JP2008010556A - Led light source device and led backlight using the same - Google Patents

Led light source device and led backlight using the same Download PDF

Info

Publication number
JP2008010556A
JP2008010556A JP2006178145A JP2006178145A JP2008010556A JP 2008010556 A JP2008010556 A JP 2008010556A JP 2006178145 A JP2006178145 A JP 2006178145A JP 2006178145 A JP2006178145 A JP 2006178145A JP 2008010556 A JP2008010556 A JP 2008010556A
Authority
JP
Japan
Prior art keywords
color conversion
light
led
conversion filter
blue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006178145A
Other languages
Japanese (ja)
Inventor
Kenichi Kondo
健一 近藤
Masatoshi Hirohashi
正敏 広橋
Junji Matsuda
純司 松田
Masahiro Yasutake
正廣 安武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2006178145A priority Critical patent/JP2008010556A/en
Publication of JP2008010556A publication Critical patent/JP2008010556A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-reliability LED light source device with almost no chromaticity variation between lots, and no chromaticity unevenness that achieves white light having a spectrum distribution including wavelength components corresponding to the light's three primary colors of R (red), G (green), and B (blue) with excellent color reproducibility. <P>SOLUTION: The LED light source device is composed so as to arrange a first color conversion filter 3 formed by dispersing a red phosphor 3a on glass 8, and a second color conversion filter 4 formed by dispersing a green phosphor 4a on the glass 8, in an irradiation direction of a blue LED 2. It is also composed so as to obtain three-wavelength white light of R, G, and B, by B (blue) light emitted from the LED 2 and guided inside the first color conversion filter 3 and inside the second color conversion filter 4, R (red) light guided inside the second color conversion filter 4 after the blue light emitted from the LED 2 is subjected to color conversion with the first color conversion filter 3, and G (green) light that is the light subjected to color conversion with the second color conversion filter 4 after the blue light emitted from the LED 2 is guided inside the first color conversion filter 3. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明はLED光源装置およびそれを使用したLEDバックライトに関するものであり、詳しくは、LEDを発光源とするLED光源装置から出射された白色光を導光体を介して被照射物に照射するLEDバックライトに関する。   The present invention relates to an LED light source device and an LED backlight using the same, and more specifically, irradiates an object to be irradiated with white light emitted from an LED light source device using an LED as a light source through a light guide. It relates to an LED backlight.

従来、急峻な発光スペクトルを有するLEDを発光源として白色光に近い色度の光を得る方法として、LED素子と蛍光体との組み合わせによる方法が提案されている。それは、発光スペクトルのピーク波長が約450〜460nmの青色LEDの周りに青色光に励起されて青色の補色となる黄色光を放出するYAG:Ceからなる黄色蛍光体を分散したシリコーン樹脂をコートし、青色LEDからの青色光の一部が蛍光体を励起することによって波長変換された黄色光と、青色LEDからの青色光との加法混色によって白色光に近い色度の光を得るものである。   Conventionally, a method using a combination of an LED element and a phosphor has been proposed as a method of obtaining light having a chromaticity close to white light using an LED having a steep emission spectrum as a light source. It is coated with a silicone resin in which a yellow phosphor made of YAG: Ce that emits yellow light that is excited by blue light and emits a complementary color of blue is emitted around a blue LED having an emission spectrum peak wavelength of about 450 to 460 nm. In addition, light having a chromaticity close to that of white light is obtained by an additive color mixture of yellow light, in which part of blue light from the blue LED is wavelength-converted by exciting the phosphor, and blue light from the blue LED. .

このような構成からなるLEDは、例えばプリンタ用読取光源、パネル照明装置、一般照明装置、および各種インジケータ等に組み込んで使用されるが、携帯電話や薄型テレビ等のカラーLCD用バックライトの場合はR(赤色)・G(緑色)・B(青色)の各カラーフィルタの透過波長領域に対応した比較的半値幅の狭い波長成分を有する発光スペクトルが求められる。   The LED having such a structure is used by being incorporated in, for example, a reading light source for a printer, a panel illumination device, a general illumination device, and various indicators, but in the case of a backlight for a color LCD such as a mobile phone or a thin television. An emission spectrum having a wavelength component having a relatively narrow half-value width corresponding to the transmission wavelength region of each color filter of R (red), G (green), and B (blue) is obtained.

このような要求を満足するために、上記黄色蛍光体に加えて青色光に励起されて赤色光を放出するSrCaS:EuやCaAlSiN:Euからなる赤色蛍光体を添加し、青色LEDからの青色光の一部が蛍光体を励起することによって波長変換された黄色光及び赤色光と、青色LEDからの青色光との加法混色によって白色光に近い色度の光を得る方法が提案されている。 To satisfy such requirements, the yellow phosphor Sr l is excited in the blue light to emit red light in addition to the - X Ca X S: Eu and CaAlSiN 3: a red phosphor is added consisting of Eu A part of blue light from the blue LED excites the phosphor to obtain light having a chromaticity close to that of white light by additive color mixing of the yellow light and red light, which are wavelength-converted, and the blue light from the blue LED. A method has been proposed.

ところで、蛍光体を分散した樹脂でLED素子を封止することによって白色光に近い色度の光を得る方法は、封止樹脂内における蛍光体粒子の分布の均一性を確保することが難しく、たとえ均一性が確保できたとしてもLED素子の発光光が封止樹脂の光出射面に至るまでの光路長差によって封止樹脂の光出射面からの出射光が色調むらのある光学特性を有するものとなる。   By the way, the method of obtaining light of chromaticity close to white light by sealing the LED element with a resin in which the phosphor is dispersed is difficult to ensure the uniformity of the distribution of the phosphor particles in the sealing resin, Even if the uniformity can be ensured, the emitted light from the light emitting surface of the sealing resin has optical characteristics with uneven color tone due to the optical path length difference until the emitted light of the LED element reaches the light emitting surface of the sealing resin. It will be a thing.

そこで、このような問題を解決するために、蛍燐光体粒子からなる懸濁粒子を含む槽内に半導体デバイスを配置し、該半導体デバイスにバイアス電圧を印加することによって半導体デバイス上に懸濁粒子を堆積させるという方法が開示されている(例えば、特許文献1参照。)。   Therefore, in order to solve such a problem, the semiconductor device is placed in a tank containing suspended particles made of phosphor particles, and a bias voltage is applied to the semiconductor device to thereby suspend the suspended particles on the semiconductor device. Has been disclosed (for example, see Patent Document 1).

また、カラーLCD用バックライトに使用する光源としては、上記構成からなるLEDはR(赤色)・G(緑色)・B(青色)の各カラーフィルタの透過波長領域に対応したスペクトルの色純度が悪く、良好な色再現性を得ることも困難である。   As a light source used for a backlight for a color LCD, the LED having the above configuration has a color purity of a spectrum corresponding to a transmission wavelength region of each color filter of R (red), G (green), and B (blue). It is bad and it is difficult to obtain good color reproducibility.

そこで、発光スペクトルのピーク波長が約460nmの青色LED素子と、該青色LED素子の発光光に励起されて半値幅の小さいシャープなスペクトルを有する光を放出するSr1−XCaGaS4:Euからなる緑色蛍光体および半値幅の小さいシャープなスペクトルを有する光を放出するSr1−XCaS:Euからなる赤色蛍光体を組み合わせる方法が提案されている。 Therefore, a blue LED element having an emission spectrum peak wavelength of about 460 nm and Sr 1-X Ca X Ga 2 S4 that emits light having a sharp spectrum with a small half-value width when excited by the light emitted from the blue LED element: A method of combining a green phosphor made of Eu and a red phosphor made of Sr 1-X Ca X S: Eu that emits light having a sharp spectrum with a small half-value width has been proposed.

しかしながら、これら硫化物蛍光体は発光輝度は高いが、高温高湿の環境下において水蒸気と反応して劣化する点、パッケージの光反射面を形成する銀膜と反応して黒化する点等の信頼性に欠けるところがある。   However, although these sulfide phosphors have high emission luminance, they deteriorate by reacting with water vapor in a high temperature and high humidity environment, and blackening by reacting with the silver film forming the light reflecting surface of the package. There is a lack of reliability.

また、赤色蛍光体は緑色蛍光体が放出する、前記赤色蛍光体が放出する光よりも短波長の光を再吸収するという問題、赤色蛍光体と緑色蛍光体が互いに異なる比重、粒径を有するために封止樹脂内の2種類の蛍光体を均一に分散させることが困難であるとともに2種類の蛍光体の混合比率を高精度で再現性良く確保することも困難であり、その結果、封止樹脂の光出射面からの出射光を再現性良く色調むらの少ない光学特性を有するものとするためには生産管理に多大な労力と時間が費やされ、歩留まりも悪いという問題を有している。   The red phosphor emits from the green phosphor, re-absorbs light having a shorter wavelength than the light emitted from the red phosphor, and the red phosphor and the green phosphor have different specific gravities and particle sizes. Therefore, it is difficult to uniformly disperse the two types of phosphors in the sealing resin, and it is also difficult to ensure the mixing ratio of the two types of phosphors with high accuracy and good reproducibility. In order to make the light emitted from the light exit surface of the stop resin to have optical characteristics with good reproducibility and little unevenness in color tone, there is a problem that a great deal of labor and time is spent on production management and the yield is also poor. Yes.

そこで、このような問題を解決するために、ガラス粉末と蛍光体粉末を焼結することによってガラス中に蛍光体が分散された発光色変換部材を形成するという方法が開示されている(例えば、特許文献2参照。)。
特開2005−286327号公報 特開2003−258308号公報
Therefore, in order to solve such a problem, a method of forming a light emitting color conversion member in which phosphor is dispersed in glass by sintering glass powder and phosphor powder is disclosed (for example, (See Patent Document 2).
JP 2005-286327 A JP 2003-258308 A

しかしながら、開示された方法は青色光に励起されて黄色光を放出する黄色蛍光体をガラス中に分散して発光色変換部材としたものであり、光学特性のロット間ばらつきを低減させるには有効な方法ではあるが、カラーLCD用バックライトに使用するには上述の光学性能を満足していないために困難である。   However, in the disclosed method, a yellow phosphor that emits yellow light when excited by blue light is dispersed in a glass to form an emission color conversion member, which is effective in reducing variation in optical characteristics among lots. However, it is difficult to use it for a color LCD backlight because the above optical performance is not satisfied.

そこで、本発明は上記問題に鑑みて創案なされたもので、その目的とするところは、R(赤色)・G(緑色)・B(青色)の光の三原色に対応した波長成分を含むスペクトル分布を有する白色光を良好な色再現性をもって実現するとともに、色度むらおよびロット間の色度ばらつきの少ない、高信頼性のLED光源装置を提供することにある。   Accordingly, the present invention was devised in view of the above problems, and its object is to provide a spectral distribution including wavelength components corresponding to the three primary colors of R (red), G (green), and B (blue) light. It is an object of the present invention to provide a highly reliable LED light source device that realizes white light having a good color reproducibility and has little chromaticity unevenness and lot-to-lot chromaticity variation.

上記課題を解決するために、本発明の請求項1に記載された発明は、1個または同一の発光スペクトルを有する複数個の青色発光LEDと、
ガラスに赤色蛍光体を分散した第一の色変換フィルタと、
ガラスに緑色蛍光体を分散した第二の色変換フィルタを有するLED光源装置であって、
前記青色発光LEDからの青色光が前記第一の色変換フィルタおよび前記第二の色変換フィルタのうちの一方に入射して、前記第一の色変換フィルタおよび前記第二の色変換フィルタのうちの他方から白色光が出射するようにしたことを特徴とするものである。
In order to solve the above problem, the invention described in claim 1 of the present invention includes one or a plurality of blue light emitting LEDs having the same emission spectrum,
A first color conversion filter in which a red phosphor is dispersed in glass;
An LED light source device having a second color conversion filter in which a green phosphor is dispersed in glass,
Blue light from the blue light emitting LED is incident on one of the first color conversion filter and the second color conversion filter, and the first color conversion filter and the second color conversion filter. The white light is emitted from the other of the two.

また、本発明の請求項2に記載された発明は、請求項1において、前記青色発光LEDからの青色光が前記第一の色変換フィルタに入射して、前記第二の色変換フィルタから白色光が出射するようにしたことを特徴とするものである。   According to a second aspect of the present invention, in the first aspect, the blue light from the blue light-emitting LED is incident on the first color conversion filter, and the white color from the second color conversion filter is white. The light is emitted.

また、本発明の請求項3に記載された発明は、請求項1または2のいずれか1項において、前記赤色蛍光体がSr1−XCaS:Euであり、前記緑色蛍光体がSr1−XCaGa:Euであることを特徴とするものである。 In the invention described in claim 3 of the present invention, in any one of claims 1 and 2, the red phosphor is Sr 1-X Ca X S: Eu, and the green phosphor is Sr. 1-X Ca X Ga 2 S 4 : Eu.

また、本発明の請求項4に記載された発明は、請求項1〜3のいずれか1項に記載されたLED光源装置と導光体を備え、前記LED光源装置からの白色光が前記導光体を介して被照射物に照射されることを特徴とするものである。   Moreover, the invention described in claim 4 of the present invention includes the LED light source device described in any one of claims 1 to 3 and a light guide, and white light from the LED light source device is guided. The irradiated object is irradiated through a light body.

また、本発明の請求項5に記載された発明は、請求項4において、前記被照射物がLCDであることを特徴とするものである。   The invention described in claim 5 of the present invention is characterized in that, in claim 4, the irradiated object is an LCD.

本発明のLED光源装置を、青色発光LEDからの青色光が、ガラスに赤色蛍光体を分散した第一の色変換およびガラスに緑色蛍光体を分散した第二の色変換フィルタのうちの一方に入射することによって、第一の色変換フィルタおよび第二の色変換フィルタのうちの他方から白色光が出射されるようにした。   The LED light source device of the present invention is applied to one of the first color conversion in which the blue light from the blue light emitting LED is dispersed in the glass and the second color conversion filter in which the green phosphor is dispersed in the glass. By making the light incident, white light is emitted from the other of the first color conversion filter and the second color conversion filter.

その結果、三波長白色光を良好な色再現性をもって実現するとともに、色度むらおよびロット間の色度ばらつきの少ない、高信頼性のLED光源装置を実現することができた。   As a result, it has been possible to realize a highly reliable LED light source device that realizes three-wavelength white light with good color reproducibility and has little chromaticity unevenness and chromaticity variation between lots.

以下、この発明の好適な実施形態を図1〜図6を参照しながら、詳細に説明する(同一部分については同じ符号を付す)。尚、以下に述べる実施形態は、本発明の好適な具体例であるから、技術的に好ましい種々の限定が付されているが、本発明の範囲は、以下の説明において特に本発明を限定する旨の記載がない限り、これらの実施形態に限られるものではない。   Hereinafter, a preferred embodiment of the present invention will be described in detail with reference to FIGS. 1 to 6 (the same parts are denoted by the same reference numerals). The embodiments described below are preferable specific examples of the present invention, and thus various technically preferable limitations are given. However, the scope of the present invention particularly limits the present invention in the following description. Unless stated to the effect, the present invention is not limited to these embodiments.

図1は本発明のLED光源装置の構成例を示した概略図である。本構成のLED光源装置1はLED2、第一の色変換フィルタ3および第二の色変換フィルタ4を備えている。   FIG. 1 is a schematic view showing a configuration example of an LED light source device of the present invention. The LED light source device 1 having this configuration includes an LED 2, a first color conversion filter 3, and a second color conversion filter 4.

LED2は、B(青色)光を発光するLEDチップ5を透光性を有する封止樹脂6で樹脂封止したものである。封止樹脂6はシリコーン樹脂、エポキシ樹脂、シリコーンエポキシ樹脂等からなり、LEDチップ5を水分、塵埃およびガス等の外部環境から保護し、且つ架空配線されたボンディングワイヤ7を振動及び衝撃等の外力から保護する働きを有すると共に、LEDチップ5の光出射面と封止樹脂6が界面を形成することによって、LEDチップ5の光出射面と界面を形成する部材の屈折率を該LEDチップ5の光出射面を形成する半導体材料の屈折率に近づけて、LEDチップ5の光出射面から封止樹脂6内に入射する発光光の光取出し効率を向上させる役割も担っている。   The LED 2 is obtained by sealing a LED chip 5 that emits B (blue) light with a sealing resin 6 having translucency. The sealing resin 6 is made of silicone resin, epoxy resin, silicone epoxy resin, and the like, protects the LED chip 5 from the external environment such as moisture, dust, and gas, and applies the external force such as vibration and shock to the aerial wiring wire 7. The light emitting surface of the LED chip 5 and the sealing resin 6 form an interface, so that the refractive index of the member that forms the interface with the light emitting surface of the LED chip 5 is reduced. It also plays a role of improving the light extraction efficiency of the emitted light incident on the sealing resin 6 from the light emitting surface of the LED chip 5 close to the refractive index of the semiconductor material forming the light emitting surface.

なお、樹脂封止6の替わりに低融点ガラスによる封止も可能である。この場合、ガラス封止は上記樹脂封止と同様の役割を果たす。   Note that sealing with a low-melting glass instead of the resin sealing 6 is also possible. In this case, glass sealing plays the same role as the resin sealing.

LED2の照射方向にはLED2側から順次第一の色変換フィルタ3および第二の色変換フィルタ4が配置されている。   A first color conversion filter 3 and a second color conversion filter 4 are sequentially arranged from the LED 2 side in the irradiation direction of the LED 2.

第一の色変換フィルタ3は、赤色蛍光体3aを分散した厚み0.3mmのガラス8であり、ガラス粉末に対してSr1−XCaS:Eu(0<X<1)からなる赤色蛍光体粉末を1wt%混合し、空気中で約800℃の温度で数時間焼成することによって形成されたものである。 The first color conversion filter 3 is a glass 8 having a thickness of 0.3 mm in which a red phosphor 3a is dispersed. The glass powder is a red color composed of Sr 1-X Ca X S: Eu (0 <X <1). The phosphor powder is formed by mixing 1 wt% of phosphor powder and firing in air at a temperature of about 800 ° C. for several hours.

第二の色変換フィルタ4は、緑色蛍光体4aを分散した厚み0.3mmのガラス8であり、ガラス粉末に対してSr1−XCaGa:Eu(0<X<1)からなる緑色蛍光体粉末を6wt%混合し、空気中で約800℃の温度で数時間焼成することによって形成されたものである。 The second color conversion filter 4 is a glass 8 having a thickness of 0.3 mm in which a green phosphor 4a is dispersed, and Sr 1-X Ca X Ga 2 S 4 : Eu (0 <X <1) with respect to the glass powder. The green phosphor powder is made by mixing 6 wt% and firing in air at a temperature of about 800 ° C. for several hours.

このような構成において、LED2から発せられて第一の色変換フィルタ3の光入射面3bから第一の色変換フィルタ3内に入射し、該第一の色変換フィルタ3内を導光されて第一の色変換フィルタ3の光出射面3cに至る光は、第一の色変換フィルタ3内に分散された赤色蛍光体3aがLED2からのB(青色)光の一部に励起されて波長変換されたR(赤色)光と第一の色変換フィルタ3をそのまま透過したLED2からのB(青色)光とからなる。   In such a configuration, the light emitted from the LED 2 enters the first color conversion filter 3 from the light incident surface 3 b of the first color conversion filter 3, and is guided through the first color conversion filter 3. The light reaching the light exit surface 3 c of the first color conversion filter 3 is excited by a part of the B (blue) light from the LED 2 by the red phosphor 3 a dispersed in the first color conversion filter 3. It consists of the converted R (red) light and the B (blue) light from the LED 2 that has passed through the first color conversion filter 3 as it is.

そして、第一の色変換フィルタ3の光出射面3cから出射して第二の色変換フィルタ4の光入射面4bから第二の色変換フィルタ4内に入射し、該第二の色変換フィルタ4内を導光されて第二の色変換フィルタ4の光出射面4cに至る光は、第一の色変換フィルタ3内に分散された赤色蛍光体3aがLED2からのB(青色)光の一部に励起されて波長変換されてそのまま第二の色変換フィルタ4を透過したR(赤色)光と第二の色変換フィルタ4内に分散された緑色蛍光体4aが第一の色変換フィルタ3をそのまま透過したLED2からのB(青色)光の一部に励起されて波長変換されたG(緑色)光と第一の色変換フィルタ3および第二の色変換フィルタ4をそのまま透過したLED2からのB(青色)光とからなる。   Then, the light is emitted from the light exit surface 3c of the first color conversion filter 3 and enters the second color conversion filter 4 from the light incident surface 4b of the second color conversion filter 4, and the second color conversion filter. The light that is guided through 4 and reaches the light exit surface 4 c of the second color conversion filter 4 is generated by the red phosphor 3 a dispersed in the first color conversion filter 3 as B (blue) light from the LED 2. R (red) light that has been partially excited, wavelength-converted, and passed through the second color conversion filter 4 as it is, and the green phosphor 4a dispersed in the second color conversion filter 4 are the first color conversion filter. LED 2 that has passed through the first color conversion filter 3 and the second color conversion filter 4 as it is, and G (green) light that has been excited by a part of B (blue) light from the LED 2 that has passed through the LED 3 and has undergone wavelength conversion. From B (blue) light.

したがって、第二の色変換フィルタ4の光出射面4cから出射される光はR(赤色)・G(緑色)・B(青色)の光の三原色に対応した波長成分を含むスペクトル分布を有し、人間にはR(赤色)光・G(緑色)光・B(青色)光の加法混色によるW(白色)光として認識される。   Therefore, the light emitted from the light emitting surface 4c of the second color conversion filter 4 has a spectral distribution including wavelength components corresponding to the three primary colors of R (red), G (green), and B (blue) light. It is recognized by humans as W (white) light by additive color mixture of R (red) light, G (green) light, and B (blue) light.

図2はLEDから発せられて第一の色変換フィルタに入射し、第一の色変換フィルタ内および第二の色変換フィルタ内を導光されて第二の色変換フィルタから出射される光のスペクトル分布を示したものである。このスペクトル分布からわかるように、R(赤色)・G(緑色)・B(青色)の光の三原色を示す波長領域に対応した比較的半値幅の狭い波長成分を含んでおり、この三原色光の加法混色により三波長白色光が形成されている。   FIG. 2 shows the light emitted from the LED and incident on the first color conversion filter, guided through the first color conversion filter and the second color conversion filter, and emitted from the second color conversion filter. The spectral distribution is shown. As can be seen from this spectral distribution, it contains a wavelength component with a relatively narrow half-value width corresponding to the wavelength region indicating the three primary colors of R (red), G (green), and B (blue) light. Three-wavelength white light is formed by additive color mixing.

上述のLED光源装置は、夫々の色変換フィルタがガラスに蛍光体を分散した構成となっているのでガラス全面に亘ってほぼ均一な蛍光体分布が再現性良く得られ、ロット間の色度ばらつきが少なく且つ光出射面での色度むらの少ない光源を実現することができる。   The LED light source device described above has a configuration in which each color conversion filter has a phosphor dispersed in glass, so that a substantially uniform phosphor distribution can be obtained over the entire surface of the glass with good reproducibility, and chromaticity variation among lots. And a light source with little chromaticity unevenness on the light exit surface can be realized.

また、LEDと対向する側に赤色蛍光体が分散された第一の色変換フィルタを配置し、緑色蛍光体が分散された第二の色変換フィルタを第一の色変換フィルタを挟んだLEDと反対側に配置するようにした。その結果、第一の色変換フィルタに分散された赤色蛍光体から放出された赤色光は第二の色変換フィルタに分散された、赤色光の波長では励起されない緑色蛍光体に再吸収されることはない。そのためスペクトルのR・G・Bの波長成分の分離が良好で色度再現性に優れたLED光源装置が簡単に実現できる。   In addition, a first color conversion filter in which a red phosphor is dispersed is disposed on the side facing the LED, and a second color conversion filter in which a green phosphor is dispersed is sandwiched between the LED and the first color conversion filter. It was arranged on the opposite side. As a result, red light emitted from the red phosphor dispersed in the first color conversion filter is reabsorbed by the green phosphor dispersed in the second color conversion filter and not excited at the wavelength of the red light. There is no. Therefore, it is possible to easily realize an LED light source device that is excellent in separation of R, G, and B wavelength components in the spectrum and excellent in chromaticity reproducibility.

ところで、LEDと対向する側に緑色蛍光体が分散された第二の色変換フィルタを配置し、赤色蛍光体が分散された第一の色変換フィルタを第二の色変換フィルタを挟んだLEDと反対側に配置することにより、色度再現性よりも輝度や照度を重視した光源とすることも可能である。   By the way, the second color conversion filter in which the green phosphor is dispersed is disposed on the side facing the LED, and the first color conversion filter in which the red phosphor is dispersed is sandwiched between the second color conversion filter and the LED. By disposing the light source on the opposite side, it is possible to obtain a light source in which brightness and illuminance are more important than chromaticity reproducibility.

図3は互いに重ね合わされた2枚の色変換フィルタにおいて、LEDと対向する側に第一の色変換フィルタを位置させたときのスペクトル分布とLEDと対向する側に第二の色変換フィルタを位置させたときのスペクトル分布を示したものである。   FIG. 3 shows the spectral distribution when the first color conversion filter is positioned on the side facing the LED and the second color conversion filter positioned on the side facing the LED in the two color conversion filters superimposed on each other. The spectrum distribution when it was made to show is shown.

この場合、第一の色変換フィルタはガラス粉末に対して赤色蛍光体粉末を2wt%混合して焼成したものであり、第二の色変換フィルタはガラス粉末に対して緑色蛍光体粉末を6wt%混合して焼成したものである。   In this case, the first color conversion filter is obtained by mixing 2 wt% of the red phosphor powder with respect to the glass powder and firing, and the second color conversion filter is 6 wt% of the green phosphor powder with respect to the glass powder. They are mixed and fired.

図3より、LED側に赤色蛍光体が分散された第一の色変換フィルタを配置した場合はR・G・Bの波長成分の出力分離および出力バランスが良好なスペクトル分布を呈した三波長白色光が得られ、LED側に緑色蛍光体が分散された第二の色変換フィルタを配置した場合は高輝度化したLED光源装置が実現できることがわかる。   As shown in FIG. 3, when the first color conversion filter in which the red phosphor is dispersed is arranged on the LED side, the three-wavelength white having a spectral distribution in which the output separation of the R, G, and B wavelength components and the output balance are good It can be seen that when a second color conversion filter in which light is obtained and the green phosphor is dispersed is arranged on the LED side, an LED light source device with high brightness can be realized.

図4は、赤色蛍光体の濃度が異なる複数種の第一の色変換フィルタと、緑色蛍光体の濃度が異なる複数種の第二の色変換フィルタを用意し、第一の色変換フィルタおよび第二の色変換フィルタの夫々に青色LEDからの光を照射したときの各色変換フィルタから出射される光の色度座標を色度図上に示すとともに、同一色度図上に前記第一の色変換フィルタのうちの1枚と第二の色変換フィルタのうちの1枚を重ね合わせて青色LEDからの光を第一の色変換フィルタ側から照射して第一の色変換フィルタから出射される三波長白色光の色度座標を示したものである。   FIG. 4 shows a plurality of types of first color conversion filters having different concentrations of red phosphors and a plurality of types of second color conversion filters having different concentrations of green phosphors. The chromaticity coordinates of the light emitted from each color conversion filter when each of the two color conversion filters is irradiated with light from the blue LED are shown on the chromaticity diagram, and the first color is shown on the same chromaticity diagram. One of the conversion filters and one of the second color conversion filters are overlapped and light from the blue LED is emitted from the first color conversion filter side and emitted from the first color conversion filter. The chromaticity coordinates of three-wavelength white light are shown.

第一の色変換フィルタのサンプルはガラス粉末に対して赤色蛍光体粉末(R)を夫々1wt%、2wt%、3wt%混合して焼成した3種類であり、第二の色変換フィルタのサンプルはガラス粉末に対して緑色蛍光体粉末(G)を夫々3wt%、6wt%、9wt%混合して焼成した3種類である。   Samples of the first color conversion filter are three types obtained by mixing 1 wt%, 2 wt%, and 3 wt% of the red phosphor powder (R) with the glass powder and firing, respectively. There are three types of green phosphor powder (G) that are fired by mixing 3 wt%, 6 wt%, and 9 wt%, respectively, with the glass powder.

その結果、赤色蛍光体粉末(R)を1wt%混合して焼成した第一の色変換フィルタと緑色蛍光体粉末(G)を6wt%混合して焼成した第二の色変換フィルタを組み合わせることによって、色度図中に点線で示される目標色度座標領域内に色度座標を有する白色(W)光を得ることができた。   As a result, by combining the first color conversion filter obtained by mixing and firing 1 wt% of the red phosphor powder (R) and the second color conversion filter obtained by mixing and firing 6 wt% of the green phosphor powder (G) It was possible to obtain white (W) light having chromaticity coordinates in a target chromaticity coordinate area indicated by a dotted line in the chromaticity diagram.

ところで、これらSr1−XCaS:Eu等は高温高湿の環境下においては数時間で劣化してしまう。ところが、これら蛍光体をガラスに分散することによって高温高湿の環境下における劣化を抑制することができる。 Incidentally, these Sr 1-X Ca X S: Eu , etc. are deteriorated in several hours in an environment of high temperature and high humidity. However, it is possible to suppress deterioration in a high temperature and high humidity environment by dispersing these phosphors in glass.

図5はSr1−XCaS:Euからなる赤色蛍光体をガラスに分散した色変換フィルタおよびSr1−XCaGa:Euからなる緑色蛍光体をガラスに分散した色変換フィルタを温度60℃、湿度90%の高温高湿雰囲気中に放置し、一定時間後に励起光を照射して夫々の色変換フィルタから放出される赤色光および緑色光の光束を測定した結果を示している。 FIG. 5 shows a color conversion filter in which a red phosphor made of Sr 1-X Ca X S: Eu is dispersed in glass and a color conversion in which a green phosphor made of Sr 1-X Ca X Ga 2 S 4 : Eu is dispersed in glass. Shown are the results of measuring the luminous flux of red light and green light emitted from each color conversion filter by leaving the filter in a high-temperature and high-humidity atmosphere at a temperature of 60 ° C. and a humidity of 90% and irradiating excitation light after a certain time. ing.

図5より、両色変換フィルタともに温度60℃、湿度90%の雰囲気中に晒された状態にあっても95時間後も初期の光束を維持しており、蛍光体が劣化していないことが確認できた。   FIG. 5 shows that both the color conversion filters maintain the initial luminous flux even after 95 hours even if they are exposed to an atmosphere of temperature 60 ° C. and humidity 90%, and the phosphor is not deteriorated. It could be confirmed.

この結果、高温高湿の環境下では信頼性に乏しい硫化物蛍光体であってもガラスに分散することによって飛躍的に信頼性が向上し、十分な信頼性を確保することができることが明確になった。したがって当然ながら、SrS、CaS、ZnS等の硫化物や更に耐湿性に劣る蛍光体の耐湿性向上には有効な方法である。   As a result, it is clear that even in the high temperature and high humidity environment, even a sulfide phosphor with poor reliability can be drastically improved by dispersing it in glass, and sufficient reliability can be secured. became. Therefore, as a matter of course, this is an effective method for improving the moisture resistance of sulfides such as SrS, CaS, and ZnS and phosphors that are inferior in moisture resistance.

また、赤色蛍光体をガラスに分散した色変換フィルタと緑色蛍光体をガラスに分散した色変換フィルタを別個に設けることによって、青色光に励起されて赤色光を放出する領域と青色光に励起されて緑色光を放出する領域を単独で作成できるようにした。これによって赤色蛍光体と緑色蛍光体を混在させた場合の問題点となる、色再現性、色度むらおよびロット間の色度ばらつき等の光学特性を良好なものにすることができる。   In addition, by separately providing a color conversion filter in which red phosphor is dispersed in glass and a color conversion filter in which green phosphor is dispersed in glass, the region is excited by blue light and emits red light and excited by blue light. The area that emits green light can be created independently. As a result, it is possible to improve optical characteristics such as color reproducibility, chromaticity unevenness, and chromaticity variation between lots, which are problems when a red phosphor and a green phosphor are mixed.

図6は本発明のLED光源装置を使用したLEDバックライトによってカラーLCDを照明する例を示している。   FIG. 6 shows an example in which a color LCD is illuminated by an LED backlight using the LED light source device of the present invention.

LED2の照射方向に、ガラスに赤色蛍光体を分散した第一の色変換フィルタ3およびガラスに緑色蛍光体を分散した第二の色変換フィルタ4を重ねて配置し、第二の色変換フィルタ4の光出射面4cが導光板9の光入射端面9aに着接されている。そして導光板9の光出射面9bの上に拡散板10が配置され、さらにその上にカラーフィルタ(図示せず)を備えたLCD11が配置されている。   A first color conversion filter 3 in which a red phosphor is dispersed in glass and a second color conversion filter 4 in which a green phosphor is dispersed in glass are arranged in an overlapping manner in the irradiation direction of the LED 2. The light exit surface 4 c is attached to the light incident end surface 9 a of the light guide plate 9. A diffusion plate 10 is disposed on the light emitting surface 9b of the light guide plate 9, and an LCD 11 having a color filter (not shown) is disposed thereon.

そして、LED2からのB(青色)光が第一の色変換フィルタ3内および第二の色変換フィルタ4内を導光されることによって形成された三波長W(白色)光が導光板9の光入射端面9aから導光板9内に入射され、導光板9内を導光されて光出射面9bから拡散板10に至り、拡散板10からの白色拡散光がLCD11を照射するものである。   Then, the B (blue) light from the LED 2 is guided through the first color conversion filter 3 and the second color conversion filter 4 so that the three-wavelength W (white) light formed on the light guide plate 9 The light is incident on the light guide plate 9 from the light incident end surface 9 a, guided in the light guide plate 9, reaches the diffusion plate 10 from the light emission surface 9 b, and the white diffused light from the diffusion plate 10 irradiates the LCD 11.

このとき、第一の色変換フィルタに分散する赤色蛍光体および第二の色変換フィルタに分散する緑色蛍光体の夫々の配合濃度、および/または、第一の色変換フィルタおよび第二の色変換フィルタの夫々の厚みを制御することによって照射光の青色光と各蛍光体から放出される赤色光および緑色光との混合比率を変えることができるため、拡散板10からの三波長白色光のスペクトル分布をLCDのカラーフィルタのR(赤色)・G(緑色)・B(青色)の透過波長領域に対応した波長成分を含むように最適化することができる。   At this time, the mixing concentration of the red phosphor dispersed in the first color conversion filter and the green phosphor dispersed in the second color conversion filter, and / or the first color conversion filter and the second color conversion, respectively. By controlling the thickness of each filter, the mixing ratio of the blue light of the irradiation light and the red light and green light emitted from each phosphor can be changed, so that the spectrum of the three-wavelength white light from the diffusion plate 10 can be changed. The distribution can be optimized to include wavelength components corresponding to the R (red), G (green), and B (blue) transmission wavelength regions of the LCD color filter.

本発明に係わる実施形態の概略図である。It is the schematic of embodiment concerning this invention. 本発明に係わる実施形態で形成された白色光のスペクトル分布図である。It is a spectrum distribution map of white light formed in an embodiment according to the present invention. 本発明に係わる実施形態を構成する色変換フィルタの配置を変えたときのスペクトル分布図である。It is a spectrum distribution figure when the arrangement | positioning of the color conversion filter which comprises embodiment concerning this invention is changed. 本発明を構成する色変換フィルタおよびそれらの組み合わせの色度を示す色度図である。It is a chromaticity diagram which shows the chromaticity of the color conversion filter which comprises this invention, and those combination. 本発明に係わる実施形態を構成する色変換フィルタの高温高湿試験の結果を示すグラフである。It is a graph which shows the result of the high temperature, high humidity test of the color conversion filter which comprises embodiment concerning this invention. 本発明のLED光源装置を使用したLEDバックライトでカラーLCDを照明する状態を示す側面図である。It is a side view which shows the state which illuminates a color LCD with the LED backlight which uses the LED light source device of this invention.

符号の説明Explanation of symbols

1 LED光源装置
2 LED
3 第一の色変換フィルタ
3a 赤色蛍光体
3b 光入射面
3c 光出射面
4 第二の色変換フィルタ
4a 緑色蛍光体
4b 光入射面
4c 光出射面
5 LEDチップ
6 封止樹脂
7 ボンディングワイヤ
8 ガラス
9 導光板
9a 光入射端面
9b 光出射面
10 拡散板
11 LCD
1 LED light source device 2 LED
Reference Signs List 3 First color conversion filter 3a Red phosphor 3b Light incident surface 3c Light exit surface 4 Second color conversion filter 4a Green phosphor 4b Light entrance surface 4c Light exit surface 5 LED chip 6 Sealing resin 7 Bonding wire 8 Glass 9 Light guide plate 9a Light incident end surface 9b Light exit surface 10 Diffuser plate 11 LCD

Claims (5)

1個または同一の発光スペクトルを有する複数個の青色発光LEDと、
ガラスに赤色蛍光体を分散した第一の色変換フィルタと、
ガラスに緑色蛍光体を分散した第二の色変換フィルタを有するLED光源装置であって、
前記青色発光LEDからの青色光が前記第一の色変換フィルタおよび前記第二の色変換フィルタのうちの一方に入射して、前記第一の色変換フィルタおよび前記第二の色変換フィルタのうちの他方から白色光が出射するようにしたことを特徴とするLED光源装置。
A plurality of blue light emitting LEDs having one or the same emission spectrum;
A first color conversion filter in which a red phosphor is dispersed in glass;
An LED light source device having a second color conversion filter in which a green phosphor is dispersed in glass,
Blue light from the blue light emitting LED is incident on one of the first color conversion filter and the second color conversion filter, and the first color conversion filter and the second color conversion filter. An LED light source device characterized in that white light is emitted from the other side of the LED.
前記青色発光LEDからの青色光が前記第一の色変換フィルタに入射して、前記第二の色変換フィルタから白色光が出射するようにしたことを特徴とする請求項1に記載のLED光源装置。   2. The LED light source according to claim 1, wherein blue light from the blue light emitting LED is incident on the first color conversion filter and white light is emitted from the second color conversion filter. 3. apparatus. 前記赤色蛍光体がSr1−XCaS:Euであり、前記緑色蛍光体がSr1−XCaGa:Euであることを特徴とする請求項1または2のいずれか1項に記載のLED光源装置。 The red phosphor Sr 1-X Ca X S: Eu, and the the green phosphor Sr 1-X Ca X Ga 2 S 4: any one of claims 1 or 2, characterized in that the Eu LED light source device according to item. 請求項1〜3のいずれか1項に記載されたLED光源装置と導光体を備え、前記LED光源装置からの白色光が前記導光体を介して被照射物に照射されることを特徴とするLEDバックライト。   An LED light source device according to any one of claims 1 to 3 and a light guide are provided, and white light from the LED light source device is irradiated to an irradiated object through the light guide. LED backlight. 前記被照射物がLCDであることを特徴とする請求項4に記載のLEDバックライト。   The LED backlight according to claim 4, wherein the irradiation object is an LCD.
JP2006178145A 2006-06-28 2006-06-28 Led light source device and led backlight using the same Pending JP2008010556A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006178145A JP2008010556A (en) 2006-06-28 2006-06-28 Led light source device and led backlight using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006178145A JP2008010556A (en) 2006-06-28 2006-06-28 Led light source device and led backlight using the same

Publications (1)

Publication Number Publication Date
JP2008010556A true JP2008010556A (en) 2008-01-17

Family

ID=39068516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006178145A Pending JP2008010556A (en) 2006-06-28 2006-06-28 Led light source device and led backlight using the same

Country Status (1)

Country Link
JP (1) JP2008010556A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7661841B2 (en) * 2005-09-15 2010-02-16 Seiko Instruments Inc. Illumination device and display device provided with the same
WO2010084433A1 (en) * 2009-01-26 2010-07-29 Philips Lumileds Lighting Company, Llc Matching led flash to camera's ambient light compensation algorithm
JP2011013567A (en) * 2009-07-03 2011-01-20 Sony Corp Color conversion member and display device
JP2011065770A (en) * 2009-09-15 2011-03-31 Casio Computer Co Ltd Light source unit and projector
JP2013084690A (en) * 2011-10-06 2013-05-09 Sharp Corp Light-emitting diode package and backlight device
JP2013539170A (en) * 2010-08-16 2013-10-17 エルジー イノテック カンパニー リミテッド Backlight unit member using quantum dots and method for manufacturing the same
RU2506617C2 (en) * 2008-09-18 2014-02-10 ФИЛИПС ЛЬЮМИЛДЗ ЛАЙТИНГ КОМПАНИ, ЭлЭлСи White point compensated leds for liquid crystal displays
TWI447450B (en) * 2011-11-30 2014-08-01 Au Optronics Corp Light guide panel, backlight module, and manufacturing method thereof
US8922114B2 (en) 2012-09-24 2014-12-30 Samsung Display Co., Ltd. White light-emitting device, white light-emitting panel including the same, method of manufacturing white light-emitting panel, and display apparatus including white light-emitting device
WO2016021675A1 (en) * 2014-08-06 2016-02-11 株式会社キャラベル Lighting device using light-emitting diode
JP2017092043A (en) * 2017-02-09 2017-05-25 サターン ライセンシング エルエルシーSaturn Licensing LLC Display
JP2018022133A (en) * 2016-05-30 2018-02-08 マブン オプトロニックス カンパニー リミテッドMaven Optronics Co., Ltd. Photoluminescence display device and method for manufacturing the same
CN108957857A (en) * 2018-08-01 2018-12-07 深圳市华星光电技术有限公司 Backlight module and display device
CN112799273A (en) * 2019-11-13 2021-05-14 深圳光峰科技股份有限公司 Wavelength conversion element, preparation method thereof and laser fluorescence light source

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005277127A (en) * 2004-03-25 2005-10-06 Stanley Electric Co Ltd Light-emitting device
JP2006052345A (en) * 2004-08-13 2006-02-23 Rohm Co Ltd Luminescent color conversion member and semiconductor light emitting device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005277127A (en) * 2004-03-25 2005-10-06 Stanley Electric Co Ltd Light-emitting device
JP2006052345A (en) * 2004-08-13 2006-02-23 Rohm Co Ltd Luminescent color conversion member and semiconductor light emitting device

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7661841B2 (en) * 2005-09-15 2010-02-16 Seiko Instruments Inc. Illumination device and display device provided with the same
RU2506617C2 (en) * 2008-09-18 2014-02-10 ФИЛИПС ЛЬЮМИЛДЗ ЛАЙТИНГ КОМПАНИ, ЭлЭлСи White point compensated leds for liquid crystal displays
US7995911B2 (en) 2009-01-26 2011-08-09 Koninklijke Philips Electronics N.V. Matching led flash to camera's ambient light compensation algorithm
WO2010084433A1 (en) * 2009-01-26 2010-07-29 Philips Lumileds Lighting Company, Llc Matching led flash to camera's ambient light compensation algorithm
CN102365581A (en) * 2009-01-26 2012-02-29 飞利浦拉米尔德斯照明设备有限责任公司 Matching led flash to camera's ambient light compensation algorithm
JP2011013567A (en) * 2009-07-03 2011-01-20 Sony Corp Color conversion member and display device
JP2011065770A (en) * 2009-09-15 2011-03-31 Casio Computer Co Ltd Light source unit and projector
US9188310B2 (en) 2010-08-16 2015-11-17 Lg Innotek Co., Ltd. Member for backlight unit using quantum dots and method of manufacturing the same
JP2013539170A (en) * 2010-08-16 2013-10-17 エルジー イノテック カンパニー リミテッド Backlight unit member using quantum dots and method for manufacturing the same
JP2013084690A (en) * 2011-10-06 2013-05-09 Sharp Corp Light-emitting diode package and backlight device
TWI447450B (en) * 2011-11-30 2014-08-01 Au Optronics Corp Light guide panel, backlight module, and manufacturing method thereof
US8922114B2 (en) 2012-09-24 2014-12-30 Samsung Display Co., Ltd. White light-emitting device, white light-emitting panel including the same, method of manufacturing white light-emitting panel, and display apparatus including white light-emitting device
WO2016021675A1 (en) * 2014-08-06 2016-02-11 株式会社キャラベル Lighting device using light-emitting diode
JP2018022133A (en) * 2016-05-30 2018-02-08 マブン オプトロニックス カンパニー リミテッドMaven Optronics Co., Ltd. Photoluminescence display device and method for manufacturing the same
JP2017092043A (en) * 2017-02-09 2017-05-25 サターン ライセンシング エルエルシーSaturn Licensing LLC Display
CN108957857A (en) * 2018-08-01 2018-12-07 深圳市华星光电技术有限公司 Backlight module and display device
CN108957857B (en) * 2018-08-01 2021-05-28 Tcl华星光电技术有限公司 Backlight module and display device
CN112799273A (en) * 2019-11-13 2021-05-14 深圳光峰科技股份有限公司 Wavelength conversion element, preparation method thereof and laser fluorescence light source
CN112799273B (en) * 2019-11-13 2023-10-03 深圳光峰科技股份有限公司 Wavelength conversion element, preparation method thereof and laser fluorescent light source

Similar Documents

Publication Publication Date Title
JP2008010556A (en) Led light source device and led backlight using the same
TWI422920B (en) Led backlight
US8541798B2 (en) Semiconductor light emitting device, and backlight and display device comprising the semiconductor light emitting device
JP4648454B2 (en) Backlight panel adopting white light emitting diode having red phosphor and green phosphor
CN101216150B (en) White light emitting device and light source module for liquid crystal display backlight using the same
US20070126011A1 (en) White light emitting diode
US20120146077A1 (en) Light emitting device
US20110211336A1 (en) Light emitting device, and illumination light source, display unit and electronic apparatus including the light emitting device
JP5721921B2 (en) White light emitting device and lighting device
JP2006309209A (en) Image display device
TWI509844B (en) Applied to the backlight of the LED light-emitting structure
JP2010034183A (en) Light-emitting device
US10982824B2 (en) High color rendering D50/D65 standard LED illuminant module and lighting apparatus
US20150155460A1 (en) Light-emitting apparatus
JP2011228344A (en) Led light-emitting device
JP2011114097A (en) Illuminator
JP2014029970A (en) Light source device, light source unit, and liquid crystal display device
JP2008235458A (en) White light emitting device, backlight using same device, display using same device, and illuminating apparatus using same device
US9299894B2 (en) Wavelength converting substance, wavelength converting gel and light emitting device
JP2005311136A (en) Light emitting apparatus
TWI397192B (en) White light led
KR100657137B1 (en) White light emitting device having green phosphor of thiogallate and red phosphor of alkaline earth sulfide
US20160186055A1 (en) Green light emitting phosphor, method for producing the same and light emitting device package including the same
JP2007142318A (en) Light-emitting element
JP2013149981A (en) Light emitting element, and illuminating device and image display device using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090522

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110809

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111206