WO2013150564A1 - マルチモード・マルチバンド増幅器 - Google Patents

マルチモード・マルチバンド増幅器 Download PDF

Info

Publication number
WO2013150564A1
WO2013150564A1 PCT/JP2012/002362 JP2012002362W WO2013150564A1 WO 2013150564 A1 WO2013150564 A1 WO 2013150564A1 JP 2012002362 W JP2012002362 W JP 2012002362W WO 2013150564 A1 WO2013150564 A1 WO 2013150564A1
Authority
WO
WIPO (PCT)
Prior art keywords
amplifier
signal
output
amplified
input
Prior art date
Application number
PCT/JP2012/002362
Other languages
English (en)
French (fr)
Inventor
堀口 健一
勝也 嘉藤
謙治 向井
直子 新田
檜枝 護重
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2012/002362 priority Critical patent/WO2013150564A1/ja
Priority to TW101120089A priority patent/TW201342796A/zh
Publication of WO2013150564A1 publication Critical patent/WO2013150564A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0277Selecting one or more amplifiers from a plurality of amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • H03F3/195High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only in integrated circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • H03F3/245Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/72Gated amplifiers, i.e. amplifiers which are rendered operative or inoperative by means of a control signal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/111Indexing scheme relating to amplifiers the amplifier being a dual or triple band amplifier, e.g. 900 and 1800 MHz, e.g. switched or not switched, simultaneously or not
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/429Two or more amplifiers or one amplifier with filters for different frequency bands are coupled in parallel at the input or output
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/72Indexing scheme relating to gated amplifiers, i.e. amplifiers which are rendered operative or inoperative by means of a control signal
    • H03F2203/7215Indexing scheme relating to gated amplifiers, i.e. amplifiers which are rendered operative or inoperative by means of a control signal the gated amplifier being switched on or off by a switch at the input of the amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/72Indexing scheme relating to gated amplifiers, i.e. amplifiers which are rendered operative or inoperative by means of a control signal
    • H03F2203/7221Indexing scheme relating to gated amplifiers, i.e. amplifiers which are rendered operative or inoperative by means of a control signal the gated amplifier being switched on or off by a switch at the output of the amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/72Indexing scheme relating to gated amplifiers, i.e. amplifiers which are rendered operative or inoperative by means of a control signal
    • H03F2203/7236Indexing scheme relating to gated amplifiers, i.e. amplifiers which are rendered operative or inoperative by means of a control signal the gated amplifier being switched on or off by putting into parallel or not, by choosing between amplifiers by (a ) switch(es)

Definitions

  • the present invention relates to a multimode / multiband amplifier applicable to a plurality of communication modes and frequency bands.
  • FIG. 5 is a block diagram showing a conventional multimode multiband amplifier.
  • the amplification path is divided for each signal communication mode (for example, W-CDMA (Wideband Code Multiple Access), GSM (Global System for Mobile Communications), etc.) or the frequency band of the signal. ing.
  • W-CDMA Wideband Code Multiple Access
  • GSM Global System for Mobile Communications
  • FIG. 5 two amplification paths are provided, and the signal A input from the RF input terminal 101a is amplified by the front-stage amplifier 102a and the rear-stage amplifier 103a and output from the RF output terminal 104a.
  • the signal B input from the RF input terminal 101b is amplified by the front-stage amplifier 102b and the rear-stage amplifier amplifier 103b and output from the RF output terminal 104b.
  • Patent Documents 1, 2, and 3 disclose multimode / multiband amplifiers that switch and select an output path.
  • JP 2004-72548 A (paragraph number [0011])
  • JP 2008-288769 A (paragraph numbers [0009] to [0010])
  • JP-A-10-190379 (paragraph number [0008])
  • the conventional multimode / multiband amplifier is configured as described above, it is necessary to divide the amplification path for each signal communication mode or signal frequency band, and there is a problem that the amplifier module size increases. there were.
  • the present invention has been made in order to solve the above-described problems. It is an object of the present invention to obtain a multimode / multiband amplifier capable of reducing the size of an amplifier module and reducing power consumption. Objective.
  • the multimode multiband amplifier amplifies a signal input from an input terminal, outputs the amplified signal to a plurality of output paths, and an output that propagates the signal amplified by the previous amplifier
  • a plurality of switches provided for each path, provided for each output path, amplifying the signal amplified by the front-stage amplifier, and a plurality of rear-stage amplifiers that output the amplified signal to the output terminal Depending on the communication mode or frequency band of the signal input from the input terminal, only one of the plurality of switches is closed, the remaining switches are opened, The power supply for the subsequent amplifier provided in the same output path is turned off.
  • a preamplifier for amplifying a signal input from an input terminal and outputting the amplified signal to a plurality of output paths, and an output path for propagating a signal amplified by the preamplifier are provided.
  • a plurality of subsequent amplifiers that amplify the signal amplified by the previous amplifier and output the amplified signal to the output terminal, and are input from the input terminal.
  • only one of the switches is closed and the remaining switches are opened and are provided in the same output path as the open switch. Since the power supply to the subsequent amplifier is turned off, the amplifier module size can be reduced and the power consumption can be reduced. There is.
  • FIG. 1 is a block diagram showing a multimode multiband amplifier according to Embodiment 1 of the present invention.
  • an RF input terminal 1 is a terminal for inputting a signal A or a signal B.
  • the pre-stage amplifier 2 is an amplifier that amplifies the signal input from the RF input terminal 1 and outputs the amplified signal to the output paths 3a and 3b.
  • the switch 4a is provided in the output path 3a, and the closed / open state is controlled according to the communication mode or frequency band of the signal input from the RF input terminal 1.
  • the switch 4b is provided in the output path 3b, and the closed / open state is controlled according to the communication mode or frequency band of the signal input from the RF input terminal 1.
  • the post-stage amplifier 5a is provided in the output path 3a.
  • the switch 4a When the switch 4a is in the ON state, the signal amplified by the pre-stage amplifier 2 is amplified and the amplified signal is output to the output terminal 6a.
  • the post-stage amplifier 5b is provided in the output path 3b.
  • the switch 4b When the switch 4b is in the ON state, the signal amplified by the pre-stage amplifier 2 is amplified and the amplified signal is output to the output terminal 6b. Note that only one of the switches 4a and 4b is in a closed state, the remaining switch 4 is in an open state, and a post-stage amplifier provided in the same output path 3 as the open switch 4 5 is turned off.
  • a communication mode of a signal input from the RF input terminal 1 for example, W-CDMA or GSM is assumed.
  • the communication mode of the signal A input from the RF input terminal 1 is W-CDMA, and the amplified signal A is output to the output terminal 6a.
  • the communication mode of the signal B input from the RF input terminal 1 is GSM, and the amplified signal B is output to the output terminal 6b. Therefore, in this case, if the communication mode of the signal input from the RF input terminal 1 is W-CDMA, the switch 4a is controlled to the closed state and the switch 4b is controlled to the open state by a control circuit (not shown). The On the other hand, if the communication mode of the signal input from the RF input terminal 1 is GSM, the switch 4b is controlled to be closed and the switch 4a is controlled to be opened by a control circuit (not shown).
  • the preamplifier 2 When the signal A or the signal B is input from the RF input terminal 1, the preamplifier 2 amplifies the signal and outputs the amplified signal to the output paths 3a and 3b. At this time, if the signal input from the RF input terminal 1 is the signal A, the switch 4a is controlled to be closed and the switch 4b is controlled to be open, so that the signal A after amplification by the pre-stage amplifier 2 is Although it is input to the post-stage amplifier 5a, it is not input to the post-stage amplifier 5b.
  • the post-amplifier 5a receives the signal A amplified by the pre-stage amplifier 2, the post-amplifier 5a amplifies the signal A and outputs the amplified signal A to the output terminal 6a.
  • the switch 4b is controlled to be closed and the switch 4a is controlled to be open, so that the signal B after amplification by the pre-stage amplifier 2 is the post-stage. Although it is input to the amplifier 5b, it is not input to the subsequent amplifier 5a.
  • the post-amplifier 5b receives the signal B amplified by the pre-stage amplifier 2, the post-stage amplifier 5b amplifies the signal B and outputs the amplified signal B to the output terminal 6b.
  • the signal A whose signal communication mode is W-CDMA is input from the RF input terminal 1
  • the signal A amplified by the front-stage amplifier 2 and the rear-stage amplifier 5a is output from the output terminal 6a.
  • the power supply to the rear-stage amplifier 5b to which the signal A amplified by the front-stage amplifier 2 is not input is controlled to be turned off by a control circuit (not shown), wasteful power consumption of the rear-stage amplifier 5b not performing the amplification process is reduced. It can be avoided.
  • the signal B whose signal communication mode is GSM is input from the RF input terminal 1
  • the signal B amplified by the front-stage amplifier 2 and the rear-stage amplifier 5b is output from the output terminal 6b.
  • the power supply to the post-stage amplifier 5a to which the signal B amplified by the pre-stage amplifier 2 is not input is controlled to be turned off by a control circuit (not shown), wasteful power consumption of the post-stage amplifier 5a not performing the amplification process is reduced. It can be avoided.
  • ⁇ A band from Hz to ⁇ Hz and a band from ⁇ Hz to ⁇ Hz are assumed.
  • the frequency band of the signal A input from the RF input terminal 1 is a band from OOHz to ⁇ ⁇ Hz, and the amplified signal A is output to the output terminal 6a.
  • the frequency band of the signal B input from the RF input terminal 1 is a band of ⁇ Hz to ⁇ Hz, and the amplified signal B is output to the output terminal 6b. Therefore, in this case, if the frequency band of the signal input from the RF input terminal 1 is in the range of ⁇ Hz to ⁇ ⁇ Hz, the switch 4a is controlled to be closed by a control circuit (not shown), and the switch 4b Is controlled to open. On the other hand, if the frequency band of the signal input from the RF input terminal 1 is in the range of ⁇ Hz to ⁇ Hz, the switch 4b is controlled to be closed by a control circuit (not shown) and the switch 4a is opened. To be controlled.
  • the preamplifier 2 When the signal A or the signal B is input from the RF input terminal 1, the preamplifier 2 amplifies the signal and outputs the amplified signal to the output paths 3a and 3b. At this time, if the signal input from the RF input terminal 1 is the signal A, the switch 4a is controlled to be closed and the switch 4b is controlled to be open, so that the signal A after amplification by the pre-stage amplifier 2 is Although it is input to the post-stage amplifier 5a, it is not input to the post-stage amplifier 5b.
  • the post-amplifier 5a receives the signal A amplified by the pre-stage amplifier 2, the post-amplifier 5a amplifies the signal A and outputs the amplified signal A to the output terminal 6a.
  • the switch 4b is controlled to be closed and the switch 4a is controlled to be open, so that the signal B after amplification by the pre-stage amplifier 2 is the post-stage. Although it is input to the amplifier 5b, it is not input to the subsequent amplifier 5a.
  • the post-amplifier 5b receives the signal B amplified by the pre-stage amplifier 2, the post-stage amplifier 5b amplifies the signal B and outputs the amplified signal B to the output terminal 6b.
  • the signal B whose frequency band is from ⁇ Hz to ⁇ Hz is input from the RF input terminal 1
  • the signal B amplified by the front-stage amplifier 2 and the rear-stage amplifier 5b is output from the output terminal 6b. Is done.
  • the power supply to the post-stage amplifier 5a to which the signal B amplified by the pre-stage amplifier 2 is not input is controlled to be turned off by a control circuit (not shown), wasteful power consumption of the post-stage amplifier 5a not performing the amplification process is reduced. It can be avoided.
  • the pre-amplifier 2 it is not necessary to provide the pre-amplifier 2 for each different communication mode or frequency band, and there is an effect that the size of the amplifier module can be reduced.
  • the power supply to the post-stage amplifier 5 provided in the same output path 3 as the switch 4 in the open state is turned off, there is an effect that the power consumption can be reduced.
  • FIG. FIG. 2 is a block diagram showing a multimode / multiband amplifier according to Embodiment 2 of the present invention.
  • the switch 10 is provided in the front stage of the front stage amplifier 2, and the closed / open state is controlled according to the communication mode or frequency band of the signal input from the RF input terminal 1.
  • the bypass path 11 is a first bypass path that bypasses the output paths 3a and 3b and outputs the signal amplified by the pre-stage amplifier 2 to the RF output terminal 6b.
  • the switch 12 is provided in the bypass path 11, and the closed / open state is controlled according to the communication mode or frequency band of the signal input from the RF input terminal 1.
  • the bypass path 13 is a second bypass path from the RF input terminal 1 to the RF output terminal 6a.
  • the switches 14 and 16 are provided in the bypass path 13, and the closed / open state is controlled according to the communication mode or frequency band of the signal input from the RF input terminal 1.
  • the bypass amplifier 15 is provided in the bypass path 13 and amplifies the signal input from the RF input terminal 1 when the switches 14 and 16 are in the closed state.
  • FIG. 2 shows an example in which an amplifier having a higher saturation power of the rear stage amplifiers 5a and 5b than that of the front stage amplifier 2 and the bypass amplifier 15 is used.
  • the preamplifier 2, the bypass amplifier 15, the switches 4a, 4b, 10, 14, 16 and the bypass path 13 are made of Si semiconductor (silicon semiconductor), and the post amplifiers 5a and 5b are made of GaAs semiconductor (gallium arsenide).
  • An example of a semiconductor is shown.
  • 2 shows an example in which the switches 4a, 4b, 10, 14, 16 and the bypass path 13 are made of Si semiconductor, the switches 4a, 4b, 10, 14, 16 and the bypass path 13 A part or all of them may be composed of a GaAs semiconductor.
  • the switch 10 is provided in the front stage of the front stage amplifier 2 and the bypass paths 11 and 13 are provided, the present embodiment is the same as the first embodiment, and therefore only the differences from the first embodiment. explain.
  • the closed / open state of the switches 4a and 4b is controlled in accordance with the communication mode or frequency band of the signal input from the RF input terminal 1, and the post-stage amplifier 5 provided in the same output path 3 as the switch 4 in the open state.
  • the signal A propagates.
  • the path is not limited to the output path 3a, but may be the bypass path 13.
  • the path through which the signal B propagates is not limited to the output path 3 b but may be the bypass path 11.
  • the switches 10 and 4a are controlled to be closed by a control circuit (not shown), so that the switches 4b, 12, and 14 , 16 are controlled in the open state.
  • the signal A input from the RF input terminal 1 is amplified by the pre-stage amplifier 2 and the post-stage amplifier 5a and then output from the output terminal 6a.
  • the switches 14, 16 are controlled to be closed by a control circuit (not shown), and the switches 10, 4a, 4b are controlled. , 12 are controlled in the open state.
  • the signal A input from the RF input terminal 1 is amplified by the bypass amplifier 15 and then output from the output terminal 6a.
  • the switches 10 and 4b are controlled to be closed by a control circuit (not shown), and the switches 4a, 12 and 14 are controlled. , 16 are controlled in the open state.
  • the signal B input from the RF input terminal 1 is amplified by the front-stage amplifier 2 and the rear-stage amplifier 5b and then output from the output terminal 6b.
  • the switches 10 and 12 are controlled to be closed by a control circuit (not shown), and the switches 4a, 4b, and 14 , 16 are controlled in the open state.
  • the signal B input from the RF input terminal 1 is amplified by the preamplifier 2 and then output from the output terminal 6b.
  • the output paths 3a and 3b provided with the amplifiers 5a and 5b having high saturation power are selected, and when the output power of the signal is low, the amplifier 15 having low saturation power is provided. Since the bypass circuit 13 (or the bypass circuit 11 provided with no amplifier) is selected, the amplifier can be used at an operating point close to saturation, and the efficiency of the amplifier can be increased.
  • the bypass paths 11 and 13 are provided in addition to the output paths 3a and 3b, the same effects as in the first embodiment can be obtained. There is an effect that the magnitude of the output power of the signal can be appropriately changed. Further, according to the second embodiment, since a part of the circuit is made of Si semiconductor, the cost can be reduced as compared with the case where the whole amplifier module is made of GaAs semiconductor.
  • FIG. 3 is a block diagram showing a multimode / multiband amplifier according to Embodiment 3 of the present invention.
  • the common source amplifier 20a is provided in the output path 3a.
  • the on / off state is switched depending on the magnitude of the gate voltage given by a control circuit (not shown). And the amplified signal is output to the subsequent amplifier 5a. If the signal is off, the output path 3a is blocked.
  • the common-source amplifier 20b is provided in the output path 3b.
  • the on / off state is switched according to the magnitude of the gate voltage given by a control circuit (not shown). And outputs the amplified signal to the subsequent amplifier 5b. If the signal is off, the output path 3b is blocked.
  • the output path 3a is provided with the switch 4a and the output path 3b is provided with the switch 4b.
  • the output path 3a has a source.
  • the ground amplifier 20a may be provided, and the source ground amplifier 20b may be provided in the output path 3b.
  • the source-grounded amplifier 20a is controlled to be on and the source-grounded amplifier 20b is controlled to be off.
  • the signal A is amplified by the common source amplifier 20a and then input to the subsequent amplifier 5a, but is not input to the subsequent amplifier 5b.
  • the post-amplifier 5a receives the signal A amplified by the common-source amplifier 20a, the post-amplifier 5a amplifies the signal A and outputs the amplified signal A to the output terminal 6a.
  • the common-source amplifier 20b is controlled to be on and the common-source amplifier 20a is controlled to be off. Is amplified by the common source amplifier 20b and then input to the subsequent amplifier 5b, but not input to the subsequent amplifier 5a.
  • the post-amplifier 5b receives the signal B amplified by the common-source amplifier 20b, the post-amplifier 5b amplifies the signal B and outputs the amplified signal B to the output terminal 6b.
  • the third embodiment there is no need to provide the pre-amplifier 2 for each different communication mode or frequency band, and there is an effect that the size of the amplifier module can be reduced.
  • the power supply to the subsequent amplifier 5 provided in the same output path 3 as the off-source grounded amplifier 20 is turned off, there is an effect that the power consumption can be reduced.
  • the example in which the output path of the signal in the multimode / multiband amplifier is two of the output path 3a and the output path 3b has been described.
  • the communication mode or frequency band of the signal input from the terminal 1 only one source-grounded amplifier 20 in the three or more output paths 3 is turned on, and the remaining source-grounded amplifiers 20 are turned off. You may make it do.
  • FIG. 4 is a block diagram showing a multimode / multiband amplifier according to Embodiment 4 of the present invention.
  • the grounded-gate amplifier 30a is provided in the output path 3a.
  • the on / off state is switched depending on the magnitude of the gate voltage given by a control circuit (not shown), and if it is on, the signal amplified by the preamplifier 2 is used. And the amplified signal is output to the subsequent amplifier 5a. If the signal is off, the output path 3a is blocked.
  • the grounded gate amplifier 30b is provided in the output path 3b.
  • the on / off state is switched according to the magnitude of the gate voltage given by a control circuit (not shown). And outputs the amplified signal to the subsequent amplifier 5b. If the signal is off, the output path 3b is blocked.
  • FIG. 4 shows an example in which the front-stage amplifier 2 and the grounded-gate amplifiers 30a and 30b are made of Si semiconductor, and the rear-stage amplifiers 5a and 5b are made of GaAs semiconductor.
  • the output path 3a is provided with the switch 4a and the output path 3b is provided with the switch 4b.
  • the output path 3a has a gate.
  • a ground amplifier 30a may be provided, and a gate ground amplifier 30b may be provided in the output path 3b.
  • the grounded-gate amplifier 30a is controlled to be on and the grounded-gate amplifier 30b is controlled to be off.
  • the signal A is amplified by the grounded-gate amplifier 30a and then input to the post-stage amplifier 5a, but is not input to the post-stage amplifier 5b.
  • the post-amplifier 5a receives the signal A amplified by the grounded-gate amplifier 30a, the post-amplifier 5a amplifies the signal A and outputs the amplified signal A to the output terminal 6a.
  • the grounded gate amplifier 30b is controlled to be in the on state and the grounded gate amplifier 30a is controlled to be in the off state. Is amplified by the grounded-gate amplifier 30b and then input to the post-stage amplifier 5b, but is not input to the post-stage amplifier 5a.
  • the post-amplifier 5b receives the signal B amplified by the common-gate amplifier 30b, the post-amplifier 5b amplifies the signal B and outputs the amplified signal B to the output terminal 6b.
  • the signal B whose signal communication mode is GSM (or the signal B whose frequency band is in the range of ⁇ Hz to ⁇ Hz) is input from the RF input terminal 1, the pre-stage amplifier 2, the gate grounding The signal B amplified by the amplifier 30b and the subsequent amplifier 5b is output from the output terminal 6b.
  • the power supply to the post-stage amplifier 5a to which the signal B amplified by the pre-stage amplifier 2 is not input is controlled to be turned off by a control circuit (not shown), wasteful power consumption of the post-stage amplifier 5a not performing the amplification process is reduced. It can be avoided.
  • the fourth embodiment there is no need to provide the pre-amplifier 2 for each different communication mode or frequency band, and there is an effect that the size of the amplifier module can be reduced.
  • the power supply to the post-stage amplifier 5 provided in the same output path 3 as the off-gate grounded amplifier 30 is turned off, there is an effect that power consumption can be reduced.
  • the cascode amplifier is configured by combining the pre-stage amplifier 2 and the grounded-gate amplifiers 30a and 30b, and the voltage applied to the Si semiconductor is set to 2 of the pre-stage amplifier 2 and the grounded-gate amplifiers 30a and 30b.
  • the present invention is suitable for a small amplifier applicable to a plurality of communication modes and frequency bands.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Amplifiers (AREA)

