JP4516378B2 - Semiconductor light emitting device - Google Patents

Semiconductor light emitting device Download PDF

Info

Publication number
JP4516378B2
JP4516378B2 JP2004235804A JP2004235804A JP4516378B2 JP 4516378 B2 JP4516378 B2 JP 4516378B2 JP 2004235804 A JP2004235804 A JP 2004235804A JP 2004235804 A JP2004235804 A JP 2004235804A JP 4516378 B2 JP4516378 B2 JP 4516378B2
Authority
JP
Japan
Prior art keywords
glass
light
phosphor
light emitting
color conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004235804A
Other languages
Japanese (ja)
Other versions
JP2006052345A (en
Inventor
登美男 井上
有真 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP2004235804A priority Critical patent/JP4516378B2/en
Publication of JP2006052345A publication Critical patent/JP2006052345A/en
Application granted granted Critical
Publication of JP4516378B2 publication Critical patent/JP4516378B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item

Landscapes

  • Led Device Packages (AREA)
  • Led Devices (AREA)
  • Luminescent Compositions (AREA)

Description

本発明は、たとえば紫外線または青色の光を発光する光源の光を白色その他の色の光に変換する発光色変換部材を用いた半導体発光装置に関する。さらに詳しくは、紫外線や高出力の光源の光に対しても、長時間に亘って発光色変換部材が変色しないで、安定した品質を有する発光色変換部材を用いた半導体発光装置に関する。 The present invention relates to, for example, a semiconductor light-emitting device using a light-emitting color conversion member for converting the light from the light source that emits ultraviolet light or blue light to white other colors of light. More particularly, with respect to light in the ultraviolet and a high output of the light source, in light emitting color conversion member is not discolored for a long time, a semiconductor light-emitting device using a light-emitting color conversion member having a stable quality.

青色発光または紫外線発光の半導体発光素子(以下、LEDともいう)の表面に発光色変換部材を設けて、白色発光装置にするなど、光源の発光色を変換した発光装置が利用されている。このような発光色変換部材は、たとえばイットリウム・アルミニウム・ガーネット(YAG)系の蛍光物質をエポキシ樹脂などの透光性樹脂に分散させてLEDチップなどを被覆するように設けることにより用いられている。しかし、このような蛍光体を透光性樹脂の中に分散させた発光色変換部材を用いて、LEDなどの光源の発光色を変換する場合、とくに紫外光などの波長の短い光や輝度の大きい光源の光を変換する場合、放熱特性の悪い樹脂の温度が上昇して透光性樹脂が変色し、変換した光の色が変ったり、輝度が低下したり、発光色の色調が変化したりするという問題がある。   2. Description of the Related Art A light emitting device that converts the light emission color of a light source, such as a white light emitting device by providing a light emitting color conversion member on the surface of a blue light emitting or ultraviolet light emitting semiconductor light emitting element (hereinafter also referred to as LED), is used. Such a luminescent color conversion member is used, for example, by dispersing an yttrium, aluminum, garnet (YAG) -based fluorescent material in a translucent resin such as an epoxy resin so as to cover an LED chip or the like. . However, when the emission color of a light source such as an LED is converted using an emission color conversion member in which such a phosphor is dispersed in a translucent resin, light with a short wavelength such as ultraviolet light or luminance When converting light from a large light source, the temperature of the resin with poor heat dissipation characteristics rises, causing the translucent resin to change color, changing the color of the converted light, reducing the brightness, and changing the color of the emitted light. There is a problem that.

このような問題を解決するため、ガラス中に酸化物蛍光体を分散させて焼結することが考えられている。しかし、この場合でも軟化点の低いガラス中に蛍光物質を分散させると、ガラスと蛍光物質とが反応して、焼結体が黒っぽくなり、発光効率が大幅に低下するという問題があるため、たとえば図6に示されるように、軟化点が500℃より高い(好ましくは600℃以上)B23-SiO2系などのガラス31中に蛍光体32を分散させることにより、高信頼性、長寿命の発光色変換部材とすることが提案されている(たとえば特許文献1参照)。
特開2003−258308号公報
In order to solve such a problem, it is considered to disperse and sinter the oxide phosphor in glass. However, even in this case, if the fluorescent material is dispersed in the glass having a low softening point, the glass and the fluorescent material react with each other, so that the sintered body becomes dark and the luminous efficiency is greatly reduced. As shown in FIG. 6, the phosphor 32 is dispersed in a glass 31 such as a B 2 O 3 —SiO 2 system having a softening point higher than 500 ° C. (preferably 600 ° C. or higher). It has been proposed to use a long-life luminescent color conversion member (see, for example, Patent Document 1).
JP 2003-258308 A

前述のように、蛍光体をガラス体に分散させた発光色変換部材により光源の発光色を変換しようとする場合に、PbOなどを含んだ軟化点の低いガラスに分散させると、ガラスが変色して使用できないため、軟化点が少なくとも500℃以上と、軟化点の高いガラスにしか分散させることができない。そのため、たとえばLEDチップを被覆するように発光色変換部材を用いようとする場合、LEDチップの電極などがその温度に耐えることができず、使用することができないなど、低い温度で発光色変換部材を適用したいという場合には、利用することができないという問題がある。   As described above, when the emission color of the light source is converted by the emission color conversion member in which the phosphor is dispersed in the glass body, if the glass is dispersed in a glass having a low softening point containing PbO or the like, the glass changes color. Therefore, it can be dispersed only in glass having a softening point of at least 500 ° C. or higher. Therefore, for example, when an emission color conversion member is used so as to cover the LED chip, the emission color conversion member can be used at a low temperature such that the electrode of the LED chip cannot withstand the temperature and cannot be used. If you want to apply, there is a problem that you can not use.

また、たとえばLEDチップなどを直接被覆したり、広い面積で接触したりする場合には、LEDチップなどと発光色変換部材との熱膨張係数が合っていないと、LEDチップなどの相手部品がダメージを受けたり、ガラスは脆いためガラスにクラックが入り光の透過を阻害したりすることがある。そのため、熱膨張係数なども考慮する必要があり、前述の軟化点と共に、発光色変換部材の用途が制限され、半導体発光装置を形成する場合でも、その使用方法を工夫する必要がある。   In addition, for example, when directly covering an LED chip or making contact over a wide area, if the thermal expansion coefficients of the LED chip and the luminescent color conversion member do not match, the counterpart component such as the LED chip is damaged. Or the glass is brittle, so that the glass may crack and impede the transmission of light. Therefore, it is necessary to consider the thermal expansion coefficient, etc., and together with the above-mentioned softening point, the use of the luminescent color conversion member is limited, and even when a semiconductor light emitting device is formed, it is necessary to devise its usage.

さらに、たとえば硫化物系蛍光体などでは、樹脂やガラス体と混合する前の保存の状態で空気中の水分と反応して硫黄の酸化物などが空気中に飛散し、有害物を放出するという問題もある。   Furthermore, for example, in sulfide-based phosphors, sulfur oxides and the like are scattered in the air by reacting with moisture in the air in a state of storage before being mixed with a resin or glass body, thereby releasing harmful substances. There is also a problem.

本発明は、このような問題を解決するためになされたもので、硫化物からなる発光色変換用の蛍光物質を空気中に放置しても何ら変質せず、有害物質を放出しない、品質の安定した発光色変換用の蛍光体粉末を用い、蛍光体を、軟化点を下げるべくPbなどを含むガラス体に分散させても、ガラスが蛍光体と反応して変色することのない品質の安定した発光色変換部材とし、そのような発光色変換部材を用いて、紫外光など波長の短い光や輝度の大きい光を発光するLEDチップの光を変換して白色光など所望の色の光に変換する場合でも、長時間に亘って色調や発光色が変化せず、また、輝度が低下しない安定した特性で信頼性を向上することができる構造の半導体発光装置を提供することを目的とする。 The present invention has been made to solve such problems, and even if a fluorescent material for luminescent color conversion made of sulfide is left in the air, it does not change at all and does not release harmful substances. Using stable phosphor powder for luminescent color conversion, even if the phosphor is dispersed in a glass body containing Pb or the like to lower the softening point, the glass does not react with the phosphor and the quality is stable. By using such a light emitting color conversion member , the light of the LED chip that emits light with a short wavelength such as ultraviolet light or light with high luminance is converted into light of a desired color such as white light. It is an object of the present invention to provide a semiconductor light emitting device having a structure capable of improving reliability with stable characteristics in which the color tone and emission color do not change over a long time even when converted, and the luminance does not decrease . The

本発明による半導体発光装置は、発光素子チップと、該発光素子チップの少なくとも光発射面側に設けられる発光色変換部材とを有する半導体発光装置であって、前記発光色変換部材が、蛍光体粒子の周りにケイ酸ガラスまたはホウケイ酸ガラスからなるガラス被膜が設けられる蛍光体含有ガラス粉末を用いることにより形成され、かつ、前記発光色変換部材が、前記蛍光体含有ガラス粉末を凝集させた多孔質ガラス体の隙間に、紫外光に耐性のある樹脂を充填することにより形成されている。 A semiconductor light emitting device according to the present invention is a semiconductor light emitting device having a light emitting element chip and a light emitting color conversion member provided on at least a light emitting surface side of the light emitting element chip, wherein the light emitting color conversion member is phosphor particles. A porous material formed by using a phosphor-containing glass powder provided with a glass film made of silicate glass or borosilicate glass around the phosphor , and the luminous color conversion member agglomerates the phosphor-containing glass powder It is formed by filling the gap between the glass bodies with a resin resistant to ultraviolet light .

お、基板裏面とは、基板の半導体積層部が設けられる側と反対側の面を意味する Contact name and back surface of the substrate means the surface opposite to the side where the semiconductor lamination portion of the substrate is provided.

本発明の半導体発光装置に用いられる蛍光体含有ガラス粉末によれば、YAGなどの蛍光体粒子の周囲にケイ酸ガラスまたはホウケイ酸ガラスからなるガラス被膜が設けられているため、ガラス被膜に蛍光体と反応しやすいPbなどが含まれておらず、蛍光体粒子とガラス被膜とが反応して、ガラス被膜が変色するということはないし、この蛍光体含有ガラス粉末を軟化点の低いPbなどを含むガラス体内に分散させても、ガラス被膜がバリア層となるため、蛍光体粒子とPbなどとが反応することもない。さらに、蛍光体粒子が1個1個ガラス被膜により被覆されているため、蛍光体粒子が硫化物のような有害物質の場合で、蛍光体含有ガラス粉末が空気中に放置されても、非常に安定で、何らの反応をすることもなく、有害物質が飛散することもないと共に、品質的にも何ら変化しない。 According to the phosphor-containing glass powder used in the semiconductor light-emitting device of the present invention, since the glass film made of silicate glass or borosilicate glass is provided around the phosphor particles such as YAG, the phosphor is applied to the glass film. Pb and the like which are easy to react with the phosphor are not included, and the phosphor particles and the glass coating do not react and the glass coating is not discolored. This phosphor-containing glass powder contains Pb or the like having a low softening point. Even if dispersed in the glass body, the glass coating film becomes a barrier layer, so that the phosphor particles do not react with Pb or the like. Furthermore, since each phosphor particle is covered with a glass coating, even if the phosphor particle is a harmful substance such as a sulfide, It is stable, does not react at all, does not scatter harmful substances, and does not change in quality.

なお、このようなガラス被膜を形成するには、たとえばケイ酸やホウケイ酸などのSiやBなどを金属アルコキシドにして、エタノールなどの有機溶媒と、アンモニア水などの無機塩基または塩酸もしくは硫酸などの無機酸などと共に混合・撹拌し、その中に蛍光体粒子を混合・撹拌して反応させることにより、蛍光体粒子の外周にケイ酸ガラスやホウケイ酸ガラスの粒子が付着して蛍光体粒子の外周にガラス被膜を形成することができる。このガラス被膜の厚さは、反応時間を長くすればするほど厚く形成することができるが、Pbなどの蛍光体物質と反応する材料が浸透しない程度の厚さ、すなわち、数百nm〜数μm程度の厚さに形成されればよい。   In order to form such a glass film, for example, Si or B such as silicic acid or borosilicate is used as a metal alkoxide, an organic solvent such as ethanol, an inorganic base such as ammonia water, or hydrochloric acid or sulfuric acid. Mixing and stirring together with inorganic acid, etc., and mixing and stirring the phosphor particles in it, the silicate glass and borosilicate glass particles adhere to the outer periphery of the phosphor particles, and the outer periphery of the phosphor particles A glass coating can be formed. The glass coating can be formed thicker as the reaction time is longer, but the thickness is such that a material that reacts with a phosphor substance such as Pb does not penetrate, that is, several hundred nm to several μm. What is necessary is just to form in the thickness of a grade.

このような蛍光体含有ガラス粉末は、軟化点の高いガラス被膜で蛍光体粒子が被覆されているため、この蛍光体含有ガラス粉末がPbなどを含む軟化点の低いガラス体内に分散されていても、軟化点の高いガラス被膜がバリア層となって軟化点の低いガラス体内に含まれるPbやBiなどが蛍光体粒子と反応することがない。すなわち、300℃程度以上の低い温度で焼結することができるガラス体内に蛍光体粒子を分散させた発光色変換部材を形成することができる。その結果、たとえば道路標識で、自動車のヘッドライトにより目立ちやすい色で表示するような標識でも、低い温度でガラスを焼結しながら、安定した発光色変換部材を有する道路標識などを形成することもできる。   Since such phosphor-containing glass powder is coated with phosphor particles with a glass film having a high softening point, even if this phosphor-containing glass powder is dispersed in a glass body having a low softening point containing Pb or the like. The glass film having a high softening point serves as a barrier layer, and Pb, Bi, etc. contained in the glass body having a low softening point do not react with the phosphor particles. That is, it is possible to form an emission color conversion member in which phosphor particles are dispersed in a glass body that can be sintered at a low temperature of about 300 ° C. or higher. As a result, it is possible to form a road sign having a stable luminescent color conversion member while sintering glass at a low temperature, for example, a road sign that is displayed in a color that is conspicuous by an automobile headlight. it can.

また、本発明による半導体発光装置によれば、Pbなどを含まない軟化点の高いガラス被膜により蛍光体粒子を被覆した蛍光体含有ガラス粉末を用いているため、ガラスと蛍光体粒子とが反応して変色することがなく、また、LEDチップからの紫外光や輝度の大きい光などにより照射されても変色することがなく、発光色や輝度が非常に安定した発光装置が得られる。   In addition, according to the semiconductor light emitting device of the present invention, since the phosphor-containing glass powder in which the phosphor particles are coated with a glass film having a high softening point that does not contain Pb or the like is used, the glass reacts with the phosphor particles. The light emitting device does not change color and does not change color even when irradiated with ultraviolet light or high luminance light from the LED chip, and a light emitting device with very stable emission color and luminance can be obtained.

この蛍光体含有ガラス粉末をPbまたはBiなどが含まれるガラス体内に分散させた発光色変換部材を半導体積層部の一面または基板裏面に設けることにより、ガラス体の焼結温度を下げられると共に、LEDチップの電極形成前に発光色変換部材を設けることができるため、焼結温度を極端に下げる必要もなく、また、蛍光体との反応の問題もないため、LEDチップの基板と熱膨張係数などを合せた成分のガラス体に形成することができる。その結果、LEDチップとガラス体に蛍光体粒子を分散させた発光色変換部材とを結合することができる。   By providing an emission color conversion member in which this phosphor-containing glass powder is dispersed in a glass body containing Pb or Bi on the one surface of the semiconductor laminate or the back surface of the substrate, the sintering temperature of the glass body can be lowered, and the LED Since the light emitting color conversion member can be provided before forming the electrode of the chip, there is no need to extremely lower the sintering temperature and there is no problem of reaction with the phosphor. It can form in the glass body of the component which united. As a result, the LED chip and the luminescent color conversion member in which the phosphor particles are dispersed in the glass body can be combined.

また、蛍光体含有ガラス粉末により多孔質ガラス体にして、その空孔内に、シリコーン樹脂のような紫外光に対して耐性のある樹脂を充填することによっても、LEDチップとガラス体内に蛍光体粒子を分散させた発光色変換部材とを結合して、所望の発光色とする半導体発光装置を得ることもできる。このような構成にすれば、ガラス体を焼結しなくても多孔質の隙間内にガラス体と屈折率が同程度のシリコーン樹脂などが充填されているため、LEDチップからの光を蛍光体含有ガラス粉末により色変換しながら出射させることができる。この場合、シリコーン樹脂などは、弾力性があるため、熱膨張係数の差を吸収することができるし、弾力性があって柔らかくても、外形は多孔質ガラス体により確定しているため、変形したりすることがない。 The fluorescent in the porous glass body by the phosphor-containing glass powder in its pores within even by filling resistance Noah Ru resin to ultraviolet light, such as a silicone resin, the LED chip and the glass body It is also possible to obtain a semiconductor light emitting device having a desired light emission color by combining with a light emission color conversion member in which body particles are dispersed. With such a configuration, since the porous gap is filled with a silicone resin having the same refractive index as that of the glass body without sintering the glass body, the light from the LED chip is converted into the phosphor. The contained glass powder can be emitted while being color-converted. In this case, silicone resin, etc. is elastic, so it can absorb the difference in thermal expansion coefficient, and even if it is elastic and soft, the outer shape is determined by the porous glass body, There is nothing to do.

つぎに、図面を参照しながら本発明の半導体発光装置およびそれに用いられる蛍光体含有ガラス粉末、発光色変換部材について説明をする。本発明の半導体発光装置に用いられる蛍光体含有ガラス粉末3は、図1にその一例の断面説明図が示されるように、蛍光体粒子1の周りがPbまたはBiを含まないガラス被膜2により被覆されていることに特徴がある。 Next, a phosphor-containing glass powder used semiconductor light-emitting device and that of the present invention with reference to the accompanying drawings, the description about the light emitting color conversion member. The semiconductor light emitting device phosphor-containing glass powder 3 that used in the present invention, as cross-sectional illustration of an example thereof is shown in FIG. 1, a glass coat 2 around the phosphor particles 1 contains no Pb or Bi It is characterized by being covered.

蛍光体粒子1は、紫外光や可視光を受けて異なる波長の光を放出する蛍光物質の粒子で、平均の粒径としては、3〜50μm程度、好ましくは5〜10μm程度の大きさに揃っている。蛍光物質としては、セリウムで付活されたイットリウム・アルミニウム・ガーネット(YAG)系、マンガンで付活された酸化マグネシウム・チタンなどの酸化物系蛍光物質や、ペリレン系誘導体や、銅、アルミニウムで付活された硫化亜鉛カドミウムなどの硫化物系蛍光物質、などを用いることができる。   The phosphor particle 1 is a fluorescent substance particle that emits light of different wavelengths in response to ultraviolet light or visible light, and has an average particle size of about 3 to 50 μm, preferably about 5 to 10 μm. ing. Fluorescent materials include yttrium, aluminum, garnet (YAG) activated by cerium, oxide fluorescent materials such as magnesium oxide and titanium activated by manganese, perylene derivatives, copper and aluminum. An activated sulfide fluorescent material such as zinc cadmium sulfide can be used.

ガラス被膜2は、PbやBiなどの蛍光物質と反応しやすい物質が蛍光物質と接触しないようにバリアを形成するものであるため、PbやBiなどの不純物が浸透しない程度の厚さに形成されていればよく、厚すぎても問題はないが時間がかかるため、たとえば数百nm〜数μm程度の厚さに形成される。ガラス被膜の材料としては、PbOやBi23のように、軟化点が低く構成元素であるPbやBiなどの蛍光物質と反応しやすい元素を含まない(1wt%以下)、ケイ酸ガラス(SiO2系ガラス)やホウケイ酸ガラス(B23-SiO2系ガラス)などを主成分とするものを用いることができ、これらにBaOやZnOなどが含まれるものでもよい。しかし、MnO、Fe23、CeO2などが含まれると、紫外光によりガラスを変色させるので、実質的に含有しない(1000ppm以下)方が好ましい。 Since the glass coating 2 forms a barrier so that a substance that easily reacts with a fluorescent material such as Pb or Bi does not come into contact with the fluorescent material, the glass coating 2 is formed with a thickness that does not allow impurities such as Pb and Bi to penetrate. If it is thick, there is no problem if it is too thick, but it takes time. For example, it is formed to a thickness of about several hundred nm to several μm. As a material for the glass coating, a silicate glass (1 wt% or less) such as PbO or Bi 2 O 3 that does not contain an element that has a low softening point and easily reacts with a fluorescent substance such as Pb or Bi as constituent elements is used. A material mainly composed of (SiO 2 glass) or borosilicate glass (B 2 O 3 —SiO 2 glass) can be used, and these may contain BaO, ZnO, or the like. However, when MnO, Fe 2 O 3 , CeO 2 or the like is contained, the glass is discolored by ultraviolet light, so that it is preferable that the glass is not substantially contained (1000 ppm or less).

このような蛍光体粉末を製造するには、いわゆるストーバー法と呼ばれるゾル−ゲル法により製造することができる。すなわち、たとえばケイ酸ガラス被膜を形成するには、テトラエトキシシラン(Si(OC254)などのケイ素のアルコキシド化合物、エタノール、水およびアンモニアをモル比で1:x:y:zの割合(モル比;20≦x≦400、10≦y≦200、10≦z≦40)で混合する。この混合液に前述の蛍光体粒子1を混合し、撹拌しながら反応させることにより、蛍光体粒子1の周囲にガラス粒子が付着してガラス被膜2が形成される。前述の水とケイ素との割合(y)を変えることにより、ガラス粒子の大きさを任意に調整することができる。シリカ系ガラスの粒径は30〜800nm程度である。また、反応時間を長くすればするほどガラス被膜2の厚さを厚くすることができる。そのため、好みの膜厚で所望の緻密な被膜を形成することができる。 Such a phosphor powder can be produced by a sol-gel method called a so-called Stover method. That is, for example, in order to form a silicate glass film, a silicon alkoxide compound such as tetraethoxysilane (Si (OC 2 H 5 ) 4 ), ethanol, water and ammonia are used at a molar ratio of 1: x: y: z. Mix in proportions (molar ratio; 20 ≦ x ≦ 400, 10 ≦ y ≦ 200, 10 ≦ z ≦ 40). The aforementioned phosphor particles 1 are mixed with this mixed liquid and reacted while stirring, whereby glass particles adhere to the periphery of the phosphor particles 1 to form a glass coating 2. By changing the ratio (y) of water and silicon described above, the size of the glass particles can be arbitrarily adjusted. The particle size of the silica glass is about 30 to 800 nm. Further, the longer the reaction time, the thicker the glass coating 2 can be made. Therefore, a desired dense film can be formed with a desired film thickness.

他のガラス成分にする場合でも、同様に所望の金属のアルコキシド化合物を形成して、前述のエタノール、水およびアンモニアと混合した混合液を用い、その混合液に蛍光体粒子を混合して撹拌させることにより同様に製造することができる。たとえば、前述のホウケイ酸ガラス被膜を形成するには、前述のテトラエトキシシラン(Si(OC254)の代りに、テトラエトキシシラン(Si(OC254)とB(OCH(CH323とをモル比で4:1〜2:1の割合で混合したものを用い、同様に行うことにより得られる。 Even in the case of using other glass components, the desired metal alkoxide compound is formed in the same manner, and the mixture liquid mixed with ethanol, water and ammonia is mixed and the phosphor particles are mixed and stirred. It can manufacture similarly. For example, to form the above-mentioned borosilicate glass coating, instead of tetraethoxysilane described above (Si (OC 2 H 5) 4), tetraethoxysilane (Si (OC 2 H 5) 4) B (OCH (CH 3 ) 2 ) 3 can be obtained in the same manner using a mixture of (CH 3 ) 2 ) 3 in a molar ratio of 4: 1 to 2: 1.

本発明の蛍光体粉末によれば、PbやBiなどの蛍光物質と反応しやすい元素を含まないで、軟化点の高い(たとえばケイ酸ガラスで800℃、ホウケイ酸ガラスで650℃)ガラス被膜で被覆された粉末になっているため、空気中に保管しておいても非常に安定で、蛍光体物質が硫化物であっても空気中の水分と直接触れることがなく、酸化などにより酸化硫黄が発生することもなく、非常に安定に保つことができる。また、後述する発光色変換部材とする場合でも、この粉末を軟化点の低いPbOなどを含むガラスに分散させて使用しても、蛍光体物質そのものは安定したガラス被膜により被覆されているため、蛍光物質がPbなどと反応して変質したり変色したりすることがない。   According to the phosphor powder of the present invention, it does not contain an element that easily reacts with a phosphor such as Pb or Bi, and has a high softening point (for example, 800 ° C. for silicate glass and 650 ° C. for borosilicate glass). Since it is a coated powder, it is very stable even when stored in the air, and even if the phosphor material is sulfide, it does not come into direct contact with moisture in the air, and sulfur oxides due to oxidation etc. Can be kept very stable without any occurrence. In addition, even in the case of a luminescent color conversion member described later, even if this powder is dispersed in glass containing PbO or the like having a low softening point, the phosphor substance itself is covered with a stable glass coating, The fluorescent substance does not react with Pb or the like to change or change color.

本発明による発光色変換部材5は、図2にその一実施形態の断面説明図および一部拡大説明図がそれぞれ示されるように、蛍光体粒子1の周りにPbまたはBiを含まないガラス被膜2が設けられる蛍光体含有ガラス粉末3がPbを含むガラス体4内に分散されている。蛍光体含有ガラス粉末3は、たとえば前述の図1に示されるように、蛍光体粒子1の外周にPbまたはBiを含まないガラス被膜2が設けられたもので、ガラス体4と合せた全体の重量に対して、1〜10wt%程度分散されている。   The luminescent color conversion member 5 according to the present invention has a glass coating 2 that does not contain Pb or Bi around the phosphor particles 1, as shown in FIG. Is dispersed in a glass body 4 containing Pb. For example, as shown in FIG. 1 described above, the phosphor-containing glass powder 3 is provided with a glass coating 2 that does not contain Pb or Bi on the outer periphery of the phosphor particles 1. About 1 to 10 wt% is dispersed with respect to the weight.

ガラス体4は、たとえばケイ酸ガラスまたはホウケイ酸ガラスに、鉛ガラス(PbO)が5〜85wt%程度混合されたもので、PbOが50wt%以上混合されることにより、軟化点を600℃程度に下げることができる。なお、このガラス体4には、アルカリ金属酸化物が含まれていると、接着やモールドに用いられる樹脂を劣化させるので、含有しないことが好ましい。   The glass body 4 is made of, for example, silicate glass or borosilicate glass mixed with about 5 to 85 wt% of lead glass (PbO). By mixing PbO with 50 wt% or more, the softening point is set to about 600 ° C. Can be lowered. In addition, since this glass body 4 will deteriorate resin used for adhesion | attachment or a mold, when an alkali metal oxide is contained, it is preferable not to contain.

このような発光色変換部材を製造するには、前述と同様に、ガラス材料の有機金属化合物である、TEOS、TEOPbなどの所望の熱膨張係数や軟化点などが得られるガラス材料をエタノールなどの有機溶剤に撹拌しながら混合し、少量のアンモニア水などの無機塩基または塩酸もしくは硫酸などの無機酸をさらに加えて撹拌し、20〜80℃に加熱する。その後、前述の蛍光体含有ガラス粉末を加えて撹拌することによりゲル化する。このゲル化したものを所望の形状にまたは所望の容器内に入れて100〜200℃に加熱乾燥し、さらに300〜800℃程度のガラス成分に応じた焼結温度で焼結することにより、得られる。ガラス材料としては、前述の各例の他に、低融点ガラス材料として、TEOAl、TEOFe、TEOTiなども用いることができる。   In order to manufacture such a light emitting color conversion member, a glass material that can obtain a desired thermal expansion coefficient or softening point, such as TEOS or TEOPb, which is an organic metal compound of a glass material, is used, such as ethanol, as described above. The mixture is mixed with an organic solvent while stirring, and a small amount of an inorganic base such as aqueous ammonia or an inorganic acid such as hydrochloric acid or sulfuric acid is further added and stirred, and heated to 20 to 80 ° C. Then, it gelatinizes by adding the above-mentioned fluorescent substance containing glass powder and stirring. This gelled product is put into a desired shape or in a desired container, dried by heating to 100 to 200 ° C., and further sintered at a sintering temperature corresponding to a glass component of about 300 to 800 ° C. It is done. As the glass material, TEOAl, TEOFe, TEOTi, and the like can be used as the low melting point glass material in addition to the above-described examples.

本発明の発光色変換部材によれば、樹脂を用いないでガラス体内に蛍光物質が分散されているため、紫外光や輝度の大きい光に対しても、変色したり、変質したりすることがなく、輝度も変化しないで非常に安定した発光色変換部材が得られる。しかも、ガラス体は軟化点の低い鉛ガラスが含まれているため、その含有量や成分などを調整することにより、300℃程度まで軟化点を低くすることができ、発光色変換部材の用途などにより、軟化点を低くしたり、膨張係数を調整したりすることができる。一方、蛍光物質は、軟化点が高くPbやBiなどの蛍光物質と反応しやすい元素を実質的に含まないガラス被膜により被覆されているため、ガラス体4内に軟化点を低くするためのPbなどが含まれていても蛍光物質とPbなどとが反応することはない。すなわち、目的に応じて所望の温度で硬化させることができながら、紫外光や高輝度の光に対しても何ら変質しない、非常に品質の安定した発光色変換部材が得られる。   According to the luminescent color conversion member of the present invention, since the fluorescent material is dispersed in the glass without using a resin, it can be discolored or deteriorated even with ultraviolet light or light with high luminance. In addition, a very stable luminescent color conversion member can be obtained without changing the luminance. Moreover, since the glass body contains lead glass having a low softening point, the softening point can be lowered to about 300 ° C. by adjusting the content and components thereof, and the use of the luminescent color conversion member, etc. Thus, the softening point can be lowered or the expansion coefficient can be adjusted. On the other hand, the fluorescent material has a high softening point and is covered with a glass coating that does not substantially contain an element that easily reacts with the fluorescent material such as Pb or Bi. Therefore, Pb for lowering the softening point in the glass body 4 is used. Even if it is contained, the fluorescent substance and Pb do not react. That is, it is possible to obtain a luminescent color conversion member having a very stable quality, which can be cured at a desired temperature according to the purpose, and does not change in quality even with respect to ultraviolet light or high luminance light.

しかも、樹脂ではなく、ガラス体で蛍光体粉末が固化されているため、屋外で塵埃などの激しい場所や、温度変化が激しい場所に配置される場合でも非常に安定な発光色変換部材が得られると共に、たとえば300℃程度の低い温度でも焼結させることができるため、金型などを用いることにより非常に簡単に所望の形状に作ることができる。その結果、たとえば道路の標識などに用いることにより、自動車のヘッドライトを受けてカラーの標識で表示や警告をすることができるなど、半導体発光装置のみならず、非常に応用範囲が広がるという効果がある。   In addition, since the phosphor powder is solidified with a glass body instead of a resin, a very stable luminescent color conversion member can be obtained even when placed outdoors in a place with a lot of dust or a place where the temperature changes drastically. At the same time, since sintering can be performed at a low temperature of about 300 ° C., for example, a desired shape can be made very easily by using a mold or the like. As a result, for example, it can be used for road signs, etc., so that it can display and warn with colored signs when it receives a headlight of an automobile. is there.

図3は、この発光色変換部材を半導体発光装置に応用した例の断面および一部の拡大説明図である。すなわち、図3(a)に示される例は、白色光の半導体発光装置の例が示されており、青色光をYAG(イットリウム・アルミニウム・ガーネット)蛍光体などの発光色変換部材5により白色にする例が示されている。YAG蛍光体は、LEDチップから発光する青色光を吸収して黄色に変換し、その黄色の光がLEDチップから発せられる青色光と混色して白色にするものであるが、YAG蛍光体でなくても、たとえば近紫外光を発するLEDチップと、近紫外光によって励起されて赤色、青色、緑色にそれぞれ発光する蛍光体とを設けて白色に変換する構成でもよく、LEDチップの光を白色に変換する色変換部材を用いることができる。そのため、発光素子チップ(LEDチップ6;図3ではチップに分割する前のウェハの状態が示され、2個のチップ分が示されている)は、窒化物半導体により形成され、その半導体積層部17の一面にYAG蛍光体粒子1の周囲に前述のガラス被膜2が形成された蛍光体含有ガラス粉末3がPbを含むガラス体4内に分散された発光色変換部材5が設けられている。なお、発光素子としては、図3に示されるLEDチップ6が1個の場合には限らず、複数個のチップを1つの単位として用いるブロックLEDチップの場合でも同様である。   FIG. 3 is a cross-sectional view of an example in which this light emission color conversion member is applied to a semiconductor light emitting device and a partially enlarged explanatory view. That is, the example shown in FIG. 3A is an example of a white light semiconductor light emitting device, and blue light is turned white by a light emitting color conversion member 5 such as YAG (yttrium, aluminum, garnet) phosphor. An example is shown. The YAG phosphor absorbs the blue light emitted from the LED chip and converts it into yellow, and the yellow light is mixed with the blue light emitted from the LED chip to make it white, but it is not a YAG phosphor. However, for example, an LED chip that emits near-ultraviolet light and a phosphor that is excited by near-ultraviolet light and emits red, blue, and green light, respectively, may be configured to convert to white. A color conversion member for conversion can be used. Therefore, the light emitting element chip (LED chip 6; the state of the wafer before being divided into chips in FIG. 3 is shown, and two chips are shown) is formed of a nitride semiconductor, and its semiconductor laminated portion On one surface 17, a luminescent color conversion member 5 is provided in which a phosphor-containing glass powder 3 in which the glass coating 2 described above is formed around a YAG phosphor particle 1 is dispersed in a glass body 4 containing Pb. In addition, as a light emitting element, it is not restricted to the case where the LED chip 6 shown in FIG. 3 is one, but also in the case of a block LED chip using a plurality of chips as one unit.

ここに窒化物半導体とは、III 族元素のGaとV族元素のNとの化合物またはIII 族元素のGaの一部または全部がAl、Inなどの他のIII 族元素と置換したものおよび/またはV族元素のNの一部がP、Asなどの他のV族元素と置換した化合物(窒化物)からなる半導体をいう。   Here, the nitride semiconductor means a compound in which a group III element Ga and a group V element N or a part or all of a group III element Ga is substituted with other group III elements such as Al and In, and / or Alternatively, it refers to a semiconductor made of a compound (nitride) in which a part of N of the group V element is substituted with another group V element such as P or As.

発光色変換部材5は、図2(a)に示される例と同様に、たとえば部分拡大断面説明図が図3(b)に示されるように、青色光を白色に変換するYAG蛍光体粒子1の周りにガラス被膜2が形成された蛍光体含有ガラス粉末3がPbを含むガラス体4内に重量比で5〜70%程度分散されたもので形成することができる。YAG蛍光体は、LEDチップ3から発光する青色光を吸収して黄色に変換し、その黄色の光がLEDチップ3から発せられる青色光と混色して白色にするものである。このガラス体4は、LEDチップ6の熱膨張係数と整合し得る熱膨張係数になるように、その材料が選定される。この場合、発光色変換部材をLEDチップ6の半導体層の一面に焼結する際には、LEDチップにサファイア基板11があり、一番厚いため、このサファイア基板の熱膨張係数7.4×10-6/Kに合せて、7〜7.8×10-6/K程度の熱膨張係数になるように、その成分を調整することが好ましい。このような熱膨張係数にするには、たとえばPbO:SiO2:B23をモル比で、7:2:1になるように混合することにより得られる。 As in the example shown in FIG. 2A, the luminescent color conversion member 5 is a YAG phosphor particle 1 that converts blue light into white, as shown in FIG. The phosphor-containing glass powder 3 in which the glass coating 2 is formed around is dispersed in a glass body 4 containing Pb in a weight ratio of about 5 to 70%. The YAG phosphor absorbs blue light emitted from the LED chip 3 and converts it into yellow, and the yellow light is mixed with the blue light emitted from the LED chip 3 to make white. The material of the glass body 4 is selected so that the thermal expansion coefficient can be matched with the thermal expansion coefficient of the LED chip 6. In this case, when the light emitting color conversion member is sintered on one surface of the semiconductor layer of the LED chip 6, the LED chip has the sapphire substrate 11, which is the thickest, and thus the thermal expansion coefficient of this sapphire substrate is 7.4 × 10 6. It is preferable to adjust the components so that the thermal expansion coefficient is about 7 to 7.8 × 10 −6 / K in accordance with −6 / K. Such a thermal expansion coefficient can be obtained, for example, by mixing PbO: SiO 2 : B 2 O 3 at a molar ratio of 7: 2: 1.

また、発光色変換部材5は、図3(c)に部分拡大断面説明図が示されるように、紫外光を赤色に変換する蛍光体粒子1aの周りにガラス被膜2が形成された赤色変換蛍光体含有ガラス粉末3aと、紫外光を緑色に変換する蛍光体粒子1bの周りにガラス被膜2が形成された緑色変換蛍光体含有ガラス粉末3bと、紫外光を青色に変換する蛍光体粒子1cの周りにガラス被膜2が形成された青色変換蛍光体含有ガラス粉末3cを、混合色が丁度白色になるような割合で混合し、Pbを含むガラス体4内に、この全体が前述の割合になるように分散させることにより形成されたものでもよい。   Further, as shown in FIG. 3C, the luminescent color conversion member 5 has a red conversion fluorescence in which a glass film 2 is formed around the phosphor particles 1a that convert ultraviolet light into red. The body-contained glass powder 3a, the green-converting phosphor-containing glass powder 3b in which the glass coating 2 is formed around the phosphor particles 1b that convert ultraviolet light into green, and the phosphor particles 1c that convert ultraviolet light into blue The blue-converted phosphor-containing glass powder 3c having the glass coating 2 formed around is mixed in such a ratio that the mixed color is just white, and the whole becomes the above-mentioned ratio in the glass body 4 containing Pb. It may be formed by dispersing in this manner.

この半導体発光装置の製法を図4に示される製造工程図を参照しながら説明する。なお、図4においては、1個のチップ分のみが示されているが、実際にはウェハに多数個のチップが同時に形成され、最後に各チップに分断される。   The manufacturing method of this semiconductor light emitting device will be described with reference to the manufacturing process diagram shown in FIG. In FIG. 4, only one chip is shown, but in reality, a large number of chips are formed simultaneously on the wafer and finally divided into each chip.

まず、図4(a)に示されるように、たとえばサファイア基板11上に、たとえばGaNからなる低温バッファ層12が0.005〜0.1μm程度、ついでアンドープのGaNからなる高温バッファ層13が1〜3μm程度、その上に障壁層(バンドギャップエネルギーの大きい層)となるSiをドープしたAlGaN系化合物半導体層からなるn形層14が1〜5μm程度、バンドギャップエネルギーが障壁層のそれよりも小さくなる材料、たとえば1〜3nmのInGaN系化合物からなるウェル層と10〜20nmのGaNからなるバリア層とが3〜8ペア積層される多重量子井戸 (MQW)構造の活性層15が0.05〜0.3μm程度、p形のAlGaN系化合物半導体層からなるp形障壁層(バンドギャップエネルギーの大きい層)とp形GaNからなるコンタクト層とからなるp形層16が合せて0.2〜1μm程度、それぞれ順次積層されることにより、半導体積層部17が形成されている。   First, as shown in FIG. 4A, on a sapphire substrate 11, for example, a low-temperature buffer layer 12 made of, for example, GaN is about 0.005 to 0.1 μm, and then a high-temperature buffer layer 13 made of undoped GaN is 1 The n-type layer 14 made of an AlGaN-based compound semiconductor layer doped with Si that becomes a barrier layer (a layer having a large band gap energy) is about 1 to 5 μm, and the band gap energy is higher than that of the barrier layer. An active layer 15 having a multiple quantum well (MQW) structure in which 3 to 8 pairs of a small material, for example, a well layer made of an InGaN-based compound of 1 to 3 nm and a barrier layer made of 10 to 20 nm of GaN is stacked. A p-type barrier layer (a layer having a large band gap energy) composed of a p-type AlGaN compound semiconductor layer and p-type Ga A p-type layer 16 composed of a contact layer composed of N is sequentially laminated to a thickness of about 0.2 to 1 μm, thereby forming a semiconductor multilayer portion 17.

なお、アンドープの高温バッファ層13は、積層されるチッ化ガリウム系化合物半導体層の結晶性を良くするため、高温で成長する最初の層をアンドープにしているもので、基板が導電性の場合にはアンドープにはしない。また、p形層16は、キャリアの閉じ込め効果の点から活性層15側にAlを含む層が設けられることが好ましいものの、AlGaN系化合物層またはGaN層だけでもよい。また、n形層14も他のチッ化ガリウム系化合物半導体層または複層で形成することもできる。さらに、この例では、n形層14とp形層16とで活性層15が挟持されたダブルヘテロ接合構造であるが、n形層とp形層とが直接接合するpn接合構造のものでもよい。   The undoped high-temperature buffer layer 13 is an undoped first layer grown at a high temperature in order to improve the crystallinity of the laminated gallium nitride compound semiconductor layer. When the substrate is conductive, Will not be undoped. The p-type layer 16 is preferably an AlGaN-based compound layer or a GaN layer, although a layer containing Al is preferably provided on the active layer 15 side from the viewpoint of the carrier confinement effect. The n-type layer 14 can also be formed of other gallium nitride compound semiconductor layers or multiple layers. Furthermore, in this example, the active layer 15 is sandwiched between the n-type layer 14 and the p-type layer 16, but a pn junction structure in which the n-type layer and the p-type layer are directly joined is also possible. Good.

この後、図4(b)に示されるように、半導体積層部上に、前述の発光色変換部材5を形成する。すなわち、前述のガラス材料と蛍光体含有ガラス粉末を混ぜてゲル化したものを、p形層16上に塗布して加熱乾燥し、さらに焼結することにより半導体積層部上に発光色変換部材5を形成する。この発光色変換部材5は、後述するように新たな基板とするため、50〜200μm程度の厚さに形成される。   Thereafter, as shown in FIG. 4B, the aforementioned light emission color conversion member 5 is formed on the semiconductor stacked portion. That is, the above-mentioned glass material and phosphor-containing glass powder mixed and gelated are applied onto the p-type layer 16, dried by heating, and further sintered to luminescent color conversion member 5 on the semiconductor laminate. Form. The luminescent color conversion member 5 is formed to a thickness of about 50 to 200 μm so as to be a new substrate as will be described later.

その後、図4(c)に示されるように、ウェハの表裏を逆転させてサファイア基板1の裏面側からレーザ光を照射し、サファイア基板1と半導体積層部との境界のチッ化ガリウム層を加熱して、サファイア基板を剥離する。その後、剥離した部分の半導体層を研磨またはエッチングなどにより除去して、図4(d)に示されるようにn形層14を露出させる。発光する光が紫外光の場合には、GaN層により紫外光が吸収されるため、できるだけGaN層は除去した方がよいが、青色の場合には、高温バッファ層13がn形層になっていればそのn形層でもよい。   Thereafter, as shown in FIG. 4C, the front and back of the wafer are reversed and laser light is irradiated from the back side of the sapphire substrate 1 to heat the gallium nitride layer at the boundary between the sapphire substrate 1 and the semiconductor stack. Then, the sapphire substrate is peeled off. Thereafter, the peeled portion of the semiconductor layer is removed by polishing or etching to expose the n-type layer 14 as shown in FIG. When the emitted light is ultraviolet light, it is better to remove the GaN layer as much as possible because the GaN layer absorbs the ultraviolet light, but when it is blue, the high temperature buffer layer 13 is an n-type layer. The n-type layer may be used.

その後、図4(e)に示されるように、半導体積層部17の一部をエッチング除去してp形層16を露出させる。その後、図4(f)に示されるように、露出したp形層16にp側電極18を、n形層14の表面にn側電極19を形成する。そして、各チップに分割する部分に発光色変換部材5側から、厚いブレードでハーフカットすることにより凹溝5aを形成し、図3(a)に示されるように、光出射面側を狭くした凸型の発光装置とすることができる。そして、凹溝の底部で切断することにより各チップに分割される。しかし、必ずしもこのような凹溝5aを形成する必要はなく、直接四角形状に切断しても構わない。   Thereafter, as shown in FIG. 4E, a part of the semiconductor stacked portion 17 is removed by etching to expose the p-type layer 16. Thereafter, as shown in FIG. 4F, the p-side electrode 18 is formed on the exposed p-type layer 16, and the n-side electrode 19 is formed on the surface of the n-type layer 14. Then, the groove 5a is formed by half-cutting with a thick blade from the side of the light emitting color conversion member 5 in the portion divided into each chip, and the light emitting surface side is narrowed as shown in FIG. A convex light emitting device can be obtained. And it is divided | segmented into each chip | tip by cut | disconnecting at the bottom part of a ditch | groove. However, it is not always necessary to form such a concave groove 5a, and it may be directly cut into a square shape.

前述の例では、基板およびバッファ層が除去されて露出するn形層14の露出面にn側電極19が、半導体積層部17の一部がエッチング除去して露出するp型層16にp側電極が形成されているが、こうすることにより、基板を除去することができるため薄くすることができると共に、発光する光が紫外光の場合には、バッファ層がGaN化合物により形成されており、紫外光を吸収する性質を有しているが、その光を吸収するGaN層を除去することができるため、発光効率を向上させることができる。しかし、LEDの発光色、または積層する半導体層や基板の光の吸収特性によっては、このような剥離は必ずしも必要ではない。この場合には、前述の半導体積層部を形成した後に、サファイア基板11の裏面に発光色変換部材5を形成して、その後に、通常の半導体積層部上に電極を形成する方法と同様の方法で製造することができる。   In the above-described example, the n-side electrode 19 is exposed on the exposed surface of the n-type layer 14 exposed by removing the substrate and the buffer layer, and the p-type layer 16 exposed by etching away a part of the semiconductor stacked portion 17 is p-side. Although the electrode is formed, the substrate can be removed by this, so that it can be thinned, and when the emitted light is ultraviolet light, the buffer layer is formed of a GaN compound, Although it has the property of absorbing ultraviolet light, the GaN layer that absorbs the light can be removed, so that the light emission efficiency can be improved. However, such peeling is not necessarily required depending on the light emission color of the LED or the light absorption characteristics of the laminated semiconductor layer or substrate. In this case, a method similar to the method of forming the light emitting color conversion member 5 on the back surface of the sapphire substrate 11 after forming the above-described semiconductor stacked portion and then forming the electrode on the normal semiconductor stacked portion. Can be manufactured.

本発明の半導体発光装置によれば、半導体積層部に直接発光色変換部材が設けられているため、通常のLEDチップと同じ大きさで白色発光のLEDチップを得ることができる。さらに、この構成にすることにより、電極の形成前に発光色変換部材を設けることができるため、ガラス体の成分に応じた焼結温度で焼結することが出来、熱膨張係数などを適合させたガラス体の成分にすることができる。さらに、電極が設けられる側から光を取り出さなくてよいため、n形層14の表面およびエッチングにより露出したp形層16表面のほぼ全面にn側電極19およびp側電極18を設けることができ、電流をLEDチップの発光部のほぼ全面に効率よく広げることができると共に、光の発射面側には光を遮るものが一切なく、非常に光の取出し効率が向上する。さらに、フリップチップ形式の実装をすることができるため、発光して発熱する側の近くで電極により直接回路基板と接続され、熱伝導が良好になるため、放熱効果が優れてLEDの信頼性を向上させることができる。なお、前述の例では、p形層16に直接発光色変換部材5が設けられているが、p形層16での電流拡散が充分に行われない場合には、その間にZnO層やITOなどの透光性導電層を介在させることもできる。   According to the semiconductor light emitting device of the present invention, since the light emitting color conversion member is directly provided in the semiconductor laminated portion, a white light emitting LED chip having the same size as a normal LED chip can be obtained. Furthermore, with this configuration, since the light emitting color conversion member can be provided before the electrode is formed, it can be sintered at a sintering temperature corresponding to the components of the glass body, and the thermal expansion coefficient is adapted. The glass body can be a component. Further, since it is not necessary to extract light from the side where the electrodes are provided, the n-side electrode 19 and the p-side electrode 18 can be provided on almost the entire surface of the n-type layer 14 and the surface of the p-type layer 16 exposed by etching. In addition, the current can be efficiently spread over almost the entire surface of the light emitting portion of the LED chip, and there is nothing to block the light on the light emitting surface side, so that the light extraction efficiency is greatly improved. Furthermore, since it can be mounted in a flip-chip format, it is directly connected to the circuit board by an electrode near the side that emits light and generates heat, and since heat conduction is good, the heat dissipation effect is excellent and the reliability of the LED is improved. Can be improved. In the above-described example, the light emission color conversion member 5 is directly provided on the p-type layer 16. However, when current diffusion in the p-type layer 16 is not sufficiently performed, a ZnO layer, ITO, etc. The translucent conductive layer can also be interposed.

このように、半導体積層部17の一面に直接発光色変換部材5が設けられることにより、種々のメリットがあるが、半導体発光装置にする場合でも、このような構造に限定されるものではなく、たとえば図5に示されるようなランプタイプの構造でも形成することができる。すなわち、図5(a)において、板状体から形成された第1のリード21の先端部に板状体の端面から形成された凹部21a内にLEDチップ23がボンディングされ、その一方の電極は第1のリード21と電気的に接続され、他方の電極が、同様に板状体から形成された第2のリード22の先端部とワイヤ24により電気的に接続され、その周囲が発光色変換部材25により被覆される構造になっている。この発光色変換部材25は、前述の図2に示される発光色変換部材を製造する場合と同様の方法でゲル化した状態で、ドーム状凹部が形成された型内にリードフレームでLEDチップ23がマウントされたものを挿入し、発光色変換部材25のゲル状態のものを充填して、加熱乾燥することにより、図5(b)に示されるような発光色変換ガラス粉末3と普通のガラス粉末5bが凝集した多孔質ガラス体25aとされ、その後に、その空隙内にシリコーン樹脂などの紫外光に対しても耐性のある樹脂7を充填することにより得られる。   As described above, there are various merits by providing the light emission color conversion member 5 directly on one surface of the semiconductor stacked portion 17, but even in the case of a semiconductor light emitting device, it is not limited to such a structure. For example, a lamp-type structure as shown in FIG. 5 can also be formed. That is, in FIG. 5A, the LED chip 23 is bonded in the recess 21a formed from the end surface of the plate-like body to the tip portion of the first lead 21 formed from the plate-like body, and one electrode thereof is The first lead 21 is electrically connected, and the other electrode is electrically connected to the tip of the second lead 22 similarly formed of a plate-like body by a wire 24, and the periphery of the second lead 22 is converted to light emission color. The structure is covered with the member 25. The light emission color conversion member 25 is gelled by the same method as in the case of manufacturing the light emission color conversion member shown in FIG. 2, and the LED chip 23 is formed by a lead frame in a mold in which a dome-shaped recess is formed. Is inserted, filled with the gel color of the luminescent color conversion member 25, and dried by heating, whereby the luminescent color conversion glass powder 3 and ordinary glass as shown in FIG. The porous glass body 25a is obtained by agglomerating the powder 5b, and thereafter, the void 7 is obtained by filling a resin 7 that is resistant to ultraviolet light such as a silicone resin.

この多孔質体内に樹脂などを充填するには、たとえば型内で多孔質ガラス体を形成したのに引き続いて、型の一端部から樹脂を注入しながら、型の他端部から真空引きするなどの方法により空隙内に充填することができる。このような構造にすることにより、蛍光体含有ガラス粉末を用いながら、高温で焼結することなく発光装置を形成することができ、ガラス粉末の材料を自由に選択することができると共に、電極を形成した後でも発光色変換部材で被覆することもできる。さらに、ガラス体のみならず、シリコーン樹脂などの弾力性のある物質がガラス粉末の間に介在しているため、発光色変換部材自身に弾力性が生じ、LEDチップとの間に熱膨張係数の差などがあっても、ガラスへのクラックやワイヤの断線などが生じにくくなる。   In order to fill the porous body with resin or the like, for example, after the porous glass body is formed in the mold, the resin is injected from one end of the mold and vacuumed from the other end of the mold. The voids can be filled by this method. By adopting such a structure, while using the phosphor-containing glass powder, a light emitting device can be formed without sintering at a high temperature, and the material of the glass powder can be freely selected, and the electrode can be used. Even after the formation, the light-emitting color conversion member can be covered. Further, since not only the glass body but also a resilient material such as silicone resin is interposed between the glass powders, elasticity is generated in the light emitting color conversion member itself, and the thermal expansion coefficient is between the LED chip and the LED chip. Even if there is a difference, cracks in the glass and wire breakage are less likely to occur.

前述の各例では、紫外光を白色にする例であったが、この例には限定されず、LEDの発光色と補色になる色の蛍光体粒子を用いることにより白色光にすることができるし、また、所望の発光色に応じてLEDの発光色と発光色変換部材の変換色を設定することもできる。   In each of the above-described examples, the ultraviolet light is white. However, the present invention is not limited to this example, and white light can be obtained by using phosphor particles having a color complementary to the light emission color of the LED. In addition, the emission color of the LED and the conversion color of the emission color conversion member can be set according to the desired emission color.

本発明の半導体発光装置に用いられる蛍光体粉末の一の拡大断面説明図である。It is an enlarged cross-sectional illustration of an example of a phosphor powder that is used in a semiconductor light-emitting device of the present invention. 本発明の半導体発光装置に用いられる発光色変換部材の断面および一部拡大説明図である。It is a cross-sectional and partially enlarged illustration of a luminous color converting member that is used in a semiconductor light-emitting device of the present invention. 本発明による半導体発光装置の一実施形態を示す断面および発光色変換部材の構成例を示す断面説明図である。It is sectional drawing which shows the cross-section which shows one Embodiment of the semiconductor light-emitting device by this invention, and the structural example of the luminescent color conversion member. 図3の半導体発光装置の製造工程を説明する図である。It is a figure explaining the manufacturing process of the semiconductor light-emitting device of FIG. 本発明による半導体発光装置の他の例を示す説明図である。It is explanatory drawing which shows the other example of the semiconductor light-emitting device by this invention. 従来のガラスを用いた発光色変換部材の構成例を示す断面説明図である。It is sectional explanatory drawing which shows the structural example of the luminescent color conversion member using the conventional glass.

符号の説明Explanation of symbols

1 蛍光体粒子
2 ガラス被膜
3 蛍光体含有ガラス粉末
4 ガラス体
5 発光色変換部材
6 LEDチップ

DESCRIPTION OF SYMBOLS 1 Phosphor particle 2 Glass coating 3 Phosphor containing glass powder 4 Glass body 5 Luminescent color conversion member 6 LED chip

Claims (1)

発光素子チップと、該発光素子チップの少なくとも光発射面側に設けられる発光色変換部材とを有する半導体発光装置であって、前記発光色変換部材が、蛍光体粒子の周りにケイ酸ガラスまたはホウケイ酸ガラスからなるガラス被膜が設けられる蛍光体含有ガラス粉末を用いることにより形成され、かつ、前記発光色変換部材が、前記蛍光体含有ガラス粉末を凝集させた多孔質ガラス体の隙間に、紫外光に耐性のある樹脂を充填することにより形成されてなる半導体発光装置。 A semiconductor light emitting device having a light emitting element chip and a light emitting color conversion member provided on at least a light emitting surface side of the light emitting element chip, wherein the light emitting color conversion member is formed of silicate glass or borosilicate around phosphor particles. It is formed by using a phosphor-containing glass powder provided with a glass film made of an acid glass , and the luminescent color conversion member has ultraviolet light in a gap between the porous glass bodies in which the phosphor-containing glass powder is aggregated. Light-emitting device formed by filling a resin that is resistant to heat .
JP2004235804A 2004-08-13 2004-08-13 Semiconductor light emitting device Expired - Fee Related JP4516378B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004235804A JP4516378B2 (en) 2004-08-13 2004-08-13 Semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004235804A JP4516378B2 (en) 2004-08-13 2004-08-13 Semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JP2006052345A JP2006052345A (en) 2006-02-23
JP4516378B2 true JP4516378B2 (en) 2010-08-04

Family

ID=36030020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004235804A Expired - Fee Related JP4516378B2 (en) 2004-08-13 2004-08-13 Semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP4516378B2 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4786886B2 (en) * 2004-08-11 2011-10-05 ローム株式会社 Semiconductor light emitting device
JP5242905B2 (en) * 2006-04-19 2013-07-24 日本電気硝子株式会社 Luminescent color conversion member manufacturing method and luminescent color conversion member
JP2008004902A (en) * 2006-06-26 2008-01-10 Asahi Glass Co Ltd Glass-sealed light emitting element including phosphor, circuit substrate with glass-sealed light emitting element, method of manufacturing glass-sealed light emitting element, and method of mounting glass-sealed light emitting element
JP5090802B2 (en) 2006-06-28 2012-12-05 ソウル セミコンダクター カンパニー リミテッド Phosphor, manufacturing method thereof, and light emitting diode
JP2008010556A (en) * 2006-06-28 2008-01-17 Stanley Electric Co Ltd Led light source device and led backlight using the same
JP2008021868A (en) * 2006-07-13 2008-01-31 Nippon Electric Glass Co Ltd Phosphor composite member
JP2008115223A (en) 2006-11-01 2008-05-22 Nec Lighting Ltd Phosphor-containing glass sheet, method for producing the same and light-emitting device
KR100900291B1 (en) 2007-01-19 2009-05-29 엘지전자 주식회사 LED package and method for manufacturing the same
JP2009013186A (en) * 2007-06-29 2009-01-22 Mitsubishi Chemicals Corp Coated phosphor particles, method for producing coated phosphor particles, phosphor-containing composition, light emitting device, image display device and illuminating device
DE102008021438A1 (en) 2008-04-29 2009-12-31 Schott Ag Conversion material in particular for a, a semiconductor light source comprising white or colored light source, method for its preparation and this conversion material comprising light source
KR101590173B1 (en) * 2014-09-17 2016-02-02 주식회사 베이스 Phosphor in glass for automobile and method of manufacturing the same
JP6515515B2 (en) * 2014-12-11 2019-05-22 日亜化学工業株式会社 Manufacturing method of light emitting device
JP6597964B2 (en) * 2015-12-10 2019-10-30 日本電気硝子株式会社 Wavelength conversion member, wavelength conversion element, and light emitting device using the same
JP6920859B2 (en) * 2016-04-04 2021-08-18 スタンレー電気株式会社 Light emitting device and its manufacturing method
JP6776859B2 (en) * 2016-12-09 2020-10-28 日本電気硝子株式会社 Manufacturing method of wavelength conversion member, wavelength conversion member and light emitting device
CN111602256B (en) * 2018-01-22 2023-10-24 亮锐控股有限公司 Coated wavelength converting material for light emitting devices
KR102168701B1 (en) * 2019-03-08 2020-10-22 주식회사 유제이엘 Multi-color phosphor plate, light emitting diode package including the multi-color phosphor plate and method of manufacturing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11177129A (en) * 1997-12-16 1999-07-02 Rohm Co Ltd Chip type led, led lamp and led display
JP2002173675A (en) * 2000-12-06 2002-06-21 Sanken Electric Co Ltd Fluorescence particle having coated layer and method for producing the same
JP2002203989A (en) * 2000-12-21 2002-07-19 Lumileds Lighting Us Llc Light emitting device and its manufacturing method
JP2002223008A (en) * 2000-10-17 2002-08-09 Koninkl Philips Electronics Nv Light emitting element
JP2003046141A (en) * 2001-07-31 2003-02-14 Nichia Chem Ind Ltd Light emitting device and method of manufacturing the same
JP2003258308A (en) * 2002-03-06 2003-09-12 Nippon Electric Glass Co Ltd Emission color converting member

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11177129A (en) * 1997-12-16 1999-07-02 Rohm Co Ltd Chip type led, led lamp and led display
JP2002223008A (en) * 2000-10-17 2002-08-09 Koninkl Philips Electronics Nv Light emitting element
JP2002173675A (en) * 2000-12-06 2002-06-21 Sanken Electric Co Ltd Fluorescence particle having coated layer and method for producing the same
JP2002203989A (en) * 2000-12-21 2002-07-19 Lumileds Lighting Us Llc Light emitting device and its manufacturing method
JP2003046141A (en) * 2001-07-31 2003-02-14 Nichia Chem Ind Ltd Light emitting device and method of manufacturing the same
JP2003258308A (en) * 2002-03-06 2003-09-12 Nippon Electric Glass Co Ltd Emission color converting member

Also Published As

Publication number Publication date
JP2006052345A (en) 2006-02-23

Similar Documents

Publication Publication Date Title
US11038089B2 (en) Light emitting device
JP4516378B2 (en) Semiconductor light emitting device
KR101517644B1 (en) Light-emitting device and its manufacturing method
JP5634003B2 (en) Light emitting device
JP5104490B2 (en) Light emitting device and manufacturing method thereof
EP2369651B1 (en) Semiconductor light emitting device and method for manufacturing same
CN104300068B (en) Light-emitting device and its manufacture method
CN1323441C (en) Light-emitting device and its mfg. method
JP4855869B2 (en) Method for manufacturing light emitting device
JP5326182B2 (en) Light emitting device, phosphor for light emitting element, and method for manufacturing the same
JP4591071B2 (en) Semiconductor device
CN107275457A (en) The manufacture method of light-emitting device
JP4430264B2 (en) Surface mount light emitting device
JP4266234B2 (en) Manufacturing method of semiconductor light emitting device
JP2016072515A (en) Light-emitting device and manufacturing method thereof
JP2007324475A (en) Wavelength conversion member and light emitting device
JP2006156668A (en) Light emitting device and its manufacturing method
CN101794855A (en) The manufacture method of semiconductor light-emitting apparatus and semiconductor light-emitting apparatus
JP2009049342A (en) Light emitting device
JP2008244357A (en) Semiconductor light-emitting device
TW201240158A (en) Producing method of light emitting diode device and light emitting diode element
CN103918093A (en) Semiconductor light emitting device
JP5755420B2 (en) Light emitting device
JP2014053609A (en) Light-emitting element and method of manufacturing the same
US9035340B2 (en) Red phosphor, method for preparing same, and light-emitting device comprising same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070403

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100122

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100427

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100514

R150 Certificate of patent or registration of utility model

Ref document number: 4516378

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees