JP4308485B2 - 容量素子の製造方法 - Google Patents

容量素子の製造方法 Download PDF

Info

Publication number
JP4308485B2
JP4308485B2 JP2002198125A JP2002198125A JP4308485B2 JP 4308485 B2 JP4308485 B2 JP 4308485B2 JP 2002198125 A JP2002198125 A JP 2002198125A JP 2002198125 A JP2002198125 A JP 2002198125A JP 4308485 B2 JP4308485 B2 JP 4308485B2
Authority
JP
Japan
Prior art keywords
film
ferroelectric
high dielectric
hydrogen
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002198125A
Other languages
English (en)
Other versions
JP2004040005A (ja
Inventor
巧 三河
勇治 十代
慎一郎 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2002198125A priority Critical patent/JP4308485B2/ja
Priority to CNA031362915A priority patent/CN1469477A/zh
Priority to TW092115672A priority patent/TWI226710B/zh
Priority to EP03013062A priority patent/EP1381077A3/en
Priority to US10/607,313 priority patent/US6891715B2/en
Priority to KR1020030042349A priority patent/KR20040005597A/ko
Publication of JP2004040005A publication Critical patent/JP2004040005A/ja
Priority to US11/117,328 priority patent/US7413949B2/en
Application granted granted Critical
Publication of JP4308485B2 publication Critical patent/JP4308485B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/55Capacitors with a dielectric comprising a perovskite structure material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/60Electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/43Electric condenser making

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Semiconductor Memories (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Formation Of Insulating Films (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、強誘電体膜又は高誘電体膜よりなる容量絶縁膜を備える容量素子、特に強誘電体メモリ又は高誘電体メモリとして用いられる容量素子、及びその製造方法に関する。
【0002】
【従来の技術】
強誘電体メモリとしては、プレーナ型構造を使用する1〜64kbitの小容量のものが量産され始め、最近ではスタック型構造を使用する256kbit〜4Mbitの大容量のものが開発の中心となってきている。スタック型の強誘電体メモリを実現するためには、集積度の大幅な向上、ひいては強誘電体メモリの微細化が不可欠であり、このためには、強誘電体キャパシタを形成する工程、トランジスタを形成する工程及び配線工程を形成する工程の間において整合を図ることが重要となる。
【0003】
このため、例えば、W-CVDを使用するコンタクトの埋め込み技術又はトランジスタの特性回復のために行われる水素雰囲気中での熱処理等に代表されるように、水素雰囲気中で処理されることが多い半導体プロセスにおいて、強誘電体キャパシタが還元されることなく、強誘電体膜の分極特性を維持するかということが課題となる。
【0004】
図18は、Ptよりなる下部電極、SBTよりなる容量絶縁膜及びPtよりなる上部電極を有する強誘電体キャパシタに対して、半導体装置の配線工程で通常使用される水素雰囲気中における400℃の温度下の熱処理を行なった場合の分極量の劣化の度合いを表わしている。図18において、縦軸は分極量2Pr(μC/cm2 )を示し、横軸は水素の混合率を示している。
【0005】
図18から明らかなように、水素混合率が0.001%で劣化が始まり、水素混合率が0.5%以上になると完全にショートしている。このことから、強誘電体膜が水素に対して如何に敏感であるかということが分かる。
【0006】
従来、例えば特開平11−8355号公報に示されるように、強誘電体キャパシタを水素バリア膜により被覆する技術が一般的である。これは、Al23に代表される水素バリア膜により、強誘電体キャパシタの形成以後において半導体プロセスで発生する水素の拡散を遮蔽して、強誘電体膜の分極量の劣化を防止するものである。水素バリア膜による強誘電体キャパシタの被覆構造としては、強誘電体キャパシタの周囲を完全に被覆する構造が最も効果が大きい。このようにして、強誘電体キャパシタの水素による分極特性の劣化を防止して、高集積された強誘電体メモリ又は高誘電体メモリを実現している。
【0007】
以下、周囲が完全に被覆された構造を有する従来の強誘電体キャパシタについて図19を参照しながら説明する。
【0008】
図19に示すように、メモリセルトランジスタ(図示は省略している)が形成されている半導体基板200の上に第1の層間絶縁膜201が形成され、該第1の層間絶縁膜201の上には第1の水素バリア膜202が形成されている。第1の水素バリア膜202の上には、下部電極203、強誘電体膜よりなる容量絶縁膜204及び上部電極205から構成される強誘電体キャパシタが形成されており、該強誘電体キャパシタの上面及び側面は第2の水素バリア膜206により覆われている。これにより、強誘電体キャパシタの周囲は第1の水素バリア膜202及び第2の水素バリア膜206により完全に覆われている。
【0009】
第2の水素バリア膜206を覆うように第2の層間絶縁膜207が形成され、該第2の層間絶縁膜207の上にはバリア層208を介して金属配線209が形成されている。第1の層間絶縁膜201及び第1の水素バリア膜202を貫通して延びるように第1のコンタクトプラグ211が形成され、該第1のコンタクトプラグ211はメモリセルトランジスタと下部電極203とを接続している。また、第2の層間絶縁膜207及び第2の水素バリア膜206を貫通して延びるように第2のコンタクトプラグ212が形成され、該第2のコンタクトプラグ212は上部電極205と金属配線209とを接続している。
【0010】
従来の強誘電体キャパシタの周囲は、第1の水素バリア膜202及び第2の水素バリア膜206により完全に覆われているため、強誘電体キャパシタに対して還元性雰囲気中における熱処理を施しても、水素が容量絶縁膜14に拡散することを抑制できるので、容量絶縁膜204を構成する強誘電体膜の分極特性の劣化を低減することできる。
【0011】
ところで、前述の従来例では、強誘電体キャパシタは水素バリア層により完全に覆われていたが、工程数の削減、コストの削減及び集積化の簡易性を図るために、強誘電体キャパシタの上面のみを水素バリア膜で覆う構造も知られている。
【0012】
【発明が解決しようとする課題】
ところが、本件発明者らが、前述のように周囲が水素バリア膜で覆われた強誘電体キャパシタに対して還元性雰囲気中の熱処理を施したところ、容量絶縁膜を構成する強誘電体膜の分極特性の劣化を完全に防止できないということに気が付いた。
【0013】
図20は、周囲が水素バリア膜で覆われた強誘電体キャパシタに対して水素雰囲気中での熱処理を行なう前及び後において強誘電体キャパシタの特性を測定した結果を示している。この実験は、図19に示す構造において、下部電極13としてPt/IrOx/Ir/TiAlNの積層膜を用い、容量絶縁膜14としてSBTN膜を用い、上部電極15としてPt膜を用い、第1の水素バリア膜12としてプラズマ窒化シリコン膜を用い、第2の水素バリア膜16として酸化チタンアルミニウム膜を用いた強誘電体キャパシタに対して、4%水素雰囲気中で熱処理を行なった結果を示している。図20において、2Prは分極量(μC/cm2 )を示し、Pnvは電圧を印加しない状態が十分に長く継続したときの飽和分極量(μC/cm2 )を示し、BVFは強誘電体キャパシタに10-7A/cm2 の電流が流れたときの耐圧(V)を示している。
【0014】
図18に示す実験結果を考慮すると、図20に示す実験では0.001%以下の水素が強誘電体膜に侵入したこと及び強誘電体膜に侵入する水素の濃度は水素バリア膜により4000分の1以下に希釈されることが分かる。また、図20に示す実験結果から、強誘電体キャパシタを水素バリア膜で覆っても、強誘電体膜の劣化を完全に防止できないことが分かる。
【0015】
そこで、本件発明者らが、水素が強誘電体膜に侵入する経路について検討した結果、第1のコンタクトプラグ211及び第2のコンタクトプラグ212を経由する第1の拡散パス、第1の水素バリア膜202と第2の水素バリア膜206とが接する界面よりなる第2の拡散パス、及び第1の水素バリア膜202の下地の段差に起因して結晶性が悪くなっている第1の水素バリア膜202の結晶粒界よりなる第3の拡散パスを通って水素が強誘電体膜に拡散していることが分かった。
【0016】
特に、コンタクトプラグを介する第1の拡散パスについては、上部電極の直上部及び下部電極の直下部では導電性の水素バリア膜を設けることは可能であるが、それ以外の部分では、段差部における結晶性の向上及び緻密な水素バリア膜同士の密着性の向上という解決が非常に困難な問題がある。
【0017】
以上のように、強誘電体キャパシタの周囲を水素バリア膜で完全に覆っても、強誘電体キャパシタに対する還元性雰囲気中の熱処理を施すと、容量絶縁膜を構成する強誘電体膜の分極特性の劣化を完全に防止することができない。
【0018】
前記に鑑み、本発明は、強誘電体キャパシタに対して還元性雰囲気中の熱処理を施しても、容量絶縁膜を構成する強誘電体膜又は高誘電体膜の分極特性の劣化を確実に防止できるようにすることを目的とする。
【0019】
【課題を解決するための手段】
前記の目的を達成するため、本発明に係る容量素子は、下部電極と、下部電極の上に形成された強誘電体膜又は高誘電体膜よりなる容量絶縁膜と、容量絶縁膜の上に形成された上部電極との積層体からなり、容量絶縁膜中に、水素を吸蔵する元素が含まれている。
【0020】
本発明に係る容量素子によると、下部電極と、強誘電体膜又は高誘電体膜よりなる容量絶縁膜と、上部電極との積層体からなる容量素子に対して、水素雰囲気中における熱処理が施されて、容量絶縁膜に水素が侵入すると、侵入した水素は水素吸蔵元素に吸蔵されるため、水素による容量絶縁膜の分極特性の劣化を防止することができる。
【0021】
本発明に係る容量素子において、水素を吸蔵する元素は、容量絶縁膜の結晶粒界、格子間位置又は空孔に含まれていることが好ましい。
【0022】
このようにすると、容量絶縁膜に侵入した水素は水素吸蔵元素に確実に吸蔵されるので、水素による容量絶縁膜の分極特性の劣化を確実に防止することができる。
【0023】
本発明に係る容量素子において、水素を吸蔵する元素は、酸素と結合していることが好ましい。
【0024】
このようにすると、容量絶縁膜に侵入した水素は、まず酸素を解離して水素吸蔵元素を還元させるので、つまり水素吸蔵元素を還元させるために消費されるので、水素による容量絶縁膜の分極特性の劣化をより一層防止することができる。
【0025】
本発明に係る容量素子において、容量絶縁膜はSBTよりなり、水素を吸蔵する元素は、Sc、Ti、V、Y、Zr、Nb及びLaのうちの少なくとも1つであることが好ましい。
【0026】
このようにすると、これらの元素は水素を吸蔵する能力が高いため、SBTよりなる容量絶縁膜に含まれると、水素による容量絶縁膜の分極特性の劣化をより効果的に防止することができる。
【0027】
本発明に係る容量素子は、積層体の少なくとも一部分を覆う水素バリア膜をさらに備えていることが好ましい。
【0028】
このようにすると、雰囲気中の水素の大部分が水素バリア膜により容量素子への侵入を阻止されると共に、水素バリア膜における被覆形状が悪い場所に発生する結晶粒界又は水素バリア膜同士の接合界面を通過して容量絶縁膜に侵入した水素は水素吸蔵元素に吸蔵されるので、水素による容量絶縁膜の分極特性の劣化をより効果的に防止することができる。
【0029】
本発明に係る第1の容量素子の製造方法は、半導体基板上に、下部電極と、下部電極の上に形成され、水素を吸蔵する元素を含む強誘電体膜又は高誘電体膜よりなる容量絶縁膜と、容量絶縁膜の上に形成された上部電極とからなる積層体を形成する工程と、容量絶縁膜に熱処理を施して、強誘電体膜又は高誘電体膜を結晶化させると共に水素を吸蔵する元素を強誘電体膜又は高誘電体膜の結晶粒界、格子間位置又は空孔に配置させる工程とを備えている。
【0030】
本発明に係る第2の容量素子の製造方法は、半導体基板上に、下部電極又は下部電極となる第1の導電膜を形成した後、下部電極又は第1の導電膜の上に、水素を吸蔵する元素を含む強誘電体膜又は高誘電体膜を堆積する工程と、強誘電体膜又は高誘電体膜に熱処理を施して、強誘電体膜又は高誘電体膜を結晶化させると共に水素を吸蔵する元素を強誘電体膜又は高誘電体膜の結晶粒界、格子間位置又は空孔に配置させる工程と、結晶化している強誘電体膜又は高誘電体膜の上に第2の導電膜を堆積する工程と、第2の導電膜をパターニングして上部電極を形成する工程と、結晶化した強誘電体膜又は高誘電体膜をパターニングして容量絶縁膜を形成する工程とを備えている。
【0031】
本発明に係る第3の容量素子の製造方法は、半導体基板上に、下部電極又は下部電極となる第1の導電膜を形成した後、下部電極又は第1の導電膜の上に、水素を吸蔵する元素を含む強誘電体膜又は高誘電体膜を堆積する工程と、強誘電体膜又は高誘電体膜の上に第2の導電膜を堆積する工程と、強誘電体膜又は高誘電体膜に熱処理を施して、強誘電体膜又は高誘電体膜を結晶化させると共に水素を吸蔵する元素を強誘電体膜又は高誘電体膜の結晶粒界、格子間位置又は空孔に配置させる工程と、第2の導電膜をパターニングして上部電極を形成する工程と、結晶化している強誘電体膜又は高誘電体膜をパターニングして容量絶縁膜を形成する工程とを備えている。
【0032】
本発明に係る第4の容量素子の製造方法は、半導体基板上に、下部電極又は下部電極となる第1の導電膜を形成した後、下部電極又は第1の導電膜の上に、水素を吸蔵する元素を含む強誘電体膜又は高誘電体膜を堆積する工程と、強誘電体膜又は高誘電体膜に熱処理を施して、強誘電体膜又は高誘電体膜を結晶化させると共に水素を吸蔵する元素を強誘電体膜又は高誘電体膜の結晶粒界、格子間位置又は空孔に配置させる工程と、結晶化している強誘電体膜又は高誘電体膜をパターニングして容量絶縁膜を形成する工程と、容量絶縁膜の上に第2の導電膜を堆積する工程と、第2の導電膜をパターニングして上部電極を形成する工程とを備えている。
【0033】
本発明に係る第5の容量素子の製造方法は、半導体基板上に、下部電極又は下部電極となる第1の導電膜を形成した後、下部電極又は第1の導電膜の上に、水素を吸蔵する元素を含む強誘電体膜又は高誘電体膜を堆積する工程と、強誘電体膜又は高誘電体膜をパターニングして容量絶縁膜を形成する工程と、容量絶縁膜に熱処理を施して、強誘電体膜又は高誘電体膜を結晶化させると共に水素を吸蔵する元素を強誘電体膜又は高誘電体膜の結晶粒界、格子間位置又は空孔に配置させる工程と、強誘電体膜又は高誘電体膜が結晶化している容量絶縁膜の上に第2の導電膜を堆積する工程と、第2の導電膜をパターニングして上部電極を形成する工程とを備えている。
【0034】
本発明に係る第6の容量素子の製造方法は、半導体基板上に、下部電極と、下部電極の上に形成された、水素を吸蔵する元素を含む水素吸蔵元素層と、水素吸蔵元素層の上に形成された強誘電体膜又は高誘電体膜よりなる容量絶縁膜と、容量絶縁膜の上に形成された上部電極とからなる積層体を形成する工程と、容量絶縁膜に熱処理を施して、強誘電体膜又は高誘電体膜を結晶化させると共に水素吸蔵元素層に含まれている水素を吸蔵する元素を強誘電体膜又は高誘電体膜の結晶粒界、格子間位置又は空孔に配置させる工程とを備えている。
【0035】
本発明に係る第7の容量素子の製造方法は、半導体基板上に、下部電極又は下部電極となる第1の導電膜を形成した後、下部電極又は第1の導電膜の上に、水素を吸蔵する元素を含む水素吸蔵元素層を堆積する工程と、水素吸蔵元素層の上に強誘電体膜又は高誘電体膜を堆積する工程と、強誘電体膜又は高誘電体膜に熱処理を施して、強誘電体膜又は高誘電体膜を結晶化させると共に水素吸蔵元素層に含まれる水素を吸蔵する元素を強誘電体膜又は高誘電体膜の結晶粒界、格子間位置又は空孔に配置させる工程と、結晶化している強誘電体膜又は高誘電体膜の上に第2の導電膜を堆積する工程と、第2の導電膜をパターニングして上部電極を形成する工程と、結晶化した強誘電体膜又は高誘電体膜をパターニングして容量絶縁膜を形成する工程とを備えている。