Abstract

 RF入力端子1から入力された信号を増幅し、増幅後の信号を出力経路3a,3bに出力する前段増幅器2と、前段増幅器2により増幅された信号を伝搬する出力経路3a,3b毎に設けられているスイッチ4a,4bと、出力経路3a,3b毎に設けられており、前段増幅器2により増幅された信号を増幅し、増幅後の信号をRF出力端子6a,6bに出力する後段増幅器5a,5bとを備え、RF入力端子1から入力される信号の通信モード又は周波数バンドに応じて、スイッチ4a,4bの中のいずれか1つのスイッチ4だけが閉状態になって、残りのスイッチ4が開状態になり、開状態のスイッチ4と同じ出力経路3に設けられている後段増幅器5に対する電源がオフになる。

Description

マルチモード・マルチバンド増幅器
 この発明は、複数の通信モードや周波数バンドに適用可能なマルチモード・マルチバンド増幅器に関するものである。
 図5は従来のマルチモード・マルチバンド増幅器を示す構成図である。
 このマルチモード・マルチバンド増幅器では、信号の通信モード(例えば、W-CDMA(Wideband Code Division Multiple Access)、GSM(Global System for Mobile Communications)など)、あるいは、信号の周波数バンド毎に増幅経路を分けている。
 図5の例では、2つの増幅経路を設けており、RF入力端子101aから入力された信号Aは、前段増幅器102a及び後段増幅器103aにより増幅されて、RF出力端子104aから出力されている。
 一方、RF入力端子101bから入力された信号Bは、前段増幅器102b及び後段増幅器増幅器103bにより増幅されて、RF出力端子104bから出力されている。
 なお、上記のマルチモード・マルチバンド増幅器の他に、2つの増幅器を共通化するとともに、共通化されている増幅器の出力側にスイッチを設け、信号の通信モードに応じて、スイッチの接続先を切り換えて、出力経路を選択しているマルチモード・マルチバンド増幅器が以下の特許文献1,2,3に開示されている。
 ただし、特許文献1,2に開示されているマルチモード・マルチバンド増幅器では、共通化されている増幅器が1つ実装しているだけで、2つの出力経路には増幅器が実装されていない。
 特許文献3に開示されているマルチモード・マルチバンド増幅器では、前段増幅器を共通化して、2つの出力経路に後段増幅器がそれぞれ設けられているが、後段増幅器に対する電源のオンオフを制御する構成は開示されておらず、非選択中の出力経路の後段増幅器の電源は常にオン状態が維持される。このため、消費電力が大きなものとなる。
特開2004-72548号公報(段落番号[0011]) 特開2008-288769号公報(段落番号[0009]から[0010]) 特開平10-190379号公報(段落番号[0008])
 従来のマルチモード・マルチバンド増幅器は以上のように構成されているので、信号の通信モード、あるいは、信号の周波数バンド毎に増幅経路を分ける必要があり、増幅器モジュールサイズが大型化してしまう課題があった。
 この発明は上記のような課題を解決するためになされたもので、増幅器モジュールサイズの小型化を図ることができるとともに、低消費電力化を図ることができるマルチモード・マルチバンド増幅器を得ることを目的とする。
 この発明に係るマルチモード・マルチバンド増幅器は、入力端子から入力された信号を増幅し、増幅後の信号を複数の出力経路に出力する前段増幅器と、前段増幅器により増幅された信号を伝搬する出力経路毎に設けられている複数のスイッチと、出力経路毎に設けられており、前段増幅器により増幅された信号を増幅し、増幅後の信号を出力端子に出力する複数の後段増幅器とを備え、入力端子から入力される信号の通信モード又は周波数バンドに応じて、複数のスイッチの中のいずれか1つのスイッチだけが閉状態になって、残りのスイッチが開状態になり、開状態のスイッチと同じ出力経路に設けられている後段増幅器に対する電源がオフになるものである。
 この発明によれば、入力端子から入力された信号を増幅し、増幅後の信号を複数の出力経路に出力する前段増幅器と、前段増幅器により増幅された信号を伝搬する出力経路毎に設けられている複数のスイッチと、出力経路毎に設けられており、前段増幅器により増幅された信号を増幅し、増幅後の信号を出力端子に出力する複数の後段増幅器とを備え、入力端子から入力される信号の通信モード又は周波数バンドに応じて、複数のスイッチの中のいずれか1つのスイッチだけが閉状態になって、残りのスイッチが開状態になり、開状態のスイッチと同じ出力経路に設けられている後段増幅器に対する電源がオフになるように構成したので、増幅器モジュールサイズの小型化を図ることができるとともに、低消費電力化を図ることができる効果がある。
この発明の実施の形態1によるマルチモード・マルチバンド増幅器を示す構成図である。 この発明の実施の形態2によるマルチモード・マルチバンド増幅器を示す構成図である。 この発明の実施の形態3によるマルチモード・マルチバンド増幅器を示す構成図である。 この発明の実施の形態4によるマルチモード・マルチバンド増幅器を示す構成図である。 従来のマルチモード・マルチバンド増幅器を示す構成図である。
 以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面に従って説明する。
実施の形態1.
 図1はこの発明の実施の形態1によるマルチモード・マルチバンド増幅器を示す構成図である。
 図1において、RF入力端子1は信号A又は信号Bを入力する端子である。
 前段増幅器2はRF入力端子1から入力された信号を増幅し、増幅後の信号を出力経路3a,3bに出力する増幅器である。
 スイッチ4aは出力経路3aに設けられており、RF入力端子1から入力される信号の通信モード又は周波数バンドに応じて、閉/開状態が制御される。
 スイッチ4bは出力経路3bに設けられており、RF入力端子1から入力される信号の通信モード又は周波数バンドに応じて、閉/開状態が制御される。
 後段増幅器5aは出力経路3aに設けられており、スイッチ4aがオン状態であれば、前段増幅器2により増幅された信号を増幅し、増幅後の信号を出力端子6aに出力する。
 後段増幅器5bは出力経路3bに設けられており、スイッチ4bがオン状態であれば、前段増幅器2により増幅された信号を増幅し、増幅後の信号を出力端子6bに出力する。
 なお、スイッチ4a,4bのうち、いずれか1つのスイッチ4だけが閉状態になって、残りのスイッチ4が開状態になり、開状態のスイッチ4と同じ出力経路3に設けられている後段増幅器5に対する電源がオフになる。
 次に動作について説明する。
 例えば、RF入力端子1から入力される信号の通信モードとして、例えば、W-CDMAや、GSMなどが想定される。
 この実施の形態1では、説明の便宜上、RF入力端子1から入力される信号Aの通信モードがW-CDMAであって、増幅後の信号Aを出力端子6aに出力するものとする。
 また、RF入力端子1から入力される信号Bの通信モードがGSMであって、増幅後の信号Bを出力端子6bに出力するものとする。
 したがって、この場合、RF入力端子1から入力される信号の通信モードがW-CDMAであれば、図示せぬ制御回路によって、スイッチ4aが閉状態に制御されて、スイッチ4bが開状態に制御される。
 一方、RF入力端子1から入力される信号の通信モードがGSMであれば、図示せぬ制御回路によって、スイッチ4bが閉状態に制御されて、スイッチ4aが開状態に制御される。
 前段増幅器2は、RF入力端子1から信号A又は信号Bが入力されると、その信号を増幅し、増幅後の信号を出力経路3a,3bに出力する。
 このとき、RF入力端子1から入力された信号が信号Aであれば、スイッチ4aが閉状態に制御されて、スイッチ4bが開状態に制御されるため、前段増幅器2による増幅後の信号Aは後段増幅器5aに入力されるが、後段増幅器5bには入力されない。
 後段増幅器5aは、前段増幅器2による増幅後の信号Aを入力すると、その信号Aを増幅し、増幅後の信号Aを出力端子6aに出力する。
 一方、RF入力端子1から入力された信号が信号Bであれば、スイッチ4bが閉状態に制御されて、スイッチ4aが開状態に制御されるため、前段増幅器2による増幅後の信号Bは後段増幅器5bに入力されるが、後段増幅器5aには入力されない。
 後段増幅器5bは、前段増幅器2による増幅後の信号Bを入力すると、その信号Bを増幅し、増幅後の信号Bを出力端子6bに出力する。
 これにより、信号の通信モードがW-CDMAである信号AがRF入力端子1から入力されると、前段増幅器2及び後段増幅器5aにより増幅された信号Aが出力端子6aから出力される。
 このとき、前段増幅器2により増幅された信号Aが入力されない後段増幅器5bに対する電源が、図示せぬ制御回路によってオフに制御されるため、増幅処理を行っていない後段増幅器5bの無駄な電力消費を回避することができる。
 一方、信号の通信モードがGSMである信号BがRF入力端子1から入力されると、前段増幅器2及び後段増幅器5bにより増幅された信号Bが出力端子6bから出力される。
 このとき、前段増幅器2により増幅された信号Bが入力されない後段増幅器5aに対する電源が、図示せぬ制御回路によってオフに制御されるため、増幅処理を行っていない後段増幅器5aの無駄な電力消費を回避することができる。
 ここでは、RF入力端子1から入力される信号の通信モードとして、W-CDMAとGSMを想定している例を示したが、RF入力端子1から入力される信号の周波数バンドとして、例えば、○○Hz~△△Hzの帯域と、△△Hz~□□Hzの帯域などが想定される。
 この実施の形態1では、説明の便宜上、RF入力端子1から入力される信号Aの周波数バンドが○○Hz~△△Hzの帯域であって、増幅後の信号Aを出力端子6aに出力するものとする。
 また、RF入力端子1から入力される信号Bの周波数バンドが△△Hz~□□Hzの帯域であって、増幅後の信号Bを出力端子6bに出力するものとする。
 したがって、この場合、RF入力端子1から入力される信号の周波数バンドが○○Hz~△△Hzの帯域であれば、図示せぬ制御回路によって、スイッチ4aが閉状態に制御されて、スイッチ4bが開状態に制御される。
 一方、RF入力端子1から入力される信号の周波数バンドが△△Hz~□□Hzの帯域であれば、図示せぬ制御回路によって、スイッチ4bが閉状態に制御されて、スイッチ4aが開状態に制御される。
 前段増幅器2は、RF入力端子1から信号A又は信号Bが入力されると、その信号を増幅し、増幅後の信号を出力経路3a,3bに出力する。
 このとき、RF入力端子1から入力された信号が信号Aであれば、スイッチ4aが閉状態に制御されて、スイッチ4bが開状態に制御されるため、前段増幅器2による増幅後の信号Aは後段増幅器5aに入力されるが、後段増幅器5bには入力されない。
 後段増幅器5aは、前段増幅器2による増幅後の信号Aを入力すると、その信号Aを増幅し、増幅後の信号Aを出力端子6aに出力する。
 一方、RF入力端子1から入力された信号が信号Bであれば、スイッチ4bが閉状態に制御されて、スイッチ4aが開状態に制御されるため、前段増幅器2による増幅後の信号Bは後段増幅器5bに入力されるが、後段増幅器5aには入力されない。
 後段増幅器5bは、前段増幅器2による増幅後の信号Bを入力すると、その信号Bを増幅し、増幅後の信号Bを出力端子6bに出力する。
 これにより、信号の周波数バンドが○○Hz~△△Hzの帯域である信号AがRF入力端子1から入力されると、前段増幅器2及び後段増幅器5aにより増幅された信号Aが出力端子6aから出力される。
 このとき、前段増幅器2により増幅された信号Aが入力されない後段増幅器5bに対する電源が、図示せぬ制御回路によってオフに制御されるため、増幅処理を行っていない後段増幅器5bの無駄な電力消費を回避することができる。
 一方、信号の周波数バンドが△△Hz~□□Hzの帯域である信号BがRF入力端子1から入力されると、前段増幅器2及び後段増幅器5bにより増幅された信号Bが出力端子6bから出力される。
 このとき、前段増幅器2により増幅された信号Bが入力されない後段増幅器5aに対する電源が、図示せぬ制御回路によってオフに制御されるため、増幅処理を行っていない後段増幅器5aの無駄な電力消費を回避することができる。
 以上で明らかなように、この実施の形態1によれば、異なる通信モード又は周波数バンド毎に前段増幅器2を設ける必要がなくなり、増幅器モジュールサイズの小型化を図ることができる効果を奏する。
 また、開状態のスイッチ4と同じ出力経路3に設けられている後段増幅器5に対する電源がオフになるため、低消費電力化を図ることができる効果を奏する。
 この実施の形態1では、マルチモード・マルチバンド増幅器における信号の出力経路が、出力経路3aと出力経路3bの2つである例を示したが、3つ以上の出力経路3を備え、RF入力端子1から入力される信号の通信モード又は周波数バンドに応じて、3つ以上の出力経路3におけるいずれか1つのスイッチ4だけを閉状態にして、残りのスイッチ4を開状態にするようにしてもよい。
実施の形態2.
 図2はこの発明の実施の形態2によるマルチモード・マルチバンド増幅器を示す構成図であり、図において、図1と同一符号は同一または相当部分を示すので説明を省略する。
 スイッチ10は前段増幅器2の前段に設けられており、RF入力端子1から入力される信号の通信モード又は周波数バンドに応じて、閉/開状態が制御される。
 バイパス経路11は出力経路3a,3bを迂回して、前段増幅器2により増幅された信号をRF出力端子6bに出力する第1のバイパス経路である。
 スイッチ12はバイパス経路11に設けられており、RF入力端子1から入力される信号の通信モード又は周波数バンドに応じて、閉/開状態が制御される。
 バイパス経路13はRF入力端子1からRF出力端子6aに至る第2のバイパス経路である。
 スイッチ14,16はバイパス経路13に設けられており、RF入力端子1から入力される信号の通信モード又は周波数バンドに応じて、閉/開状態が制御される。
 バイパス増幅器15はバイパス経路13に設けられており、スイッチ14,16が閉状態であれば、RF入力端子1から入力された信号を増幅する。
 図2では、後段増幅器5a,5bの飽和電力が、前段増幅器2及びバイパス増幅器15の飽和電力と比べて大きい増幅器を使用している例を示している。
 また、図2では、前段増幅器2、バイパス増幅器15及びスイッチ4a,4b,10,14,16及びバイパス経路13がSi半導体(シリコン半導体)で構成され、後段増幅器5a,5bがGaAs半導体(砒化ガリウム半導体)で構成されている例を示している。
 なお、図2では、スイッチ4a,4b,10,14,16及びバイパス経路13がSi半導体で構成されている例を示しているが、スイッチ4a,4b,10,14,16及びバイパス経路13の一部又は全部がGaAs半導体で構成されていてもよい。
 次に動作について説明する。
 ただし、前段増幅器2の前段にスイッチ10を設け、バイパス経路11,13を設けている点以外は、上記実施の形態1と同様であるため、上記実施の形態1と相違している点だけを説明する。
 RF入力端子1から入力される信号の通信モード又は周波数バンドに応じて、スイッチ4a,4bの閉/開状態が制御され、開状態のスイッチ4と同じ出力経路3に設けられている後段増幅器5に対する電源がオフになる点は、上記実施の形態1と同様であるが、この実施の形態2では、RF入力端子1から入力された信号が信号Aであっても、その信号Aが伝搬する経路が出力経路3aに限らず、バイパス経路13の場合もある。
 また、RF入力端子1から入力された信号が信号Bであっても、その信号Bが伝搬する経路が出力経路3bに限らず、バイパス経路11の場合もある。
 即ち、RF入力端子1から入力される信号Aの出力電力を大きくする必要がある場合には、図示せぬ制御回路によって、スイッチ10,4aが閉状態に制御されて、スイッチ4b,12,14,16が開状態に制御される。
 これにより、RF入力端子1から入力された信号Aは、前段増幅器2及び後段増幅器5aにより増幅された後、出力端子6aから出力される。
 一方、RF入力端子1から入力される信号Aの出力電力を大きくする必要がない場合には、図示せぬ制御回路によって、スイッチ14,16が閉状態に制御されて、スイッチ10,4a,4b,12が開状態に制御される。
 これにより、RF入力端子1から入力された信号Aは、バイパス増幅器15により増幅された後、出力端子6aから出力される。
 また、RF入力端子1から入力される信号Bの出力電力を大きくする必要がある場合には、図示せぬ制御回路によって、スイッチ10,4bが閉状態に制御されて、スイッチ4a,12,14,16が開状態に制御される。
 これにより、RF入力端子1から入力された信号Bは、前段増幅器2及び後段増幅器5bにより増幅された後、出力端子6bから出力される。
 一方、RF入力端子1から入力される信号Bの出力電力を大きくする必要がない場合には、図示せぬ制御回路によって、スイッチ10,12が閉状態に制御されて、スイッチ4a,4b,14,16が開状態に制御される。
 これにより、RF入力端子1から入力された信号Bは、前段増幅器2により増幅された後、出力端子6bから出力される。
 このように、信号の出力電力が大きいときには、飽和電力が大きい増幅器5a,5bが設けられている出力経路3a,3bが選択され、信号の出力電力が小さいときには飽和電力が小さい増幅器15が設けられているバイパス回路13(または、増幅器が設けられていないバイパス回路11)が選択されるため、増幅器を飽和に近い動作点で使用することが可能となり、増幅器の高効率化が図られる。
 以上で明らかなように、この実施の形態2によれば、出力経路3a,3bの他に、バイパス経路11,13を設けているので、上記実施の形態1と同様の効果を奏するほかに、信号の出力電力の大きさを適宜変更することができる効果を奏する。
 また、この実施の形態2によれば、回路の一部をSi半導体で構成しているため、増幅器モジュールの全体をGaAs半導体で構成する場合よりも、コストを削減することができる効果を奏する。
実施の形態3.
 図3はこの発明の実施の形態3によるマルチモード・マルチバンド増幅器を示す構成図であり、図において、図1と同一符号は同一または相当部分を示すので説明を省略する。
 ソース接地増幅器20aは出力経路3aに設けられており、図示せぬ制御回路により与えられるゲート電圧の大きさによってオン/オフ状態が切り換えられ、オン状態であれば、前段増幅器2により増幅された信号を増幅して、増幅後の信号を後段増幅器5aに出力し、オフ状態であれば、出力経路3aを遮断する。
 ソース接地増幅器20bは出力経路3bに設けられており、図示せぬ制御回路により与えられるゲート電圧の大きさによってオン/オフ状態が切り換えられ、オン状態であれば、前段増幅器2により増幅された信号を増幅して、増幅後の信号を後段増幅器5bに出力し、オフ状態であれば、出力経路3bを遮断する。
 次に動作について説明する。
 上記実施の形態1では、出力経路3aにはスイッチ4aが設けられ、出力経路3bにはスイッチ4bが設けられているものを示したが、スイッチ4a,4bの代わりに、出力経路3aにはソース接地増幅器20aが設けられ、出力経路3bにはソース接地増幅器20bが設けられていてもよい。
 この場合、RF入力端子1から入力された信号が信号Aであれば、ソース接地増幅器20aがオン状態に制御されて、ソース接地増幅器20bがオフ状態に制御されるため、前段増幅器2による増幅後の信号Aは、ソース接地増幅器20aにより増幅された後に後段増幅器5aに入力されるが、後段増幅器5bには入力されない。
 後段増幅器5aは、ソース接地増幅器20aによる増幅後の信号Aを入力すると、その信号Aを増幅し、増幅後の信号Aを出力端子6aに出力する。
 これにより、信号の通信モードがW-CDMAである信号A(または、周波数バンドが○○Hz~△△Hzの帯域である信号A)がRF入力端子1から入力されると、前段増幅器2、ソース接地増幅器20a及び後段増幅器5aにより増幅された信号Aが出力端子6aから出力される。
 このとき、前段増幅器2により増幅された信号Aが入力されない後段増幅器5bに対する電源が、図示せぬ制御回路によってオフに制御されるため、増幅処理を行っていない後段増幅器5bの無駄な電力消費を回避することができる。
 RF入力端子1から入力された信号が信号Bであれば、ソース接地増幅器20bがオン状態に制御されて、ソース接地増幅器20aがオフ状態に制御されるため、前段増幅器2による増幅後の信号Bは、ソース接地増幅器20bにより増幅された後に後段増幅器5bに入力されるが、後段増幅器5aには入力されない。
 後段増幅器5bは、ソース接地増幅器20bによる増幅後の信号Bを入力すると、その信号Bを増幅し、増幅後の信号Bを出力端子6bに出力する。
 これにより、信号の通信モードがGSMである信号B(または、周波数バンドが△△Hz~□□Hzの帯域である信号B)がRF入力端子1から入力されると、前段増幅器2、ソース接地増幅器20b及び後段増幅器5bにより増幅された信号Bが出力端子6bから出力される。
 このとき、前段増幅器2により増幅された信号Bが入力されない後段増幅器5aに対する電源が、図示せぬ制御回路によってオフに制御されるため、増幅処理を行っていない後段増幅器5aの無駄な電力消費を回避することができる。
 以上で明らかなように、この実施の形態3によれば、異なる通信モード又は周波数バンド毎に前段増幅器2を設ける必要がなくなり、増幅器モジュールサイズの小型化を図ることができる効果を奏する。
 また、オフ状態のソース接地増幅器20と同じ出力経路3に設けられている後段増幅器5に対する電源がオフになるため、低消費電力化を図ることができる効果を奏する。
 この実施の形態3では、マルチモード・マルチバンド増幅器における信号の出力経路が、出力経路3aと出力経路3bの2つである例を示したが、3つ以上の出力経路3を備え、RF入力端子1から入力される信号の通信モード又は周波数バンドに応じて、3つ以上の出力経路3におけるいずれか1つソース接地増幅器20だけをオン状態にして、残りのソース接地増幅器20をオフ状態にするようにしてもよい。
実施の形態4.
 図4はこの発明の実施の形態4によるマルチモード・マルチバンド増幅器を示す構成図であり、図において、図1と同一符号は同一または相当部分を示すので説明を省略する。
 ゲート接地増幅器30aは出力経路3aに設けられており、図示せぬ制御回路により与えられるゲート電圧の大きさによってオン/オフ状態が切り換えられ、オン状態であれば、前段増幅器2により増幅された信号を増幅して、増幅後の信号を後段増幅器5aに出力し、オフ状態であれば、出力経路3aを遮断する。
 ゲート接地増幅器30bは出力経路3bに設けられており、図示せぬ制御回路により与えられるゲート電圧の大きさによってオン/オフ状態が切り換えられ、オン状態であれば、前段増幅器2により増幅された信号を増幅して、増幅後の信号を後段増幅器5bに出力し、オフ状態であれば、出力経路3bを遮断する。
 図4では、前段増幅器2及びゲート接地増幅器30a,30bがSi半導体で構成され、後段増幅器5a,5bがGaAs半導体で構成されている例を示している。
 次に動作について説明する。
 上記実施の形態1では、出力経路3aにはスイッチ4aが設けられ、出力経路3bにはスイッチ4bが設けられているものを示したが、スイッチ4a,4bの代わりに、出力経路3aにはゲート接地増幅器30aが設けられ、出力経路3bにはゲート接地増幅器30bが設けられていてもよい。
 この場合、RF入力端子1から入力された信号が信号Aであれば、ゲート接地増幅器30aがオン状態に制御されて、ゲート接地増幅器30bがオフ状態に制御されるため、前段増幅器2による増幅後の信号Aは、ゲート接地増幅器30aにより増幅された後に後段増幅器5aに入力されるが、後段増幅器5bには入力されない。
 後段増幅器5aは、ゲート接地増幅器30aによる増幅後の信号Aを入力すると、その信号Aを増幅し、増幅後の信号Aを出力端子6aに出力する。
 これにより、信号の通信モードがW-CDMAである信号A(または、周波数バンドが○○Hz~△△Hzの帯域である信号A)がRF入力端子1から入力されると、前段増幅器2、ゲート接地増幅器30a及び後段増幅器5aにより増幅された信号Aが出力端子6aから出力される。
 このとき、前段増幅器2により増幅された信号Aが入力されない後段増幅器5bに対する電源が、図示せぬ制御回路によってオフに制御されるため、増幅処理を行っていない後段増幅器5bの無駄な電力消費を回避することができる。
 RF入力端子1から入力された信号が信号Bであれば、ゲート接地増幅器30bがオン状態に制御されて、ゲート接地増幅器30aがオフ状態に制御されるため、前段増幅器2による増幅後の信号Bは、ゲート接地増幅器30bにより増幅された後に後段増幅器5bに入力されるが、後段増幅器5aには入力されない。
 後段増幅器5bは、ゲート接地増幅器30bによる増幅後の信号Bを入力すると、その信号Bを増幅し、増幅後の信号Bを出力端子6bに出力する。
 これにより、信号の通信モードがGSMである信号B(または、周波数バンドが△△Hz~□□Hzの帯域である信号B)がRF入力端子1から入力されると、前段増幅器2、ゲート接地増幅器30b及び後段増幅器5bにより増幅された信号Bが出力端子6bから出力される。
 このとき、前段増幅器2により増幅された信号Bが入力されない後段増幅器5aに対する電源が、図示せぬ制御回路によってオフに制御されるため、増幅処理を行っていない後段増幅器5aの無駄な電力消費を回避することができる。
 以上で明らかなように、この実施の形態4によれば、異なる通信モード又は周波数バンド毎に前段増幅器2を設ける必要がなくなり、増幅器モジュールサイズの小型化を図ることができる効果を奏する。
 また、オフ状態のゲート接地増幅器30と同じ出力経路3に設けられている後段増幅器5に対する電源がオフになるため、低消費電力化を図ることができる効果を奏する。
 また、この実施の形態4によれば、前段増幅器2とゲート接地増幅器30a,30bを組み合わせてカスコード増幅器を構成し、Si半導体に印加される電圧を前段増幅器2とゲート接地増幅器30a,30bの2つに分圧している。このため、耐圧に優れているGaAs半導体から、耐圧の劣るSi半導体へと回路を置き換えた際に問題となる耐圧問題を回避しながら、増幅器モジュールの全てをGaAs半導体で構成する場合と比べて、コストを削減することができる効果を奏する。
 この実施の形態4では、マルチモード・マルチバンド増幅器における信号の出力経路が、出力経路3aと出力経路3bの2つである例を示したが、3つ以上の出力経路3を備え、RF入力端子1から入力される信号の通信モード又は周波数バンドに応じて、3つ以上の出力経路3におけるいずれか1つゲート接地増幅器30だけをオン状態にして、残りのゲート接地増幅器30をオフ状態にするようにしてもよい。
 なお、本願発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。
 この発明は、複数の通信モードや周波数バンドに適用可能な小型の増幅器に適している。
 1 RF入力端子、2 前段増幅器、3a,3b 出力経路、4a,4b スイッチ、5a,5b 後段増幅器、6a,6b 出力端子、10 スイッチ、11 バイパス経路(第1のバイパス経路)、12 スイッチ、13 バイパス経路(第2のバイパス経路)、14,16 スイッチ、15 バイパス増幅器、20a,20b ソース接地増幅器、30a,30b ゲート接地増幅器、101a,101b RF入力端子、102a,102b 前段増幅器、103a,103b 後段増幅器、104a,104b RF出力端子。

Claims (11)

  1.  入力端子から入力された信号を増幅し、増幅後の信号を複数の出力経路に出力する前段増幅器と、
     上記前段増幅器により増幅された信号を伝搬する出力経路毎に設けられている複数のスイッチと、
     上記出力経路毎に設けられており、上記前段増幅器により増幅された信号を増幅し、増幅後の信号を出力端子に出力する複数の後段増幅器とを備え、
     上記入力端子から入力される信号の通信モード又は周波数バンドに応じて、上記複数のスイッチの中のいずれか1つのスイッチだけが閉状態になって、残りのスイッチが開状態になり、開状態のスイッチと同じ出力経路に設けられている後段増幅器に対する電源がオフになることを特徴とするマルチモード・マルチバンド増幅器。
  2.  複数の出力経路を迂回して、前段増幅器により増幅された信号を出力端子に出力するバイパス経路が設けられるとともに、上記バイパス経路にスイッチが設けられ、
     入力端子から入力される信号の通信モード、周波数バンド又は出力電力の大きさに応じて、上記複数の出力経路及び上記バイパス経路におけるスイッチの中のいずれか1つのスイッチだけが閉状態になり、残りのスイッチが開状態になることを特徴とする請求項1記載のマルチモード・マルチバンド増幅器。
  3.  前段増幅器がシリコン半導体で構成され、後段増幅器が砒化ガリウム半導体で構成され、スイッチがシリコン半導体又は砒化ガリウム半導体で構成されていることを特徴とする請求項2記載のマルチモード・マルチバンド増幅器。
  4.  入力端子から出力端子に至るバイパス経路が設けられるとともに、上記バイパス経路にスイッチが設けられ、
     入力端子から入力される信号の通信モード、周波数バンド又は出力電力の大きさに応じて、上記複数の出力経路及び上記バイパス経路におけるスイッチの中のいずれか1つのスイッチだけが閉状態になり、残りのスイッチが開状態になることを特徴とする請求項1記載のマルチモード・マルチバンド増幅器。
  5.  複数の出力経路を迂回して、前段増幅器により増幅された信号を出力端子に出力する第1のバイパス経路と、入力端子から上記出力端子に至る第2のバイパス経路とが設けられるとともに、上記第1及び第2のバイパス経路にスイッチが設けられ、
     上記入力端子から入力される信号の通信モード、周波数バンド又は出力電力の大きさに応じて、上記複数の出力経路、上記第1のバイパス経路及び上記第2のバイパス経路におけるスイッチの中のいずれか1つのスイッチだけが閉状態になり、残りのスイッチが開状態になることを特徴とする請求項1記載のマルチモード・マルチバンド増幅器。
  6.  前段増幅器がシリコン半導体で構成され、後段増幅器が砒化ガリウム半導体で構成され、スイッチ及び第2のバイパス経路がシリコン半導体又は砒化ガリウム半導体で構成されていることを特徴とする請求項5記載のマルチモード・マルチバンド増幅器。
  7.  入力端子から入力された信号を増幅し、増幅後の信号を複数の出力経路に出力する前段増幅器と、
     上記前段増幅器により増幅された信号を伝搬する出力経路毎に設けられている複数のソース接地増幅器と、
     上記出力経路毎に設けられており、上記ソース接地増幅器により増幅された信号を増幅し、増幅後の信号を出力端子に出力する複数の後段増幅器とを備え、
     上記入力端子から入力される信号の通信モード又は周波数バンドに応じて、上記複数のソース接地増幅器の中のいずれか1つのソース接地増幅器だけがオン状態になって信号を増幅し、残りのソース接地増幅器がオフ状態になって出力経路を遮断することを特徴とするマルチモード・マルチバンド増幅器。
  8.  オフ状態のソース接地増幅器と同じ出力経路に設けられている後段増幅器に対する電源がオフになることを特徴とする請求項7記載のマルチモード・マルチバンド増幅器。
  9.  入力端子から入力された信号を増幅し、増幅後の信号を複数の出力経路に出力する前段増幅器と、
     上記前段増幅器により増幅された信号を伝搬する出力経路毎に設けられている複数のゲート接地増幅器と、
     上記出力経路毎に設けられており、上記ゲート接地増幅器により増幅された信号を増幅し、増幅後の信号を出力端子に出力する複数の後段増幅器とを備え、
     上記入力端子から入力される信号の通信モード又は周波数バンドに応じて、上記複数のゲート接地増幅器の中のいずれか1つのゲート接地増幅器だけがオン状態になって信号を増幅し、残りのゲート接地増幅器がオフ状態になって出力経路を遮断することを特徴とするマルチモード・マルチバンド増幅器。
  10.  オフ状態のゲート接地増幅器と同じ出力経路に設けられている後段増幅器に対する電源がオフになることを特徴とする請求項9記載のマルチモード・マルチバンド増幅器。
  11.  前段増幅器及びゲート接地増幅器がシリコン半導体で構成され、後段増幅器が砒化ガリウム半導体で構成されていることを特徴とする請求項9記載のマルチモード・マルチバンド増幅器。
PCT/JP2012/002362 2012-04-04 2012-04-04 マルチモード・マルチバンド増幅器 WO2013150564A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2012/002362 WO2013150564A1 (ja) 2012-04-04 2012-04-04 マルチモード・マルチバンド増幅器
TW101120089A TW201342796A (zh) 2012-04-04 2012-06-05 多模式、多頻帶放大器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/002362 WO2013150564A1 (ja) 2012-04-04 2012-04-04 マルチモード・マルチバンド増幅器

Publications (1)

Publication Number Publication Date
WO2013150564A1 true WO2013150564A1 (ja) 2013-10-10

Family

ID=49300097

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/002362 WO2013150564A1 (ja) 2012-04-04 2012-04-04 マルチモード・マルチバンド増幅器

Country Status (2)

Country Link
TW (1) TW201342796A (ja)
WO (1) WO2013150564A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2535615A (en) * 2014-12-30 2016-08-24 Skyworks Solutions Inc Cascode switch for power amplifier
WO2017057568A1 (ja) * 2015-10-02 2017-04-06 株式会社村田製作所 電力増幅モジュール、フロントエンド回路および通信装置
WO2017057567A1 (ja) * 2015-10-02 2017-04-06 株式会社村田製作所 電力増幅モジュール、フロントエンド回路および通信装置
WO2017169645A1 (ja) * 2016-03-30 2017-10-05 株式会社村田製作所 高周波信号増幅回路、電力増幅モジュール、フロントエンド回路および通信装置
US10211861B2 (en) 2015-03-17 2019-02-19 Skyworks Solutions, Inc. Multi-mode integrated front end module

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI710209B (zh) 2019-07-02 2020-11-11 立積電子股份有限公司 放大裝置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10126164A (ja) * 1996-10-18 1998-05-15 Matsushita Electric Ind Co Ltd 高効率電力増幅器
JPH10190379A (ja) * 1996-12-26 1998-07-21 Matsushita Electric Ind Co Ltd 複数周波数帯域高効率線形電力増幅器
JPH11234148A (ja) * 1998-02-12 1999-08-27 Mitsubishi Electric Corp デュアルバンドマイクロ波増幅器
JP2011512098A (ja) * 2008-02-08 2011-04-14 クゥアルコム・インコーポレイテッド 複数モード電力増幅器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10126164A (ja) * 1996-10-18 1998-05-15 Matsushita Electric Ind Co Ltd 高効率電力増幅器
JPH10190379A (ja) * 1996-12-26 1998-07-21 Matsushita Electric Ind Co Ltd 複数周波数帯域高効率線形電力増幅器
JPH11234148A (ja) * 1998-02-12 1999-08-27 Mitsubishi Electric Corp デュアルバンドマイクロ波増幅器
JP2011512098A (ja) * 2008-02-08 2011-04-14 クゥアルコム・インコーポレイテッド 複数モード電力増幅器

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2535615A (en) * 2014-12-30 2016-08-24 Skyworks Solutions Inc Cascode switch for power amplifier
US9712117B2 (en) 2014-12-30 2017-07-18 Skyworks Solutions, Inc. Cascode switch for power amplifier
US9899960B2 (en) 2014-12-30 2018-02-20 Skyworks Solutions, Inc. Cascode switch for amplifier
GB2535615B (en) * 2014-12-30 2021-11-10 Skyworks Solutions Inc Cascode switch for power amplifier
US10211861B2 (en) 2015-03-17 2019-02-19 Skyworks Solutions, Inc. Multi-mode integrated front end module
WO2017057568A1 (ja) * 2015-10-02 2017-04-06 株式会社村田製作所 電力増幅モジュール、フロントエンド回路および通信装置
WO2017057567A1 (ja) * 2015-10-02 2017-04-06 株式会社村田製作所 電力増幅モジュール、フロントエンド回路および通信装置
US10340971B2 (en) 2015-10-02 2019-07-02 Murata Manufacturing Co., Ltd. Power amplification module, front-end circuit, and communication device
US10505505B2 (en) 2015-10-02 2019-12-10 Murata Manufacturing Co., Ltd. Power amplification module, front-end circuit, and communication device
WO2017169645A1 (ja) * 2016-03-30 2017-10-05 株式会社村田製作所 高周波信号増幅回路、電力増幅モジュール、フロントエンド回路および通信装置
CN109075751A (zh) * 2016-03-30 2018-12-21 株式会社村田制作所 高频信号放大电路、功率放大模块、前端电路及通信装置
US10389310B2 (en) 2016-03-30 2019-08-20 Murata Manufacturing Co., Ltd. Radio-frequency signal amplifier circuit, power amplifier module, front-end circuit, and communication device

Also Published As

Publication number Publication date
TW201342796A (zh) 2013-10-16

Similar Documents

Publication Publication Date Title
WO2013150564A1 (ja) マルチモード・マルチバンド増幅器
US11316487B2 (en) Power splitter with signal amplification
US10305437B2 (en) Doherty amplifier
US7944291B2 (en) Power amplifier having parallel amplification stages and associated impedance matching networks
US20140232467A1 (en) High-frequency amplifier module and high-frequency amplifier module unit
CN109088609B (zh) 利用共享的共基极偏置的功率放大方法
JP4836253B2 (ja) 電力増幅装置および携帯電話端末
US10951173B2 (en) Circuits, devices and methods related to amplification with active gain bypass
KR20080059469A (ko) 듀얼 모드 전력 증폭기
CN106817089B (zh) 功率放大模块
US20080180168A1 (en) Amplifier, transmitter arrangement having an amplifier and method for amplifying a signal
US8207790B2 (en) High frequency power amplifier
JP2010041634A (ja) 高周波電力増幅器並びにそれを用いた高周波送信モジュール及び送受信モジュール
JP2008118624A (ja) 高周波電力増幅装置
US8519795B2 (en) High frequency power amplifier
JP2006270923A (ja) 電力増幅器およびポーラー変調システム
US8269561B1 (en) Systems and methods for CMOS power amplifiers with power mode control
JP5313970B2 (ja) 高周波電力増幅器
JP2009033535A (ja) 利得可変増幅器
JPWO2013150564A1 (ja) マルチモード・マルチバンド増幅器
KR102098889B1 (ko) Rf 시스템을 위한 차동 전력증폭기
KR100457786B1 (ko) 휴대용 단말기의 전력 증폭 장치
JP2014175761A (ja) ドハティ電力増幅器
WO2014076797A1 (ja) 可変出力増幅器
US20210297049A1 (en) Variable gain amplifier and wireless communication device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12873798

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014508918

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12873798

Country of ref document: EP

Kind code of ref document: A1