯域に対応して可変する。また、上記複数の容量素子および上記複数のスイッチ素子の少なくとも一方と前段増幅素子とが1チップ化されているので、高周波信号の品質を維持しつつ小型化することが可能となる。
 また、前記電力増幅モジュールは、さらに、前記高周波信号の周波数帯域に応じて前記前段増幅素子および前記後段増幅素子の増幅特性を制御する増幅制御部を備え、前記増幅制御部は、前記第1チップに含まれてもよい。
 これにより、使用される通信帯域に応じて各増幅素子の増幅特性を制御する増幅制御部が、前段増幅素子およびフィルタ帯域選択部の一部と1チップ化されるので、更なる小型化が可能となる。
 また、前記増幅制御部と前記前段増幅素子とを接続する第1配線、および、前記前段増幅素子と前記フィルタ帯域選択部とを接続する第2配線は、前記第1チップ内に形成されてもよい。
 これにより、第1配線および第2配線は第1チップ内に形成されるので、第1配線および第2配線の配線長を短縮することが可能となる。よって、信号伝送ロスの低減および小型化が可能となる。さらに、第1チップおよび第2チップの外部への配線は、第3配線および第4配線の2本へと低減できるので、より小型化が可能となる。
 また、前記前段増幅素子、前記フィルタ帯域選択部および前記後段増幅素子は、基板の実装面に配置され、前記1以上のフィルタ素子は、前記前段増幅素子と前記フィルタ帯域選択部と前記後段増幅素子との少なくとも1つと、前記基板を平面視した場合に重なるように積層配置されていてもよい。
 これにより、フィルタ帯域選択部の少なくとも一部と前段増幅素子との1チップ化による省面積化だけでなく、1以上のフィルタ素子と、前段増幅素子、フィルタ帯域選択部および後段増幅素子の少なくとも1つとの積層化により、電力増幅モジュールの更なる省面積化が達成される。よって、高周波信号の品質を維持しつつ更なる小型化が可能となる。
 また、前記1以上のフィルタ素子は、前記前段増幅素子、前記フィルタ帯域選択部および前記後段増幅素子のうち、前記前段増幅素子および前記フィルタ帯域選択部の少なくとも1つのみと前記平面視において重なるように積層配置されていてもよい。
 後段増幅素子は、増幅する高周波信号のパワーレベルが大きいため、1以上のフィルタ素子を後段増幅素子に近接配置すると、当該高周波信号の干渉によりフィルタ素子のフィルタ特性が劣化する。これに対して、1以上のフィルタ素子が後段増幅素子と平面視において重ならないように積層配置されるので、フィルタ素子の特性を劣化させずに小型化することが可能となる。
 また、前記1以上のフィルタ素子は、前記前段増幅素子、前記フィルタ帯域選択部および前記後段増幅素子のうち、前記フィルタ帯域選択部のみと前記平面視において重なるように積層配置されていてもよい。
 前段増幅素子のパワーレベルは、後段増幅素子のそれほどではないが、他の高周波信号と比較して大きい。よって、1以上のフィルタ素子は、後段増幅素子だけでなく、前段増幅素子とも近接配置されないことがさらに好ましい。上記構成によれば、1以上のフィルタ素子が後段増幅素子および前段増幅素子と平面視において重ならないように積層配置されるので、フィルタ素子の特性を劣化させずに小型化することが可能となる。さらに、1以上のフィルタ素子は、フィルタ帯域選択部と最も近接するように配置されるので、可変フィルタ回路の配線長を短くすることが可能となる。
 また、前記前段増幅素子は、複数の通信帯域を含む周波数範囲において高周波信号を増幅し、前記後段増幅素子は、前記複数の通信帯域のそれぞれに対応した複数の増幅素子で構成され、前記後段増幅素子では、前記複数の増幅素子のうち、前記複数の通信帯域のうち使用される通信帯域に対応して選択された増幅素子が、前記前段増幅素子で増幅された高周波信号を増幅してもよい。
 上記構成によれば、複数の通信帯域を含む周波数範囲における高周波信号を1つの前段増幅素子で構成することで、電力増幅モジュールの小型化に寄与でき、かつ、後段増幅素子として、通過帯域に対応させて複数の増幅素子を配置することで、電力増幅モジュールから出力される高周波送信信号の高い品質を維持することが可能となる。
 また、前記第1チップは、CMOSで構成されており、前記第2チップは、GaAsで構成されていてもよい。
 これにより、パワーハンドリングの必要がない増幅制御部および前段増幅素子は、CMOSで構成することで、電力増幅モジュールを安価に製造することが可能となる。一方、高周波送信信号のパワーレベルが高い後段増幅素子は、GaAs系材料で構成することで、高品質な増幅特性および雑音特性を有する高周波送信信号を出力することが可能となる。
 また、本発明の一態様は、上記のような特徴的な構成を備えた電力増幅モジュールと、受信増幅回路と、アンテナ素子からの受信信号を前記受信増幅回路へ出力し、前記電力増幅モジュールで増幅された前記高周波信号を送信信号として前記アンテナ素子へ出力する分波器とを備えるフロントエンド回路であってもよい。
 また、前記可変フィルタ回路において、前記通過帯域は、前記複数の通信帯域から選択された使用通信帯域に対応する送信帯域であり、前記減衰帯域は、前記使用通信帯域に対応する受信帯域であってもよい。
 上記構成によれば、高周波送信信号および高周波受信信号の品質を維持しつつ小型化されたフロントエンド回路を提供することが可能となる。
 また、本発明の一態様は、上記のような特徴的な構成を備えたフロントエンド回路と、前記フロントエンド回路に高周波送信信号を出力し、前記フロントエンド回路から高周波受信信号を入力するRF信号処理回路と、前記RF信号処理回路から受けた高周波受信信号を中間周波信号に変換して信号処理し、中間周波信号を高周波信号に変換して前記RF信号処理回路へ出力するベースバンド信号処理回路とを備える通信装置であってもよい。
 上記構成によれば、高周波送信信号および高周波受信信号の品質を維持しつつ小型化された通信装置を提供することが可能となる。
 本発明に係る電力増幅モジュールによれば、前段増幅素子とフィルタ帯域選択部とを1チップ化し、後段増幅素子と別チップとすることで、高周波信号の品質を維持しつつ小型化が可能となる。
図1は、実施の形態1に係る通信装置の機能ブロック構成図である。 図2は、実施の形態1に係るPAモジュールの回路構成図である。 図3は、実施の形態1の変形例1に係るPAモジュールの回路構成図である。 図4Aは、実施の形態1の変形例1に係るPAモジュールの配線構成図である。 図4Bは、比較例に係るPAモジュールの配線構成図である。 図5Aは、実施の形態1の変形例2に係るPAモジュールの回路構成図である。 図5Bは、実施の形態1の変形例3に係るPAモジュールの回路構成図である。 図6Aは、実施の形態1の変形例4に係るPAモジュールの回路構成図である。 図6Bは、実施の形態1の変形例5に係るPAモジュールの回路構成図である。 図7は、実施の形態2に係るPAモジュールの回路構成図である。 図8Aは、実施の形態3に係るPAモジュールの平面構成図である。 図8Bは、実施の形態3に係るPAモジュールの断面構成図である。 図9Aは、実施の形態3の変形例1に係るPAモジュールの平面構成図である。 図9Bは、実施の形態3の変形例2に係るPAモジュールの平面構成図である。 図9Cは、実施の形態3の変形例3に係るPAモジュールの平面構成図である。 図10は、特許文献1に記載されたPAモジュールの回路構成図である。
 以下、本発明の実施の形態について、実施の形態およびその図面を用いて詳細に説明する。なお、以下で説明する実施の形態は、いずれも包括的または具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置および接続形態などは、一例であり、本発明を限定する主旨ではない。以下の実施の形態における構成要素のうち、独立請求項に記載されていない構成要素については、任意の構成要素として説明される。また、図面に示される構成要素の大きさまたは大きさの比は、必ずしも厳密ではない。
 (実施の形態1)
 [1.1 通信装置の構成]
 図1は、実施の形態1に係る通信装置200の機能ブロック構成図である。同図には、通信装置200と、アンテナ素子2とが示されている。通信装置200は、フロントエンド回路1と、RF信号処理回路3と、ベースバンド信号処理回路4と、表示部5とを備える。フロントエンド回路1は、例えば、マルチモード/マルチバンド対応の携帯電話のフロントエンド部に配置される。
 フロントエンド回路1は、PA(Power Amplifier)モジュール10と、ローノイズアンプ回路20と、アンテナ整合回路30と、アンテナスイッチ40とを備える。
 アンテナ整合回路30は、アンテナ素子2およびアンテナスイッチ40に接続され、アンテナ素子2とフロントエンド回路1との整合をとる回路である。これにより、フロントエンド回路1は、アンテナ素子2から低損失で受信信号を受信し、送信信号を低損失でアンテナ素子2へ出力することが可能となる。アンテナ整合回路30は、1以上の高周波回路部品で構成されており、例えば、チップ状またはパターンで形成されたインダクタ、およびチップ状またはパターンで形成されたコンデンサからなる。なお、アンテナ整合回路30は、フロントエンド回路1の必須構成要素ではない。また、アンテナ整合回路30は、マルチバンドおよびマルチモードに対応させ、選択されるバンドまたはモードに応じてインピーダンスを可変させる可変整合回路であってもよい。
 アンテナスイッチ40は、アンテナ素子2(およびアンテナ整合回路30)と送信側信号経路および受信側信号経路の一方とを接続させることにより、アンテナ素子2と複数の信号経路との接続を切り替える分波器である。より具体的には、アンテナスイッチ40は、アンテナ整合回路30に接続された入力端子と、上記送信側信号経路または受信側信号経路に接続された出力端子とを備える。
 なお、図1では、アンテナスイッチ40は、単極双投型の高周波スイッチを示しているが、送信側信号経路および受信側信号経路がそれぞれ複数配置されている場合には、アンテナスイッチ40は、1入力2出力型に限定されない。また、アンテナスイッチ40に代わって、送信波および受信波を分波するデュプレクサおよびトリプレクサを含むマルチプレクサが配置されていてもよい。
 PAモジュール10は、RF信号処理回路3から出力された高周波送信信号を増幅し、アンテナスイッチ40に向けて出力する電力増幅モジュールである。PAモジュール10は本発明の要部であり、後述にて、詳細に説明する。
 ローノイズアンプ回路20は、アンテナスイッチ40から出力された高周波受信信号を増幅し、RF信号処理回路3へ出力する高周波増幅回路である。
 RF信号処理回路3は、アンテナ素子2から受信側信号経路を介して入力された高周波受信信号を、ダウンコンバートなどにより信号処理し、当該信号処理して生成された受信信号をベースバンド信号処理回路4へ出力する。RF信号処理回路3は、例えば、RFIC(Radio Frequency Integrated Circuit)である。また、RF信号処理回路3は、ベースバンド信号処理回路4から入力された送信信号をアップコンバートなどにより信号処理し、当該信号処理して生成された高周波送信信号をPAモジュール10へ出力する。
 ベースバンド信号処理回路4は、フロントエンド部における高周波信号よりも低周波の中間周波数帯域を用いて信号処理する回路である。ベースバンド信号処理回路4で処理された画像信号は、例えば、表示部5での画像表示のために使用され、ベースバンド信号処理回路4で処理された音声信号は、例えば、スピーカを介した通話のために使用される。
 なお、フロントエンド回路1は、アンテナスイッチ40とPAモジュール10との間の送信側信号経路に、選択された周波数帯域に応じて通過特性を可変できる送信側フィルタ回路を備えていてもよい。また、フロントエンド回路1は、アンテナスイッチ40とローノイズアンプ回路20との間の受信側信号経路に、選択された周波数帯域に応じて通過特性を可変できる受信側フィルタ回路を備えていてもよい。
 [1.2 PAモジュールの構成]
 図2は、実施の形態1に係るPAモジュール10Aの回路構成図である。PAモジュール10Aは、図1に示されたフロントエンド回路1のPAモジュール10に適用される。PAモジュール10Aは、コントロールIC11と、前段増幅素子12と、後段増幅素子13と、スイッチ14および15と、フィルタ部16とを備える。
 前段増幅素子12および後段増幅素子13は、複数の通信方式および複数の通信帯域で使用することが可能なマルチモード/マルチバンド対応のパワーアンプである。前段増幅素子12の入力端子はPAモジュール10Aの入力端子であり、前段増幅素子12の出力端子は、スイッチ14の共通端子に接続されている。後段増幅素子13の入力端子は、スイッチ15の共通端子に接続され、後段増幅素子13の出力端子はPAモジュール10Aの出力端子である。
 フィルタ部16は、通過帯域および減衰帯域がそれぞれ異なるフィルタ素子161、162、163および164を有する。フィルタ素子161~164は、典型的にはバンドパスフィルタであるが、複数の通過帯域の周波数配置関係により、ローパスフィルタ、ハイパスフィルタ、または、バンドエリミネーションフィルタであってもよい。なお、フィルタ素子161~164は、弾性表面波フィルタ、弾性境界波フィルタ、BAW(Bulk Acoustic Wave)を用いた弾性波フィルタ、ならびに、インダクタンス素子およびコンデンサ素子で構成されたLCフィルタなどが例示される。また、フィルタ部16を構成するフィルタ素子の数は4個に限定されず、使用予定のバンド数またはモード数に応じて決定される。また、フィルタ素子161~164のうち少なくとも1以上は、スルーパスであってもよい。なお、スルーパスとは、分布定数型の伝送線路である。
 スイッチ14は、前段増幅素子12とフィルタ部16との間に配置され、前段増幅素子12の出力端子とフィルタ部16との接続を切り替える第1スイッチ素子である。スイッチ14は、1つの共通端子と4つの選択端子とを有し、1つの共通端子は、前段増幅素子12の出力端子に接続され、4つの選択端子は、それぞれ、フィルタ素子161~164の一方の端子に接続されている。
 スイッチ15は、後段増幅素子13とフィルタ部16との間に配置され、後段増幅素子13の入力端子とフィルタ部16との接続を切り替える第2スイッチ素子である。スイッチ15は、1つの共通端子と4つの選択端子とを有し、1つの共通端子は、後段増幅素子13の入力端子に接続され、4つの選択端子は、それぞれ、フィルタ素子161~164の他方の端子に接続されている。スイッチ14および15において、後述するコントロールIC11、RF信号処理回路3およびベースバンド信号処理回路4のいずれかより供給される制御信号により、上記1つの共通端子と上記4つの選択端子のいずれか1つとが接続される。
 スイッチ14および15とフィルタ部16とは、前段増幅素子12の出力端子から後段増幅素子13の入力端子までの信号経路に配置され、高周波信号の周波数帯域に応じて通過帯域および減衰帯域を可変させる可変フィルタ回路を構成している。
 スイッチ14および15は、高周波信号の周波数帯域に応じて切り替えられることにより、可変フィルタ回路の通過帯域および減衰帯域を可変させるフィルタ帯域選択部を構成している。
 コントロールIC11は、使用される通信帯域(高周波信号の周波数帯域)に応じて前段増幅素子12および後段増幅素子13の増幅特性を制御する増幅制御部である。なお、前段増幅素子12および後段増幅素子13の増幅特性とは、例えば、前段増幅素子12および後段増幅素子13のゲイン(増幅率)である。また、コントロールIC11は、RF信号処理回路3またはベースバンド信号処理回路4から供給された、選択使用される通信帯域(高周波信号の周波数帯域)を示す制御信号に基づいて、スイッチ14および15を制御する。より具体的には、上記制御信号が、例えば、バンドAを選択することを示す場合、コントロールIC11は、バンドAの送信帯域を通過帯域とし、バンドAの受信帯域を減衰帯域とするフィルタ素子161が、前段増幅素子12および後段増幅素子13と接続されるよう、スイッチ14および15を制御する。
 上記構成によれば、RF信号処理回路3からPAモジュール10に入力された高周波送信信号は、前段増幅素子12で増幅される。増幅された高周波送信信号は可変フィルタ回路に入力される。可変フィルタ回路に入力された高周波送信信号は、通信方式および通信帯域にあったフィルタ素子を通過する。可変フィルタ回路を通過した高周波送信信号は、後段増幅素子13でさらに増幅され、PAモジュール10Aから出力される。
 選択された周波数帯域を有する高周波送信信号をPAモジュールで増幅する際に、当該周波数帯域の受信帯域成分も前段増幅素子12で増幅されるが、当該増幅された受信帯域成分は、選択された周波数帯域に基づいて選択されたフィルタ素子を通過することで減衰する。よって、増幅された受信帯域成分がローノイズアンプ回路20などに入り込んで受信帯雑音となることを、PAモジュール10A内で未然かつ効果的に抑制することが可能となる。
 また、上記構成によれば、RF信号処理回路3およびPAモジュール10の後段に配置されるフィルタやアンテナスイッチなどの特性緩和をすることができ、かつ面積の増加を最小限に抑えた回路を実現できる。
 ここで、特許文献1に記載された従来のPAモジュール510のように、スイッチ回路521aおよび521b、増幅素子511aおよび511b、ならびに、フィルタ部品522a~522cを、全て別チップで構成した場合、小型化には限界があり、フロントエンド部の小型化には寄与できない。また、更なる小型化のため、増幅素子511aおよび511bを同一チップにした場合、高周波信号の相互干渉が強くなることで発生する発振等により、送信信号の品質が劣化する。
 これに対し、本実施の形態に係るPAモジュール10Aでは、前段増幅素子12ならびにスイッチ14および15は、チップA(第1チップ)で1チップ化されている。さらに、後段増幅素子13は、チップAと異なるチップに含まれる。
 上記構成によれば、前段増幅素子12と後段増幅素子13とを別チップで構成することで、高周波信号の相互干渉を抑制できる。また、前段増幅素子12とスイッチ14および15とをチップAで1チップ化することで、前段増幅素子12とスイッチ14および15とを別チップで構成した場合と比較して、小型化が可能となる。よって、高周波信号の品質を維持しつつ小型化することが可能となる。
 [1.3 変形例1に係るPAモジュールの構成]
 図3は、実施の形態1の変形例1に係るPAモジュール10Bの回路構成図である。本変形例に係るPAモジュール10Bは、実施の形態1に係るPAモジュール10Aと同じ構成要素を有しているが、PAモジュール10Aと比較して1チップ化される構成要素の範囲が異なる。以下、PAモジュール10Bを構成する個々の構成要素については説明を省略し、PAモジュール10Aと異なる点を中心に説明する。
 本変形例に係るPAモジュール10Bでは、前段増幅素子12、スイッチ14および15、ならびに、コントロールIC11は、チップB(第1チップ)で1チップ化されている。さらに、後段増幅素子13は、チップBと異なるチップに含まれる。
 これにより、コントロールIC11が、前段増幅素子12ならびにスイッチ14および15とともに1チップ化されるので、実施の形態1に係るPAモジュール10Aに比べて更なる小型化が可能となる。また、コントロールIC11が処理する制御信号のパワーレベルは、前段増幅素子12および後段増幅素子13が処理する高周波信号のパワーレベルよりもはるかに低い。よって、コントロールIC11が、前段増幅素子12ならびにスイッチ14および15とともに1チップ化されても、前段増幅素子12および後段増幅素子13の高周波信号の品質を確保することが可能である。
 図4Aは、実施の形態1の変形例1に係るPAモジュール10Bの配線構成図である。同図には、前段増幅素子12、スイッチ14および15、ならびに、コントロールIC11が含まれるチップBと接続するための配線構成が示されている。チップBとRF信号処理回路3(ベースバンド信号処理回路4)とは配線L1およびL2により接続され、チップBと後段増幅素子13とは配線L3(第3配線)により接続され、チップBとフィルタ部16とは配線L4およびL5(第4配線)により接続される。つまり、5本のチップ外配線が配置され、PAモジュール10B内でのチップ外配線は、上記第3配線および第4配線の2本である。また、コントロールIC11と前段増幅素子12とを接続する第1配線、および、前段増幅素子12とスイッチ14とを接続する第2配線は、チップB内に形成されるので、第1配線および第2配線の配線長を短縮することが可能となる。
 図4Bは、比較例に係るPAモジュールの配線構成図である。図4Bに示された、比較例に係るPAモジュールは、前段増幅素子および後段増幅素子を除き、1チップ化されているものはない。この構成において、コントロールICとRF信号処理回路(ベースバンド信号処理回路)とは配線L1により接続され、コントロールICとスイッチSW1とは配線L2により接続され、コントロールICとスイッチSW2とは配線L3により接続され、コントロールICと前段増幅素子とは配線L4により接続され、前段増幅素子とRF信号処理回路(ベースバンド信号処理回路)とは配線L5により接続され、前段増幅素子とスイッチSW1とは配線L6により接続され、コントロールICと後段増幅素子とは配線L7により接続され、後段増幅素子とスイッチSW2とは配線L8により接続され、フィルタ部とスイッチSW1とは配線L9により接続され、フィルタ部とスイッチSW2とは配線L10により接続される。つまり、10本のチップ外配線が配置され、比較例に係るPAモジュール内でのチップ外配線は、配線L2、L3、L4、L6、L7、L8、L9(およびL10)の7本である。
 本変形例1に係るPAモジュール10Bの配線レイアウトによれば、第1配線および第2配線は第1チップ内に形成されるので、第1配線および第2配線の配線長を短縮することが可能となる。よって、信号伝送ロスの低減および小型化が可能となる。さらに、チップ外配線は、比較例に係るPAモジュールでは7本であったのに対して、第3配線および第4配線の2本へと低減できるので、より小型化が可能となる。
 [1.4 変形例2に係るPAモジュールの構成]
 図5Aは、実施の形態1の変形例2に係るPAモジュール10Cの回路構成図である。本変形例に係るPAモジュール10Cは、実施の形態1に係るPAモジュール10Aと同じ構成要素を有しているが、PAモジュール10Aと比較して1チップ化される構成要素の範囲およびコントロールICの制御対象が異なる。以下、PAモジュール10Cを構成する個々の構成要素については説明を省略し、PAモジュール10Aと異なる点を中心に説明する。
 本変形例に係るPAモジュール10Cでは、前段増幅素子12、スイッチ14、およびコントロールIC11Cは、チップC(第1チップ)で1チップ化されている。つまり、フィルタ帯域選択部の少なくとも一部であるスイッチ14と前段増幅素子12とが、チップCで1チップ化されている。さらに、後段増幅素子13は、チップCと異なるチップに含まれる。
 これにより、コントロールIC11Cが、前段増幅素子12およびスイッチ14とともに1チップ化されるので、小型化が可能となる。
 また、スイッチ15がチップCに含まれていないため、チップCに含まれるコントロールIC11Cがスイッチ15を制御せずに、RF信号処理回路3(またはベースバンド信号処理回路4)がスイッチ15を制御している。これにより、チップCからのチップ外配線を削減できる。
 [1.5 変形例3に係るPAモジュールの構成]
 図5Bは、実施の形態1の変形例3に係るPAモジュール10Dの回路構成図である。本変形例に係るPAモジュール10Dは、変形例2に係るPAモジュール10Cと比較して、コントロールICの制御対象のみが異なる。以下、PAモジュール10Dを構成する個々の構成要素については説明を省略し、PAモジュール10Cと異なる点を中心に説明する。
 本変形例に係るPAモジュール10Dでは、チップDに含まれるコントロールIC11Dが、前段増幅素子12、後段増幅素子13およびスイッチ14だけでなく、スイッチ15も制御している。これにより、スイッチ14および15が、同一のコントロールIC11Dにより制御されるので、通信バンドの切り替え等のタイミング制御を容易にすることができる。
 [1.6 変形例4に係るPAモジュールの構成]
 図6Aは、実施の形態1の変形例4に係るPAモジュール10Eの回路構成図である。本変形例に係るPAモジュール10Eは、変形例1に係るPAモジュール10Bと比較して、後段増幅素子の構成が異なる。以下、PAモジュール10Bと同じ点は説明を省略し、PAモジュール10Bと異なる点を中心に説明する。
 本変形例に係るPAモジュール10Eでは、前段増幅素子12、スイッチ14および15、ならびにコントロールIC11Eは、チップE(第1チップ)で1チップ化されている。つまり、フィルタ帯域選択部であるスイッチ14および15と前段増幅素子12とが、チップEで1チップ化されている。さらに、後段増幅素子を構成する増幅素子131~133は、チップEと異なるチップに含まれる。
 高周波送信信号をPAモジュールで高品質に増幅するにあたり、縦続接続された前段増幅素子と後段増幅素子とで増幅特性に差異を設けることが効果的である。すなわち、前段増幅素子では、入力される高周波送信信号のパワーレベルがさほど高くないという観点から、当該高周波送信信号を広帯域にわたり増幅することが望まれる。一方、後段増幅素子は、PAモジュールの最終段に配置され、高周波送信信号のパワーレベルが高いという観点から、前段増幅素子で増幅された高周波送信信号を、高品質に増幅することが望まれる。
 ここで、高周波増幅素子は、一般的に、周波数特性とゲインおよび雑音特性との間で、トレードオフの関係を有している。つまり、ゲインおよび雑音特性よりも広帯域な増幅を優先するか、狭帯域であるがゲインおよび雑音特性を優先するかの選択が要求される場合がある。
 このため、本変形例では、前段増幅素子には、ゲイン特性および雑音特性よりも、むしろ広帯域にわたり高周波信号を増幅することが可能な1つの増幅素子が配置される。一方、後段増幅素子には、広帯域特性よりも、むしろ高ゲイン特性および低雑音特性が要求されるので、各周波数帯域において高ゲイン特性および低雑音特性を有する増幅素子が複数並列配置される。
 図6Aに示すように、PAモジュール10Eは、後段増幅素子として、スイッチ15に並列接続された増幅素子131、132、および133を有している。PAモジュール10Eは、さらに、選択される周波数帯域に応じて増幅素子131~133の選択を切り替えるスイッチ18と、スイッチ15と18との間に配置され、増幅素子131に接続された送信側フィルタ素子171、増幅素子132に接続された送信側フィルタ素子172、および、増幅素子133に接続された送信側フィルタ素子173とを備える。
 上記構成によれば、前段増幅素子を1つの増幅素子で構成することで、PAモジュール10Eの小型化に寄与でき、かつ、後段増幅素子を通過帯域に対応させて複数配置することで、PAモジュール10Eから出力される高周波送信信号の高い品質を維持することが可能となる。
 また、本変形例に係るPAモジュール10Eでは、チップEに含まれるコントロールIC11Eが、前段増幅素子12、スイッチ14および15だけでなく、スイッチ18も制御している。これにより、スイッチ14、15および18が、同一のコントロールIC11Eにより制御されるので、通信バンドの切り替え等のタイミング制御を容易にすることができる。
 [1.7 変形例5に係るPAモジュールの構成]
 図6Bは、実施の形態1の変形例5に係るPAモジュール10Fの回路構成図である。本変形例に係るPAモジュール10Fは、変形例4に係るPAモジュール10Eと同じ構成要素を有しているが、PAモジュール10Eと比較して1チップ化される構成要素の範囲およびコントロールICの制御対象が異なる。以下、PAモジュール10Fを構成する個々の構成要素については説明を省略し、PAモジュール10Eと異なる点を中心に説明する。
 本変形例に係るPAモジュール10Fでは、前段増幅素子12、スイッチ14およびコントロールIC11Fは、チップF(第1チップ)で1チップ化されている。つまり、フィルタ帯域選択部の少なくとも一部であるスイッチ14と前段増幅素子12とが、チップFで1チップ化されている。さらに、増幅素子131~133は、チップFと異なるチップに含まれる。
 これにより、コントロールIC11Fが、前段増幅素子12およびスイッチ14とともに1チップ化されるので、小型化が可能となる。
 また、前段増幅素子を1つの増幅素子で構成することで、PAモジュール10Fの小型化に寄与でき、かつ、後段増幅素子を通過帯域に対応させて複数配置することで、PAモジュール10Fから出力される高周波送信信号の高い品質を維持することが可能となる。
 また、チップFに含まれるコントロールIC11Fがスイッチ18を制御せずに、RF信号処理回路3(またはベースバンド信号処理回路4)がスイッチ18を制御している。これにより、チップFからのチップ外配線を削減できる。
 [1.8 その他の変形例など]
 なお、実施の形態1およびその変形例1~5において、第1チップ(チップA~F)は、CMOS(Complementary Metal Oxide Semiconductor)で構成されることが好ましく、第2チップは、GaAsで構成されることが好ましい。
 つまり、パワーハンドリングを必要としないコントロールIC11(11A~11F)および前段増幅素子12は、CMOSで構成することで、PAモジュールを安価に製造することが可能となる。一方、高周波送信信号のパワーレベルが高い後段増幅素子13(および増幅素子131~133)は、GaAs系材料で構成することで、高品質な増幅特性および雑音特性を有する高周波送信信号を出力することが可能となる。
 (実施の形態2)
 本実施の形態に係る電力増幅モジュール10Gは、実施の形態1に係る電力増幅モジュール10Aと比較して、前段増幅素子12と後段増幅素子13との間に配置される可変フィルタ回路の構成が異なる。以下、実施の形態1に係るPAモジュール10Aと共通する点は説明を省略し、PAモジュール10Aと異なる点を中心に説明する。
 [2.1 PAモジュールの構成]
 図7は、実施の形態2に係るPAモジュール10Gの回路構成図である。PAモジュール10Gは、図1に示されたフロントエンド回路1のPAモジュール10に適用される。PAモジュール10Gは、コントロールIC11Gと、前段増幅素子12と、後段増幅素子13と、共振子16Gと、フィルタ帯域選択部60とを備える。
 前段増幅素子12および後段増幅素子13は、複数の通信方式および複数の通信帯域で使用することが可能なマルチモード/マルチバンド対応のパワーアンプである。前段増幅素子12の入力端子はPAモジュール10Gの入力端子であり、前段増幅素子12の出力端子は、フィルタ帯域選択部60の入力端子に接続されている。後段増幅素子13の入力端子は、共振子16Gの出力端子に接続され、後段増幅素子13の出力端子はPAモジュール10Gの出力端子である。
 共振子16Gは、例えば、圧電基板および当該圧電基板上に形成された櫛形電極で構成された容量性の弾性表面波共振子であり、圧電基板の物性および櫛形電極の形状などで決定される共振点および反共振点を有するフィルタ素子である。なお、共振子16Gは、弾性表面波共振子でなくてもよく、弾性境界波共振子、BAW(Bulk Acoustic Wave)を用いた弾性波共振子、ならびに、インダクタンス素子およびコンデンサ素子で構成されたLC共振子などであってもよい。
 フィルタ帯域選択部60は、入力端子および出力端子を有し、出力端子が共振子16Gの入力端子に接続されている。フィルタ帯域選択部60は、共振子16Gに並列接続された容量素子601、602、603、604および605と、容量素子601~605のそれぞれに対応して接続され、容量素子601~605の少なくとも1つと、共振子16G、前段増幅素子12および後段増幅素子13との接続を切り替えるスイッチ素子611、612、613、614および615とを備える。フィルタ帯域選択部60は、コントロールIC11Gより供給される制御信号によりスイッチ素子611~615が切り替えられることにより、可変フィルタ回路の通過帯域および減衰帯域を可変させる。
 なお、共振子16Gに接続される複数の容量素子は、共振子16Gに並列接続された構成でなくてもよく、例えば、当該複数の容量素子が共振子16Gに直列接続された構成であってもよい。この場合、例えば、各容量素子に対応させて各容量素子に並列にスイッチ素子が設けられ、当該容量素子を通過する電気経路と当該容量素子を通過せずにスイッチ素子をスルーする電気経路とが選択されることにより、共振子16Gに付加される合成容量を可変することが可能となる。
 共振子16Gと容量素子601~605およびスイッチ素子611~615とは、前段増幅素子12の出力端子から後段増幅素子13の入力端子までの信号経路に配置され、高周波信号の周波数帯域に応じて通過帯域および減衰帯域を可変させる可変フィルタ回路を構成している。
 また、容量素子601~605およびスイッチ素子611~615は、高周波信号の周波数帯域に応じて共振子16Gの共振点(例えば、通過帯域)および反共振点(例えば、減衰帯域)を選択的に切り替えるフィルタ帯域選択部60を構成している。
 なお、本実施の形態に係る可変フィルタ回路は、上記構成に限定されず、共振子16Gが前段増幅素子12に接続され、フィルタ帯域選択部60が後段増幅素子13に接続された構成であってもよい。また、容量素子601~605が前段増幅素子12側に配置され、スイッチ素子611~615が後段増幅素子13側に配置されていてもよい。
