JPWO2014104286A1 - Coated phosphor particles and method for producing the same - Google Patents

Coated phosphor particles and method for producing the same Download PDF

Info

Publication number
JPWO2014104286A1
JPWO2014104286A1 JP2014554587A JP2014554587A JPWO2014104286A1 JP WO2014104286 A1 JPWO2014104286 A1 JP WO2014104286A1 JP 2014554587 A JP2014554587 A JP 2014554587A JP 2014554587 A JP2014554587 A JP 2014554587A JP WO2014104286 A1 JPWO2014104286 A1 JP WO2014104286A1
Authority
JP
Japan
Prior art keywords
phosphor particles
coated
prepolymer
hydrolyzate
phosphor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014554587A
Other languages
Japanese (ja)
Other versions
JP6308368B2 (en
Inventor
福田 晃一
晃一 福田
仁 天谷
仁 天谷
里花 野北
里花 野北
稲垣 徹
徹 稲垣
憲治 有馬
憲治 有馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Publication of JPWO2014104286A1 publication Critical patent/JPWO2014104286A1/en
Application granted granted Critical
Publication of JP6308368B2 publication Critical patent/JP6308368B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/77342Silicates

Abstract

少なくとも一方の末端にシラノール基を有するポリジメチルシロキサンと、金属および/または半金属のアルコキシドのオリゴマーとの縮合反応により生成したプレポリマーの加水分解物により、蛍光体粒子の表面の少なくとも一部が被覆されてなる被覆蛍光体粒子は、波長350〜430nmの光で励起したときの発光強度が高く、長期間にわたって低下が少ない発光を示す。At least a part of the surface of the phosphor particles is covered with a hydrolyzate of a prepolymer produced by a condensation reaction between a polydimethylsiloxane having a silanol group at at least one end and an oligomer of a metal and / or metalloid alkoxide. The coated phosphor particles thus formed have high emission intensity when excited with light having a wavelength of 350 to 430 nm, and emit light with little decrease over a long period of time.

Description

本発明は、被覆蛍光体粒子及びその製造方法に関する。   The present invention relates to coated phosphor particles and a method for producing the same.

蛍光体は、白色LEDの可視光発光源として広く利用されている。白色LEDとしては、電気エネルギーの付与によって青色光を放出する半導体発光素子と黄色発光蛍光体とを組み合わせて、半導体発光素子からの青色光と、その青色光で黄色発光蛍光体を励起させることによって発生した黄色光との混色により白色光を得る二色混色タイプのものが広く利用されている。しかしながら、この二色混色タイプの白色LEDが発する白色光は純度が低いという問題がある。このため、最近では、電気エネルギーの付与によって波長350〜430nmの光を発光する半導体発光素子と、青色発光蛍光体、緑色発光蛍光体そして赤色発光蛍光体の三種類の蛍光体を組み合わせ、半導体発光素子からの光で、それぞれの蛍光体を励起させることによって発生した青色光と緑色光及び赤色光の三色の混色により白色光を得る三色混色タイプの白色LEDの開発が行なわれている。   Phosphors are widely used as visible light sources for white LEDs. As a white LED, a combination of a semiconductor light emitting device that emits blue light by applying electric energy and a yellow light emitting phosphor is used to excite the yellow light emitting phosphor by blue light from the semiconductor light emitting device and the blue light. A two-color mixed type that obtains white light by mixing with the generated yellow light is widely used. However, there is a problem that the white light emitted from the two-color mixed type white LED has low purity. For this reason, recently, a semiconductor light emitting device combining a semiconductor light emitting element that emits light with a wavelength of 350 to 430 nm by applying electric energy and three types of phosphors of a blue light emitting phosphor, a green light emitting phosphor, and a red light emitting phosphor has been combined. Development of a three-color mixed type white LED that obtains white light by mixing three colors of blue light, green light, and red light generated by exciting the respective phosphors with light from the element has been performed.

特許文献1には、耐湿性が高く、貯蔵後の輝度低下を抑制することができる蛍光体粒子として、下記の式(1)で表される化合物に付活剤としてLn(ただしLnはCe、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Mnの1種以上である。)が含有されてなる粒子状の蛍光物質(A)および該粒子の表面に粒子として、または層状に載置されるSi含有化合物(B)からなる蛍光体粒子が記載されている。
3M1O・mM2O・nM32 (1)
(ただし式(1)中のM1はCa、Sr、Baの1種以上であり、M2はMgおよび/またはZnであり、M3はSiおよび/またはGeであり、mの値は0.9以上1.1以下の範囲であり、nの値は1.8以上2.2以下の範囲である。また、蛍光物質(A)とSi含有化合物(B)とは同一ではない。)
In Patent Document 1, as phosphor particles having high moisture resistance and capable of suppressing a decrease in luminance after storage, Ln as an activator for a compound represented by the following formula (1) (where Ln is Ce, A particulate fluorescent material (A) containing Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Mn.) The phosphor particle which consists of Si containing compound (B) mounted as a particle | grain on the surface or in a layer form is described.
3M 1 O · mM 2 O · nM 3 O 2 (1)
(However, M 1 in the formula (1) is one or more of Ca, Sr, and Ba, M 2 is Mg and / or Zn, M 3 is Si and / or Ge, and the value of m is 0. 0.9 to 1.1, and the value of n is 1.8 to 2.2, and the fluorescent substance (A) and the Si-containing compound (B) are not the same.)

なお、この文献には、蛍光物質(A)の例として、下記の式(2)で表される化合物が記載されている。
(Ba3-a-b-3xSraCabEu3x)MgSi28 (2)
(ただし、式中aの値は0以上3未満の範囲であり、bの値は0以上3未満の範囲であり、xの値は0.00016以上0.1以下の範囲であり、a+b+3x≦3である。)
また、Si含有化合物(B)の例としては、SiO2、MgSiO4、MgSiO3等の酸化物、及び3−グリシドキシプロピルトリメトキシシラン、デシルトリメトキシシラン、テトラエトキシシラン、テトラメトキシシラン、メチルトリメトキシシラン、エチルトリメトキシシラン、n−オクチルトリメトキシシラン、n−デシルトリメトキシシラン、ジメチルジメトキシシラン等のアルコキシル基を有する有機ケイ素化合物、メチルジメトキシヒドロキシルシラン、メチルメトキシジヒドロキシルシラン等のアルコキシル基と水酸基を有する有機ケイ素化合物、トリメチルシラノール、トリエチルシラノール、トリプロピルシラノール等の水酸基を有する有機ケイ素化合物、オクタメチルシクロテトラシロキサン等のシロキサン基を有する有機ケイ素化合物が記載されている。
In this document, a compound represented by the following formula (2) is described as an example of the fluorescent substance (A).
(Ba 3-ab-3 xSr a Ca b Eu 3x) MgSi 2 O 8 (2)
(In the formula, the value of a is in the range of 0 to less than 3, the value of b is in the range of 0 to less than 3, the value of x is in the range of 0.00016 to 0.1, and a + b + 3x ≦ 3)
Further, examples of Si-containing compound (B), SiO 2, MgSiO 4, MgSiO oxides such 3, and 3-glycidoxypropyltrimethoxysilane, decyl trimethoxysilane, tetraethoxysilane, tetramethoxysilane, Organosilicon compounds having an alkoxyl group such as methyltrimethoxysilane, ethyltrimethoxysilane, n-octyltrimethoxysilane, n-decyltrimethoxysilane, dimethyldimethoxysilane, alkoxyl such as methyldimethoxyhydroxylsilane, methylmethoxydihydroxylsilane Having an organic silicon compound having a hydroxyl group such as trimethylsilanol, triethylsilanol and tripropylsilanol, and having a siloxane group such as octamethylcyclotetrasiloxane. Organosilicon compounds are described that.

一方、特許文献2には、両末端または片末端にシラノール基を有するポリジメチルシロキサンと金属および/または半金属のアルコキシドのオリゴマーとを、加水分解を伴う縮合反応によって、上記ポリジメチルシロキサンの両末端または片末端に上記金属および/または半金属のアルコキシドを導入した有機−無機ハイブリッドプレポリマーが記載されている。この文献には、上記の有機−無機ハイブリッドプレポリマーの用途として、接着剤及び塗料が記載されている。   On the other hand, in Patent Document 2, polydimethylsiloxane having silanol groups at both ends or one end and a metal and / or metalloid alkoxide oligomer are subjected to a condensation reaction involving hydrolysis to form both ends of the polydimethylsiloxane. Or the organic-inorganic hybrid prepolymer which introduce | transduced the said metal and / or metalloid alkoxide in one terminal is described. This document describes adhesives and paints as uses of the organic-inorganic hybrid prepolymer.

特開2007−224262号公報JP 2007-224262 A 国際公開第2011/125832号International Publication No. 2011/125832

波長350〜430nmの光を発光する半導体発光素子と、青色発光蛍光体、緑色発光蛍光体そして赤色発光蛍光体の三種類の蛍光体を組み合わせた三色混色タイプの白色LEDに用いる蛍光体は、波長350〜430nmの光で励起させたときの発光強度が高く、かつその高い発光強度が長期間にわたって安定して維持されることが好ましい。
従って、本発明の目的は、波長350〜430nmの光で励起したときの発光強度が高く、長期間にわたって低下が少ない発光を示す蛍光体を提供することにある。
A phosphor used for a white LED of a three-color mixed type that combines a semiconductor light emitting element that emits light with a wavelength of 350 to 430 nm and three kinds of phosphors of a blue light emitting phosphor, a green light emitting phosphor, and a red light emitting phosphor, It is preferable that the emission intensity when excited with light having a wavelength of 350 to 430 nm is high and the high emission intensity is stably maintained over a long period of time.
Accordingly, an object of the present invention is to provide a phosphor exhibiting high emission intensity when excited with light having a wavelength of 350 to 430 nm and low emission over a long period of time.

本発明者は、少なくとも一方の末端にシラノール基を有するポリジメチルシロキサンと、金属および/または半金属のアルコキシドのオリゴマーとの縮合反応により生成したプレポリマーの加水分解物により、蛍光体粒子の表面の少なくとも一部が被覆された被覆蛍光体粒子は、波長350〜430nmの光で励起させたときの発光強度が、被覆される前の蛍光体粒子と比較して同等であり、また長期間にわたって低下が少ない発光を示すことを見出し、本発明を完成させた。   The inventor of the present invention uses a hydrolyzate of a prepolymer generated by a condensation reaction of a polydimethylsiloxane having a silanol group at at least one terminal and an oligomer of a metal and / or a metalloid alkoxide, to thereby improve the surface of the phosphor particles. The coated phosphor particles that are at least partially coated have the same emission intensity when excited with light having a wavelength of 350 to 430 nm as compared to the phosphor particles before coating, and decrease over a long period of time. Was found to show less luminescence, and the present invention was completed.

従って、本発明は、少なくとも一方の末端にシラノール基を有するポリジメチルシロキサンと、金属および/または半金属のアルコキシドのオリゴマーとの縮合反応により生成したプレポリマーの加水分解物により、蛍光体粒子の表面の少なくとも一部が被覆されてなる被覆蛍光体粒子にある。   Accordingly, the present invention provides a surface of a phosphor particle using a hydrolyzate of a prepolymer produced by a condensation reaction between a polydimethylsiloxane having a silanol group at at least one end and an oligomer of a metal and / or metalloid alkoxide. The coated phosphor particles are coated with at least a part thereof.

本発明の被覆蛍光体粒子の好ましい態様は、次のとおりである。
(1)金属および/または半金属のアルコキシドがアルコキシシランである。
(2)上記加水分解物が、粒子表面の30%以上の領域を被覆している。
(3)上記加水分解物が、上記プレポリマーの加水分解反応促進剤を含む水の存在下でのプレポリマーの加水分解により生成した加水分解物である。
(4)蛍光体粒子が粒子表面に水酸基を有し、上記加水分解物が粒子表面の少なくとも一部の水酸基との縮合により蛍光体粒子と結合している。
(5)蛍光体粒子が、ケイ酸塩蛍光体の粒子である。
(6)ケイ酸塩蛍光体が、下記(I)の組成式で表されるケイ酸塩蛍光体である。
3MgSi28:Eu・・・・(I)
式(I)中、Mは、Ca、Sr及びBaからなる群より選ばれる一種もしくは二種以上のアルカリ土類金属もしくは該アルカリ土類金属と希土類金属との混合物を表す。
Preferred embodiments of the coated phosphor particles of the present invention are as follows.
(1) The metal and / or metalloid alkoxide is alkoxysilane.
(2) The hydrolyzate covers a region of 30% or more of the particle surface.
(3) The hydrolyzate is a hydrolyzate produced by hydrolysis of the prepolymer in the presence of water containing the prepolymer hydrolysis reaction accelerator.
(4) The phosphor particles have a hydroxyl group on the particle surface, and the hydrolyzate is bonded to the phosphor particles by condensation with at least a part of the hydroxyl groups on the particle surface.
(5) The phosphor particles are silicate phosphor particles.
(6) The silicate phosphor is a silicate phosphor represented by the following composition formula (I).
M 3 MgSi 2 O 8 : Eu (1)
In formula (I), M represents one or two or more alkaline earth metals selected from the group consisting of Ca, Sr and Ba, or a mixture of the alkaline earth metal and rare earth metal.

本発明はまた、蛍光体粒子、そして少なくとも一方の末端にシラノール基を有するポリジメチルシロキサンと、金属および/または半金属のアルコキシドのオリゴマーとの縮合反応により生成したプレポリマーを含む有機溶媒と、プレポリマーの加水分解反応促進剤を含む水とを混合して、該プレポリマーを加水分解させる工程を含む上記本発明の被覆蛍光体粒子の製造方法にもある。   The present invention also provides phosphor particles, an organic solvent containing a prepolymer formed by a condensation reaction of a polydimethylsiloxane having a silanol group at least on one end and an oligomer of a metal and / or metalloid alkoxide, There is also a method for producing the coated phosphor particles of the present invention, including a step of mixing water containing a polymer hydrolysis reaction accelerator to hydrolyze the prepolymer.

本発明の被覆蛍光体粒子は、波長350〜430nmの光で励起したときの発光の発光強度が高く、その発光が長期間にわたって実質的に低下しない。このため、本発明の被覆蛍光体粒子は、波長350〜430nmの光を発光する半導体発光素子と、青色発光蛍光体、緑色発光蛍光体そして赤色発光蛍光体の三種類の蛍光体を組み合わせた三色混色タイプの白色LED用の蛍光体として有利に使用することができる。   The coated phosphor particles of the present invention have high light emission intensity when excited with light having a wavelength of 350 to 430 nm, and the light emission does not substantially decrease over a long period of time. For this reason, the coated phosphor particle of the present invention is a combination of three types of phosphors: a semiconductor light emitting element that emits light having a wavelength of 350 to 430 nm, and a blue light emitting phosphor, a green light emitting phosphor, and a red light emitting phosphor. It can be advantageously used as a phosphor for a color mixed type white LED.

本発明の被覆蛍光体粒子を用いたLEDの構成の一例を示す断面図である。It is sectional drawing which shows an example of a structure of LED using the covering fluorescent substance particle of this invention.

本発明の被覆蛍光体粒子は、粒子表面の少なくとも一部が、少なくとも一方の末端にシラノール基を有するポリジメチルシロキサンと、金属および/または半金属のアルコキシドのオリゴマーとの縮合反応により生成したプレポリマーの加水分解物により被覆されている。プレポリマーの加水分解物により被覆されている蛍光体粒子の表面の領域は、蛍光体粒子の全表面に対して30%以上の領域が被覆されていることが好ましく、40〜100%の範囲の領域が被覆されていることが特に好ましい。蛍光体粒子の表面の加水分解物によって被覆されている領域は、SEM(走査型電子顕微鏡)によって確認できる。   The coated phosphor particle of the present invention is a prepolymer in which at least a part of the particle surface is formed by a condensation reaction of polydimethylsiloxane having a silanol group at at least one end thereof and a metal and / or metalloid alkoxide oligomer. It is covered with a hydrolyzate. The area of the surface of the phosphor particles covered with the prepolymer hydrolyzate is preferably covered by 30% or more of the entire surface of the phosphor particles, and is in the range of 40 to 100%. It is particularly preferred that the region is covered. The region covered with the hydrolyzate on the surface of the phosphor particles can be confirmed by SEM (scanning electron microscope).

本発明において用いるプレポリマーは、有機−無機ハイブリッドプレポリマーと呼ばれることもある。本発明において用いるプレポリマーは、前記の特許文献2(国際公開第2011/125832号)に記載の方法により製造できる。   The prepolymer used in the present invention is sometimes referred to as an organic-inorganic hybrid prepolymer. The prepolymer used in the present invention can be produced by the method described in Patent Document 2 (International Publication No. 2011/125832).

本発明において用いるプレポリマーは、金属および/または半金属のアルコキシドが、ケイ素のアルコキシド(アルコキシシラン)であることが好ましい。   In the prepolymer used in the present invention, the metal and / or metalloid alkoxide is preferably a silicon alkoxide (alkoxysilane).

本発明において、プレポリマーの加水分解物により被覆される前の蛍光体粒子は粒子表面に水酸基を有することが好ましい。そして、被覆蛍光体粒子を被覆しているプレポリマーの加水分解物は、蛍光体粒子の粒子表面に水酸基との縮合により蛍光体粒子と結合していることが好ましい。なお、蛍光体粒子の表面を被覆しているプレポリマーの加水分解物同士が縮合してポリマーを生成していてもよい。   In the present invention, the phosphor particles before being coated with the prepolymer hydrolyzate preferably have a hydroxyl group on the particle surface. The prepolymer hydrolyzate covering the coated phosphor particles is preferably bonded to the phosphor particles by condensation with hydroxyl groups on the particle surfaces of the phosphor particles. In addition, the hydrolyzate of the prepolymer which coat | covers the surface of fluorescent substance particles may condense, and the polymer may be produced | generated.

粒子表面に水酸基を有する蛍光体粒子の例としては、ケイ酸塩を母体とするケイ酸塩蛍光体粒子を挙げることができる。ケイ酸塩蛍光体粒子は、粒子表面にあるケイ素原子(+4価)に水酸基が結合していることが好ましい。ケイ酸塩蛍光体粒子の例としては、(Ba,Sr,Ca)3MgSi28:Euの組成式で表される青色発光蛍光体の粒子、(Ba,Sr,Ca)2SiO4:Euの組成式で表される緑色発光蛍光体の粒子、及び(Ba,Sr,Ca)3MgSi28:Eu,Mnの組成式で表される赤色発光蛍光体の粒子を挙げることができる。これらのケイ酸塩蛍光体粒子は、Sc、Y、Gd、Tb及びLaなどの希土類元素が添加されていてもよい。ケイ酸塩蛍光体粒子以外の蛍光体粒子の例としては、(Ba,Sr,Ca)MgAl1017:Eu、(Ba,Sr,Mg,Ca)10(PO46(Cl,F)2:Eu等の組成式で表される青色発光蛍光体の粒子、BaMgAl1017:Eu,Mn、α−SiAlON:Eu、β−SiAlON:Eu、ZnS:Cu,Al等の組成式で表される緑色発光蛍光体の粒子、及びY22S:Eu、La23S:Eu、(Ca,Sr,Ba)2Si58:Eu、CaAlSiN3:Eu、Eu229、(Ca,Sr,Ba)2Si58:Eu,Mn、CaTiO3:Pr,Bi、(La,Eu)2312等の組成式で表される赤色発光蛍光体の粒子を挙げることができる。Examples of phosphor particles having a hydroxyl group on the particle surface include silicate phosphor particles based on silicate. The silicate phosphor particles preferably have a hydroxyl group bonded to a silicon atom (+ tetravalent) on the particle surface. Examples of silicate phosphor particles include: (Ba, Sr, Ca) 2 SiO 4 : Blue emitting phosphor particles represented by a composition formula of (Ba, Sr, Ca) 3 MgSi 2 O 8 : Eu: There may be mentioned green light emitting phosphor particles represented by a composition formula of Eu and red light emitting phosphor particles represented by a composition formula of (Ba, Sr, Ca) 3 MgSi 2 O 8 : Eu, Mn. . These silicate phosphor particles may be added with rare earth elements such as Sc, Y, Gd, Tb and La. Examples of phosphor particles other than silicate phosphor particles include (Ba, Sr, Ca) MgAl 10 O 17 : Eu, (Ba, Sr, Mg, Ca) 10 (PO 4 ) 6 (Cl, F) 2 : Blue emitting phosphor particles represented by a composition formula such as Eu, BaMgAl 10 O 17 : Eu, Mn, α-SiAlON: Eu, β-SiAlON: Eu, ZnS: Cu, Al, etc. Particles of green light emitting phosphor, and Y 2 O 2 S: Eu, La 2 O 3 S: Eu, (Ca, Sr, Ba) 2 Si 5 N 8 : Eu, CaAlSiN 3 : Eu, Eu 2 W 2 Red light emitting phosphors represented by composition formulas such as O 9 , (Ca, Sr, Ba) 2 Si 5 N 8 : Eu, Mn, CaTiO 3 : Pr, Bi, (La, Eu) 2 W 3 O 12 Particles can be mentioned.

青色発光蛍光体粒子として、下記(I)の組成式で表されるケイ酸塩蛍光体であることが好ましい。
3MgSi28:Eu・・・・(I)
式(I)中、Mは、Ca、Sr及びBaからなる群より選ばれる一種もしくは二種以上のアルカリ土類金属もしくは該アルカリ土類金属と希土類金属との混合物を表す。
The blue light emitting phosphor particles are preferably silicate phosphors represented by the following composition formula (I).
M 3 MgSi 2 O 8 : Eu (1)
In formula (I), M represents one or two or more alkaline earth metals selected from the group consisting of Ca, Sr and Ba, or a mixture of the alkaline earth metal and rare earth metal.

本発明の被覆蛍光体粒子は、蛍光体粒子、そして少なくとも一方の末端にシラノール基を有するポリジメチルシロキサンと、金属および/または半金属のアルコキシドのオリゴマーとの縮合反応により生成したプレポリマーを含む有機溶媒と、プレポリマーの加水分解反応促進剤を含む水とを混合して、該プレポリマーを加水分解させ、生成した加水分解物で蛍光体粒子の表面を被覆させることによって製造することができる。有機溶媒は、水に対して相溶性を有する有機溶媒であることが好ましい。有機溶媒の例としては、アルコール及びケトンを挙げることができる。アルコールは、炭素原子数1〜5の一価アルコールが好ましい。ケトンの例としては、アセトン、メチルアセトン、メチルエチルケトン、メチル−n−プロピルケトン、メチル−n−ブチルケトン及びメチルイソブチルケトンを挙げることができる。加水分解反応促進剤の例としては、アンモニア、スタナスオクトエート、ジブチル錫ジラシレート、ジブチル錫ジ−2−エチルヘキソエート、ナトリウム−O−フェニルフェネート及びテトラ(2−エチルヘキソシル)チタネートを挙げることができる。   The coated phosphor particles of the present invention are organic particles comprising phosphor particles and a prepolymer formed by a condensation reaction of polydimethylsiloxane having a silanol group at at least one end thereof and an oligomer of a metal and / or metalloid alkoxide. It can be produced by mixing a solvent and water containing a prepolymer hydrolysis reaction accelerator, hydrolyzing the prepolymer, and coating the surface of the phosphor particles with the resulting hydrolyzate. The organic solvent is preferably an organic solvent having compatibility with water. Examples of organic solvents include alcohols and ketones. The alcohol is preferably a monohydric alcohol having 1 to 5 carbon atoms. Examples of ketones include acetone, methyl acetone, methyl ethyl ketone, methyl-n-propyl ketone, methyl-n-butyl ketone and methyl isobutyl ketone. Examples of hydrolysis reaction accelerators include ammonia, stannous octoate, dibutyltin diacylate, dibutyltin di-2-ethylhexoate, sodium-O-phenylphenate and tetra (2-ethylhexosyl) titanate. Can do.

上記の方法によって有機溶媒中で生成した被覆蛍光体粒子は、ろ過やデカンテーションなどの固液分離法により回収することができる。回収した被覆蛍光体粒子は、洗浄し、乾燥した後、120〜300℃の温度で加熱処理することが好ましい。加熱処理は、還元性ガスあるいは不活性ガスの雰囲気中で行うことが好ましい。還元性ガスの例としては、アンモニアガス、一酸化炭素ガス、硫化水素ガス及び二酸化硫黄ガスを挙げることができる。不活性ガスの例としては、窒素ガス及びアルゴンガスを挙げることができる。加熱処理の時間は、一般に10分〜10時間の範囲にある。   The coated phosphor particles produced in the organic solvent by the above method can be recovered by a solid-liquid separation method such as filtration or decantation. The recovered coated phosphor particles are preferably heat treated at a temperature of 120 to 300 ° C. after washing and drying. The heat treatment is preferably performed in an atmosphere of a reducing gas or an inert gas. Examples of the reducing gas include ammonia gas, carbon monoxide gas, hydrogen sulfide gas, and sulfur dioxide gas. Examples of the inert gas include nitrogen gas and argon gas. The time for the heat treatment is generally in the range of 10 minutes to 10 hours.

次に本発明の被覆蛍光体粒子を利用したLED(発光ダイオード)について、添付図面の図1を参照しながら説明する。
図1は、本発明の被覆蛍光体粒子を用いたLEDの一例の断面図である。図1において、LEDは、基板1と、基板1の上に接着剤2により固定された半導体発光素子3、基板1の上に形成された一対の電極4a、4b、半導体発光素子3と電極4a、4bとを電気的に接続するリード線5a、5b、半導体発光素子3を被覆する樹脂層6、樹脂層6の上に設けられた蛍光体層7、そして樹脂層6と蛍光体層7の周囲を覆う光反射材8、そして電極4a、4bと外部電源(図示せず)とを電気的に接続する導電線9a、9bからなる。半導体発光素子3は、電気エネルギーの付与によって波長350〜430nmの光を発光する半導体発光素子であることが好ましい。半導体発光素子の例としては、AlGaN系半導体素子を挙げることができる。蛍光体層7は、本発明の被覆蛍光体粒子が分散された透明材料によって形成されている。被覆蛍光体粒子は、被覆青色発光蛍光体粒子、被覆緑色発光蛍光体粒子及び被覆赤色発光蛍光体粒子の三種類の被覆蛍光体粒子の混合物であることが好ましい。透明材料の例としては、ガラス及びシリコーン樹脂などの透明樹脂を挙げることができる。
Next, an LED (light emitting diode) using the coated phosphor particles of the present invention will be described with reference to FIG. 1 of the accompanying drawings.
FIG. 1 is a cross-sectional view of an example of an LED using the coated phosphor particles of the present invention. In FIG. 1, an LED includes a substrate 1, a semiconductor light emitting device 3 fixed on the substrate 1 with an adhesive 2, a pair of electrodes 4a and 4b formed on the substrate 1, a semiconductor light emitting device 3 and an electrode 4a. 4b, lead wires 5a and 5b electrically connecting the semiconductor light emitting element 3, a resin layer 6 covering the semiconductor light emitting element 3, a phosphor layer 7 provided on the resin layer 6, and the resin layer 6 and the phosphor layer 7 The light reflecting material 8 that covers the periphery, and conductive wires 9a and 9b that electrically connect the electrodes 4a and 4b to an external power source (not shown). The semiconductor light emitting element 3 is preferably a semiconductor light emitting element that emits light having a wavelength of 350 to 430 nm by application of electric energy. As an example of the semiconductor light emitting device, an AlGaN semiconductor device can be cited. The phosphor layer 7 is formed of a transparent material in which the coated phosphor particles of the present invention are dispersed. The coated phosphor particles are preferably a mixture of three types of coated phosphor particles: coated blue light emitting phosphor particles, coated green light emitting phosphor particles, and coated red light emitting phosphor particles. Examples of the transparent material include transparent resins such as glass and silicone resin.

図1のLEDにおいて、導電線9a、9bを介して電極4a、4bに電圧を印加して半導体発光素子3に電気エネルギーを付与すると、半導体発光素子3が発光して発光光が発生する。この半導体発光素子3の発光光によって蛍光体層7中の被覆蛍光体粒子を励起させることによって可視光が生成する。半導体発光素子3として電気エネルギーの付与によって波長350〜430nmの光を発光する半導体発光素子を用い、蛍光体層7中の被覆蛍光体粒子として被覆青色発光蛍光体粒子、被覆緑色発光蛍光体粒子及び被覆赤色発光蛍光体粒子の三種類の被覆蛍光体粒子を用いることによって、それらの蛍光体から生成した青色光、緑色光及び赤色光の混色により発生する白色光を得ることができる。   In the LED of FIG. 1, when a voltage is applied to the electrodes 4a and 4b through the conductive wires 9a and 9b to apply electric energy to the semiconductor light emitting element 3, the semiconductor light emitting element 3 emits light and emitted light is generated. Visible light is generated by exciting the coated phosphor particles in the phosphor layer 7 with the emitted light of the semiconductor light emitting element 3. A semiconductor light-emitting element that emits light having a wavelength of 350 to 430 nm by applying electric energy is used as the semiconductor light-emitting element 3, and the coated blue-emitting phosphor particles, the coated green-emitting phosphor particles, and the coated phosphor particles in the phosphor layer 7 are used. By using three types of coated phosphor particles of the coated red light-emitting phosphor particles, white light generated from a mixture of blue light, green light and red light generated from these phosphors can be obtained.

[実施例1]
ナス型フラスコに、プレポリマー(国際公開第2011/125832号に記載の方法により製造された、少なくとも一方の末端にシラノール基を有するポリジメチルシロキサンと、アルコキシシランのオリゴマーとの縮合反応により生成した有機−無機ハイブリッドプレポリマー)1.452g、ケイ酸塩青色発光蛍光体粒子(Sr2.9550.005MgSi28:Eu0.04粒子)12g、エタノール60mL、そして回転子を投入し、回転子を回転させて撹拌した。室温で撹拌を続けながら、ナス型フラスコに、濃度25質量%のアンモニア水溶液2.616gを10分かけて、ゆっくりと滴下した。アンモニア水溶液の滴下終了後、さらに2時間撹拌を続けてプレポリマーを加水分解させ、その加水分解物でケイ酸塩青色発光蛍光体粒子の表面を被覆した。次いで、被覆ケイ酸塩青色発光蛍光体粒子をろ過により回収した。回収した被覆ケイ酸塩青色発光蛍光体粒子をメタノールで洗浄した後、真空乾燥機を用いて60℃の温度で一晩減圧乾燥した。乾燥後の被覆ケイ酸塩青色発光蛍光体粒子を窒化ホウ素(BN)るつぼに入れて、環状炉に投入した。そしてその環状炉にアンモニアガスを流しながら、被覆ケイ酸塩青色発光蛍光体粒子を180℃の温度で1時間加熱した。放冷後の被覆ケイ酸塩青色発光蛍光体粒子の表面をSEM(走査型電子顕微鏡)を用いて観察したところケイ酸塩青色発光蛍光体粒子の表面の約40%の領域がプレポリマーの加水分解物により被覆されていることが確認された。
[Example 1]
In an eggplant-shaped flask, a prepolymer (organic produced by a condensation reaction of a polydimethylsiloxane having a silanol group at at least one end produced by the method described in International Publication No. 2011-125842 and an oligomer of alkoxysilane was formed. -Inorganic hybrid prepolymer ( 1.452 g), silicate blue light emitting phosphor particles (Sr 2.955 Y 0.005 MgSi 2 O 8 : Eu 0.04 particles) 12 g, ethanol 60 mL, and a rotator were charged and the rotator was rotated. Stir. While continuing stirring at room temperature, 2.616 g of an aqueous ammonia solution having a concentration of 25% by mass was slowly added dropwise to the eggplant flask over 10 minutes. After completion of the dropwise addition of the aqueous ammonia solution, stirring was further continued for 2 hours to hydrolyze the prepolymer, and the surface of the silicate blue light-emitting phosphor particles was coated with the hydrolyzate. The coated silicate blue emitting phosphor particles were then collected by filtration. The recovered coated silicate blue light-emitting phosphor particles were washed with methanol and then dried under reduced pressure overnight at a temperature of 60 ° C. using a vacuum dryer. The coated silicate blue light-emitting phosphor particles after drying were placed in a boron nitride (BN) crucible and placed in an annular furnace. The coated silicate blue light-emitting phosphor particles were heated at a temperature of 180 ° C. for 1 hour while flowing ammonia gas through the annular furnace. When the surface of the coated silicate blue light-emitting phosphor particles after being allowed to cool was observed using an SEM (scanning electron microscope), about 40% of the surface of the silicate blue light-emitting phosphor particles was hydrolyzed with prepolymer. It was confirmed that it was covered with the decomposition product.

[実施例2]
ガラス製のバイアル瓶に、プレポリマー0.726gと濃度2モル/Lのエタノール水溶液5mLとを入れ、バイアル瓶に蓋をした後、ミックスローターを用いて、バイアル瓶を10分間振とうさせた。次いで、バイアル瓶の蓋を開けて、バイアル瓶にケイ酸塩青色発光蛍光体粒子(Sr2.9550.005MgSi28:Eu0.04粒子)5gを投入し、再びバイアル瓶に蓋をした後、ミックスローターを用いて、バイアル瓶を一晩振とうして、プレポリマーを加水分解させ、その加水分解物中にケイ酸塩青色発光蛍光体粒子が分散した混合物を得た。次いで、この混合物を、回転子により撹拌されている純水中に滴下して、プレポリマーの加水分解物で被覆された被覆ケイ酸塩青色発光蛍光体粒子を得た。純水中に沈殿した被覆ケイ酸塩青色発光蛍光体粒子をろ過により回収した。回収した被覆ケイ酸塩青色発光蛍光体粒子をメタノールで洗浄した後、真空乾燥機を用いて60℃の温度で一晩減圧乾燥した。乾燥後の被覆ケイ酸塩青色発光蛍光体粒子を窒化ホウ素るつぼに入れて、環状炉に投入した。そしてその環状炉にアンモニアガスを流しながら、被覆ケイ酸塩青色発光蛍光体粒子を180℃の温度で1時間加熱した。放冷後の被覆ケイ酸塩青色発光蛍光体粒子の表面をSEMを用いて観察したところ、ケイ酸塩青色発光蛍光体粒子の表面の約50%の領域がプレポリマーの加水分解物により被覆されていることが確認された。
[Example 2]
A glass vial was charged with 0.726 g of prepolymer and 5 mL of an aqueous ethanol solution having a concentration of 2 mol / L, and the vial was covered, and then the vial was shaken for 10 minutes using a mix rotor. Next, the lid of the vial is opened, 5 g of silicate blue light emitting phosphor particles (Sr 2.955 Y 0.005 MgSi 2 O 8 : Eu 0.04 particles) are put into the vial, and the vial is covered again. Using a rotor, the vial was shaken overnight to hydrolyze the prepolymer, and a mixture in which the silicate blue-emitting phosphor particles were dispersed in the hydrolyzate was obtained. Next, this mixture was dropped into pure water stirred by a rotor to obtain coated silicate blue-emitting phosphor particles coated with a prepolymer hydrolyzate. The coated silicate blue light-emitting phosphor particles precipitated in pure water were collected by filtration. The recovered coated silicate blue light-emitting phosphor particles were washed with methanol and then dried under reduced pressure overnight at a temperature of 60 ° C. using a vacuum dryer. The coated silicate blue light-emitting phosphor particles after drying were placed in a boron nitride crucible and placed in an annular furnace. The coated silicate blue light-emitting phosphor particles were heated at a temperature of 180 ° C. for 1 hour while flowing ammonia gas through the annular furnace. When the surface of the coated silicate blue light-emitting phosphor particles after cooling was observed using SEM, about 50% of the surface of the surface of the silicate blue light-emitting phosphor particles was covered with the prepolymer hydrolyzate. It was confirmed that

[実施例3]
プレポリマーの量を1.452gとし、エタノール水溶液の量を16mLとしたこと、そして、プレポリマーの加水分解物中にケイ酸塩蛍光体粒子が分散した混合物を、超音波の付与により振動している300mLの純水中に少しずつ滴下したこと以外は、実施例2と同様にして、プレポリマーの加水分解物で被覆されたケイ酸塩青色発光蛍光体粒子を得た。得られた被覆ケイ酸塩青色発光蛍光体粒子の表面をSEMを用いて観察したところ、ケイ酸塩青色発光蛍光体粒子の表面の約45%の領域がプレポリマーの加水分解物により被覆されていることが確認された。
[Example 3]
The amount of the prepolymer was 1.452 g, the amount of the aqueous ethanol solution was 16 mL, and the mixture in which the silicate phosphor particles were dispersed in the hydrolyzate of the prepolymer was vibrated by applying ultrasonic waves. Silicate blue light-emitting phosphor particles coated with a prepolymer hydrolyzate were obtained in the same manner as in Example 2 except that it was dropped little by little into 300 mL of pure water. When the surface of the obtained coated silicate blue light-emitting phosphor particles was observed using SEM, about 45% of the surface of the surface of the silicate blue light-emitting phosphor particles was coated with the prepolymer hydrolyzate. It was confirmed that

[比較例1]
実施例1〜3で使用したのと同じケイ酸塩青色発光蛍光体粒子(Sr2.9550.005MgSi28:Eu0.04粒子)を比較例1として用意した。
[Comparative Example 1]
The same silicate blue light-emitting phosphor particles (Sr 2.955 Y 0.005 MgSi 2 O 8 : Eu 0.04 particles) used in Examples 1 to 3 were prepared as Comparative Example 1.

[比較例2]
プレポリマーの代わりに、テトラエトキシシラン1.452gを使用したこと以外は、実施例1と同様にして、テトラエトキシシランの加水分解物で処理されたケイ酸塩青色発光蛍光体粒子を製造した。
[Comparative Example 2]
Silicate blue light-emitting phosphor particles treated with a tetraethoxysilane hydrolyzate were produced in the same manner as in Example 1 except that 1.452 g of tetraethoxysilane was used instead of the prepolymer.

[評価]
実施例1〜3で得られた被覆ケイ酸塩青色発光蛍光体粒子、比較例1のケイ酸塩青色発光蛍光体粒子及び比較例2で得られたテトラエトキシシランの加水分解物で処理されたケイ酸塩青色発光蛍光体粒子を用いて、下記の方法により青色LEDチップを製造した。そして、その青色LEDチップに電気エネルギーを供給して、波長460nmの青色光の発光強度を測定した。この発光強度を初期発光強度として、表1に示す。なお、初期発光強度は、比較例1の初期発光強度を100とした相対値である。
また、青色LEDチップに電気エネルギーを供給開始から100時間後、200時間後、500時間後の波長460nmの可視光の発光強度を測定した。測定した発光強度を所定時間経過の発光強度として、表1に示す。所定時間経過の発光強度は、各実施例及び比較例の初期発光強度を100とした相対値である。
[Evaluation]
The coated silicate blue light-emitting phosphor particles obtained in Examples 1 to 3, the silicate blue light-emitting phosphor particles of Comparative Example 1 and the tetraethoxysilane hydrolyzate obtained in Comparative Example 2 were treated. Using the silicate blue light emitting phosphor particles, a blue LED chip was manufactured by the following method. Then, electric energy was supplied to the blue LED chip, and the emission intensity of blue light having a wavelength of 460 nm was measured. This emission intensity is shown in Table 1 as the initial emission intensity. The initial light emission intensity is a relative value with the initial light emission intensity of Comparative Example 1 as 100.
Further, the emission intensity of visible light having a wavelength of 460 nm was measured after 100 hours, 200 hours, and 500 hours from the start of supplying electric energy to the blue LED chip. The measured emission intensity is shown in Table 1 as the emission intensity after a predetermined time. The light emission intensity after the elapse of a predetermined time is a relative value with the initial light emission intensity of each example and comparative example as 100.

[青色LEDチップの製造方法]
電極が形成されているガラス基板の上に、半導体紫外光発光素子(発光波長:400nm)を接着剤で固定した。次に、ガラス基板の上に、半導体紫外光発光素子を囲むように反射部材を形成した。次いで、ワイヤーボンディングにより、ガラス基板の電極と半導体紫外光発光素子の電極とを接続した。その後、反射部材と半導体紫外光発光素子の間の空間に、試料の蛍光体粒子を熱硬化性シリコーン樹脂に15質量%の量にて分散させた蛍光体粒子含有樹脂組成物を流し込み、その蛍光体粒子含有樹脂組成物を加熱処理して熱硬化性シリコーン樹脂を硬化させて、青色LEDチップを得た。
[Method for producing blue LED chip]
A semiconductor ultraviolet light emitting element (emission wavelength: 400 nm) was fixed with an adhesive on a glass substrate on which an electrode was formed. Next, a reflecting member was formed on the glass substrate so as to surround the semiconductor ultraviolet light emitting element. Subsequently, the electrode of the glass substrate and the electrode of the semiconductor ultraviolet light emitting element were connected by wire bonding. Thereafter, a phosphor particle-containing resin composition in which phosphor particles of the sample are dispersed in a thermosetting silicone resin in an amount of 15% by mass is poured into the space between the reflecting member and the semiconductor ultraviolet light emitting element, and the fluorescence The body particle-containing resin composition was heat-treated to cure the thermosetting silicone resin to obtain a blue LED chip.

Figure 2014104286
初期発光強度:比較例1の初期発光強度を100とした相対値である。
所定時間経過の発光強度:それぞれの実施例及び比較例の初期発光強度を100とした相対値である。
Figure 2014104286
Initial emission intensity: Relative value with the initial emission intensity of Comparative Example 1 as 100.
Luminous intensity after elapse of a predetermined time: Relative value with initial luminous intensity of each example and comparative example as 100.

表1の結果から、本発明に従うプレポリマーの加水分解物によって被覆されている被覆ケイ酸塩青色発光蛍光体粒子(実施例1〜3)は、400nmの紫外光で励起したときの初期発光強度が、被覆前のケイ酸塩青色発光蛍光体粒子(比較例1)と同じ100であり、従来のテトラエトキシシランの加水分解物で処理されたケイ酸塩青色発光蛍光体粒子(比較例2)と比較して高い値を示すことが分かる。   From the results of Table 1, the coated silicate blue-emitting phosphor particles coated with the prepolymer hydrolyzate according to the present invention (Examples 1 to 3) have initial emission intensity when excited with 400 nm ultraviolet light. Is the same 100 as the silicate blue light emitting phosphor particles before comparison (Comparative Example 1), and is treated with a conventional hydrolyzate of tetraethoxysilane (Comparative Example 2). It can be seen that the value is higher than that.

また、表1の結果から、本発明に従うプレポリマーの加水分解物によって被覆されている被覆ケイ酸塩青色発光蛍光体粒子(実施例1〜3)は、所定時間経過の発光強度が初期発光強度よりも低下していないことから、発光強度が長期間にわたって安定することが分かる。一方、被覆前のケイ酸塩青色発光蛍光体粒子(比較例1)は、所定時間経過の発光強度が時間の経過と共に低下している。   In addition, from the results of Table 1, the coated silicate blue light-emitting phosphor particles (Examples 1 to 3) coated with the prepolymer hydrolyzate according to the present invention have an initial light emission intensity of a predetermined time. From this, it can be seen that the emission intensity is stable over a long period of time. On the other hand, the luminescence intensity of the silicate blue light-emitting phosphor particles (Comparative Example 1) before coating decreases with the passage of time.

1 基板
2 接着剤
3 半導体発光素子
4a、4b 電極
5a、5b リード線
6 樹脂層
7 蛍光体層
8 光反射材
9a、9b 導電線
DESCRIPTION OF SYMBOLS 1 Substrate 2 Adhesive 3 Semiconductor light emitting element 4a, 4b Electrode 5a, 5b Lead wire 6 Resin layer 7 Phosphor layer 8 Light reflecting material 9a, 9b Conductive wire

Claims (8)

少なくとも一方の末端にシラノール基を有するポリジメチルシロキサンと、金属および/または半金属のアルコキシドのオリゴマーとの縮合反応により生成したプレポリマーの加水分解物により、蛍光体粒子の表面の少なくとも一部が被覆されてなる被覆蛍光体粒子。   At least a part of the surface of the phosphor particles is covered with a hydrolyzate of a prepolymer produced by a condensation reaction between a polydimethylsiloxane having a silanol group at at least one end and an oligomer of a metal and / or metalloid alkoxide. Coated phosphor particles obtained. 金属および/または半金属のアルコキシドがアルコキシシランである請求項1に記載の被覆蛍光体粒子。   The coated phosphor particle according to claim 1, wherein the metal and / or metalloid alkoxide is an alkoxysilane. 上記加水分解物が、粒子表面の30%以上の領域を被覆している請求項1に記載の被覆蛍光体粒子。   The coated phosphor particle according to claim 1, wherein the hydrolyzate covers a region of 30% or more of the particle surface. 上記加水分解物が、上記プレポリマーの加水分解反応促進剤を含む水の存在下でのプレポリマーの加水分解により生成した加水分解物である請求項1に記載の被覆蛍光体粒子。   The coated phosphor particle according to claim 1, wherein the hydrolyzate is a hydrolyzate produced by hydrolysis of a prepolymer in the presence of water containing a hydrolysis accelerator for the prepolymer. 蛍光体粒子が粒子表面に水酸基を有し、上記加水分解物が粒子表面の少なくとも一部の水酸基との縮合により蛍光体粒子と結合している請求項1に記載の被覆蛍光体粒子。   The coated phosphor particle according to claim 1, wherein the phosphor particle has a hydroxyl group on the particle surface, and the hydrolyzate is bonded to the phosphor particle by condensation with at least a part of the hydroxyl group on the particle surface. 蛍光体粒子が、ケイ酸塩蛍光体の粒子である請求項1に記載の被覆蛍光体粒子。   The coated phosphor particle according to claim 1, wherein the phosphor particle is a silicate phosphor particle. ケイ酸塩蛍光体が、下記(I)の組成式で表されるケイ酸塩蛍光体である請求項6に記載の被覆蛍光体粒子:
3MgSi28:Eu・・・・(I)
式(I)中、Mは、Ca、Sr及びBaからなる群より選ばれる一種もしくは二種以上のアルカリ土類金属もしくは該アルカリ土類金属と希土類金属との混合物を表す。
The coated phosphor particle according to claim 6, wherein the silicate phosphor is a silicate phosphor represented by a composition formula of the following (I):
M 3 MgSi 2 O 8 : Eu (1)
In formula (I), M represents one or two or more alkaline earth metals selected from the group consisting of Ca, Sr and Ba, or a mixture of the alkaline earth metal and rare earth metal.
蛍光体粒子、そして少なくとも一方の末端にシラノール基を有するポリジメチルシロキサンと、金属および/または半金属のアルコキシドのオリゴマーとの縮合反応により生成したプレポリマーを含む有機溶媒と、プレポリマーの加水分解反応促進剤を含む水とを混合して、該プレポリマーを加水分解させる工程を含む請求項1に記載の被覆蛍光体粒子の製造方法。   Hydrolysis reaction of a prepolymer with phosphor particles, an organic solvent containing a prepolymer produced by a condensation reaction of a polydimethylsiloxane having a silanol group at at least one end thereof, and an oligomer of a metal and / or metalloid alkoxide The method for producing coated phosphor particles according to claim 1, comprising a step of hydrolyzing the prepolymer by mixing with water containing an accelerator.
JP2014554587A 2012-12-28 2013-12-27 Coated phosphor particles and method for producing the same Expired - Fee Related JP6308368B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012287822 2012-12-28
JP2012287822 2012-12-28
PCT/JP2013/085077 WO2014104286A1 (en) 2012-12-28 2013-12-27 Coated phosphor particles and manufacturing process therefor

Publications (2)

Publication Number Publication Date
JPWO2014104286A1 true JPWO2014104286A1 (en) 2017-01-19
JP6308368B2 JP6308368B2 (en) 2018-04-11

Family

ID=51021355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014554587A Expired - Fee Related JP6308368B2 (en) 2012-12-28 2013-12-27 Coated phosphor particles and method for producing the same

Country Status (2)

Country Link
JP (1) JP6308368B2 (en)
WO (1) WO2014104286A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6488620B2 (en) * 2014-09-30 2019-03-27 堺化学工業株式会社 Multilayer-coated phosphor and method for producing multilayer-coated phosphor
CN106867508A (en) * 2016-12-30 2017-06-20 彩虹集团新能源股份有限公司 A kind of surface treatment method of LED backlight silicate yellow fluorescent powder
JP7208056B2 (en) * 2019-02-25 2023-01-18 デンカ株式会社 Method for producing β-sialon phosphor
JP7141351B2 (en) * 2019-02-25 2022-09-22 デンカ株式会社 β-Sialon Phosphor, Light-Emitting Member, and Light-Emitting Device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007154122A (en) * 2005-12-08 2007-06-21 Pioneer Electronic Corp Phosphor and gas discharge display device
WO2008001799A1 (en) * 2006-06-27 2008-01-03 Mitsubishi Chemical Corporation Illuminating device
JP2008069326A (en) * 2006-09-15 2008-03-27 Suzuka Fuji Xerox Co Ltd Organic-inorganic hybrid polymer and method for producing the same
JP2008111080A (en) * 2006-10-31 2008-05-15 Mitsubishi Chemicals Corp Method of surface-treating fluorescent substance, fluorescent substance, fluorescent substance-containing composition, light emitting device, image display device, and illuminating device
JP2008280471A (en) * 2007-05-14 2008-11-20 Sony Corp Light emitting composition, light source device using the same and display device using the same
WO2011125832A1 (en) * 2010-03-31 2011-10-13 日本山村硝子株式会社 Organic-inorganic hybrid prepolymer and process for production thereof
WO2012063707A1 (en) * 2010-11-11 2012-05-18 住友化学株式会社 Process for manufacturing fluorescent material
WO2012070565A1 (en) * 2010-11-22 2012-05-31 宇部マテリアルズ株式会社 Silicate phosphor exhibiting high light emission characteristics and moisture resistance, and light emitting device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007154122A (en) * 2005-12-08 2007-06-21 Pioneer Electronic Corp Phosphor and gas discharge display device
WO2008001799A1 (en) * 2006-06-27 2008-01-03 Mitsubishi Chemical Corporation Illuminating device
JP2008069326A (en) * 2006-09-15 2008-03-27 Suzuka Fuji Xerox Co Ltd Organic-inorganic hybrid polymer and method for producing the same
JP2008111080A (en) * 2006-10-31 2008-05-15 Mitsubishi Chemicals Corp Method of surface-treating fluorescent substance, fluorescent substance, fluorescent substance-containing composition, light emitting device, image display device, and illuminating device
JP2008280471A (en) * 2007-05-14 2008-11-20 Sony Corp Light emitting composition, light source device using the same and display device using the same
WO2011125832A1 (en) * 2010-03-31 2011-10-13 日本山村硝子株式会社 Organic-inorganic hybrid prepolymer and process for production thereof
WO2012063707A1 (en) * 2010-11-11 2012-05-18 住友化学株式会社 Process for manufacturing fluorescent material
WO2012070565A1 (en) * 2010-11-22 2012-05-31 宇部マテリアルズ株式会社 Silicate phosphor exhibiting high light emission characteristics and moisture resistance, and light emitting device

Also Published As

Publication number Publication date
JP6308368B2 (en) 2018-04-11
WO2014104286A1 (en) 2014-07-03

Similar Documents

Publication Publication Date Title
JP6625582B2 (en) Red line emitting phosphor for use in light emitting diode applications
US8710741B2 (en) Illuminating device
JP5880512B2 (en) Semiconductor device member forming liquid, semiconductor device member, and semiconductor light emitting device
JP4876426B2 (en) Light emitting device with excellent heat resistance and light resistance
US9708492B2 (en) LED device and coating liquid used for production of same
JP5386800B2 (en) Phosphor-containing composition, light emitting device, lighting device, and image display device
JP5503870B2 (en) Phosphors used in LEDs and blends thereof
TWI558788B (en) Color stable phosphors
JP2007126536A (en) Wavelength conversion member and light emitting device
JP2008111080A (en) Method of surface-treating fluorescent substance, fluorescent substance, fluorescent substance-containing composition, light emitting device, image display device, and illuminating device
JP2013529244A (en) Luminescent substance
TW200938608A (en) Surface-modified conversion phosphors
JP2008260930A (en) Composition containing fluorescent substance, light emitter, lighting apparatus and image display device
JP2009013186A (en) Coated phosphor particles, method for producing coated phosphor particles, phosphor-containing composition, light emitting device, image display device and illuminating device
JP6308368B2 (en) Coated phosphor particles and method for producing the same
JP5446078B2 (en) SEMICONDUCTOR DEVICE MEMBER, SEMICONDUCTOR DEVICE MEMBER FORMING METHOD AND SEMICONDUCTOR DEVICE MEMBER MANUFACTURING METHOD, SEMICONDUCTOR LIGHT EMITTING DEVICE USING THE SAME, SEMICONDUCTOR DEVICE MEMBER FORMING SOLUTION, AND PHOSPHOR COMPOSITION
JP6275471B2 (en) Solid light emitting device and phosphor-dispersed organic-inorganic hybrid prepolymer composition
JP2007088299A (en) Light emitting device, lighting device using it, and picture display device
JP2011068791A (en) Coated phosphor and led light-emitting device
JP2009224754A (en) Semiconductor light emitting device, lighting apparatus, and image display device
JP5141107B2 (en) Lighting device
JP5736272B2 (en) Blue light emitting phosphor and light emitting device using the blue light emitting phosphor
WO2013146799A1 (en) Coated sulfide-type red phosphor particle, and method for producing same
JP2013049745A (en) Phosphor having surface coated with silica glass and manufacturing method thereof
JP2012144685A (en) Phosphor and light emitting apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180227

R150 Certificate of patent or registration of utility model

Ref document number: 6308368

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees