JP2002173675A - Fluorescence particle having coated layer and method for producing the same - Google Patents

Fluorescence particle having coated layer and method for producing the same

Info

Publication number
JP2002173675A
JP2002173675A JP2000371118A JP2000371118A JP2002173675A JP 2002173675 A JP2002173675 A JP 2002173675A JP 2000371118 A JP2000371118 A JP 2000371118A JP 2000371118 A JP2000371118 A JP 2000371118A JP 2002173675 A JP2002173675 A JP 2002173675A
Authority
JP
Japan
Prior art keywords
fluorescent particles
coating layer
iso
metal alkoxide
alkoxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000371118A
Other languages
Japanese (ja)
Inventor
Hidefumi Tachiiri
英史 立入
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanken Electric Co Ltd
Original Assignee
Sanken Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanken Electric Co Ltd filed Critical Sanken Electric Co Ltd
Priority to JP2000371118A priority Critical patent/JP2002173675A/en
Publication of JP2002173675A publication Critical patent/JP2002173675A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Landscapes

  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)
  • Led Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a fluorescent particle having a coated layer with environmental resistance and ultraviolet resistance. SOLUTION: This fluorescent particle (1) has a coated layer (2) which comprises a glass such as a polymetalloxane having light transmission, etc., or a ceramic such as nitrogen silicon-based ceramic and is formed approximately on the whole surface. The fluorescent particle is provided with environmental resistance and ultraviolet resistance.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、受光した光の波長
を変換する蛍光粒子、特に耐紫外線又は耐熱性を備えた
被覆層を有する蛍光粒子及びその製法に属する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to fluorescent particles for converting the wavelength of received light, particularly fluorescent particles having a coating layer having resistance to ultraviolet light or heat, and a method for producing the same.

【0002】[0002]

【従来の技術】禁止帯幅(エネルギギャップ)の大きい
半導体発光素子を用いると、波長の短い可視光から紫外
域又は近紫外域までの比較的短い波長で発光する半導体
発光装置を実現することができる。紫外光を発生する半
導体発光素子は、GaN、GaAlN、InGaN、InGaAlN等の窒素
ガリウム系化合物半導体から成り、小型、低消費電力、
長寿命等種々の利点を備えた新しい固体化紫外光源に利
用することができる。
2. Description of the Related Art When a semiconductor light emitting device having a large band gap (energy gap) is used, a semiconductor light emitting device which emits light at a relatively short wavelength from visible light having a short wavelength to an ultraviolet region or a near ultraviolet region can be realized. it can. Semiconductor light emitting devices that generate ultraviolet light are made of a nitrogen gallium-based compound semiconductor such as GaN, GaAlN, InGaN, and InGaAlN, and have a small size, low power consumption,
It can be used for a new solid-state ultraviolet light source having various advantages such as a long life.

【0003】[0003]

【発明が解決しようとする課題】一般に、半導体発光素
子は炭素、水素、酸素、窒素等の元素が網目状に結合し
た有機高分子化合物によって構成される樹脂封止体によ
り被覆されるが、エポキシ系樹脂から成る外囲体と成る
樹脂封止体にこれら紫外線等が照射されると、有機高分
子の繋ぎ目が切断され、各種の光学的特性及び化学的特
性が劣化することが知られている。例えばGaN(窒化ガ
リウム)の青色発光ダイオードチップは、波長365nm
程度まで紫外線を発光するため、樹脂封止体は光強度の
強い発光ダイオードチップの周囲から次第に黄変し、着
色現象が発生する。このため、発光ダイオードチップが
発した可視光は着色部で吸収され減衰する。更に、樹脂
封止体の劣化に伴って耐湿性が低下すると共に、イオン
透過性が増大するため、発光ダイオードチップ自体も劣
化し、その結果、発光ダイオード装置の発光強度は相乗
的に低減する。
Generally, a semiconductor light emitting device is covered with a resin encapsulant composed of an organic polymer compound in which elements such as carbon, hydrogen, oxygen, and nitrogen are bonded in a mesh. It is known that when these ultraviolet rays and the like are irradiated on the resin sealing body that forms the outer enclosure made of the base resin, the joint of the organic polymer is cut, and various optical and chemical properties are deteriorated. I have. For example, a blue light emitting diode chip of GaN (gallium nitride) has a wavelength of 365 nm.
Since the ultraviolet light is emitted to the extent, the resin sealing body gradually turns yellow around the light emitting diode chip having a high light intensity, and a coloring phenomenon occurs. Therefore, the visible light emitted from the light emitting diode chip is absorbed and attenuated by the colored portion. Furthermore, since the moisture resistance decreases and the ion permeability increases with the deterioration of the resin sealing body, the light emitting diode chip itself also deteriorates, and as a result, the light emission intensity of the light emitting diode device decreases synergistically.

【0004】耐熱性が低い樹脂封止体が黄変・着色する
ため、発光ダイオードチップから照射された光は樹脂封
止体を通過する際に減衰する。例えば順方向電圧が高い
GaN(窒化ガリウム)の青色発光ダイオードチップは、
比較的低い順方向電流でも電力損失が大きく、作動時に
チップ温度はかなり上昇する。また、樹脂は一般に高温
に加熱されると次第に劣化して黄変・着色を起こすこと
が知られている。従ってGaNの発光ダイオードチップを
従来の発光ダイオード装置に用いると、高温の発光ダイ
オードチップと接する部分から樹脂が次第に黄変・着色
するため、発光ダイオード装置の外観品質と発光強度は
次第に低下する。このように、従来の発光ダイオード装
置では、選択する材料種類の減少、信頼性の低下、光変
換機能の不完全性、製品価格の上昇を招来する原因とな
る。
[0004] Since the resin sealing body having low heat resistance is yellowed and colored, light emitted from the light emitting diode chip is attenuated when passing through the resin sealing body. For example, high forward voltage
GaN (gallium nitride) blue light emitting diode chip,
Even at relatively low forward currents, the power loss is large and the chip temperature rises significantly during operation. It is also known that resins are generally deteriorated when heated to a high temperature, causing yellowing and coloring. Therefore, when a GaN light-emitting diode chip is used in a conventional light-emitting diode device, the resin gradually turns yellow and is colored from the portion in contact with the high-temperature light-emitting diode chip, so that the appearance quality and light emission intensity of the light-emitting diode device gradually decrease. As described above, in the conventional light emitting diode device, the number of kinds of materials to be selected, the reliability is reduced, the light conversion function is incomplete, and the product price is increased.

【0005】図3は、発光ダイオードチップから照射さ
れる光の波長を蛍光物質(7a)によって変換する従来の発
光ダイオード装置の断面図を示す。図3に示す発光ダイ
オード装置(20)では、カソード側のリードとしての外部
端子(3)の凹部(3a)の底面(3b)に発光ダイオードチップ
(12)が固着され、リード細線(5)により発光ダイオード
チップ(12)のカソード電極はカソード側の外部端子(3)
の上端部(9a)に接続される。また、発光ダイオードチッ
プ(12)のアノード電極はリード細線(6)によりアノード
側のリードとしての外部端子(4)の上端部(9b)に接続さ
れる。凹部(3a)に固着された発光ダイオードチップ(12)
は、凹部(3a)内に充填され且つ蛍光物質(7a)が混入され
た光透過性の保護樹脂(7)により被覆される。発光ダイ
オードチップ(12)、カソード側の外部端子(3)の凹部(3
a)及び上端部(9a)、アノード側の外部端子(4)の上端部
(9b)、リード細線(5, 6)は、更に光透過性の封止樹脂
(8)内に封入される。
FIG. 3 is a cross-sectional view of a conventional light emitting diode device for converting the wavelength of light emitted from a light emitting diode chip with a fluorescent substance (7a). In the light emitting diode device (20) shown in FIG. 3, a light emitting diode chip is provided on the bottom surface (3b) of the concave portion (3a) of the external terminal (3) as a cathode lead.
(12) is fixed, and the cathode electrode of the light emitting diode chip (12) is connected to the external terminal (3) on the cathode side by the lead wire (5).
Is connected to the upper end (9a). The anode electrode of the light emitting diode chip (12) is connected to the upper end (9b) of the external terminal (4) as a lead on the anode side by a thin lead wire (6). Light emitting diode chip (12) fixed in the recess (3a)
Is covered with a light-transmitting protective resin (7) filled in the recess (3a) and mixed with the fluorescent substance (7a). Light-emitting diode chip (12), concave part (3
a) and the upper end (9a), the upper end of the external terminal (4) on the anode side
(9b), the fine lead wires (5, 6) are more light-transmitting sealing resin
It is enclosed in (8).

【0006】発光ダイオード装置(20)のカソード側の外
部端子(3)とアノード側の外部端子(4)との間に電圧を印
加し、発光ダイオードチップ(12)に通電すると、発光ダ
イオードチップ(12)から照射される光は、保護樹脂(7)
内を通り外部端子(3)の凹部(3a)の側壁(3c)で反射した
後に、透明な封止樹脂(8)を通り発光ダイオード装置(2
0)の外部に放出される。また、発光ダイオードチップ(1
2)の上面から放射されて凹部(3a)の側壁(3c)で反射され
ずに直接に保護樹脂(7)及び封止樹脂(8)を通って発光ダ
イオード装置(20)の外部に放出される光もある。封止樹
脂(8)の先端にはレンズ部(8a)が形成され、封止樹脂(8)
内を通過する光は、レンズ部(8a)によって集光されて指
向性が高められる。発光ダイオードチップ(12)の発光時
に、発光ダイオードチップ(12)から照射される光は保護
樹脂(7)内に混入された蛍光物質(7a)によって異なる波
長に変換されて放出される。この結果、発光ダイオード
チップ(12)から照射された光とは異なる波長の光が発光
ダイオード装置(20)から放出される。
When a voltage is applied between the cathode-side external terminal (3) and the anode-side external terminal (4) of the light emitting diode device (20) and the light emitting diode chip (12) is energized, the light emitting diode chip (12) is turned on. Light emitted from 12) is a protective resin (7)
After passing through the inside and reflecting off the side wall (3c) of the concave portion (3a) of the external terminal (3), the light-emitting diode device (2) passes through the transparent sealing resin (8).
It is released outside of 0). In addition, the light emitting diode chip (1
The light emitted from the upper surface of 2) is not reflected on the side wall (3c) of the concave portion (3a) but is emitted directly to the outside of the light emitting diode device (20) through the protective resin (7) and the sealing resin (8). There is also light. At the tip of the sealing resin (8), a lens part (8a) is formed, and the sealing resin (8)
Light passing through the inside is condensed by the lens portion (8a), and the directivity is enhanced. When the light emitting diode chip (12) emits light, light emitted from the light emitting diode chip (12) is converted into a different wavelength by the fluorescent substance (7a) mixed in the protective resin (7) and emitted. As a result, light having a different wavelength from the light emitted from the light emitting diode chip (12) is emitted from the light emitting diode device (20).

【0007】[0007]

【発明が解決しようとする課題】発光ダイオードチップ
(12)から発生する紫外線成分によって被覆樹脂及び蛍光
体が劣化する問題がある。一般に、炭素、水素、酸素、
窒素等の元素が網目状に結合した有機高分子化合物によ
って構成される保護樹脂(7)及び封止樹脂(8)は、紫外線
が照射されると、有機高分子の繋ぎ目が切断され、各種
の光学的特性及び化学的特性が劣化することが知られて
いる。例えばGaN(窒化ガリウム)の青色発光ダイオー
ドチップは、可視光成分以外にも波長380nm以下の紫
外波長域に発光成分を持つため、被覆樹脂は光強度の強
い発光ダイオードチップの周囲から次第に黄変し、着色
現象が発生すると共に、発光ダイオードチップが発する
可視光は着色部で吸収され減衰する。更に、被覆樹脂の
劣化に伴って耐湿性が低下すると共に、イオン透過性が
増大するため、発光ダイオードチップ自体も劣化し、そ
の結果、発光ダイオード装置(20)の発光強度は相乗的に
低減する。
SUMMARY OF THE INVENTION A light emitting diode chip
There is a problem that the coating resin and the phosphor are deteriorated by the ultraviolet component generated from (12). Generally, carbon, hydrogen, oxygen,
The protective resin (7) and the encapsulating resin (8), which are composed of an organic polymer compound in which elements such as nitrogen are bonded in a network, are cut at the joint of the organic polymer when irradiated with ultraviolet rays, It is known that the optical properties and chemical properties of are deteriorated. For example, a blue light-emitting diode chip of GaN (gallium nitride) has a light-emitting component in the ultraviolet wavelength range of 380 nm or less in addition to the visible light component, so that the coating resin gradually turns yellow from the periphery of the light-emitting diode chip with strong light intensity. When the coloring phenomenon occurs, the visible light emitted from the light emitting diode chip is absorbed and attenuated by the colored portion. Furthermore, as the moisture resistance decreases with the deterioration of the coating resin, and the ion permeability increases, the light emitting diode chip itself also deteriorates. As a result, the light emitting intensity of the light emitting diode device (20) decreases synergistically. .

【0008】また、被覆樹脂と同様に、紫外線によって
劣化する蛍光体もある。例えば、硫化亜鉛系の蛍光体は
放射線や紫外線によって光分解を起こし亜鉛が遊離する
いわゆる「黒化」現象を起こすことが知られている。被
覆樹脂中の蛍光体が光分解を生ずると、発光ダイオード
装置(20)の発光強度は著しく低下する。
Also, there are phosphors that are deteriorated by ultraviolet rays, like the coating resin. For example, it is known that a zinc sulfide-based phosphor undergoes photodecomposition by radiation or ultraviolet rays to cause a so-called "blackening" phenomenon in which zinc is released. When the phosphor in the coating resin undergoes photolysis, the light emission intensity of the light emitting diode device (20) is significantly reduced.

【0009】紫外線による被覆樹脂及び蛍光体の劣化を
防止するため、被覆樹脂中に紫外線吸収物質を混入する
方法も考えられるが、可視光成分自体を吸収せず、被覆
樹脂本来の特性に悪影響を与えない紫外線吸収物質を慎
重に選定しなければならない。また、紫外線吸収物質を
採用する際に、付加的に使用する材料及び作業工程が増
加するので、製品価格が上昇する難点がある。
In order to prevent the deterioration of the coating resin and the phosphor due to ultraviolet rays, a method of mixing an ultraviolet absorbing substance into the coating resin is conceivable. However, it does not absorb the visible light component itself and adversely affects the intrinsic properties of the coating resin. Care must be taken to select UV absorbers that will not be given. In addition, when an ultraviolet absorbing material is used, the number of additional materials and the number of working processes are increased, so that there is a problem that the product price increases.

【0010】更に、紫外線を発する紫外線発光ダイオー
ドチップを使用できないため、蛍光体の材料選択と発光
ダイオード装置の発光特性が大きな制限を受けることも
問題である。蛍光ランプ又は水銀ランプに使用する紫外
線で励起される紫外線用の蛍光体は、古くから開発・改
良が行われた結果、現在では様々な発光波長分布を持つ
安価で光変換効率の高い数多くの蛍光体が実用化されて
いる。紫外線発光ダイオードチップと紫外線用の蛍光体
を組み合わせると、一層明るく且つ変化に富む色調の発
光ダイオード装置が得られると予想される。しかしなが
ら、紫外線により樹脂が劣化する従来の発光ダイオード
装置では、紫外線発光ダイオードチップを使用できず、
優れた蛍光体を利用できない。このように、従来の発光
ダイオード装置では、蛍光体を樹脂中に配合すると前記
問題が生じ、このため選択する材料種類の減少、信頼性
の低下、光変換機能の不完全性、製品価格の上昇を招来
する原因となる。
Furthermore, since an ultraviolet light emitting diode chip that emits ultraviolet light cannot be used, there is a problem that the selection of the material of the phosphor and the light emitting characteristics of the light emitting diode device are greatly restricted. Ultraviolet phosphors excited by ultraviolet light used in fluorescent lamps or mercury lamps have been developed and improved for a long time. The body is in practical use. It is expected that a combination of an ultraviolet light emitting diode chip and a phosphor for ultraviolet light will provide a light emitting diode device with a brighter and more varied color tone. However, in a conventional light emitting diode device in which the resin is deteriorated by ultraviolet light, an ultraviolet light emitting diode chip cannot be used,
Excellent phosphors are not available. As described above, in the conventional light emitting diode device, when the phosphor is mixed in the resin, the above-described problem occurs. Therefore, the selection of the material type is reduced, the reliability is reduced, the light conversion function is incomplete, and the product price is increased. May cause inconvenience.

【0011】本発明は、耐環境性及び耐紫外線性を備え
た被覆層を有する蛍光粒子及びその製法を提供すること
を目的とする。
An object of the present invention is to provide a fluorescent particle having a coating layer having environmental resistance and ultraviolet resistance, and a method for producing the same.

【0012】[0012]

【課題を解決するための手段】光透過性を有するガラス
又はセラミックから成り且つ略全表面にわたり形成され
た被覆層(2)を有する本発明による蛍光粒子(1)は、耐環
境性及び耐紫外線性を備えている。本発明の実施の形態
では、ガラスは、例えばポリメタロキサンであり、セラ
ミックは窒素珪素系セラミックである。蛍光粒子(1)を
光透過性を有する樹脂材中に封止してもよい。被覆層
(2)は、金属アルコキシドから形成されたポリメタロキ
サンから成る。金属アルコキシドは、Ti(OCH3)4、Ti(OC
2H5)4、Ti(iso-OC3H7)4、Ti(OC4H9)4等の単一金属アル
コキシド又はLa[Al(iso−OC3H7)4)3、Mg[Al(iso−OC
3H7)4]2、Mg[Al(sec−OC4H9)4]2、Ni[Al(iso−OC3H7)4]
2、Ba[Zr2(C2H5)9]2、(OC3H7)2Zr[Al(OC3H7)4]2等の二
金属アルコキシド若しくは多金属アルコキシドである。
The fluorescent particles (1) according to the present invention, having a coating layer (2) made of light-transmitting glass or ceramic and formed over almost the entire surface, are resistant to environmental and ultraviolet light. It has the nature. In the embodiment of the present invention, the glass is, for example, polymetalloxane, and the ceramic is a nitrogen silicon-based ceramic. The fluorescent particles (1) may be sealed in a resin material having optical transparency. Coating layer
(2) consists of polymetalloxane formed from metal alkoxide. Metal alkoxides include Ti (OCH 3 ) 4 , Ti (OC
2 H 5) 4, Ti ( iso-OC 3 H 7) 4, Ti (OC 4 H 9) 4 and the like single metal alkoxide or La of [Al (iso-OC 3 H 7) 4) 3, Mg [Al (iso-OC
3 H 7) 4] 2, Mg [Al (sec-OC 4 H 9) 4] 2, Ni [Al (iso-OC 3 H 7) 4]
2 , bimetal alkoxides such as Ba [Zr 2 (C 2 H 5 ) 9 ] 2 and (OC 3 H 7 ) 2 Zr [Al (OC 3 H 7 ) 4 ] 2 or polymetal alkoxides.

【0013】本発明による被覆を有する蛍光粒子(1)の
製法は、金属アルコキシド又はポリシラザン等のセラミ
ック前駆体を有機溶媒中に溶解してゾルを形成する工程
と、粒状の蛍光物質にゾルを噴霧して、蛍光物質の表面
に金属アルコキシド又はセラミック前駆体の被膜を形成
する工程と、例えば120〜160℃の温度範囲で被膜
を焼成して蛍光物質の表面にガラス又はセラミックから
成る被覆層(2)を形成する工程とを含む。
The method for producing the fluorescent particles (1) having the coating according to the present invention comprises the steps of dissolving a ceramic precursor such as a metal alkoxide or polysilazane in an organic solvent to form a sol; Forming a film of a metal alkoxide or a ceramic precursor on the surface of the fluorescent material, and baking the film in a temperature range of, for example, 120 to 160 ° C. to form a coating layer of glass or ceramic on the surface of the fluorescent material (2 ) Is formed.

【0014】本発明の実施の形態では、メタロキサン
(metaloxane)結合を主体として被覆層(2)を形成する
工程、ゲル状のシロキサン(siloxane)結合を主体とし
て被覆層(2)を形成する工程、金属アルコキシドにゾル
−ゲル法を施してポリメタロキサンから成る被覆層(2)
を形成する工程、金属アルコキシド又は金属アルコキシ
ドを含有する溶液をゾル−ゲル法により加水分解重合し
てポリメタロキサンから成る被覆層(2)を形成する工程
を含んでもよい。
In the embodiment of the present invention, a step of forming a coating layer (2) mainly by a metaloxane bond, a step of forming a coating layer (2) mainly by a gel-like siloxane bond, Coating layer made of polymetalloxane by applying sol-gel method to metal alkoxide (2)
And forming a coating layer (2) made of polymetalloxane by hydrolytic polymerization of a metal alkoxide or a solution containing a metal alkoxide by a sol-gel method.

【0015】[0015]

【発明の実施の形態】以下、本発明による被覆層を有す
る蛍光粒子及びその製法の実施の形態を図1及び図2に
ついて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a fluorescent particle having a coating layer according to the present invention and a method for producing the same will be described below with reference to FIGS.

【0016】図1に示すように、本発明による蛍光粒子
(1)は、光透過性を有するガラス又はセラミックから成
り且つ略全表面にわたり形成された被覆層(2)を有す
る。ガラスは、例えばポリメタロキサンであり、セラミ
ックは窒素珪素系セラミックである。ポリメタロキサン
は、Ti(OCH3)4、Ti(OC2H5)4、Ti(iso-OC3H7)4、Ti(OC4H
9)4等の単一金属アルコキシド又はLa[Al(iso−OC3H7)4)
3、Mg[Al(iso−OC3H7)4] 2、Mg[Al(sec−OC4H9)4]2、Ni
[Al(iso−OC3H7)4]2、Ba[Zr2(C2H5)9]2、(OC3H7)2Zr[Al
(OC3H7)4]2等の二金属アルコキシド若しくは多金属アル
コキシドである金属アルコキシドから形成される。蛍光
粒子(1)には付活剤としてCe(セリウム)を約6mol%添
加したYAG(イットリウム・アルミニウム・ガーネッ
ト、化学式Y3Al5O12、励起波長のピーク約450nm、発
光波長のピーク約540nmの黄緑色光)を用いる。
As shown in FIG. 1, the fluorescent particles according to the present invention
(1) is made of glass or ceramic having optical transparency.
And has a coating layer (2) formed over substantially the entire surface.
You. Glass is, for example, polymetalloxane,
The lock is a nitrogen silicon-based ceramic. Polymetalloxane
Is Ti (OCHThree)Four, Ti (OCTwoHFive)Four, Ti (iso-OCThreeH7)Four, Ti (OCFourH
9)FourSuch as a single metal alkoxide or La [Al (iso-OCThreeH7)Four)
Three, Mg [Al (iso-OCThreeH7)Four] Two, Mg [Al (sec-OCFourH9)Four]Two, Ni
[Al (iso-OCThreeH7)Four]Two, Ba [ZrTwo(CTwoHFive)9]Two, (OCThreeH7)TwoZr [Al
(OCThreeH7)Four]TwoBimetallic alkoxide or polymetallic alkoxide
It is formed from a metal alkoxide that is a cooxide. fluorescence
About 6 mol% of Ce (cerium) was added as an activator to the particles (1).
YAG (Yttrium Aluminum Garnet)
G, chemical formula YThreeAlFiveO12, Excitation wavelength peak about 450 nm, emission
A yellow-green light having a light wavelength peak of about 540 nm) is used.

【0017】被覆層(2)に被覆された蛍光粒子(1)は、耐
環境性及び耐紫外線性を備えている。被覆層(2)は、発
光ダイオードチップ(12)から生ずる近紫外線光が比較的
長時間照射され温度上昇が生じても、発光ダイオードチ
ップ(12)からの発光を減衰させる黄変・着色が発生しな
い。本発明による蛍光粒子(1)は、図3に示す保護樹脂
(7)又は封止樹脂(8)中に混入すると、365nm〜550
nmの光波長で発光する窒化ガリウム系半導体発光素子半
導体発光素子(2)の光を受光して波長変換することがで
きる。封止樹脂(8)は耐紫外線特性にあまり優れていな
いエポキシ系樹脂から成るが、蛍光粒子(1)により波長
変換されれば、封止樹脂(8)の黄変・着色も良好に防止
され、耐環境性を維持しより長期間の寿命を有する。
The fluorescent particles (1) coated on the coating layer (2) have environmental resistance and ultraviolet resistance. Even if near-ultraviolet light generated from the light emitting diode chip (12) is irradiated for a relatively long time and the temperature rises, the coating layer (2) generates yellowing and coloring that attenuate light emission from the light emitting diode chip (12). do not do. The fluorescent particles (1) according to the present invention have the protective resin shown in FIG.
(7) or when mixed into the sealing resin (8), 365 nm to 550
A gallium nitride-based semiconductor light emitting device that emits light at a light wavelength of nm can receive light from the semiconductor light emitting device (2) and convert the wavelength. Although the sealing resin (8) is made of an epoxy resin that is not very excellent in ultraviolet light resistance, if the wavelength is converted by the fluorescent particles (1), yellowing and coloring of the sealing resin (8) are also well prevented. , Maintain environmental resistance and have longer life.

【0018】本発明による被覆を有する蛍光粒子(1)を
製造する際に、図2に示す流動層型コーティング装置(1
0)を準備する。流動層型コーティング装置(10)は、円筒
状のバレル(11)を備え、バレル(11)の底部及び上部にそ
れぞれガス流入口(17)及びガス流出口(13)が設けらる。
ガス流入口(17)の上方には通気性の金網(スクリーン)
により形成されたテーブル(14)が設けられ、テーブル(1
4)上に蛍光粒子(1)が配置される。テーブル(14)の上方
には供給管(16)に接続されたノズル(15)が設けられる。
When producing the fluorescent particles (1) having the coating according to the present invention, a fluidized bed type coating apparatus (1) shown in FIG.
Prepare 0). The fluidized bed type coating apparatus (10) includes a cylindrical barrel (11), and a gas inlet (17) and a gas outlet (13) are provided at the bottom and the top of the barrel (11), respectively.
Above the gas inlet (17), a breathable wire mesh (screen)
A table (14) formed by
4) The fluorescent particles (1) are arranged on the upper side. A nozzle (15) connected to the supply pipe (16) is provided above the table (14).

【0019】被覆層(2)を形成する際に、金属アルコキ
シド又はポリシラザン等のセラミック前駆体を有機溶媒
中に溶解してゾルを形成した後、ゾルを供給管(16)及び
ノズル(15)を通じて蛍光粒子(1)上に噴霧する。粒状の
蛍光粒子(1)の全表面に均一にゾルの粒子が付着するよ
うに、ガス流入口(17)からアルゴン等の不活性ガスをバ
レル(11)内に供給してテーブル(14)を通じて蛍光粒子
(1)を上方に浮遊させる。バレル(11)内が常温以下の低
温であれば不活性ガスの代わりに空気を使用してもよ
い。その後、蛍光粒子(1)の表面に付着したゾルを乾燥
させて、例えば120〜160℃の温度範囲で被膜を焼
成する。このように、ゾル−ゲル法を施し加水分解重合
してメタロキサン(metaloxane)結合又はゲル状のシロ
キサン(siloxane)結合を主体として低温でガラス化又
はセラミック化してガラス又はセラミックから成る非晶
質金属酸化物の被覆層(2)を蛍光粒子(1)の表面に形成す
ることができる。被覆層(2)は、ポリメタロキサン又は
窒素珪素系セラミックから成る。
In forming the coating layer (2), a sol is formed by dissolving a ceramic precursor such as a metal alkoxide or polysilazane in an organic solvent, and then the sol is supplied through a supply pipe (16) and a nozzle (15). Spray onto the fluorescent particles (1). An inert gas such as argon is supplied from the gas inlet (17) into the barrel (11) through the table (14) so that the sol particles are uniformly attached to the entire surface of the granular fluorescent particles (1). Fluorescent particles
Float (1) upward. If the inside of the barrel (11) is at a low temperature below normal temperature, air may be used instead of the inert gas. Thereafter, the sol attached to the surface of the fluorescent particles (1) is dried, and the coating is baked in a temperature range of, for example, 120 to 160 ° C. As described above, the amorphous metal oxide composed of glass or ceramic is formed by subjecting the sol-gel method to hydrolysis polymerization, and vitrifying or ceramicizing at a low temperature mainly based on a metaloxane bond or a gel-like siloxane bond. An article coating layer (2) can be formed on the surface of the fluorescent particles (1). The coating layer (2) is made of a polymetalloxane or a silicon nitride ceramic.

【0020】金属アルコキシド、セラミック前駆体若し
くは金属アルコキシドを含有する溶液をゾル−ゲル法に
より加水分解重合して成る溶液又はこれらの組み合わせ
を出発原料とする塗布型ガラス材料又はセラミック前駆
体(ペルヒドロポリシラザン等)等から成る出発材料か
ら成る。塗布型の出発材料は、通常は液状であるが、空
気中又は酸素雰囲気中で加熱すると成分の分解又は酸素
の吸収により金属酸化物のメタロキサン(metaloxane)
結合を主体とする透明な固形ガラス層を生成する。例え
ば、成分の分解又は酸素の吸収によりSiO2(酸化珪素)
のシロキサン(siloxane)結合を主体とした透明な固形
ガラス層を生成する。
A coating glass material or a ceramic precursor (perhydropolysilazane) starting from a solution obtained by hydrolytic polymerization of a solution containing a metal alkoxide, a ceramic precursor or a metal alkoxide by a sol-gel method, or a combination thereof. Etc.). The coating-type starting material is usually in a liquid state, but when heated in air or an oxygen atmosphere, the decomposition of the components or the absorption of oxygen causes the metaloxane of metal oxide.
Produce a transparent solid glass layer mainly composed of bonds. For example, SiO 2 (silicon oxide) due to decomposition of components or absorption of oxygen
A transparent solid glass layer mainly composed of siloxane bonds is formed.

【0021】ゾルがゲル体に変化する際に、ゾル粒子同
士はシロキサン結合を行いゲル体の骨格構造を形成す
る。更に、得られたガラスゲル膜を焼成して、ゾル粒子
同士のシロキサン結合の数を増加し、低温焼成で強度の
強い多孔質のガラスゲル被膜を得ることができる。メタ
ロキサンは、一般式:M(OR)nで表され、Mは珪素(Si)、
アルミニウム(Al)又は亜鉛(Zn)から成る群から選ばれた
少なくとも一種の金属、Rは同種又は異種の炭素数1〜
22の飽和又は不飽和脂肪属炭化水素基、nは金属の原
子価に相当する数をいう。
When the sol changes into a gel, the sol particles form a siloxane bond with each other to form a skeleton structure of the gel. Further, the obtained glass gel film is fired to increase the number of siloxane bonds between the sol particles, and a porous glass gel film having high strength can be obtained by firing at a low temperature. Metalloxane is represented by the general formula: M (OR) n, where M is silicon (Si),
At least one metal selected from the group consisting of aluminum (Al) or zinc (Zn), R is the same or different carbon number of 1 to 1
22 saturated or unsaturated aliphatic hydrocarbon groups, n refers to a number corresponding to the valency of the metal.

【0022】ゾル−ゲル法では、出発物質としてのアル
コキシド等の金属化合物、金属の有機化合物又は無機化
合物の溶液を加水分解、重縮合させゾルを形成した後、
反応を更に進めてゲル化した反応物を加水分解すること
により固体の金属酸化物が得られる。シリカガラス膜の
ゾル−ゲル法の成形過程では、金属酸化物として珪素の
アルコキシド、例えばテトラエトキシシランを用いる場
合、アルコキシドをアルコール等の溶媒に溶解し、酸及
び水を少量加えて溶液中で下記の反応式によりゾルが形
成される。 加水分解反応: Si(OR)4+2H2O→Si(OH)4+4ROH 脱水縮合反応: nSi(OH)4→[SiO2]n+2nH2O
In the sol-gel method, a solution of a metal compound such as an alkoxide, a metal organic compound or an inorganic compound as a starting material is hydrolyzed and polycondensed to form a sol.
By further proceeding the reaction and hydrolyzing the gelled reactant, a solid metal oxide is obtained. In the sol-gel method of forming a silica glass film, when using an alkoxide of silicon as a metal oxide, for example, tetraethoxysilane, dissolve the alkoxide in a solvent such as alcohol, add a small amount of acid and water, and add the following in a solution. A sol is formed according to the reaction formula: Hydrolysis reaction: Si (OR) 4 + 2H 2 O → Si (OH) 4 + 4ROH Dehydration condensation reaction: nSi (OH) 4 → [SiO 2 ] n + 2nH 2 O

【0023】本発明では、光透過性を有するガラス又は
セラミックから成る被覆層(2)が蛍光粒子(1)の略全表面
にわたり形成されるが、完全に全表面に被覆層(2)が形
成されることを必要とせず、製造工程上で蛍光粒子(1)
の表面を覆わない開口部が部分的に被覆層(2)に形成さ
れてもよい。
In the present invention, the coating layer (2) made of glass or ceramic having optical transparency is formed over substantially the entire surface of the fluorescent particles (1), but the coating layer (2) is formed completely on the entire surface. Fluorescent particles (1)
The opening which does not cover the surface may be partially formed in the coating layer (2).

【0024】[0024]

【発明の効果】前記のように、本発明では、耐環境性及
び耐紫外線性を備えている蛍光粒子は長期間劣化せず安
定して光の波長変換を行うことができる。また、光透過
性の樹脂又はガラス中に混入することができる。
As described above, in the present invention, fluorescent particles having environmental resistance and ultraviolet light resistance can stably convert the wavelength of light without being deteriorated for a long time. Further, it can be mixed into a light-transmitting resin or glass.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明による被覆層を有する蛍光粒子の断面
FIG. 1 is a cross-sectional view of a fluorescent particle having a coating layer according to the present invention.

【図2】 流動層型コーティング装置の断面図FIG. 2 is a sectional view of a fluidized bed type coating apparatus.

【図3】 従来の発光ダイオード装置の断面図FIG. 3 is a cross-sectional view of a conventional light emitting diode device.

【符号の説明】[Explanation of symbols]

(1)・・蛍光粒子、 (2)・・被覆層、 (3)・・第一の
外部端子、 (3a)・・凹部、 (3b)・・底部、 (3c)・
・側壁、 (4)・・第二の外部端子、 (5)・・第一のリ
ード細線、 (6)・・第二のリード細線、 (8)・・被覆
体(封止樹脂)、(9a, 9b)・・上端部、 (10)・・流動層
型コーティング装置、 (11)・・バレル、 (12)・・半
導体発光素子(発光ダイオードチップ)、 (13)・・ガ
ス流出口、 (14)・・テーブル、 (15)・・ノズル、
(16)・・供給管、 (17)・・ガス流入口、 (20)・・発
光ダイオード装置(発光半導体装置)、
(1) Fluorescent particles, (2) coating layer, (3) first external terminal, (3a) recess, (3b) bottom, (3c)
・ Side wall, (4) ・ ・ Second external terminal, (5) ・ ・ First thin lead wire, (6) ・ ・ Second thin lead wire, (8) ・ ・ Coating body (sealing resin), ( 9a, 9b) · · · top end, (10) · · · fluidized bed type coating equipment, (11) · · · barrel, (12) · · · semiconductor light emitting element (light emitting diode chip), (13) · · · gas outlet, (14) table, (15) nozzle,
(16) ·· Supply pipe, (17) ·· Gas inlet, (20) ·· Light emitting diode device (light emitting semiconductor device),

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】 光透過性を有するガラス又はセラミック
から成り且つ略全表面にわたり形成された被覆層を有す
ることを特徴とする蛍光粒子。
1. A fluorescent particle comprising a coating layer made of glass or ceramic having a light transmitting property and formed over substantially the entire surface.
【請求項2】 ガラスはポリメタロキサンである請求項
1に記載の蛍光粒子。
2. The fluorescent particles according to claim 1, wherein the glass is a polymetalloxane.
【請求項3】 セラミックは窒素珪素系セラミックであ
る請求項1に記載の蛍光粒子。
3. The phosphor particles according to claim 1, wherein the ceramic is a nitrogen silicon-based ceramic.
【請求項4】 光透過性を有する樹脂材中に封止された
請求項1〜3の何れか1項に記載の蛍光粒子。
4. The fluorescent particles according to claim 1, which are sealed in a resin material having a light transmitting property.
【請求項5】 前記被覆層は、金属アルコキシドから形
成されたポリメタロキサンから成る請求項1〜3の何れ
か1項に記載の蛍光粒子。
5. The fluorescent particles according to claim 1, wherein the coating layer is made of a polymetalloxane formed from a metal alkoxide.
【請求項6】 前記金属アルコキシドは、Ti(OCH3)4、T
i(OC2H5)4、Ti(iso-OC3H 7)4、Ti(OC4H9)4等の単一金属
アルコキシド又はLa[Al(iso−OC3H7)4)3、Mg[Al(iso−O
C3H7)4]2、Mg[Al(sec−OC4H9)4]2、Ni[Al(iso−OC
3H7)4]2、Ba[Zr2(C2H5)9]2、(OC3H7)2Zr[Al(OC3H7)4]2
等の二金属アルコキシド若しくは多金属アルコキシドで
ある請求項5に記載の蛍光粒子。
6. The metal alkoxide is Ti (OCHThree)Four, T
i (OCTwoHFive)Four, Ti (iso-OCThreeH 7)Four, Ti (OCFourH9)FourEtc single metal
Alkoxide or La [Al (iso-OCThreeH7)Four)Three, Mg [Al (iso-O
CThreeH7)Four]Two, Mg [Al (sec-OCFourH9)Four]Two, Ni [Al (iso-OC
ThreeH7)Four]Two, Ba [ZrTwo(CTwoHFive)9]Two, (OCThreeH7)TwoZr [Al (OCThreeH7)Four]Two
Bimetallic alkoxide or multimetal alkoxide
The fluorescent particles according to claim 5.
【請求項7】 金属アルコキシド又はセラミック前駆体
を有機溶媒中に溶解してゾルを形成する工程と、 粒状の蛍光物質にゾルを噴霧して、蛍光物質の表面に金
属アルコキシド又はセラミック前駆体の被膜を形成する
工程と、 前記被膜を焼成して前記蛍光物質の表面にガラス又はセ
ラミックから成る被覆層を形成する工程とを含むことを
特徴とする被覆を有する蛍光粒子の製法。
7. A step of forming a sol by dissolving a metal alkoxide or a ceramic precursor in an organic solvent, and spraying the sol on a granular fluorescent substance to coat the surface of the fluorescent substance with the metal alkoxide or the ceramic precursor. Forming a coating layer made of glass or ceramic on the surface of the fluorescent substance by sintering the coating film.
【請求項8】 メタロキサン(metaloxane)結合を主体
として前記被覆層を形成する工程を含む請求項7に記載
の被覆を有する蛍光粒子の製法。
8. The method for producing fluorescent particles having a coating according to claim 7, comprising a step of forming the coating layer mainly by a metaloxane bond.
【請求項9】 ゲル状のシロキサン(siloxane)結合を
主体として前記被覆層を形成する工程を含む請求項7に
記載の蛍光粒子の製法。
9. The method for producing fluorescent particles according to claim 7, further comprising a step of forming the coating layer mainly by a gel-like siloxane bond.
【請求項10】 金属アルコキシドにゾル−ゲル法を施
してポリメタロキサンから成る前記被覆層を形成する工
程を含む請求項7〜9の何れか1項に記載の蛍光粒子の
製法。
10. The method for producing fluorescent particles according to claim 7, further comprising a step of subjecting the metal alkoxide to a sol-gel method to form the coating layer made of polymetalloxane.
【請求項11】 金属アルコキシド又は金属アルコキシ
ドを含有する溶液をゾル−ゲル法により加水分解重合し
てポリメタロキサンから成る前記被覆層を形成する工程
を含む請求項7〜10の何れか1項に記載の蛍光粒子の
製法。
11. The method according to claim 7, further comprising a step of forming a coating layer made of polymetalloxane by hydrolytic polymerization of a metal alkoxide or a solution containing a metal alkoxide by a sol-gel method. A method for producing the fluorescent particles according to the above.
【請求項12】 前記金属アルコキシドは、Ti(OC
H3)4、Ti(OC2H5)4、Ti(iso-OC 3H7)4、Ti(OC4H9)4等の単
一金属アルコキシド又はLa[Al(iso−OC3H7)4)3、Mg[Al
(iso−OC3H7)4]2、Mg[Al(sec−OC4H9)4]2、Ni[Al(iso−
OC3H7)4]2、Ba[Zr2(C2H5)9]2、(OC3H7)2Zr[Al(OC3H7)4]
2等の二金属アルコキシド若しくは多金属アルコキシド
である請求項7又は8に記載の蛍光粒子の製法。
12. The method according to claim 12, wherein the metal alkoxide is Ti (OC
HThree)Four, Ti (OCTwoHFive)Four, Ti (iso-OC ThreeH7)Four, Ti (OCFourH9)FourEtc. simply
Monometal alkoxide or La [Al (iso-OCThreeH7)Four)Three, Mg [Al
(iso-OCThreeH7)Four]Two, Mg [Al (sec-OCFourH9)Four]Two, Ni [Al (iso−
OCThreeH7)Four]Two, Ba [ZrTwo(CTwoHFive)9]Two, (OCThreeH7)TwoZr [Al (OCThreeH7)Four]
TwoAlkoxide or multimetal alkoxide such as
The method for producing fluorescent particles according to claim 7 or 8, wherein
【請求項13】 前記セラミック前駆体は、ポリシラザ
ンである請求項7に記載の蛍光粒子の製法。
13. The method according to claim 7, wherein the ceramic precursor is polysilazane.
【請求項14】 前記被膜を焼成する温度は120〜1
60℃である請求項7に記載の蛍光粒子の製法。
14. The temperature for firing the coating is 120 to 1
The method for producing fluorescent particles according to claim 7, wherein the temperature is 60 ° C.
JP2000371118A 2000-12-06 2000-12-06 Fluorescence particle having coated layer and method for producing the same Pending JP2002173675A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000371118A JP2002173675A (en) 2000-12-06 2000-12-06 Fluorescence particle having coated layer and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000371118A JP2002173675A (en) 2000-12-06 2000-12-06 Fluorescence particle having coated layer and method for producing the same

Publications (1)

Publication Number Publication Date
JP2002173675A true JP2002173675A (en) 2002-06-21

Family

ID=18840895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000371118A Pending JP2002173675A (en) 2000-12-06 2000-12-06 Fluorescence particle having coated layer and method for producing the same

Country Status (1)

Country Link
JP (1) JP2002173675A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004083653A (en) * 2002-08-23 2004-03-18 Sharp Corp Light emitting device, phosphor and method for producing the same
WO2004042834A1 (en) * 2002-11-08 2004-05-21 Nichia Corporation Light emitting device, phosphor and method for preparing phosphor
JP2004161807A (en) * 2002-11-08 2004-06-10 Nichia Chem Ind Ltd Nitride phosphor and light-emitting device
JP2006052345A (en) * 2004-08-13 2006-02-23 Rohm Co Ltd Luminescent color conversion member and semiconductor light emitting device
JP2006054313A (en) * 2004-08-11 2006-02-23 Rohm Co Ltd Semiconductor light-emitting device
JP2006518111A (en) * 2003-02-14 2006-08-03 クリー インコーポレイテッド Light emitting device incorporating a light emitting material
JP2008007779A (en) * 2006-06-28 2008-01-17 Seoul Semiconductor Co Ltd Fluorescent substance, method for producing the same, and light-emitting diode
JP2008111080A (en) * 2006-10-31 2008-05-15 Mitsubishi Chemicals Corp Method of surface-treating fluorescent substance, fluorescent substance, fluorescent substance-containing composition, light emitting device, image display device, and illuminating device
JP2009177095A (en) * 2008-01-28 2009-08-06 Panasonic Electric Works Co Ltd Light-emitting device
JP2010153746A (en) * 2008-12-26 2010-07-08 Nec Lighting Ltd Phosphor member, light emitting element, and illuminator
WO2011077547A1 (en) * 2009-12-25 2011-06-30 コニカミノルタオプト株式会社 Light-emitting device
WO2011077548A1 (en) * 2009-12-25 2011-06-30 コニカミノルタオプト株式会社 Light-emitting device
WO2012077656A1 (en) 2010-12-09 2012-06-14 三井金属鉱業株式会社 Sulfur-containing phosphor coated with zno compound
US20120171368A1 (en) * 2008-02-08 2012-07-05 Hitoshi Kamamori Lighting device and production method of the same
US9166119B2 (en) 2011-04-05 2015-10-20 Mitsui Mining & Smelting Co., Ltd. Light-emitting device
US20150331348A1 (en) * 2013-12-27 2015-11-19 Canon Kabushiki Kaisha Charging member, process cartridge, and electrophotographic image forming apparatus
KR20160086918A (en) * 2013-11-19 2016-07-20 큐디 비젼, 인크. Luminescent particle, materials and products including same, and methods
KR20160114640A (en) 2014-03-27 2016-10-05 미쓰이금속광업주식회사 Phosphor and use thereof
KR20170138347A (en) * 2016-06-07 2017-12-15 샤프 가부시키가이샤 Nanoparticle phosphor element and light emitting element
JP2022179704A (en) * 2018-09-25 2022-12-02 日亜化学工業株式会社 Light-emitting device and manufacturing method thereof

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004083653A (en) * 2002-08-23 2004-03-18 Sharp Corp Light emitting device, phosphor and method for producing the same
WO2004042834A1 (en) * 2002-11-08 2004-05-21 Nichia Corporation Light emitting device, phosphor and method for preparing phosphor
JP2004161807A (en) * 2002-11-08 2004-06-10 Nichia Chem Ind Ltd Nitride phosphor and light-emitting device
US7511411B2 (en) 2002-11-08 2009-03-31 Nichia Corporation Light emitting device, phosphor, and method for preparing phosphor
JP4529349B2 (en) * 2002-11-08 2010-08-25 日亜化学工業株式会社 Nitride-based phosphor and light emitting device
JP2006518111A (en) * 2003-02-14 2006-08-03 クリー インコーポレイテッド Light emitting device incorporating a light emitting material
JP4791351B2 (en) * 2003-02-14 2011-10-12 クリー インコーポレイテッド Light emitting device incorporating a light emitting material
JP2006054313A (en) * 2004-08-11 2006-02-23 Rohm Co Ltd Semiconductor light-emitting device
JP4516378B2 (en) * 2004-08-13 2010-08-04 ローム株式会社 Semiconductor light emitting device
JP2006052345A (en) * 2004-08-13 2006-02-23 Rohm Co Ltd Luminescent color conversion member and semiconductor light emitting device
US8187498B2 (en) 2006-06-28 2012-05-29 Seoul Semiconductor Co., Ltd. Phosphor, method for manufacturing the same, and light emitting diode
JP2008007779A (en) * 2006-06-28 2008-01-17 Seoul Semiconductor Co Ltd Fluorescent substance, method for producing the same, and light-emitting diode
US8262936B2 (en) 2006-06-28 2012-09-11 Seoul Semiconductor Co., Ltd. Phosphor, method for manufacturing the same, and light emitting diode
JP2008111080A (en) * 2006-10-31 2008-05-15 Mitsubishi Chemicals Corp Method of surface-treating fluorescent substance, fluorescent substance, fluorescent substance-containing composition, light emitting device, image display device, and illuminating device
JP2009177095A (en) * 2008-01-28 2009-08-06 Panasonic Electric Works Co Ltd Light-emitting device
US20120171368A1 (en) * 2008-02-08 2012-07-05 Hitoshi Kamamori Lighting device and production method of the same
JP2010153746A (en) * 2008-12-26 2010-07-08 Nec Lighting Ltd Phosphor member, light emitting element, and illuminator
WO2011077547A1 (en) * 2009-12-25 2011-06-30 コニカミノルタオプト株式会社 Light-emitting device
WO2011077548A1 (en) * 2009-12-25 2011-06-30 コニカミノルタオプト株式会社 Light-emitting device
US8643051B2 (en) 2009-12-25 2014-02-04 Konica Minolta Advanced Layers, Inc. Light emission device
US9312454B2 (en) 2010-12-09 2016-04-12 Mitsui Mining & Smelting Co., Ltd. Sulfur-containing phosphor coated with ZnO compound
WO2012077656A1 (en) 2010-12-09 2012-06-14 三井金属鉱業株式会社 Sulfur-containing phosphor coated with zno compound
US9166119B2 (en) 2011-04-05 2015-10-20 Mitsui Mining & Smelting Co., Ltd. Light-emitting device
KR20160086918A (en) * 2013-11-19 2016-07-20 큐디 비젼, 인크. Luminescent particle, materials and products including same, and methods
JP2016540852A (en) * 2013-11-19 2016-12-28 キユーデイー・ビジヨン・インコーポレーテツド Luminescent particles, materials and products containing the same, and methods
US10221354B2 (en) 2013-11-19 2019-03-05 Samsung Electronics Co., Ltd. Luminescent particle, materials and products including same, and methods
KR102393203B1 (en) * 2013-11-19 2022-04-29 삼성전자주식회사 Luminescent particle, materials and products including same, and methods
US20150331348A1 (en) * 2013-12-27 2015-11-19 Canon Kabushiki Kaisha Charging member, process cartridge, and electrophotographic image forming apparatus
US10036971B2 (en) * 2013-12-27 2018-07-31 Canon Kabushiki Kaisha Charging member, process cartridge, and electrophotographic image forming apparatus
KR20160114640A (en) 2014-03-27 2016-10-05 미쓰이금속광업주식회사 Phosphor and use thereof
US10550321B2 (en) 2014-03-27 2020-02-04 Mitsui Mining & Smelting Co., Ltd. Phosphor and use thereof
KR20170138347A (en) * 2016-06-07 2017-12-15 샤프 가부시키가이샤 Nanoparticle phosphor element and light emitting element
JP2022179704A (en) * 2018-09-25 2022-12-02 日亜化学工業株式会社 Light-emitting device and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP2002173675A (en) Fluorescence particle having coated layer and method for producing the same
JP3412152B2 (en) Semiconductor light emitting device
JP3503131B2 (en) Semiconductor light emitting device
JP3337000B2 (en) Semiconductor light emitting device
US7301175B2 (en) Light emitting apparatus and method of manufacturing the same
JP4792751B2 (en) Light emitting device and manufacturing method thereof
JP3307316B2 (en) Semiconductor light emitting device
JP3925137B2 (en) Method for manufacturing light emitting device
JP2924961B1 (en) Semiconductor light emitting device and method of manufacturing the same
US20080303044A1 (en) Semiconductor light-emitting device
WO2010110204A1 (en) Phosphor member, method for producing phosphor member, and lighting device
JP4266234B2 (en) Manufacturing method of semiconductor light emitting device
JP2007324475A (en) Wavelength conversion member and light emitting device
TW200307025A (en) Wavelength-converting reaction-resin , its production method, light-radiating optical component and light-radiating semiconductor-body
JP2008115223A (en) Phosphor-containing glass sheet, method for producing the same and light-emitting device
JP2005524737A (en) Reactive resin material for wavelength conversion and light emitting diode element
JP4661032B2 (en) Light emitting device and manufacturing method thereof
JP2002076445A (en) Semiconductor light emitting device
JP2008124168A (en) Semiconductor light emitting device
JP2002134795A (en) Semiconductor light-emitting device and manufacturing method therefor
JP2010505243A (en) Light emitting device
JP3230518B2 (en) Semiconductor light emitting device
JP2003179270A (en) Semiconductor light emitting device
JP3275308B2 (en) Semiconductor light emitting device and manufacturing method thereof
JP2005019662A (en) Light emitting device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050502

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050701

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050803