 コントロールIC11Gは、選択使用される通信帯域(高周波信号の周波数帯域)に応じて前段増幅素子12および後段増幅素子13の増幅特性を制御する増幅制御部である。コントロールIC11Gは、RF信号処理回路3またはベースバンド信号処理回路4から供給された、選択使用される通信帯域(高周波信号の周波数帯域)を示す制御信号に基づいて、スイッチ素子611~615を制御する。より具体的には、上記制御信号が、例えば、バンドBを選択することを示す場合、コントロールIC11Gは、バンドBの送信帯域を通過帯域とし、バンドBの受信帯域を減衰帯域とするフィルタ特性が、共振子16Gと容量素子601~605の少なくともいずれかとにより構成されるよう、スイッチ素子611~615を制御する。
 上記構成によれば、RF信号処理回路3またはベースバンド信号処理回路4からPAモジュール10Gに入力された高周波送信信号は、前段増幅素子12で増幅される。増幅された高周波送信信号は可変フィルタ回路に入力される。可変フィルタ回路に入力された高周波送信信号は、通信方式および通信帯域にあった容量素子601~605の少なくとも1つおよび共振子16Gを通過する。可変フィルタ回路を通過した高周波送信信号は、後段増幅素子13でさらに増幅され、PAモジュール10Gから出力される。
 選択された周波数帯域を有する高周波送信信号をPAモジュールで増幅する際に、当該周波数帯域の受信帯域成分も前段増幅素子12で増幅されるが、当該増幅された受信帯域成分は、選択された周波数帯域に基づいて選択された容量素子および共振子を通過することで減衰する。よって、増幅された受信帯域成分がローノイズアンプ回路20などに入り込んで受信帯雑音となることを、PAモジュール10G内で未然かつ効果的に抑制することが可能となる。
 ここで、本実施の形態に係るPAモジュール10Gでは、前段増幅素子12およびフィルタ帯域選択部60は、チップG(第1チップ)で1チップ化されている。さらに、後段増幅素子13は、チップGと異なるチップに含まれる。
 これにより、前段増幅素子12と後段増幅素子13とを別チップで構成することで、高周波信号の相互干渉を抑制できる。また、前段増幅素子12とフィルタ帯域選択部60とをチップGで1チップ化することで、前段増幅素子12と可変フィルタ回路とを別チップで構成した場合と比較して、小型化が可能となる。よって、高周波信号の品質を維持しつつ小型化することが可能となる。
 なお、本実施の形態では、フィルタ帯域選択部60の全てと前段増幅素子12とをチップGで1チップ化したが、これに限られない。例えば、フィルタ帯域選択部60のうち、スイッチ素子611~615または容量素子601~605と前段増幅素子12とをチップGで1チップ化してもよい。つまり、フィルタ帯域選択部60の一部と前段増幅素子12とを、チップGで1チップ化してもよい。
 また、本実施の形態では、コントロールIC11GをチップGに含んでいないが、コントロールIC11Gが、前段増幅素子12およびフィルタ帯域選択部60とともにチップGで1チップ化されていてもよい。
 また、実施の形態1の変形例4および変形例5のように、後段増幅素子が通過帯域に応じて選択される構成、つまり、後段増幅素子が複数配置された構成であってもよい。
 また、本実施の形態において、第1チップ(チップG)は、CMOSで構成されることが好ましく、第2チップは、GaAsで構成されることが好ましい。
 つまり、パワーハンドリングの必要がないコントロールIC11Gおよび前段増幅素子12は、CMOSで構成することで、PAモジュールを安価に製造することが可能となる。一方、高周波送信信号のパワーレベルが高い後段増幅素子13は、GaAs系材料で構成することで、高品質な増幅特性および雑音特性を有する高周波送信信号を出力することが可能となる。
 (実施の形態3)
 本実施の形態に係るPAモジュールは、実施の形態1に係るPAモジュールと比較して、さらに、フィルタ部16が、前段増幅素子12、フィルタ帯域選択部、および後段増幅素子13の少なくとも1つと重なるように積層配置されている点が構成として異なる。以下、本実施の形態に係るPAモジュールについて、実施の形態1に係るPAモジュールと同じ点は説明を省略し、異なる点を中心に説明する。
 [3.1 PAモジュールの構成]
 図8Aは、実施の形態3に係るPAモジュール10Hの平面構成図であり、図8Bは、実施の形態3に係るPAモジュール10Hの断面構成図である。具体的には、図8Bは、図8AにおけるIIIB-IIIB線で切断した場合の断面図である。
 図8Aおよび図8Bに示すように、本実施の形態に係るPAモジュール10Hでは、基板100の上に(図中z軸方向に)、前段増幅素子12、後段増幅素子13、ならびにスイッチ14および15が実装配置されている。
 ここで、PAモジュール10Hでは、前段増幅素子12ならびにスイッチ14および15は、チップH(第1チップ)で1チップ化されている。さらに、後段増幅素子13は、チップHと異なるチップに含まれる。
 さらに、PAモジュール10Hでは、スイッチ14および15の上に(z軸方向に)、フィルタ部16が実装配置されている。つまり、フィルタ部16は、スイッチ14および15と、基板100を平面視した場合に、重なるように積層配置(スタック)されている。
 基板100は、セラミック基板のほか、ガラスエポキシ基板、フレキ基板などが例示され、基板100の表面に形成された電極パターンと、前段増幅素子12、後段増幅素子13、ならびにスイッチ14および15とが、はんだまたはバンプなどにより接合されている。また、スイッチ14および15とフィルタ部16とは、スイッチ14および15の上部に形成された電極パターンと、フィルタ部16の下部に形成された電極パターンとが、はんだまたはバンプなどにより接合されている。
 なお、図8Aおよび図8Bにおいて、前段増幅素子12、後段増幅素子13、スイッチ14および15、ならびにフィルタ部16を接続する配線については、図示を省略している。
 上記構成によれば、前段増幅素子12と後段増幅素子13とを別チップで構成することで、高周波信号の相互干渉を抑制できる。また、前段増幅素子12とスイッチ14および15とをチップHで1チップ化することで、前段増幅素子12とスイッチ14および15とを別チップで構成した場合と比較して、小型化が可能となる。さらに、フィルタ部16と、スイッチ14および15とを、基板100を平面視した場合に重なるように積層配置することで、基板100上におけるPAモジュール10Hを省面積化できる。よって、高周波信号の品質を維持しつつ更なる小型化が可能となる。
 [3.2 変形例1~3に係るPAモジュールの構成]
 図9A、図9Bおよび図9Cは、それぞれ、実施の形態3の変形例1、2および3に係るPAモジュール10J、10Kおよび10Lの平面構成図である。これらの変形例に係るPAモジュール10J~10Lは、実施の形態3に係るPAモジュール10Hと同じ構成要素を有しているが、PAモジュール10Hと比較して積層配置の態様が異なる。以下、PAモジュール10J~10Lを構成する個々の構成要素については説明を省略し、PAモジュール10Hと異なる点を中心に説明する。
 図9Aに示すように、変形例1に係るPAモジュール10Jでは、前段増幅素子12ならびにスイッチ14および15は、チップJ(第1チップ)で1チップ化されている。さらに、後段増幅素子13は、チップJと異なるチップに含まれる。
 さらに、PAモジュール10Jでは、基板100の上に(図中z軸方向に)、前段増幅素子12、後段増幅素子13、ならびにスイッチ14および15が実装配置されている。さらに、スイッチ14の上に(z軸方向に)、フィルタ部16が実装配置されている。つまり、フィルタ部16は、スイッチ14と、基板100を平面視した場合に、重なるように積層配置(スタック)されている。
 また、図9Bに示すように、変形例2に係るPAモジュール10Kでは、前段増幅素子12ならびにスイッチ14および15は、チップK(第1チップ)で1チップ化されている。さらに、後段増幅素子13は、チップKと異なるチップに含まれる。
 さらに、PAモジュール10Kでは、基板100の上に(図中z軸方向に)、前段増幅素子12、後段増幅素子13、ならびにスイッチ14および15が実装配置されている。さらに、スイッチ15の上に(z軸方向に)、フィルタ部16が実装配置されている。つまり、フィルタ部16は、スイッチ15と、基板100を平面視した場合に、重なるように積層配置(スタック)されている。
 また、図9Cに示すように、変形例3に係るPAモジュール10Lでは、前段増幅素子12ならびにスイッチ14および15は、チップL(第1チップ)で1チップ化されている。さらに、後段増幅素子13は、チップLと異なるチップに含まれる。
 さらに、PAモジュール10Lでは、基板100の上に(図中z軸方向に)、前段増幅素子12、後段増幅素子13、ならびにスイッチ14および15が実装配置されている。さらに、前段増幅素子12の上に(z軸方向に)、フィルタ部16が実装配置されている。つまり、フィルタ部16は、前段増幅素子12と、基板100を平面視した場合に、重なるように積層配置(スタック)されている。
 ここで、後段増幅素子13は、増幅する高周波信号のパワーレベルが大きいため、発熱量が多い。したがって、フィルタ部16を後段増幅素子13に近接配置すると、フィルタ部16のフィルタ特性が上記高周波信号との干渉により劣化する。これに対して、上記変形例1~3に係るPAモジュール10J、10Kおよび10Lによれば、フィルタ部16が後段増幅素子13の上に積層配置されていないので、フィルタ部16の特性劣化を効果的に抑制しつつ小型化することが可能となる。
 また、上記変形例1および2に係るPAモジュール10Jおよび10Kでは、さらに、フィルタ部16が前段増幅素子12の上にも積層配置されていない。
 前段増幅素子12のパワーレベルは、後段増幅素子13のそれほどではないが、他の高周波信号と比較して大きい。よって、フィルタ部16は、後段増幅素子13だけでなく、前段増幅素子12とも近接配置されないことがさらに好ましい。上記変形例1および2の構成によれば、フィルタ部16が後段増幅素子13および前段増幅素子12と平面視において重ならないように積層配置されるので、図9Cに示されたPAモジュール10Lと比較して、さらにフィルタ部16の特性を劣化させずに小型化することが可能となる。
 さらに、上記変形例1および2に係るPAモジュール10Jおよび10Kでは、フィルタ部16は、フィルタ帯域選択部を構成するスイッチ14および15と、最も近接するように配置されるので、可変フィルタ回路の配線長を短くすることが可能となる。
 [3.3 その他の変形例など]
 なお、本実施の形態およびその変形例に係るPAモジュール10H~10Lにおいて、前段増幅素子12、スイッチ14および15を第1チップで1チップ化したが、スイッチ14または15が第1チップに含まれなくてもよい。
 また、本実施の形態およびその変形例に係るPAモジュール10H~10Lにおいて、コントロールIC11を、第1チップ内に含めてもよい。これにより、PAモジュールの更なる小型化が可能となる。
 また、本実施の形態およびその変形例において、第1チップは、CMOSで構成されることが好ましく、第2チップは、GaAsで構成されることが好ましい。
 つまり、パワーハンドリングが必要ないコントロールIC11および前段増幅素子12は、CMOSで構成することで、PAモジュールを安価に製造することが可能となる。一方、高周波送信信号のパワーレベルが高い後段増幅素子13は、GaAs系材料で構成することで、高品質な増幅特性および雑音特性を有する高周波送信信号を出力することが可能となる。
 (その他の実施の形態など)
 以上、本発明の実施の形態に係る電力増幅(PA)モジュールついて、実施の形態および変形例を挙げて説明したが、本発明の電力増幅(PA)モジュールは、上記実施の形態および変形例に限定されるものではない。上記実施の形態および変形例における任意の構成要素を組み合わせて実現される別の実施の形態や、上記実施の形態および変形例に対して本発明の主旨を逸脱しない範囲で当業者が思いつく各種変形を施して得られる変形例や、本開示の電力増幅(PA)モジュールを内蔵した各種機器も本発明に含まれる。
 例えば、実施の形態2に係るPAモジュール10Gに対して、実施の形態3およびその変形例1~3の構成を適用してもよい。
 また、上記実施の形態および変形例に係る電力増幅(PA)モジュールにおいて、図面に開示された各回路素子および信号経路を接続する経路の間に別の高周波回路素子および配線などが挿入されていてもよい。
 また、電力増幅(PA)モジュールが備える可変フィルタ回路は、上述したように、受信周波数帯を減衰させるフィルタ回路であってもよい。このような構成にすると、前段増幅素子12で増幅された送信信号成分の中に、受信周波数帯の信号があれば、受信周波数帯の信号を可変フィルタ回路で減衰させることができるので、送信信号が受信回路に回り込むことを防止することができる。
 また、可変フィルタ回路は、TV空きチャネルの中で使用している使用チャネル以外の周波数帯、又は/及び、IMDノイズを減衰させるフィルタ回路であってもよい。このような構成にすると、TVチャネルの中の空きチャネルを他の通信に活用するシステムにおいて、使用するチャネルの隣接チャネルの周波数を減衰することができるので、TVチャネルの空きチャネルを有効活用できる。
 また、本発明は、上述したような特徴的な構成を備えた電力増幅(PA)モジュール10と、受信増幅回路(ローノイズアンプ回路)20と、アンテナ素子2からの受信信号を受信増幅回路(ローノイズアンプ回路)20へ出力し、電力増幅(PA)モジュール10で増幅された高周波信号を送信信号としてアンテナ素子2へ出力する分波器(アンテナスイッチ)40とを備え、可変フィルタ回路において、通過帯域は、複数の通信帯域から選択される使用通信帯域に対応する送信帯域であり、減衰帯域は、使用通信帯域に対応する受信帯域であるフロントエンド回路1であってもよい。
 上記構成によれば、高周波送信信号および高周波受信信号の品質を維持しつつ小型化されたフロントエンド回路を提供することが可能となる。
 また、本発明は、上記のような特徴的な構成を備えたフロントエンド回路1と、フロントエンド回路1に高周波送信信号を出力し、フロントエンド回路1から高周波受信信号を入力するRF信号処理回路3と、RF信号処理回路3から受けた高周波受信信号を中間周波信号に変換して信号処理し、中間周波信号を高周波信号に変換してRF信号処理回路3へ出力するベースバンド信号処理回路4とを備える通信装置200であってもよい。
 上記構成によれば、高周波送信信号および高周波受信信号の品質を維持しつつ小型化された通信装置を提供することが可能となる。
 また、本発明に係るコントロールIC(11、11C~11G)は、集積回路であるIC、LSI(Large Scale Integration)として実現されてもよい。また、集積回路化の手法は、専用回路または汎用プロセッサで実現してもよい。LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサを利用しても良い。さらには、半導体技術の進歩または派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。
 本発明は、マルチバンド/マルチモード対応のフロントエンド部に配置される電力増幅モジュールとして、携帯電話などの通信機器に広く利用できる。
 1  フロントエンド回路
 2  アンテナ素子
 3  RF信号処理回路
 4  ベースバンド信号処理回路
 5  表示部
 10、10A、10B、10C、10D、10E、10F、10G、10H、10J、10K、10L、510  PAモジュール(電力増幅モジュール)
 11、11C、11D、11E、11F、11G  コントロールIC
 12  前段増幅素子
 13  後段増幅素子
 14、15、18  スイッチ
 16  フィルタ部
 16G  共振子
 20  ローノイズアンプ回路(受信増幅回路)
 30  アンテナ整合回路
 40  アンテナスイッチ
 60  フィルタ帯域選択部
 100  基板
 131、132、133、511a、511b  増幅素子
 161、162、163、164  フィルタ素子
 171、172、173  送信側フィルタ素子
 200  通信装置
 512  可変フィルタ回路
 513  整合回路
 521a、521b  スイッチ回路
 522a、522b、522c  フィルタ部品
 601、602、603、604、605  容量素子
 611、612、613、614、615  スイッチ素子

Claims (13)

  1.  高周波信号を増幅する前段増幅素子と、
     前記前段増幅素子で増幅された高周波信号を増幅する後段増幅素子と、
     前記前段増幅素子と前記後段増幅素子との間に配置され、前記高周波信号の周波数帯域に応じて通過帯域または減衰帯域を可変させる可変フィルタ回路とを備え、
     前記可変フィルタ回路は、
      1以上のフィルタ素子と、
      前記高周波信号の周波数帯域に応じて切り替えられることにより、前記可変フィルタ回路の通過帯域または減衰帯域を可変させるフィルタ帯域選択部と、
     を有し、
     前記フィルタ帯域選択部の少なくとも一部と前記前段増幅素子とは、第1チップで1チップ化され、
     前記後段増幅素子は、前記第1チップとは異なる第2チップに含まれる、
     電力増幅モジュール。
  2.  前記1以上のフィルタ素子は、前記通過帯域または減衰帯域が異なる複数のフィルタ素子であり、
     前記フィルタ帯域選択部は、
      前記前段増幅素子と前記複数のフィルタ素子との間に配置され、前記前段増幅素子の出力端子と前記複数のフィルタ素子との接続を切り替える第1スイッチ素子と、
      前記後段増幅素子と前記複数のフィルタ素子との間に配置され、前記後段増幅素子の入力端子と前記複数のフィルタ素子との接続を切り替える第2スイッチ素子と、
     を備え、
     前記第1スイッチ素子および前記第2スイッチ素子の少なくとも一方と前記前段増幅素子とは、前記第1チップで1チップ化されている、
     請求項1に記載の電力増幅モジュール。
  3.  前記1以上のフィルタ素子は、共振子であり、
     前記フィルタ帯域選択部は、
     前記共振子に接続された複数の容量素子と、
     前記複数の容量素子のそれぞれに対応して接続され、前記複数の容量素子の少なくとも1つと、前記共振子、前記前段増幅素子および前記後段増幅素子との接続を切り替える複数のスイッチ素子とを備え、
     前記複数の容量素子および前記複数のスイッチ素子の少なくとも一方と前記前段増幅素子とは、前記第1チップで1チップ化されている、
     請求項1に記載の電力増幅モジュール。
  4.  前記電力増幅モジュールは、さらに、
     前記高周波信号の周波数帯域に応じて前記前段増幅素子および前記後段増幅素子の増幅特性を制御する増幅制御部を備え、
     前記増幅制御部は、前記第1チップに含まれる、
     請求項1~3のいずれか1項に記載の電力増幅モジュール。
  5.  前記増幅制御部と前記前段増幅素子とを接続する第1配線、および、前記前段増幅素子と前記フィルタ帯域選択部とを接続する第2配線は、前記第1チップ内に形成される、
     請求項4に記載の電力増幅モジュール。
  6.  前記前段増幅素子、前記フィルタ帯域選択部および前記後段増幅素子は、基板の実装面に配置され、
     前記1以上のフィルタ素子は、前記前段増幅素子と前記フィルタ帯域選択部と前記後段増幅素子との少なくとも1つと、前記基板を平面視した場合に重なるように積層配置されている、
     請求項1~5のいずれか1項に記載の電力増幅モジュール。
  7.  前記1以上のフィルタ素子は、前記前段増幅素子、前記フィルタ帯域選択部および前記後段増幅素子のうち、前記前段増幅素子および前記フィルタ帯域選択部の少なくとも1つのみと前記平面視において重なるように積層配置されている、
     請求項6に記載の電力増幅モジュール。
  8.  前記1以上のフィルタ素子は、前記前段増幅素子、前記フィルタ帯域選択部および前記後段増幅素子のうち、前記フィルタ帯域選択部のみと前記平面視において重なるように積層配置されている、
     請求項6に記載の電力増幅モジュール。
  9.  前記前段増幅素子は、複数の通信帯域を含む周波数範囲において高周波信号を増幅し、
     前記後段増幅素子は、前記複数の通信帯域のそれぞれに対応した複数の増幅素子で構成され、
     前記後段増幅素子では、前記複数の増幅素子のうち、前記複数の通信帯域のうち使用される通信帯域に対応して選択された増幅素子が、前記前段増幅素子で増幅された高周波信号を増幅する、
     請求項1~8のいずれか1項に記載の電力増幅モジュール。
  10.  前記第1チップは、CMOSで構成されており、
     前記第2チップは、GaAsで構成されている、
     請求項1~9のいずれか1項に記載の電力増幅モジュール。
  11.  請求項1~10のいずれか1項に記載の電力増幅モジュールと、
     受信増幅回路と、
     アンテナ素子からの受信信号を前記受信増幅回路へ出力し、前記電力増幅モジュールで増幅された前記高周波信号を送信信号として前記アンテナ素子へ出力する分波器とを備える、
     フロントエンド回路。
  12.  前記可変フィルタ回路において、前記通過帯域は、前記複数の通信帯域から選択された使用通信帯域に対応する送信帯域であり、前記減衰帯域は、前記使用通信帯域に対応する受信帯域である、
     請求項11に記載のフロントエンド回路。
  13.  請求項11または12に記載のフロントエンド回路と、
     前記フロントエンド回路に高周波送信信号を出力し、前記フロントエンド回路から高周波受信信号を入力するRF信号処理回路と、
     前記RF信号処理回路から受けた高周波受信信号を中間周波信号に変換して信号処理し、中間周波信号を高周波信号に変換して前記RF信号処理回路へ出力するベースバンド信号処理回路とを備える、
     通信装置。
PCT/JP2016/078808 2015-10-02 2016-09-29 電力増幅モジュール、フロントエンド回路および通信装置 WO2017057568A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/941,078 US10340971B2 (en) 2015-10-02 2018-03-30 Power amplification module, front-end circuit, and communication device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015197198 2015-10-02
JP2015-197198 2015-10-02

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/941,078 Continuation US10340971B2 (en) 2015-10-02 2018-03-30 Power amplification module, front-end circuit, and communication device

Publications (1)

Publication Number Publication Date
WO2017057568A1 true WO2017057568A1 (ja) 2017-04-06

Family

ID=58423682

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/078808 WO2017057568A1 (ja) 2015-10-02 2016-09-29 電力増幅モジュール、フロントエンド回路および通信装置

Country Status (2)

Country Link
US (1) US10340971B2 (ja)
WO (1) WO2017057568A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021117294A1 (ja) * 2019-12-10 2021-06-17 株式会社村田製作所 高周波モジュール及び通信装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017138539A1 (ja) * 2016-02-08 2017-08-17 株式会社村田製作所 高周波フロントエンド回路および通信装置
JP2019097103A (ja) * 2017-11-27 2019-06-20 株式会社村田製作所 フィルタ装置およびマルチプレクサ
US11088720B2 (en) * 2017-12-20 2021-08-10 Murata Manufacturing Co., Ltd. High-frequency module
KR102578003B1 (ko) * 2018-10-18 2023-09-13 삼성전자주식회사 상향링크 기준 신호를 송신하기 위한 전자 장치 및 방법
CN111130461A (zh) * 2019-12-27 2020-05-08 中国航天科工集团八五一一研究所 宽带小型化上变频组件
JP2021145282A (ja) * 2020-03-13 2021-09-24 株式会社村田製作所 高周波モジュールおよび通信装置
JP2021158556A (ja) * 2020-03-27 2021-10-07 株式会社村田製作所 高周波モジュールおよび通信装置
JP2021158554A (ja) * 2020-03-27 2021-10-07 株式会社村田製作所 高周波モジュールおよび通信装置
KR20220120350A (ko) * 2021-02-23 2022-08-30 삼성전자주식회사 증폭기 모듈을 포함하는 통신 회로와 그것을 포함한 전자 장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000183664A (ja) * 1998-12-18 2000-06-30 Kyocera Corp 高周波用電力増幅器
JP2013132015A (ja) * 2011-12-22 2013-07-04 Taiyo Yuden Co Ltd 回路基板
WO2013150564A1 (ja) * 2012-04-04 2013-10-10 三菱電機株式会社 マルチモード・マルチバンド増幅器
WO2015002127A1 (ja) * 2013-07-01 2015-01-08 株式会社村田製作所 電力増幅モジュールおよびフロントエンド回路

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8102205B2 (en) * 2009-08-04 2012-01-24 Qualcomm, Incorporated Amplifier module with multiple operating modes
US20110117862A1 (en) * 2009-11-16 2011-05-19 Oluf Bagger Multiband RF Device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000183664A (ja) * 1998-12-18 2000-06-30 Kyocera Corp 高周波用電力増幅器
JP2013132015A (ja) * 2011-12-22 2013-07-04 Taiyo Yuden Co Ltd 回路基板
WO2013150564A1 (ja) * 2012-04-04 2013-10-10 三菱電機株式会社 マルチモード・マルチバンド増幅器
WO2015002127A1 (ja) * 2013-07-01 2015-01-08 株式会社村田製作所 電力増幅モジュールおよびフロントエンド回路

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021117294A1 (ja) * 2019-12-10 2021-06-17 株式会社村田製作所 高周波モジュール及び通信装置

Also Published As

Publication number Publication date
US20180227008A1 (en) 2018-08-09
US10340971B2 (en) 2019-07-02

Similar Documents

Publication Publication Date Title
WO2017057567A1 (ja) 電力増幅モジュール、フロントエンド回路および通信装置
WO2017057568A1 (ja) 電力増幅モジュール、フロントエンド回路および通信装置
US10536179B2 (en) Switch module
US10181829B2 (en) Amplification circuit
US10727805B2 (en) Multiplexer including filters with resonators and parallel inductor
CN107689778B (zh) 高频模块以及通信装置
WO2017169645A1 (ja) 高周波信号増幅回路、電力増幅モジュール、フロントエンド回路および通信装置
JP6965581B2 (ja) 高周波モジュール及び通信装置
US11558073B2 (en) Switch module
US10944381B2 (en) Acoustic wave filter device, multiplexer, radio-frequency front end circuit, and communication device
US10075160B2 (en) Switch circuit, radio-frequency module, and communication device
US20180048336A1 (en) Diversity switch circuit, radio-frequency module, and communication device
US20190273521A1 (en) Radio-frequency module and communication apparatus
JP2017184060A (ja) 高周波信号増幅回路、電力増幅モジュール、フロントエンド回路および通信装置
US9722548B2 (en) Amplification circuit
US10771102B2 (en) Transmit-and-receive module and communication device
JP2017208656A (ja) スイッチモジュール及び高周波モジュール
KR20230070428A (ko) 고주파 모듈 및 통신 장치
WO2020261769A1 (ja) 高周波モジュール及び通信装置
WO2018061783A1 (ja) 弾性波フィルタ装置、高周波フロントエンド回路及び通信装置
JP2021190847A (ja) 高周波モジュールおよび通信装置
US11522520B2 (en) Filter device, high-frequency module, and communication device
JP2018107788A (ja) スイッチ回路、高周波モジュール及び通信装置
CN112187230B (zh) 开关电路、高频模块以及通信装置
JP2018029328A (ja) ダイバーシティスイッチ回路、高周波モジュール及び通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16851739

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16851739

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP