JP2008111080A - Method of surface-treating fluorescent substance, fluorescent substance, fluorescent substance-containing composition, light emitting device, image display device, and illuminating device - Google Patents

Method of surface-treating fluorescent substance, fluorescent substance, fluorescent substance-containing composition, light emitting device, image display device, and illuminating device Download PDF

Info

Publication number
JP2008111080A
JP2008111080A JP2006296239A JP2006296239A JP2008111080A JP 2008111080 A JP2008111080 A JP 2008111080A JP 2006296239 A JP2006296239 A JP 2006296239A JP 2006296239 A JP2006296239 A JP 2006296239A JP 2008111080 A JP2008111080 A JP 2008111080A
Authority
JP
Japan
Prior art keywords
phosphor
light
fluorescent substance
emitting device
moisture absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006296239A
Other languages
Japanese (ja)
Inventor
Masato Niihara
正人 新原
Keiichi Seki
敬一 関
Hiroshi Mori
寛 森
Eiji Hattori
英次 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2006296239A priority Critical patent/JP2008111080A/en
Publication of JP2008111080A publication Critical patent/JP2008111080A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Landscapes

  • Vessels And Coating Films For Discharge Lamps (AREA)
  • Led Device Packages (AREA)
  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)
  • Luminescent Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of surface-treating a fluorescent substance excellent in improving weatherability and dispersibility, a fluorescent substance excellent in moisture resistance and dispersibility, a high quality fluorescent substance composition containing the fluorescent substance, a light emitting device, an image display device, and an illuminating device. <P>SOLUTION: The method of surface-treating the fluorescent substance includes a process of hydrolyzing a metal alkoxide and/or its derivative and polymerizing the same by dehydration at an atmospheric temperature of 0-20°C. Further, the method of surface-treating the fluorescent substance includes repeating at least twice a process of hydrolyzing a metal alkoxide and/or its derivative and polymerizing the same by dehydration. The fluorescent substance has a metal oxide film thereon wherein the metal oxide film satisfies a predetermined condition. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、蛍光体表面処理方法、蛍光体、蛍光体含有組成物、発光装置、画像表示装置、および照明装置に関する。詳しくは、耐候性および分散性の向上に優れた蛍光体表面処理方法、耐候性および分散性に優れた蛍光体、および前記蛍光体を含有する蛍光体含有組成物、および前記蛍光体を用いて形成された発光装置、ならびに前記発光装置を用いて形成された照明装置および画像表示装置に関する。   The present invention relates to a phosphor surface treatment method, a phosphor, a phosphor-containing composition, a light emitting device, an image display device, and an illumination device. Specifically, a phosphor surface treatment method excellent in weather resistance and dispersibility, a phosphor excellent in weather resistance and dispersibility, a phosphor-containing composition containing the phosphor, and the phosphor The present invention relates to a formed light emitting device, and an illumination device and an image display device formed using the light emitting device.

蛍光体は従来からCRT、蛍光ランプなどに工業的に大量に使用されてきたが、これらの
用途では蛍光体を塗布する際に水性スラリーとして使用する方法が工業的に確立されており、水分で劣化する蛍光体は使用できなかった。
一方、近年、半導体発光チップから発する光を蛍光体により波長変換し、白色発光装置を作製する技術が実用化されている。ここで使用される蛍光体は、前記のCRT、蛍光ラン
プとは異なり製造工程上水性スラリーとする必要がない。従って、発光特性に優れていれば、水分による劣化が多少認められても、封止剤により蛍光体を封入することにより、短期的な使用については問題にならない場合がある。
Conventionally, phosphors have been used industrially in large quantities for CRTs, fluorescent lamps, etc., but in these applications, a method of using them as aqueous slurries when applying phosphors has been established industrially. Deteriorating phosphors could not be used.
On the other hand, in recent years, a technology for producing a white light emitting device by converting the wavelength of light emitted from a semiconductor light emitting chip with a phosphor has been put into practical use. Unlike the aforementioned CRT and fluorescent lamp, the phosphor used here does not need to be an aqueous slurry in the manufacturing process. Therefore, if the light emission characteristics are excellent, even if some deterioration due to moisture is recognized, there is a case where there is no problem for short-term use by encapsulating the phosphor with the sealant.

しかしながら、長期的な使用については実用性に不十分な点が多く、かかる蛍光体の水分による劣化対策が求められていた。
蛍光体の表面処理方法としては、例えば球形の酸化珪素微粉を蛍光体に付着させる方法(特許文献1、特許文献2)、蛍光体に珪素系化合物の皮膜を付着させる方法(特許文献3)、蛍光体微粒子の表面をポリマー微粒子で被覆する方法(特許文献4)などが古くから開示されているが、これらは、CRT用蛍光体のガラス面カブリ特性の向上、輝度の向上
などを目的としたものであり、蛍光体の耐湿性向上などの効果は十分ではなかった。
However, for long-term use, there are many points that are insufficient in practicality, and countermeasures against deterioration of such phosphors due to moisture have been demanded.
Examples of the surface treatment method of the phosphor include a method of attaching spherical silicon oxide fine powder to the phosphor (Patent Literature 1, Patent Literature 2), a method of attaching a silicon compound film to the phosphor (Patent Literature 3), A method of coating the surface of phosphor fine particles with polymer fine particles (Patent Document 4) has been disclosed for a long time, and these have been aimed at improving the glass surface fog characteristics and the luminance of CRT phosphors. Therefore, the effect of improving the moisture resistance of the phosphor was not sufficient.

また、蛍光体の耐湿性等の向上を目的として、蛍光体を有機材料、無機材料及びガラス材料等でコーティングする方法(特許文献5)、蛍光体の表面を化学気相反応法によって被覆する方法(特許文献6)、金属化合物の粒子を付着させる方法(特許文献7)等の方法が開示されている。しかしながら、長期的な使用における耐湿性の向上にはさらなる検討が必要であった。
特開平2−209989号公報 特開平2−233794号公報 特開平3−231987号公報 特開平6−314593号公報 特開2002−223008号公報 特開2005−82788号公報 特開2006−28458号公報
Also, for the purpose of improving the humidity resistance of the phosphor, a method of coating the phosphor with an organic material, an inorganic material, a glass material, etc. (Patent Document 5), and a method of coating the surface of the phosphor by a chemical vapor reaction method (Patent Document 6), a method of attaching metal compound particles (Patent Document 7), and the like are disclosed. However, further studies are necessary to improve the moisture resistance in long-term use.
Japanese Patent Laid-Open No. 2-209989 JP-A-2-233794 JP-A-3-231987 JP-A-6-314593 JP 2002-223008 A JP 2005-82788 A JP 2006-28458 A

本発明は、前述の従来技術に鑑みてなされたものであって、耐湿性が低く、水分により劣化を生じる蛍光体に耐湿性等の耐候性を付与し、長期的にも経時劣化しない蛍光体表面処理方法、蛍光体、蛍光体含有組成物、発光装置、画像表示装置、および照明装置を提供することにある。   The present invention has been made in view of the above-described prior art, and is a phosphor that has low moisture resistance, imparts weather resistance such as moisture resistance to a phosphor that deteriorates due to moisture, and does not deteriorate over time even in the long term. The object is to provide a surface treatment method, a phosphor, a phosphor-containing composition, a light emitting device, an image display device, and a lighting device.

そこで、本発明者らは、鋭意検討を重ね、金属アルコキシドおよび/またはその誘導体を加水分解、脱水重合させる工程を比較的低温で行なった場合、および/または金属アルコキシドおよび/またはその誘導体を加水分解、脱水重合させる工程を2回以上行なう場合に上記課題を解決することを見出し、本発明を完成した。また、金属酸化物皮膜が特定の条件を満足する場合に上記課題を解決することを見出し、本発明を完成した。また、かかる表面処理方法により製造された蛍光体または上記特定の皮膜特性を有する蛍光体は、さらに分散性にも優れるため、例えば発光装置の蛍光体含有樹脂部における樹脂に対する分散性を向上させ得ることを見出した。   Accordingly, the present inventors have made extensive studies and hydrolyzing and dehydrating and polymerizing metal alkoxide and / or its derivative at a relatively low temperature, and / or hydrolyzing metal alkoxide and / or its derivative. The inventors have found that the above-mentioned problems can be solved when the dehydration polymerization step is performed twice or more, thereby completing the present invention. Moreover, it discovered that the said subject was solved when a metal oxide film satisfy | fills specific conditions, and completed this invention. In addition, the phosphor manufactured by such a surface treatment method or the phosphor having the above-mentioned specific film characteristics is further excellent in dispersibility, and thus, for example, the dispersibility of the phosphor in the phosphor-containing resin portion of the light emitting device can be improved. I found out.

即ち、本発明の要旨は下記の〔1〕〜〔8〕に存する。
〔1〕雰囲気温度0℃以上20℃以下で金属アルコキシドおよび/またはその誘導体を加水分解、脱水重合させる工程を含むことを特徴とする蛍光体表面処理方法。
〔2〕金属アルコキシドおよび/またはその誘導体を加水分解、脱水重合させる工程を2回以上含むことを特徴とする蛍光体表面処理方法。
〔3〕前記〔1〕または〔2〕に記載の蛍光体表面処理方法より表面処理された蛍光体。〔4〕金属酸化物皮膜を有する蛍光体であって、前記金属酸化物皮膜が下記(1)〜(4)の条件を満たすことを特徴とする蛍光体。
(1)金属アルコキシドおよび/またはその誘導体を加水分解、脱水重合してなるものであること
(2)透過型電子顕微鏡により実質的に連続性が観察されること、
(3)膜厚が1nm以上10000nm以下であること
(4)下記(i)〜(iii)による吸湿量測定試験により測定される吸湿増加率が5重量%以下であること
[吸湿量測定試験]
(i)橙色蛍光体SrBaSiO:Eu(以下SBSと略称する。重量メジアン径D50=20±3μm)に任意の方法で前記金属酸化物皮膜を形成する。
(ii)温度60℃、相対湿度90%の雰囲気下で100時間放置する。
(iii)吸湿増加率(重量%)=(吸湿試験後重量−吸湿試験前重量)/(吸湿試験前重量)×100を測定する。
〔5〕前記〔3〕または〔4〕に記載の蛍光体を含有する蛍光体含有組成物。
〔6〕前記〔3〕または〔4〕に記載の蛍光体を用いた発光装置。
〔7〕前記〔6〕に記載の発光装置を用いた画像表示装置。
〔8〕前記〔6〕に記載の発光装置を用いた照明装置。
That is, the gist of the present invention resides in the following [1] to [8].
[1] A phosphor surface treatment method comprising a step of hydrolyzing and dehydrating a metal alkoxide and / or a derivative thereof at an atmospheric temperature of 0 ° C. or higher and 20 ° C. or lower.
[2] A phosphor surface treatment method comprising a step of hydrolyzing and dehydrating and polymerizing a metal alkoxide and / or a derivative thereof twice or more.
[3] A phosphor surface-treated by the phosphor surface treatment method according to [1] or [2]. [4] A phosphor having a metal oxide film, wherein the metal oxide film satisfies the following conditions (1) to (4).
(1) It is formed by hydrolysis and dehydration polymerization of a metal alkoxide and / or its derivative. (2) Substantially continuity is observed by a transmission electron microscope.
(3) The film thickness is 1 nm or more and 10,000 nm or less. (4) The moisture absorption increase rate measured by the moisture absorption measurement test according to the following (i) to (iii) is 5% by weight or less [Moisture absorption measurement test].
(I) The metal oxide film is formed on the orange phosphor Sr 2 BaSiO 5 : Eu (hereinafter abbreviated as SBS, weight median diameter D50 = 20 ± 3 μm) by an arbitrary method.
(Ii) Leave in an atmosphere at a temperature of 60 ° C. and a relative humidity of 90% for 100 hours.
(Iii) Moisture absorption increase rate (% by weight) = (weight after moisture absorption test−weight before moisture absorption test) / (weight before moisture absorption test) × 100.
[5] A phosphor-containing composition containing the phosphor according to [3] or [4].
[6] A light emitting device using the phosphor according to [3] or [4].
[7] An image display device using the light emitting device according to [6].
[8] An illumination device using the light emitting device according to [6].

本発明の蛍光体表面処理方法、および蛍光体は、以下の優れた効果を奏する。
(i)本発明の蛍光体の母体となる表面処理前の蛍光体(以後、基体蛍光体と呼ぶことがある)の耐湿性等の耐候性を一層向上させることができる。
(ii)発光装置の蛍光体含有樹脂部における樹脂に対する分散性を基体蛍光体に比べて向上させることができる。
The phosphor surface treatment method and the phosphor of the present invention have the following excellent effects.
(I) It is possible to further improve the weather resistance such as moisture resistance of the phosphor before the surface treatment (hereinafter also referred to as a base phosphor) which is the base of the phosphor of the present invention.
(Ii) Dispersibility of the phosphor-containing resin portion of the light-emitting device in the resin can be improved as compared with the base phosphor.

また、本発明の蛍光体含有組成物、発光装置、画像表示装置、および照明装置は、前記蛍光体を用いているので、長期的な耐候性に優れ、高品質である。   In addition, since the phosphor-containing composition, the light emitting device, the image display device, and the lighting device of the present invention use the phosphor, the phosphor-containing composition has excellent long-term weather resistance and high quality.

以下、本発明の実施の形態について詳細に説明するが、本発明は以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。
[1]蛍光体表面処理方法
第一の本発明の蛍光体表面処理方法は、雰囲気温度0℃以上20℃以下で金属アルコキシドおよび/またはその誘導体を加水分解、脱水重合させる工程を含むことが必須である
(請求
項1)。
第二の本発明の蛍光体表面処理方法は、金属アルコキシドおよび/またはその誘導体を加水分解、脱水重合させる工程を2回以上含むことが必須である(請求項2)。
以下、各成分について詳細に説明する。
Hereinafter, embodiments of the present invention will be described in detail. However, the present invention is not limited to the following embodiments, and various modifications can be made within the scope of the gist of the present invention.
[1] Phosphor surface treatment method The phosphor surface treatment method of the first aspect of the present invention must include a step of hydrolyzing and dehydrating a metal alkoxide and / or a derivative thereof at an atmospheric temperature of 0 ° C. or higher and 20 ° C. or lower. (Claim 1).
The phosphor surface treatment method according to the second aspect of the present invention essentially includes the step of hydrolyzing and dehydrating and polymerizing the metal alkoxide and / or derivative thereof (claim 2).
Hereinafter, each component will be described in detail.

[1−1]金属アルコキシドおよび/またはその誘導体
本発明に用いられる金属アルコキシドは、アルコキシル基に金属が結合した化合物をいい、通常、一般式 M(OR)n(Mは金属元素、Rはアルキル基、nは金属元素の酸価
数を表す。)で表される。
[1-1] Metal alkoxide and / or derivative thereof The metal alkoxide used in the present invention refers to a compound in which a metal is bonded to an alkoxyl group, and is generally represented by the general formula M (OR) n (M is a metal element, and R is an alkyl). Group, n represents the acid number of the metal element).

前記一般式において、Mは、好ましくはSi、Ti、Zr、Nb、Vを挙げることができる。また、Rのアルキル基の炭素数は、好ましくは1〜5であり、さらに好ましくは1〜3である。
本発明に用いられる金属アルコキシドとしては、具体的には反応性や工業規模での入手の容易さなどから炭素数1〜3のシリコンアルコキシド、すなわち、テトラメトキシシラン、テトラエトキシシラン、テトラブトキシシランなどが好適に用いられる。
In the general formula, M is preferably Si, Ti, Zr, Nb, or V. Moreover, carbon number of the alkyl group of R becomes like this. Preferably it is 1-5, More preferably, it is 1-3.
Specific examples of the metal alkoxide used in the present invention include silicon alkoxides having 1 to 3 carbon atoms such as tetramethoxysilane, tetraethoxysilane, and tetrabutoxysilane because of their reactivity and availability on an industrial scale. Are preferably used.

金属アルコキシドの誘導体としては、例えば金属アルコキシドを部分的に加水分解、縮重合して得られる低縮合物誘導体を挙げることができる。具体的には、例えばテトラメトキシシラン、テトラエトキシシラン、テトラブトキシシランなどのシリコンアルコキシドを部分的に加水分解、縮重合して得られる低縮合物誘導体を挙げることができる。
[1−2]基体蛍光体
本発明の表面処理方法の対象となる蛍光体(基体蛍光体)は、特に限定は無いが、発光特性が優れているが耐湿性が低い蛍光体は、本発明の表面処理方法により、発光装置等に好ましく利用することができるので好適である。基体蛍光体の具体例については、[2]章において後述する。
Examples of the metal alkoxide derivative include a low condensate derivative obtained by partially hydrolyzing and polycondensing a metal alkoxide. Specific examples include low condensate derivatives obtained by partially hydrolyzing and polycondensing silicon alkoxides such as tetramethoxysilane, tetraethoxysilane, and tetrabutoxysilane.
[1-2] Substrate phosphor The phosphor (substrate phosphor) to be subjected to the surface treatment method of the present invention is not particularly limited, but a phosphor having excellent light emission characteristics but low moisture resistance is not limited to the present invention. This surface treatment method is preferable because it can be preferably used for a light emitting device or the like. Specific examples of the base phosphor will be described later in section [2].

[1−3]加水分解、脱水重合工程
本発明の蛍光体表面処理方法は、金属アルコキシドおよび/またはその誘導体を加水分解、脱水重合させる工程を雰囲気温度0℃以上20℃以下の低温で行うこと(以下、「低温処理」と称することがある。)、および/または、2回以上行なうこと(以下、「複数回処理」と称することがある。)を特徴とする。かかる工程を行なうことで、基体蛍光体に緻密、かつ強固な皮膜が形成され、耐湿性向上、分散性向上が達成される。以下、詳細に説明する。
[1−3−1]低温処理
第一の本発明の蛍光体表面処理方法は、金属アルコキシドおよび/またはその誘導体を加水分解、脱水重合させる工程を雰囲気温度0℃以上20℃以下の低温で行う。これにより、基体蛍光体の表面に、均一な連続皮膜を形成することができる。液温は、好ましくは0℃以上であり、さらに好ましくは5℃以上である。また、好ましくは10℃以下である。各溶液が凝固しなければ低温であるほうが皮膜厚みを増やす上では好ましいが、あまりに低温であると局所的に金属酸化物が多く析出して不均一な表面皮膜となりやすいため、好ましくない。
具体的には、例えば[1−4−3]で後述する様に、金属アルコキシド溶液と基体蛍光体含有溶液を雰囲気温度0℃以上20℃以下で混合する方法を挙げることができる。
[1-3] Hydrolysis and dehydration polymerization step In the phosphor surface treatment method of the present invention, the step of hydrolyzing and dehydrating the metal alkoxide and / or its derivative is performed at a low temperature of from 0 ° C. to 20 ° C. (Hereinafter, sometimes referred to as “low temperature treatment”) and / or two or more times (hereinafter, sometimes referred to as “multiple treatment”). By performing such a process, a dense and strong film is formed on the base phosphor, and moisture resistance and dispersibility are improved. Details will be described below.
[1-3-1] Low-Temperature Treatment In the phosphor surface treatment method of the first aspect of the present invention, the step of hydrolyzing and dehydrating the metal alkoxide and / or derivative thereof is performed at a low temperature of from 0 ° C. to 20 ° C. . Thereby, a uniform continuous film can be formed on the surface of the base phosphor. The liquid temperature is preferably 0 ° C. or higher, more preferably 5 ° C. or higher. Moreover, Preferably it is 10 degrees C or less. If each solution does not solidify, the lower temperature is preferable for increasing the film thickness, but if the temperature is too low, a large amount of metal oxide precipitates locally and tends to form an uneven surface film, which is not preferable.
Specifically, for example, as described later in [1-4-3], a method in which a metal alkoxide solution and a base phosphor-containing solution are mixed at an ambient temperature of 0 ° C. or higher and 20 ° C. or lower can be exemplified.

[1−3−2]複数回処理
第二の本発明の蛍光体表面処理方法は、金属アルコキシドおよび/またはその誘導体を加水分解、脱水重合させる工程を2回以上行う。これにより、一旦形成された皮膜をさらにもう一層の別の皮膜で覆うことになり、強固な皮膜を構成することができる。また、第
一層の皮膜に生じたクラックが第二層の皮膜で覆われて、蛍光体に水分が浸入することを抑制することができる。処理回数は、好ましくは3回以上である。処理回数を増やすと皮膜の水分バリア性はその分増大するが、処理回数を重ねる毎に水分バリア性の改善積み上げは小さくなってくるため、5回以上処理しても手間の割に効果は少ない。
具体的には、例えば[1−4−6]で後述する様に、金属アルコキシド溶液と基体蛍光体含有溶液を混合し、洗浄、乾燥する工程を複数回繰り返す方法を挙げることができる。
[1-3-2] Multiple times treatment In the phosphor surface treatment method of the second aspect of the present invention, the step of hydrolyzing and dehydrating a metal alkoxide and / or a derivative thereof is performed twice or more. Thereby, the film once formed is covered with still another film, and a strong film can be formed. Further, it is possible to prevent the cracks generated in the first layer coating from being covered with the second layer coating and moisture from entering the phosphor. The number of treatments is preferably 3 times or more. When the number of treatments is increased, the moisture barrier property of the film increases accordingly, but as the number of treatments is repeated, the improvement in moisture barrier properties becomes smaller, so even if treatment is performed 5 times or more, there is little effect on labor. .
Specifically, as described later in [1-4-6], for example, a method of mixing a metal alkoxide solution and a base phosphor-containing solution, washing, and drying may be repeated a plurality of times.

[1−4]処理条件
本発明の蛍光体表面処理方法は、前記の金属アルコキシドおよび/またはその誘導体を加水分解、脱水重合させる工程を含むものであれば、特に限定はないが、通常、以下の(i)〜(v)工程を経ることにより行なわれる。以下、各工程について詳述する。
(i)金属アルコキシド溶液(以下TAOM溶液と略する)を調製する工程
(ii)基体蛍光体含有溶液(以下PHOS溶液と略する)を調製する工程
(iii)前記(i)及び(ii)の工程で得られた溶液を混合する混合表面処理工程
(iv)洗浄工程
(v)乾燥工程
[1-4] Treatment conditions The phosphor surface treatment method of the present invention is not particularly limited as long as it includes a step of hydrolyzing and dehydrating and polymerizing the metal alkoxide and / or derivative thereof. This is carried out through the steps (i) to (v). Hereinafter, each process is explained in full detail.
(I) a step of preparing a metal alkoxide solution (hereinafter abbreviated as TAOM solution) (ii) a step of preparing a substrate phosphor-containing solution (hereinafter abbreviated as PHOS solution) (iii) of (i) and (ii) above Mixing surface treatment step (iv) washing step (v) drying step of mixing the solution obtained in the step

[1−4−1](i)金属アルコキシド溶液(TAOM溶液)調製工程
金属アルコキシドを有機溶媒により希釈する。使用する有機溶媒としては、アルコール類、あるいはグリコール誘導体、エステル類、ケトン類、エーテル類等のうち1種、または2種以上を混合して使用することができる。
前記溶媒のうち、基体蛍光体への皮膜の付着性の観点から、アルコール類が好ましく、炭素数1〜4のアルコールがさらに好ましい。具体的には、メタノール、エタノール、イソプロパノールまたはブタノールが挙げられる。中でも、メタノール、エタノールが好ましい。溶媒の配合量は金属アルコキシド100重量部に対し200重量部以上、好ましくは400重量部以上である。
[1-4-1] (i) Metal alkoxide solution (TAOM solution) preparation step The metal alkoxide is diluted with an organic solvent. As the organic solvent to be used, one or a mixture of two or more of alcohols, glycol derivatives, esters, ketones, ethers and the like can be used.
Among the solvents, alcohols are preferable and alcohols having 1 to 4 carbon atoms are more preferable from the viewpoint of adhesion of the film to the base phosphor. Specific examples include methanol, ethanol, isopropanol, and butanol. Of these, methanol and ethanol are preferable. The amount of the solvent is 200 parts by weight or more, preferably 400 parts by weight or more with respect to 100 parts by weight of the metal alkoxide.

溶媒の配合量が少なすぎると、基体蛍光体表面に充分な厚みの連続的な皮膜が得られない場合がある。即ち、TAOM溶液が高濃度となるため、後述する [1−4−2] の工程において、アンモニア水を含有するPHOS溶液に滴下した際、局所的にTAOM濃度が高くなり、基体蛍光体表面に到達する前に重合し、皮膜の代わりに専ら球状金属酸化物が生成する。   If the amount of the solvent is too small, a continuous film having a sufficient thickness may not be obtained on the surface of the base phosphor. That is, since the TAOM solution has a high concentration, when dropped in a PHOS solution containing ammonia water in the step [1-4-2] to be described later, the TAOM concentration locally increases, and the surface of the substrate phosphor is increased. It polymerizes before reaching, and a spherical metal oxide is produced exclusively in place of the film.

[1−4−2](ii)基体蛍光体含有溶液(PHOS溶液)調製工程
基体蛍光体を有機溶媒と、加水分解に必要な水分及び必要に応じて加水分解促進用触媒を加えスラリーとする。有機溶媒としては上記金属アルコキシド溶液に使用したものがそのまま使用できる。また、金属アルコキシドの加水分解反応の触媒としては、例えばアンモニア水が使用できる。さらにスラリーの好適な例として、エタノールにアンモニア水を加えた溶液に基体蛍光体を分散させたものを使用できる。基体蛍光体は、反応溶液中で撹拌することにより充分に分散されれば添加量に制限はないが、特に比重や粒径が大きな基体蛍光体の場合は反応溶液中で沈降して皮膜形成反応が不均一になりやすいため、基体蛍光体の量を少なくして反応液中で良く分散させる必要がある。かかる観点より、基体蛍光体は全反応溶液に対し、通常1重量%以上、20重量%以下である。 また、加水分解用
触媒の割合にも特に制限はないが、反応溶液中で球状金属酸化物の生成を抑制して皮膜形成を活発にさせるためには、全反応溶液に対して5重量%以上、20%重量以下が好ましい。
[1-4-2] (ii) Preparation process of substrate phosphor-containing solution (PHOS solution) The substrate phosphor is made into a slurry by adding an organic solvent, moisture necessary for hydrolysis and, if necessary, a catalyst for promoting hydrolysis. . As the organic solvent, those used for the metal alkoxide solution can be used as they are. As a catalyst for the hydrolysis reaction of metal alkoxide, for example, aqueous ammonia can be used. Furthermore, as a suitable example of the slurry, a substance obtained by dispersing the base phosphor in a solution obtained by adding aqueous ammonia to ethanol can be used. The amount of the substrate phosphor is not limited as long as it is sufficiently dispersed by stirring in the reaction solution. However, in the case of a substrate phosphor having a large specific gravity and particle size, the substrate phosphor settles in the reaction solution to form a film. Therefore, it is necessary to reduce the amount of the base phosphor and disperse it well in the reaction solution. From this point of view, the base phosphor is usually 1% by weight or more and 20% by weight or less with respect to the total reaction solution. Further, the ratio of the catalyst for hydrolysis is not particularly limited, but in order to suppress the formation of the spherical metal oxide in the reaction solution and activate the film formation, it is 5% by weight or more based on the total reaction solution. 20% by weight or less is preferable.

[1−4−3](iii)混合表面処理工程
前記(ii)工程で得られたPHOS溶液を基体蛍光体が沈降しないように十分撹拌しながら前記(i)工程で得られたTAOM溶液を所定の速度で滴下する。PHOS溶液の
撹拌速度は蛍光体の粒径分布及び密度により異なるが、容器の底部に沈殿が生じない速度で撹拌するのが好ましい。
TAOM溶液の添加速度は、速すぎると加水分解速度が高くなり過ぎ粒子が生成して皮膜が得られないため、添加は通常30分以上、好ましくは1時間以上、より好ましくは2時間以上かけて均等に行なうことが好ましい。
滴下時のPHOS溶液の液温は、各溶液が凝固しなければ低温であることが皮膜厚みを増やす上では好ましいが、あまりに低温であると局所的に金属酸化物が多く析出して不均一な表面皮膜となりやすいため、通常0℃以上、20℃以下、好ましくは10℃以下とする。また、用いる金属アルコキシドの使用量は処理される蛍光体の重量に対し、金属元素の量に換算して通常5重量%以上、好ましくは10重量%以上であり、通常30重量%以下、好ましくは20重量%以下である。金属アルコキシドの使用量が少なすぎると 皮膜
の形成が不充分になって皮膜の連続性が失われるため、充分な耐湿性が得られない場合がある。また、多すぎると 皮膜が厚くなりすぎてクラックが発生したり剥離が生じたりし
て皮膜の連続性が失われるため、充分な耐湿性が得られない場合がある。
[1-4-3] (iii) Mixed surface treatment step The TAOM solution obtained in the step (i) is stirred while the PHOS solution obtained in the step (ii) is sufficiently stirred so that the base phosphor does not settle. It is dripped at a predetermined speed. The stirring speed of the PHOS solution varies depending on the particle size distribution and density of the phosphor, but it is preferable to stir at a speed that does not cause precipitation at the bottom of the container.
If the TAOM solution is added too quickly, the hydrolysis rate becomes too high and particles are formed and a film cannot be obtained. Therefore, the addition is usually 30 minutes or longer, preferably 1 hour or longer, more preferably 2 hours or longer. It is preferable to carry out evenly.
The liquid temperature of the PHOS solution at the time of dropping is preferably low if each solution does not solidify in order to increase the film thickness. However, if the temperature is too low, a lot of metal oxide is locally deposited and uneven. Since it tends to be a surface film, it is usually 0 ° C. or higher and 20 ° C. or lower, preferably 10 ° C. or lower. The amount of the metal alkoxide used is usually 5% by weight or more, preferably 10% by weight or more, and usually 30% by weight or less, preferably in terms of the amount of the metal element, based on the weight of the phosphor to be treated. 20% by weight or less. If the amount of metal alkoxide used is too small, the formation of the film becomes insufficient and the continuity of the film is lost, so that sufficient moisture resistance may not be obtained. On the other hand, if the amount is too large, the film becomes too thick and cracks or peeling occurs, resulting in loss of continuity of the film, so that sufficient moisture resistance may not be obtained.

[1−4−4](iv)洗浄工程
前記(iii)工程で得られた混合溶液を静置し、皮膜とならなかった球状金属酸化物等を上澄み液ごと除去する。ついでアルコール類などの溶媒を添加し、撹拌後再度静置し、上澄み液を廃棄する。この洗浄作業を数回繰返した後、デカンテーション、ろ過または遠心分離などの方法により固液分離を行う。洗浄の繰返し回数は通常2回以上、好ましくは3回以上である。繰返し回数に制限はないが洗浄液が透明となればそれ以上洗浄工程繰り返す必要はない。
[1-4-4] (iv) Washing Step The mixed solution obtained in the step (iii) is allowed to stand, and the spherical metal oxide or the like that has not become a film is removed together with the supernatant. Next, a solvent such as alcohol is added, and the mixture is left to stand after stirring, and the supernatant is discarded. After repeating this washing operation several times, solid-liquid separation is performed by a method such as decantation, filtration or centrifugation. The number of repetitions of washing is usually 2 times or more, preferably 3 times or more. There is no limit to the number of repetitions, but there is no need to repeat the cleaning process if the cleaning liquid becomes transparent.

[1−4−5](v)乾燥工程
(iv)で得られたケーキを加熱装置を有する真空乾燥機中で減圧乾燥を行う。例えば、
初期の30分は50℃に加熱し、ついで150℃に昇温し、2時間保持する方法が挙げられる。
[1−4−6]皮膜処理
得られた蛍光体の皮膜付着量が所望の量に達しない場合は、得られた蛍光体により、再度蛍光体含有溶液を調製し、上記(iii)工程以下を繰り返してもよい。
[1-4-5] (v) Drying step The cake obtained in (iv) is dried under reduced pressure in a vacuum dryer having a heating device. For example,
The initial 30 minutes may be heated to 50 ° C., then heated to 150 ° C. and held for 2 hours.
[1-4-6] Coating treatment When the coating amount of the obtained phosphor does not reach the desired amount, a phosphor-containing solution is prepared again with the obtained phosphor, and the above (iii) step and the subsequent steps May be repeated.

特に、上述の[1−4−5]の乾燥工程において、皮膜の乾燥が速すぎると皮膜にクラックが入ることがあり、クラックから水分が侵入して蛍光体を劣化させるおそれがあるので、好ましくない。その場合、上述の[1−4−1]から[1−4−5]の工程を繰り返すことによって、一旦形成された皮膜をさらにもう一層の別の皮膜で覆うことができる。第一層の皮膜に生じたクラックが第二層の皮膜で覆われて、蛍光体に水分が浸入することを抑制することができる。この場合、第二層の皮膜にクラックができても構わない。第一層と第二層の皮膜が偶然に連通しない限り、クラックを通じた水分侵入は蛍光体にまで届かないからである。   In particular, in the drying step [1-4-5] described above, if the film is dried too quickly, cracks may be formed in the film, and moisture may enter from the cracks to deteriorate the phosphor. Absent. In that case, by repeating the steps [1-4-1] to [1-4-5] described above, the film once formed can be covered with still another film. It is possible to prevent the cracks generated in the first layer film from being covered with the second layer film and moisture from entering the phosphor. In this case, a crack may be formed in the coating of the second layer. This is because moisture intrusion through the crack does not reach the phosphor unless the first layer and the second layer are accidentally communicated.

また、上述の[1−4−4]の洗浄工程の後に、上述の[1−4−1]から[1−4−5]の工程を行なうことによって、皮膜厚みを増加させ、蛍光体の耐湿性をさらに向上させることも可能である。
[2]蛍光体
第一の本発明の蛍光体は、上述の蛍光体表面処理方法より表面処理された蛍光体である(請求項3)。
第二の本発明の蛍光体は、金属酸化物皮膜を有する蛍光体であって、前記金属酸化物皮膜が下記(1)〜(4)の条件を満たすことを特徴とする蛍光体である(請求項4)。
(1)金属アルコキシドおよび/またはその誘導体を加水分解、脱水重合してなるもので
あること
(2)透過型電子顕微鏡により実質的に連続性が観察されること、
(3)膜厚が1nm以上10000nm以下であること
(4)下記(i)〜(iii)による吸湿量測定試験により測定される吸湿増加率が5重量%以下であること
Further, after the above-described [1-4-4] cleaning step, the steps [1-4-1] to [1-4-5] are performed to increase the film thickness, thereby It is also possible to further improve the moisture resistance.
[2] Phosphor The phosphor according to the first aspect of the present invention is a phosphor that has been surface-treated by the above-described phosphor surface treatment method (claim 3).
The phosphor of the second aspect of the present invention is a phosphor having a metal oxide film, wherein the metal oxide film satisfies the following conditions (1) to (4) ( Claim 4).
(1) It is formed by hydrolysis and dehydration polymerization of a metal alkoxide and / or its derivative. (2) Substantially continuity is observed by a transmission electron microscope.
(3) The film thickness is 1 nm or more and 10,000 nm or less. (4) The moisture absorption increase rate measured by the moisture absorption measurement test according to the following (i) to (iii) is 5% by weight or less.

[吸湿量測定試験]
(i)橙色蛍光体SrBaSiO:Eu(以下SBSと略称する。重量メジアン径D50=20±3μm)に任意の方法で前記金属酸化物皮膜を形成する。
(ii)温度60℃、相対湿度90%の雰囲気下で100時間放置する。
(iii)吸湿増加率(重量%)=(吸湿試験後重量−吸湿試験前重量)/(吸湿試験前重量)×100を測定する。
以下、各成分について詳述する。
[Moisture absorption measurement test]
(I) The metal oxide film is formed on the orange phosphor Sr 2 BaSiO 5 : Eu (hereinafter abbreviated as SBS, weight median diameter D50 = 20 ± 3 μm) by an arbitrary method.
(Ii) Leave in an atmosphere at a temperature of 60 ° C. and a relative humidity of 90% for 100 hours.
(Iii) Moisture absorption increase rate (% by weight) = (weight after moisture absorption test−weight before moisture absorption test) / (weight before moisture absorption test) × 100.
Hereinafter, each component will be described in detail.

[2−1]基体蛍光体
第一および第二の本発明の蛍光体表面処理方法は、耐水性向上の観点から、水分と反応しやすい蛍光体に対してその効果が好適に発揮される。
[2−1−1]水分と反応しやすい蛍光体
本発明の蛍光体の母体となる蛍光体、すなわち基体蛍光体となる水分と反応しやすい蛍光体としては、無機蛍光体と有機蛍光体が挙げられる。
[2-1] Base phosphor The effects of the phosphor surface treatment methods according to the first and second aspects of the present invention are suitably exerted on a phosphor that easily reacts with moisture from the viewpoint of improving water resistance.
[2-1-1] Phosphor that easily reacts with moisture As the phosphor that becomes the base of the phosphor of the present invention, that is, the phosphor that easily reacts with moisture that becomes the base phosphor, inorganic phosphors and organic phosphors are included. Can be mentioned.

無機蛍光体としては、例えば母体結晶としてMSiO、MS、MGa、MAlSiN、MSi、MSiからなる群(ただし、Mは、Ca,Sr,Baからなる群から選ばれる1種、または2種以上を表す)の少なくとも一つを含有し、かつ付活剤としてCr,Mn,Fe,Bi,Ce,Pr,Nd,Sm,Eu,Tb,Dy,Ho,Er,Tm,Ybの少なくとも一つを含有する蛍光体が挙げられる。 As the inorganic phosphor, for example, a group consisting of M 3 SiO 5 , MS, MGa 2 S 4 , MAlSiN 3 , M 2 Si 5 N 8 , MSi 2 N 2 O 2 as a base crystal (where M is Ca, Sr , Ba represents at least one selected from the group consisting of Ba, and an activator is Cr, Mn, Fe, Bi, Ce, Pr, Nd, Sm, Eu, Tb. , Dy, Ho, Er, Tm, and a phosphor containing at least one of Yb.

上記蛍光体の具体例としては、たとえば、
BaSiO:Eu、(Sr1-aBaSiO:Eu、SrSiO:Eu

CaS:Eu、SrS:Eu、BaS:Eu、CaS:Ce、SrS:Ce、BaS:Ce、
CaGa:Eu、SrGa:Eu、BaGa:Eu、CaGa:Ce、SrGa:Ce、BaGa:Ce、
CaAlSiN:Eu、SrAlSiN:Eu、(Ca1-aSr)AlSiN
Eu、CaAlSiN:Ce、SrAlSiN:Ce、(Ca1-aSr)AlSi
:Ce、
CaSi:Eu、SrSi:Eu、BaSi:Eu、(Ca1-aSr)Si:Eu、CaSi:Ce、SrSi:Ce、B
Si:Ce、(Ca1-aSr)Si:Ce、
CaSi:Eu、SrSi:Eu、BaSi:Eu、CaSi:Ce、SrSi:Ce、BaSi:Ce
(以上に関し、aは0≦a≦1を満たす。)が挙げられる。
中でも、SrBaSiO:Eu、CaS、CaGa:Eu、SrGa:Eu、(Sr0.8Ca0.2)AlSiN:Eu、SrAlSiN:Euを好ましいものとして挙げることが出来る。
As a specific example of the phosphor, for example,
Ba 3 SiO 5 : Eu, (Sr 1-a Ba a ) 3 SiO 5 : Eu, Sr 3 SiO 5 : Eu
,
CaS: Eu, SrS: Eu, BaS: Eu, CaS: Ce, SrS: Ce, BaS: Ce,
CaGa 2 S 4: Eu, SrGa 2 S 4: Eu, BaGa 2 S 4: Eu, CaGa 2 S 4: Ce, SrGa 2 S 4: Ce, BaGa 2 S 4: Ce,
CaAlSiN 3 : Eu, SrAlSiN 3 : Eu, (Ca 1-a Sr a ) AlSiN 3 :
Eu, CaAlSiN 3 : Ce, SrAlSiN 3 : Ce, (Ca 1-a Sr a ) AlSi
N 3 : Ce,
Ca 2 Si 5 N 8: Eu , Sr 2 Si 5 N 8: Eu, Ba 2 Si 5 N 8: Eu, (Ca 1-a Sr a) 2 Si 5 N 8: Eu, Ca 2 Si 5 N 8: Ce, Sr 2 Si 5 N 8 : Ce, B
a 2 Si 5 N 8: Ce , (Ca 1-a Sr a) 2 Si 5 N 8: Ce,
CaSi 2 N 2 O 2 : Eu, SrSi 2 N 2 O 2 : Eu, BaSi 2 N 2 O 2 : Eu, CaSi 2 N 2 O 2 : Ce, SrSi 2 N 2 O 2 : Ce, BaSi 2 N 2 O 2 : Ce
(With respect to the above, a satisfies 0 ≦ a ≦ 1).
Among them, Sr 2 BaSiO 5 : Eu, CaS, CaGa 2 S 4 : Eu, SrGa 2 S 4 : Eu, (Sr 0.8 Ca 0.2 ) AlSiN 3 : Eu, and SrAlSiN 3 : Eu are preferable. I can do it.

[2−1−2]その他の蛍光体
また、水分と反応しやすい蛍光体以外にも、耐久性向上、分散性向上等、目的に応じてその他の蛍光体を基体蛍光体として用いることもできる。
かかる基体蛍光体の組成には特に制限はないが、結晶母体であるY、ZnSiO等に代表される金属酸化物、SrSi等に代表される金属窒化物、Ca(
PO)Cl等に代表されるリン酸塩及びZnS、SrS、CaS等に代表される硫化
物に、Ce、Pr、Nd、Pm、Sm、Eu、Tb、Dy、Ho、Er、Tm、Yb等の希土類金属のイオンやAg、Cu、Au、Al、Mn、Sb等の金属のイオンを付活元素又は共付活元素として組み合わせたものが好ましい。
結晶母体の好ましい例としては、例えば、(Zn,Cd)S、SrGa、SrS、ZnS等の硫化物、YS等の酸硫化物、(Y,Gd)Al12、YAlO、BaMgAl1017、(Ba,Sr)(Mg,Mn)Al1017、(Ba,Sr,C
a)(Mg,Zn,Mn)Al1017、BaAl1219、CeMgAl1119
、(Ba,Sr,Mg)O・Al、BaAlSi、SrAl、SrAl1425、YAl12等のアルミン酸塩、YSiO、ZnSiO等の珪酸塩、SnO、Y等の酸化物、GdMgB10、(Y,Gd)BO等の硼酸塩、Ca10(PO)(F,Cl)、(Sr,Ca,Ba,Mg)10(PO)Cl等のハロリン酸塩、Sr、(La,Ce)PO等のリン酸塩等を挙げることができる。
[2-1-2] Other phosphors In addition to phosphors that easily react with moisture, other phosphors can be used as the base phosphor depending on the purpose, such as improved durability and improved dispersibility. .
The composition of such a base phosphor is not particularly limited, but a metal oxide typified by Y 2 O 3 , Zn 2 SiO 4, etc., which is a crystal matrix, and a metal nitride typified by Sr 2 Si 5 N 8, etc. , Ca 5 (
PO 4 ) 3 Cl etc. and phosphates such as ZnS, SrS, CaS etc., Ce, Pr, Nd, Pm, Sm, Eu, Tb, Dy, Ho, Er, Tm, A combination of rare earth metal ions such as Yb and metal ions such as Ag, Cu, Au, Al, Mn, and Sb as activators or coactivators is preferred.
Preferred examples of the crystal matrix include sulfides such as (Zn, Cd) S, SrGa 2 S 4 , SrS, and ZnS, oxysulfides such as Y 2 O 2 S, and (Y, Gd) 3 Al 5 O. 12 , YAlO 3 , BaMgAl 10 O 17 , (Ba, Sr) (Mg, Mn) Al 10 O 17 , (Ba, Sr, C
a) (Mg, Zn, Mn) Al 10 O 17 , BaAl 12 O 19 , CeMgAl 11 O 19
, (Ba, Sr, Mg) O.Al 2 O 3 , BaAl 2 Si 2 O 8 , SrAl 2 O 4 , Sr 4 Al 14 O 25 , Y 3 Al 5 O 12, etc., aluminates such as Y 2 SiO 5 Silicate such as Zn 2 SiO 4 , oxide such as SnO 2 and Y 2 O 3 , borate such as GdMgB 5 O 10 and (Y, Gd) BO 3 , Ca 10 (PO 4 ) 6 (F, Cl ) 2 , halophosphates such as (Sr, Ca, Ba, Mg) 10 (PO 4 ) 6 Cl 2 , phosphates such as Sr 2 P 2 O 7 , (La, Ce) PO 4, etc. it can.

ただし、上記の結晶母体及び付活元素又は共付活元素は、元素組成には特に制限はなく、同族の元素と一部置き換えることもでき、得られた蛍光体は近紫外から可視領域の光を吸収して可視光を発するものであれば用いることが可能である。
具体的には、基体蛍光体として以下に挙げるものを用いることが可能であるが、これらはあくまでも例示であり、本発明で使用できる基体蛍光体はこれらに限られるものではない。なお、以下の例示では、構造の一部のみが異なる基体蛍光体を、適宜省略して示している。例えば、「YSiO:Ce3+」、「YSiO:Tb3+」及び「YSiO:Ce3+,Tb3+」を「YSiO:Ce3+,Tb3+」と、「LaS:Eu」、「YS:Eu」及び「(La,Y)S:Eu」を「(La,Y)S:Eu」とまとめて示している。省略箇所はカンマ(,)で区切って示す。
However, the crystal matrix and the activator element or coactivator element are not particularly limited in element composition, and can be partially replaced with elements of the same family, and the obtained phosphor is light in the near ultraviolet to visible region. Any material that absorbs and emits visible light can be used.
Specifically, the following can be used as the base phosphor, but these are merely examples, and the base phosphor that can be used in the present invention is not limited thereto. In the following examples, base phosphors that differ only in part of the structure are omitted as appropriate. For example, “Y 2 SiO 5 : Ce 3+ ”, “Y 2 SiO 5 : Tb 3+ ” and “Y 2 SiO 5 : Ce 3+ , Tb 3+ ” are changed to “Y 2 SiO 5 : Ce 3+ , Tb 3+ ”, “ “La 2 O 2 S: Eu”, “Y 2 O 2 S: Eu” and “(La, Y) 2 O 2 S: Eu” are collectively shown as “(La, Y) 2 O 2 S: Eu”. ing. Omitted parts are shown separated by commas (,).

[2−1−2−1]橙色ないし赤色蛍光体
橙色ないし赤色の蛍光を発する基体蛍光体(以下適宜、「橙色ないし赤色蛍光体」とい
う。)としては、以下のものが挙げられる。橙色ないし赤色蛍光体の発光ピーク波長は、通常580nm以上、好ましくは585nm以上、また通常780nm以下、好ましくは700nm以下の波長範囲にあることが好適である。このような橙色ないし赤色蛍光体としては、例えば、赤色破断面を有する破断粒子から構成され、赤色領域の発光を行なう(Mg,Ca,Sr,Ba)Si:Euで表わされるユウロピウム付活アルカリ土類シリコンナイトライド系蛍光体、規則的な結晶成長形状としてほぼ球形状を有する成長粒子から構成され、赤色領域の発光を行なう(Y,La,Gd,Lu)S:Euで表わされるユウロピウム付活希土類オキシカルコゲナイド系蛍光体等が挙げられる。 更に、特開2004−300247号公報に記載された、Ti、Zr、Hf、Nb、Ta、W、及びMoよりなる群から選ばれる少なくも1種の元素を含有する酸窒化物及び/又は酸硫化物を含有する蛍光体であって、Al元素の一部又は全てがGa元素で置換されたアルファサイアロン構造をもつ酸窒化物を含有する蛍光体も、本実施形態において用いることができる。なお、これらは酸窒化物及び/又は酸硫化物を含有する蛍光体である。
[2-1-2-1] Orange to red phosphor
Examples of the base phosphor that emits orange to red fluorescence (hereinafter referred to as “orange to red phosphor” as appropriate) include the following. The emission peak wavelength of the orange to red phosphor is suitably in the wavelength range of usually 580 nm or more, preferably 585 nm or more, and usually 780 nm or less, preferably 700 nm or less. Examples of such orange to red phosphors include europium composed of broken particles having a red fracture surface and emitting red region (Mg, Ca, Sr, Ba) 2 Si 5 N 8 : Eu. The activated alkaline earth silicon nitride-based phosphor is composed of growing particles having a substantially spherical shape as a regular crystal growth shape, and emits light in the red region (Y, La, Gd, Lu) 2 O 2 S: Examples include europium-activated rare earth oxychalcogenide phosphors represented by Eu. Furthermore, the oxynitride and / or acid containing at least one element selected from the group consisting of Ti, Zr, Hf, Nb, Ta, W, and Mo described in JP-A No. 2004-300247 A phosphor containing a sulfide and containing an oxynitride having an alpha sialon structure in which a part or all of the Al element is substituted with a Ga element can also be used in this embodiment. These are phosphors containing oxynitride and / or oxysulfide.

また、その他、赤色蛍光体としては、(La,Y)S:Eu等のEu付活酸硫化物蛍光体、Y(V,P)O:Eu、Y:Eu等のEu付活酸化物蛍光体、(Ba,Sr,Ca,Mg)SiO:Eu,Mn、(Ba,Mg)SiO:Eu,Mn等のEu,Mn付活珪酸塩蛍光体、LiW:Eu、LiW:Eu,Sm、Eu、Eu:Nb、Eu:Sm等のEu付活タングステン酸塩蛍光体、(Ca,Sr)S:Eu等のEu付活硫化物蛍光体、YAlO:Eu等の
Eu付活アルミン酸塩蛍光体、LiY(SiO:Eu、Ca(SiO:Eu、(Sr,Ba,Ca)SiO:Eu、SrBaSiO:Eu等のEu付活珪酸塩蛍光体、(Y,Gd)Al12:Ce、(Tb,Gd)Al12:Ce等のCe付活アルミン酸塩蛍光体、(Mg,Ca,Sr,Ba)Si:Eu、(Mg,Ca,Sr,Ba)SiN:Eu、(Mg,Ca,Sr,Ba)AlSiN:Eu等のEu付活窒化物蛍光体、(Mg,Ca,Sr,Ba)AlSiN:Ce等のCe付活窒化物蛍光体、(Sr,Ca,Ba,Mg)10(POCl:Eu,Mn等のEu,Mn付活ハロリン酸塩蛍光体、BaMgSi:Eu,Mn、(Ba,Sr,Ca,Mg)(Zn,Mg)Si:Eu,Mn等のEu,Mn付活珪酸塩蛍光体、3.5MgO・0.5MgF・GeO:Mn等のMn付活ゲルマン酸塩蛍光体、Eu付活αサイアロン等のEu付活酸窒化物蛍光体、(Gd,Y,Lu,La):Eu,Bi等のEu,Bi付活酸化物蛍光体、(Gd,Y,Lu,La)S:Eu,Bi等のEu,Bi付活酸硫化物蛍光体、(Gd,Y,Lu,La)VO:Eu,Bi等のEu,Bi付活バナジン酸塩蛍光体、SrY:Eu,Ce等のEu,Ce付活硫化物蛍光体、CaLa:Ce等のCe付活硫化物蛍光体、(Ba,Sr,Ca)MgP:Eu,Mn、(Sr,Ca,Ba,Mg,Zn):Eu,Mn等のEu,Mn付活リン酸塩蛍光体、(Y,Lu)WO:Eu,Mo等のEu,Mo付活タングステン酸塩蛍光体、(Ba,Sr,Ca)SiNz:Eu,Ce(但し、x、y、zは、1以上の整数を表わす。)等のEu,Ce付活窒化物蛍光体、(Ca,Sr,Ba,Mg)10(PO(F,Cl,Br,OH):Eu,Mn等のEu,Mn付活ハロリン酸塩蛍光体、((Y,Lu,Gd,Tb)1−x−yScCe(Ca,Mg)1−r(Mg,Zn)2+rSiz−qGe12+δ等のCe付活珪酸塩蛍光体等を用いることも可能である。
Other red phosphors include Eu-activated oxysulfide phosphors such as (La, Y) 2 O 2 S: Eu, Y (V, P) O 4 : Eu, Y 2 O 3 : Eu, etc. Eu-activated oxide phosphor, (Ba, Sr, Ca, Mg) 2 SiO 4: Eu, Mn, (Ba, Mg) 2 SiO 4: Eu, Eu such as Mn, Mn-activated silicate phosphor, Eu-activated tungstate phosphors such as LiW 2 O 8 : Eu, LiW 2 O 8 : Eu, Sm, Eu 2 W 2 O 9 , Eu 2 W 2 O 9 : Nb, Eu 2 W 2 O 9 : Sm (Ca, Sr) S: Eu-activated sulfide phosphors such as Eu, YAlO 3 : Eu-activated aluminate phosphors such as Eu, LiY 9 (SiO 4 ) 6 O 2 : Eu, Ca 2 Y 8 (SiO 4 ) 6 O 2 : Eu, (Sr, Ba, Ca) 3 SiO 5 : Eu, Sr 2 Ba-activated silicate phosphors such as BaSiO 5 : Eu, (Y, Gd) 3 Al 5 O 12 : Ce, (Tb, Gd) 3 Al 5 O 12 : Ce-activated aluminate phosphors such as Ce, (Mg, Ca, Sr, Ba ) 2 Si 5 N 8: Eu, (Mg, Ca, Sr, Ba) SiN 2: Eu, (Mg, Ca, Sr, Ba) AlSiN 3: Eu -activated nitride such as Eu Phosphors, Ce-activated nitride phosphors such as (Mg, Ca, Sr, Ba) AlSiN 3 : Ce, (Sr, Ca, Ba, Mg) 10 (PO 4 ) 6 Cl 2 : Eu, Mn, etc. Eu, Mn-activated halophosphate phosphor, Ba 3 MgSi 2 O 8 : Eu, Mn, (Ba, Sr, Ca, Mg) 3 (Zn, Mg) Si 2 O 8 : Eu, Mn, etc. activated silicate phosphor, 3.5MgO · 0.5MgF 2 · Ge 2: Mn activated germanate salt phosphors such as Mn, Eu Tsukekatsusan nitride phosphor such as Eu-activated α-sialon, (Gd, Y, Lu, La) 2 O 3: Eu, Bi, etc. Eu, Bi-activated oxide phosphor, (Gd, Y, Lu, La) 2 O 2 S: Eu, Bi-activated oxysulfide phosphor such as Eu, Bi, (Gd, Y, Lu, La) VO 4 : Eu, Bi activated vanadate phosphors such as Eu, Bi, etc., SrY 2 S 4 : Eu, Ce activated sulfide phosphors such as Eu, Ce, etc., Ce activated sulfide fluorescence such as CaLa 2 S 4 : Ce, etc. (Ba, Sr, Ca) MgP 2 O 7 : Eu, Mn, (Sr, Ca, Ba, Mg, Zn) 2 P 2 O 7 : Eu, Mn-activated phosphate phosphors such as Eu and Mn , (Y, Lu) 2 WO 6 : Eu, Mo-activated tungstate phosphor such as Eu, Mo, (Ba, Sr, Ca) x Si y Nz: Eu, Ce (where x, y, z represent an integer of 1 or more. Eu, Ce activated nitride phosphors such as (Ca, Sr, Ba, Mg) 10 (PO 4 ) 6 (F, Cl, Br, OH) 2 : Eu, Mn activated halophosphorus such as Eu, Mn Acid salt phosphor, ((Y, Lu, Gd, Tb) 1-xy Sc x Ce y ) 2 (Ca, Mg) 1-r (Mg, Zn) 2 + r Siz -q Ge q O 12 + δ It is also possible to use a Ce-activated silicate phosphor or the like.

赤色蛍光体としては、β−ジケトネート、β−ジケトン、芳香族カルボン酸、又は、ブレンステッド酸等のアニオンを配位子とする希土類元素イオン錯体からなる赤色有機蛍光体、ペリレン系顔料(例えば、ジベンゾ{[f,f’]−4,4’,7,7’−テトラフェニル}ジインデノ[1,2,3−cd:1’,2’,3’−lm]ペリレン)、アントラキノン系顔料、レーキ系顔料、アゾ系顔料、キナクリドン系顔料、アントラセン系顔料、イソインドリン系顔料、イソインドリノン系顔料、フタロシアニン系顔料、トリフェニルメタン系塩基性染料、インダンスロン系顔料、インドフェノール系顔料、シアニン系顔料、ジオキサジン系顔料を用いることも可能である。   Examples of red phosphors include β-diketonates, β-diketones, aromatic carboxylic acids, red organic phosphors composed of rare earth element ion complexes having an anion such as Bronsted acid as a ligand, and perylene pigments (for example, Dibenzo {[f, f ′]-4,4 ′, 7,7′-tetraphenyl} diindeno [1,2,3-cd: 1 ′, 2 ′, 3′-lm] perylene), anthraquinone pigment, Lake pigments, azo pigments, quinacridone pigments, anthracene pigments, isoindoline pigments, isoindolinone pigments, phthalocyanine pigments, triphenylmethane basic dyes, indanthrone pigments, indophenol pigments, It is also possible to use a cyanine pigment or a dioxazine pigment.

また、赤色蛍光体のうち、ピーク波長が580nm以上、好ましくは590nm以上、また、620nm以下、好ましくは610nm以下の範囲内にあるものは、橙色蛍光体として好適に用いることができる。このような橙色蛍光体の例としては、(Sr,Ba,Ca)SiO:Eu、SrBaSiO:Eu等のEu付活珪酸塩蛍光体、(Sr,Mg)(PO:Sn2+等のSn付活リン酸塩蛍光体等が挙げられる。
以上例示した赤色蛍光体は、何れか一種を単独で使用してもよく、二種以上を任意の組み合わせ及び比率で併用してもよい。 以上の例示の中でも、赤色蛍光体としては、(Ca,Sr,Ba)AlSiN:Eu、(Ca,Sr,Ba)AlSiN:Ce、(La,Y)S:Euが好ましく、(Sr,Ca)AlSiN:Eu、(La,Y)S:Euが特に好ましい。
また、以上例示の中でも、橙色蛍光体としては(Sr,Ba)SiO:Euが好ましい。
Of the red phosphors, those having a peak wavelength in the range of 580 nm or more, preferably 590 nm or more, and 620 nm or less, preferably 610 nm or less can be suitably used as the orange phosphor. Examples of such orange phosphors include Eu-activated silicate phosphors such as (Sr, Ba, Ca) 3 SiO 5 : Eu, Sr 2 BaSiO 5 : Eu, (Sr, Mg) 3 (PO 4 ). 2 : Sn-activated phosphate phosphors such as Sn 2+ and the like.
Any one of the red phosphors exemplified above may be used alone, or two or more may be used in any combination and ratio. Among the above examples, as the red phosphor, (Ca, Sr, Ba) AlSiN 3 : Eu, (Ca, Sr, Ba) AlSiN 3 : Ce, (La, Y) 2 O 2 S: Eu are preferable, (Sr, Ca) AlSiN 3 : Eu and (La, Y) 2 O 2 S: Eu are particularly preferable.
Moreover, among the above examples, (Sr, Ba) 3 SiO 5 : Eu is preferable as the orange phosphor.

[2−1−2−2]緑色蛍光体
緑色の蛍光を発する基体蛍光体(以下適宜、「緑色蛍光体」という。)としては、以下
のものが挙げられる。緑色蛍光体の発光ピーク波長は、通常490nm以上、好ましくは510nm以上、より好ましくは515nm以上、また、通常560nm以下、好ましく
は540nm以下、より好ましくは535nm以下の波長範囲にあることが好適である。
[2-1-2-2] Green phosphor
Examples of the base phosphor that emits green fluorescence (hereinafter referred to as “green phosphor” as appropriate) include the following. The emission peak wavelength of the green phosphor is usually in the wavelength range of 490 nm or more, preferably 510 nm or more, more preferably 515 nm or more, and usually 560 nm or less, preferably 540 nm or less, more preferably 535 nm or less. .

このような緑色蛍光体として、例えば、破断面を有する破断粒子から構成され、緑色領域の発光を行なう(Mg,Ca,Sr,Ba)Si:Euで表わされるユウロピウム付活アルカリ土類シリコンオキシナイトライド系蛍光体、破断面を有する破断粒子から構成され、緑色領域の発光を行なう(Ba,Ca,Sr,Mg)SiO:Euで表わされるユウロピウム付活アルカリ土類シリケート系蛍光体等が挙げられる。 As such a green phosphor, for example, a europium-activated alkali represented by (Mg, Ca, Sr, Ba) Si 2 O 2 N 2 : Eu that is composed of fractured particles having a fracture surface and emits light in the green region. Europium-activated alkaline earth silicate composed of an earth silicon oxynitride phosphor, broken particles having a fracture surface, and emitting green light (Ba, Ca, Sr, Mg) 2 SiO 4 : Eu System phosphors and the like.

また、その他、緑色蛍光体としては、SrAl1425:Eu、(Ba,Sr,Ca)Al:Eu等のEu付活アルミン酸塩蛍光体、(Sr,Ba)AlSi:Eu、(Ba,Mg)SiO:Eu、(Ba,Sr,Ca,Mg)SiO:Eu、(Ba,Sr,Ca)(Mg,Zn)Si:Eu、(Ba,Ca,Sr,Mg)(Sc,Y,Lu,Gd)(Si,Ge)24:Eu等のEu付活珪酸塩蛍光体、YSiO:Ce,Tb等のCe,Tb付活珪酸塩蛍光体、Sr−Sr:Eu等のEu付活硼酸リン酸塩蛍光体、SrSi−2SrCl:Eu等のEu付活ハロ珪酸塩蛍光体、ZnSiO:Mn等のMn付活珪酸塩蛍光体、CeMgAl1119:Tb、YAl12:Tb等のTb付活アルミン酸塩蛍光体、Ca(SiO:Tb、LaGaSiO14:Tb等のTb付活珪酸塩蛍光体、(Sr,Ba,Ca)Ga:Eu,Tb,Sm等のEu,Tb,Sm付活チオガレート蛍光体、Y(Al,Ga)12:Ce、(Y,Ga,Tb,La,Sm,Pr,Lu)(Al,Ga)12:Ce等のCe付活アルミン酸塩蛍光体、CaScSi12:Ce、Ca(Sc,Mg,Na,Li)Si12:Ce等のCe付活珪酸塩蛍光体、CaSc:Ce等のCe付活酸化物蛍光体、SrSi:Eu、(Mg,Sr,Ba,Ca)Si:Eu、Eu付活βサイアロン等のEu付活酸窒化物蛍光体、BaMgAl1017:Eu,Mn等のEu,Mn付活アルミン酸塩蛍光体、SrAl:Eu等のEu付活アルミン酸塩蛍光体、(La,Gd,Y)S:Tb等のTb付活酸硫化物蛍光体、LaPO:Ce,Tb等のCe,Tb付活リン酸塩蛍光体、ZnS:Cu,Al、ZnS:Cu,Au,Al等の硫化物蛍光体、(Y,Ga,Lu,Sc,La)BO:Ce,Tb、NaGd:Ce,Tb、(Ba,Sr)(Ca,Mg,Zn)B:K,Ce,Tb等のCe,Tb付活硼酸塩蛍光体、CaMg(SiOCl:Eu,Mn等のEu,Mn付活ハロ珪酸塩蛍光体、(Sr,Ca,Ba)(Al,Ga,In):Eu等のEu付活チオアルミネート蛍光体やチオガレート蛍光体、(Ca,Sr)(Mg,Zn)(SiOCl:Eu,Mn等のEu,Mn付活ハロ珪酸塩蛍光体、MSi:Eu、MSi:Eu、MSi10:Eu(但し、Mはアルカリ土類金属元素を表わす。)等のEu付活酸窒化物蛍光体等を用いることも可能である。
また、緑色蛍光体としては、ピリジン−フタルイミド縮合誘導体、ベンゾオキサジノン系、キナゾリノン系、クマリン系、キノフタロン系、ナルタル酸イミド系等の蛍光色素、テルビウム錯体等の有機蛍光体を用いることも可能である。
Other green phosphors include Eu-activated aluminate phosphors such as Sr 4 Al 14 O 25 : Eu, (Ba, Sr, Ca) Al 2 O 4 : Eu, and (Sr, Ba) Al 2. Si 2 O 8 : Eu, (Ba, Mg) 2 SiO 4 : Eu, (Ba, Sr, Ca, Mg) 2 SiO 4 : Eu, (Ba, Sr, Ca) 2 (Mg, Zn) Si 2 O 7 : Eu, (Ba, Ca, Sr, Mg) 9 (Sc, Y, Lu, Gd) 2 (Si, Ge) 6 O 24 : Eu-activated silicate phosphor such as Eu, Y 2 SiO 5 : Ce, Ce, Tb-activated silicate phosphors such as Tb, Sr 2 P 2 O 7 —Sr 2 B 2 O 5 : Eu-activated borate phosphate phosphors such as Eu, Sr 2 Si 3 O 8 -2SrCl 2 : Eu-activated halo silicate phosphor such as Eu, Zn 2 SiO 4: M such as Mn Activated silicate phosphors, CeMgAl 11 O 19: Tb, Y 3 Al 5 O 12: Tb -activated aluminate phosphors such as Tb, Ca 2 Y 8 (SiO 4) 6 O 2: Tb, La 3 Ga 5 SiO 14 : Tb-activated silicate phosphor such as Tb, (Sr, Ba, Ca) Ga 2 S 4 : Eu, Tb, Sm-activated thiogallate phosphor such as Eu, Tb, Sm, Y 3 (Al, Ga) 5 O 12 : Ce, (Y, Ga, Tb, La, Sm, Pr, Lu) 3 (Al, Ga) 5 O 12 : Ce-activated aluminate phosphor such as Ce, Ca 3 Sc 2 Si 3 O 12 : Ce, Ca 3 (Sc, Mg, Na, Li) 2 Si 3 O 12 : Ce activated silicate phosphor such as Ce, Ce activated oxide phosphor such as CaSc 2 O 4 : Ce, SrSi 2 O 2 N 2 : Eu, (Mg, Sr, B a, Ca) Si 2 O 2 N 2 : Eu, Eu-activated oxynitride phosphors such as Eu-activated β sialon, BaMgAl 10 O 17 : Eu, Mn-activated aluminate phosphors such as Eu and Mn, Eu-activated aluminate phosphors such as SrAl 2 O 4 : Eu, Tb-activated oxysulfide phosphors such as (La, Gd, Y) 2 O 2 S: Tb, and Ce such as LaPO 4 : Ce, Tb , Tb-activated phosphate phosphors, sulfide phosphors such as ZnS: Cu, Al, ZnS: Cu, Au, Al, (Y, Ga, Lu, Sc, La) BO 3 : Ce, Tb, Na 2 Gd 2 B 2 O 7 : Ce, Tb, (Ba, Sr) 2 (Ca, Mg, Zn) B 2 O 6 : Ce, Tb activated borate phosphor such as K, Ce, Tb, Ca 8 Mg ( SiO 4 ) 4 Cl 2 : Eu, Mn activated halosilicate phosphor such as Eu, Mn, ( Sr, Ca, Ba) (Al, Ga, In) 2 S 4 : Eu-activated thioaluminate phosphor such as Eu, thiogallate phosphor, (Ca, Sr) 8 (Mg, Zn) (SiO 4 ) 4 Cl 2 : Eu, Mn activated halosilicate phosphor such as Eu, Mn, etc., MSi 2 O 2 N 2 : Eu, M 3 Si 6 O 9 N 4 : Eu, M 2 Si 7 O 10 N 4 : Eu , M represents an alkaline earth metal element. It is also possible to use Eu-activated oxynitride phosphors such as
In addition, as the green phosphor, it is also possible to use a pyridine-phthalimide condensed derivative, a benzoxazinone-based, a quinazolinone-based, a coumarin-based, a quinophthalone-based, a nartaric imide-based fluorescent dye, or an organic phosphor such as a terbium complex. is there.

[2−1−2−3]青色蛍光体
青色の蛍光を発する基体蛍光体(以下適宜、「青色蛍光体」という。)としては以下の
ものが挙げられる。青色蛍光体の発光ピーク波長は、通常420nm以上、好ましくは430nm以上、より好ましくは440nm以上、また、通常490nm以下、好ましくは470nm以下、より好ましくは460nm以下の波長範囲にあることが好適である。
[2-1-2-3] Blue phosphor
Examples of the base phosphor that emits blue fluorescence (hereinafter referred to as “blue phosphor” as appropriate) include the following. The emission peak wavelength of the blue phosphor is usually in the wavelength range of 420 nm or more, preferably 430 nm or more, more preferably 440 nm or more, and usually 490 nm or less, preferably 470 nm or less, more preferably 460 nm or less. .

このような青色蛍光体としては、規則的な結晶成長形状としてほぼ六角形状を有する成長粒子から構成され、青色領域の発光を行なうBaMgAl1017:Euで表わされるユウロピウム付活バリウムマグネシウムアルミネート系蛍光体、規則的な結晶成長形状
としてほぼ球形状を有する成長粒子から構成され、青色領域の発光を行なう(Ca,Sr,Ba)(POCl:Euで表わされるユウロピウム付活ハロリン酸カルシウム系蛍光体、規則的な結晶成長形状としてほぼ立方体形状を有する成長粒子から構成され、青色領域の発光を行なう(Ca,Sr,Ba)Cl:Euで表わされるユウロピウム付活アルカリ土類クロロボレート系蛍光体、破断面を有する破断粒子から構成され、青緑色領域の発光を行なう(Sr,Ca,Ba)Al:Eu又は(Sr,Ca,Ba)Al1425:Euで表わされるユウロピウム付活アルカリ土類アルミネート系蛍光体等が挙げられる。
As such a blue phosphor, a europium-activated barium magnesium aluminate system represented by BaMgAl 10 O 17 : Eu composed of growing particles having a substantially hexagonal shape as a regular crystal growth shape and emitting light in a blue region. Europium activated halo represented by (Ca, Sr, Ba) 5 (PO 4 ) 3 Cl: Eu, which is composed of phosphors and growing particles having a substantially spherical shape as a regular crystal growth shape, and emits light in a blue region. Calcium phosphate phosphor, composed of growing particles having a substantially cubic shape as a regular crystal growth shape, emits light in the blue region, and is activated by europium represented by (Ca, Sr, Ba) 2 B 5 O 9 Cl: Eu Consists of alkaline earth chloroborate phosphors, fractured particles with fractured surfaces, and light emission in the blue-green region (Sr, Ca, Ba) Al 2 O 4 : Eu or (Sr, Ca, Ba) 4 Al 14 O 25 : Europium activated alkaline earth aluminate-based phosphor represented by Eu.

また、その他、青色蛍光体としては、Sr:Sn等のSn付活リン酸塩蛍光体、(Sr,Ca,Ba)Al:Eu又は(Sr,Ca,Ba)Al1425:Eu、BaMgAl1017:Eu、BaAl13:Eu等のEu付活アルミン酸塩蛍光体、SrGa:Ce、CaGa:Ce等のCe付活チオガレート蛍光体、(Ba,Sr,Ca)MgAl1017:Eu、BaMgAl1017:Eu,Tb,Sm等のEu付活アルミン酸塩蛍光体、(Ba,Sr,Ca)MgAl1017:Eu,Mn等のEu,Mn付活アルミン酸塩蛍光体、(Sr,Ca,Ba,Mg)10(POCl:Eu、(Ba,Sr,Ca)(PO(Cl,F,Br,OH):Eu,Mn,Sb等のEu付活ハロリン酸塩蛍光体、BaAlSi:Eu、(Sr,Ba)MgSi:Eu等のEu付活珪酸塩蛍光体、Sr:Eu等のEu付活リン酸塩蛍光体、ZnS:Ag、ZnS:Ag,Al等の硫化物蛍光体、YSiO:Ce等のCe付活珪酸塩蛍光体、CaWO等のタングステン酸塩蛍光体、(Ba,Sr,Ca)BPO:Eu,Mn、(Sr,Ca)10(PO・nB:Eu、2SrO・0.84P・0.16B:Eu等のEu,Mn付活硼酸リン酸塩蛍光体、SrSi・2SrCl:Eu等のEu付活ハロ珪酸塩蛍光体等を用いることも可能である。 Other blue phosphors include Sn-activated phosphate phosphors such as Sr 2 P 2 O 7 : Sn, (Sr, Ca, Ba) Al 2 O 4 : Eu or (Sr, Ca, Ba). 4 Al 14 O 25 : Eu, BaMgAl 10 O 17 : Eu, BaAl 8 O 13 : Eu-activated aluminate phosphors such as Eu, SrGa 2 S 4 : Ce, CaGa 2 S 4 : Ce-activated such as Ce Thiogallate phosphor, (Ba, Sr, Ca) MgAl 10 O 17 : Eu, BaMgAl 10 O 17 : Eu-activated aluminate phosphor such as Eu, Tb, Sm, (Ba, Sr, Ca) MgAl 10 O 17 : Eu, Mn activated aluminate phosphor such as Eu, Mn, (Sr, Ca, Ba, Mg) 10 (PO 4 ) 6 Cl 2 : Eu, (Ba, Sr, Ca) 5 (PO 4 ) 3 (Cl, F, Br, OH): Eu-activated halophosphate phosphors such as Eu, Mn, Sb, BaAl 2 Si 2 O 8 : Eu, (Sr, Ba) 3 MgSi 2 O 8 : Eu-activated silicic acid such as Eu Salt phosphors, Eu-activated phosphate phosphors such as Sr 2 P 2 O 7 : Eu, sulfide phosphors such as ZnS: Ag, ZnS: Ag, Al, and Ce-activated such as Y 2 SiO 5 : Ce Silicate phosphor, tungstate phosphor such as CaWO 4 , (Ba, Sr, Ca) BPO 5 : Eu, Mn, (Sr, Ca) 10 (PO 4 ) 6 .nB 2 O 3 : Eu, 2SrO. 0.84P 2 O 5 .0.16B 2 O 3 : Eu, Mn-activated borate phosphate phosphor such as Eu, Eu-activated halosilicate phosphor such as Sr 2 Si 3 O 8 · 2SrCl 2 : Eu Etc. can also be used.

また、青色蛍光体としては、例えば、ナフタル酸イミド系、ベンゾオキサゾール系、スチリル系、クマリン系、ピラゾリン系、トリアゾール系化合物の蛍光色素、ツリウム錯体等の有機蛍光体等を用いることも可能である。 以上の例示の中でも、青色蛍光体としては、BaMgAl1017:Eu、(Ba,Ca,Mg)SiO:Eu、(Sr,Ca,Ba,Mg)10(POCl:Euが好ましく、BaMgAl1017:Euが特に好ましい。 Further, as the blue phosphor, for example, naphthalic acid imide-based, benzoxazole-based, styryl-based, coumarin-based, pyrazoline-based, triazole-based fluorescent dyes, organic phosphors such as thulium complexes, and the like can be used. . Among the above examples, as the blue phosphor, BaMgAl 10 O 17 : Eu, (Ba, Ca, Mg) 2 SiO 4 : Eu, (Sr, Ca, Ba, Mg) 10 (PO 4 ) 6 Cl 2 : Eu is preferred, and BaMgAl 10 O 17 : Eu is particularly preferred.

[2−1−2−4]黄色蛍光体
黄色の蛍光を発する基体蛍光体(以下適宜、「黄色蛍光体」という。)としては、以下
のものが挙げられる。黄色蛍光体の発光ピーク波長は、通常530nm以上、好ましくは540nm以上、より好ましくは550nm以上、また、通常620nm以下、好ましくは600nm以下、より好ましくは580nm以下の波長範囲にあることが好適である。
このような黄色蛍光体としては、各種の酸化物系、窒化物系、酸窒化物系、硫化物系、酸硫化物系等の蛍光体が挙げられる。
[2-1-2-4] Yellow Phosphor The base phosphor that emits yellow fluorescence (hereinafter, appropriately referred to as “yellow phosphor”) includes the following. The emission peak wavelength of the yellow phosphor is usually in the wavelength range of 530 nm or more, preferably 540 nm or more, more preferably 550 nm or more, and usually 620 nm or less, preferably 600 nm or less, more preferably 580 nm or less. .
Examples of such yellow phosphors include various oxide-based, nitride-based, oxynitride-based, sulfide-based, and oxysulfide-based phosphors.

特に、RE12:Ce(ここで、REは、Y、Tb、Gd、Lu、及びSmからなる群から選ばれる少なくとも1種類の元素を表わし、Mは、Al、Ga、及びScからなる群から選ばれる少なくとも1種類の元素を表わす。)やM 12:Ce(ここで、Mは2価の金属元素、Mは3価の金属元素、Mは4価の金属元素を表わす。)等で表わされるガーネット構造を有するガーネット系蛍光体、AE:Eu(ここで、AEは、Ba、Sr、Ca、Mg、及びZnからなる群から選ばれる少なくとも1種類の元素を表わし、Mは、Si、及び/又はGeを表わす。)等で表わされるオルソシリケート系蛍光体、これらの系の蛍光体の構成元素の酸素の一部を窒素で置換した酸窒化物系蛍光体、AEAlSiN:Ce(ここで、AEは、Ba、Sr、C
a、Mg及びZnからなる群から選ばれる少なくとも1種類の元素を表わす。)等のCaAlSiN構造を有する窒化物系蛍光体等のCeで付活した蛍光体が挙げられる。
In particular, RE 3 M 5 O 12 : Ce (where RE represents at least one element selected from the group consisting of Y, Tb, Gd, Lu, and Sm, and M represents Al, Ga, and Sc. And M a 3 M b 2 M c 3 O 12 : Ce (where M a is a divalent metal element and M b is a trivalent metal element) , M c represents a tetravalent metal element) garnet phosphor having a garnet structure represented by like, AE 2 M d O 4: . Eu ( where, AE is, Ba, Sr, Ca, Mg , and An orthosilicate phosphor represented by at least one element selected from the group consisting of Zn, M d represents Si and / or Ge, and the like. Acid in which a part of Compound phosphor, AEAlSiN 3: Ce (here, AE is, Ba, Sr, C
a, at least one element selected from the group consisting of Mg and Zn. And phosphors activated with Ce such as nitride-based phosphors having a CaAlSiN 3 structure.

また、その他、黄色蛍光体としては、CaGa:Eu、(Ca,Sr)Ga:Eu、(Ca,Sr)(Ga,Al):Eu等の硫化物系蛍光体、Cax(Si,Al)12(O,N)16:Eu等のSiAlON構造を有する酸窒化物系蛍光体等のEuで付活した蛍光体を用いることも可能である。 また、黄色蛍光体としては、例えば、brilliant sulfoflavine FF (Colour Index Number 56205)、basic yellow HG (Colour Index Number 46040)、eosine (Colour Index Number 45380)、rhodamine 6G
(Colour Index Number 45160)等の蛍光染料等を用いることも可能である。
In addition, as yellow phosphors, sulfide-based fluorescence such as CaGa 2 S 4 : Eu, (Ca, Sr) Ga 2 S 4 : Eu, (Ca, Sr) (Ga, Al) 2 S 4 : Eu, etc. It is also possible to use a phosphor activated with Eu such as an oxynitride phosphor having a SiAlON structure such as a body, Cax (Si, Al) 12 (O, N) 16 : Eu. Examples of yellow phosphors include brilliant sulfoflavine FF (Colour Index Number 56205), basic yellow HG (Colour Index Number 46040), eosine (Colour Index Number 45380), and rhodamine 6G.
It is also possible to use fluorescent dyes such as (Colour Index Number 45160).

[2−1−3]基体蛍光体の物性
本発明の蛍光体に使用する基体蛍光体の粒径には特に制限はないが、中央粒径(D50)で通常0.1μm以上、好ましくは2μm以上、さらに好ましくは10μm以上である。また、通常100μm以下、好ましくは50μm以下、さらに好ましくは25μm以下である。D50が小さすぎると、輝度が低下し、基体蛍光体粒子が凝集してしまう虞がある。一方、D50が大きすぎると、塗布ムラやディスペンサー等の閉塞が生じる虞がある。
[2-1-3] Physical Properties of Substrate Phosphor The particle size of the substrate phosphor used in the phosphor of the present invention is not particularly limited, but the median particle size (D 50 ) is usually 0.1 μm or more, preferably It is 2 μm or more, more preferably 10 μm or more. Moreover, it is 100 micrometers or less normally, Preferably it is 50 micrometers or less, More preferably, it is 25 micrometers or less. If D 50 is too small, and the luminance decreases, there is a possibility that the base phosphor particles tend to aggregate. On the other hand, when D 50 is too large, there is a possibility that clogging of such coating unevenness or dispenser may occur.

基体蛍光体粒子の粒度分布(QD)は、蛍光体含有組成物中での粒子の分散状態をそろえるために小さい方が好ましいが、小さくするためには分級収率が下がってコストアップにつながるので、通常0.03以上、好ましくは0.05以上、更に好ましくは0.07以上である。また、通常0.4以下、好ましくは0.3以下、更に好ましくは0.2以下である。また、基体蛍光体粒子の形状は、特に限定されない。   The particle size distribution (QD) of the base phosphor particles is preferably small in order to align the dispersed state of the particles in the phosphor-containing composition. However, in order to reduce the particle size, the classification yield decreases, leading to an increase in cost. Usually, it is 0.03 or more, preferably 0.05 or more, more preferably 0.07 or more. Moreover, it is 0.4 or less normally, Preferably it is 0.3 or less, More preferably, it is 0.2 or less. Further, the shape of the base phosphor particles is not particularly limited.

なお、本発明において、中央粒径(D50)、粒度分布(QD)は、重量基準粒度分布曲線から得ることが出来る。前記重量基準粒度分布曲線は、レーザ回折・散乱法により粒度分布を測定し得られるもので、具体的には、例えば以下のように測定することが出来る。
気温25℃、湿度70%の環境下において、エチレングリコールなどの溶媒に蛍光体を分散させる。
レーザ回折式粒度分布測定装置(堀場製作所 LA−300)により、粒径範囲0.1μm〜600μmにて測定する。
この重量基準粒度分布曲線において積算値が50%のときの粒径値を中央粒径D50と表記する。また、積算値が25%及び75%の時の粒径値をそれぞれD25、D75と表記し、QD=(D75−D25)/(D75+D25)と定義する。QDが小さいことは粒度分布が狭いことを意味する。
In the present invention, the median particle size (D 50 ) and particle size distribution (QD) can be obtained from a weight-based particle size distribution curve. The weight-based particle size distribution curve is obtained by measuring the particle size distribution by a laser diffraction / scattering method, and specifically, for example, can be measured as follows.
A phosphor is dispersed in a solvent such as ethylene glycol under an environment of an air temperature of 25 ° C. and a humidity of 70%.
Measurement is performed with a laser diffraction particle size distribution measuring apparatus (Horiba, Ltd. LA-300) in a particle size range of 0.1 μm to 600 μm.
Integrated value in the weight particle size distribution curve is denoted a particle size value when the 50% and median particle diameter D 50. Further, the particle size values when the integrated values are 25% and 75% are expressed as D 25 and D 75 , respectively, and defined as QD = (D 75 −D 25 ) / (D 75 + D 25 ). A small QD means a narrow particle size distribution.

[2−2]金属酸化物皮膜
[2−2−1]組成
第一および第二の本発明の蛍光体は、金属アルコキシドおよび/またはその誘導体を加水分解、脱水重合させて得られた金属酸化物で被覆されていることを特徴とする。金属アルコキシドおよびその誘導体については、前述の[1−1]におけると同様である。
[2−2−2]皮膜の連続性
第一の本発明の蛍光体の好ましい形態および第二の本発明の蛍光体は、透過型電子顕微鏡により実質的に金属酸化物皮膜の連続性が観察されることが特徴である。
ここで、「実質的に連続性が観察される」とは、皮膜がほぼ完全に基体蛍光体を被覆している状態が観察されることを意味する。具体的には、以下の透過型電子顕微鏡による皮膜性状観察法により、皮膜が、切れ目がないかほとんど切れ目のない状態で基体蛍光体の周囲に観察されることにより確認することができる。
[2-2] Metal Oxide Film [2-2-1] Composition The phosphors of the first and second inventions are metal oxides obtained by hydrolyzing and dehydrating a metal alkoxide and / or a derivative thereof. It is covered with an object. The metal alkoxide and its derivative are the same as in [1-1] above.
[2-2-2] Continuity of film The preferred form of the phosphor of the first invention and the phosphor of the second invention are substantially observed by a transmission electron microscope. It is a feature that it is done.
Here, “substantially continuity is observed” means that a state in which the coating almost completely covers the base phosphor is observed. Specifically, it can be confirmed that the film is observed around the base phosphor with no or almost no cut by the following film property observation method using a transmission electron microscope.

〔透過型電子顕微鏡による皮膜性状観察法〕
蛍光体をエタノール中に分散させ、マイクログリッド(透過型電子顕微鏡(TEM)用穴あきカーボン膜を張ったメッシュ)上に滴下し、自然乾燥する。TEMによりマイクログリッド上の蛍光体の表面状態を観察する。使用するTEMは特に制限はないが、蛍光体を電子が透過せず、生成した皮膜が観測できる加速電圧にて観察する。
[Observation of film properties by transmission electron microscope]
The phosphor is dispersed in ethanol, dropped onto a microgrid (mesh with a perforated carbon film for a transmission electron microscope (TEM)), and dried naturally. The surface state of the phosphor on the microgrid is observed by TEM. The TEM to be used is not particularly limited, but the observation is performed at an accelerating voltage at which electrons cannot pass through the phosphor and the formed film can be observed.

[2−2−3]膜厚
第一の本発明の蛍光体の好ましい形態および第二の本発明の蛍光体は、金属酸化物皮膜の膜厚が通常1nm以上、好ましくは100nm以上、さらに好ましくは200nm以上であり、通常10000nm以下、好ましくは5000nm以下、さらに好ましくは2000nm以下である。また、前記金属酸化物皮膜の平均膜厚は、通常10nm以上、好ましくは50nm以上、さらに好ましくは100nm以上であり、通常2000nm以下、好ましくは1500nm以下、さらに好ましくは1000nm以下である。膜厚が厚すぎると励起光の反射・吸収などが起きる可能性があり、薄すぎると皮膜の連続性が損なわれ、耐湿性が不十分となるおそれがある。
[2-2-3] Film thickness In the preferred form of the phosphor of the first invention and the phosphor of the second invention, the film thickness of the metal oxide film is usually 1 nm or more, preferably 100 nm or more, more preferably. Is 200 nm or more, usually 10,000 nm or less, preferably 5000 nm or less, and more preferably 2000 nm or less. The average film thickness of the metal oxide film is usually 10 nm or more, preferably 50 nm or more, more preferably 100 nm or more, and usually 2000 nm or less, preferably 1500 nm or less, and more preferably 1000 nm or less. If the film thickness is too thick, reflection / absorption of excitation light may occur. If it is too thin, the continuity of the film may be impaired, and the moisture resistance may be insufficient.

また、平均膜厚と局所的な膜厚が大きく異なる場合、即ち蛍光体皮膜の膜厚ムラが大きい場合は、膜厚の大きな部分に歪がかかってその部分が剥落するおそれがあるので、膜厚のバラツキが小さく、各所の膜厚と平均膜厚に大きな乖離がないことが好ましい。
金属酸化物皮膜の膜厚は、前述の透過型電子顕微鏡による皮膜性状観察法により観察される膜厚を測定することにより得られる。平均膜厚は、前述の透過型電子顕微鏡写真の画像解析等により、皮膜部分の平均値により得られる。
In addition, when the average film thickness and the local film thickness are significantly different, that is, when the film thickness unevenness of the phosphor film is large, the large film thickness may be distorted and the film may peel off. It is preferable that the variation in thickness is small and that there is no great difference between the film thickness at each place and the average film thickness.
The film thickness of the metal oxide film can be obtained by measuring the film thickness observed by the film property observation method using the transmission electron microscope described above. The average film thickness can be obtained from the average value of the film portion by image analysis of the transmission electron micrograph described above.

[2−2−4]吸湿増加率
第一の本発明の蛍光体の好ましい形態および第二の本発明の蛍光体は、下記(i)〜(iii)による吸湿量測定試験により測定される金属酸化物皮膜の吸湿増加率が5重量%以下であることが特徴である。
[吸湿量測定試験]
(i)橙色蛍光体SrBaSiO:Eu(以下SBSと略称する。D50=20±3μm)に前記皮膜を形成する。
(ii)温度60℃、相対湿度90%の雰囲気下で100時間放置する。
(iii)吸湿増加率(重量%)=(吸湿試験後重量−吸湿試験前重量)/(吸湿試験前重量)×100を測定する。
吸湿増加率は、好ましくは5重量%以下であり、さらに好ましくは3重量%以下である。また、通常1重量%以上である。吸湿増加率が多すぎると、基体蛍光体への吸湿抑制効果が弱く、長期的な耐候性を得ることができない。
[2-2-4] Moisture absorption increase rate The preferred embodiment of the phosphor of the first invention and the phosphor of the second invention are metals measured by a moisture absorption measurement test according to the following (i) to (iii): It is characterized in that the moisture absorption increase rate of the oxide film is 5% by weight or less.
[Moisture absorption measurement test]
(I) The film is formed on the orange phosphor Sr 2 BaSiO 5 : Eu (hereinafter abbreviated as SBS, D50 = 20 ± 3 μm).
(Ii) Leave in an atmosphere at a temperature of 60 ° C. and a relative humidity of 90% for 100 hours.
(Iii) Moisture absorption increase rate (% by weight) = (weight after moisture absorption test−weight before moisture absorption test) / (weight before moisture absorption test) × 100.
The moisture absorption increase rate is preferably 5% by weight or less, and more preferably 3% by weight or less. Moreover, it is 1 weight% or more normally. If the moisture absorption rate is too high, the effect of suppressing moisture absorption on the base phosphor is weak and long-term weather resistance cannot be obtained.

[2−2−5]金属酸化物の被覆量
本発明の蛍光体の金属酸化物の被覆量は、基体蛍光体の物性により異なるが、基体蛍光体に対して、通常1重量%以上、好ましくは5重量%以上、さらに好ましくは10重量%以上であり、通常50重量%以下、好ましくは40重量%以下、さらに好ましくは30重量%以下である。被覆量が少なすぎると皮膜の連続性が損なわれ、耐湿性が不十分となる場合がある。被覆量が多すぎると励起光の反射・吸収などが起きる場合がある。
[2-2-5] Coating amount of metal oxide The coating amount of the metal oxide of the phosphor of the present invention varies depending on the physical properties of the substrate phosphor, but is usually 1% by weight or more based on the substrate phosphor, preferably Is 5% by weight or more, more preferably 10% by weight or more, and usually 50% by weight or less, preferably 40% by weight or less, more preferably 30% by weight or less. If the coating amount is too small, the continuity of the film may be impaired and the moisture resistance may be insufficient. If the coating amount is too large, excitation light may be reflected or absorbed.

[2−2−6]分散性
また、本発明の蛍光体は、優れた分散性を有する。蛍光体の分散性は、後述する蛍光体含有組成物を構成する液状媒体中に充分分散させた後、静置し、透明な上澄み層の生成速度を測定することにより確認することができる。
後述する本発明の蛍光体含有組成物で半導体発光素子などを多数封止する場合に、封止
工程初期の製品と末期の製品で品質の変化を起こさないため、本発明の蛍光体は本試験の結果、沈降速度が遅いほど好ましい。6時間静置後に液面に無色透明な上澄み層が見られないことが好ましく、10時間静置後にも無色透明な上澄み層が見られないことがさらに好ましい。
[2-2-6] Dispersibility The phosphor of the present invention has excellent dispersibility. The dispersibility of the phosphor can be confirmed by sufficiently dispersing it in a liquid medium constituting the phosphor-containing composition described later, and then allowing it to stand and measuring the production rate of a transparent supernatant layer.
When encapsulating a large number of semiconductor light emitting devices with the phosphor-containing composition of the present invention described later, the phosphor of the present invention is not subjected to this test because it does not cause a change in quality between the product in the initial stage of the sealing process and the product in the final stage. As a result, the slower the sedimentation rate, the better. It is preferable that a colorless and transparent supernatant layer is not seen on the liquid surface after standing for 6 hours, and it is further more preferable that a colorless and transparent supernatant layer is not seen even after standing for 10 hours.

但し、液状媒体の粘度が高く測定に時間を要する場合は類似の骨格を持つ他の液状媒体でこの試験を代替することができる。例えば、液状媒体としてシリコーン樹脂を用いる場合は、その代替としてシリコーンオイルを用いて分散性を評価することもできる。本発明の蛍光体は、金属酸化物皮膜を形成しなかった基体蛍光体に比べて、封止樹脂よりなる蛍光体含有組成物中での沈降速度が小さくなるという特長を有することがある。その理由は必ずしも明らかではないが、比重の小さな金属酸化物皮膜で覆われることによって蛍光体粒子の平均比重が低下すること、表面皮膜の凹凸によって粘性液体中での沈降運動に対する抵抗が生ずること、などが推定される。
また、封止樹脂としてシリコーン系樹脂、金属酸化物皮膜としてシリカ皮膜を用いた場合は、シリコーンとシリカの濡れ性が良いため、シリカ皮膜蛍光体の分散性が向上するという効果も期待される。
However, when the viscosity of the liquid medium is high and measurement takes time, this test can be replaced with another liquid medium having a similar skeleton. For example, when a silicone resin is used as the liquid medium, the dispersibility can be evaluated using a silicone oil as an alternative. The phosphor of the present invention may have a feature that the sedimentation rate in the phosphor-containing composition made of the sealing resin is lower than that of the base phosphor on which the metal oxide film is not formed. The reason for this is not necessarily clear, but the average specific gravity of the phosphor particles is reduced by being covered with a metal oxide film having a small specific gravity, and the resistance to sedimentation motion in a viscous liquid is caused by the unevenness of the surface film, Etc. are estimated.
In addition, when a silicone resin is used as the sealing resin and a silica film is used as the metal oxide film, the wettability between silicone and silica is good, so that the effect of improving the dispersibility of the silica-coated phosphor is also expected.

[3]蛍光体含有組成物
本発明の蛍光体含有組成物は前記の本発明の蛍光体を含有することを必須要件とする。
本発明の蛍光体含有組成物は、例えば以下に記載される様に、液状媒体、およびその他の任意成分を含有して構成される。
[3] Phosphor-containing composition It is essential that the phosphor-containing composition of the present invention contains the phosphor of the present invention.
The phosphor-containing composition of the present invention is configured to contain a liquid medium and other optional components as described below, for example.

[3−1]液状媒体
使用される液状媒体としては有機系材料と無機系材料が使用できる。
有機系材料としては、熱可塑性樹脂、熱硬化性樹脂、光硬化性樹脂等が挙げられる。具体的には、例えば、ポリメタアクリル酸メチル等のメタアクリル樹脂;ポリスチレン、スチレン−アクリロニトリル共重合体等のスチレン樹脂;ポリカーボネート樹脂;ポリエステル樹脂;フェノキシ樹脂;ブチラール樹脂;ポリビニルアルコール;エチルセルロース、セルロースアセテート、セルロースアセテートブチレート等のセルロース系樹脂;エポキシ樹脂;フェノール樹脂;シリコーン樹脂等が挙げられる。特に照明など大出力の発光装置が必要な場合、耐熱性や耐光性等を目的として珪素含有化合物を使用するのが好ましい。
珪素含有化合物とは分子中に珪素原子を有する化合物をいい、ポリオルガノシロキサン等の有機材料(シリコーン系材料)、酸化ケイ素、窒化ケイ素、酸窒化ケイ素等の無機材料、及びホウケイ酸塩、ホスホケイ酸塩、アルカリケイ酸塩等のガラス材料を挙げることができる。中でも、ハンドリングの容易さ等の点から、シリコーン系材料が好ましい。
[3-1] Liquid medium As the liquid medium to be used, an organic material and an inorganic material can be used.
Examples of organic materials include thermoplastic resins, thermosetting resins, and photocurable resins. Specifically, for example, methacrylic resin such as polymethylmethacrylate; styrene resin such as polystyrene and styrene-acrylonitrile copolymer; polycarbonate resin; polyester resin; phenoxy resin; butyral resin; polyvinyl alcohol; Cellulose resins such as cellulose acetate butyrate; epoxy resins; phenol resins; silicone resins. In particular, when a high-power light-emitting device such as illumination is required, it is preferable to use a silicon-containing compound for the purpose of heat resistance and light resistance.
A silicon-containing compound is a compound having a silicon atom in the molecule, organic materials such as polyorganosiloxane (silicone-based materials), inorganic materials such as silicon oxide, silicon nitride, and silicon oxynitride, and borosilicates and phosphosilicates. Examples thereof include glass materials such as salts and alkali silicates. Among these, silicone materials are preferable from the viewpoint of ease of handling.

[3−1−1]シリコーン系材料
シリコーン系材料とは、通常、シロキサン結合を主鎖とする有機重合体をいい、例えば一般組成式(1)で表される化合物及び/またはそれらの混合物が挙げられる。
(RSiO1/2M(RSiO2/2D(RSiO3/2T(SiO4/2Q
・・・式(1)
ここで、RからRは同じであっても異なってもよく、有機官能基、水酸基、水素原子からなる群から選択される。またM、D、T及びQは0から1未満であり、M+D+T+Q=1を
満足する数である。
シリコーン系材料を半導体発光素子の封止に用いる場合、液状のシリコーン系材料を用いて封止した後、熱や光によって硬化させて用いることができる。
[3-1-1] Silicone-based material The silicone-based material usually refers to an organic polymer having a siloxane bond as a main chain. For example, a compound represented by the general composition formula (1) and / or a mixture thereof is used. Can be mentioned.
(R 1 R 2 R 3 SiO 1/2 ) M (R 4 R 5 SiO 2/2 ) D (R 6 SiO 3/2 ) T (SiO 4/2 ) Q
... Formula (1)
Here, R 1 to R 6 may be the same or different and are selected from the group consisting of an organic functional group, a hydroxyl group, and a hydrogen atom. M, D, T, and Q are 0 to less than 1 and satisfy M + D + T + Q = 1.
When a silicone material is used for sealing a semiconductor light emitting element, it can be used after being sealed with a liquid silicone material and then cured by heat or light.

[3−1−2]シリコーン系材料の種類
シリコーン系材料を硬化のメカニズムにより分類すると、通常付加重合硬化タイプ、縮重合硬化タイプ、紫外線硬化タイプ、パーオキサイド架硫タイプなどのシリコーン系材料を挙げることができる。これらの中では、付加重合硬化タイプ(付加型シリコーン樹脂)、縮合硬化タイプ(縮合型シリコーン樹脂)、紫外線硬化タイプが好適である。以下、付加型シリコーン系材料、及び縮合型シリコーン系材料について説明する。
[3-1-2] Types of silicone-based materials Silicone-based materials such as addition polymerization curing type, condensation polymerization curing type, ultraviolet curing type, peroxide vulcanization type and the like are usually classified when silicone materials are classified according to the curing mechanism. be able to. Among these, addition polymerization curing type (addition type silicone resin), condensation curing type (condensation type silicone resin), and ultraviolet curing type are preferable. Hereinafter, the addition type silicone material and the condensation type silicone material will be described.

[3−1−2−1]付加型シリコーン系材料
付加型シリコーン系材料とは、ポリオルガノシロキサン鎖が、有機付加結合により架橋されたものをいう。代表的なものとしては、例えばビニルシランとヒドロシランをPt触媒などの付加型触媒の存在下反応させて得られるSi−C−C−Si結合を架橋点に有する化合物等を挙げることができる。これらは市販のものを使用することができ、例えば付加重合硬化タイプの具体的商品名としては信越化学工業社製「LPS−1400」「LPS−2410」「LPS−3400」等が挙げられる。
[3-1-2-1] Addition type silicone material The addition type silicone material refers to a polyorganosiloxane chain crosslinked by an organic addition bond. A typical example is a compound having a Si—C—C—Si bond at a crosslinking point obtained by reacting vinylsilane and hydrosilane in the presence of an addition catalyst such as a Pt catalyst. As these, commercially available products can be used. Specific examples of addition polymerization curing type trade names include “LPS-1400”, “LPS-2410”, and “LPS-3400” manufactured by Shin-Etsu Chemical Co., Ltd.

[3−1−2−2]縮合型シリコーン系材料
縮合型シリコーン系材料とは、例えば、アルキルアルコキシシランの加水分解・重縮合で得られるSi−O−Si結合を架橋点に有する化合物を挙げることができる。
具体的には、下記一般式(1)及び/又は(2)で表わされる化合物、及び/又はそのオリゴマーを加水分解・重縮合して得られる重縮合物が挙げられる。
[3-1-2-2] Condensation type silicone material Examples of the condensation type silicone material include a compound having a Si—O—Si bond obtained by hydrolysis and polycondensation of an alkylalkoxysilane at a crosslinking point. be able to.
Specific examples include polycondensates obtained by hydrolysis and polycondensation of compounds represented by the following general formula (1) and / or (2) and / or oligomers thereof.

Figure 2008111080
Figure 2008111080

(式(1)中、Mは、ケイ素、アルミニウム、ジルコニウム、及びチタンより選択される少なくとも1種の元素を表わし、Xは、加水分解性基を表わし、Y1は、1価の有機基を
表わし、mは、Mの価数を表わす1以上の整数を表わし、nは、X基の数を表わす1以上の整数を表わす。但し、m≧nである。)
(In the formula (1), M represents at least one element selected from silicon, aluminum, zirconium, and titanium, X represents a hydrolyzable group, and Y 1 represents a monovalent organic group. M represents one or more integers representing the valence of M, and n represents one or more integers representing the number of X groups, provided that m ≧ n.

Figure 2008111080
Figure 2008111080

(式(2)中、
Mは、ケイ素、アルミニウム、ジルコニウム、及びチタンより選択される少なくとも1種の元素を表わし、Xは、加水分解性基を表わし、Y1は、1価の有機基を表わし、Y2は、u価の有機基を表わし、sは、Mの価数を表わす1以上の整数を表わし、tは、1以上、s−1以下の整数を表わし、uは、2以上の整数を表わす。)
また、硬化触媒としては、例えば金属キレート化合物などを好適なものとして用いることができる。金属キレート化合物は、Ti、Ta、Zrのいずれか1以上を含むものが好ましく、Zrを含むものがさらに好ましい。
このような縮合型シリコーン系材料としては、例えば特願2006−47274号〜47277号明細書及び特願2006−176468号明細書に記載の半導体発光デバイス用部材が好適である。
また、使用される液状媒体における無機系材料としては、例えば、金属アルコキシド、
セラミック前駆体ポリマー若しくは金属アルコキシドを含有する溶液をゾル−ゲル法により加水分解重合して成る溶液、またはこれらの組み合わせを固化した無機系材料(例えばシロキサン結合を有する無機系材料)等を挙げることができる。
(In the formula (2),
M represents at least one element selected from silicon, aluminum, zirconium, and titanium, X represents a hydrolyzable group, Y 1 represents a monovalent organic group, and Y 2 represents u. Represents an organic group having a valence, s represents an integer of 1 or more representing the valence of M, t represents an integer of 1 or more and s−1 or less, and u represents an integer of 2 or more. )
Moreover, as a curing catalyst, a metal chelate compound etc. can be used suitably, for example. The metal chelate compound preferably contains one or more of Ti, Ta, and Zr, and more preferably contains Zr.
As such a condensation type silicone material, for example, semiconductor light emitting device members described in Japanese Patent Application Nos. 2006-47274 to 47277 and Japanese Patent Application No. 2006-176468 are suitable.
Examples of the inorganic material in the liquid medium used include metal alkoxides,
Examples include a solution obtained by hydrolytic polymerization of a solution containing a ceramic precursor polymer or metal alkoxide by a sol-gel method, or an inorganic material obtained by solidifying a combination thereof (for example, an inorganic material having a siloxane bond). it can.

[3−2]その他の成分
本発明の蛍光体含有組成物は、上記成分の他に、硬化剤、硬化促進剤、硬化触媒、重合抑制剤、色素、酸化防止剤、安定化剤(燐系加工安定化剤などの加工安定化剤、酸化安定化剤、熱安定化剤、紫外線吸収剤などの耐光性安定化剤など)、シランカップリング剤、光拡散材、本発明に依らない蛍光体、フィラーなど、当該分野で公知の添加物のいずれをも用いることができる。
[3-2] Other components In addition to the above components, the phosphor-containing composition of the present invention comprises a curing agent, a curing accelerator, a curing catalyst, a polymerization inhibitor, a dye, an antioxidant, a stabilizer (phosphorus-based). Processing stabilizers such as processing stabilizers, oxidation stabilizers, heat stabilizers, light-resistant stabilizers such as UV absorbers, etc.), silane coupling agents, light diffusing materials, phosphors not dependent on the present invention Any of the additives known in the art such as fillers can be used.

[3−3]蛍光体含有組成物の製造方法
本発明の蛍光体含有組成物の製造法には特に制限はなく、本発明の蛍光体および必要に応じて添加する添加物が液状媒体中に均一に分散する方法であれば良い。
液状樹脂中に均一に分散する方法としては、従来公知の方法およびその改良された方法が挙げられる。具体的には、例えば以下の方法が挙げられる。即ち、液状樹脂、蛍光体ならびにシリカ微粒子等のフィラー、架橋剤、硬化触媒およびその他の添加剤を配合し、ミキサー、高速ディスパー、ホモジナイザー、3本ロール、ニーダー等で混合することができる。この場合、前記成分を全て混合して、1液の形態として液状樹脂組成物を製造することができる。また、(i)液状樹脂と蛍光体を主成分とする樹脂組成物と、(ii)架橋剤と硬化触媒を主成分とする架橋剤液の2液を調製しておき、使用直前に樹脂組成物と架橋剤液を混合して最終的な液状樹脂組成物を製造しても良い。
[3-3] Method for Producing Phosphor-Containing Composition The method for producing the phosphor-containing composition of the present invention is not particularly limited, and the phosphor of the present invention and additives to be added as necessary are contained in the liquid medium. Any method that uniformly disperses may be used.
Examples of a method for uniformly dispersing in a liquid resin include a conventionally known method and an improved method thereof. Specifically, the following method is mentioned, for example. That is, a liquid resin, a phosphor, a filler such as silica fine particles, a crosslinking agent, a curing catalyst, and other additives can be blended and mixed by a mixer, a high-speed disper, a homogenizer, a three-roll, a kneader or the like. In this case, a liquid resin composition can be produced in the form of one liquid by mixing all the components. In addition, two liquids of (i) a liquid composition mainly composed of a liquid resin and a phosphor and (ii) a crosslinking agent liquid mainly composed of a crosslinking agent and a curing catalyst are prepared, and the resin composition is prepared immediately before use. The final liquid resin composition may be produced by mixing the product and the crosslinking agent solution.

本発明の蛍光体の配合量は通常、液状樹脂100重量部に対して通常0.01重量部以上、好ましくは0.1重量部以上、さらに好ましくは1重量部以上である。また、通常100重量部以下、好ましくは80重量部以下、さらに好ましくは60重量部以下である。蛍光体の配合量が少なすぎると、望みの色の発光量が不十分であり、多すぎるとコストがかかり経済面で不利である。   The amount of the phosphor of the present invention is usually 0.01 parts by weight or more, preferably 0.1 parts by weight or more, and more preferably 1 part by weight or more with respect to 100 parts by weight of the liquid resin. Moreover, it is 100 parts weight or less normally, Preferably it is 80 parts weight or less, More preferably, it is 60 parts weight or less. If the blending amount of the phosphor is too small, the light emission amount of the desired color is insufficient, and if it is too large, the cost is increased and this is disadvantageous in terms of economy.

[3−4]蛍光体含有組成物の物性
[3−4−1]粘度
本発明の蛍光体含有組成物の粘度は、通常500mPa・s以上、好ましくは1000mPa・s以上、さらに好ましくは2000mPa・s以上であり、通常15000mPa・s以下、10000mPa・s以下、好ましくは8000mPa・s以下である。粘度が高すぎると注入時に配管の閉塞などトラブルの原因となりやすく、また気泡が抜けにくい、更には半導体素子のリードワイヤーの断線が起こりやすいなどの悪影響をもたらす。一方、粘度が低すぎると蛍光体粒子の沈降が起こるので好ましくない。
[3-4] Physical Properties of Phosphor-Containing Composition [3-4-1] Viscosity The viscosity of the phosphor-containing composition of the present invention is usually 500 mPa · s or more, preferably 1000 mPa · s or more, more preferably 2000 mPa · s. s or more, usually 15000 mPa · s or less, 10000 mPa · s or less, preferably 8000 mPa · s or less. If the viscosity is too high, it may cause trouble such as blockage of pipes at the time of injection, and bubbles may be difficult to escape, and further, lead wires of semiconductor elements are likely to be disconnected. On the other hand, if the viscosity is too low, the phosphor particles settle, which is not preferable.

[3−4−2]硬化
本発明の蛍光体含有組成物が上述のように液状の場合、半導体発光素子などを配置した基板上に液状組成物を注入・充填・滴下・塗布などを行なうことによって発光素子を液状組成物で覆った後、加熱・光照射・加湿などによって組成物を硬化させることによって、発光素子を固相の蛍光体含有封止層で封止した構造とすることができる。
また、液状の蛍光体含有組成物を先にフィルム状・シート状に硬化・成型した後、発光素子などを覆うように配置することによって発光素子を封止した構造とすることもできる。
蛍光体含有組成物の硬化物を、半田リフロー試験で例えば260℃の高熱に曝したり、温度サイクル試験で例えば100℃の高温と−50℃の低温を往復させたりした場合、蛍光体と封止樹脂との間に剥離が生じて蛍光体が発する蛍光の取り出し効率が損なわれるおそれがあるが、本発明で封止樹脂としてシリコーン樹脂を用い、蛍光体表面皮膜をシリカ
皮膜とした場合には、シリコーン樹脂とシリカ皮膜のなじみが良いため、表面皮膜を持たない蛍光体を用いた場合に比べて界面剥離の発生が抑制され、半田リフロー耐性や温度サイクル耐性に優れた蛍光体含有封止層となることが期待される。
[3-4-2] Curing When the phosphor-containing composition of the present invention is in a liquid state as described above, the liquid composition is injected, filled, dropped, applied, etc. on a substrate on which a semiconductor light emitting element or the like is disposed. After the light emitting device is covered with a liquid composition by heating, the composition is cured by heating, light irradiation, humidification, etc., so that the light emitting device can be sealed with a solid-state phosphor-containing sealing layer. .
In addition, after the liquid phosphor-containing composition is first cured and molded into a film or sheet, the light emitting element can be sealed by placing the composition so as to cover the light emitting element.
When the cured product of the phosphor-containing composition is exposed to a high heat of, for example, 260 ° C. in a solder reflow test, or when a high temperature of, for example, 100 ° C. and a low temperature of −50 ° C. are reciprocated in a temperature cycle test, There is a risk that the separation efficiency between the resin and the fluorescence emitted by the phosphor may be impaired, but when using a silicone resin as the sealing resin in the present invention and the phosphor surface film is a silica film, Because the silicone resin and the silica film are well-matched, the occurrence of interfacial delamination is suppressed compared to the case of using a phosphor without a surface film, and the phosphor-containing sealing layer has excellent solder reflow resistance and temperature cycle resistance. Is expected to be.

[4]発光装置
本発明の発光装置は、[3]に記載の蛍光体含有組成物を用いて、公知の方法により形成される。以下、本発明の発光装置について説明する。
[4−1]光源
本発明の発光装置における光源は、前記[2]の蛍光体を励起する光を発光するものである。光源の発光波長は、発光体の吸収波長と重複するものであれば、特に制限されず、幅広い発光波長領域の発光体を使用することができる。通常は、近紫外領域から青色領域までの発光波長を有する発光体が使用され、具体的数値としては、通常300nm以上、好ましくは330nm以上、また、通常500nm以下、好ましくは480nm以下のピーク発光波長を有する発光体が使用される。この光源としては、一般的には半導体発光素子が用いられ、具体的には発光ダイオード(LED)や半導体レーザーダイオード(LD)等が使用できる。
[4] Light-emitting device The light-emitting device of the present invention is formed by a known method using the phosphor-containing composition described in [3]. Hereinafter, the light emitting device of the present invention will be described.
[4-1] Light source The light source in the light emitting device of the present invention emits light that excites the phosphor of [2]. The light emission wavelength of the light source is not particularly limited as long as it overlaps with the absorption wavelength of the light emitter, and a light emitter in a wide light emission wavelength region can be used. Usually, an illuminant having an emission wavelength from the near ultraviolet region to the blue region is used, and the specific numerical value is usually 300 nm or more, preferably 330 nm or more, and usually 500 nm or less, preferably 480 nm or less. A light emitter having the following is used. As this light source, a semiconductor light emitting element is generally used, and specifically, a light emitting diode (LED), a semiconductor laser diode (LD), or the like can be used.

中でも、光源としては、GaN系化合物半導体を使用したGaN系LEDやLDが好ましい。なぜなら、GaN系LEDやLDは、この領域の光を発するSiC系LED等に比し、発光出力や外部量子効率が格段に大きく、前記蛍光体と組み合わせることによって、非常に低電力で非常に明るい発光が得られるからである。例えば、同じ電流負荷に対し、通常GaN系LEDやLDはSiC系の100倍以上の発光強度を有する。GaN系LEDやLDにおいては、AlxGayN発光層、GaN発光層、又はInxGayN発光層を有しているものが好ましい。GaN系LEDにおいては、それらの中でInxGayN発光層を有するものが発光強度が非常に強いので、特に好ましく、GaN系LDにおいては、InxGayN層とGaN層の多重量子井戸構造のものが発光強度が非常に強いので、特に好ましい。   Among these, as the light source, a GaN LED or LD using a GaN compound semiconductor is preferable. This is because GaN-based LEDs and LDs have significantly higher light emission output and external quantum efficiency than SiC-based LEDs that emit light in this region, and are extremely bright with very low power when combined with the phosphor. This is because light emission can be obtained. For example, for the same current load, a GaN-based LED or LD usually has a light emission intensity 100 times or more that of a SiC-based. A GaN-based LED or LD preferably has an Al x Gay N light emitting layer, a GaN light emitting layer, or an In x Gay N light emitting layer. Among GaN-based LEDs, those having an InxGayN light-emitting layer are particularly preferred because the emission intensity is very strong, and in GaN-based LDs, those having a multiple quantum well structure of an InxGayN layer and a GaN layer have an emission intensity. It is particularly preferred because it is very strong.

なお、上記においてx+yの値は通常0.8〜1.2の範囲の値である。GaN系LEDにおいて、これら発光層にZnやSiをドープしたものやドーパント無しのものが発光特性を調節する上で好ましいものである。
GaN系LEDはこれら発光層、p層、n層、電極、及び基板を基本構成要素としたものであり、発光層をn型とp型のAlxGayN層、GaN層、又はInxGayN層などでサンドイッチにしたヘテロ構造を有しているものが、発光効率が高く、好ましく、さらにヘテロ構造を量子井戸構造にしたものが、発光効率がさらに高く、より好ましい。
In the above, the value of x + y is usually in the range of 0.8 to 1.2. In the GaN-based LED, those in which the light emitting layer is doped with Zn or Si or those without a dopant are preferable for adjusting the light emission characteristics.
A GaN-based LED has these light emitting layer, p layer, n layer, electrode, and substrate as basic components, and the light emitting layer is sandwiched between n-type and p-type AlxGayN layers, GaN layers, or InxGayN layers. Those having the heterostructure are preferably high in luminous efficiency, and those having a heterostructure in the quantum well structure are further preferable because of higher luminous efficiency.

[4−2]蛍光体の選択
本発明の発光装置において、前述の蛍光体(本発明に依る赤色蛍光体、緑色蛍光体、青色蛍光体等、ならびに必要に応じて本発明に依らない蛍光体等)の使用の有無及びその種類は、発光装置の用途に応じて適宜選択すればよい。
本発明の発光装置を白色発光の発光装置として構成する場合には、所望の白色光が得られるように、1種以上の蛍光体を適切に組み合わせればよい。光源として青色発光素子を使用する場合は蛍光体として青色の補色関係にある黄色蛍光体を、より演色性の高い白色を得るには赤、及び緑色蛍光体を使用することが好ましい。近紫外光を発する半導体発光素子を用いる場合は赤、緑、青の3色の蛍光体を使用するのが好ましい。
[4-2] Selection of phosphor In the light emitting device of the present invention, the phosphors described above (the red phosphor, the green phosphor, the blue phosphor, etc. according to the present invention, and the phosphor not depending on the present invention if necessary) Etc.) may be appropriately selected depending on the use of the light emitting device.
When the light emitting device of the present invention is configured as a white light emitting device, one or more phosphors may be appropriately combined so that desired white light is obtained. When a blue light emitting element is used as a light source, it is preferable to use a yellow phosphor having a complementary color relationship of blue as a phosphor, and red and green phosphors to obtain white with higher color rendering properties. When using a semiconductor light emitting device that emits near-ultraviolet light, phosphors of three colors of red, green, and blue are preferably used.

具体的に、本発明の発光装置を白色発光の発光装置として構成する場合における、光源と、蛍光体との好ましい組み合わせの例としては、以下の(i)〜(iii)の組み合わせ
が挙げられる。
(i)光源として青色発光体(青色LED等)を使用し、蛍光体として赤色蛍光体および
緑色蛍光体を使用する。
(ii)光源として近紫外発光体(近紫外LED等)を使用し、蛍光体として赤色蛍光体、緑色蛍光体及び青色蛍光体を併用する。
(iii)光源として青色発光体(青色LED等)を使用し、橙色蛍光体および緑色蛍光体
を使用する。
Specifically, when the light-emitting device of the present invention is configured as a white light-emitting device, examples of preferable combinations of the light source and the phosphor include the following combinations (i) to (iii).
(I) A blue light emitter (blue LED or the like) is used as a light source, and a red phosphor and a green phosphor are used as phosphors.
(Ii) A near-ultraviolet light emitter (near-ultraviolet LED or the like) is used as a light source, and a red phosphor, a green phosphor and a blue phosphor are used in combination as phosphors.
(Iii) A blue light emitter (blue LED or the like) is used as a light source, and an orange phosphor and a green phosphor are used.

[4−3]発光装置の構成
本発明の発光装置は、上述の光源および本発明の蛍光体含有組成物を備えていればよく、そのほかの構成は特に制限されないが、通常は、適当なフレーム上に上述の光源および蛍光体含有組成物を配置してなる。蛍光体含有組成物が液状の場合には、光源を配置した基板に液状蛍光体組成物を注入・充填・滴下・塗布し、その後で加熱もしくは光照射などによって組成物を硬化させることにより、光源を硬化物で封止した構造とすることができる。蛍光体含有組成物が固相である場合には、フィルム状・シート状に成型して光源を覆うように配することによって、光源を封止した構造とすることができる。この際、光源の発光によって蛍光体が励起されて発光を生じ、且つ、この光源の発光および/または蛍光体の発光が、外部に取り出されるように配置されることになる。この場合、赤色蛍光体は、緑色蛍光体、青色蛍光体とは必ずしも同一の層中に混合されなくてもよく、例えば、赤色蛍光体を含有する層の上に青色蛍光体と緑色蛍光体を含有する層が積層されていてもよい。
[4-3] Configuration of Light-Emitting Device The light-emitting device of the present invention is only required to include the above-described light source and the phosphor-containing composition of the present invention, and other configurations are not particularly limited. The above-mentioned light source and phosphor-containing composition are arranged on the top. When the phosphor-containing composition is in a liquid state, the liquid phosphor composition is injected, filled, dripped, and applied to the substrate on which the light source is disposed, and then the composition is cured by heating or light irradiation, thereby producing a light source It can be set as the structure sealed with hardened | cured material. When the phosphor-containing composition is a solid phase, a structure in which the light source is sealed can be obtained by forming it into a film or a sheet and covering the light source. At this time, the phosphor is excited by the light emission of the light source to generate light emission, and the light emission of the light source and / or the light emission of the phosphor is arranged to be taken out to the outside. In this case, the red phosphor does not necessarily have to be mixed in the same layer as the green phosphor and the blue phosphor. For example, the blue phosphor and the green phosphor are placed on the layer containing the red phosphor. The layer to contain may be laminated | stacked.

[4−4]発光装置の実施形態
以下、本発明の発光装置について、具体的な実施の形態を挙げて、より詳細に説明するが、本発明は以下の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において任意に変形して実施することができる。
図1は、本発明の一実施形態に係る発光装置の構成を模式的に示す図である。本実施形態の発光装置1は、フレーム2と、光源である青色LED3と、青色LED3から発せられる光の一部を吸収し、それとは異なる波長を有する光を発する蛍光体含有部4からなる。
フレーム2は、青色LED3、蛍光体含有部4を保持するための金属製の基部である。フレーム2の上面には、図1中上側に開口した断面台形状の凹部(窪み)2Aが形成されている。これにより、フレーム2はカップ形状となっているため、発光装置1から放出される光に指向性をもたせることができ、放出する光を有効に利用できるようになっている。更に、フレーム2の凹部2A内面は、銀などの金属メッキにより、可視光域全般の光の反射率を高められており、これにより、フレーム2の凹部2A内面に当たった光も、発光装置1から所定方向に向けて放出できるようになっている。
[4-4] Embodiments of Light-Emitting Device Hereinafter, the light-emitting device of the present invention will be described in more detail with reference to specific embodiments. However, the present invention is not limited to the following embodiments. Any modifications can be made without departing from the scope of the present invention.
FIG. 1 is a diagram schematically showing a configuration of a light emitting device according to an embodiment of the present invention. The light emitting device 1 of the present embodiment includes a frame 2, a blue LED 3 that is a light source, and a phosphor-containing portion 4 that absorbs part of light emitted from the blue LED 3 and emits light having a wavelength different from that.
The frame 2 is a metal base for holding the blue LED 3 and the phosphor-containing portion 4. On the upper surface of the frame 2, a trapezoidal concave section (dent) 2A having an opening on the upper side in FIG. Thereby, since the frame 2 has a cup shape, the light emitted from the light emitting device 1 can have directivity, and the emitted light can be used effectively. Further, the inner surface of the concave portion 2A of the frame 2 is enhanced in the reflectance of light in the entire visible light region by metal plating such as silver, so that the light hitting the inner surface of the concave portion 2A of the frame 2 can also be emitted. Can be discharged in a predetermined direction.

フレーム2の凹部2Aの底部には、光源として青色LED3が設置されている。青色LED3は、電力を供給されることにより青色の光を発するLEDである。この青色LED3から発せられた青色光の一部は、蛍光体含有部4内の発光物質(蛍光体)に励起光として吸収され、また別の一部は、発光装置1から所定方向に向けて放出されるようになっている。   A blue LED 3 is installed as a light source at the bottom of the recess 2 </ b> A of the frame 2. The blue LED 3 is an LED that emits blue light when supplied with electric power. Part of the blue light emitted from the blue LED 3 is absorbed as excitation light by the luminescent material (phosphor) in the phosphor-containing portion 4, and another part is directed from the light emitting device 1 in a predetermined direction. To be released.

また、青色LED3は前記のようにフレーム2の凹部2Aの底部に設置されているが、ここではフレーム2と青色LED3との間は銀ペースト(接着剤に銀粒子を混合したもの)5によって接着され、これにより、青色LED3はフレーム2に設置されている。更に、この銀ペースト5は、青色LED3で発生した熱をフレーム2に効率よく放熱する役割も果たしている。   The blue LED 3 is installed at the bottom of the recess 2A of the frame 2 as described above. Here, the frame 2 and the blue LED 3 are bonded by a silver paste (a mixture of silver particles in an adhesive) 5. Thus, the blue LED 3 is installed on the frame 2. Further, the silver paste 5 also plays a role of efficiently radiating heat generated in the blue LED 3 to the frame 2.

更に、フレーム2には、青色LED3に電力を供給するための金製のワイヤ6が取り付けられている。つまり、青色LED3の上面に設けられた電極(図示省略)とは、ワイヤ
6を用いてワイヤボンディングによって結線されていて、このワイヤ6を通電することによって青色LED3に電力が供給され、青色LED3が青色光を発するようになっている。なお、ワイヤ6は青色LED3の構造にあわせて1本又は複数本が取り付けられる。
Further, a gold wire 6 for supplying power to the blue LED 3 is attached to the frame 2. That is, the electrode (not shown) provided on the upper surface of the blue LED 3 is connected by wire bonding using the wire 6, and when the wire 6 is energized, power is supplied to the blue LED 3. It emits blue light. One or a plurality of wires 6 are attached in accordance with the structure of the blue LED 3.

更に、フレーム2の凹部2Aには、青色LED3から発せられる光の一部を吸収し異なる波長を有する光を発する蛍光体含有部4が設けられている。蛍光体含有部4は、本発明の蛍光体含有組成物で形成されている。蛍光体は、青色LED3が発する青色光により励起されて、青色光よりも長波長の光である光を発する物質である。蛍光体含有部4を構成する蛍光体は一種類であっても良いし、複数からなる混合物であってもよく、青色LED3の発する光と蛍光体発光部4の発する光の総和が所望の色になるように選べばよい。色は白色だけでなく、黄色、オレンジ、ピンク、紫、青緑等であっても良い。また、これらの色と白色との間の中間的な色であっても良い。   Further, the concave portion 2A of the frame 2 is provided with a phosphor-containing portion 4 that absorbs part of the light emitted from the blue LED 3 and emits light having a different wavelength. The phosphor-containing part 4 is formed of the phosphor-containing composition of the present invention. The phosphor is a substance that is excited by blue light emitted from the blue LED 3 and emits light having a wavelength longer than that of the blue light. The phosphor constituting the phosphor-containing portion 4 may be a single type or a mixture of a plurality, and the sum of the light emitted from the blue LED 3 and the light emitted from the phosphor light-emitting portion 4 is a desired color. Choose to be. The color is not limited to white, but may be yellow, orange, pink, purple, blue-green, or the like. Further, it may be an intermediate color between these colors and white.

モールド部7は、青色LED3、蛍光体含有部4、ワイヤ6などを外部から保護するとともに、配光特性を制御するためのレンズとしての機能を持つ。モールド部7には主にエポキシ樹脂を用いることができる。
図2は、図1に示す発光装置1を組み込んだ面発光照明装置の一実施例を示す模式的断面図である。図2において、8は面発光照明装置、9は拡散板、10は保持ケースである。
The mold unit 7 functions as a lens for protecting the blue LED 3, the phosphor-containing unit 4, the wire 6 and the like from the outside and controlling the light distribution characteristics. An epoxy resin can be mainly used for the mold part 7.
FIG. 2 is a schematic cross-sectional view showing an embodiment of a surface emitting illumination device incorporating the light emitting device 1 shown in FIG. In FIG. 2, 8 is a surface emitting illumination device, 9 is a diffusion plate, and 10 is a holding case.

この面発光照明装置8は、内面を白色の平滑面等の光不透過性とした方形の保持ケース10の底面に、多数の発光装置1を、その外側に発光装置1の駆動のための電源及び回路等(図示せず。)を設けて配置したものである。発光の均一化のために、保持ケース10の蓋部に相当する箇所に、乳白色としたアクリル板等の拡散板9を固定している。
そして、面発光照明装置8を駆動して、発光装置1の青色LED3に電圧を印加することにより青色光等を発光させる。その発光の一部を、蛍光体含有部4において波長変換材料である本発明の蛍光体と必要に応じて添加した別の蛍光体が吸収し、より長波長の光に変換し、蛍光体に吸収されなかった青色光等との混色により、高輝度の発光が得られる。この光が拡散板9を透過して、図面上方に出射され、保持ケース10の拡散板9面内において均一な明るさの照明光が得られることとなる。
This surface-emitting illuminating device 8 has a large number of light-emitting devices 1 on the bottom surface of a rectangular holding case 10 whose inner surface is light-opaque such as a white smooth surface, and a power source for driving the light-emitting device 1 on the outside thereof. And a circuit or the like (not shown). In order to make the light emission uniform, a diffusion plate 9 such as an acrylic plate made of milky white is fixed to a portion corresponding to the lid portion of the holding case 10.
Then, the surface-emitting illumination device 8 is driven to apply blue voltage to the blue LED 3 of the light-emitting device 1 to emit blue light or the like. Part of the emitted light is absorbed in the phosphor-containing portion 4 by the phosphor of the present invention, which is a wavelength conversion material, and another phosphor added as necessary, and converted into light having a longer wavelength. Light emission with high luminance is obtained by mixing with blue light or the like that has not been absorbed. This light passes through the diffusion plate 9 and is emitted upward in the drawing, and illumination light with uniform brightness is obtained within the surface of the diffusion plate 9 of the holding case 10.

また、本発明の発光装置において、特に励起光源として面発光型のものを使用する場合、蛍光体含有部を膜状とするのが好ましい。即ち、面発光型の発光体からの光は断面積が十分大きいので、蛍光体含有部をその断面の方向に膜状とすると、第1の発光体からの蛍光体への照射断面積が蛍光体単位量あたり大きくなるので、蛍光体からの発光の強度をより大きくすることができる。   In the light-emitting device of the present invention, in particular, when a surface-emitting type is used as the excitation light source, it is preferable that the phosphor-containing portion is formed into a film. That is, since the cross-sectional area of the light from the surface-emitting type phosphor is sufficiently large, when the phosphor-containing portion is formed into a film shape in the direction of the cross-section, the irradiation cross-section area of the phosphor from the first phosphor is fluorescent. Since it becomes large per body unit quantity, the intensity | strength of light emission from fluorescent substance can be enlarged more.

また、光源として面発光型のものを使用し、蛍光体含有部として膜状のものを用いる場合、光源の発光面に、直接膜状の蛍光体含有部を接触させた形状とするのが好ましい。ここでいう接触とは、光源と蛍光体含有部とが空気や気体を介さないでぴたりと接している状態をつくることを言う。その結果、光源からの光が蛍光体含有部の膜面で反射されて外にしみ出るという光量損失を避けることができるので、装置全体の発光効率を良くすることができる。   In addition, when a surface-emitting type light source is used as the light source and a film-like one is used as the phosphor-containing portion, it is preferable that the light-emitting surface of the light source is directly in contact with the film-like phosphor-containing portion. . Contact here means creating a state where the light source and the phosphor-containing portion are in perfect contact with each other without air or gas. As a result, it is possible to avoid a light amount loss in which light from the light source is reflected by the film surface of the phosphor-containing portion and oozes out, so that the light emission efficiency of the entire apparatus can be improved.

図3は、このように、光源として面発光型のものを用い、蛍光体含有部として膜状のものを適用した発光装置の一例を示す模式的斜視図である。図3中、11は、前記蛍光体を有する膜状の蛍光体含有部、12は光源としての面発光型GaN系LD、13は基板を表す。相互に接触した状態をつくるために、光源12のLDと蛍光体含有部11とそれぞれ別個につくっておいてそれらの面同士を接着剤やその他の手段によって接触させても良いし、光源12の発光面上に蛍光体含有部11を製膜(成型)させても良い。これらの結果
、光源12と第2の蛍光体含有部11とを接触した状態とすることができる。
FIG. 3 is a schematic perspective view showing an example of a light-emitting device using a surface-emitting type light source as the light source and applying a film-like one as the phosphor-containing portion. In FIG. 3, 11 is a film-like phosphor-containing portion having the phosphor, 12 is a surface-emitting GaN-based LD as a light source, and 13 is a substrate. In order to create a state where they are in contact with each other, the LD of the light source 12 and the phosphor-containing portion 11 may be formed separately, and their surfaces may be brought into contact with each other by an adhesive or other means. The phosphor-containing portion 11 may be formed (molded) on the light emitting surface. As a result, the light source 12 and the second phosphor-containing portion 11 can be brought into contact with each other.

[4−5]発光装置の用途
本発明の発光装置は使用する蛍光体の種類、量により各色の発光が可能であるが照明用途などは、白色光を発するもの発光装置が有用である。本発明の発光装置は、白色光を発する場合には、発光効率(JISZ8113)が通常20lm/W以上、好ましくは22lm/W以上、より好ましくは25lm/W以上であり、特に好ましくは28lm/W以上であり、平均演色評価指数(JISZ8726)Raが80以上、好ましくは85以上、より好ましくは88以上である。
[4-5] Use of light-emitting device The light-emitting device of the present invention can emit light of various colors depending on the type and amount of the phosphor used, but for lighting use, a light-emitting device that emits white light is useful. When the light emitting device of the present invention emits white light, the luminous efficiency (JISZ8113) is usually 20 lm / W or higher, preferably 22 lm / W or higher, more preferably 25 lm / W or higher, and particularly preferably 28 lm / W. The average color rendering index (JIS Z8726) Ra is 80 or more, preferably 85 or more, more preferably 88 or more.

本発明の発光装置の用途は特に制限されず、通常の発光装置が用いられる各種の分野に使用することが可能である。また、単独で、又は複数個を組み合わせて用いても良い。具体的には、例えば、照明ランプ、液晶パネル用等のバックライト、超薄型照明等の種々の照明装置、画像表示装置の光源として使用することができる。なお、本発明の発光装置を画像表示装置の光源として用いる場合には、カラーフィルターと併用してもよい。   The application of the light-emitting device of the present invention is not particularly limited, and can be used in various fields where a normal light-emitting device is used. Moreover, you may use individually or in combination. Specifically, for example, it can be used as a light source for illumination lamps, backlights for liquid crystal panels, various illumination devices such as ultra-thin illumination, and image display devices. In addition, when using the light-emitting device of this invention as a light source of an image display apparatus, you may use together with a color filter.

以下、本発明を実施例によりさらに具体的に説明するが、本発明はその要旨を越えない限り以下の実施例に限定されるものではない。
[1]表面処理方法
[1−1]使用材料
表面処理を行なう基体蛍光体として、橙色蛍光体SrBaSiO:Eu(D50=21μm)(以下、「SBS」と表記する)を使用した。この蛍光体は、原料化合物としてSrCO、BaCO、SiO、EuをSr:Ba:Si:Eu=1.98:1:1:0.02の比率となるように秤量し、メノウ乳鉢でエタノールとともに粉砕混合を行い、エタノールを気化して除去した後、得られた混合物を錠剤に成型して、モリブデン箔上で水素3%混合した窒素雰囲気中1450℃・6時間加熱することにより反応させ、引き続いて粉砕処理を行なうことにより粉末として得た。
テトラエトキシシラン(以下、「TEOS」と表記する)は東京化成社製、純度95%以上を使用した。
エタノールはキシダ化学社製、特級純度99.5%を使用した。
アンモニア水はキシダ化学社製、特級純度28%を使用した。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples unless it exceeds the gist.
[1] Surface treatment method [1-1] Material used An orange phosphor Sr 2 BaSiO 5 : Eu (D50 = 21 μm) (hereinafter referred to as “SBS”) was used as a base phosphor to be surface-treated. In this phosphor, SrCO 3 , BaCO 3 , SiO 2 , Eu 2 O 3 are weighed as raw material compounds so as to have a ratio of Sr: Ba: Si: Eu = 1.98: 1: 1: 0.02. After crushing and mixing with ethanol in an agate mortar and evaporating and removing ethanol, the resulting mixture is molded into tablets and heated at 1450 ° C. for 6 hours in a nitrogen atmosphere mixed with 3% hydrogen on a molybdenum foil. To obtain a powder by subsequent pulverization.
Tetraethoxysilane (hereinafter referred to as “TEOS”) manufactured by Tokyo Chemical Industry Co., Ltd., having a purity of 95% or more was used.
Ethanol was manufactured by Kishida Chemical Co., Ltd. and a special grade purity of 99.5% was used.
Ammonia water was manufactured by Kishida Chemical Co., Ltd., and had a special grade purity of 28%.

[1−2]表面処理操作(実施例1、2、及び比較例1、2)
[1−2−1]実施例1(温度5℃で表面処理を行なった。)
金属アルコキシドとしてTEOSを用いた。
500mLフラスコにTEOS50g とエタノール224g を入れて均一に混合して金属アルコキシド溶液(TAOM溶液)を調製した。
ジャケット付きの1Lセパラブルフラスコにエタノール 310g 、アンモニア水 1
00g を入れて均一に混合した後、SBS粉末を 50g 投入して基体蛍光体含有溶液(PHOS溶液)を調製した。
[1-2] Surface treatment operation (Examples 1 and 2 and Comparative Examples 1 and 2)
[1-2-1] Example 1 (Surface treatment was performed at a temperature of 5 ° C.)
TEOS was used as the metal alkoxide.
In a 500 mL flask, 50 g of TEOS and 224 g of ethanol were added and mixed uniformly to prepare a metal alkoxide solution (TAOM solution).
In a 1L separable flask with a jacket, ethanol 310g, ammonia water 1
After adding 00 g and mixing uniformly, 50 g of SBS powder was added to prepare a substrate phosphor-containing solution (PHOS solution).

セパラブルフラスコのジャケットには温度調節された冷却水を流して反応溶液の温度を5℃で一定に保ち、SBS粉末が沈降しないように、モーター付きの撹拌羽根でPHOS溶液を激しく撹拌してSBS粉末を舞い上げながら、そこにTAOM溶液を定量ポンプで約4時間かけて滴下した。
TAOM溶液の滴下が終了した後、反応溶液を静置して橙色蛍光体が沈降してから、シリカ微粒子で白濁した液相をデカンテーションで除去した。その後500mL のエタノ
ールを加え、軽く撹拌した後静置して、白濁の残る液層をデカンテーションで除去した。このエタノール洗浄を、液層が無色透明になるまで4回繰り返し、セパラブルフラスコご
と50℃、30分間の減圧乾燥を行い、その後150℃、2時間の減圧乾燥を行い、表面シリカコートされたSBS蛍光体粉末を得た。
A temperature-controlled cooling water is allowed to flow through the jacket of the separable flask to keep the temperature of the reaction solution constant at 5 ° C., and the PHOS solution is vigorously stirred with a stirring blade equipped with a motor so that the SBS powder does not settle. While raising the powder, the TAOM solution was added dropwise over about 4 hours with a metering pump.
After completion of the dropwise addition of the TAOM solution, the reaction solution was allowed to stand and the orange phosphor settled, and then the liquid phase clouded with silica fine particles was removed by decantation. Thereafter, 500 mL of ethanol was added, and the mixture was lightly stirred and allowed to stand, and the liquid layer with white turbidity was removed by decantation. This ethanol washing was repeated four times until the liquid layer became colorless and transparent. The separable flask was dried under reduced pressure at 50 ° C. for 30 minutes, and then dried under reduced pressure at 150 ° C. for 2 hours. A phosphor powder was obtained.

[1−2−2]実施例2(温度15℃で表面処理を行なった。)
反応溶液の温度を15℃とした以外は実施例1と同じ方法でSBSの表面処理を行なった。
[1−2−3]実施例3(温度5℃の表面処理を2回で表面処理を行なった。)
実施例1で作製した表面処理SBS蛍光体を原料として、再度、実施例1の表面処理操作を行なった。
[1−2−4]比較例1(SBSに表面処理は行なわなかった。)
基体SBS蛍光体に表面処理を行なわず、そのまま試験に供した。
[1−2−5]比較例2(温度25℃で表面処理を行なった。)
反応溶液の温度を25℃とした以外は実施例1と同じ方法でSBSの表面処理を行なった。
[1-2-2] Example 2 (surface treatment was performed at a temperature of 15 ° C.)
Surface treatment of SBS was performed in the same manner as in Example 1 except that the temperature of the reaction solution was 15 ° C.
[1-2-3] Example 3 (surface treatment at a temperature of 5 ° C. was performed twice)
The surface treatment operation of Example 1 was performed again using the surface-treated SBS phosphor produced in Example 1 as a raw material.
[1-2-4] Comparative Example 1 (SBS was not subjected to surface treatment.)
The substrate SBS phosphor was not subjected to surface treatment and was subjected to the test as it was.
[1-2-5] Comparative Example 2 (Surface treatment was performed at a temperature of 25 ° C.)
Surface treatment of SBS was performed in the same manner as in Example 1 except that the temperature of the reaction solution was 25 ° C.

[2]特性試験方法
実施例1、2、3及び比較例1、2を以下の分析、及び評価に供した。
[2−1]透過型電子顕微鏡による観察
蛍光体をエタノール中に分散させ、マイクログリッド(透過型電子顕微鏡(TEM)用穴あきカーボン膜を張ったメッシュ)上に滴下し、自然乾燥した。TEM(日立製作所製「H−9000UHR」)を使用し、加速電圧300kVにて観察した。
結果を表1に示す。
図4に実施例3の、図5に比較例2のTEM写真を示す。
また、参考のため図6に実施例3の、図7に比較例2の走査電子顕微鏡(SEM)写真を示す。
[2−2]蛍光体吸湿試験
実施例1、2、3及び比較例1、2の蛍光体を60℃、相対湿度90%で保持し、所定時間後の蛍光体の重量増加を測定した。
結果を表1に示す。
[2] Property Test Method Examples 1, 2, and 3 and Comparative Examples 1 and 2 were subjected to the following analysis and evaluation.
[2-1] Observation with Transmission Electron Microscope The phosphor was dispersed in ethanol, dropped onto a microgrid (mesh with a perforated carbon film for transmission electron microscope (TEM)), and dried naturally. Using TEM (“H-9000UHR” manufactured by Hitachi, Ltd.), observation was performed at an acceleration voltage of 300 kV.
The results are shown in Table 1.
FIG. 4 shows a TEM photograph of Example 3, and FIG. 5 shows a TEM photograph of Comparative Example 2.
For reference, FIG. 6 shows a scanning electron microscope (SEM) photograph of Example 3 and FIG. 7 of Comparative Example 2.
[2-2] Phosphor Hygroscopic Test The phosphors of Examples 1, 2, 3 and Comparative Examples 1 and 2 were held at 60 ° C. and 90% relative humidity, and the weight increase of the phosphor after a predetermined time was measured.
The results are shown in Table 1.

[3]結果
表1に示す結果から次のことが明らかとなった。
(A)透過型電子顕微鏡を用いる方法により、実質的に連続性が観察される層を有し、膜厚1nm以上10000nm以下であり、金属アルコキシドを加水分解してなる金属酸化物皮膜であって、下記(i)〜(iii)による吸湿量測定試験により測定される吸湿増加率が5重量%以下である皮膜を有する蛍光体の吸湿速度が小さいことがわかった。
[3] Results From the results shown in Table 1, the following became clear.
(A) A metal oxide film having a layer in which continuity is substantially observed by a method using a transmission electron microscope, having a thickness of 1 nm or more and 10,000 nm or less, and hydrolyzing a metal alkoxide. Further, it was found that the moisture absorption rate of the phosphor having a film whose moisture absorption increase rate measured by the moisture absorption measurement test according to the following (i) to (iii) is 5% by weight or less is small.

[吸湿量測定試験]
(i)橙色蛍光体SrBaSiO:Eu(以下SBSと略称する。重量メジアン径D50=20±3μm)に前記皮膜を形成する。
(ii)温度60℃、相対湿度90%の雰囲気下で100時間放置する。
(iii)吸湿増加率(重量%)=(吸湿試験後重量−吸湿試験前重量)/(吸湿試験前重量)×100を測定する。
(B)0℃以上20℃以下で金属アルコキシドを加水分解させる工程を含む蛍光体表面処理方法により得られた蛍光体は吸湿速度が小さいことがわかった。
(C)金属アルコキシドを加水分解させる工程を2回以上含む蛍光体表面処理方法により得られた蛍光体は吸湿速度が小さいことがわかった。
[Moisture absorption measurement test]
(I) The film is formed on the orange phosphor Sr 2 BaSiO 5 : Eu (hereinafter abbreviated as SBS; weight median diameter D50 = 20 ± 3 μm).
(Ii) Leave in an atmosphere at a temperature of 60 ° C. and a relative humidity of 90% for 100 hours.
(Iii) Moisture absorption increase rate (% by weight) = (weight after moisture absorption test−weight before moisture absorption test) / (weight before moisture absorption test) × 100.
(B) It was found that the phosphor obtained by the phosphor surface treatment method including the step of hydrolyzing the metal alkoxide at 0 ° C. or more and 20 ° C. or less has a low moisture absorption rate.
(C) It was found that the phosphor obtained by the phosphor surface treatment method including the step of hydrolyzing the metal alkoxide twice or more has a low moisture absorption rate.

Figure 2008111080
Figure 2008111080

本発明の蛍光体表面処理方法、および蛍光体は、下記の点で極めて優れた効果を奏する点で、産業上の利用可能性が極めて高い。
(i)本発明の蛍光体の母体となる表面処理前の蛍光体(以後、基体蛍光体と呼ぶことがある)の耐湿性等の耐候性を一層向上させることができる。
(ii)発光装置の蛍光体含有樹脂部における樹脂に対する分散性を基体蛍光体に比べて向上させることができる。
The phosphor surface treatment method and the phosphor of the present invention have extremely high industrial applicability in that they exhibit excellent effects in the following respects.
(I) It is possible to further improve the weather resistance such as moisture resistance of the phosphor before the surface treatment (hereinafter also referred to as a base phosphor) which is the base of the phosphor of the present invention.
(Ii) Dispersibility of the phosphor-containing resin portion of the light-emitting device in the resin can be improved as compared with the base phosphor.

また、本発明の蛍光体含有組成物、発光装置、画像表示装置、および照明装置は、前記蛍光体を用いているので、長期的な耐光性に優れ、高品質であるため、当該各分野における産業上の利用可能性が極めて高い。   Moreover, since the phosphor-containing composition, the light-emitting device, the image display device, and the lighting device of the present invention use the phosphor, it has excellent long-term light resistance and high quality. Industrial applicability is extremely high.

本発明の発光装置の一実施例を示す模式的断面図である。It is typical sectional drawing which shows one Example of the light-emitting device of this invention. 本発明の発光装置を用いた面発光照明装置の一例を示す模式的断面図である。It is typical sectional drawing which shows an example of the surface emitting illumination apparatus using the light-emitting device of this invention. 本発明の発光装置の他の実施の形態を示す模式的な斜視図である。It is a typical perspective view which shows other embodiment of the light-emitting device of this invention. 本発明の表面処理を行った蛍光体の透過型電子顕微鏡写真である。It is a transmission electron micrograph of the fluorescent substance which performed the surface treatment of this invention. 本発明とは異なる表面処理を行なった蛍光体の透過型電子顕微鏡写真である。It is the transmission electron micrograph of the fluorescent substance which performed the surface treatment different from this invention. 本発明の表面処理を行った蛍光体の走査電子顕微鏡写真である。It is a scanning electron micrograph of the fluorescent substance which performed the surface treatment of this invention. 本発明とは異なる表面処理を行なった蛍光体の走査電子顕微鏡写真である。It is the scanning electron micrograph of the fluorescent substance which performed the surface treatment different from this invention.

符号の説明Explanation of symbols

1 発光装置
2 フレーム
2A フレームの凹部
3 青色LED(第1の発光体)
4 蛍光体含有部(第2の発光体)
5 銀ペースト
6 ワイヤ
7 モールド部
8 面発光照明装置
9 拡散板
10 保持ケース
11 蛍光体含有部
12 光源
13 基板
1 Light-emitting device
2 frames
2A Concave part of the frame
3 Blue LED (first light emitter)
4 Phosphor-containing part (second light emitter)
5 Silver paste
6 wires
7 Mold part
8 Surface emitting lighting device
9 Diffusion plate
10 Holding case
11 Phosphor content part
12 Light source
13 Substrate

Claims (8)

雰囲気温度0℃以上20℃以下で金属アルコキシドおよび/またはその誘導体を加水分解、脱水重合させる工程を含むことを特徴とする蛍光体表面処理方法。   A phosphor surface treatment method comprising a step of hydrolyzing and dehydrating a metal alkoxide and / or a derivative thereof at an atmospheric temperature of 0 ° C. to 20 ° C. 金属アルコキシドおよび/またはその誘導体を加水分解、脱水重合させる工程を2回以上含むことを特徴とする蛍光体表面処理方法。   A phosphor surface treatment method comprising a step of hydrolyzing and dehydrating and polymerizing a metal alkoxide and / or a derivative thereof twice or more. 請求項1または2に記載の蛍光体表面処理方法より表面処理された蛍光体。   A phosphor surface-treated by the phosphor surface treatment method according to claim 1. 金属酸化物皮膜を有する蛍光体であって、前記金属酸化物皮膜が下記(1)〜(4)の条件を満たすことを特徴とする蛍光体。
(1)金属アルコキシドおよび/またはその誘導体を加水分解、脱水重合してなるものであること
(2)透過型電子顕微鏡により実質的に連続性が観察されること、
(3)膜厚が1nm以上10000nm以下であること
(4)下記(i)〜(iii)による吸湿量測定試験により測定される吸湿増加率が5重量%以下であること
[吸湿量測定試験]
(i)橙色蛍光体SrBaSiO:Eu(以下SBSと略称する。重量メジアン径D50=20±3μm)に任意の方法で前記金属酸化物皮膜を形成する。
(ii)温度60℃、相対湿度90%の雰囲気下で100時間放置する。
(iii)吸湿増加率(重量%)=(吸湿試験後重量−吸湿試験前重量)/(吸湿試験前重量)×100を測定する。
A phosphor having a metal oxide film, wherein the metal oxide film satisfies the following conditions (1) to (4).
(1) It is formed by hydrolysis and dehydration polymerization of a metal alkoxide and / or its derivative. (2) Substantially continuity is observed by a transmission electron microscope.
(3) The film thickness is 1 nm or more and 10,000 nm or less. (4) The moisture absorption increase rate measured by the moisture absorption measurement test according to the following (i) to (iii) is 5% by weight or less [Moisture absorption measurement test].
(I) The metal oxide film is formed on the orange phosphor Sr 2 BaSiO 5 : Eu (hereinafter abbreviated as SBS, weight median diameter D50 = 20 ± 3 μm) by an arbitrary method.
(Ii) Leave in an atmosphere at a temperature of 60 ° C. and a relative humidity of 90% for 100 hours.
(Iii) Moisture absorption increase rate (% by weight) = (weight after moisture absorption test−weight before moisture absorption test) / (weight before moisture absorption test) × 100.
請求項3または4に記載の蛍光体を含有する蛍光体含有組成物。   A phosphor-containing composition containing the phosphor according to claim 3 or 4. 請求項3または4に記載の蛍光体を用いた発光装置。   A light emitting device using the phosphor according to claim 3 or 4. 請求項6に記載の発光装置を用いた画像表示装置。   An image display device using the light emitting device according to claim 6. 請求項6に記載の発光装置を用いた照明装置。   An illumination device using the light emitting device according to claim 6.
JP2006296239A 2006-10-31 2006-10-31 Method of surface-treating fluorescent substance, fluorescent substance, fluorescent substance-containing composition, light emitting device, image display device, and illuminating device Pending JP2008111080A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006296239A JP2008111080A (en) 2006-10-31 2006-10-31 Method of surface-treating fluorescent substance, fluorescent substance, fluorescent substance-containing composition, light emitting device, image display device, and illuminating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006296239A JP2008111080A (en) 2006-10-31 2006-10-31 Method of surface-treating fluorescent substance, fluorescent substance, fluorescent substance-containing composition, light emitting device, image display device, and illuminating device

Publications (1)

Publication Number Publication Date
JP2008111080A true JP2008111080A (en) 2008-05-15

Family

ID=39443783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006296239A Pending JP2008111080A (en) 2006-10-31 2006-10-31 Method of surface-treating fluorescent substance, fluorescent substance, fluorescent substance-containing composition, light emitting device, image display device, and illuminating device

Country Status (1)

Country Link
JP (1) JP2008111080A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009132902A (en) * 2007-11-08 2009-06-18 Sumitomo Metal Mining Co Ltd Surface-coated phosphor particle of strontium silicate, method for manufacturing the same and light emitting diode including the same
JP2009155546A (en) * 2007-12-27 2009-07-16 Ube Material Industries Ltd Blue light-emitting phosphor particle
JP2010229363A (en) * 2009-03-30 2010-10-14 Econet Engineering:Kk Water resistant light accumulating material and fluorescent material, method of producing thereof, coating material composition and ink composition using these
JP2011068789A (en) * 2009-09-25 2011-04-07 Panasonic Electric Works Co Ltd Coated phosphor and led light-emitting device
JP2011189558A (en) * 2010-03-12 2011-09-29 Mitsubishi Plastics Inc Coloring luminous molding
WO2011125452A1 (en) 2010-03-31 2011-10-13 積水化学工業株式会社 Surface-treated fluorescent bodies and process for production of surface-treated fluorescent bodies
WO2012018066A1 (en) 2010-08-04 2012-02-09 積水化学工業株式会社 Surface-treated fluorescent material and process for producing surface-treated fluorescent material
JP2012505527A (en) * 2008-10-07 2012-03-01 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング lamp
WO2012063707A1 (en) * 2010-11-11 2012-05-18 住友化学株式会社 Process for manufacturing fluorescent material
WO2012099179A1 (en) * 2011-01-18 2012-07-26 ソニーケミカル&インフォメーションデバイス株式会社 Process for producing coated phosphor, and coated phosphor
CN102686699A (en) * 2009-12-21 2012-09-19 首尔半导体株式会社 Strontium oxyorthosilicate phosphors having improved stability under a radiation load and resistance to atmospheric humidity
JP2013040236A (en) * 2011-08-11 2013-02-28 Sekisui Chem Co Ltd Method for producing surface-treated phosphor and surface-treated phosphor
JP2013507498A (en) * 2009-10-12 2013-03-04 オスラム ゲーエムベーハー Method of producing a coated silicate phosphor
JP2013067710A (en) * 2011-09-21 2013-04-18 Dexerials Corp Method of manufacturing coating fluorescent substance, coating fluorescent substance, and white light source
JP2013516040A (en) * 2009-12-29 2013-05-09 オーシャンズ キング ライティング サイエンスアンドテクノロジー カンパニー リミテッド Field emission white light emitting device
JP2013139495A (en) * 2011-12-28 2013-07-18 Nemoto & Co Ltd Mold release agent
WO2013183620A1 (en) 2012-06-08 2013-12-12 電気化学工業株式会社 Method for treating surface of phosphor, phosphor, light-emitting device, and illumination device
JP2014019844A (en) * 2012-07-23 2014-02-03 Konica Minolta Inc Phosphor dispersion and method for manufacturing led device
WO2014104286A1 (en) * 2012-12-28 2014-07-03 宇部マテリアルズ株式会社 Coated phosphor particles and manufacturing process therefor
JP2014528657A (en) * 2011-10-13 2014-10-27 インテマティックス・コーポレーションIntematix Corporation Highly reliable photoluminescent material with thick and uniform titanium dioxide coating
JP2015118999A (en) * 2013-12-17 2015-06-25 日本山村硝子株式会社 Solid light-emitting device, and phosphor-distributed organic-inorganic hybrid prepolymer composition
JP2016028170A (en) * 2015-11-11 2016-02-25 デクセリアルズ株式会社 Method for producing coated phosphor, coated phosphor, and white light source
CN106433639A (en) * 2016-10-13 2017-02-22 河北利福光电技术有限公司 315 phase orange silicate fluorescent powder and preparation method thereof
WO2018163232A1 (en) * 2017-03-06 2018-09-13 日本碍子株式会社 Fluorescent powder, and method for producing fluorescent powder

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5827831B2 (en) * 1975-08-14 1983-06-11 富士通株式会社 GAS HOUDEN PANEL
JPH02199187A (en) * 1989-01-27 1990-08-07 Nichia Chem Ind Ltd Production of phosphor surface-treated with spherical silicate compound
JPH02242880A (en) * 1989-03-15 1990-09-27 Nichia Chem Ind Ltd Production of fluorescent substance coated with silicon dioxide
JPH04279693A (en) * 1990-12-29 1992-10-05 Nichia Chem Ind Ltd Surface coating of fluorescent material
JPH07316551A (en) * 1993-07-30 1995-12-05 Toshiba Lighting & Technol Corp Phosphor for mercury vapor luminescence lamp, mercury vapor luminescence lamp produced by using the phosphor and lighting unit involving the lamp
JPH0892549A (en) * 1994-09-09 1996-04-09 Philips Electron Nv Method of coating luminous powder,luminous powder and article coated
JPH09316443A (en) * 1996-05-27 1997-12-09 Nemoto Tokushu Kagaku Kk Surface treatment of luminous fluorescent pigment, surface-treated luminous fluorescent pigment and luminous fluorescent coating material using the same
JPH10298546A (en) * 1997-04-24 1998-11-10 Toshiba Corp Fluorescent substance and its production
JP2884702B2 (en) * 1989-12-26 1999-04-19 化成オプトニクス株式会社 Phosphor and method for producing the same
JPH11106678A (en) * 1997-10-08 1999-04-20 Fuji Shikiso Kk Light-storing pigment
JP2002069442A (en) * 2000-09-01 2002-03-08 Showa Denko Kk Silica film coated with light emitting grain
JP2002173675A (en) * 2000-12-06 2002-06-21 Sanken Electric Co Ltd Fluorescence particle having coated layer and method for producing the same
JP2004231947A (en) * 2003-01-10 2004-08-19 Tsuchiya Co Ltd Phosphor layer-forming solution
JP2005082788A (en) * 2003-09-11 2005-03-31 Nichia Chem Ind Ltd Light-emitting device, fluorescent substance for light-emitting element, and method for producing the fluorescent substance for light-emitting element
JP2005344025A (en) * 2004-06-03 2005-12-15 Dowa Mining Co Ltd Fluorophor particle and method for producing the same and plasma display panel, illumination device and led
JP2008050548A (en) * 2006-08-25 2008-03-06 Ez Bright Corp Luminous fluorescent material having improved water resistance, and aqueous paint or aqueous color ink using the same
JP2009526089A (en) * 2005-12-01 2009-07-16 サーノフ コーポレーション Moisture protection phosphor and LED lighting device

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5827831B2 (en) * 1975-08-14 1983-06-11 富士通株式会社 GAS HOUDEN PANEL
JPH02199187A (en) * 1989-01-27 1990-08-07 Nichia Chem Ind Ltd Production of phosphor surface-treated with spherical silicate compound
JPH02242880A (en) * 1989-03-15 1990-09-27 Nichia Chem Ind Ltd Production of fluorescent substance coated with silicon dioxide
JP2884702B2 (en) * 1989-12-26 1999-04-19 化成オプトニクス株式会社 Phosphor and method for producing the same
JPH04279693A (en) * 1990-12-29 1992-10-05 Nichia Chem Ind Ltd Surface coating of fluorescent material
JPH07316551A (en) * 1993-07-30 1995-12-05 Toshiba Lighting & Technol Corp Phosphor for mercury vapor luminescence lamp, mercury vapor luminescence lamp produced by using the phosphor and lighting unit involving the lamp
JPH0892549A (en) * 1994-09-09 1996-04-09 Philips Electron Nv Method of coating luminous powder,luminous powder and article coated
JPH09316443A (en) * 1996-05-27 1997-12-09 Nemoto Tokushu Kagaku Kk Surface treatment of luminous fluorescent pigment, surface-treated luminous fluorescent pigment and luminous fluorescent coating material using the same
JPH10298546A (en) * 1997-04-24 1998-11-10 Toshiba Corp Fluorescent substance and its production
JPH11106678A (en) * 1997-10-08 1999-04-20 Fuji Shikiso Kk Light-storing pigment
JP2002069442A (en) * 2000-09-01 2002-03-08 Showa Denko Kk Silica film coated with light emitting grain
JP2002173675A (en) * 2000-12-06 2002-06-21 Sanken Electric Co Ltd Fluorescence particle having coated layer and method for producing the same
JP2004231947A (en) * 2003-01-10 2004-08-19 Tsuchiya Co Ltd Phosphor layer-forming solution
JP2005082788A (en) * 2003-09-11 2005-03-31 Nichia Chem Ind Ltd Light-emitting device, fluorescent substance for light-emitting element, and method for producing the fluorescent substance for light-emitting element
JP2005344025A (en) * 2004-06-03 2005-12-15 Dowa Mining Co Ltd Fluorophor particle and method for producing the same and plasma display panel, illumination device and led
JP2009526089A (en) * 2005-12-01 2009-07-16 サーノフ コーポレーション Moisture protection phosphor and LED lighting device
JP2008050548A (en) * 2006-08-25 2008-03-06 Ez Bright Corp Luminous fluorescent material having improved water resistance, and aqueous paint or aqueous color ink using the same

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009132902A (en) * 2007-11-08 2009-06-18 Sumitomo Metal Mining Co Ltd Surface-coated phosphor particle of strontium silicate, method for manufacturing the same and light emitting diode including the same
JP2013091801A (en) * 2007-11-08 2013-05-16 Sumitomo Metal Mining Co Ltd Surface-coated strontium silicate phosphor particle, and light-emitting diode having the phosphor particle
JP2009155546A (en) * 2007-12-27 2009-07-16 Ube Material Industries Ltd Blue light-emitting phosphor particle
JP2012505527A (en) * 2008-10-07 2012-03-01 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング lamp
JP2010229363A (en) * 2009-03-30 2010-10-14 Econet Engineering:Kk Water resistant light accumulating material and fluorescent material, method of producing thereof, coating material composition and ink composition using these
JP2011068789A (en) * 2009-09-25 2011-04-07 Panasonic Electric Works Co Ltd Coated phosphor and led light-emitting device
JP2013507498A (en) * 2009-10-12 2013-03-04 オスラム ゲーエムベーハー Method of producing a coated silicate phosphor
CN102686699A (en) * 2009-12-21 2012-09-19 首尔半导体株式会社 Strontium oxyorthosilicate phosphors having improved stability under a radiation load and resistance to atmospheric humidity
JP2013516040A (en) * 2009-12-29 2013-05-09 オーシャンズ キング ライティング サイエンスアンドテクノロジー カンパニー リミテッド Field emission white light emitting device
JP2011189558A (en) * 2010-03-12 2011-09-29 Mitsubishi Plastics Inc Coloring luminous molding
EP2554628A4 (en) * 2010-03-31 2014-03-05 Sekisui Chemical Co Ltd Surface-treated fluorescent bodies and process for production of surface-treated fluorescent bodies
JP2012031425A (en) * 2010-03-31 2012-02-16 Sekisui Chem Co Ltd Surface-treated fluorescent body and process for production of surface-treated fluorescent body
JP4846066B2 (en) * 2010-03-31 2011-12-28 積水化学工業株式会社 Surface-treated phosphor and method for producing surface-treated phosphor
WO2011125452A1 (en) 2010-03-31 2011-10-13 積水化学工業株式会社 Surface-treated fluorescent bodies and process for production of surface-treated fluorescent bodies
CN102822313A (en) * 2010-03-31 2012-12-12 积水化学工业株式会社 Surface-treated fluorescent bodies and process for production of surface-treated fluorescent bodies
EP2554628A1 (en) * 2010-03-31 2013-02-06 Sekisui Chemical Co., Ltd. Surface-treated fluorescent bodies and process for production of surface-treated fluorescent bodies
US8791488B2 (en) 2010-08-04 2014-07-29 Sekisui Chemical Co., Ltd. Surface-treated fluorescent material and process for producing surface-treated fluorescent material
WO2012018066A1 (en) 2010-08-04 2012-02-09 積水化学工業株式会社 Surface-treated fluorescent material and process for producing surface-treated fluorescent material
WO2012063707A1 (en) * 2010-11-11 2012-05-18 住友化学株式会社 Process for manufacturing fluorescent material
US20130292610A1 (en) * 2011-01-18 2013-11-07 Dexerials Corporation Method for manufacturing coated phosphor, and coated phosphor
US9309457B2 (en) 2011-01-18 2016-04-12 Dexerials Corporation Method for manufacturing coated phosphor, and coated phosphor
EP2666840A4 (en) * 2011-01-18 2015-06-03 Dexerials Corp Process for producing coated phosphor, and coated phosphor
WO2012099179A1 (en) * 2011-01-18 2012-07-26 ソニーケミカル&インフォメーションデバイス株式会社 Process for producing coated phosphor, and coated phosphor
JP2012162709A (en) * 2011-01-18 2012-08-30 Sony Chemical & Information Device Corp Process for manufacturing coated phosphor and coated phosphor
JP2013040236A (en) * 2011-08-11 2013-02-28 Sekisui Chem Co Ltd Method for producing surface-treated phosphor and surface-treated phosphor
JP2013067710A (en) * 2011-09-21 2013-04-18 Dexerials Corp Method of manufacturing coating fluorescent substance, coating fluorescent substance, and white light source
JP2014528657A (en) * 2011-10-13 2014-10-27 インテマティックス・コーポレーションIntematix Corporation Highly reliable photoluminescent material with thick and uniform titanium dioxide coating
JP2013139495A (en) * 2011-12-28 2013-07-18 Nemoto & Co Ltd Mold release agent
WO2013183620A1 (en) 2012-06-08 2013-12-12 電気化学工業株式会社 Method for treating surface of phosphor, phosphor, light-emitting device, and illumination device
JP2014019844A (en) * 2012-07-23 2014-02-03 Konica Minolta Inc Phosphor dispersion and method for manufacturing led device
WO2014104286A1 (en) * 2012-12-28 2014-07-03 宇部マテリアルズ株式会社 Coated phosphor particles and manufacturing process therefor
JPWO2014104286A1 (en) * 2012-12-28 2017-01-19 宇部興産株式会社 Coated phosphor particles and method for producing the same
JP2015118999A (en) * 2013-12-17 2015-06-25 日本山村硝子株式会社 Solid light-emitting device, and phosphor-distributed organic-inorganic hybrid prepolymer composition
JP2016028170A (en) * 2015-11-11 2016-02-25 デクセリアルズ株式会社 Method for producing coated phosphor, coated phosphor, and white light source
CN106433639A (en) * 2016-10-13 2017-02-22 河北利福光电技术有限公司 315 phase orange silicate fluorescent powder and preparation method thereof
WO2018163232A1 (en) * 2017-03-06 2018-09-13 日本碍子株式会社 Fluorescent powder, and method for producing fluorescent powder
JPWO2018163232A1 (en) * 2017-03-06 2019-12-26 日本碍子株式会社 Phosphor powder and method for producing phosphor powder

Similar Documents

Publication Publication Date Title
JP2008111080A (en) Method of surface-treating fluorescent substance, fluorescent substance, fluorescent substance-containing composition, light emitting device, image display device, and illuminating device
JP5386800B2 (en) Phosphor-containing composition, light emitting device, lighting device, and image display device
JP6213585B2 (en) Semiconductor device member and semiconductor light emitting device
JP5493258B2 (en) Phosphor, method for manufacturing the same, and light emitting device
US9777213B2 (en) Phosphor, phosphor-containing composition and light-emitting unit using phosphor, and image display device and lighting device using light-emitting unit
JP5552748B2 (en) Curable polysiloxane composition, and cured polysiloxane using the same, optical member, member for aerospace industry, semiconductor light emitting device, lighting device, and image display device
JP5245222B2 (en) Phosphor and light emitting device using the same
JP4466757B2 (en) Phosphor, phosphor-containing composition, light emitting device, lighting device, image display device, and nitrogen-containing compound
JP2009013186A (en) Coated phosphor particles, method for producing coated phosphor particles, phosphor-containing composition, light emitting device, image display device and illuminating device
JP5374857B2 (en) Method for producing phosphor-containing composition and method for producing semiconductor light-emitting device
EP2141215A1 (en) Phosphor and method for producing the same, phosphor-containing composition, light-emitting device, image display device, and illuminating device
JP2008285662A (en) Method for producing inorganic substance, phosphor, phosphor-including composition, emission device, illumination device, and image display device
WO2007018260A1 (en) Phosphor and light-emitting device using same
JP2008260930A (en) Composition containing fluorescent substance, light emitter, lighting apparatus and image display device
JP2010004035A (en) Semiconductor light-emitting apparatus, illuminator, and image display apparatus
JP2009135485A (en) Semiconductor light-emitting apparatus and method of manufacturing the same
JP2010100743A (en) Method for producing phosphor-containing composition
JP2009249445A (en) Fluorescent substance and method for producing the same, fluorescent substance-containing composition, light-emitting device, lighting device and image display device
JP2009173905A (en) Phosphor, method of manufacturing phosphor, phosphor-containing composition, and light emitting device
JP5374855B2 (en) Method for producing phosphor-containing composition
JP2009040918A (en) Fluorescent substance and its production method, composition containing fluorescent substance, light emitting device, and image display and illuminating device
JP5446078B2 (en) SEMICONDUCTOR DEVICE MEMBER, SEMICONDUCTOR DEVICE MEMBER FORMING METHOD AND SEMICONDUCTOR DEVICE MEMBER MANUFACTURING METHOD, SEMICONDUCTOR LIGHT EMITTING DEVICE USING THE SAME, SEMICONDUCTOR DEVICE MEMBER FORMING SOLUTION, AND PHOSPHOR COMPOSITION
JP2010004034A (en) Semiconductor light-emitting apparatus, illuminator, and image display apparatus
JP2009040944A (en) Phosphor, phosphor-containing composition, light emitter, lighting apparatus, and image display device
JP2010095728A (en) Phosphor and method for producing it

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20090707

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091021

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120605

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121016