JP4158012B2 - Luminescent color conversion member - Google Patents

Luminescent color conversion member Download PDF

Info

Publication number
JP4158012B2
JP4158012B2 JP2002060191A JP2002060191A JP4158012B2 JP 4158012 B2 JP4158012 B2 JP 4158012B2 JP 2002060191 A JP2002060191 A JP 2002060191A JP 2002060191 A JP2002060191 A JP 2002060191A JP 4158012 B2 JP4158012 B2 JP 4158012B2
Authority
JP
Japan
Prior art keywords
color conversion
conversion member
glass
blue light
luminescent color
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002060191A
Other languages
Japanese (ja)
Other versions
JP2003258308A (en
Inventor
和義 新藤
元 日方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2002060191A priority Critical patent/JP4158012B2/en
Publication of JP2003258308A publication Critical patent/JP2003258308A/en
Application granted granted Critical
Publication of JP4158012B2 publication Critical patent/JP4158012B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C14/00Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix
    • C03C14/006Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix the non-glass component being in the form of microcrystallites, e.g. of optically or electrically active material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7774Aluminates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2214/00Nature of the non-vitreous component
    • C03C2214/16Microcrystallites, e.g. of optically or electrically active material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Led Device Packages (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、青色光源、特に青色発光ダイオード(LED)素子からの青色光を白色に転換するための発光色変換部材に関するものである。
【0002】
【従来の技術】
白色LEDは、近年、高効率、高信頼性の白色照明光源として注目され、一部が微小電力小型光源として既に使用に供されている。この種のLEDは、青色LED素子を、黄色蛍光体と透明樹脂との混合物で被覆モールドしたものが一般的である。
【0003】
【発明が解決しようとする課題】
しかしながら、青色光はエネルギーが強いので樹脂を劣化させやすい。それゆえ、このような構造の白色LEDは、長期間使用していると樹脂が変色して色調が変化する。また最近では、高出力LED素子を使用して白色照明光源を開発する動きがあるが、この場合限られた部分に極めて強い青色光が照射されるので樹脂の劣化が著しく、発光色の変化が極めて短期間に起こる。また樹脂モールドされた素子からの熱放散性が悪いため、温度が上昇しやすく、温度上昇に伴って発光色の色調が黄色側へシフトするという問題がある。
【0004】
本発明は上記事情に鑑みなされたもので、青色LED素子、特に高出力の青色LED素子を使用しても、高信頼性、長寿命の白色照明光源を得ることが可能な発光色変換部材を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明の発光色変換部材は、青色光源から発せられる青色光の一部を黄色光に変換し、残部の青色光と合成して白色光を得るための発光色変換部材であって、軟化点が500℃より高いガラス中に無機蛍光体が分散してなるものであり、かつ最大粒子径Dmaxが150μm以下、かつ平均粒子径D 50 が2μm以上であるガラス粉末と無機蛍光体粉末の混合粉末の焼結体であることを特徴とする。
【0006】
また本発明の発光色変換部材用材料は、青色光源から発せられる青色光の一部を黄色光に変換し、残部の青色光と合成して白色光を得るための発光色変換部材用材料であって、軟化点が500℃より高く、最大粒子径Dmaxが150μm以下、かつ平均粒子径D 50 が2μm以上であるガラス粉末と無機蛍光体粉末との混合物からなることを特徴とする。
【0007】
また本発明の白色照明光源は、青色光源と発光色変換部材とを有し、青色光源から発せられる青色光の一部を黄色光に変換し、残部の青色光と合成して白色光を得る白色照明光源であって、軟化点が500℃より高いガラス中に無機蛍光体が分散してなり、かつ最大粒子径Dmaxが150μm以下、かつ平均粒子径D 50 が2μm以上であるガラス粉末と無機蛍光体粉末の混合粉末の焼結体である発光色変換部材を使用することを特徴とする。
【0008】
【作用】
本発明の発光色変換部材は、ガラス中に無機蛍光体が分散した構成を有している。より具体的にはガラス粉末と無機蛍光体粉末との焼結体からなる。
【0009】
無機蛍光体としては、青色光源から発せられる青色光を黄色系の光、例えば緑黄色(発光ピーク約550nm)に変換可能なものであり、一般的に市中で入手できるものであれば使用できる。無機蛍光体には硫化物、ハロリン酸塩、酸化物などからなるものがある。酸化物蛍光体は、ガラスと混合して高温に加熱しても安定であるが、硫化物、ハロリン酸塩などの蛍光体では焼結時の加熱によりガラスと反応し、発泡や変色などの異常反応を起こしやすい。その程度は、焼結温度が高温であればあるほど著しくなる。従って、無機蛍光体としては、酸化物蛍光体を使用することが好ましい。最も好適な酸化物蛍光体としては、(Y,Gd,Ce)3Al512等のY3Al512系蛍光体が挙げられる。
【0010】
ガラスは、軟化点が500℃を超えるもの、好ましくは600℃を超えるものに限定される。その理由は、軟化点が500℃以下のガラスは蛍光体と反応して焼結体が黒っぽくなり、発光効率が大幅に低下したり、光が透過しなくなる。また化学的耐久力が悪化し易く、湿気の多い環境では使用中に表面が変質して透過率を下げ、効率を低下させる恐れがあるためである。
【0011】
なお熱膨張係数が75×10-7/℃を超えるガラスは、点灯時の温度上昇と消灯時の温度下降の繰り返しによる熱衝撃で焼結体にクラックが入りやすくなり、好ましくない。それゆえ軟化点が500℃以上(特に600℃以上)、且つ熱膨張係数が75×10-7/℃以下(特に20〜70×10-7/℃)のガラスであることが好ましい。
【0012】
またガラス組成中にPbOやBi23を含有する場合、蛍光体と反応して焼結体の明度を下げ易く、発光効率を低下させるために好ましくない。さらにソラリゼーションの原因となるような酸化物や光の透過を妨げるような着色元素を含有せず、またそのような不純物を含まないことが重要である。例えば組成中にMnO、Fe23、CeO2等が含まれていると、紫外線によりガラスを変色させるのでこれらの成分の含有は好ましくない。またアルカリ金属酸化物が含まれていると、部材の接着やモールドに使用される樹脂を劣化させ、接着強度を低下させる。従って、ガラス組成中には、上記した成分を実質的に含有しないことが好ましい。具体的には、PbOやBi23は各々3%以下、MnO、Fe23、CeO2等は各々1000ppm以下、アルカリ金属酸化物は合量で15%以下に制限することが望ましい。
【0013】
また組成系によって、焼結体の色調が異なったり、蛍光体との反応性に差がでるため、種々の条件を考慮して使用するガラスの組成を選択する必要がある。さらにガラス組成に適した蛍光体の添加量や、部材の厚みを決定することも重要である。本発明における好適なガラスとしてはB23−SiO2系ガラス、BaO−B23−SiO2系ガラス、 ZnO−B23−SiO2系ガラス等が挙げられる。
【0014】
本発明の発光色変換部材は、部材の厚みが0.2mm未満であると実用的な機械的強度が得難い。このため機械的強度が要求される用途では、0.2mm以上の厚みを有するようにすることが好ましい。またこの場合、無機蛍光体の含有量は0.01〜15体積%であることが好ましい。蛍光体が0.01体積%未満であると、黄色光が不足して白色光になりにくく、逆に15%を超えると蛍光体に遮蔽されて青色光の光量が少なくなりすぎ、光が黄色にシフトする。場合によっては黄色光自体も遮蔽されて発光効率が著しく低下する。より望ましい蛍光体の含有量は、0.05〜10%、特に0.08〜8体積、さらには0.1〜3体積%である。
【0015】
また本発明の発光色変換部材は、図1に示すような円盤状の変換部材10、図2に示すような円筒キャップ状の変換部材20等、種々の形状に成形して使用することができる。なお図1中、11は無機蛍光体を、12はガラスを示している。また図3に示すように、発光色変換部材30と、これを支持する支持部材40とからなる複合部品として使用することも可能である。支持部材としては種々の形状のものを採用可能であり、例えば図3に示すような円筒形状のものを使用できる。支持部材は、樹脂、セラミック、金属等の異種材料からなる。材料の選択は、機械的強度、膨張等の条件を考慮して適宜選定すればよい。また変換部材の取り付けは、嵌着、接着等の方法で行えばよい。
【0016】
以上の構成を有する本発明の発光色変換部材は、ガラス中に蛍光体が分散してなるため、入射した青色光の一部が無機蛍光体によって黄色光に変換され、また残部の青色光が透過、散乱する。この変換された黄色光と、透過、散乱した青色光とが合わさって白色光に近いスペクトルを合成することにより、青色光が白色光に転換される。
【0017】
なお入射した光の散乱が小さい場合、得られる白色光は、強く明るい光となり、散乱が大きい場合は柔らかな光となる。
【0018】
また部材の厚みが大きくなると明度が低下し、発光効率が低下する。さらに蛍光体の絶対量が多くなり黄色光が増えるため、発光色が黄色側にシフトしやすくなる。一方、部材が薄いと発光効率が高くなるが、蛍光体の絶対量が少なくなり黄色光が減少するため青色側にシフトしやすくなる。このため白色光を効率よく得るためには、蛍光体の量と部材の厚みを調整することが重要である。
【0019】
次に、本発明の発光色変換部材を製造する方法を述べる。
【0020】
まず上記特徴を有するようなガラス粉末と無機蛍光体粉末を用意する。ここで得られる変換部材の散乱を大きくしたい場合には、粒度の小さいガラス粉末を、散乱を小さくしたい場合には粒度の大きいガラス粉末を使用すればよい。またガラス粉末の好適な粒度範囲は、最大粒子径Dmaxが150μm以下(特に45〜105μm)、且つ平均粒子径D50が2μm以上(特に10〜20μm)である。つまりガラス粉末の最大粒子径が150μmを超えると、焼結体中に粗大ガラス粒子が形成する透明部分が散在することになり、また光を散乱しにくくなるために、均一な散乱体にならず、白色光が青みを帯び易くなる。また平均粒子径D50が2μm未満であると、焼結体が光を過剰に散乱させるために青色光の透過性が著しく低下し、発光効率が低下するばかりでなく、白色光が黄色みを帯び易くなる。
【0021】
次に、無機蛍光体粉末とガラス粉末を混合し、発光色変換部材用材料を得る。混合割合は、作製する部材の厚みを勘案して調整すればよい。即ち、部材の厚みが薄い場合は蛍光体粉末の割合を高めに設定し、逆に厚い場合は割合を低めに設定すればよい。
【0022】
続いて樹脂バインダーを添加して加圧成型し、所望の形状の予備成型体を作製する。
【0023】
その後、予備成形体を焼成し樹脂バインダーを除去して焼結させ、発光色変換部材を得る。複合部品とする場合は、得られた変換部材を、別に用意した支持部材に取り付ければよい。
【0024】
このようにして得られた発光色変換部材(又はこれを取り付けた発光色変換複合部品)は、青色LED素子等の青色光源と組み合わせることにより、白色照明光源として利用できる。
【0025】
【実施例】
以下、実施例に基づき、本発明を説明する。
【0026】
表1〜3は、本実施例で使用するガラス試料(試料A〜M)を示している。
【0027】
【表1】

Figure 0004158012
【0028】
【表2】
Figure 0004158012
【0029】
【表3】
Figure 0004158012
【0030】
各試料は次のようにして調製した。まず表に示す割合になるように珪砂、ホウ酸、酸化アルミニウム、酸化ビスマス、酸化亜鉛、炭酸カルシウム、炭酸バリウム、炭酸リチウム、炭酸ナトリウム、炭酸カリウムおよび鉛丹を調合した。続いて、これを白金坩堝に入れ、800〜1500℃で1〜3時間溶融してガラス化し、フィルム状に成形した。フィルム状ガラスをボールミルで粉砕した後、150メッシュ(JIS)の篩を通して分級し、最大粒子径105μm、平均粒子径約20μmのガラス粉末試料(通常品)を得た。また試料Hについては、通常粒度品に加えて、最大粒子径150μm、平均粒子径約30μmの粗大品及び最大粒子径10μm、平均粒子径約1.8μmの微細品を用意した。
【0031】
このようにして得られたガラス粉末試料について、密度、熱膨張係数及び軟化点を測定した。結果を表に示す。
【0032】
なお軟化点は、ガラス粉末試料を更にボールミルで粉砕し、最大粒子径45μm、平均粒子径10μmの粒度の粉末試料を作製し、DTAにより求めた。また密度及び熱膨張係数は、溶融ガラスを特性測定用のブロック状試料および円柱状試料に成形し、アニールした後、それぞれアルキメデス法、及びTMAにより求めた。
【0033】
表4〜7は、上記したガラス粉末試料と、無機蛍光体粉末を焼結させてなる発光色変換部材の実施例を示している。
【0034】
【表4】
Figure 0004158012
【0035】
【表5】
Figure 0004158012
【0036】
【表6】
Figure 0004158012
【0037】
【表7】
Figure 0004158012
【0038】
各試料は次のようにして調製した
まず、ガラス粉末試料に、表4〜7に示す割合で蛍光体粉末を添加、混合して混合粉末とした。さらに少量の樹脂バインダーを添加、混合した後、金型で加圧成型して直径1cmのボタン状予備成型体を作製した。なお蛍光体には、(Y,Gd,Ce)3Al512(化成オプトニクス株式会社製P46−Y3)を使用した。
【0039】
続いて、各ガラスの軟化点から定めた焼結温度(各表に示す)で、予備成型体を焼結させ、直径約8mm、厚さ0.2mm、0.5mm、1.0mm、1.5mm、又は2.0mmの大きさの円盤状焼結体に加工した。
【0040】
得られた焼結体試料について、焼結体の色調、透過光の色調と強度を目視にて評価した。なお透過光の色調と強度は、焼結体の背後からLEDの青色光を照射したときの焼結体からの透過光を評価したものであり、色調は白色に近いほど好ましく、また強度が強いほど発光効率がよく好ましい。
【0041】
【発明の効果】
本発明の発光色変換部材は、化学的に安定で熱伝導率が高いガラスを主成分としているため、高出力の青色光に長期間曝されても変色がなく、また素子の温度上昇が少ないので白色光の変色がない。それゆえ、信頼性の高い白色照明光源を提供することができる。
【図面の簡単な説明】
【図1】円盤状の発光色変換部材を示す斜視図である。
【図2】キャップ状の発光色変換部材を示す断面図である。
【図3】支持部材を用いた発光色変換用複合部品を示す断面図である。
【符号の説明】
10、20、30 発光色変換部材
11 無機蛍光体
12 ガラス
40 支持部材[0001]
[Industrial application fields]
The present invention relates to a luminescent color conversion member for converting blue light from a blue light source, particularly a blue light emitting diode (LED) element, into white.
[0002]
[Prior art]
In recent years, white LEDs have attracted attention as high-efficiency and high-reliability white illumination light sources, and some of them are already in use as small-power small-sized light sources. In general, this type of LED is obtained by coating a blue LED element with a mixture of a yellow phosphor and a transparent resin.
[0003]
[Problems to be solved by the invention]
However, since blue light has strong energy, it tends to deteriorate the resin. Therefore, when the white LED having such a structure is used for a long period of time, the resin is discolored and the color tone is changed. Recently, there has been a movement to develop a white illumination light source using a high-power LED element. In this case, a very strong blue light is irradiated to a limited part, so that the resin is significantly deteriorated and the emission color changes. It happens in a very short time. Further, since heat dissipation from the resin-molded element is poor, there is a problem that the temperature is likely to rise, and the color tone of the emission color shifts to the yellow side as the temperature rises.
[0004]
The present invention has been made in view of the above circumstances, and a luminescent color conversion member capable of obtaining a high-reliability, long-life white illumination light source even when a blue LED element, particularly a high-output blue LED element is used. The purpose is to provide.
[0005]
[Means for Solving the Problems]
The light emission color conversion member of the present invention is a light emission color conversion member for converting a part of blue light emitted from a blue light source into yellow light and combining it with the remaining blue light to obtain white light, which has a softening point. inorganic phosphor are those formed by dispersing, and the maximum particle diameter Dmax is 150μm or less, and a glass powder having an average particle diameter D 50 is 2μm or more and an inorganic phosphor powder mixed powder but higher in the glass than 500 ° C. It is characterized by being a sintered body.
[0006]
The material for the light emitting color conversion member of the present invention is a material for the light emitting color conversion member for converting part of the blue light emitted from the blue light source into yellow light and combining it with the remaining blue light to obtain white light. there are, rather higher than the 500 ° C. softening point, the maximum particle diameter Dmax is 150μm or less, and an average particle diameter D 50 is characterized by comprising a mixture of glass powder and an inorganic phosphor powder is 2μm or more.
[0007]
The white illumination light source of the present invention has a blue light source and an emission color conversion member, converts a part of blue light emitted from the blue light source into yellow light, and combines with the remaining blue light to obtain white light. a white illumination light source, glass powder and the inorganic softening point of 500 ° C. the inorganic phosphor is dispersed to a higher glass, and a maximum particle diameter Dmax is 150μm or less, and an average particle diameter D 50 2μm or more A luminescent color conversion member that is a sintered body of a mixed powder of phosphor powder is used.
[0008]
[Action]
The luminescent color conversion member of the present invention has a configuration in which an inorganic phosphor is dispersed in glass. More specifically, it consists of a sintered body of glass powder and inorganic phosphor powder.
[0009]
As the inorganic phosphor, blue light emitted from a blue light source can be converted into yellow light, for example, green yellow (emission peak of about 550 nm), and any inorganic phosphor can be used as long as it is generally available in the market. Some inorganic phosphors include sulfides, halophosphates, oxides, and the like. Oxide phosphors are stable when mixed with glass and heated to high temperatures, but phosphors such as sulfides and halophosphates react with the glass when heated during sintering, and abnormalities such as foaming and discoloration occur. Prone to reaction. The degree becomes more remarkable as the sintering temperature is higher. Therefore, it is preferable to use an oxide phosphor as the inorganic phosphor. The most suitable oxide phosphor includes Y 3 Al 5 O 12 phosphor such as (Y, Gd, Ce) 3 Al 5 O 12 .
[0010]
Glasses are limited to those having a softening point above 500 ° C, preferably above 600 ° C. The reason is that glass having a softening point of 500 ° C. or less reacts with the phosphor to make the sintered body darker, resulting in a significant decrease in light emission efficiency and no light transmission. In addition, chemical durability tends to deteriorate, and in a humid environment, the surface may be altered during use to reduce the transmittance and reduce the efficiency.
[0011]
Glass having a coefficient of thermal expansion exceeding 75 × 10 −7 / ° C. is not preferable because the sintered body tends to crack due to thermal shock caused by repeated temperature rise during lighting and temperature drop during extinction. Therefore, a glass having a softening point of 500 ° C. or higher (particularly 600 ° C. or higher) and a thermal expansion coefficient of 75 × 10 −7 / ° C. or lower (particularly 20 to 70 × 10 −7 / ° C.) is preferable.
[0012]
Further, when PbO or Bi 2 O 3 is contained in the glass composition, it is not preferable because it easily reacts with the phosphor to lower the brightness of the sintered body and lowers the light emission efficiency. Furthermore, it is important not to contain oxides that cause solarization or coloring elements that hinder the transmission of light, and not to contain such impurities. For example, if MnO, Fe 2 O 3 , CeO 2 or the like is included in the composition, the glass is discolored by ultraviolet rays, so the inclusion of these components is not preferable. Moreover, when an alkali metal oxide is contained, resin used for adhesion | attachment of a member or a mold will be deteriorated, and adhesive strength will be reduced. Therefore, it is preferable that the above-mentioned components are not substantially contained in the glass composition. Specifically, it is desirable to limit PbO and Bi 2 O 3 to 3% or less, MnO, Fe 2 O 3 , CeO 2 and the like each to 1000 ppm or less, and alkali metal oxides to 15% or less in total.
[0013]
In addition, since the color tone of the sintered body varies depending on the composition system and the reactivity with the phosphor varies, it is necessary to select a glass composition to be used in consideration of various conditions. Furthermore, it is also important to determine the amount of phosphor added suitable for the glass composition and the thickness of the member. Suitable glasses in the present invention include B 2 O 3 —SiO 2 glass, BaO—B 2 O 3 —SiO 2 glass, ZnO—B 2 O 3 —SiO 2 glass, and the like.
[0014]
When the thickness of the luminescent color conversion member of the present invention is less than 0.2 mm, it is difficult to obtain practical mechanical strength. For this reason, in applications where mechanical strength is required, it is preferable to have a thickness of 0.2 mm or more. In this case, the content of the inorganic phosphor is preferably 0.01 to 15% by volume. If the phosphor is less than 0.01% by volume, the yellow light is insufficient and hardly becomes white light. Conversely, if it exceeds 15%, the phosphor is shielded by the phosphor and the amount of blue light becomes too small, and the light is yellow. Shift to. In some cases, yellow light itself is also shielded, resulting in a significant reduction in luminous efficiency. The more preferable content of the phosphor is 0.05 to 10%, particularly 0.08 to 8 volume, and further 0.1 to 3 volume%.
[0015]
Further, the luminescent color conversion member of the present invention can be used in various shapes such as a disk-shaped conversion member 10 as shown in FIG. 1 and a cylindrical cap-shaped conversion member 20 as shown in FIG. . In FIG. 1, 11 indicates an inorganic phosphor, and 12 indicates glass. Moreover, as shown in FIG. 3, it is also possible to use as a composite part which consists of the luminescent color conversion member 30 and the support member 40 which supports this. As the support member, members having various shapes can be adopted, and for example, a cylindrical member as shown in FIG. 3 can be used. The support member is made of a different material such as resin, ceramic, or metal. The material may be selected appropriately in consideration of conditions such as mechanical strength and expansion. Moreover, what is necessary is just to perform attachment of a conversion member by methods, such as fitting and adhesion | attachment.
[0016]
In the luminescent color conversion member of the present invention having the above configuration, since the phosphor is dispersed in the glass, a part of the incident blue light is converted into yellow light by the inorganic phosphor, and the remaining blue light is Transmits and scatters. Blue light is converted into white light by combining the converted yellow light and the transmitted and scattered blue light to synthesize a spectrum close to white light.
[0017]
In addition, when the scattering of the incident light is small, the white light obtained is strong and bright light, and when the scattering is large, the white light is soft.
[0018]
Further, as the thickness of the member increases, the brightness decreases and the light emission efficiency decreases. Furthermore, since the absolute amount of the phosphor increases and yellow light increases, the emission color easily shifts to the yellow side. On the other hand, if the member is thin, the light emission efficiency is increased, but the absolute amount of the phosphor is reduced and the yellow light is reduced, so that it tends to shift to the blue side. Therefore, in order to obtain white light efficiently, it is important to adjust the amount of the phosphor and the thickness of the member.
[0019]
Next, a method for producing the luminescent color conversion member of the present invention will be described.
[0020]
First, a glass powder and an inorganic phosphor powder having the above characteristics are prepared. If it is desired to increase the scattering of the conversion member obtained here, a glass powder having a small particle size may be used, and if it is desired to reduce the scattering, a glass powder having a large particle size may be used. The preferred particle size range of the glass powder is that the maximum particle size Dmax is 150 μm or less (especially 45 to 105 μm) and the average particle size D 50 is 2 μm or more (particularly 10 to 20 μm). In other words, when the maximum particle diameter of the glass powder exceeds 150 μm, transparent parts formed by coarse glass particles are scattered in the sintered body, and it becomes difficult to scatter light. , White light tends to be bluish. Further, when the average particle diameter D 50 is less than 2 μm, the sintered body scatters light excessively, so that the blue light permeability is remarkably lowered, the luminous efficiency is lowered, and the white light is yellowish. It becomes easy to take on.
[0021]
Next, the inorganic phosphor powder and the glass powder are mixed to obtain a light emitting color conversion member material. What is necessary is just to adjust a mixing ratio in consideration of the thickness of the member to produce. That is, when the thickness of the member is thin, the ratio of the phosphor powder is set higher, and conversely, when it is thick, the ratio is set lower.
[0022]
Subsequently, a resin binder is added and pressure-molded to prepare a preform with a desired shape.
[0023]
Thereafter, the preform is fired, the resin binder is removed and sintered, and a luminescent color conversion member is obtained. What is necessary is just to attach the obtained conversion member to the support member prepared separately, when setting it as a composite part.
[0024]
The luminescent color conversion member (or the luminescent color conversion composite part to which this is attached) thus obtained can be used as a white illumination light source by combining with a blue light source such as a blue LED element.
[0025]
【Example】
Hereinafter, the present invention will be described based on examples.
[0026]
Tables 1 to 3 show glass samples (samples A to M) used in this example.
[0027]
[Table 1]
Figure 0004158012
[0028]
[Table 2]
Figure 0004158012
[0029]
[Table 3]
Figure 0004158012
[0030]
Each sample was prepared as follows. First, silica sand, boric acid, aluminum oxide, bismuth oxide, zinc oxide, calcium carbonate, barium carbonate, lithium carbonate, sodium carbonate, potassium carbonate, and red lead were prepared so as to have the ratio shown in the table. Subsequently, this was put into a platinum crucible, melted at 800 to 1500 ° C. for 1 to 3 hours to vitrify, and formed into a film. The glass film was pulverized with a ball mill and then classified through a 150 mesh (JIS) sieve to obtain a glass powder sample (ordinary product) having a maximum particle size of 105 μm and an average particle size of about 20 μm. For sample H, in addition to a normal particle size product, a coarse product having a maximum particle size of 150 μm and an average particle size of about 30 μm and a fine product having a maximum particle size of 10 μm and an average particle size of about 1.8 μm were prepared.
[0031]
The glass powder sample thus obtained was measured for density, coefficient of thermal expansion, and softening point. The results are shown in the table.
[0032]
The softening point was determined by DTA by further grinding a glass powder sample with a ball mill to produce a powder sample having a maximum particle size of 45 μm and an average particle size of 10 μm. The density and thermal expansion coefficient were determined by Archimedes method and TMA, respectively, after forming molten glass into a block sample and a columnar sample for characteristic measurement and annealing.
[0033]
Tables 4 to 7 show examples of the light emission color conversion member formed by sintering the above glass powder sample and inorganic phosphor powder.
[0034]
[Table 4]
Figure 0004158012
[0035]
[Table 5]
Figure 0004158012
[0036]
[Table 6]
Figure 0004158012
[0037]
[Table 7]
Figure 0004158012
[0038]
Each sample was prepared as follows. First, phosphor powder was added to a glass powder sample at a ratio shown in Tables 4 to 7 and mixed to obtain a mixed powder. Further, a small amount of a resin binder was added and mixed, and then pressure-molded with a mold to prepare a button-shaped preform having a diameter of 1 cm. As the phosphor, (Y, Gd, Ce) 3 Al 5 O 12 (P46-Y3 manufactured by Kasei Optonics Co., Ltd.) was used.
[0039]
Subsequently, the preform is sintered at a sintering temperature determined from the softening point of each glass (shown in each table), and the diameter is about 8 mm, the thickness is 0.2 mm, 0.5 mm, 1.0 mm, and 1. It processed into the disk shaped sintered compact of a magnitude | size of 5 mm or 2.0 mm.
[0040]
About the obtained sintered compact sample, the color tone of the sintered compact, the color tone and intensity of transmitted light were visually evaluated. The color tone and intensity of the transmitted light are evaluated from the transmitted light from the sintered body when the blue light of the LED is irradiated from behind the sintered body, and the color tone is preferably closer to white, and the strength is stronger. The better the luminous efficiency, the better.
[0041]
【The invention's effect】
Since the luminescent color conversion member of the present invention is mainly composed of chemically stable and high thermal conductivity glass, it does not change color even when exposed to high-power blue light for a long period of time, and the temperature rise of the device is small. So there is no discoloration of white light. Therefore, a highly reliable white illumination light source can be provided.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a disk-like light emission color conversion member.
FIG. 2 is a cross-sectional view showing a cap-shaped emission color conversion member.
FIG. 3 is a cross-sectional view showing a composite component for light emission color conversion using a support member.
[Explanation of symbols]
10, 20, 30 Luminescent color conversion member 11 Inorganic phosphor 12 Glass 40 Support member

Claims (12)

青色光源から発せられる青色光の一部を黄色光に変換し、残部の青色光と合成して白色光を得るための発光色変換部材であって、軟化点が500℃より高いガラス中に無機蛍光体が分散してなるものであり、かつ最大粒子径Dmaxが150μm以下、かつ平均粒子径D 50 が2μm以上であるガラス粉末と無機蛍光体粉末の混合粉末の焼結体であることを特徴とする発光色変換部材。A light emission color conversion member for converting white light emitted from a blue light source into yellow light and synthesizing with the remaining blue light to obtain white light, which is inorganic in glass having a softening point higher than 500 ° C. wherein the phosphor is one formed by dispersing, and the maximum particle diameter Dmax is 150μm or less, and an average particle diameter D 50 is a sintered body of mixed powder of glass powder and an inorganic phosphor powder is 2μm or more Luminescent color conversion member. 無機蛍光体が酸化物蛍光体であることを特徴とする請求項1の発光色変換部材。  The luminescent color conversion member according to claim 1, wherein the inorganic phosphor is an oxide phosphor. 無機蛍光体がYAl12系蛍光体であることを特徴とする請求項1又は2の発光色変換部材。Claim 1 or 2 emission color converting member inorganic phosphor is characterized in that a Y 3 Al 5 O 12 phosphor. ガラスが、75×10−7/℃以下の熱膨張係数を有することを特徴とする請求項1〜3の何れかの発光色変換部材。The luminescent color conversion member according to claim 1, wherein the glass has a thermal expansion coefficient of 75 × 10 −7 / ° C. or less. ガラスが、Biを実質的に含有しないことを特徴とする請求項1〜4の何れかの発光色変換部材。The luminescent color conversion member according to claim 1, wherein the glass does not substantially contain Bi 2 O 3 . ガラスが、MnO、Fe、及びCeOを実質的に含有しないことを特徴とする請求項1〜5の何れかの発光色変換部材。The luminescent color conversion member according to claim 1, wherein the glass does not substantially contain MnO, Fe 2 O 3 , and CeO 2 . ガラスが、B−SiO系ガラス、BaO−B−SiO系ガラス、またはZnO−B−SiO系ガラスであることを特徴とする請求項1〜6の何れかの発光色変換部材。The glass is B 2 O 3 —SiO 2 based glass, BaO—B 2 O 3 —SiO 2 based glass, or ZnO—B 2 O 3 —SiO 2 based glass. Any luminescent color conversion member. 無機蛍光体の含有量が、体積%で0.01〜15%であることを特徴とする請求項1〜7の何れかの発光色変換部材。  The light emitting color conversion member according to any one of claims 1 to 7, wherein the content of the inorganic phosphor is 0.01 to 15% by volume. 青色光源が、青色発光ダイオード素子であることを特徴とする請求項1〜の何れかの発光色変換部材。The luminescent color conversion member according to any one of claims 1 to 8 , wherein the blue light source is a blue light emitting diode element. 請求項1〜の何れかに記載の発光色変換部材と、これを支持する支持部材とからなることを特徴とする発光色変換用複合部品。A luminescent color converting composite part comprising the luminescent color converting member according to any one of claims 1 to 9 and a supporting member for supporting the luminescent color converting member. 青色光源から発せられる青色光の一部を黄色光に変換し、残部の青色光と合成して白色光を得るための発光色変換部材用材料であって、軟化点が500℃より高く、最大粒子径Dmaxが150μm以下、かつ平均粒子径D 50 が2μm以上であるガラス粉末と無機蛍光体粉末との混合物からなることを特徴とする発光色変換部材用材料。Part of the blue light emitted from the blue light source is converted into yellow light, a light emitting color conversion member for material to obtain white light by combining a blue light balance, rather high than 500 ° C. softening point, maximum particle diameter Dmax is 150μm or less, and an average particle diameter D 50 light emitting color conversion member for material characterized by consisting of a mixture of glass powder and an inorganic phosphor powder is 2μm or more. 青色光源と発光色変換部材とを有し、青色光源から発せられる青色光の一部を黄色光に変換し、残部の青色光と合成して白色光を得る白色照明光源であって、軟化点が500℃より高いガラス中に無機蛍光体が分散してなり、かつ最大粒子径Dmaxが150μm以下、且つ平均粒子径D 50 が2μm以上であるガラス粉末と無機蛍光体粉末の混合粉末の焼結体である発光色変換部材を用いることを特徴とする白色照明光源。A white illumination light source having a blue light source and an emission color conversion member, converting a part of blue light emitted from the blue light source into yellow light and combining with the remaining blue light to obtain white light, and a softening point There inorganic phosphor is dispersed in a higher than 500 ° C. of glass, and a maximum particle diameter Dmax is 150μm or less, and sintering the mixed powder of glass powder and an inorganic phosphor powder having an average particle diameter D 50 is 2μm or more A white illumination light source using a luminescent color conversion member which is a body.
JP2002060191A 2002-03-06 2002-03-06 Luminescent color conversion member Expired - Lifetime JP4158012B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002060191A JP4158012B2 (en) 2002-03-06 2002-03-06 Luminescent color conversion member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002060191A JP4158012B2 (en) 2002-03-06 2002-03-06 Luminescent color conversion member

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2008136278A Division JP5190680B2 (en) 2008-05-26 2008-05-26 Luminescent color conversion member
JP2008136277A Division JP2008208380A (en) 2008-05-26 2008-05-26 Luminescent color-converting member

Publications (2)

Publication Number Publication Date
JP2003258308A JP2003258308A (en) 2003-09-12
JP4158012B2 true JP4158012B2 (en) 2008-10-01

Family

ID=28669631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002060191A Expired - Lifetime JP4158012B2 (en) 2002-03-06 2002-03-06 Luminescent color conversion member

Country Status (1)

Country Link
JP (1) JP4158012B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008208380A (en) * 2008-05-26 2008-09-11 Nippon Electric Glass Co Ltd Luminescent color-converting member
JP2008255362A (en) * 2008-05-26 2008-10-23 Nippon Electric Glass Co Ltd Emitting color conversion member
JP2010132923A (en) * 2010-02-25 2010-06-17 Nippon Electric Glass Co Ltd Light emission color conversion member
JP2010132922A (en) * 2010-02-25 2010-06-17 Nippon Electric Glass Co Ltd Composite component for light emission color conversion
JP2010174246A (en) * 2010-02-25 2010-08-12 Nippon Electric Glass Co Ltd Emitting color conversion member
JP2011230965A (en) * 2010-04-28 2011-11-17 Asahi Glass Co Ltd Glass ceramic composition and element mounting substrate
US8467633B2 (en) 2010-08-25 2013-06-18 Stanley Electric Co., Ltd. Wavelength conversion structure and light source apparatus

Families Citing this family (108)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005093913A (en) * 2003-09-19 2005-04-07 Nichia Chem Ind Ltd Light-emitting device
JP2005093912A (en) * 2003-09-19 2005-04-07 Nichia Chem Ind Ltd Light-emitting device
JP4535236B2 (en) * 2004-03-10 2010-09-01 株式会社ファインラバー研究所 Fluorescent member, fluorescent member manufacturing method, and semiconductor light emitting device
JP5013405B2 (en) * 2004-03-31 2012-08-29 日本電気硝子株式会社 Phosphor and light emitting diode
US7553683B2 (en) * 2004-06-09 2009-06-30 Philips Lumiled Lighting Co., Llc Method of forming pre-fabricated wavelength converting elements for semiconductor light emitting devices
JP4786886B2 (en) * 2004-08-11 2011-10-05 ローム株式会社 Semiconductor light emitting device
JP4516378B2 (en) * 2004-08-13 2010-08-04 ローム株式会社 Semiconductor light emitting device
JP4528948B2 (en) * 2004-10-29 2010-08-25 独立行政法人産業技術総合研究所 Phosphor glass material
JP4873361B2 (en) * 2004-12-20 2012-02-08 日本電気硝子株式会社 Luminescent color conversion member
US7341878B2 (en) * 2005-03-14 2008-03-11 Philips Lumileds Lighting Company, Llc Wavelength-converted semiconductor light emitting device
US8748923B2 (en) 2005-03-14 2014-06-10 Philips Lumileds Lighting Company Llc Wavelength-converted semiconductor light emitting device
JP5490407B2 (en) * 2005-03-14 2014-05-14 コーニンクレッカ フィリップス エヌ ヴェ Phosphor having a polycrystalline ceramic structure, and light emitting device having the phosphor
WO2006112417A1 (en) 2005-04-15 2006-10-26 Asahi Glass Company, Limited Glass-sealed light-emitting device, circuit board with glass-sealed light-emitting device, and methods for manufacturing those
WO2006120827A1 (en) 2005-05-11 2006-11-16 Nippon Electric Glass Co., Ltd. Fluorescent substance composite glass, fluorescent substance composite glass green sheet, and process for producing fluorescent substance composite glass
DE102005023134A1 (en) 2005-05-19 2006-11-23 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Luminescence conversion LED
JP2007023267A (en) * 2005-06-16 2007-02-01 Nippon Electric Glass Co Ltd Emission color-converting material
JP4895541B2 (en) * 2005-07-08 2012-03-14 シャープ株式会社 Wavelength conversion member, light emitting device, and method of manufacturing wavelength conversion member
JP2007048864A (en) * 2005-08-09 2007-02-22 Nippon Electric Glass Co Ltd Phosphor composite material
EP3540794B1 (en) 2006-03-10 2022-03-30 Nichia Corporation Light-emitting device
JP5483795B2 (en) * 2006-04-11 2014-05-07 日本電気硝子株式会社 Luminescent color conversion material and luminescent color conversion member
JP5242905B2 (en) * 2006-04-19 2013-07-24 日本電気硝子株式会社 Luminescent color conversion member manufacturing method and luminescent color conversion member
JP2007314658A (en) * 2006-05-25 2007-12-06 Nichia Chem Ind Ltd Light emitting device
JP2007314657A (en) * 2006-05-25 2007-12-06 Nippon Electric Glass Co Ltd Wavelength converting material using fluorescent substance
JP2007324239A (en) * 2006-05-30 2007-12-13 Nichia Chem Ind Ltd Light-emitting device
JP4638837B2 (en) * 2006-05-30 2011-02-23 日本電気硝子株式会社 Optical component and light emitting device
JP4978886B2 (en) 2006-06-14 2012-07-18 日本電気硝子株式会社 Phosphor composite material and phosphor composite member
JP2008021868A (en) * 2006-07-13 2008-01-31 Nippon Electric Glass Co Ltd Phosphor composite member
JP4802923B2 (en) 2006-08-03 2011-10-26 日本電気硝子株式会社 Wavelength conversion member
JP4957110B2 (en) * 2006-08-03 2012-06-20 日亜化学工業株式会社 Light emitting device
JP4855869B2 (en) * 2006-08-25 2012-01-18 日亜化学工業株式会社 Method for manufacturing light emitting device
JP4905009B2 (en) * 2006-09-12 2012-03-28 豊田合成株式会社 Method for manufacturing light emitting device
JP2008115223A (en) 2006-11-01 2008-05-22 Nec Lighting Ltd Phosphor-containing glass sheet, method for producing the same and light-emitting device
JP2008169348A (en) * 2007-01-15 2008-07-24 Nippon Electric Glass Co Ltd Phosphor composite material
JP5347354B2 (en) * 2007-09-18 2013-11-20 日亜化学工業株式会社 Fluorescent material molded body, method for manufacturing the same, and light emitting device
US7963817B2 (en) 2007-09-18 2011-06-21 Nichia Corporation Phosphor-containing molded member, method of manufacturing the same, and light emitting device having the same
US7989236B2 (en) 2007-12-27 2011-08-02 Toyoda Gosei Co., Ltd. Method of making phosphor containing glass plate, method of making light emitting device
JP5311281B2 (en) 2008-02-18 2013-10-09 日本電気硝子株式会社 Wavelength conversion member and manufacturing method thereof
DE102008021438A1 (en) * 2008-04-29 2009-12-31 Schott Ag Conversion material in particular for a, a semiconductor light source comprising white or colored light source, method for its preparation and this conversion material comprising light source
JP2009270091A (en) * 2008-05-06 2009-11-19 Mitsubishi Chemicals Corp Fluorescent glass, method of manufacturing fluorescent glass, semiconductor light-emitting device, and method of manufacturing semiconductor light-emitting device
JP2009277997A (en) * 2008-05-16 2009-11-26 Asahi Glass Co Ltd Mixed glass powder for coating light-emitting element, glass-coated light-emitting element, and glass-coated light-emitting device
JP5368785B2 (en) * 2008-12-26 2013-12-18 デクセリアルズ株式会社 Luminescent color conversion member
JP2010219166A (en) * 2009-03-13 2010-09-30 Nippon Electric Glass Co Ltd Semiconductor light emitting element device
JP5633114B2 (en) * 2009-03-30 2014-12-03 日本電気硝子株式会社 SnO-P2O5 glass used for phosphor composite material
JP5417996B2 (en) * 2009-06-03 2014-02-19 コニカミノルタ株式会社 Phosphor-dispersed glass and method for producing the same
JP5316232B2 (en) * 2009-06-04 2013-10-16 コニカミノルタ株式会社 Method for producing phosphor-dispersed glass
JP5532508B2 (en) * 2009-12-11 2014-06-25 日本電気硝子株式会社 Wavelength conversion member and manufacturing method thereof
WO2011079434A1 (en) * 2009-12-29 2011-07-07 海洋王照明科技股份有限公司 Field emission device for emitting white light
JP5505864B2 (en) * 2010-03-30 2014-05-28 日本電気硝子株式会社 Manufacturing method of semiconductor light emitting device
CN102782082A (en) * 2010-07-14 2012-11-14 日本电气硝子株式会社 Phosphor composite member, LED device and method for manufacturing phosphor composite member
WO2012011522A1 (en) 2010-07-22 2012-01-26 日亜化学工業株式会社 Method for forming photoelectric conversion layer, method for manufacturing photoelectric conversion member, and method for manufacturing light emitting device
JP2010248530A (en) * 2010-07-28 2010-11-04 Sharp Corp Manufacturing method for wavelength conversion member, light-emitting device, and wavelength conversion member
JP2010261048A (en) * 2010-07-28 2010-11-18 Sharp Corp Light-emitting device and its manufacturing method
JP5549539B2 (en) * 2010-10-28 2014-07-16 日本電気硝子株式会社 Wavelength conversion element, light source including the same, and manufacturing method thereof
US10158057B2 (en) 2010-10-28 2018-12-18 Corning Incorporated LED lighting devices
CN103189326B (en) * 2010-10-28 2015-12-02 康宁股份有限公司 For the phosphor-containing frit material of LED illumination application
TWI434913B (en) 2011-07-12 2014-04-21 Bell Ceramics Co Ltd Fluorescent layer and its preparation method and uses
JP2013030536A (en) * 2011-07-27 2013-02-07 Nippon Electric Glass Co Ltd Light-emitting color conversion member and light-emitting device using the same
US9134595B2 (en) 2011-09-29 2015-09-15 Casio Computer Co., Ltd. Phosphor device, illumination apparatus and projector apparatus
CN102434853B (en) * 2011-10-25 2016-03-16 深圳市光峰光电技术有限公司 Optical wavelength conversion chip, its preparation method and use the light source of this optical wavelength conversion chip
DE102012005654B4 (en) 2011-10-25 2021-03-04 Schott Ag Optical converter for high luminance levels
TWI452736B (en) * 2012-02-17 2014-09-11 Jau Sheng Wang Color conversion layer producing method of a led module
JP5962103B2 (en) 2012-03-21 2016-08-03 カシオ計算機株式会社 Phosphor device, lighting apparatus and projector apparatus
CN103367611B (en) 2012-03-28 2017-08-08 日亚化学工业株式会社 Wavelength conversion inorganic formed body and its manufacture method and light-emitting device
WO2013148783A1 (en) * 2012-03-30 2013-10-03 Corning Incorporated Bismuth borate glass encapsulant for led phosphors
JP6056381B2 (en) * 2012-07-10 2017-01-11 日本電気硝子株式会社 Method for manufacturing wavelength conversion member
CN104736664B (en) 2012-10-17 2016-09-14 宇部兴产株式会社 Wavelength convert parts and use its light-emitting device
JP6119192B2 (en) * 2012-10-31 2017-04-26 日本電気硝子株式会社 Method for manufacturing wavelength conversion member and wavelength conversion member
JP5994575B2 (en) * 2012-10-31 2016-09-21 日本電気硝子株式会社 Method for manufacturing wavelength conversion member and wavelength conversion member
US10017849B2 (en) 2012-11-29 2018-07-10 Corning Incorporated High rate deposition systems and processes for forming hermetic barrier layers
JP6168284B2 (en) * 2013-04-03 2017-07-26 日本電気硝子株式会社 Wavelength conversion material, wavelength conversion member, and light emitting device
FR3004709A1 (en) * 2013-04-18 2014-10-24 Lumin Design I PROCESS FOR PRODUCING OPALESCENT LUMINESCENT INERT MATERIAL
JP6398351B2 (en) * 2013-07-25 2018-10-03 セントラル硝子株式会社 Phosphor dispersed glass
US10439109B2 (en) 2013-08-05 2019-10-08 Corning Incorporated Luminescent coatings and devices
JP6425001B2 (en) * 2013-10-03 2018-11-21 日本電気硝子株式会社 Wavelength conversion material, wavelength conversion member and light emitting device
JP6222452B2 (en) 2013-12-17 2017-11-01 日本電気硝子株式会社 Wavelength conversion member and light emitting device
JP2015142046A (en) 2014-01-29 2015-08-03 シャープ株式会社 Wavelength conversion member, light-emitting device, and method of producing wavelength conversion member
JP2015199640A (en) 2014-04-01 2015-11-12 日本電気硝子株式会社 Wavelength conversion member and light-emitting device using the same
JP2016027613A (en) 2014-05-21 2016-02-18 日本電気硝子株式会社 Wavelength conversion member and light emitting device using the same
JP6442894B2 (en) * 2014-07-17 2018-12-26 日本電気硝子株式会社 Phosphor-attached glass powder, method for producing wavelength conversion member, and wavelength conversion member
US9434876B2 (en) 2014-10-23 2016-09-06 Central Glass Company, Limited Phosphor-dispersed glass
CN105655467B (en) * 2014-11-10 2021-02-09 深圳市绎立锐光科技开发有限公司 White light LED device and manufacturing method thereof
JP2016108216A (en) 2014-11-26 2016-06-20 セントラル硝子株式会社 Fluorophor dispersion glass
WO2017047412A1 (en) * 2015-09-15 2017-03-23 日本電気硝子株式会社 Wavelength conversion member and light-emitting device
JP6740616B2 (en) * 2015-09-15 2020-08-19 日本電気硝子株式会社 Wavelength conversion member and light emitting device
JP2017107071A (en) 2015-12-10 2017-06-15 日本電気硝子株式会社 Wavelength conversion member and wavelength conversion element, and light emitting device using the same
JP6432559B2 (en) * 2016-05-17 2018-12-05 カシオ計算機株式会社 Phosphor device, lighting apparatus and projector apparatus
JP6906277B2 (en) 2016-06-27 2021-07-21 日本電気硝子株式会社 Wavelength conversion member and light emitting device using it
JP6880528B2 (en) 2016-06-27 2021-06-02 日本電気硝子株式会社 Wavelength conversion member and light emitting device using it
JP6902199B2 (en) * 2016-06-27 2021-07-14 日本電気硝子株式会社 Wavelength conversion member and light emitting device using it
JP6790563B2 (en) 2016-08-05 2020-11-25 日本電気硝子株式会社 Manufacturing method of wavelength conversion member
JP6686780B2 (en) 2016-08-05 2020-04-22 日本電気硝子株式会社 Wavelength conversion member and manufacturing method thereof
JP6790564B2 (en) 2016-08-05 2020-11-25 日本電気硝子株式会社 Manufacturing method of wavelength conversion member
JP6885689B2 (en) 2016-08-23 2021-06-16 日本電気硝子株式会社 Manufacturing method of wavelength conversion member
JP6776859B2 (en) 2016-12-09 2020-10-28 日本電気硝子株式会社 Manufacturing method of wavelength conversion member, wavelength conversion member and light emitting device
JP7090842B2 (en) 2017-07-27 2022-06-27 日本電気硝子株式会社 Wavelength conversion member and light emitting device
JP7022367B2 (en) 2017-09-27 2022-02-18 日本電気硝子株式会社 Glass used as wavelength conversion material, wavelength conversion material, wavelength conversion member and light emitting device
US20200243726A1 (en) 2017-11-21 2020-07-30 Nippon Electric Glass Co., Ltd. Wavelength conversion member and light emitting device
JP7268315B2 (en) * 2017-12-12 2023-05-08 日本電気硝子株式会社 WAVELENGTH CONVERSION MEMBER, MANUFACTURING METHOD THEREOF, AND LIGHT EMITTING DEVICE
WO2019116916A1 (en) * 2017-12-12 2019-06-20 日本電気硝子株式会社 Wavelength conversion member and method for manufacturing same, and light-emitting device
JP7089175B2 (en) 2018-06-20 2022-06-22 日亜化学工業株式会社 Ceramic complex, light emitting device using it, and method for manufacturing ceramic complex
JP2020106831A (en) 2018-12-27 2020-07-09 日本電気硝子株式会社 Wavelength conversion member and light-emitting device
JPWO2020213456A1 (en) 2019-04-18 2020-10-22
CN113544236A (en) 2019-04-18 2021-10-22 日本电气硝子株式会社 Wavelength conversion member, method for manufacturing same, and light-emitting device
CN110818248B (en) * 2019-11-22 2022-05-27 广州光联电子科技有限公司 High-thermal-conductivity and high-refractive-index fluorescent glass layer and preparation method thereof
CN112321155B (en) * 2020-11-06 2022-11-25 焦作市吉成磁电有限公司 Laser lighting assembly and method of manufacturing the same
CN116569081A (en) 2020-11-19 2023-08-08 日本电气硝子株式会社 Wavelength conversion member and method for manufacturing same
KR102576253B1 (en) 2021-05-11 2023-09-11 대주전자재료 주식회사 Wavelength conversion member and light emitting device comprising same
KR20230001983A (en) 2021-06-29 2023-01-05 대주전자재료 주식회사 Wavelength conversion member and light emitting device comprising same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008208380A (en) * 2008-05-26 2008-09-11 Nippon Electric Glass Co Ltd Luminescent color-converting member
JP2008255362A (en) * 2008-05-26 2008-10-23 Nippon Electric Glass Co Ltd Emitting color conversion member
JP2010132923A (en) * 2010-02-25 2010-06-17 Nippon Electric Glass Co Ltd Light emission color conversion member
JP2010132922A (en) * 2010-02-25 2010-06-17 Nippon Electric Glass Co Ltd Composite component for light emission color conversion
JP2010174246A (en) * 2010-02-25 2010-08-12 Nippon Electric Glass Co Ltd Emitting color conversion member
JP2011230965A (en) * 2010-04-28 2011-11-17 Asahi Glass Co Ltd Glass ceramic composition and element mounting substrate
US8467633B2 (en) 2010-08-25 2013-06-18 Stanley Electric Co., Ltd. Wavelength conversion structure and light source apparatus

Also Published As

Publication number Publication date
JP2003258308A (en) 2003-09-12

Similar Documents

Publication Publication Date Title
JP4158012B2 (en) Luminescent color conversion member
JP5190680B2 (en) Luminescent color conversion member
JP5483795B2 (en) Luminescent color conversion material and luminescent color conversion member
KR102271648B1 (en) Wavelength conversion member and light emitting device using same
JP4978886B2 (en) Phosphor composite material and phosphor composite member
JP5257854B2 (en) Luminescent color conversion member
JP5152687B2 (en) Luminescent color conversion material
JP4873361B2 (en) Luminescent color conversion member
JP6273799B2 (en) Glass used for wavelength conversion material, wavelength conversion material, wavelength conversion member, and light emitting device
WO2011111462A1 (en) Wavelength conversion member, optical device, and process for production of wavelength conversion member
JP5242905B2 (en) Luminescent color conversion member manufacturing method and luminescent color conversion member
JP2007182529A (en) Fluorescent composite glass, fluorescent composite glass green sheet and process for production of fluorescent composite glass
KR101785798B1 (en) Phosphor-dispersed glass
JP2010229002A (en) SnO-P2O5 GLASS USED FOR PHOSPHOR COMPOSITE MATERIAL
JP2011222751A (en) Wavelength conversion member and semiconductor light-emitting element device having and using the wavelength conversion member
JP5257853B2 (en) Composite parts for emission color conversion
KR102654998B1 (en) Glass used in wavelength conversion materials, wavelength conversion materials, wavelength conversion members, and light emitting devices
JP5257852B2 (en) Luminescent color conversion member
JP2008208380A (en) Luminescent color-converting member
JP5240656B2 (en) Luminescent color conversion member
JP5713273B2 (en) Joining material and member joining method using the same
JP5368785B2 (en) Luminescent color conversion member
JP6830750B2 (en) Wavelength conversion member and light emitting device
JP2019163208A (en) Raw material powder for wavelength conversion member
JP5807780B2 (en) Wavelength converting member and light emitting device using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080414

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080618

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080701

R150 Certificate of patent or registration of utility model

Ref document number: 4158012

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130725

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140725

Year of fee payment: 6

EXPY Cancellation because of completion of term