JP2005277127A - Light-emitting device - Google Patents

Light-emitting device Download PDF

Info

Publication number
JP2005277127A
JP2005277127A JP2004088604A JP2004088604A JP2005277127A JP 2005277127 A JP2005277127 A JP 2005277127A JP 2004088604 A JP2004088604 A JP 2004088604A JP 2004088604 A JP2004088604 A JP 2004088604A JP 2005277127 A JP2005277127 A JP 2005277127A
Authority
JP
Japan
Prior art keywords
phosphor
emitting device
light
led chip
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004088604A
Other languages
Japanese (ja)
Other versions
JP4451178B2 (en
Inventor
Tsutomu Akagi
Yasuyuki Miyake
Hiroyuki Sato
Shuichi Taya
康之 三宅
弘之 佐藤
周一 田谷
努 赤木
Original Assignee
Stanley Electric Co Ltd
スタンレー電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd, スタンレー電気株式会社 filed Critical Stanley Electric Co Ltd
Priority to JP2004088604A priority Critical patent/JP4451178B2/en
Publication of JP2005277127A publication Critical patent/JP2005277127A/en
Application granted granted Critical
Publication of JP4451178B2 publication Critical patent/JP4451178B2/en
Application status is Active legal-status Critical
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85909Post-treatment of the connector or wire bonding area
    • H01L2224/8592Applying permanent coating, e.g. protective coating

Abstract

PROBLEM TO BE SOLVED: To prevent the problem wherein a fluorescence emitted from a certain type of phosphor is absorbed to other type of phosphor so that the luminance of light emitted is lowered in a light-emitting device of a white color, etc., including a phosphor layer in which a plurality of types of phosphors are mixed each for emitting a fluorescence of different wavelength.
SOLUTION: The phosphor having a longer emission fluorescence wavelength is arranged sequentially, along the route of a light when radiating from an exciting element to an exterior. That is, the phosphor which emits a light of the wavelength nearer to that of a red color is arranged nearer to the exciting element. The phosphor which emits the light of the wavelength nearer to a blue color is arranged farther to the outer side. Thus, the reabsorption of the fluorescence is suppressed, and luminance is increased.
COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、発光ダイオード(以下、LED)に関する。 The present invention is a light emitting diode (hereinafter, LED) relates. より詳しくは、短波長の光を発するLEDチップと、その発光を吸収し、吸収した波長より長波長の蛍光を発する蛍光体とを組み合わせた、白色又は中間色を発する発光素子に関する。 More specifically, the LED chip which emits light of a short wavelength, absorbs the light emission, a combination of a phosphor emitting fluorescence than the absorbed wavelength long wavelength, a light emitting element which emits white or intermediate color.

近年、青色LEDにYAG:Ce等黄色蛍光体を組合せ、単一のチップで白色光を発する、いわゆる白色LEDに注目が集まっている(特許第2927279号)。 Recently, YAG blue LED: combining such as Ce yellow phosphor emits white light in a single chip, is focused on the so-called white LED have gathered (Patent No. 2927279). 従来、LEDは単色で発光するものであり、白色又は中間色を発するためには、単色の波長を発する複数のLEDを用いてそれぞれ駆動しなければならなかったが、蛍光体との組合せによりこのような煩わしさを排し、簡便な構造によって白色光を得られるようになったためである。 Conventionally, LED are those that emit monochromatic, in order to emit white or intermediate color, which had to drive each using a plurality of LED which emits monochromatic wavelengths, such a combination of a phosphor discharging the such inconvenience is because now obtain white light by a simple structure.

しかし、YAG:Ce蛍光体の発する黄色光は赤色成分が乏しいため、青色LEDチップからの発光とYAG:Ce蛍光体だけを用いて得られた白色光は演色性に欠けるという欠点があった。 However, YAG: since the yellow light emitted by the Ce phosphor red component poor, light emission and YAG from the blue LED chip: Ce white light obtained by using the phosphor only has a drawback that lacks color rendering. 従って、高演色性を要求される一般照明や液晶用バックライト等として採用しづらいという要因となっていた。 Thus, it has been a factor that is difficult employed as general lighting and LCD backlight, etc. which require high color rendering properties.

この欠点を解消するため、赤色を発する蛍光体を使用する技術が提案されている。 To overcome this drawback, a technique of using a phosphor that emits red has been proposed.

例えば特表2002−531956号公報には、青色LEDに緑色及び赤色を発する蛍光体を混合したものを組み合わせた構成により、色再現性に優れた発光色を得ることが記載されており、使用される蛍光体は緑色蛍光体として(Sr,Ca,Ba)(Al,Ga) :Eu 2+やBaMgAl 1017 :Eu 2+等、赤色蛍光体として(Ca,Sr)S:Eu 2+やCaLa :Ce 3+等が挙げられている。 For example, JP-T-2002-531956 is the configuration that combines a mixture of phosphors emitting green and red to the blue LED, is described to obtain excellent luminous color to color reproducibility, it is used that phosphor as a green phosphor (Sr, Ca, Ba) ( Al, Ga) 2 S 4: Eu 2+ or BaMgAl 10 O 17: Eu 2+, etc., as a red phosphor (Ca, Sr) S: Eu 2+ Ya CaLa 2 S 4: Ce 3+ and the like are mentioned.

また、特表2000−509912号公報には、紫外LEDに青色、緑色、赤色の各色を発する蛍光体を組み合わせた構成が記載されている。 Further, JP-T-2000-509912, a blue to ultraviolet LED, a green, a configuration that combines the phosphor emitting each color of red is described. その発光色は蛍光体の混合比にのみ依存するために調製が簡単で済むことが述べられており、演色性の観点からすれば、青色LEDに黄色蛍光体だけを組み合わせたものと比べて優れている。 Its emission color is stated that requires a simple preparation to depend only on the mixing ratio of the phosphor, from the viewpoint of color rendering properties, superior to that combination of only the yellow phosphor to the blue LED ing.

また、特開2000−31531号公報には、紫外LEDに紫外光を吸収して青色光を発する第一蛍光体と、第一蛍光体層の上層に、青色光を吸収して黄色光を発する第二蛍光体層を組み合わせたものが記載されている。 Further, JP 2000-31531, a first phosphor that emits blue light by absorbing ultraviolet light ultraviolet LED, an upper layer of the first phosphor layer, emitting yellow light by absorbing blue light It has been described a combination of the second phosphor layer. 特に赤色光を発する蛍光体と青緑色光を発する蛍光体を組み合わせることが開示されている。 Especially combining the phosphor emitting phosphor and blue green light to emit red light are disclosed.
特許第2927279号 Patent No. 2927279 特表2002−531956号公報 JP-T 2002-531956 JP 特表2000−509912号公報 JP-T 2000-509912 JP 特開2000−31531号公報 JP 2000-31531 JP

特許文献2,3いずれにおいても、複数の蛍光体を混合した上で励起光源であるLEDチップと組み合わせている。 In any Patent Documents 2 and 3 are also combined with the LED chip is an excitation light source in terms of a mixture of multiple phosphors. しかし、このように複数の蛍光体を使用した場合、ある一種の蛍光体が発した蛍光を他種の蛍光体が吸収する現象が起こる。 However, in this manner when using a plurality of phosphors, a phenomenon that absorbs fluorescence phosphor is one uttered other kinds of phosphors occurs.

図6は、近紫外光を吸収し緑色光を発する蛍光体ZnS:Ag,Cu、および近紫外光を吸収し青色光を発する蛍光体BAM:Euの吸収スペクトルを示したものである。 Figure 6 is a near UV absorbing outside light and emits green light phosphor ZnS: shows the absorption spectra of Eu: Ag, phosphor BAM which absorbs Cu, and near-ultraviolet light emitting blue light. ここで、ZnS:Ag,CuとBAM:Euとを混合したものに近紫外光を照射した場合を考える。 Here, ZnS: Ag, Cu and BAM: Consider the case of irradiation with near ultraviolet light to a mixture of a Eu. 近紫外光を吸収したBAM:Euは青色の蛍光を発するが、その近傍にZnS:Ag,Cuが存在した場合、BAM:Euの青色の蛍光をZnS:Ag,Cuが吸収してしまうことになる。 BAM has absorbed the near-ultraviolet light: Eu emits blue fluorescence but, ZnS in the vicinity: Ag, if Cu is present, BAM: blue fluorescence of Eu ZnS: Ag, that Cu will absorb Become. これは、一方の蛍光体の蛍光スペクトルと、他方の蛍光体の吸収スペクトルが重なっているために起こる現象である。 This is a phenomenon that occurs because the fluorescence spectra of one of the phosphor, absorption spectrum of the other phosphor overlap.

従って、特表2000−509912号公報にあるような複数種の蛍光体を混合し、励起光源である紫外LEDチップの発する紫外光を吸収させた場合、蛍光の再度の吸収により最終的に外部に放出される光量は少なくなるという問題が生じる。 Therefore, by mixing a plurality of kinds of phosphors as in JP-T-2000-509912, when imbibed with ultraviolet light emitted from the ultraviolet LED chip is an excitation light source, to finally outside again by the absorption of the fluorescent the amount of light emitted problem of results less. この問題は蛍光体の組成によらず、一般に短波長の蛍光を発する蛍光体とそれより長波長の蛍光を発する蛍光体が混合されていれば起こりうる。 This problem regardless of the composition of the phosphor can typically emit a phosphor and a fluorescent its longer wavelength than that fluoresce with a short wavelength occur if phosphors are mixed.

特開2000−31531号公報は、この再吸収現象をむしろ積極的に利用し、蛍光として発光された光を、更に他の蛍光体層の励起光として使うものであるが、非常に変換効率が悪く、実用的な用途を持ち得ない。 JP 2000-31531 discloses the use of this re-absorption phenomenon rather positively, the light emitted as fluorescence, but those further used as excitation light for the other phosphor layers is very conversion efficiency bad, not have a practical application.

そこで、本発明者らは鋭意研究の末、次のような手段によって上記課題を解決した。 Accordingly, the present inventors have end of intensive study to solve the above problems by following means. 即ち本発明は、LEDチップと複数種の蛍光体とを含む発光素子において、長波長の蛍光を発する蛍光体を、短波長の蛍光を発する蛍光体よりもLEDチップ側に配置したものである。 That is, the present invention provides a light emitting device including an LED chip and a plurality of kinds of phosphors, the phosphor emitting fluorescence having a long wavelength, and disposed on the LED chip side than phosphor that emits fluorescence of a short wavelength.

また、本発明は、LEDチップと複数種の蛍光体とを含む発光素子において、長波長の蛍光を発する蛍光体を、短波長の蛍光を発する蛍光体よりもLEDチップ側に配置するために、蛍光体粒子の粒径によってバインダー樹脂中における粒子の沈降速度が異なることを利用したものである。 Further, the present invention is a light-emitting device including the LED chip and a plurality of kinds of phosphors, a phosphor emitting fluorescence having a long wavelength, in order to place the LED chip side than phosphor that emits fluorescence of a short wavelength, in which the sedimentation rate of the particles using different in the binder resin by the particle size of the phosphor particles.

また、本発明は、LEDチップと複数種の蛍光体とを含む発光素子において、長波長の蛍光を発する蛍光体を、短波長の蛍光を発する蛍光体よりもLEDチップ側に配置するために、バインダー樹脂の粘度を増加させ、粒径による蛍光体粒子の沈降速度の差を大きくすることを利用したものである。 Further, the present invention is a light-emitting device including the LED chip and a plurality of kinds of phosphors, a phosphor emitting fluorescence having a long wavelength, in order to place the LED chip side than phosphor that emits fluorescence of a short wavelength, increasing the viscosity of the binder resin is obtained by utilizing the fact that increasing the difference in the sedimentation rate of the phosphor particles by particle size.

また、本発明は、LEDチップと複数種の蛍光体とを含む発光素子において、長波長の蛍光を発する蛍光体を、短波長の蛍光を発する蛍光体よりもLEDチップ側に配置するために、異なる蛍光体の種類ごとに順次積層して構成するものである。 Further, the present invention is a light-emitting device including the LED chip and a plurality of kinds of phosphors, a phosphor emitting fluorescence having a long wavelength, in order to place the LED chip side than phosphor that emits fluorescence of a short wavelength, and it constitutes by sequentially laminating each type of different phosphors.

本発明により、複数種類の蛍光体を用いる場合に蛍光発光が再度吸収される過程を抑制することができるので、白色又は中間色の光を発する発光デバイスの輝度低下を防ぐことができる。 The present invention, since the process of fluorescence emission is absorbed again in the case of using a plurality of kinds of phosphors can be suppressed, it is possible to prevent reduction in luminance of a light emitting device that emits light of white or intermediate color. このため、高演色性の白色LEDの高輝度化を達成することができる。 Therefore, it is possible to achieve a high luminance high color rendering white LED.

図1は、本発明による発光デバイスの構成例の一つを示したものである。 Figure 1 is a diagram showing one configuration example of a light-emitting device according to the invention. 図1は、励起光源として青色LEDチップ(3)を用い、ここから発する青色光を吸収し緑色光を発する蛍光体(7)と、青色光を吸収し赤色光を発する蛍光体(6)とを用いた場合である。 1, using a blue LED chip (3) as an excitation light source, a phosphor emitting green light by absorbing blue light emitted from this and (7), a phosphor that emits red light by absorbing blue light and (6) is a case of using a.

図1の発光デバイスは、ガラスエポキシ樹脂や高反射率を有する無機又は有機材料等からなるパッケージ部(1)と、励起光源となる青色LEDチップ(3)と、青色LEDチップ(3)上のp/n各電極に金ワイヤ(4)等で電気的に接続され、回路基板等に本発光デバイスをとりつけるためのカソード、アノードである引き出し電極(2)から構成されている。 The light emitting device of FIG. 1, a package unit consisting of inorganic or organic material such as a glass epoxy resin or a high reflectivity and (1), a blue LED chip as the excitation light source (3), a blue LED chip (3) on the p / n is electrically connected with a gold wire (4) or the like to each electrode, and a cathode for attaching the main light emission device on a circuit board or the like, the extraction electrode is an anode (2). また、パッケージ底部に青色LEDチップ(3)が戴置され、パッケージの内部空間に複数の蛍光体が含有されたバインダー樹脂(5)を満たすためのキャビティー構造を有している。 The blue LED chip to the package bottom (3) is the placing a plurality of phosphor has a cavity structure for satisfying the binder resin which is contained (5) in the interior space of the package.

この発光デバイスは、青色LEDチップ(3)の発光を吸収し、青色LEDチップ(3)の発光波長より長い波長の蛍光を発する二種類の蛍光体、緑色蛍光体(7)、赤色蛍光体(6)を含み、赤色蛍光体(6)は、緑色蛍光体(7)が発した蛍光を再度吸収するものである。 The light emitting device absorbs the emission of the blue LED chip (3), two types of phosphors that emit fluorescence having a wavelength longer than the emission wavelength of the blue LED chip (3), a green phosphor (7), red phosphor ( It comprises 6), red phosphor (6) is to absorb the fluorescence green phosphor (7) is emitted again. ここで、緑色蛍光体(7)と赤色蛍光体(6)を混合し、渾然一体とした状態の蛍光体層とした場合には、緑色蛍光体(7)から発した蛍光は赤色蛍光体(6)に吸収されることになる。 Here, mixed green phosphor and (7) a red fluorescent substance (6), when the phosphor layer in a state in which the blend together, the fluorescent light emitted from the green phosphor (7) red phosphor ( It will be absorbed in 6). しかし、本発明の発光デバイスにおいては、赤色蛍光体(6)の層を、緑色蛍光体(7)の層より励起光源である青色LEDチップ(3)に近い側に配置することにより、蛍光の再吸収を抑制できる。 However, in the light-emitting device of the present invention, a layer of red phosphor (6), by arranging on the side closer to the blue LED chip is a pumping light source than the layer of the green phosphor (7) (3), the fluorescence the re-absorption can be suppressed.

励起光源として紫外LEDチップを用いる場合も、上記の赤色蛍光体(6)および緑色蛍光体(7)の例と同様に再吸収を起こす蛍光体をLEDチップ側へ配置させることにより、再吸収を抑制し、高輝度化が達成できる。 Even when using ultraviolet LED chip as an excitation light source, by placing the above red phosphor (6) and green phosphors example a phosphor causing reabsorption similar (7) to the LED chip side, a resorption suppressing, high brightness can be achieved. また、再吸収を起こす蛍光体が複数存在する場合、励起光源側から蛍光波長の長い順に積層させるようにすればよい。 Further, if the phosphor to cause resorption there is a plurality, it suffices to be stacked from the excitation light source side to the long order of fluorescence wavelengths.

本発明による発光デバイスの製造方法としては励起光源側から蛍光波長の長い順に蛍光体を積層させることができるのであればどのような方法を用いてもよいが、ここではより好適な製造方法を以下に説明する。 As the method of manufacturing the light emitting device according to the invention may be by any method as long as it is possible to stack phosphor long order of fluorescence wavelength from the excitation light source side, the following a more preferred production method is here It will be explained.

一つの方法は、異なる蛍光体について異なる粒径となるよう制御された複数の蛍光体粉末を用いる方法である。 One method is to use a plurality of phosphor powder is controlled so that different particle sizes for different phosphors. 例えば、再吸収を起こす赤色蛍光体(6)の中位径を緑色蛍光体(7)の中位径より大きくし、これら蛍光体をバインダー樹脂中に入れて撹拌混合し、キャビティー内へ塗布した後、十分な沈降時間をとることで、図1のような発光デバイスを製造できる。 For example, the red phosphor to cause the resorption of the median diameter of the (6) larger than the median diameter of the green phosphor (7), and stirred mixture put these phosphors in a binder resin, the coating into the cavity after, by taking a sufficient settling time, it can be produced a light-emitting device as shown in FIG. 1.

これは、赤色蛍光体(6)の中位径が緑色蛍光体(7)の中位径に比べて大きいため、沈降速度に差が現れ、中位径の大きい赤色蛍光体が早く沈降し、優先的に青色LEDチップ(3)近傍に堆積するという現象による。 This is because the median diameter of the red phosphor (6) is larger than the median diameter of the green phosphor (7), a difference in sedimentation rate appears larger red phosphor median diameter settle quickly, preferentially blue LED chip (3) due to a phenomenon that is deposited in the vicinity. 赤色蛍光体(6)と緑色蛍光体(7)との中位径差としては、短時間で効果的に沈降分離を行わせるために、1μm以上、好ましくは3μm以上の中位径差が望まれる。 The median diameter difference of the red phosphor and (6) a green phosphor and (7), in order to carry out effectively settling in a short time, 1 [mu] m or more, preferably desirable 3μm or more median diameter difference It is. また、蛍光体の中位径が100μm以上になると粒径による差が見られずにほぼ同時に沈降するため、蛍光体の中位径は100μm未満が望ましく、50μm以下がより望ましい。 Also, since the median diameter of the phosphor is substantially simultaneously settle not observed differences due to particle size becomes more than 100 [mu] m, the median diameter of the phosphor is preferably less than 100 [mu] m, or less, more preferably 50 [mu] m.

なお、本方法を用いて素子を製造する場合、バインダー樹脂にはある程度の粘度を要する。 In the case of manufacturing a device using this method, it takes some viscosity to the binder resin. 粘度の低いバインダー樹脂であっても、増粘剤を添加して粘度を調整したり、バインダー樹脂を冷却してその粘度を増加させたりすることで粘度の調整を行い、同様の効果が得られる。 Even at a low binder resin viscosity, to adjust the viscosity by adding a thickening agent, to adjust the viscosity by the binder resin is cooled or to increase its viscosity, the same effect can be obtained . また、励起光源からの発光を吸収しない材料から構成される粒径100nm以下のナノ粒子分散剤などを添加することで、蛍光体粒子の凝集を抑制し、沈降速度を低下させてもよい。 Moreover, the addition of such particle size 100nm or less of the nano-particle dispersant composed of a material that does not absorb light emitted from the excitation light source, and suppress aggregation of the phosphor particles may reduce the sedimentation rate.

また、赤色蛍光体(6)は、凝集させたり、シリカなどで蛍光体同士を結着あるいは全体を覆ったりして、擬似的に大きな粒径のものにしても同様の効果が得られる。 The red phosphor (6), or to aggregate, such as a fluorescent bodies by or over the binder or total silica, the same effect can be obtained by those of pseudo-large particle size.

二つ目の方法は、揮発性溶媒中に蛍光体粒子を分散させた分散液を異なる蛍光体ごとに調製し、キャビティー内に配置すべき順に分散液の塗布および乾燥工程を順次繰り返して行う方法である。 The second method, the phosphor particles are dispersed in a volatile solvent dispersion was prepared for each different phosphor, performed sequentially repeated coating and drying process order dispersion to be placed in the cavity it is a method. 例えば、赤色蛍光体(6)を分散させた第一分散液と、緑色蛍光体(7)を分散した第二分散液を調製し、順次、キャビティー内へ塗布および乾燥工程を行うことで赤色蛍光体(6)と緑色蛍光体(7)とを積層させ、最後にバインダー樹脂(5)により封止することで図2のような発光デバイスを製造できる。 For example, red by performing a first dispersion prepared by dispersing a red phosphor (6), the second dispersion liquid was prepared in which the green phosphor (7) dispersed sequentially coating and drying steps into the cavity phosphor (6) and green phosphor (7) and are stacked, it can be produced a light-emitting device as shown in FIG. 2 by the end sealed by the binder resin (5).

本方法に用いる溶媒としては、揮発するものであって、かつ、バインダー樹脂(5)の硬化を阻害するような物質を残留させないものであればよい。 The solvent used in the present method, there is volatilized, and the substances to inhibit the curing of the binder resin (5) as long as it does not remain. また、本方法では、赤色蛍光体(6)と緑色蛍光体(7)の粒径は特に限定されない。 Further, in this method, the particle diameter of the red phosphor (6) and green phosphor (7) is not particularly limited.

三つ目の方法は、透明なシート上に異なる種類の蛍光体層を順次積層させ、再吸収を起こす蛍光体が励起光源側になるように蛍光体積層膜を配置する方法である。 The third method sequentially by stacking different kinds of phosphor layers on a transparent sheet, a method in which the phosphor is disposed a phosphor laminate film so that the excitation light source side to cause resorption. 例えば、バインダー樹脂へ赤色蛍光体(6)、緑色蛍光体(7)を分散させて異なる蛍光体ごとに蛍光体含有樹脂を調製し、順次、スピンナーやスクリーン印刷等により透明シート(8)上へ積層させ、この透明シート(8)をLEDチップ近傍に接着することで、図3に示すような発光デバイスを製造できる。 For example, the red phosphor to binder resin (6), a green phosphor (7) dispersed therein a fluorescent material-containing resin was prepared for different phosphors are sequentially into spinner, screen printing or the like by a transparent sheet (8) above by laminating, by bonding the transparent sheet (8) in the vicinity of the LED chip can be produced a light-emitting device as shown in FIG.

また、蛍光体膜を透明なシート上に積層する方法としては、真空蒸着法、レーザーアブレーション法、CVD法などにより各蛍光体膜を大気圧よりも低圧な状態で順次成膜する方法も容易に適用可能である。 As a method of laminating a phosphor layer on a transparent sheet, a vacuum deposition method, a laser ablation method, each phosphor film by CVD deposited sequentially methods also easily at low pressure state lower than the atmospheric pressure it is applicable.

なお、励起光源周辺に赤色蛍光体(6)を予め配置し、その後、緑色蛍光体(7)を含む層を配置した透明シートをキャビティー開口部に接着しても同様の効果が得られる(図4)。 Incidentally, the red phosphor (6) pre-arranged around the excitation light source, then the same effect can be bonded green phosphor transparent sheet placed a layer containing (7) in the cavity opening is obtained ( Figure 4).

本発明の効果をより顕著にするために、励起光源側から外側へ向かって蛍光体層の屈折率が低下していくことが望ましい。 To more remarkably the effect of the present invention, it is desirable that the refractive index of the phosphor layer toward the outside from the excitation light source side is lowered. 例えば、図5において青色LEDチップ側に赤色蛍光体層(9)、その外側に緑色蛍光体層(10)が配置されているが、この赤色蛍光体層(9)の屈折率を緑色蛍光体層(10)の屈折率より高くする。 For example, red phosphor layer to the blue LED chip side in FIG. 5 (9), but the green phosphor layer (10) is arranged on the outside, a green phosphor refractive index of the red phosphor layer (9) higher than the refractive index of the layer (10). このようにすることにより、高屈折率層から低屈折率層への入射、即ち、赤色蛍光の緑色蛍光体層(10)へ入射は容易に起こるが、低屈折率層から高屈折率層への入射、即ち、緑色蛍光の赤色蛍光体層(9)への入射は入射角度が浅ければ全反射されて外部へ放出されることとなる。 By doing so, incidence of a high refractive index layer to a low refractive index layer, that is, the incident on the green phosphor layer of red fluorescence (10) occurs readily, a low refractive index layer to the high-refractive index layer of incidence, i.e., incidence of the red phosphor layer of green fluorescence to (9) is to be released to the totally reflected on the external if shallower incident angle. このため、異なる蛍光体層間の蛍光の吸収を更に低減し得ることとなり、より望ましい。 Therefore, further it becomes possible may reduce the absorption of the fluorescence of different phosphor layers, more desirable. このような構造の素子を製造する場合には、各蛍光体層のバインダー樹脂の屈折率を適宜調整すればよい。 When manufacturing an element having such a structure may be appropriately adjusting the refractive index of the binder resin of the respective phosphor layers.

これら好適な実施態様はいずれも、紫外LEDと青色、緑色、赤色蛍光体の組合せによる発光デバイスなど複数種類の蛍光体を用いるものに同様に適用される。 Each of these preferred embodiments also, an ultraviolet LED and a blue, green, is similarly applicable to those using phosphors of a plurality of types such as a light emitting device according to a combination of the red phosphor.

SiC基板上にAlInGaN系化合物半導体を積層させ、適切なp/n電極を形成した青色LEDチップを、引き出し電極が配線され、かつ、配線部周囲が高反射率樹脂にて囲われているガラスエポキシ系基板上にAgペーストにて固定した。 Are stacked AlInGaN-based compound semiconductor on a SiC substrate, a blue LED chip to form a proper p / n electrodes, the extraction electrodes are wired, and a glass epoxy wiring portion periphery is surrounded by high reflectance resin and fixed with Ag paste system on the substrate. また、アノード側の引き出し電極と青色LEDチップのp型電極とはAuワイヤにて電気的接続を行い、カソード側の引き出し電極と青色LEDチップのn型電極とはAgペーストを介して電気的接続を確保した。 Further, an electrically connected by Au wire and the p-type electrode on the anode side of the extraction electrode and the blue LED chip, electrically connected through the Ag paste and the n-type electrode on the cathode side of the lead-out electrode and the blue LED chip It was secured.

ガラスエポキシ基板と高反射率樹脂とで形成されたキャビティー部に、バインダー樹脂であるエポキシ樹脂にチオガレート系緑色蛍光体(中位径:17μm)と、硫化カルシウム系赤色蛍光体(中位径:21μm)とを混合したものを樹脂表面がキャビティ開口部と水平となるまで充填した。 The cavity portion formed in the glass epoxy substrate and the high reflectivity resin, epoxy resin thiogallate green phosphor as a binder resin (median diameter: 17 .mu.m) and, calcium sulfide-based red phosphor (median diameter: 21 [mu] m) and those obtained by mixing the resin surface was filled to the cavity opening and the horizontal. その後、30分放置して蛍光体粒子を沈降させた後、硬化させた(実施例1)。 Thereafter, those were allowed to settle phosphor particles to stand for 30 minutes, cured (Example 1).

比較のため、硫化カルシウム系赤色蛍光体の中位径を15μmとした他は同一のサンプル(比較例1)を作製し、実施例1になるものと比較した。 For comparison, except that the 15μm the median diameter of the calcium sulfide-based red phosphor was produced by the same sample (Comparative Example 1) were compared to those made in Example 1.

この様にして得られた発光デバイスの発光色の色度座標は、実施例1、比較例1とも白色を示す(0.30,0.30)であった。 Chromaticity coordinates of the emission color of the obtained light-emitting device in this manner, in Example 1, was showing a comparative example 1 in both white (0.30, 0.30). しかし、その全光束は実施例1が1.31lmであるのに対し、比較例1は1.19lmとなった。 However, the total luminous flux while Example 1 is 1.31Lm, Comparative Example 1 became 1.19Lm. 従って、本発明の利用により発光デバイスが高輝度化するという結果が得られた。 Therefore, the result that the light emitting device is higher luminance by utilization of the present invention was obtained.

実施例1と同様、配線とAuワイヤー等で電気的に接続した青色LEDチップをガラスエポキシ系基板に固定し、その周囲にパッケージ部を形成してキャビティー部を構成した。 As in Example 1, a blue LED chip electrically connected with the wiring and Au wire or the like fixed to a glass epoxy substrate, to constitute a cavity portion to form a package unit therearound. 一方で、中位径13μmのチオガレート系緑色蛍光体および中位径21μmの硫化カルシウム系赤色蛍光体をメタノールに分散した分散液を蛍光体ごとに個別に調製した。 On the other hand, the calcium sulfide-based red phosphor of thiogallate green phosphor and a median diameter 21μm of median diameter 13μm were prepared separately dispersion dispersed in methanol for each phosphor. 次に、赤色蛍光体を含む分散液をキャビティー内部に塗布、乾燥させ、その上に緑色蛍光体を含む分散液を塗布、乾燥させ、これら蛍光体を積層させた。 Then, applying a dispersion containing the red phosphor inside the cavity, dried, coated with a dispersion containing the green phosphor thereon, dried and stacking these phosphors. その後、エポキシ樹脂を充填して直ちに硬化した(実施例2)。 It was then cured immediately filled with epoxy resin (Example 2).

比較のため、両方の蛍光体を混合分散させたエポキシ樹脂をキャビティーに充填し、蛍光体粒子の沈降を待たず即座に硬化させたサンプル(比較例2)を作製し、実施例2と比較した。 For comparison, both the phosphor epoxy resin obtained by mixing and dispersing charged into the cavity, to prepare a sample cured immediately without waiting for the settling of the phosphor particles (Comparative Example 2), Comparative Example 2 did.

この様にして得られた発光デバイスの発光色の色度座標は、実施例2、比較例2とも白色を示す(0.30,0.30)であった。 Chromaticity coordinates of the emission color of the light emitting device obtained in this manner, Example 2, was showing a comparative example 2 in both white (0.30, 0.30). しかし、その全光束は実施例2が1.41lmであるのに対し、比較例2は1.22lmとなった。 However, the total luminous flux whereas the second embodiment which is 1.41Lm, Comparative Example 2 became 1.22Lm. 従って、本発明の利用により発光デバイスが高輝度化するという結果が得られた。 Therefore, the result that the light emitting device is higher luminance by utilization of the present invention was obtained.

実施例1、2と同様、配線とAuワイヤー等で電気的に接続したLEDチップをガラスエポキシ系基板に固定し、その周囲にパッケージ部を形成してキャビティー部を構成した。 As in the first and second embodiments, the LED chips are electrically connected by wiring and Au wire or the like fixed to a glass epoxy substrate, to constitute a cavity portion to form a package unit therearound. ただし、本実施例の蛍光体には励起波長が近紫外領域にあるものを用い、励起光源として紫外LEDチップを用いた。 However, the phosphor of the present embodiment used as the excitation wavelength in the near ultraviolet region, using ultraviolet LED chip as an excitation light source.

一方で、中位径16μmのBAM青色蛍光体、中位径20μmのZnS:Cu,Ag緑色蛍光体、中位径23μmのY S:Eu 2+赤色蛍光体を、ナノシリカを0.5wt%含有したエポキシ樹脂と混合した。 Meanwhile, BAM blue phosphor median diameter 16 [mu] m, the median diameter 20μm ZnS: Cu, Ag green phosphor, the median diameter of 23μm Y 2 O 2 S: the Eu 2+ red phosphor, 0.5 wt nanosilica % were mixed with containing epoxy resin. これを、キャビティー部に樹脂表面が平面になるまで充填し、一時間放置して蛍光体粒子の沈降後に硬化した(実施例3)。 This, the resin surface was charged to a plane cavity portion was cured by standing for one hour after settling of the phosphor particles (Example 3).

比較のため、中位径16μmのBAM青色蛍光体、中位径15μmのZnS:Cu,Ag緑色蛍光体、中位径10μmのY S:Eu 2+赤色蛍光体を、ナノシリカを0.5wt%含有したエポキシ樹脂と混合したものを用いてサンプル(比較例3)を作製し、実施例3と比較した。 For comparison, BAM blue phosphor median diameter 16 [mu] m, the median diameter 15μm ZnS: Cu, Ag green phosphor, the median diameter 10μm Y 2 O 2 S: the Eu 2+ red phosphor, the nanosilica 0. to prepare a sample (Comparative example 3) using a mixture with 5 wt% containing epoxy resins, compared to example 3.

この様にして得られた発光デバイスの発光色の色度座標は、実施例3、比較例3とも白色を示す(0.30,0.30)であった。 Chromaticity coordinates of the emission color of the light emitting device obtained in this manner, Example 3, was showing a comparative example 3 both white (0.30, 0.30). しかし、全光束は実施例3が0.81lmであるのに対し、比較例3は0.64lmとなった。 However, total luminous flux is Example 3 While a 0.81Lm, Comparative Example 3 became 0.64Lm. 従って、本発明の利用により発光デバイスが高輝度化するという結果が得られた。 Therefore, the result that the light emitting device is higher luminance by utilization of the present invention was obtained.

上記実施例に限らず、本発明の要旨を変更しない範囲で様々なバリエーションが可能である。 Not limited to the above embodiments, but allows various variations in a range not changing the gist of the present invention. 例えば、パッケージ部は、引出し電極の本数低減や、放熱性の改善などの理由から、Agメッキ等を行った銅などを用いてもよい。 For example, the package unit number reduction in or lead-out electrode, for reasons such as improvement of heat radiation, may be used such as copper subjected to Ag plating. この場合、アノード、カソード各引出し電極とパッケージ部とは電気的絶縁状態にするか、または、パッケージ部はアノード、カソードのいずれかの引き出し電極を兼ね、他極の引き出し電極とは電気的絶縁状態にすればよい。 In this case, the anode or the cathode each lead electrode and the package portion to electrically insulated state, or package unit also serves as the anode, one of the lead electrode of the cathode, the electrical insulation is established between the extraction electrode of the other electrode it may be set to.

また、励起素子と引き出し電極との電気的接触方法としては、金ワイヤ等以外にAgペーストや半田、Au−Sn共晶剤などを用いても本発明の要旨には何ら影響はない。 Further, as the electrical contact method between the extraction electrode and the excitation element, Ag paste or solder other than gold wire or the like is not affected at all even in the Summary of the present invention by using a Au-Sn KyoAkirazai.

また、本発明に使用する励起素子は、青色または紫外領域の発光をする半導体発光素子であれば足りる。 The excitation element used in the present invention, sufficient if the semiconductor light-emitting element for the emission of the blue or ultraviolet region. 窒化ガリウム系化合物半導体を用いたLEDについて実施例等を記載したが、これに限られるものではない。 The LED using a gallium nitride-based compound semiconductor described examples and the like, but is not limited to this.

また、封止樹脂の基材となるバインダー樹脂は、励起素子のピーク波長近傍およびこれよりも長波長領域で実質的に透明であれば、その種類を問わず用いることができる。 The binder resin as a base material of the sealing resin as long than the peak wavelength near and this excitation element is substantially transparent in the long wavelength region, it can be used irrespective of its kind. 一般的なものとしては、エポキシ樹脂、シリコーン樹脂、またはエポキシ基を有するポリジメチルシロキサン誘導体、またはオキセタン樹脂、またはアクリル樹脂、またはシクロオレフィン樹脂等が考えられる。 Common ones, epoxy resins, polydimethylsiloxane derivatives having a silicone resin or an epoxy group, or an oxetane resin or an acrylic resin, or cycloolefin resin, can be considered.

本発明を例示した第1の図 First diagram illustrating the present invention 本発明を例示した第2の図 Second diagram illustrating the present invention 本発明を例示した第3の図 Third diagram illustrating the present invention 本発明を例示した第4の図 Fourth diagram illustrating the present invention 本発明を例示した第5の図 Figure 5 of illustrating the present invention 励起光源と蛍光体のスペクトル図 Spectrum of the excitation light source and a phosphor

1 パッケージ部 2 引き出し電極部 3 励起素子 4 ワイヤ 5 バインダー樹脂 6 赤色蛍光体 7 緑色蛍光体 8 透明なシート 9 赤色蛍光体を含む蛍光体層 10 緑色蛍光体を含む蛍光体層 A phosphor layer comprising a phosphor layer 10 green phosphor comprising one package unit 2 lead electrode portions 3 excitation element 4 wire 5 Binder resin 6 red phosphor 7 green phosphor 8 transparent sheet 9 red phosphor

Claims (11)

  1. LEDチップと、前記LEDチップからの発光の少なくとも一部を吸収して吸収した光より長波長の蛍光を発する二種以上の蛍光体を含む発光デバイスであって、 An LED chip, a light emitting device comprising two or more phosphors from light absorbed by absorbing at least a portion of the light emitting fluoresce in the long wavelength from the LED chip,
    前記蛍光体は、前記LEDチップから発する発光が外部に放出される際の光路に沿って蛍光波長が長いものから短いものへと順になるよう配置されていることを特徴とする発光デバイス。 The phosphor emitting device, characterized in that luminescence emitted from the LED chips are arranged to be sequentially to shorter from that fluorescence wavelength is longer along the optical path as it is emitted to the outside.
  2. 前記蛍光体は、バインダー樹脂に含有されて前記LEDチップ近傍に配置され、蛍光体層を構成してなり、かつ、蛍光波長が長い蛍光体を含む蛍光体層のバインダー樹脂の屈折率は蛍光波長が短い蛍光体を含む蛍光体層のバインダー樹脂の屈折率より大きいことを特徴とする請求項1に記載の発光デバイス。 The phosphor is contained in the binder resin is arranged near the LED chip, it constitutes a phosphor layer, and a refractive index of the binder resin in the phosphor layer fluorescent wavelength with long phosphor fluorescence wavelength the light emitting device of claim 1, wherein a greater than the refractive index of the binder resin in the phosphor layer containing a short phosphor.
  3. 前記蛍光体は、透明なシート上に前記蛍光体の蛍光波長が長いものが前記LEDチップ側へ配置されるように積層され前記LEDチップの発光観測面近傍に配置されることを特徴とする請求項1に記載の発光デバイス。 The phosphor claims wherein said that those fluorescent wavelength of the phosphor is longer is positioned on emission observing surface vicinity of the LED chips are stacked so as to be positioned to the LED chip side on a transparent sheet the light emitting device according to claim 1.
  4. 前記蛍光体のうち蛍光波長が長いものがバインダー樹脂に含有されて前記LEDチップ近傍に配置され蛍光体層を構成してなり、かつ、蛍光波長が短い蛍光体は透明なシート上に積層されて前記蛍光波長が長い蛍光体層の上部に配置されていることを特徴とする請求項1に記載の発光デバイス。 Wherein one fluorescence wavelength of the phosphor is long is disposed on the LED chip vicinity are contained in the binder resin becomes constituting the phosphor layer, and a short phosphor fluorescence wavelength are laminated on a transparent sheet the light emitting device according to claim 1, characterized in that the fluorescent wavelength are placed on top of a long fluorescent layer.
  5. LEDチップと、前記LEDチップからの発光の少なくとも一部を吸収して吸収した光より長波長の蛍光を発する二種以上の蛍光体を含む発光デバイスの製造方法であって、 An LED chip, a manufacturing method of a light emitting device comprising two or more phosphors that emit fluorescence of a longer wavelength than the absorbed light by absorbing at least a portion of light emitted from the LED chip,
    前記蛍光体の蛍光波長が大きいものほど蛍光体粒子の中位径が大きくなるように蛍光体の種類ごとに準備する工程と、 A step of preparing each type of the phosphor as those fluorescence wavelength is greater phosphor phosphor as median diameter increases of particles,
    前記蛍光体をバインダー樹脂に混合する工程と、 A step of mixing the phosphor in a binder resin,
    前記蛍光体含有バインダー樹脂を前記LEDチップ近傍へ充填する工程 を含むことを特徴とする発光デバイスの製造方法。 The method of manufacturing the light emitting device characterized by comprising the step of filling the phosphor-containing binder resin to the LED chip vicinity.
  6. 前記蛍光体は、異なる波長の蛍光を発する異なる蛍光体の間の中位径の差が1μm以上であることを特徴とする請求項5に記載の発光デバイスの製造方法。 The phosphor production method of a light emitting device according to claim 5, wherein the difference in median diameter between fluorescence emitted different phosphors having different wavelengths and wherein the at 1μm or more.
  7. 更に、前記バインダー樹脂に、ナノ粒子分散剤が混合される工程を含むことを特徴とする請求項5または6に記載の発光デバイスの製造方法。 Further, the binder resin, the method of manufacturing the light emitting device according to claim 5 or 6, characterized in that it comprises a step of nanoparticle dispersion agent are mixed.
  8. 更に、前記バインダー樹脂に、増粘剤が混合される工程を含むことを特徴とする請求項5または6に記載の発光デバイスの製造方法。 Further, the binder resin, the method of manufacturing the light emitting device according to claim 5 or 6, characterized in that it comprises a step of thickening agent is mixed.
  9. 更に、前記バインダー樹脂を冷却する工程を含むことを特徴とする請求項5または6に記載の発光デバイスの製造方法。 Furthermore, the method of manufacturing the light emitting device according to claim 5 or 6, characterized in that it comprises a step of cooling the binder resin.
  10. LEDチップと、前記LEDチップからの発光の少なくとも一部を吸収して吸収した光より長波長の蛍光を発する二種以上の蛍光体を含む発光デバイスの製造方法であって、 An LED chip, a manufacturing method of a light emitting device comprising two or more phosphors that emit fluorescence of a longer wavelength than the absorbed light by absorbing at least a portion of light emitted from the LED chip,
    前記蛍光体の種類ごとに揮発性溶媒に分散された分散液として調製する工程と、 A step of preparing a dispersion liquid dispersed in a volatile solvent in each type of the phosphor,
    前記分散液を前記LED素子近傍へ塗布し、蛍光体層を前記蛍光体の発する蛍光波長が長いものから順次積層していく工程 を含むことを特徴とする発光デバイスの製造方法。 Method of manufacturing a light emitting device by applying the dispersion to the LED elements vicinity, characterized in that it comprises a step of fluorescence wavelength to emit fluorescent layer of the fluorescent material is sequentially stacked from long.
  11. LEDチップと、前記LEDチップからの発光の少なくとも一部を吸収して吸収した光より長波長の蛍光を発する二種以上の蛍光体を含む発光デバイスの製造方法であって、 An LED chip, a manufacturing method of a light emitting device comprising two or more phosphors that emit fluorescence of a longer wavelength than the absorbed light by absorbing at least a portion of light emitted from the LED chip,
    前記蛍光体の種類ごとに蛍光体を分散した分散液を調整する工程と、 And adjusting a dispersion prepared by dispersing a phosphor in each type of the phosphor,
    前記蛍光体分散液を透明なシート上に塗布して、前記蛍光体の蛍光波長が長いものがより前記LEDチップ側へ配置されるように積層する工程と、 Was applied to the phosphor dispersion transparent sheet, laminating as the ones fluorescence wavelength of the phosphor is longer is positioned to more the LED chip side,
    前記透明なシートを前記LEDチップの発光観測面近傍に配置する工程 を含むことを特徴とする発光デバイスの製造方法。 Method of manufacturing a light emitting device, which comprises a step of placing the transparent sheet in emission observing surface vicinity of the LED chip.
JP2004088604A 2004-03-25 2004-03-25 A light-emitting device Active JP4451178B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004088604A JP4451178B2 (en) 2004-03-25 2004-03-25 A light-emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004088604A JP4451178B2 (en) 2004-03-25 2004-03-25 A light-emitting device

Publications (2)

Publication Number Publication Date
JP2005277127A true JP2005277127A (en) 2005-10-06
JP4451178B2 JP4451178B2 (en) 2010-04-14

Family

ID=35176449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004088604A Active JP4451178B2 (en) 2004-03-25 2004-03-25 A light-emitting device

Country Status (1)

Country Link
JP (1) JP4451178B2 (en)

Cited By (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007049114A (en) * 2005-05-30 2007-02-22 Sharp Corp Light emitting device and method of manufacturing the same
JP2007149909A (en) * 2005-11-28 2007-06-14 Nichia Chem Ind Ltd Light-emitting device
JP2007173397A (en) * 2005-12-20 2007-07-05 Matsushita Electric Ind Co Ltd Light-emitting module, and display device and lighting device using the same
WO2007077869A1 (en) * 2006-01-04 2007-07-12 Rohm Co., Ltd. Thin-type light emitting diode lamp, and its manufacturing
JP2007184330A (en) * 2006-01-04 2007-07-19 Rohm Co Ltd Light-emitting device and manufacturing method therefor
JP2007184326A (en) * 2006-01-04 2007-07-19 Rohm Co Ltd Thin light-emitting diode lamp and manufacturing method therefor
JP2007201301A (en) * 2006-01-30 2007-08-09 Sumitomo Metal Electronics Devices Inc Light emitting device using white led
JP2007294728A (en) * 2006-04-26 2007-11-08 Nichia Chem Ind Ltd Semiconductor light-emitting apparatus
JP2007311663A (en) * 2006-05-19 2007-11-29 Sharp Corp Manufacturing method for light emitting device, light emitting device, and manufacturing apparatus for light emitting device
JP2008010556A (en) * 2006-06-28 2008-01-17 Stanley Electric Co Ltd Led light source device and led backlight using the same
JP2008147190A (en) * 2006-12-05 2008-06-26 Samsung Electro-Mechanics Co Ltd White light emitting device and white light source module using same
JP2009019163A (en) * 2007-07-13 2009-01-29 Sharp Corp Phosphor particle aggregate for light emitting device, light emitting device, and backlight device for liquid crystal display
JP2009524247A (en) * 2006-01-20 2009-06-25 クリー エル イー ディー ライティング ソリューションズ インコーポレイテッド Shifting the spectral content of the solid-state light-emitting element by spatially separating the lumiphor membrane
JP2009267039A (en) * 2008-04-24 2009-11-12 Citizen Electronics Co Ltd Light-emitting device
JP2010080935A (en) * 2008-08-28 2010-04-08 Panasonic Corp Semiconductor light emitting device, backlight source using the same, backlight source system, display, and electronic apparatus
JP2010087324A (en) * 2008-10-01 2010-04-15 Minebea Co Ltd Light emitting device
CN101378105B (en) 2007-08-31 2010-06-23 株式会社东芝 Light-emitting device
JP2010182809A (en) * 2009-02-04 2010-08-19 Stanley Electric Co Ltd Semiconductor light-emitting apparatus
WO2010131402A1 (en) * 2009-05-15 2010-11-18 株式会社小糸製作所 Light-emitting module, method of producing light-emitting module, and lighting fixture unit
JP2010272687A (en) * 2009-05-21 2010-12-02 Toshiba Lighting & Technology Corp Lighting device, and luminaire
JP2010538453A (en) * 2007-08-31 2010-12-09 エルジー イノテック カンパニー リミテッド A light-emitting device package
US7897987B2 (en) 2008-03-28 2011-03-01 Toyoda Gosei Co., Ltd. Light-emitting device including light-emitting diode and stacked light-emitting phosphor layers
JP2011187929A (en) * 2010-02-09 2011-09-22 Sony Corp Light emitting device and manufacturing method thereof
JP2012502455A (en) * 2008-09-04 2012-01-26 バイエル・マテリアルサイエンス・アクチェンゲゼルシャフトBayer MaterialScience AG Conversion film and a method of manufacturing the same
US8294165B2 (en) 2006-03-30 2012-10-23 Kabushiki Kaisha Toshiba Semiconductor light-emitting device
CN102903830A (en) * 2011-07-25 2013-01-30 采钰科技股份有限公司 Light emitting means
JP2013046046A (en) * 2011-08-26 2013-03-04 Mitsubishi Chemicals Corp Light-emitting device
WO2013038649A1 (en) * 2011-09-13 2013-03-21 株式会社小糸製作所 Light-emitting module
US8441179B2 (en) 2006-01-20 2013-05-14 Cree, Inc. Lighting devices having remote lumiphors that are excited by lumiphor-converted semiconductor excitation sources
JP2013521647A (en) * 2010-03-03 2013-06-10 クリー インコーポレイテッドCree Inc. Radiator with increased color rendering index through the phosphor separation
JP2013153082A (en) * 2012-01-25 2013-08-08 Sharp Corp Light-emitting diode module, and manufacturing method of light-emitting diode module
US8558448B2 (en) 2010-08-05 2013-10-15 Stanley Electric Co., Ltd. Semiconductor light emitting device
KR20130117766A (en) * 2010-09-01 2013-10-28 엔티에이치 디그리 테크놀로지스 월드와이드 인코포레이티드 Diodes, printable compositions of a liquid or gel suspension of diodes or other two-terminal integrated circuits, and methods of making same
JP2013229621A (en) * 2010-08-17 2013-11-07 Konica Minolta Inc Method for manufacturing light-emitting device
CN103597621A (en) * 2011-03-11 2014-02-19 柯尼卡美能达株式会社 Method for manufacturing light emitting device and mixed phosphor solution
JP2014032350A (en) * 2012-08-06 2014-02-20 Nichia Chem Ind Ltd Beam homogenizer and optical engine using the same
US8882284B2 (en) 2010-03-03 2014-11-11 Cree, Inc. LED lamp or bulb with remote phosphor and diffuser configuration with enhanced scattering properties
US8931933B2 (en) 2010-03-03 2015-01-13 Cree, Inc. LED lamp with active cooling element
US8967821B2 (en) 2009-09-25 2015-03-03 Cree, Inc. Lighting device with low glare and high light level uniformity
JP2015511775A (en) * 2012-03-30 2015-04-20 コーニンクレッカ フィリップス エヌ ヴェ An optical resonator including a light emitting device and the wavelength converting material
JP2015076455A (en) * 2013-10-07 2015-04-20 豊田合成株式会社 Light-emitting apparatus
US9024517B2 (en) 2010-03-03 2015-05-05 Cree, Inc. LED lamp with remote phosphor and diffuser configuration utilizing red emitters
US9048399B2 (en) 2010-07-06 2015-06-02 Kabushiki Kaisha Toshiba Light emitting device
US9057511B2 (en) 2010-03-03 2015-06-16 Cree, Inc. High efficiency solid state lamp and bulb
US9062830B2 (en) 2010-03-03 2015-06-23 Cree, Inc. High efficiency solid state lamp and bulb
US9068701B2 (en) 2012-01-26 2015-06-30 Cree, Inc. Lamp structure with remote LED light source
US9217544B2 (en) 2010-03-03 2015-12-22 Cree, Inc. LED based pedestal-type lighting structure
US9234655B2 (en) 2011-02-07 2016-01-12 Cree, Inc. Lamp with remote LED light source and heat dissipating elements
US9275979B2 (en) 2010-03-03 2016-03-01 Cree, Inc. Enhanced color rendering index emitter through phosphor separation
US9310030B2 (en) 2010-03-03 2016-04-12 Cree, Inc. Non-uniform diffuser to scatter light into uniform emission pattern
US9316361B2 (en) 2010-03-03 2016-04-19 Cree, Inc. LED lamp with remote phosphor and diffuser configuration
US9360188B2 (en) 2014-02-20 2016-06-07 Cree, Inc. Remote phosphor element filled with transparent material and method for forming multisection optical elements
US9412926B2 (en) 2005-06-10 2016-08-09 Cree, Inc. High power solid-state lamp
US9488359B2 (en) 2012-03-26 2016-11-08 Cree, Inc. Passive phase change radiators for LED lamps and fixtures
US9500325B2 (en) 2010-03-03 2016-11-22 Cree, Inc. LED lamp incorporating remote phosphor with heat dissipation features
JP6092446B1 (en) * 2015-10-23 2017-03-08 デクセリアルズ株式会社 Partial driving type light source device and an image display apparatus using the same
US9624427B2 (en) 2006-11-24 2017-04-18 Ge Phosphors Technology, Llc Phosphor, method of producing the same, and light emitting apparatus
US9625105B2 (en) 2010-03-03 2017-04-18 Cree, Inc. LED lamp with active cooling element
WO2017217549A1 (en) * 2016-06-17 2017-12-21 シチズン電子株式会社 Light emitting device
JP2018137321A (en) * 2017-02-21 2018-08-30 シャープ株式会社 Light-emitting device and image display device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101957700B1 (en) * 2012-02-01 2019-03-14 삼성전자주식회사 Ligt Emitting Device

Cited By (83)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10008644B2 (en) 2005-05-30 2018-06-26 Sharp Kabushiki Kaisha Light emitting device and fabricating method thereof
US9281456B2 (en) 2005-05-30 2016-03-08 Sharp Kabushiki Kaisha Light emitting device and fabricating method thereof
US9722149B2 (en) 2005-05-30 2017-08-01 Sharp Kabushiki Kaisha Light emitting device and fabricating method thereof
JP2007049114A (en) * 2005-05-30 2007-02-22 Sharp Corp Light emitting device and method of manufacturing the same
US9412926B2 (en) 2005-06-10 2016-08-09 Cree, Inc. High power solid-state lamp
JP2007149909A (en) * 2005-11-28 2007-06-14 Nichia Chem Ind Ltd Light-emitting device
JP2007173397A (en) * 2005-12-20 2007-07-05 Matsushita Electric Ind Co Ltd Light-emitting module, and display device and lighting device using the same
JP2007184326A (en) * 2006-01-04 2007-07-19 Rohm Co Ltd Thin light-emitting diode lamp and manufacturing method therefor
US8405112B2 (en) 2006-01-04 2013-03-26 Rohm Co., Ltd. Thin-light emitting diode lamp, and method of manufacturing the same
WO2007077869A1 (en) * 2006-01-04 2007-07-12 Rohm Co., Ltd. Thin-type light emitting diode lamp, and its manufacturing
JP2007184330A (en) * 2006-01-04 2007-07-19 Rohm Co Ltd Light-emitting device and manufacturing method therefor
KR101019765B1 (en) * 2006-01-04 2011-03-04 로무 가부시키가이샤 Thin-type light emitting diode lamp, and its manufacturing
US8004002B2 (en) 2006-01-04 2011-08-23 Rohm Co., Ltd. Thin-light emitting diode lamp, and method of manufacturing the same
JP2009524247A (en) * 2006-01-20 2009-06-25 クリー エル イー ディー ライティング ソリューションズ インコーポレイテッド Shifting the spectral content of the solid-state light-emitting element by spatially separating the lumiphor membrane
KR101408622B1 (en) 2006-01-20 2014-06-17 크리, 인코포레이티드 Shifting spectral content in solid state light emitters by spatially separating lumiphor films
US9220149B2 (en) 2006-01-20 2015-12-22 Cree, Inc. Lighting devices having remote lumiphors that are excited by lumiphor-converted semiconductor excitation sources
US8441179B2 (en) 2006-01-20 2013-05-14 Cree, Inc. Lighting devices having remote lumiphors that are excited by lumiphor-converted semiconductor excitation sources
JP2007201301A (en) * 2006-01-30 2007-08-09 Sumitomo Metal Electronics Devices Inc Light emitting device using white led
US8294165B2 (en) 2006-03-30 2012-10-23 Kabushiki Kaisha Toshiba Semiconductor light-emitting device
JP2007294728A (en) * 2006-04-26 2007-11-08 Nichia Chem Ind Ltd Semiconductor light-emitting apparatus
JP2007311663A (en) * 2006-05-19 2007-11-29 Sharp Corp Manufacturing method for light emitting device, light emitting device, and manufacturing apparatus for light emitting device
JP2008010556A (en) * 2006-06-28 2008-01-17 Stanley Electric Co Ltd Led light source device and led backlight using the same
US9624427B2 (en) 2006-11-24 2017-04-18 Ge Phosphors Technology, Llc Phosphor, method of producing the same, and light emitting apparatus
US9884990B2 (en) 2006-11-24 2018-02-06 Ge Phosphors Technology, Llc Phosphor, method of producing the same, and light emitting apparatus
US9392670B2 (en) 2006-12-05 2016-07-12 Samsung Electronics Co., Ltd. White light emitting device and white light source module using the same
US7959312B2 (en) 2006-12-05 2011-06-14 Samsung Led Co., Ltd. White light emitting device and white light source module using the same
US7964885B2 (en) 2006-12-05 2011-06-21 Samsung Led Co., Ltd. White light emitting device and white light source module using the same
JP2008147190A (en) * 2006-12-05 2008-06-26 Samsung Electro-Mechanics Co Ltd White light emitting device and white light source module using same
JP2008187195A (en) * 2006-12-05 2008-08-14 Samsung Electro-Mechanics Co Ltd White led and white light source module using the same
US8317348B2 (en) 2006-12-05 2012-11-27 Samsung Led Co., Ltd. White light emitting device and white light source module using the same
JP2009019163A (en) * 2007-07-13 2009-01-29 Sharp Corp Phosphor particle aggregate for light emitting device, light emitting device, and backlight device for liquid crystal display
JP2010538453A (en) * 2007-08-31 2010-12-09 エルジー イノテック カンパニー リミテッド A light-emitting device package
CN101378105B (en) 2007-08-31 2010-06-23 株式会社东芝 Light-emitting device
US7884538B2 (en) 2007-08-31 2011-02-08 Kabushiki Kaisha Toshiba Light-emitting device
US8237350B2 (en) 2007-08-31 2012-08-07 Kabushiki Kaisha Toshiba Light-emitting device
US7897987B2 (en) 2008-03-28 2011-03-01 Toyoda Gosei Co., Ltd. Light-emitting device including light-emitting diode and stacked light-emitting phosphor layers
JP2009267039A (en) * 2008-04-24 2009-11-12 Citizen Electronics Co Ltd Light-emitting device
JP2010080935A (en) * 2008-08-28 2010-04-08 Panasonic Corp Semiconductor light emitting device, backlight source using the same, backlight source system, display, and electronic apparatus
JP2012502455A (en) * 2008-09-04 2012-01-26 バイエル・マテリアルサイエンス・アクチェンゲゼルシャフトBayer MaterialScience AG Conversion film and a method of manufacturing the same
JP2010087324A (en) * 2008-10-01 2010-04-15 Minebea Co Ltd Light emitting device
JP2010182809A (en) * 2009-02-04 2010-08-19 Stanley Electric Co Ltd Semiconductor light-emitting apparatus
WO2010131402A1 (en) * 2009-05-15 2010-11-18 株式会社小糸製作所 Light-emitting module, method of producing light-emitting module, and lighting fixture unit
JP5487204B2 (en) * 2009-05-15 2014-05-07 株式会社小糸製作所 Light emitting module, a method of manufacturing a light emitting module, and a lamp unit
JP2010272687A (en) * 2009-05-21 2010-12-02 Toshiba Lighting & Technology Corp Lighting device, and luminaire
US8967821B2 (en) 2009-09-25 2015-03-03 Cree, Inc. Lighting device with low glare and high light level uniformity
JP2011187929A (en) * 2010-02-09 2011-09-22 Sony Corp Light emitting device and manufacturing method thereof
US9062830B2 (en) 2010-03-03 2015-06-23 Cree, Inc. High efficiency solid state lamp and bulb
US8882284B2 (en) 2010-03-03 2014-11-11 Cree, Inc. LED lamp or bulb with remote phosphor and diffuser configuration with enhanced scattering properties
US9310030B2 (en) 2010-03-03 2016-04-12 Cree, Inc. Non-uniform diffuser to scatter light into uniform emission pattern
JP2013521647A (en) * 2010-03-03 2013-06-10 クリー インコーポレイテッドCree Inc. Radiator with increased color rendering index through the phosphor separation
US9500325B2 (en) 2010-03-03 2016-11-22 Cree, Inc. LED lamp incorporating remote phosphor with heat dissipation features
US9217544B2 (en) 2010-03-03 2015-12-22 Cree, Inc. LED based pedestal-type lighting structure
US9024517B2 (en) 2010-03-03 2015-05-05 Cree, Inc. LED lamp with remote phosphor and diffuser configuration utilizing red emitters
US9316361B2 (en) 2010-03-03 2016-04-19 Cree, Inc. LED lamp with remote phosphor and diffuser configuration
US9625105B2 (en) 2010-03-03 2017-04-18 Cree, Inc. LED lamp with active cooling element
US9057511B2 (en) 2010-03-03 2015-06-16 Cree, Inc. High efficiency solid state lamp and bulb
US9275979B2 (en) 2010-03-03 2016-03-01 Cree, Inc. Enhanced color rendering index emitter through phosphor separation
US8931933B2 (en) 2010-03-03 2015-01-13 Cree, Inc. LED lamp with active cooling element
US9048399B2 (en) 2010-07-06 2015-06-02 Kabushiki Kaisha Toshiba Light emitting device
US8558448B2 (en) 2010-08-05 2013-10-15 Stanley Electric Co., Ltd. Semiconductor light emitting device
US9153752B2 (en) 2010-08-17 2015-10-06 Konica Minolta Advanced Layers, Inc. Method of manufacturing light-emitting device
JP2013229621A (en) * 2010-08-17 2013-11-07 Konica Minolta Inc Method for manufacturing light-emitting device
US9306130B2 (en) 2010-08-17 2016-04-05 Konica Minolta, Inc. Method of manufacturing light-emitting device
KR20130117766A (en) * 2010-09-01 2013-10-28 엔티에이치 디그리 테크놀로지스 월드와이드 인코포레이티드 Diodes, printable compositions of a liquid or gel suspension of diodes or other two-terminal integrated circuits, and methods of making same
US9234655B2 (en) 2011-02-07 2016-01-12 Cree, Inc. Lamp with remote LED light source and heat dissipating elements
CN103597621A (en) * 2011-03-11 2014-02-19 柯尼卡美能达株式会社 Method for manufacturing light emitting device and mixed phosphor solution
CN102903830A (en) * 2011-07-25 2013-01-30 采钰科技股份有限公司 Light emitting means
JP2013046046A (en) * 2011-08-26 2013-03-04 Mitsubishi Chemicals Corp Light-emitting device
US9054280B2 (en) 2011-09-13 2015-06-09 Koito Manufacturing Co., Ltd. Light emitting module
WO2013038649A1 (en) * 2011-09-13 2013-03-21 株式会社小糸製作所 Light-emitting module
JP2013153082A (en) * 2012-01-25 2013-08-08 Sharp Corp Light-emitting diode module, and manufacturing method of light-emitting diode module
US9068701B2 (en) 2012-01-26 2015-06-30 Cree, Inc. Lamp structure with remote LED light source
US9488359B2 (en) 2012-03-26 2016-11-08 Cree, Inc. Passive phase change radiators for LED lamps and fixtures
JP2015511775A (en) * 2012-03-30 2015-04-20 コーニンクレッカ フィリップス エヌ ヴェ An optical resonator including a light emitting device and the wavelength converting material
US9997674B2 (en) 2012-03-30 2018-06-12 Lumileds Llc Optical cavity including a light emitting device and wavelength converting material
JP2014032350A (en) * 2012-08-06 2014-02-20 Nichia Chem Ind Ltd Beam homogenizer and optical engine using the same
JP2015076455A (en) * 2013-10-07 2015-04-20 豊田合成株式会社 Light-emitting apparatus
US9360188B2 (en) 2014-02-20 2016-06-07 Cree, Inc. Remote phosphor element filled with transparent material and method for forming multisection optical elements
JP6092446B1 (en) * 2015-10-23 2017-03-08 デクセリアルズ株式会社 Partial driving type light source device and an image display apparatus using the same
JP2017084827A (en) * 2015-10-23 2017-05-18 デクセリアルズ株式会社 Partial drive-type light source device and image display device using the same
WO2017068740A1 (en) * 2015-10-23 2017-04-27 デクセリアルズ株式会社 Partial drive-type light source device and image display device using same
WO2017217549A1 (en) * 2016-06-17 2017-12-21 シチズン電子株式会社 Light emitting device
JP2018137321A (en) * 2017-02-21 2018-08-30 シャープ株式会社 Light-emitting device and image display device

Also Published As

Publication number Publication date
JP4451178B2 (en) 2010-04-14

Similar Documents

Publication Publication Date Title
CN101312185B (en) Light emitting device and method for manufacturing the same
KR100609830B1 (en) White Semiconductor Light Emitted Device using Green-emitting and Red emitting Phosphor
JP5233170B2 (en) Emitting device, the resin molded article constituting the light emitting device and a method for their preparation
JP4645071B2 (en) Molded package and a semiconductor device using the same
KR100802006B1 (en) Light emitting diode, optical semiconductor element and epoxy resin composition suitable for optical semiconductor element and production methods therefor
KR101623482B1 (en) Red line emitting phosphors for use in led applications
JP4233252B2 (en) Casting material and a method for manufacturing the same, and the light emitting element
JP5320993B2 (en) Lighting device
US8405304B2 (en) Light emtting device
JP4114331B2 (en) The light-emitting device
EP1480278B1 (en) Light emitting diode comprising a fluorescent multilayer
KR100946015B1 (en) White led device and light source module for lcd backlight using the same
US20100289044A1 (en) Wavelength conversion for producing white light from high power blue led
CN1941441B (en) Light emitting means
US8459840B2 (en) Semiconductor light emitting apparatus and light source apparatus using the same
US8810124B2 (en) AC light emitting device with long-persistent phosphor and light emitting device module having the same
US8729788B2 (en) Light emitting device provided with a wavelength conversion unit incorporating plural kinds of phosphors
US20060055309A1 (en) Light emitting device
US20070090381A1 (en) Semiconductor light emitting device
JP5138145B2 (en) Phosphor multilayer structure and a light source using the same
JP4438492B2 (en) Semiconductor device and manufacturing method thereof
JP3655267B2 (en) Semiconductor light-emitting device
JP4128564B2 (en) The light-emitting device
CN102067344B (en) Light-emitting device and method for producing same
JP4193446B2 (en) The light-emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100119

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100127

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140205

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250