【0036】
本発明に係る第8の容量素子の製造方法は、半導体基板上に、下部電極又は下部電極となる第1の導電膜を形成した後、下部電極又は第1の導電膜の上に、水素を吸蔵する元素を含む水素吸蔵元素層を堆積する工程と、水素吸蔵元素層の上に強誘電体膜又は高誘電体膜を堆積する工程と、強誘電体膜又は高誘電体膜の上に第2の導電膜を堆積する工程と、強誘電体膜又は高誘電体膜に熱処理を施して、強誘電体膜又は高誘電体膜を結晶化させると共に水素吸蔵元素層に含まれている水素を吸蔵する元素を強誘電体膜又は高誘電体膜の結晶粒界、格子間位置又は空孔に配置させる工程と、第2の導電膜をパターニングして上部電極を形成する工程と、結晶化している強誘電体膜又は高誘電体膜をパターニングして容量絶縁膜を形成する工程とを備えている。
【0037】
本発明に係る第9の容量素子の製造方法は、半導体基板上に、下部電極又は下部電極となる第1の導電膜を形成した後、下部電極又は第1の導電膜の上に、水素を吸蔵する元素を含む水素吸蔵元素層を堆積する工程と、水素吸蔵元素層の上に強誘電体膜又は高誘電体膜を堆積する工程と、強誘電体膜又は高誘電体膜に熱処理を施して、強誘電体膜又は高誘電体膜を結晶化させると共に水素吸蔵元素層に含まれる水素を吸蔵する元素を強誘電体膜又は高誘電体膜の結晶粒界、格子間位置又は空孔に配置させる工程と、結晶化している強誘電体膜又は高誘電体膜をパターニングして容量絶縁膜を形成する工程と、容量絶縁膜の上に第2の導電膜を堆積する工程と、第2の導電膜をパターニングして上部電極を形成する工程とを備えている。
【0038】
本発明に係る第10の容量素子の製造方法は、半導体基板上に、下部電極又は下部電極となる第1の導電膜を形成した後、下部電極又は第1の導電膜の上に、水素を吸蔵する元素を含む水素吸蔵元素層を堆積する工程と、水素吸蔵元素層の上に強誘電体膜又は高誘電体膜を堆積する工程と、強誘電体膜又は高誘電体膜をパターニングして容量絶縁膜を形成する工程と、容量絶縁膜に熱処理を施して、強誘電体膜又は高誘電体膜を結晶化させると共に水素吸蔵元素層に含まれる水素を吸蔵する元素を強誘電体膜又は高誘電体膜の結晶粒界、格子間位置又は空孔に配置させる工程と、強誘電体膜又は高誘電体膜が結晶化している容量絶縁膜の上に第2の導電膜を堆積する工程と、第2の導電膜をパターニングして上部電極を形成する工程とを備えている。
【0039】
本発明に係る第11の容量素子の製造方法は、半導体基板上に、下部電極と、下部電極の上に形成された強誘電体膜又は高誘電体膜よりなる容量絶縁膜と、容量絶縁膜の上に形成された、水素を吸蔵する元素を含む水素吸蔵元素層と、水素吸蔵元素層の上に形成された上部電極とからなる積層体を形成する工程と、容量絶縁膜に熱処理を施して、強誘電体膜又は高誘電体膜を結晶化させると共に水素吸蔵元素層に含まれている水素を吸蔵する元素を強誘電体膜又は高誘電体膜の結晶粒界、格子間位置又は空孔に配置させる工程とを備えている。
【0040】
本発明に係る第12の容量素子の製造方法は、半導体基板上に、下部電極又は下部電極となる第1の導電膜を形成した後、下部電極又は第1の導電膜の上に強誘電体膜又は高誘電体膜を堆積する工程と、強誘電体膜又は高誘電体膜の上に、水素を吸蔵する元素を含む水素吸蔵元素層を堆積する工程と、強誘電体膜又は高誘電体膜に熱処理を施して、強誘電体膜又は高誘電体膜を結晶化させると共に水素吸蔵元素層に含まれる水素を吸蔵する元素を強誘電体膜又は高誘電体膜の結晶粒界、格子間位置又は空孔に配置させる工程と、結晶化している強誘電体膜又は高誘電体膜の上に第2の導電膜を堆積する工程と、第2の導電膜をパターニングして上部電極を形成する工程と、結晶化した強誘電体膜又は高誘電体膜をパターニングして容量絶縁膜を形成する工程とを備えている。
【0041】
本発明に係る第13の容量素子の製造方法は、半導体基板上に、下部電極又は下部電極となる第1の導電膜を形成した後、下部電極又は第1の導電膜の上に強誘電体膜又は高誘電体膜を堆積する工程と、強誘電体膜又は高誘電体膜の上に、水素を吸蔵する元素を含む水素吸蔵元素層を堆積する工程と、水素吸蔵元素層の上に第2の導電膜を堆積する工程と、強誘電体膜又は高誘電体膜に熱処理を施して、強誘電体膜又は高誘電体膜を結晶化させると共に水素吸蔵元素層に含まれている水素を吸蔵する元素を強誘電体膜又は高誘電体膜の結晶粒界、格子間位置又は空孔に配置させる工程と、第2の導電膜をパターニングして上部電極を形成する工程と、結晶化している強誘電体膜又は高誘電体膜をパターニングして容量絶縁膜を形成する工程とを備えている。
【0042】
本発明に係る第14の容量素子の製造方法は、半導体基板上に、下部電極又は下部電極となる第1の導電膜を形成した後、下部電極又は第1の導電膜の上に強誘電体膜又は高誘電体膜を堆積する工程と、強誘電体膜又は高誘電体膜の上に、水素を吸蔵する元素を含む水素吸蔵元素層を堆積する工程と、強誘電体膜又は高誘電体膜に熱処理を施して、強誘電体膜又は高誘電体膜を結晶化させると共に水素吸蔵元素層に含まれる水素を吸蔵する元素を強誘電体膜又は高誘電体膜の結晶粒界、格子間位置又は空孔に配置させる工程と、結晶化している強誘電体膜又は高誘電体膜をパターニングして容量絶縁膜を形成する工程と、容量絶縁膜の上に第2の導電膜を堆積する工程と、第2の導電膜をパターニングして上部電極を形成する工程とを備えている。
【0043】
本発明に係る第15の容量素子の製造方法は、半導体基板上に、下部電極又は下部電極となる第1の導電膜を形成した後、下部電極又は第1の導電膜の上に強誘電体膜又は高誘電体膜を堆積する工程と、強誘電体膜又は高誘電体膜の上に、水素を吸蔵する元素を含む水素吸蔵元素層を堆積する工程と、強誘電体膜又は高誘電体膜をパターニングして容量絶縁膜を形成する工程と、容量絶縁膜に熱処理を施して、強誘電体膜又は高誘電体膜を結晶化させると共に水素吸蔵元素層に含まれる水素を吸蔵する元素を強誘電体膜又は高誘電体膜の結晶粒界、格子間位置又は空孔に配置させる工程と、強誘電体膜又は高誘電体膜が結晶化している容量絶縁膜の上に第2の導電膜を堆積する工程と、第2の導電膜をパターニングして上部電極を形成する工程とを備えている。
【0044】
本発明に係る第16の容量素子の製造方法は、半導体基板上に、下部電極と、下部電極の上に形成された強誘電体膜又は高誘電体膜よりなる容量絶縁膜と、容量絶縁膜の上に形成された上部電極とからなる積層体を形成する工程と、積層体を覆うように、水素を吸蔵する元素を含む水素吸蔵元素層を堆積する工程と、容量絶縁膜に熱処理を施して、強誘電体膜又は高誘電体膜を結晶化させると共に水素吸蔵元素層に含まれている水素を吸蔵する元素を強誘電体膜又は高誘電体膜の結晶粒界、格子間位置又は空孔に配置させる工程とを備えている。
【0045】
本発明に係る第1〜第16の容量素子の製造方法によると、容量絶縁膜に熱処理を施して、強誘電体膜又は高誘電体膜を結晶化させると共に水素吸蔵元素層に含まれている水素を吸蔵する元素を強誘電体膜又は高誘電体膜の結晶粒界、格子間位置又は空孔に配置させる工程を備えているため、下部電極と、強誘電体膜又は高誘電体膜よりなる容量絶縁膜と、上部電極との積層体からなる容量素子に対して、水素雰囲気中における熱処理が施されて、容量絶縁膜に水素が侵入すると、侵入した水素は水素吸蔵元素に吸蔵されるため、水素による容量絶縁膜の分極特性の劣化を防止することができる。
【0046】
本発明に係る第1〜第16の容量素子の製造方法は、下部電極、容量絶縁膜及び上部電極よりなる積層体の少なくとも一部を覆う水素バリア層を形成する工程をさらに備えていることが好ましい。
【0047】
このようにすると、雰囲気中の水素の大部分が水素バリア膜により容量素子への侵入を阻止されると共に、水素バリア膜における被覆形状が悪い場所に発生する結晶粒界又は水素バリア膜同士の接合界面を通過して容量絶縁膜に侵入した水素は水素吸蔵元素に吸蔵されるので、水素による容量絶縁膜の分極特性の劣化をより効果的に防止することができる。
【0048】
【発明の実施の形態】
(第1の実施形態)
以下、本発明の第1の実施形態に係る容量素子について図1及び図2を参照しながら説明する。尚、図1は第1の実施形態に係る容量素子の断面構造を示している。
【0049】
図1に示すように、メモリセルトランジスタ(図示は省略している)が形成されている半導体基板100の上に例えばBPSG膜よりなる層間絶縁膜101が形成されており、該層間絶縁膜101の上に、例えば白金よりなる下部電極102と、例えばチタン(Ti)が結晶粒界、格子間位置又は空孔に25wt%含まれたSBT(SrTaBiO)よりなる容量絶縁膜103と、例えば白金よりなる上部電極104との積層体からなる容量素子が形成されている。
【0050】
層間絶縁膜101には、例えばタングステン(W)よりなるコンタクトプラグ106が埋め込まれており、該コンタクトプラグ106は半導体基板100のメモリセルトランジスタと容量素子の下部電極102とを接続している。
【0051】
図2は、第1の実施形態に係る容量素子に対して、水素濃度が0.01%である水素雰囲気中において熱処理を行なったときの分極特性を示している。尚、図2は、分極量の変化を上部電極104と下部電極102とのそれぞれプローブ針を接触させて測定した実験結果である。
【0052】
図2から、容量絶縁膜103としてTiが25wt%含まれたSBTを用いると、ヒステリシス特性が劣化しないと共に上部電極104と下部電極102とが短絡しないことが分かる。これは、強誘電体膜中の結晶粒界に存在するTiが水素を吸蔵することにより、強誘電体膜の還元を抑制できたと判断することができる。
【0053】
第1の実施形態によると、容量絶縁膜103を構成する強誘電体膜に、水素を吸蔵する元素が含まれているため、容量絶縁膜103に侵入する水素は水素吸蔵元素に吸蔵されて強誘電体膜を還元させないので、水素による容量絶縁膜103の分極特性の劣化を防止することができる。
【0054】
ところで、容量絶縁膜103に水素吸蔵元素である金属が含まれると、容量素子のリーク電流が増加する恐れがある。従って、水素吸蔵元素は酸素と結合した状態でつまり酸化物の状態で容量絶縁膜103に含まれることが好ましい。
【0055】
このようにすると、水素吸蔵元素が安定した状態で容量絶縁膜103の内部に存在することができると共に、水素が容量絶縁膜103に侵入したときに水素は、水素吸蔵元素と結合している酸素を解離させるために消費されるので、水素による容量絶縁膜103の分極特性の劣化をより一層防止することができる。
【0056】
尚、第1の実施形態においては、水素吸蔵元素として、Tiを単独で用いたが、これに代えて、Ti、Sc、V、Zr、Nb及びLaのうちの少なくとも1つを用いてもよい。
【0057】
(第2の実施形態)
以下、本発明の第2の実施形態に係る容量素子について図3を参照しながら説明する。図3は第2の実施形態に係る容量素子の断面構造を示している。
【0058】
図3に示すように、メモリセルトランジスタ(図示は省略している)が形成されている半導体基板110の上に例えばBPSG膜よりなる第1の層間絶縁膜111が形成されており、第1の層間絶縁膜111の上には、SiN膜、SiON膜、TiAlO膜又はAl23膜よりなる第1の水素バリア膜112が形成されている。第1の水素バリア膜112の上には、下部電極113、容量絶縁膜114及び上部電極115の積層体からなる容量素子が形成されている。下部電極113は、例えば、IrO膜、Ir膜、TiAlN膜及びTiN膜のいずれか1つよりなる単層膜又はこれらの積層膜よりなる下層のバリア層と、例えばPt膜よりなる上層の金属膜とからなる。容量絶縁膜114は、Ti、Sc、V、Zr、Nb及びLaのうちの少なくとも1つよりなる水素吸蔵元素を含む強誘電体膜からなる。上部電極115は、Pt膜、Ir膜及びIrO膜のいずれか1つよりなる単層膜又はこれらの積層膜からなる。
【0059】
下部電極113、容量絶縁膜114及び上部電極115からなる容量素子を覆うように、SiN膜、SiON膜、TiAlO膜又はAl23膜よりなる第2の水素バリア膜116が形成されており、第2の水素バリア膜116の周縁部は第1の水素バリア膜112の周縁部と接続されている。これによって、容量素子は第1の水素バリア膜112及び第2の水素バリア膜116によって覆われている。
【0060】
第1の層間絶縁膜111の上には、例えばシリコン酸化膜又はオゾンTEOS膜よりなる第2の層間絶縁膜117が第2の水素バリア膜116を覆うように形成されており、第2の層間絶縁膜117の上にはバリア膜118を介して、Al/TiN/Tiの積層構造を有する金属配線119が形成されている。
【0061】
第1の層間絶縁膜111及び第1の水素バリア膜112を貫通して延びるように、タングステン又はポリシリコンよりなる第1のコンタクトプラグ121が形成されており、該第1のコンタクトプラグ121は半導体基板110に形成されているメモリセルトランジスタと容量素子の下部電極113とを接続している。また、第2の層間絶縁膜117及び第2の水素バリア膜116を貫通して延びるように、タングステンよりなる第2のコンタクトプラグ122が形成されており、該第2のコンタクトプラグ122は容量素子の上部電極115と金属配線119のバリア層118とを接続している。
【0062】
第2の実施形態によると、容量絶縁膜114を構成する強誘電体膜に、水素を吸蔵する元素が含まれているため、容量絶縁膜114に侵入する水素は水素吸蔵元素に吸蔵されて強誘電体膜を還元させないので、水素による容量絶縁膜114の分極特性の劣化を防止することができる。
【0063】
また、第2の実施形態においては、容量素子は第1の水素バリア膜112及び第2の水素バリア膜116により覆われているため、水素雰囲気中において熱処理が行なわれた場合、雰囲気中の水素の大部分が第1及び第2の水素バリア膜112,116により容量素子への侵入を阻止されると共に、第1及び第2の水素バリア膜112,116における被覆形状が悪い場所に発生する結晶粒界又は第1の水素バリア膜112と第2の水素バリア膜116との接合界面を通過して容量絶縁膜に侵入した水素は水素吸蔵元素に吸蔵されるので、水素による容量絶縁膜の分極特性の劣化をより効果的に防止することができる。
【0064】
ところで、容量絶縁膜114に含まれる水素吸蔵元素は酸素と結合した状態でつまり酸化物の状態で含まれることが好ましい。このようにすると、水素吸蔵元素が安定した状態で容量絶縁膜114の内部に存在することができると共に、水素が容量絶縁膜114に侵入したときに水素は、水素吸蔵元素と結合している酸素を解離させるために消費されるので、水素による容量絶縁膜114の分極特性の劣化をより一層防止することができる。
【0065】
尚、第2の実施形態においては、上部電極115が容量規定口となる構造、つまり上部電極115が下部電極113よりも小さい構造であったが、これに代えて、下部電極113が容量規定口となる構造であってもよい。
【0066】
また、第2の実施形態においては、容量素子は、第1及び第2の水素バリア層112,116により完全に覆われていたが、これに代えて、部分的に覆われる構造であってもよい。
【0067】
(第3の実施形態)
以下、本発明の第3の実施形態に係る容量素子の製造方法について図4(a) 〜(d) 及び図5(a) 〜(c) を参照しながら説明する。
【0068】
まず、図4(a) に示すように、メモリセルトランジスタ(図示は省略している)が形成されている半導体基板10の上に例えばBPSG膜よりなる層間絶縁膜11を形成した後、該層間絶縁膜11に、タングステン膜又はポリシリコン膜よりなり、下端部がメモリセルトランジスタと接続されるコンタクトプラグ12を形成する。次に、層間絶縁膜11の上に、IrO/Ir/TiAlNの積層体よりなる酸素バリア層を介して、強誘電体膜の結晶成長を促進するPt膜よりなる第1の導電膜を堆積した後、第1の導電膜及び酸素バリア層をパターニングして、コンタクトプラグ12の上端部と接続する下部電極13Aを形成する。
【0069】
次に、図4(b) に示すように、下部電極13A及び層間絶縁膜11の上に全面に亘って、例えばオゾンTEOS膜よりなる絶縁膜14を堆積した後、該絶縁膜14に対してCMPを行なって、下部電極13Aの表面を露出させると共に下部電極13Aの周囲に絶縁膜14を残存させる。尚、ここでは、下部電極13Aは絶縁膜14に埋め込まれる構造であるが、これに代えて、下部電極13Aが絶縁膜14の上に形成される構造でもよい。
【0070】
次に、図4(c) に示すように、下部電極13A及び絶縁膜14の上に全面に亘って、Ti、Sc、V、Zr、Nb及びLaのうちの少なくとも1つよりなる水素吸蔵元素を含む強誘電体溶液をスピンコート法により塗布した後、溶媒が揮発する温度程度(150〜300℃)でウェハベークを行なって、水素を吸蔵する元素を含む強誘電体膜15を形成し、その後、強誘電体膜15に対して、結晶成長の基点となる核を形成するためのRTPを施して仮焼結を行なう。RTPの温度は、強誘電体材料の種類により異なるが、強誘電体膜15がSBTである場合には約650℃である。その後、強誘電体膜15の上に白金よりなる第2の導電膜16を堆積する。
【0071】
次に、図4(d) に示すように、第2の導電膜16及び強誘電体膜15をパターニングして、第2の導電膜16よりなる上部電極16Aを形成すると共に強誘電体膜15よりなる容量絶縁膜15Aを形成する。
【0072】
次に、容量絶縁膜15Aに対して、酸素雰囲気中での高温の熱処理を施すことにより、容量絶縁膜15Aを構成する強誘電体膜を結晶化させると共に、水素を吸蔵する元素を強誘電体膜の結晶粒界、格子間位置又は空孔に配置させる。これにより、図5(a) に示すように、結晶化した容量絶縁膜15Bが得られる。高温の熱処理の温度としては、強誘電体膜がSBTよりなる場合には、約650℃〜約800℃の温度範囲である。この場合、容量絶縁膜15Aに対して酸素雰囲気中で熱処理が施されるため、水素吸蔵元素は酸素と結合して安定な状態になる。
【0073】
次に、図5(b) に示すように、上部電極16A及び絶縁膜14の上に全面に亘って、水素バリア膜17を堆積した後、図5(c) に示すように、水素バリア膜17をパターニングする。
【0074】
第3の実施形態によると、容量絶縁膜15Aに熱処理を施して、強誘電体膜を結晶化させると共に水素を吸蔵する元素を強誘電体膜の結晶粒界、格子間位置又は空孔に配置させるため、下部電極13A、容量絶縁膜15B及び上部電極16Aの積層体からなる容量素子に対して、水素雰囲気中における熱処理が施されたときに、容量絶縁膜15Bに水素が侵入しても、侵入した水素は水素吸蔵元素に吸蔵されるので、水素による容量絶縁膜15Bの分極特性の劣化を防止することができる。
【0075】
また、第3の実施形態によると、容量素子は水素バリア膜17に覆われているため、水素雰囲気中における熱処理が施されたときには、雰囲気中の水素の大部分が水素バリア膜17により容量素子への侵入を阻止されると共に、水素バリア膜17における被覆形状が悪い場所に発生する結晶粒界又は水素バリア膜17と絶縁膜14との接合界面を通過して容量絶縁膜15Bに侵入した水素は水素吸蔵元素に吸蔵されるので、水素による容量絶縁膜15Bの分極特性の劣化をより効果的に防止することができる。
【0076】
尚、第3の実施形態においては、パターニングされた強誘電体膜よりなる容量絶縁膜15Aに対して高温の熱処理を施したが、これに代えて、強誘電体膜15がパターニングされる前に(図4(c) に示す状態)強誘電体膜15に対して行なってもよい。この場合、高温の熱処理は、第2の導電膜16を堆積する前であってもよいし、後であってもよい。
【0077】
また、第3の実施形態により得られる容量素子は、下部電極13Aが容量規定口となる構造であったが、これに代えて、上部電極16Aが容量規定口となる構造であってもよい。
【0078】
(第4の実施形態)
以下、本発明の第4の実施形態に係る容量素子の製造方法について図6(a) 〜(d) 及び図7(a) 〜(c) を参照しながら説明する。
【0079】
まず、図6(a) に示すように、メモリセルトランジスタ(図示は省略している)が形成されている半導体基板20の上に例えばBPSG膜よりなる層間絶縁膜21を形成した後、該層間絶縁膜21の上に、SiN膜、SiON膜、TiAlO膜又はAl23膜等よりなる第1の水素バリア膜22を堆積する。その後、第1の水素バリア膜22及び層間絶縁膜21に、タングステン膜又はポリシリコン膜よりなり、下端部がメモリセルトランジスタと接続されるコンタクトプラグ23を形成する。
【0080】
次に、図6(b) に示すように、第1の水素バリア膜22の上に、IrO/Ir/TiAlNの積層体よりなる酸素バリア層を介して、強誘電体膜の結晶成長を促進するPt膜よりなる第1の導電膜を堆積した後、第1の導電膜及び酸素バリア層をパターニングして、コンタクトプラグ23の上端部と接続する下部電極24Aを形成する。次に、下部電極24A及び第1の水素バリア膜22の上に全面に亘って、例えばオゾンTEOS膜よりなる絶縁膜25を堆積した後、該絶縁膜25に対してCMPを行なって、下部電極24Aの表面を露出させると共に下部電極24Aの周囲に絶縁膜25を残存させる。尚、ここでは、下部電極24Aは絶縁膜25に埋め込まれる構造であるが、これに代えて、下部電極24Aが絶縁膜25の上に形成される構造でもよい。
【0081】
次に、図6(c) に示すように、下部電極24A及び絶縁膜25の上に全面に亘って、Ti、Sc、V、Zr、Nb及びLaのうちの少なくとも1つよりなる水素吸蔵元素を含む強誘電体溶液をスピンコート法により塗布した後、溶媒が揮発する温度程度(150〜300℃)でウェハベークを行なって、水素を吸蔵する元素を含む強誘電体膜26を形成し、その後、強誘電体膜26に対して、結晶成長の基点となる核を形成するためのRTPを施して仮焼結を行なう。RTPの温度は、強誘電体材料の種類により異なるが、強誘電体膜26がSBTである場合には約650℃である。その後、強誘電体膜26の上に白金よりなる第2の導電膜27を堆積する。
【0082】
次に、図6(d) に示すように、第2の導電膜27及び強誘電体膜26をパターニングして、第2の導電膜27よりなる上部電極27Aを形成すると共に強誘電体膜26よりなる容量絶縁膜26Aを形成する。
【0083】
次に、容量絶縁膜26Aに対して、酸素雰囲気中での高温の熱処理を施すことにより、容量絶縁膜26Aを構成する強誘電体膜を結晶化させると共に、水素を吸蔵する元素を強誘電体膜の結晶粒界、格子間位置又は空孔に配置させる。これにより、図7(a) に示すように、結晶化した容量絶縁膜26Bが得られる。高温の熱処理の温度としては、強誘電体膜がSBTよりなる場合には、約650℃〜約800℃の温度範囲である。この場合、容量絶縁膜26Aに対して酸素雰囲気中で熱処理が施されるため、水素吸蔵元素は酸素と結合して安定な状態になる。
【0084】
次に、図7(b) に示すように、上部電極27A及び第1の水素バリア膜22の上に全面に亘って、第2の水素バリア膜28を堆積した後、図8(c) に示すように、第2の水素バリア膜28をパターニングする。
【0085】
第4の実施形態によると、容量絶縁膜26Aに熱処理を施して、強誘電体膜を結晶化させると共に水素を吸蔵する元素を強誘電体膜の結晶粒界、格子間位置又は空孔に配置させるため、下部電極24A、容量絶縁膜26A及び上部電極27Aの積層体からなる容量素子に対して、水素雰囲気中における熱処理が施されたときに、容量絶縁膜26Bに水素が侵入しても、侵入した水素は水素吸蔵元素に吸蔵されるので、水素による容量絶縁膜26Bの分極特性の劣化を防止することができる。
【0086】
また、第4の実施形態によると、容量素子は第1の水素バリア膜22及び第2の水素バリア膜28に覆われているため、水素雰囲気中における熱処理が施されたときには、雰囲気中の水素の大部分が第1の水素バリア膜22及び第2の水素バリア膜28により容量素子への侵入を阻止されると共に、第1の水素バリア膜22及び第2の水素バリア膜28における被覆形状が悪い場所に発生する結晶粒界又は第1の水素バリア膜22と第2の水素バリア膜28との接合界面を通過して容量絶縁膜26Bに侵入した水素は水素吸蔵元素に吸蔵されるので、水素による容量絶縁膜26Bの分極特性の劣化をより効果的に防止することができる。
【0087】
尚、第4の実施形態においては、パターニングされた強誘電体膜よりなる容量絶縁膜26Aに対して高温の熱処理を施したが、これに代えて、強誘電体膜26がパターニングされる前に(図6(c) に示す状態)強誘電体膜26に対して高温の熱処理を施してもよい。この場合、高温の熱処理は、第2の導電膜27を堆積する前であってもよいし、後であってもよい。
【0088】
また、第4の実施形態により得られる容量素子は、下部電極24Aが容量規定口となる構造であったが、これに代えて、上部電極27Aが容量規定口となる構造であってもよい。
【0089】
(第5の実施形態)
以下、本発明の第5の実施形態に係る容量素子の製造方法について図8(a) 〜(c) 及び図9(a) 〜(c) を参照しながら説明する。
【0090】
まず、図8(a) に示すように、メモリセルトランジスタ(図示は省略している)が形成されている半導体基板30の上に例えばBPSG膜よりなる層間絶縁膜31を形成した後、該層間絶縁膜31に、タングステン膜又はポリシリコン膜よりなり、下端部がメモリセルトランジスタと接続されるコンタクトプラグ32を形成する。次に、層間絶縁膜31の上に、IrO/Ir/TiAlNの積層体よりなる酸素バリア層を介して、強誘電体膜の結晶成長を促進するPt膜よりなる第1の導電膜を堆積した後、第1の導電膜及び酸素バリア層をパターニングして、コンタクトプラグ32の上端部と接続する下部電極33Aを形成する。
【0091】
次に、図8(b) に示すように、下部電極33A及び層間絶縁膜31の上に全面に亘って、例えばオゾンTEOS膜よりなる絶縁膜34を堆積した後、該絶縁膜34に対してCMPを行なって、下部電極33Aの表面を露出させると共に下部電極33Aの周囲に絶縁膜34を残存させる。尚、ここでは、下部電極33Aは絶縁膜34に埋め込まれる構造であるが、これに代えて、下部電極33Aが絶縁膜34の上に形成される構造でもよい。
【0092】
次に、図8(c) に示すように、下部電極33A及び絶縁膜34の上に全面に亘って、Ti、Sc、V、Zr、Nb及びLaのうちの少なくとも1つよりなる水素吸蔵元素を含む強誘電体溶液をスピンコート法により塗布した後、溶媒が揮発する温度程度(150〜300℃)でウェハベークを行なって、水素を吸蔵する元素を含む強誘電体膜35を形成し、その後、強誘電体膜35に対して、結晶成長の基点となる核を形成するためのRTPを施して仮焼結を行なう。RTPの温度は、強誘電体材料の種類により異なるが、強誘電体膜35がSBTである場合には約650℃である。
【0093】
次に、図9(a) に示すように、強誘電体膜35をパターニングして容量絶縁膜35Aを形成した後、該容量絶縁膜35の上に白金よりなる第2の導電膜36を堆積し、その後、図9(b) に示すように、第2の導電膜36をパターニングして上部電極36Aを形成する。
【0094】
次に、容量絶縁膜35Aに対して、酸素雰囲気中での高温の熱処理を施すことにより、容量絶縁膜35Aを構成する強誘電体膜を結晶化させると共に、水素を吸蔵する元素を強誘電体膜の結晶粒界、格子間位置又は空孔に配置させる。これにより、図9(c) に示すように、結晶化した容量絶縁膜35Bが得られる。高温の熱処理の温度としては、強誘電体膜がSBTよりなる場合には、約650℃〜約800℃の温度範囲である。この場合、容量絶縁膜35Aに対して酸素雰囲気中で熱処理が施されるため、水素吸蔵元素は酸素と結合して安定な状態になる。
【0095】
第5の実施形態によると、容量絶縁膜35Aに熱処理を施して、強誘電体膜を結晶化させると共に水素を吸蔵する元素を強誘電体膜の結晶粒界、格子間位置又は空孔に配置させるため、下部電極33A、容量絶縁膜35B及び上部電極36Aの積層体からなる容量素子に対して、水素雰囲気中における熱処理が施されたときに、容量絶縁膜35Bに水素が侵入しても、侵入した水素は水素吸蔵元素に吸蔵されるので、水素による容量絶縁膜35Bの分極特性の劣化を防止することができる。
【0096】
尚、第5の実施形態においては、第2の導電膜36をパターニングして上部電極36を形成した後に容量絶縁膜35Aに高温の熱処理を施したが、これに代えて、第2の導電膜36をパターニングする前に(図9(a)に示す状態)容量絶縁膜35Aに高温の熱処理を施してもよいし、第2の導電膜36を堆積する前に、容量絶縁膜35Aに対して高温の熱処理を施してもよいし、強誘電体膜35がパターニングされる前に(図8(c)に示す状態)強誘電体膜35に対して高温の熱処理を施してもよい。
【0097】
また、第5の実施形態により得られる容量素子は、下部電極33Aが容量規定口となる構造であったが、これに代えて、上部電極36Aが容量規定口となる構造であってもよい。
【0098】
(第6の実施形態)
以下、本発明の第6の実施形態に係る容量素子の製造方法について図10(a) 〜(e) を参照しながら説明する。
【0099】
まず、図10(a) に示すように、メモリセルトランジスタ(図示は省略している)が形成されている半導体基板40の上に例えばBPSG膜よりなる層間絶縁膜41を形成した後、該層間絶縁膜41に、タングステン膜又はポリシリコン膜よりなり、下端部がメモリセルトランジスタと接続されるコンタクトプラグ42を形成する。次に、層間絶縁膜41の上に、IrO/Ir/TiAlNの積層体よりなる酸素バリア層を介して、強誘電体膜の結晶成長を促進するPt膜よりなる第1の導電膜を堆積した後、第1の導電膜及び酸素バリア層をパターニングして、コンタクトプラグ42の上端部と接続する下部電極43Aを形成する。
【0100】
次に、図10(b) に示すように、下部電極43A及び層間絶縁膜41の上に全面に亘って、例えばオゾンTEOS膜よりなる絶縁膜44を堆積した後、該絶縁膜44に対してCMPを行なって、下部電極43Aの表面を露出させると共に下部電極43Aの周囲に絶縁膜44を残存させる。尚、ここでは、下部電極43Aは絶縁膜44に埋め込まれる構造であるが、これに代えて、下部電極43Aが絶縁膜44の上に形成される構造でもよい。
【0101】
次に、図10(c) に示すように、下部電極43A及び絶縁膜44の上に全面に亘って、Ti、Sc、V、Zr、Nb及びLaのうちの少なくとも1つよりなる水素吸蔵元素を含む溶液をスピンコート法により塗布した後、溶媒が揮発する温度程度(150〜300℃)でウェハベークを行なって、水素吸蔵元素含有膜45を形成する。尚、水素吸蔵元素含有膜45は、スピンコート法に代えて、水素吸蔵元素を含有するスパッタターゲットを用いてスパッタリング法により形成してもよいし、水素吸蔵元素を含有するプロセスガスを用いてCVD法により形成してもよい。水素吸蔵元素含有膜45の膜厚としては、容量素子に印加される電圧の低下を防止するために、薄ければ薄いほど良く、5nm以下であってもよい。次に、水素吸蔵元素含有膜45の上に強誘電体溶液をスピンコート法により塗布した後、溶媒が揮発する温度程度(150〜300℃)でウェハベークを行なって強誘電体膜46を形成し、その後、強誘電体膜46に対して、結晶成長の基点となる核を形成するためのRTPを施して仮焼結を行なう。RTPの温度は、強誘電体材料の種類により異なるが、強誘電体膜46がSBTである場合には約650℃である。その後、強誘電体膜46の上に白金よりなる第2の導電膜47を堆積する。
【0102】
次に、図10(d) に示すように、第2の導電膜47及び強誘電体膜46をパターニングして、第2の導電膜47よりなる上部電極47Aを形成すると共に強誘電体膜46よりなる容量絶縁膜46Aを形成する。
【0103】
次に、容量絶縁膜46Aに対して、酸素雰囲気中での高温の熱処理を施すことにより、容量絶縁膜46Aを構成する強誘電体膜を結晶化させると共に、水素吸蔵元素含有膜45に含まれる水素吸蔵元素を強誘電体膜の結晶粒界、格子間位置又は空孔に配置させる。これにより、図10(e) に示すように、結晶化した容量絶縁膜46Bが得られる。高温の熱処理の温度としては、強誘電体膜がSBTよりなる場合には、約650℃〜約800℃の温度範囲である。この場合、容量絶縁膜45Aに対して酸素雰囲気中で熱処理が施されるため、水素吸蔵元素は酸素と結合して安定な状態になる。
【0104】
第6の実施形態によると、容量絶縁膜46Aに熱処理を施して、強誘電体膜を結晶化させると共に水素吸蔵元素含有膜45に含まれている水素吸蔵元素を強誘電体膜の結晶粒界、格子間位置又は空孔に配置させるため、下部電極43A、容量絶縁膜46B及び上部電極47Aの積層体からなる容量素子に対して、水素雰囲気中における熱処理が施されたときに、容量絶縁膜46Bに水素が侵入しても、侵入した水素は水素吸蔵元素に吸蔵されるので、水素による容量絶縁膜46Bの分極特性の劣化を防止することができる。
【0105】
尚、第6の実施形態においては、パターニングされた強誘電体膜よりなる容量絶縁膜46Aに対して高温の熱処理を施したが、これに代えて、強誘電体膜46がパターニングされる前(図10(c) に示す状態)に強誘電体膜46に対して高温の熱処理を施してもよい。この場合、高温の熱処理は、第2の導電膜47を堆積する前であってもよいし、後であってもよい。
【0106】
また、第6の実施形態により得られる容量素子は、下部電極43Aが容量規定口となる構造であったが、これに代えて、上部電極46Aが容量規定口となる構造であってもよい。
【0107】
(第7の実施形態)
以下、本発明の第7の実施形態に係る容量素子の製造方法について図11(a) 〜(c) 及び図12(a) 〜(c) を参照しながら説明する。
【0108】
まず、図11(a) に示すように、メモリセルトランジスタ(図示は省略している)が形成されている半導体基板50の上に例えばBPSG膜よりなる層間絶縁膜51を形成した後、該層間絶縁膜51に、タングステン膜又はポリシリコン膜よりなり、下端部がメモリセルトランジスタと接続されるコンタクトプラグ52を形成する。次に、層間絶縁膜51の上に、IrO/Ir/TiAlNの積層体よりなる酸素バリア層を介して、強誘電体膜の結晶成長を促進するPt膜よりなる第1の導電膜を堆積した後、第1の導電膜及び酸素バリア層をパターニングして、コンタクトプラグ52の上端部と接続する下部電極53Aを形成する。
【0109】
次に、図11(b) に示すように、下部電極53A及び層間絶縁膜51の上に全面に亘って、例えばオゾンTEOS膜よりなる絶縁膜54を堆積した後、該絶縁膜54に対してCMPを行なって、下部電極53Aの表面を露出させると共に下部電極53Aの周囲に絶縁膜54を残存させる。尚、ここでは、下部電極53Aは絶縁膜54に埋め込まれる構造であるが、これに代えて、下部電極53Aが絶縁膜54の上に形成される構造でもよい。
【0110】
次に、図11(c) に示すように、下部電極53A及び絶縁膜54の上に全面に亘って、Ti、Sc、V、Zr、Nb及びLaのうちの少なくとも1つよりなる水素吸蔵元素を含む溶液をスピンコート法により塗布した後、溶媒が揮発する温度程度(150〜300℃)でウェハベークを行なって、水素吸蔵元素含有膜55を形成する。尚、水素吸蔵元素含有膜55は、スピンコート法に代えて、水素吸蔵元素を含有するスパッタターゲットを用いてスパッタリング法により形成してもよいし、水素吸蔵元素を含有するプロセスガスを用いてCVD法により形成してもよい。水素吸蔵元素含有膜55の膜厚としては、容量素子に印加される電圧の低下を防止するために、薄ければ薄いほど良く、5nm以下であってもよい。次に、水素吸蔵元素含有膜55の上に強誘電体溶液をスピンコート法により塗布した後、溶媒が揮発する温度程度(150〜300℃)でウェハベークを行なって強誘電体膜56を形成し、その後、強誘電体膜56に対して、結晶成長の基点となる核を形成するためのRTPを施して仮焼結を行なう。RTPの温度は、強誘電体材料の種類により異なるが、強誘電体膜56がSBTである場合には約650℃である。
【0111】
次に、図11(c) に示すように、強誘電体膜56及び水素吸蔵元素含有膜55をパターニングして、強誘電体膜56よりなる容量絶縁膜56Aを形成すると共にパターニングされた水素吸蔵元素含有膜55Aを形成する。
【0112】
次に、図12(a) に示すように、容量絶縁膜56A及び絶縁膜54の上に全面に亘って白金よりなる第2の導電膜57を形成した後、図12(b) に示すように、第2の導電膜57をパターニングして、上部電極57Aを形成する。
【0113】
次に、容量絶縁膜56Aに対して、酸素雰囲気中での高温の熱処理を施すことにより、容量絶縁膜56Aを構成する強誘電体膜を結晶化させると共に、パターニングされた水素吸蔵元素含有膜55Aに含まれる水素吸蔵元素を強誘電体膜の結晶粒界、格子間位置又は空孔に配置させる。これにより、図12(c) に示すように、結晶化した容量絶縁膜56Bが得られる。高温の熱処理の温度としては、強誘電体膜がSBTよりなる場合には、約650℃〜約800℃の温度範囲である。この場合、容量絶縁膜56Aに対して酸素雰囲気中で熱処理が施されるため、水素吸蔵元素は酸素と結合して安定な状態になる。
【0114】
第7の実施形態によると、容量絶縁膜56Aに熱処理を施して、強誘電体膜を結晶化させると共に水素吸蔵元素含有膜55に含まれている水素吸蔵元素を強誘電体膜の結晶粒界、格子間位置又は空孔に配置させるため、下部電極53A、容量絶縁膜56B及び上部電極57Aの積層体からなる容量素子に対して、水素雰囲気中における熱処理が施されたときに、容量絶縁膜56Bに水素が侵入しても、侵入した水素は水素吸蔵元素に吸蔵されるので、水素による容量絶縁膜56Bの分極特性の劣化を防止することができる。
【0115】
尚、第7の実施形態においては、第2の導電膜57をパターニングして上部電極57Aを形成した後に、パターニングされた強誘電体膜よりなる容量絶縁膜56Aに対して高温の熱処理を施したが、これに代えて、第2の導電膜57をパターニングする前に(図12(a) に示す状態)、パターニングされた強誘電体膜よりなる容量絶縁膜56Aに対して高温の熱処理を施してもよいし、第2の導電膜57を堆積する前に(図11(c) に示す状態)、パターニングされた強誘電体膜よりなる容量絶縁膜56Aに対して高温の熱処理を施してもよいし、強誘電体膜56をパターニングする前に(図11(b) に示す状態)、強誘電体膜56に対して高温の熱処理を施してもよい。
【0116】
また、第7の実施形態により得られる容量素子は、下部電極53Aが容量規定口となる構造であったが、これに代えて、上部電極56Aが容量規定口となる構造であってもよい。
【0117】
(第8の実施形態)
以下、本発明の第8の実施形態に係る容量素子の製造方法について図13(a) 〜(e) を参照しながら説明する。
【0118】
まず、図13(a) に示すように、メモリセルトランジスタ(図示は省略している)が形成されている半導体基板60の上に例えばBPSG膜よりなる層間絶縁膜61を形成した後、該層間絶縁膜61に、タングステン膜又はポリシリコン膜よりなり、下端部がメモリセルトランジスタと接続されるコンタクトプラグ62を形成する。次に、層間絶縁膜61の上に、IrO/Ir/TiAlNの積層体よりなる酸素バリア層を介して、強誘電体膜の結晶成長を促進するPt膜よりなる第1の導電膜を堆積した後、第1の導電膜及び酸素バリア層をパターニングして、コンタクトプラグ62の上端部と接続する下部電極63Aを形成する。
【0119】
次に、図13(b) に示すように、下部電極63A及び層間絶縁膜61の上に全面に亘って、例えばオゾンTEOS膜よりなる絶縁膜64を堆積した後、該絶縁膜64に対してCMPを行なって、下部電極63Aの表面を露出させると共に下部電極63Aの周囲に絶縁膜64を残存させる。尚、ここでは、下部電極63Aは絶縁膜64に埋め込まれる構造であるが、これに代えて、下部電極63Aが絶縁膜64の上に形成される構造でもよい。
【0120】
次に、図13(c) に示すように、下部電極63A及び絶縁膜64の上に強誘電体溶液をスピンコート法により塗布した後、溶媒が揮発する温度程度(150〜300℃)でウェハベークを行なって強誘電体膜65を形成し、その後、強誘電体膜65に対して、結晶成長の基点となる核を形成するためのRTPを施して仮焼結を行なう。RTPの温度は、強誘電体材料の種類により異なるが、強誘電体膜65がSBTである場合には約650℃である。
【0121】
次に、強誘電体膜65の上に全面に亘って、Ti、Sc、V、Zr、Nb及びLaのうちの少なくとも1つよりなる水素吸蔵元素を含む溶液をスピンコート法により塗布した後、溶媒が揮発する温度程度(150〜300℃)でウェハベークを行なって、水素吸蔵元素含有膜66を形成する。尚、水素吸蔵元素含有膜66は、スピンコート法に代えて、水素吸蔵元素を含有するスパッタターゲットを用いてスパッタリング法により形成してもよいし、水素吸蔵元素を含有するプロセスガスを用いてCVD法により形成してもよい。水素吸蔵元素含有膜66の膜厚としては、容量素子に印加される電圧の低下を防止するために、薄ければ薄いほど良く、5nm以下であってもよい。その後、水素吸蔵元素含有膜66の上に白金よりなる第2の導電膜67を堆積する。
【0122】
次に、図13(d) に示すように、第2の導電膜67、水素吸蔵元素含有膜66及び強誘電体膜65をパターニングして、第2の導電膜67よりなる上部電極67A、パターニングされた水素吸蔵元素含有膜66A、及び強誘電体膜65よりなる容量絶縁膜65Aを形成する。
【0123】
次に、容量絶縁膜65Aに対して、酸素雰囲気中での高温の熱処理を施すことにより、容量絶縁膜65Aを構成する強誘電体膜を結晶化させると共に、水素吸蔵元素含有膜66Aに含まれる水素吸蔵元素を強誘電体膜の結晶粒界、格子間位置又は空孔に配置させる。これにより、図13(e) に示すように、結晶化した容量絶縁膜65Bが得られる。高温の熱処理の温度としては、強誘電体膜がSBTよりなる場合には、約650℃〜約800℃の温度範囲である。この場合、容量絶縁膜65Aに対して酸素雰囲気中で熱処理が施されるため、水素吸蔵元素は酸素と結合して安定な状態になる。
【0124】
第8の実施形態によると、容量絶縁膜65Aに熱処理を施して、強誘電体膜を結晶化させると共に水素吸蔵元素含有膜66Aに含まれている水素吸蔵元素を強誘電体膜の結晶粒界、格子間位置又は空孔に配置させるため、下部電極63A、容量絶縁膜65B及び上部電極67Aの積層体からなる容量素子に対して、水素雰囲気中における熱処理が施されたときに、容量絶縁膜65Bに水素が侵入しても、侵入した水素は水素吸蔵元素に吸蔵されるので、水素による容量絶縁膜65Bの分極特性の劣化を防止することができる。
【0125】
尚、第8の実施形態においては、パターニングされた強誘電体膜よりなる容量絶縁膜65Aに対して高温の熱処理を施したが、これに代えて、強誘電体膜65がパターニングされる前に(図13(c) に示す状態)、強誘電体膜65に対して高温の熱処理を施してもよい。この場合、高温の熱処理は、第2の導電膜67を堆積する前であってもよいし、後であってもよい。
【0126】
また、第8の実施形態により得られる容量素子は、下部電極63Aが容量規定口となる構造であったが、これに代えて、上部電極67Aが容量規定口となる構造であってもよい。
【0127】
(第9の実施形態)
以下、本発明の第9の実施形態に係る容量素子の製造方法について図14(a) 〜(c) 及び図15(a) 〜(c) を参照しながら説明する。
【0128】
まず、図14(a) に示すように、メモリセルトランジスタ(図示は省略している)が形成されている半導体基板70の上に例えばBPSG膜よりなる層間絶縁膜71を形成した後、該層間絶縁膜71に、タングステン膜又はポリシリコン膜よりなり、下端部がメモリセルトランジスタと接続されるコンタクトプラグ72を形成する。次に、層間絶縁膜71の上に、IrO/Ir/TiAlNの積層体よりなる酸素バリア層を介して、強誘電体膜の結晶成長を促進するPt膜よりなる第1の導電膜を堆積した後、第1の導電膜及び酸素バリア層をパターニングして、コンタクトプラグ72の上端部と接続する下部電極73Aを形成する。次に、下部電極73A及び層間絶縁膜71の上に全面に亘って、例えばオゾンTEOS膜よりなる絶縁膜74を堆積した後、該絶縁膜74に対してCMPを行なって、下部電極73Aの表面を露出させると共に下部電極73Aの周囲に絶縁膜74を残存させる。尚、ここでは、下部電極73Aは絶縁膜74に埋め込まれる構造であるが、これに代えて、下部電極73Aが絶縁膜74の上に形成される構造でもよい。
【0129】
次に、図14(b) に示すように、下部電極73A及び絶縁膜74の上に強誘電体溶液をスピンコート法により塗布した後、溶媒が揮発する温度程度(150〜300℃)でウェハベークを行なって強誘電体膜75を形成し、その後、強誘電体膜75に対して、結晶成長の基点となる核を形成するためのRTPを施して仮焼結を行なう。RTPの温度は、強誘電体材料の種類により異なるが、強誘電体膜75がSBTである場合には約650℃である。
【0130】
次に、強誘電体膜75の上に全面に亘って、Ti、Sc、V、Zr、Nb及びLaのうちの少なくとも1つよりなる水素吸蔵元素を含む溶液をスピンコート法により塗布した後、溶媒が揮発する温度程度(150〜300℃)でウェハベークを行なって、水素吸蔵元素含有膜76を形成する。尚、水素吸蔵元素含有膜76は、スピンコート法に代えて、水素吸蔵元素を含有するスパッタターゲットを用いてスパッタリング法により形成してもよいし、水素吸蔵元素を含有するプロセスガスを用いてCVD法により形成してもよい。水素吸蔵元素含有膜76の膜厚としては、容量素子に印加される電圧の低下を防止するために、薄ければ薄いほど良く、5nm以下であってもよい。
【0131】
次に、図14(c) に示すように、水素吸蔵元素含有膜76及び強誘電体膜75をパターニングして、パターニングされた水素吸蔵元素含有膜76A、及び強誘電体膜75よりなる容量絶縁膜75Aを形成する。
【0132】
次に、図15(a) に示すように、パターニングされた水素吸蔵元素含有膜76A及び絶縁膜74の上に全面に亘って白金よりなる第2の導電膜77を堆積した後、図15(b) に示すように、第2の導電膜77をパターニングして上部電極77Aを形成する。
【0133】
次に、容量絶縁膜75Aに対して、酸素雰囲気中での高温の熱処理を施すことにより、容量絶縁膜75Aを構成する強誘電体膜を結晶化させると共に、水素吸蔵元素含有膜76Aに含まれる水素吸蔵元素を強誘電体膜の結晶粒界、格子間位置又は空孔に配置させる。これにより、図15(e) に示すように、結晶化した容量絶縁膜75Bが得られる。高温の熱処理の温度としては、強誘電体膜がSBTよりなる場合には、約650℃〜約800℃の温度範囲である。この場合、容量絶縁膜75Aに対して酸素雰囲気中で熱処理が施されるため、水素吸蔵元素は酸素と結合して安定な状態になる。
【0134】
第9の実施形態によると、容量絶縁膜75Aに熱処理を施して、強誘電体膜を結晶化させると共に水素吸蔵元素含有膜76Aに含まれている水素吸蔵元素を強誘電体膜の結晶粒界、格子間位置又は空孔に配置させるため、下部電極73A、容量絶縁膜75B及び上部電極77Aの積層体からなる容量素子に対して、水素雰囲気中における熱処理が施されたときに、容量絶縁膜75Bに水素が侵入しても、侵入した水素は水素吸蔵元素に吸蔵されるので、水素による容量絶縁膜75Bの分極特性の劣化を防止することができる。
【0135】
尚、第9の実施形態においては、第2の導電膜77をパターニングして上部電極77Aを形成した後に、パターニングされた強誘電体膜よりなる容量絶縁膜75Aに対して高温の熱処理を施したが、これに代えて、第2の導電膜77をパターニングする前に(図15(a) に示す状態)、パターニングされた強誘電体膜よりなる容量絶縁膜75Aに対して高温の熱処理を施してもよいし、第2の導電膜77を堆積する前に(図14(c) に示す状態)、パターニングされた強誘電体膜よりなる容量絶縁膜75Aに対して高温の熱処理を施してもよいし、強誘電体膜75がパターニングされる前に(図14(b) に示す状態)、強誘電体膜75に対して高温の熱処理を施してもよい。
【0136】
また、第9の実施形態により得られる容量素子は、下部電極73Aが容量規定口となる構造であったが、これに代えて、上部電極77Aが容量規定口となる構造であってもよい。
【0137】
(第10の実施形態)
以下、本発明の第10の実施形態に係る容量素子の製造方法について図16(a) 〜(c) 及び図17(a) 〜(c) を参照しながら説明する。
【0138】
まず、図16(a) に示すように、メモリセルトランジスタ(図示は省略している)が形成されている半導体基板80の上に例えばBPSG膜よりなる層間絶縁膜81を形成した後、該層間絶縁膜81に、タングステン膜又はポリシリコン膜よりなり、下端部がメモリセルトランジスタと接続されるコンタクトプラグ82を形成する。次に、層間絶縁膜81の上に、IrO/Ir/TiAlNの積層体よりなる酸素バリア層を介して、強誘電体膜の結晶成長を促進するPt膜よりなる第1の導電膜を堆積した後、第1の導電膜及び酸素バリア層をパターニングして、コンタクトプラグ82の上端部と接続する下部電極83Aを形成する。
【0139】
次に、図16(b) に示すように、下部電極83A及び層間絶縁膜81の上に全面に亘って、例えばオゾンTEOS膜よりなる絶縁膜84を堆積した後、該絶縁膜84に対してCMPを行なって、下部電極83Aの表面を露出させると共に下部電極83Aの周囲に絶縁膜84を残存させる。尚、ここでは、下部電極83Aは絶縁膜84に埋め込まれる構造であるが、これに代えて、下部電極83Aが絶縁膜84の上に形成される構造でもよい。
【0140】
次に、図16(c) に示すように、下部電極83A及び絶縁膜84の上に強誘電体溶液をスピンコート法により塗布した後、溶媒が揮発する温度程度(150〜300℃)でウェハベークを行なって強誘電体膜85を形成し、その後、強誘電体膜85に対して、結晶成長の基点となる核を形成するためのRTPを施して仮焼結を行なう。RTPの温度は、強誘電体材料の種類により異なるが、強誘電体膜85がSBTである場合には約650℃である。次に、強誘電体膜85の上に白金よりなる第2の導電膜86を堆積する。
【0141】
次に、図17(a) に示すように、第2の導電膜86及び強誘電体膜85をパターニングして、第2の導電膜86よりなる上部電極86Aを形成すると共に強誘電体膜85よりなる容量絶縁膜85Aを形成する。
【0142】
次に、上部電極86A及び絶縁膜84の上に全面に亘って、Ti、Sc、V、Zr、Nb及びLaのうちの少なくとも1つよりなる水素吸蔵元素を含む溶液をスピンコート法により塗布した後、溶媒が揮発する温度程度(150〜300℃)でウェハベークを行なって、水素吸蔵元素含有膜87を形成する。尚、水素吸蔵元素含有膜87は、スピンコート法に代えて、水素吸蔵元素を含有するスパッタターゲットを用いてスパッタリング法により形成してもよいし、水素吸蔵元素を含有するプロセスガスを用いてCVD法により形成してもよい。水素吸蔵元素含有膜87の膜厚としては、第3〜第9の実施形態と異なり、特に制約はない。
【0143】
次に、容量絶縁膜85Aに対して、酸素雰囲気中での高温の熱処理を施すことにより、容量絶縁膜85Aを構成する強誘電体膜を結晶化させると共に、水素吸蔵元素含有膜87に含まれる水素吸蔵元素を強誘電体膜の結晶粒界、格子間位置又は空孔に配置させる。これにより、図17(c) に示すように、結晶化した容量絶縁膜85Bが得られる。高温の熱処理の温度としては、強誘電体膜がSBTよりなる場合には、約650℃〜約800℃の温度範囲である。この場合、容量絶縁膜85Aに対して酸素雰囲気中で熱処理が施されるため、水素吸蔵元素は酸素と結合して安定な状態になる。
【0144】
第10の実施形態によると、容量絶縁膜85Aに熱処理を施して、強誘電体膜を結晶化させると共に水素吸蔵元素含有膜87に含まれている水素吸蔵元素を強誘電体膜の結晶粒界、格子間位置又は空孔に配置させるため、下部電極83A、容量絶縁膜85B及び上部電極86Aの積層体からなる容量素子に対して、水素雰囲気中における熱処理が施されたときに、容量絶縁膜85Bに水素が侵入しても、侵入した水素は水素吸蔵元素に吸蔵されるので、水素による容量絶縁膜85Bの分極特性の劣化を防止することができる。
【0145】
尚、第10の実施形態により得られる容量素子は、下部電極83Aが容量規定口となる構造であったが、これに代えて、上部電極86Aが容量規定口となる構造であってもよい。
【0146】
また、第1〜第10の実施形態においては、容量絶縁膜は、SBT(SrBiTaO)であったが、これに代えて、PZT(PbZrTiO)、BLT(BiLaTiO)又はBST(BaSrTiO)を用いてもよいし、高誘電体膜であってもよい。
【0147】
【発明の効果】
本発明に係る容量素子及びその製造方法によると、下部電極と、強誘電体膜又は高誘電体膜よりなる容量絶縁膜と、上部電極との積層体からなる容量素子に対して、水素雰囲気中における熱処理が施されて、容量絶縁膜に水素が侵入すると、侵入した水素は水素吸蔵元素に吸蔵されるため、水素による容量絶縁膜の分極特性の劣化を防止することができる。
【図面の簡単な説明】
【図1】第1の実施形態に係る容量素子の断面図である。
【図2】第1の実施形態に係る容量素子に対して、水素濃度が0.01%である水素雰囲気中において熱処理を行なったときの分極特性を示す図である。
【図3】第2の実施形態に係る容量素子の断面図である。
【図4】 (a) 〜(d) は第3の実施形態に係る容量素子の製造方法を示す図である。
【図5】 (a) 〜(c) は第3の実施形態に係る容量素子の製造方法を示す図である。
【図6】 (a) 〜(d) は第4の実施形態に係る容量素子の製造方法を示す図である。
【図7】 (a) 〜(c) は第4の実施形態に係る容量素子の製造方法を示す図である。
【図8】 (a) 〜(c) は第5の実施形態に係る容量素子の製造方法を示す図である。
【図9】 (a) 〜(c) は第5の実施形態に係る容量素子の製造方法を示す図である。
【図10】 (a) 〜(e) は第6の実施形態に係る容量素子の製造方法を示す図である。
【図11】 (a) 〜(c) は第7の実施形態に係る容量素子の製造方法を示す図である。
【図12】 (a) 〜(c) は第7の実施形態に係る容量素子の製造方法を示す図である。
【図13】 (a) 〜(e) は第8の実施形態に係る容量素子の製造方法を示す図である。
【図14】 (a) 〜(c) は第9の実施形態に係る容量素子の製造方法を示す図である。
【図15】 (a) 〜(c) は第9の実施形態に係る容量素子の製造方法を示す図である。
【図16】 (a) 〜(c) は第10の実施形態に係る容量素子の製造方法を示す図である。
【図17】 (a) 〜(c) は第10の実施形態に係る容量素子の製造方法を示す図である。
【図18】Ptよりなる下部電極、SBTよりなる容量絶縁膜及びPtよりなる上部電極を有する強誘電体キャパシタに対して、水素雰囲気中における400℃の熱処理を施したときの分極量の劣化の度合いを示す図である。
【図19】従来の強誘電体キャパシタの断面図である。
【図20】周囲が水素バリア膜で覆われた強誘電体キャパシタに対して水素雰囲気中での熱処理を行なう前及び後における強誘電体キャパシタの特性を示す図である。
【符号の説明】
10 半導体基板
11 層間絶縁膜
12 コンタクトプラグ
13A 下部電極
14 絶縁膜
15 強誘電体膜
15A 容量絶縁膜
16B 結晶化した容量絶縁膜
16 第2の導電膜
16A 上部電極
17 水素バリア膜
20 半導体基板
21 層間絶縁膜
22 第1の水素バリア膜
23 コンタクトプラグ
24A 下部電極
25 絶縁膜
26 強誘電体膜
26A 容量絶縁膜
26B 結晶化した容量絶縁膜
27 第2の導電膜
27A 上部電極
28 第2の水素バリア膜
30 半導体基板
31 層間絶縁膜
32 コンタクトプラグ
33A 下部電極
34 絶縁膜
35 強誘電体膜
35A 容量絶縁膜
35B 結晶化した容量絶縁膜
36 第2の導電膜
36A 上部電極
40 半導体基板
41 層間絶縁膜
42 コンタクトプラグ
43A 下部電極
44 絶縁膜
45 水素吸蔵元素含有膜
46 強誘電体膜
46A 容量絶縁膜
46B 結晶化した容量絶縁膜
47 第2の導電膜
47A 上部電極
50 半導体基板
51 層間絶縁膜
52 コンタクトプラグ
53A 下部電極
54 絶縁膜
55 水素吸蔵元素含有膜
56 強誘電体膜
56A 容量絶縁膜
56B 結晶化した容量絶縁膜
57 第2の導電膜
57A 上部電極
60 半導体基板
61 層間絶縁膜
62 コンタクトプラグ
63A 下部電極
64 絶縁膜
65 強誘電体膜
65A 容量絶縁膜
65B 結晶化した容量絶縁膜
66 水素吸蔵元素含有膜
67 第2の導電膜
67A 上部電極
70 半導体基板
71 層間絶縁膜
72 コンタクトプラグ
73A 下部電極
74 絶縁膜
75 強誘電体膜
75A 容量絶縁膜
75B 結晶化した容量絶縁膜
76 水素吸蔵元素含有膜
76A パターニングされた水素吸蔵元素含有膜
77 第2の導電膜
77A 上部電極
100 半導体基板
101 層間絶縁膜
102 下部電極
103 容量絶縁膜
104 上部電極
106 コンタクトプラグ
110 半導体基板
111 第1の層間絶縁膜
112 第1の水素バリア膜
113 下部電極
114 容量絶縁膜
115 上部電極
116 第2の水素バリア膜
117 第2の層間絶縁膜
118 バリア膜
119 金属配線
121 第1のコンタクトプラグ
122 第2のコンタクトプラグ

Claims (12)

  1. 半導体基板上に、下部電極と、前記下部電極の上に形成された、水素を吸蔵する元素を含む水素吸蔵元素層と、前記水素吸蔵元素層の上に形成された強誘電体膜又は高誘電体膜よりなる容量絶縁膜と、前記容量絶縁膜の上に形成された上部電極とからなる積層体を形成する工程(a)と、
    前記容量絶縁膜に熱処理を施して、前記強誘電体膜又は高誘電体膜を結晶化させると共に前記水素吸蔵元素層に含まれている水素を吸蔵する元素を前記強誘電体膜又は高誘電体膜の結晶粒界又は格子間位置に配置させる工程(b)とを備え、
    前記工程(b)は、RTPによる仮焼結処理を含むことを特徴とする容量素子の製造方法。
  2. 半導体基板上に、下部電極又は下部電極となる第1の導電膜を形成した後、前記下部電極又は第1の導電膜の上に、水素を吸蔵する元素を含む水素吸蔵元素層を堆積する工程(a)と、
    前記水素吸蔵元素層の上に強誘電体膜又は高誘電体膜を堆積する工程(b)と、
    前記強誘電体膜又は高誘電体膜に熱処理を施して、前記強誘電体膜又は高誘電体膜を結晶化させると共に前記水素吸蔵元素層に含まれる水素を吸蔵する元素を前記強誘電体膜又は高誘電体膜の結晶粒界又は格子間位置に配置させる工程(c)と、
    結晶化している前記強誘電体膜又は高誘電体膜の上に第2の導電膜を堆積する工程(d)と、
    前記第2の導電膜をパターニングして上部電極を形成する工程(e)と、
    結晶化した前記強誘電体膜又は高誘電体膜をパターニングして容量絶縁膜を形成する工程(f)とを備え、
    前記工程(c)は、RTPによる仮焼結処理を含むことを特徴とする容量素子の製造方法。
  3. 半導体基板上に、下部電極又は下部電極となる第1の導電膜を形成した後、前記下部電極又は第1の導電膜の上に、水素を吸蔵する元素を含む水素吸蔵元素層を堆積する工程(a)と、
    前記水素吸蔵元素層の上に強誘電体膜又は高誘電体膜を堆積する工程(b)と、
    前記強誘電体膜又は高誘電体膜の上に第2の導電膜を堆積する工程(c)と、
    前記強誘電体膜又は高誘電体膜に熱処理を施して、前記強誘電体膜又は高誘電体膜を結晶化させると共に前記水素吸蔵元素層に含まれている水素を吸蔵する元素を前記強誘電体膜又は高誘電体膜の結晶粒界又は格子間位置に配置させる工程(d)と、
    前記第2の導電膜をパターニングして上部電極を形成する工程(e)と、
    結晶化している前記強誘電体膜又は高誘電体膜をパターニングして容量絶縁膜を形成する工程(f)とを備え、
    前記工程(d)は、RTPによる仮焼結処理を含むことを特徴とする容量素子の製造方法。
  4. 半導体基板上に、下部電極又は下部電極となる第1の導電膜を形成した後、前記下部電極又は第1の導電膜の上に、水素を吸蔵する元素を含む水素吸蔵元素層を堆積する工程(a)と、
    前記水素吸蔵元素層の上に強誘電体膜又は高誘電体膜を堆積する工程(b)と、
    前記強誘電体膜又は高誘電体膜に熱処理を施して、前記強誘電体膜又は高誘電体膜を結晶化させると共に前記水素吸蔵元素層に含まれる水素を吸蔵する元素を前記強誘電体膜又は高誘電体膜の結晶粒界又は格子間位置に配置させる工程(c)と、
    結晶化している前記強誘電体膜又は高誘電体膜をパターニングして容量絶縁膜を形成する工程(d)と、
    前記容量絶縁膜の上に第2の導電膜を堆積する工程(e)と、
    前記第2の導電膜をパターニングして上部電極を形成する工程(f)とを備え、
    前記工程(c)は、RTPによる仮焼結処理を含むことを特徴とする容量素子の製造方法。
  5. 半導体基板上に、下部電極又は下部電極となる第1の導電膜を形成した後、前記下部電極又は第1の導電膜の上に、水素を吸蔵する元素を含む水素吸蔵元素層を堆積する工程(a)と、
    前記水素吸蔵元素層の上に強誘電体膜又は高誘電体膜を堆積する工程(b)と、
    前記強誘電体膜又は高誘電体膜をパターニングして容量絶縁膜を形成する工程(c)と、
    前記容量絶縁膜に熱処理を施して、前記強誘電体膜又は高誘電体膜を結晶化させると共に前記水素吸蔵元素層に含まれる水素を吸蔵する元素を前記強誘電体膜又は高誘電体膜の結晶粒界又は格子間位置に配置させる工程(d)と、
    前記強誘電体膜又は高誘電体膜が結晶化している前記容量絶縁膜の上に第2 の導電膜を堆積する工程(e)と、
    前記第2の導電膜をパターニングして上部電極を形成する工程(f)とを備え、
    前記工程(d)は、RTPによる仮焼結処理を含むことを特徴とする容量素子の製造方法。
  6. 半導体基板上に、下部電極と、前記下部電極の上に形成された強誘電体膜又は高誘電体膜よりなる容量絶縁膜と、前記容量絶縁膜の上に形成された、水素を吸蔵する元素を含む水素吸蔵元素層と、前記水素吸蔵元素層の上に形成された上部電極とからなる積層体を形成する工程(a)と、
    前記容量絶縁膜に熱処理を施して、前記強誘電体膜又は高誘電体膜を結晶化させると共に前記水素吸蔵元素層に含まれている水素を吸蔵する元素を前記強誘電体膜又は高誘電体膜の結晶粒界又は格子間位置に配置させる工程(b)とを備え、
    前記工程(b)は、RTPによる仮焼結処理を含むことを特徴とする容量素子の製造方法。
  7. 半導体基板上に、下部電極又は下部電極となる第1の導電膜を形成した後、前記下部電極又は第1の導電膜の上に強誘電体膜又は高誘電体膜を堆積する工程(a)と、
    前記強誘電体膜又は高誘電体膜の上に、水素を吸蔵する元素を含む水素吸蔵元素層を堆積する工程(b)と、
    前記強誘電体膜又は高誘電体膜に熱処理を施して、前記強誘電体膜又は高誘電体膜を結晶化させると共に前記水素吸蔵元素層に含まれる水素を吸蔵する元素を前記強誘電体膜又は高誘電体膜の結晶粒界又は格子間位置に配置させる工程(c)と、
    結晶化している前記強誘電体膜又は高誘電体膜の上に第2の導電膜を堆積する工程(d)と、
    前記第2の導電膜をパターニングして上部電極を形成する工程(e)と、
    結晶化した前記強誘電体膜又は高誘電体膜をパターニングして容量絶縁膜を形成する工程(f)とを備え、
    前記工程(c)は、RTPによる仮焼結処理を含むことを特徴とする容量素子の製造方法。
  8. 半導体基板上に、下部電極又は下部電極となる第1の導電膜を形成した後、前記下部電極又は第1の導電膜の上に強誘電体膜又は高誘電体膜を堆積する工程(a)と、
    前記強誘電体膜又は高誘電体膜の上に、水素を吸蔵する元素を含む水素吸蔵元素層を堆積する工程(b)と、
    前記水素吸蔵元素層の上に第2の導電膜を堆積する工程(c)と、
    前記強誘電体膜又は高誘電体膜に熱処理を施して、前記強誘電体膜又は高誘電体膜を結晶化させると共に前記水素吸蔵元素層に含まれている水素を吸蔵する元素を前記強誘電体膜又は高誘電体膜の結晶粒界又は格子間位置に配置させる工程(d)と、
    前記第2の導電膜をパターニングして上部電極を形成する工程(e)と、
    結晶化している前記強誘電体膜又は高誘電体膜をパターニングして容量絶縁膜を形成する工程(f)とを備え、
    前記工程(d)は、RTPによる仮焼結処理を含むことを特徴とする容量素子の製造方法。
  9. 半導体基板上に、下部電極又は下部電極となる第1の導電膜を形成した後、前記下部電極又は第1の導電膜の上に強誘電体膜又は高誘電体膜を堆積する工程(a)と、
    前記強誘電体膜又は高誘電体膜の上に、水素を吸蔵する元素を含む水素吸蔵元素層を堆積する工程(b)と、
    前記強誘電体膜又は高誘電体膜に熱処理を施して、前記強誘電体膜又は高誘電体膜を結晶化させると共に前記水素吸蔵元素層に含まれる水素を吸蔵する元素を前記強誘電体膜又は高誘電体膜の結晶粒界又は格子間位置に配置させる工程(c)と、
    結晶化している前記強誘電体膜又は高誘電体膜をパターニングして容量絶縁膜を形成する工程(d)と、
    前記容量絶縁膜の上に第2の導電膜を堆積する工程(e)と、
    前記第2の導電膜をパターニングして上部電極を形成する工程(f)とを備え、
    前記工程(c)は、RTPによる仮焼結処理を含むことを特徴とする容量素子の製造方法。
  10. 半導体基板上に、下部電極又は下部電極となる第1の導電膜を形成した後、前記下部電極又は第1の導電膜の上に強誘電体膜又は高誘電体膜を堆積する工程(a)と、
    前記強誘電体膜又は高誘電体膜の上に、水素を吸蔵する元素を含む水素吸蔵元素層を堆積する工程(b)と、
    前記強誘電体膜又は高誘電体膜をパターニングして容量絶縁膜を形成する工程(c)と、
    前記容量絶縁膜に熱処理を施して、前記強誘電体膜又は高誘電体膜を結晶化させると共に前記水素吸蔵元素層に含まれる水素を吸蔵する元素を前記強誘電体膜又は高誘電体膜の結晶粒界又は格子間位置に配置させる工程(d)と、
    前記強誘電体膜又は高誘電体膜が結晶化している前記容量絶縁膜の上に第2の導電膜を堆積する工程(e)と、
    前記第2の導電膜をパターニングして上部電極を形成する工程(f)とを備え、
    前記工程(d)は、RTPによる仮焼結処理を含むことを特徴とする容量素子の製造方法。
  11. 半導体基板上に、下部電極と、前記下部電極の上に形成された強誘電体膜又は高誘電体膜よりなる容量絶縁膜と、前記容量絶縁膜の上に形成された上部電極とからなる積層体を形成する工程(a)と、
    前記積層体を覆うように、水素を吸蔵する元素を含む水素吸蔵元素層を堆積する工程(b)と、
    前記容量絶縁膜に熱処理を施して、前記強誘電体膜又は高誘電体膜を結晶化させると共に前記水素吸蔵元素層に含まれている水素を吸蔵する元素を前記強誘電体膜又は高誘電体膜の結晶粒界又は格子間位置に配置させる工程(c)とを備え、
    前記工程(c)は、RTPによる仮焼結処理を含むことを特徴とする容量素子の製造方法。
  12. 前記下部電極、前記容量絶縁膜及び前記上部電極よりなる積層体の少なくとも一部を覆う水素バリア層を形成する工程をさらに備えていることを特徴とする請求項1〜11のいずれか1項に記載の容量素子の製造方法。
JP2002198125A 2002-07-08 2002-07-08 容量素子の製造方法 Expired - Fee Related JP4308485B2 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2002198125A JP4308485B2 (ja) 2002-07-08 2002-07-08 容量素子の製造方法
CNA031362915A CN1469477A (zh) 2002-07-08 2003-05-20 容量元件及其制造方法
EP03013062A EP1381077A3 (en) 2002-07-08 2003-06-10 Capacitor and method for fabricating the same
TW092115672A TWI226710B (en) 2002-07-08 2003-06-10 Capacitor and method for fabricating the same
US10/607,313 US6891715B2 (en) 2002-07-08 2003-06-27 Capacitor and method for fabricating the same
KR1020030042349A KR20040005597A (ko) 2002-07-08 2003-06-27 용량소자 및 그 제조방법
US11/117,328 US7413949B2 (en) 2002-07-08 2005-04-29 Capacitor and method for fabricating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002198125A JP4308485B2 (ja) 2002-07-08 2002-07-08 容量素子の製造方法

Publications (2)

Publication Number Publication Date
JP2004040005A JP2004040005A (ja) 2004-02-05
JP4308485B2 true JP4308485B2 (ja) 2009-08-05

Family

ID=29728409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002198125A Expired - Fee Related JP4308485B2 (ja) 2002-07-08 2002-07-08 容量素子の製造方法

Country Status (6)

Country Link
US (2) US6891715B2 (ja)
EP (1) EP1381077A3 (ja)
JP (1) JP4308485B2 (ja)
KR (1) KR20040005597A (ja)
CN (1) CN1469477A (ja)
TW (1) TWI226710B (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2799472B1 (fr) * 1999-10-07 2004-07-16 Aventis Pharma Sa Preparation d'adenovirus recombinants et de banques adenovirales
KR100552701B1 (ko) * 2003-11-24 2006-02-20 삼성전자주식회사 전하-쌍극자가 결합된 정보 저장 매체 및 그 제조 방법
JP4653426B2 (ja) 2004-06-25 2011-03-16 セイコーエプソン株式会社 半導体装置
JP4649899B2 (ja) * 2004-07-13 2011-03-16 パナソニック株式会社 半導体記憶装置およびその製造方法
WO2006008789A1 (ja) * 2004-07-15 2006-01-26 Fujitsu Limited 容量素子とその製造方法、及び半導体装置
JP4042730B2 (ja) * 2004-09-02 2008-02-06 セイコーエプソン株式会社 強誘電体メモリおよびその製造方法
JP2006339498A (ja) * 2005-06-03 2006-12-14 Matsushita Electric Ind Co Ltd 立体構造を有する容量素子
JP2007067066A (ja) * 2005-08-30 2007-03-15 Toshiba Corp 半導体装置とその製造方法
US8093698B2 (en) * 2006-12-05 2012-01-10 Spansion Llc Gettering/stop layer for prevention of reduction of insulating oxide in metal-insulator-metal device
US7592273B2 (en) * 2007-04-19 2009-09-22 Freescale Semiconductor, Inc. Semiconductor device with hydrogen barrier and method therefor
JP2009130207A (ja) * 2007-11-26 2009-06-11 Nec Electronics Corp 半導体装置および半導体装置の製造方法
JP2008153697A (ja) * 2008-03-07 2008-07-03 Seiko Epson Corp 半導体装置
US7829923B2 (en) * 2008-10-23 2010-11-09 Qualcomm Incorporated Magnetic tunnel junction and method of fabrication
JP4968747B2 (ja) * 2009-02-03 2012-07-04 シャープ株式会社 Iii−v族化合物半導体素子
JP5899615B2 (ja) * 2010-03-18 2016-04-06 株式会社リコー 絶縁膜の製造方法及び半導体装置の製造方法
TWI569416B (zh) * 2015-11-26 2017-02-01 華邦電子股份有限公司 電阻式隨機存取記憶體及其製造方法
CN110473961B (zh) * 2018-05-10 2023-04-14 华邦电子股份有限公司 电阻式随机存取存储器结构及其制造方法
CN112382633A (zh) * 2020-11-11 2021-02-19 无锡拍字节科技有限公司 三维铁电存储器及其制造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0855967A (ja) * 1994-07-29 1996-02-27 Texas Instr Inc <Ti> 強誘電体薄膜キャパシタの製造方法
JPH118355A (ja) 1997-06-16 1999-01-12 Nec Corp 強誘電体メモリ
US5923970A (en) * 1997-11-20 1999-07-13 Advanced Technology Materials, Inc. Method of fabricating a ferrolelectric capacitor with a graded barrier layer structure
KR100436056B1 (ko) * 1997-12-30 2004-12-17 주식회사 하이닉스반도체 강유전체 커패시터의 확산장벽막 형성방법
US6225156B1 (en) * 1998-04-17 2001-05-01 Symetrix Corporation Ferroelectric integrated circuit having low sensitivity to hydrogen exposure and method for fabricating same
TW437010B (en) * 1998-09-08 2001-05-28 Siemens Ag A layer-arrangement with a material-layer and a diffusion-barrier against diffusable material-components
US6225656B1 (en) * 1998-12-01 2001-05-01 Symetrix Corporation Ferroelectric integrated circuit with protective layer incorporating oxygen and method for fabricating same
US6066868A (en) * 1999-03-31 2000-05-23 Radiant Technologies, Inc. Ferroelectric based memory devices utilizing hydrogen barriers and getters
JP2001267519A (ja) 2000-03-17 2001-09-28 Fujitsu Ltd 強誘電体装置の製造方法及び強誘電体装置
KR100372644B1 (ko) * 2000-06-30 2003-02-17 주식회사 하이닉스반도체 비 휘발성 반도체 메모리 소자의 캐패시터 제조방법
IT1318279B1 (it) * 2000-07-28 2003-07-28 Getters Spa Dispositivo capacitivo integrato con strato dielettrico degradabiledall'idrogeno protetto da strato getter.

Also Published As

Publication number Publication date
US20040004793A1 (en) 2004-01-08
EP1381077A3 (en) 2008-12-03
KR20040005597A (ko) 2004-01-16
TW200402150A (en) 2004-02-01
CN1469477A (zh) 2004-01-21
TWI226710B (en) 2005-01-11
JP2004040005A (ja) 2004-02-05
US20050199928A1 (en) 2005-09-15
US7413949B2 (en) 2008-08-19
EP1381077A2 (en) 2004-01-14
US6891715B2 (en) 2005-05-10

Similar Documents

Publication Publication Date Title
JP4308485B2 (ja) 容量素子の製造方法
JP3452763B2 (ja) 半導体記憶装置および半導体記憶装置の製造方法
US5965942A (en) Semiconductor memory device with amorphous diffusion barrier between capacitor and plug
US6603169B2 (en) Ferroelectric capacitors for integrated circuit memory devices and methods of manufacturing same
KR100395766B1 (ko) 강유전체 기억 소자 및 그 형성 방법
JP4024397B2 (ja) 強誘電体メモリ装置及びその製造方法
JP3940176B2 (ja) 半導体記憶装置
JP4160638B2 (ja) 半導体装置
US6699725B2 (en) Methods of fabricating ferroelectric memory devices having a ferroelectric planarization layer
KR19990030200A (ko) 커패시터와 mos 트랜지스터를 갖는 반도체 기억소자
JPH09293869A (ja) 半導体装置およびその製造方法
JP3931113B2 (ja) 半導体装置及びその製造方法
KR100972212B1 (ko) 반도체 장치 및 그 제조 방법
US7038264B2 (en) Semiconductor device and method for manufacturing the same
JP4421814B2 (ja) 容量素子の製造方法
JP4375561B2 (ja) 半導体記憶装置及びその製造方法
JP2004207681A (ja) 半導体装置及びその製造方法
US20030057464A1 (en) Ferroelectric memory device and method of fabricating the same
JP2002289809A (ja) 半導体装置およびその製造方法
JP2003282827A (ja) 強誘電体薄膜メモリ
KR100585092B1 (ko) 측벽에 산화알루미늄 스페이서를 갖는 반도체 소자의커패시터 및 그 형성방법
JP2003133525A (ja) 半導体メモリ素子及びその製造方法
JP2004022553A (ja) 強誘電体メモリ装置の製造方法および強誘電体メモリ装置
JP2003163328A (ja) 半導体装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090407

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090501

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees