JP2002076445A - Semiconductor light emitting device - Google Patents
Semiconductor light emitting deviceInfo
- Publication number
- JP2002076445A JP2002076445A JP2000265891A JP2000265891A JP2002076445A JP 2002076445 A JP2002076445 A JP 2002076445A JP 2000265891 A JP2000265891 A JP 2000265891A JP 2000265891 A JP2000265891 A JP 2000265891A JP 2002076445 A JP2002076445 A JP 2002076445A
- Authority
- JP
- Japan
- Prior art keywords
- light emitting
- semiconductor light
- emitting device
- emitting element
- fluorescent layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L2224/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
- H01L2224/321—Disposition
- H01L2224/32151—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/32221—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/32245—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L2224/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
- H01L2224/321—Disposition
- H01L2224/32151—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/32221—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/32245—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
- H01L2224/32257—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic the layer connector connecting to a bonding area disposed in a recess of the surface of the item
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/4805—Shape
- H01L2224/4809—Loop shape
- H01L2224/48091—Arched
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/481—Disposition
- H01L2224/48151—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/48221—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/48245—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
- H01L2224/48247—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/481—Disposition
- H01L2224/48151—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/48221—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/48245—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
- H01L2224/48257—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73251—Location after the connecting process on different surfaces
- H01L2224/73265—Layer and wire connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/30—Technical effects
- H01L2924/301—Electrical effects
- H01L2924/3025—Electromagnetic shielding
Landscapes
- Luminescent Compositions (AREA)
- Led Device Packages (AREA)
- Led Devices (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は半導体発光装置、特
に半導体発光素子から照射される近紫外光を可視光に波
長変換して外部に放出する半導体発光装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor light emitting device, and more particularly to a semiconductor light emitting device that converts near-ultraviolet light emitted from a semiconductor light emitting element into visible light and emits the light to the outside.
【0002】[0002]
【従来の技術】図6に示す従来の蛍光体波長変換半導体
発光装置は、一対の配線導体(1, 2)と、一対の配線導体
(1, 2)の一方の端部に設けられたカップ部(3)と、カッ
プ部(3)の底部に固着された半導体発光素子(4)と、半導
体発光素子(4)と一対の配線導体(1, 2)とを接続するボ
ンディングワイヤ(6, 7)と、カップ部(3)内を満たし半
導体発光素子(4)を被覆する蛍光体(9)を含有する樹脂よ
り成るコーティング(11)と、一対の配線導体(1, 2)の一
方の端部、カップ部(3)、半導体発光素子(4)、ボンディ
ングワイヤ(6, 7)及びコーティング(11)とを被覆する透
明樹脂より成るモールド部材(12)とを備える。2. Description of the Related Art A conventional phosphor wavelength conversion semiconductor light emitting device shown in FIG. 6 comprises a pair of wiring conductors (1, 2) and a pair of wiring conductors.
A cup (3) provided at one end of (1, 2), a semiconductor light-emitting element (4) fixed to the bottom of the cup (3), and a pair of wiring with the semiconductor light-emitting element (4) A bonding wire (6, 7) for connecting the conductors (1, 2) and a coating (11) comprising a resin containing a phosphor (9) that fills the cup (3) and covers the semiconductor light emitting element (4). ) And one end of a pair of wiring conductors (1, 2), a cup (3), a semiconductor light emitting element (4), a bonding resin (6, 7) and a transparent resin covering the coating (11). And a mold member (12).
【0003】半導体発光素子(4)は、400nm〜530n
m間にピーク波長があり且つ単色性の発光スペクトルを
持つGaN系化合物半導体より成る青色系の半導体発光素
子である。蛍光体(9)は、化学式(RE1-xSmx)3(AlyGa1-y)
5O12:Ceで表され、0≦x<1、0≦y≦1、REはY、G
dから選択される少なくとも一種である。蛍光体(9)は、
半導体発光素子(4)より放射される光によって励起さ
れ、黄色域をピークとして青色域から赤色域まで幅広い
スペクトルで発光する。本明細書では、蛍光体(9)を「Y
AG:Ce系蛍光体」と略記する。The semiconductor light emitting device (4) has a thickness of 400 nm to 530 nm.
This is a blue-based semiconductor light emitting device made of a GaN-based compound semiconductor having a peak wavelength between m and a monochromatic emission spectrum. Phosphor (9) has the chemical formula (RE 1-x Sm x ) 3 (Al y Ga 1-y )
5 O 12 : represented by Ce, 0 ≦ x <1, 0 ≦ y ≦ 1, RE is Y, G
At least one selected from d. Phosphor (9) is
It is excited by light emitted from the semiconductor light emitting element (4) and emits light in a wide spectrum from a blue region to a red region with a yellow region as a peak. In the present specification, the phosphor (9) is referred to as `` Y
AG: Ce phosphor ".
【0004】コーティング(11)は、透明樹脂にYAG:Ce
系蛍光体(9)の粉末を混合し、例えばディスペンスやプ
リディップ等の方法を用いてカップ部(3)に透明樹脂を
注入した後、透明樹脂を加熱硬化して形成される。図6
に示す半導体発光装置では、半導体発光素子(4)から照
射される発光成分の一部は、コーティング(11)中のYA
G:Ce系蛍光体(9)で吸収され、YAG:Ce系蛍光体(9)の発
光成分に変換されるが、半導体発光素子(4)から照射さ
れる発光成分の残部は、YAG:Ce系蛍光体(9)に入射せず
コーティング(11)を透過するため、半導体発光装置の外
部に放出される光は、YAG:Ce系蛍光体(9)の発光成分と
青色系の半導体発光素子(4)の透過光成分とが混色され
た光となる。The coating (11) is made of a transparent resin made of YAG: Ce.
After the powder of the system phosphor (9) is mixed, the transparent resin is injected into the cup portion (3) using a method such as dispensing or pre-dipping, and then the transparent resin is cured by heating. FIG.
In the semiconductor light emitting device shown in (1), a part of the light emitting component irradiated from the semiconductor light emitting element (4)
G: Absorbed by the Ce-based phosphor (9) and converted into a light-emitting component of the YAG: Ce-based phosphor (9). The remaining light-emitting component emitted from the semiconductor light-emitting element (4) is YAG: Ce. The light emitted to the outside of the semiconductor light emitting device is transmitted through the coating (11) without being incident on the phosphor (9), and the light emitted from the YAG: Ce phosphor (9) and the blue semiconductor light emitting element The light is mixed with the transmitted light component of (4).
【0005】また、半導体発光素子(4)の光とYAG:Ce系
蛍光体(9)の光とがxy色度図の白色点を挟む補色の関
係にあるために、図6に示す半導体発光装置ではコーテ
ィング(11)中のYAG:Ce系蛍光体(9)の濃度とコーティン
グ(11)のカップ部(3)への注入量とを適切に制御すれ
ば、広帯域の発光スペクトルを持つ白色光を外部に放出
することができる。図7は、図6に示す半導体発光装置
の発光スペクトルの一例を示す。管球式白色光源である
白熱電球、熱陰極蛍光管、冷陰極蛍光管等従来の発光源
に比べて、白色光を発する半導体発光装置は、機械的衝
撃に強く、発熱が少なく、高電圧駆動が不要であり、高
周波ノイズを発生せず、寿命が長く、水銀を使用せず環
境に優しい等の優れた利点があり、次世代固体化白色光
源として特に期待される。Further, since the light of the semiconductor light emitting element (4) and the light of the YAG: Ce-based phosphor (9) have a complementary color relationship sandwiching the white point in the xy chromaticity diagram, the semiconductor light emitting device shown in FIG. If the concentration of the YAG: Ce-based phosphor (9) in the coating (11) and the amount of the coating (11) injected into the cup (3) are appropriately controlled, the device can provide white light having a broadband emission spectrum. Can be released to the outside. FIG. 7 shows an example of an emission spectrum of the semiconductor light emitting device shown in FIG. Compared to conventional light sources such as incandescent lamps, hot-cathode fluorescent tubes, and cold-cathode fluorescent tubes, which are tube-type white light sources, semiconductor light-emitting devices that emit white light are more resistant to mechanical shock, generate less heat, and are driven by high voltage. Are not required, do not generate high-frequency noise, have a long life, are free of mercury, and have excellent advantages such as being environmentally friendly, and are particularly expected as a next-generation solid-state white light source.
【0006】しかしながら、優れた利点を持つ従来の半
導体発光装置には、同時に多くの問題があるために、そ
の製造及び応用に当たり様々な支障が生ずる。[0006] However, the conventional semiconductor light emitting device having excellent advantages has many problems at the same time, so that various problems occur in its manufacture and application.
【0007】[0007]
【発明が解決しようとする課題】従来の半導体発光装置
に付随する第一の問題は、例えばシャープな発光スペク
トルが要求される透過型カラー液晶表示装置等の表示装
置用光源に使用する場合、色純度が悪いため、鮮やかな
色彩を表示できない欠点にある。即ち、透過型カラー液
晶表示装置では、通常、シャープな発光スペクトルを持
つ三波長冷陰極蛍光管を白色光源として使用している。
図8は、三波長冷陰極蛍光管の発光スペクトルの一例を
示す。透過型カラー液晶表示装置の各画素を構成する青
色、緑色及び赤色の三原色カラーフィルタの透過スペク
トルがシャープでなく、カラーフィルタの透過特性のみ
では色純度の高い色彩表現を期待できないため、透過型
カラー液晶表示装置の白色光源に三波長冷陰極蛍光管が
用いられる。カラーフィルタの透過スペクトルの一例を
示す図9から明らかなように、透過スペクトルはかなり
幅広い波長領域の透過スペクトルを持つ。従って、透過
型カラー液晶表示装置では、青色、緑色及び赤色の各三
原色画素の透過光スペクトルは、実際上三波長冷陰極蛍
光管の発光スペクトルで決定され、一画素の透過光スペ
クトル(例えば、赤)に対する他の二原色成分(例え
ば、緑と青)の混入を防止するため、カラーフィルタは
大まかな範囲で遮光するだけの役割を持つに過ぎない。A first problem associated with the conventional semiconductor light emitting device is that, when used as a light source for a display device such as a transmission type color liquid crystal display device which requires a sharp emission spectrum, the color is not so high. It is disadvantageous in that it cannot display bright colors due to poor purity. That is, in a transmission type color liquid crystal display device, a three-wavelength cold cathode fluorescent tube having a sharp emission spectrum is usually used as a white light source.
FIG. 8 shows an example of the emission spectrum of a three-wavelength cold cathode fluorescent tube. The transmission spectrum of the three primary color filters of blue, green and red, which constitute each pixel of the transmission type color liquid crystal display device, is not sharp, and a color expression with high color purity cannot be expected only with the transmission characteristics of the color filters. A three-wavelength cold cathode fluorescent tube is used as a white light source of a liquid crystal display device. As is clear from FIG. 9 showing an example of the transmission spectrum of the color filter, the transmission spectrum has a transmission spectrum in a considerably wide wavelength range. Therefore, in the transmission type color liquid crystal display device, the transmitted light spectrum of each of the three primary color pixels of blue, green and red is actually determined by the emission spectrum of the three-wavelength cold cathode fluorescent tube, and the transmitted light spectrum of one pixel (for example, red In order to prevent other two primary color components (for example, green and blue) from being mixed into the color filter, the color filter only plays a role of shielding light in a rough range.
【0008】しかしながら、従来の半導体発光装置の白
色光源は、YAG:Ce系蛍光体(9)の発光スペクトルが非常
に幅広いため、透過型カラー液晶表示装置に使用する各
画素の透過光スペクトルをカラーフィルタの透過スペク
トルで決定する他なく、この結果、従来の半導体発光装
置は、表示装置を構成しても色純度が悪く鮮やかな色彩
を表現できないため、透過型カラー液晶表示装置の白色
光源には適さない。However, the white light source of the conventional semiconductor light emitting device has a very wide emission spectrum of the YAG: Ce-based phosphor (9). Therefore, the transmitted light spectrum of each pixel used in the transmission type color liquid crystal display device is colored. As a result, the conventional semiconductor light emitting device has poor color purity and cannot express a vivid color even if the display device is configured. Not suitable.
【0009】従来の半導体発光装置に生ずる第二の問題
は、コーティング(11)の注入量及びコーティング(11)中
に混入される蛍光体(9)の濃度がカップ部(3)毎に不均一
となり、多数の半導体発光装置からなる表示装置全体と
して発光色に大きな色調バラつきが発生する難点があ
る。従来の半導体発光装置を製造する際に、カップ部
(3)の底部に青色系の半導体発光素子(4)を固着し、YA
G:Ce系蛍光体(9)の粉末を液状の透明樹脂に適量混合
し、ディスペンス又はプリディップなどの方法によって
カップ部(3)に適量の透明樹脂を注入し加熱硬化してコ
ーティング(11)が形成される。通常約1万分の1cc程度
と極めて微小な容積を有するカップ部(3)内に一定量の
透明樹脂を正確に注入するのは困難である。また、約
4.8〜4.9と非常に大きい比重を持つYAG:Ce系蛍光
体(9)は、ディスペンス又はプリディップ装置内で沈降
しやすい。その結果、コーティング(11)の注入量とコー
ティング(11)中のYAG:Ce系蛍光体(9)の濃度とがカップ
部(3)毎に不均一となり、半導体発光素子(4)の青色透過
光量とYAG:Ce系蛍光体(9)の発光量とのバランスが崩
れ、表示装置全体として放射光の色調バラつきが増大す
る。図10に示すように、従来の半導体発光装置の色度
は白色域を中心に青色域から黄色域まで幅広く分布する
ため、例えば並置した複数の発光装置を点灯する構造の
表示装置で従来の半導体発光装置を用いると、色調バラ
つきが大きく、表示品位が低下する問題が生じる。A second problem that occurs in the conventional semiconductor light emitting device is that the injection amount of the coating (11) and the concentration of the phosphor (9) mixed in the coating (11) are not uniform for each cup (3). Therefore, there is a problem that a large variation in color tone occurs in the emission color as a whole display device including a large number of semiconductor light emitting devices. When manufacturing a conventional semiconductor light emitting device,
A blue semiconductor light emitting element (4) is fixed to the bottom of (3), and YA
G: An appropriate amount of Ce-based phosphor (9) powder is mixed with a liquid transparent resin, and an appropriate amount of the transparent resin is injected into the cup portion (3) by a method such as dispensing or pre-dipping, and is heated and cured to form a coating (11). Is formed. Usually, it is difficult to accurately inject a certain amount of transparent resin into the cup portion (3) having a very small volume of about 1 / 10,000 cc. Further, the YAG: Ce-based phosphor (9) having a very large specific gravity of about 4.8 to 4.9 tends to settle in the dispensing or pre-dip apparatus. As a result, the injection amount of the coating (11) and the concentration of the YAG: Ce-based phosphor (9) in the coating (11) become non-uniform for each cup (3), and the blue light transmission of the semiconductor light emitting device (4) The balance between the amount of light and the amount of light emitted from the YAG: Ce-based phosphor (9) is lost, and the color tone variation of the emitted light increases as a whole of the display device. As shown in FIG. 10, the chromaticity of a conventional semiconductor light emitting device is widely distributed from a blue region to a yellow region around a white region. When a light emitting device is used, there is a problem that color tone variation is large and display quality is deteriorated.
【0010】従来の半導体発光装置に伴う第三の問題
は、側面から正面に至る各指向角方向に対する放射光に
大きな色調ムラを生ずる点にある。カップ部(3)に注入
したコーティング(11)を加熱硬化する際、コーティング
(11)を構成する樹脂の粘度が比較的長時間にわたり大き
く低下するため、比重の大きいYAG:Ce系蛍光体(9)はコ
ーティング(11)中で沈降し、カップ部(3)の底部と半導
体発光素子(4)上に堆積する。A third problem with the conventional semiconductor light emitting device is that a large color tone unevenness occurs in the emitted light in each of the directional angles from the side to the front. When heating and curing the coating (11) injected into the cup (3), the coating
Since the viscosity of the resin constituting (11) decreases significantly over a relatively long period of time, the YAG: Ce-based phosphor (9) having a large specific gravity settles in the coating (11), and the bottom of the cup (3) It is deposited on the semiconductor light emitting device (4).
【0011】図11は、YAG:Ce系蛍光体(9)の沈降状態
を示す従来の半導体発光装置の部分断面図である。沈降
したYAG:Ce系蛍光体(9)の濃度の高いカップ部(3)の底
部と青色系半導体発光素子(4)上面からの放射光は黄色
味を帯びるが、YAG:Ce系蛍光体(9)の濃度が低い青色系
半導体発光素子(4)側面からの放射光は青味を帯びる。
このため、従来の半導体発光装置の放射光を壁面等に投
射すると、放射光の中心から外側に向かって黄色、青
色、黄色の順で並んだリング状の色調ムラを観察でき
る。従って、例えば放射光を拡大して表示するバックラ
イト等の用途に従来の半導体発光装置を用いると、色調
ムラが大きく低品位表示となる。FIG. 11 is a partial sectional view of a conventional semiconductor light emitting device showing a sedimented state of the YAG: Ce-based phosphor (9). The emitted light from the bottom of the cup portion (3) where the precipitated YAG: Ce-based phosphor (9) has a high concentration and the upper surface of the blue-based semiconductor light emitting device (4) has a yellow tint, but the YAG: Ce-based phosphor ( The light emitted from the side of the blue semiconductor light emitting element (4) having a low concentration of 9) has a bluish tint.
For this reason, when the radiated light of the conventional semiconductor light emitting device is projected on a wall surface or the like, ring-shaped color tone unevenness arranged in the order of yellow, blue, and yellow from the center of the radiated light toward the outside can be observed. Therefore, for example, when the conventional semiconductor light emitting device is used for a backlight or the like for displaying the radiated light in an enlarged manner, color tone unevenness is large and a low quality display is obtained.
【0012】従来の半導体発光装置に派生する第四の問
題は、第二の問題である色調バラつきや第三の問題であ
る色調ムラが必然的に増幅される点にある。YAG:Ce系
蛍光体(9)の発光成分と青色系半導体発光素子(4)の透過
光成分とが混色された光が外部に放出される際に、例え
ばYAG:Ce系蛍光体(9)の濃度又は注入量が多いと、青色
系半導体発光素子(4)から放射された光がYAG:Ce系蛍光
体(9)に入射する割合は大きくなり、YAG:Ce系蛍光体
(9)の発光は増大するが、同時にコーティング(11)を透
過する青色系半導体発光素子(4)の放射光はその分だけ
減少する。逆に、YAG:Ce系蛍光体(9)の濃度又は注入量
が少ないと、コーティング(11)を透過する青色系半導体
発光素子(4)の放射光は増加する。このように、YAG:Ce
系蛍光体(9)の発光成分と青色半導体発光素子(4)の透過
光成分は、一方が増えれば他方が相対的に減る関係にあ
る。従って、従来の半導体発光装置では、コーティング
(11)の注入量及びコーティング(11)中の蛍光体(9)の濃
度が僅かでも変わると混色によって生成される放射光の
色調は大きく変動する。このように、半導体発光素子
(4)の発光成分は、YAG:Ce系蛍光体(9)の励起光である
と同時に、混色光の成分になる動作原理のため、従来の
半導体発光装置では、その利点を十分に生かすことがで
きない。A fourth problem derived from the conventional semiconductor light emitting device is that the second problem, that is, variation in color tone and the third problem, that is, uneven color tone, are inevitably amplified. When light mixed with the light-emitting component of the YAG: Ce-based phosphor (9) and the transmitted light component of the blue semiconductor light-emitting element (4) is emitted to the outside, for example, the YAG: Ce-based phosphor (9) When the concentration or injection amount of is large, the ratio of light emitted from the blue semiconductor light emitting device (4) to the YAG: Ce-based phosphor (9) increases, and the YAG: Ce-based phosphor is increased.
The light emission of (9) increases, but at the same time, the radiated light of the blue semiconductor light emitting element (4) passing through the coating (11) decreases accordingly. Conversely, when the concentration or the injection amount of the YAG: Ce-based phosphor (9) is small, the emission light of the blue-based semiconductor light-emitting element (4) passing through the coating (11) increases. Thus, YAG: Ce
The emission component of the system phosphor (9) and the transmitted light component of the blue semiconductor light emitting element (4) are in such a relationship that if one increases, the other relatively decreases. Therefore, in the conventional semiconductor light emitting device, the coating
If the injection amount of (11) and the concentration of the phosphor (9) in the coating (11) change even slightly, the color tone of the emitted light generated by the color mixing will fluctuate greatly. Thus, the semiconductor light emitting device
The light emitting component of (4) is an excitation light of the YAG: Ce-based phosphor (9) and, at the same time, operates on the principle of becoming a mixed-color light component. Can not.
【0013】要するに、従来の半導体発光装置は、下記
の問題を解決しなければならない。 [1] シャープな発光スペクトルが要求される表示装置
の光源に使用する場合に色純度が悪く鮮やかな色彩を表
現できない。 [2] コーティング(11)の注入量及びコーティング(11)
中の蛍光体(9)の不均一な濃度により、表示装置全体の
発光色調に大きなバラつきが生ずる。 [3] 側面から正面に至る各指向角方向への発光色の色
調ムラが大きい。 [4] 動作原理上の問題から色調バラつきが増幅されや
すい。In short, the conventional semiconductor light emitting device must solve the following problems. [1] When used for a light source of a display device that requires a sharp emission spectrum, color purity is poor and a vivid color cannot be expressed. [2] Injection amount of coating (11) and coating (11)
Due to the non-uniform concentration of the phosphor (9) inside, a large variation occurs in the emission color tone of the entire display device. [3] The color tone unevenness of the emission color in each direction angle direction from the side to the front is large. [4] Variations in color tone are likely to be amplified due to problems in the operation principle.
【0014】そこで、本発明は、発光スペクトルがシャ
ープで鮮やかな色彩表現が可能であり、色度バラつきが
少ない半導体発光装置を提供することを目的とする。ま
た、本発明は、長寿命で作動でき且つ水銀を使用せず環
境に優しい半導体発光装置を提供することを目的とす
る。更に、本発明は、機械的衝撃に強く、発熱が少な
く、高電圧が不要で、高周波ノイズを発生しない半導体
発光装置を提供することを目的とする。SUMMARY OF THE INVENTION It is an object of the present invention to provide a semiconductor light emitting device which has a sharp emission spectrum, can express vivid colors, and has little chromaticity variation. Another object of the present invention is to provide an environment-friendly semiconductor light emitting device that can operate with a long life and does not use mercury. Still another object of the present invention is to provide a semiconductor light emitting device that is resistant to mechanical shock, generates less heat, does not require high voltage, and does not generate high-frequency noise.
【0015】[0015]
【課題を解決するための手段】本発明による半導体発光
装置は、一対の配線導体(1, 2)と、一対の配線導体(1,
2)の一方の端部に形成されたカップ部(3)と、カップ部
(3)内に接着され且つ配線導体(1, 2)に電気的に接続さ
れて近紫外光を発生する半導体発光素子(4)と、半導体
発光素子(4)の周囲に設けられた蛍光層(10)と、半導体
発光素子(4)、ボンディングワイヤ(6, 7)、配線導体の
一方の端部及び蛍光層(10)とを被覆する透明な封止体
(8)とを備えている。蛍光層(10)は、半導体発光素子(4)
から照射される近紫外光によって励起され半導体発光素
子(4)の発光と異なる波長の光を発する一種以上の蛍光
体(9)を含む。また、蛍光層(10)は、メタロキサン結合
を主体とする液状のセラミックコーティング剤を固化さ
せた透明なポリメタロキサンゲルより成る。半導体発光
素子(4)から発生する近紫外光の発光スペクトルは、非
常に鋭利なピークを持ち尖鋭度が高いので、半導体発光
素子(4)の近紫外光を蛍光層(10)で波長変換することに
より、従来の半導体発光装置に比べ、発光スペクトルが
シャープで鮮やかな色彩表現が可能であり、色度バラつ
きが少ない。また、半導体発光素子(4)の近紫外光によ
り励起される複数類の蛍光体(9)を蛍光層(10)に混入で
きるので、発光スペクトル等所望の特性に合致する蛍光
体(9)を選択できる。蛍光体(9)を封入する蛍光層(10)に
紫外線耐性の高いポリメタロキサンゲルを用いるため、
蛍光層(10)に劣化が発生せず、衝撃等の機械的強度が向
上する。また、青色、緑色、赤色のシャープなスペクト
ルを持つ蛍光体(9)を組み合わせると、色純度の優れた
鮮やかな色彩を表現できる白色光源を実現できる。近紫
外光により蛍光体(9)を励起するため観察者に殆ど視認
されず、蛍光体(9)の発光成分だけで放射光の色調が決
定されるので、蛍光体(9)の注入量や濃度が不均一でも
色調のバラつきは起こらない。A semiconductor light emitting device according to the present invention comprises a pair of wiring conductors (1, 2) and a pair of wiring conductors (1, 2).
Cup part (3) formed at one end of 2) and cup part
(3) a semiconductor light emitting element (4) that is adhered inside and is electrically connected to the wiring conductors (1, 2) to generate near ultraviolet light, and a fluorescent layer provided around the semiconductor light emitting element (4) (10) and a transparent sealing body covering the semiconductor light emitting element (4), the bonding wires (6, 7), one end of the wiring conductor and the fluorescent layer (10)
(8). The fluorescent layer (10) is a semiconductor light emitting device (4)
And at least one kind of phosphor (9) that is excited by near-ultraviolet light emitted from the semiconductor and emits light having a wavelength different from that of light emitted from the semiconductor light emitting device (4). The fluorescent layer (10) is made of a transparent polymetalloxane gel in which a liquid ceramic coating agent mainly containing metalloxane bonds is solidified. Since the emission spectrum of near-ultraviolet light generated from the semiconductor light-emitting element (4) has a very sharp peak and a high degree of sharpness, the near-ultraviolet light of the semiconductor light-emitting element (4) is wavelength-converted by the fluorescent layer (10). As a result, compared to the conventional semiconductor light emitting device, the emission spectrum is sharp and a vivid color expression is possible, and the chromaticity variation is small. Further, since a plurality of types of phosphors (9) excited by near-ultraviolet light of the semiconductor light emitting element (4) can be mixed into the phosphor layer (10), a phosphor (9) that matches desired characteristics such as an emission spectrum can be obtained. You can choose. To use a polymetalloxane gel with high UV resistance for the fluorescent layer (10) enclosing the phosphor (9),
No deterioration occurs in the fluorescent layer (10), and mechanical strength against impact and the like is improved. When a phosphor (9) having sharp blue, green, and red spectra is combined, a white light source that can express vivid colors with excellent color purity can be realized. Since the phosphor (9) is excited by near-ultraviolet light, it is hardly visually recognized by an observer, and the color tone of the emitted light is determined only by the emission component of the phosphor (9). Even if the density is non-uniform, no color variation occurs.
【0016】本発明の実施の形態では、半導体発光素子
(4)は、窒化ガリウム系化合物半導体層を有する発光ピ
ーク波長365nm〜400nmの近紫外線を発生する。半
導体発光素子(4)の周囲は、カップ部(3)の内面に設けら
れた蛍光層(10)により被覆されるので、半導体発光素子
(4)から発生する全ての光は蛍光層(10)を通過した後、
封止体(8)を通り外部に放出される。In an embodiment of the present invention, a semiconductor light emitting device
(4) generates near-ultraviolet rays having an emission peak wavelength of 365 nm to 400 nm having a gallium nitride-based compound semiconductor layer. The periphery of the semiconductor light emitting device (4) is covered with the fluorescent layer (10) provided on the inner surface of the cup portion (3), so that the semiconductor light emitting device
After all light generated from (4) passes through the fluorescent layer (10),
It is released outside through the sealing body (8).
【0017】半導体発光素子(4)から発生する光と蛍光
層(10)により波長変換された光とを混合する光散乱層(1
3)がカップ部(3)内に設けられるので、光散乱層(13)に
より十分な光の混合が行われる。光散乱層(13)は、セラ
ミック粉末を混合した透明樹脂又はセラミック粉末を混
合したセラミックコーティング剤を固化して形成され
る。セラミックコーティング剤は、単一の金属元素より
成る単一金属アルコキシド、複数の金属元素より成る複
合金属アルコキシド又は単一金属アルコキシド若しくは
複合金属アルコキシドの官能基の一部を修飾して有機樹
脂モノマーを導入した無機・有機複合体を加水分解縮重
合して得られる金属酸化物ポリマを主体とした液状のゾ
ル又はポリシラザンを主体とする液状のゾルである。A light scattering layer (1) for mixing light generated from the semiconductor light emitting element (4) and light whose wavelength has been converted by the fluorescent layer (10).
Since 3) is provided in the cup portion (3), sufficient light mixing is performed by the light scattering layer (13). The light scattering layer (13) is formed by solidifying a transparent resin mixed with ceramic powder or a ceramic coating agent mixed with ceramic powder. The ceramic coating agent introduces an organic resin monomer by modifying a single metal alkoxide composed of a single metal element, a composite metal alkoxide composed of a plurality of metal elements, or a part of functional groups of the single metal alkoxide or the composite metal alkoxide. It is a liquid sol mainly composed of a metal oxide polymer or a liquid sol mainly composed of polysilazane obtained by hydrolysis-condensation polymerization of an inorganic / organic composite.
【0018】セラミックコーティング剤は、金属塩化物
ガス及び水素、酸素の混合気体を高温で燃焼させる火炎
加水分解法によって生成された約5nm〜50nmの直径を
有する単一の金属元素より成る単一超微粒子状金属酸化
物又は複数の金属元素より成る複合超微粒子状金属酸化
物を主体とする液状のゾルである。[0018] The ceramic coating agent is formed of a single metal element having a diameter of about 5 nm to 50 nm and produced by a flame hydrolysis method in which a mixed gas of metal chloride gas and hydrogen and oxygen is burned at a high temperature. A liquid sol mainly composed of fine metal oxide particles or composite ultrafine metal oxide particles composed of a plurality of metal elements.
【0019】半導体発光素子(4)をカップ部(3)に接着す
る接着剤(5)は、微小な金属薄片を混合した一液性エポ
キシ樹脂より成る熱硬化性導電ペースト、一液性エポキ
シ樹脂より成る熱硬化性有機樹脂に光透過性セラミック
粉末を混合した光透過性ペースト、金属アルコキシド又
は超微粒子状金属酸化物を出発原料とした光透過性無機
系接着剤である。封止体(8)は、光透過性を有する有機
樹脂又は金属アルコキシドの官能基の一部を修飾して有
機樹脂モノマーを導入した無機若しくは有機複合体ポリ
マより成る。封止体(8)は、紫外線吸収剤を含有しても
よい。The adhesive (5) for adhering the semiconductor light emitting element (4) to the cup (3) is a thermosetting conductive paste made of a one-part epoxy resin mixed with fine metal flakes, and a one-part epoxy resin. A light-transmitting inorganic adhesive made of a light-transmitting paste obtained by mixing a light-transmitting ceramic powder with a thermosetting organic resin made of a metal alkoxide or an ultrafine metal oxide. The sealing body (8) is made of an inorganic or organic composite polymer in which an organic resin monomer having a part of a functional group of a light transmitting organic resin or metal alkoxide modified to introduce an organic resin monomer is introduced. The sealing body (8) may contain an ultraviolet absorber.
【0020】[0020]
【発明の実施の形態】以下、本発明による半導体発光装
置の実施の形態を図1〜図4について説明する。図1
は、本発明による半導体発光装置による第一の実施の形
態の部分断面図を示す。本実施例の半導体発光装置は、
一対の配線導体(1, 2)と、一対の配線導体(1, 2)の一方
の端部に形成されたカップ部(3)と、カップ部(3)内に接
着剤(5)によって接着された半導体発光素子(4)と、半導
体発光素子(4)の第一の電極及び第二の電極と一対の配
線導体(1, 2)の一方の端部とを接続するボンディングワ
イヤ(6, 7)と、半導体発光素子(4)の周囲に設けられた
蛍光層(10)と、半導体発光素子(4)、ボンディングワイ
ヤ(6, 7)、配線導体(1, 2)の一方の端部及び蛍光層(10)
とを被覆する透明な封止体(8)とを備えている。蛍光層
(10)は、半導体発光素子(4)から照射される近紫外光に
よって励起され且つ半導体発光素子(4)の発光波長と異
なる波長の光を発する一種以上の蛍光体(9)を含み、か
つメタロキサン結合を主体とする液状のセラミックコー
ティング剤を固化させた透明なポリメタロキサンゲルよ
り成る。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a semiconductor light emitting device according to the present invention will be described below with reference to FIGS. FIG.
1 shows a partial sectional view of a first embodiment of a semiconductor light emitting device according to the present invention. The semiconductor light emitting device of the present embodiment
A pair of wiring conductors (1, 2), a cup part (3) formed at one end of the pair of wiring conductors (1, 2), and an adhesive (5) bonded in the cup part (3). Semiconductor light-emitting element (4), the bonding wire (6, connecting the first electrode and the second electrode of the semiconductor light-emitting element (4) and one end of the pair of wiring conductors (1, 2) 7), a fluorescent layer (10) provided around the semiconductor light emitting element (4), and one end of the semiconductor light emitting element (4), the bonding wires (6, 7), and the wiring conductors (1, 2). And fluorescent layer (10)
And a transparent sealing body (8) covering the above. Fluorescent layer
(10) includes one or more phosphors (9) that are excited by near-ultraviolet light emitted from the semiconductor light emitting device (4) and emit light having a wavelength different from the emission wavelength of the semiconductor light emitting device (4), and It is composed of a transparent polymetalloxane gel in which a liquid ceramic coating agent mainly containing metalloxane bonds is solidified.
【0021】半導体発光素子(4)は、発光ピーク波長3
90nmの近紫外光を発生するInGaN系半導体発光素子に
より構成される。半導体発光素子(4)は、SiCなどの半導
体基板又はサファイヤなどのセラミック基板上に、エピ
タキシャル成長などの単結晶成長法によって形成された
InGaN、GaNなどの窒化ガリウム系化合物半導体層を有す
る発光ピーク波長が365nm〜400nmの近紫外半導体
発光素子である。The semiconductor light emitting device (4) has an emission peak wavelength of 3
It is composed of an InGaN-based semiconductor light emitting device that generates near-ultraviolet light of 90 nm. The semiconductor light emitting device (4) was formed on a semiconductor substrate such as SiC or a ceramic substrate such as sapphire by a single crystal growth method such as epitaxial growth.
This is a near-ultraviolet semiconductor light emitting device having a gallium nitride-based compound semiconductor layer such as InGaN or GaN and having a light emission peak wavelength of 365 nm to 400 nm.
【0022】蛍光層(10)は、金属アルコキシドを出発原
料とするセラミックコーティング剤に所定の比率で青
色、緑色、赤色の三種の蛍光材料を混合して混合物を形
成し、半導体発光素子(4)が固定されたカップ部(3)内に
混合物を塗布し硬化させることにより形成される。蛍光
体(9)を構成する三種の蛍光材料は、白色光を発生する
所定の比率で混合される。The fluorescent layer (10) is formed by mixing a ceramic coating agent starting from a metal alkoxide with a predetermined ratio of three types of blue, green and red fluorescent materials to form a mixture. Is formed by applying and curing the mixture in the fixed cup portion (3). The three kinds of fluorescent materials constituting the phosphor (9) are mixed at a predetermined ratio for generating white light.
【0023】蛍光層(10)は、半導体発光素子(4)から照
射される近紫外光によって励起され半導体発光素子(4)
の発光と異なる波長の光を発する一種以上の蛍光体(9)
を含み、かつメタロキサン結合(M-O-M結合、M:金属)
を主体とする液状のセラミックコーティング剤を固化さ
せたポリメタロキサンゲルより成る。ポリメタロキサン
ゲルは半導体発光素子(4)から照射される近紫外光に対
して光透過性を有し、かつ、耐熱性及び紫外線耐性を有
する。従って、本発明の半導体発光装置の蛍光層(10)の
構成要素としては最適である。The fluorescent layer (10) is excited by near-ultraviolet light emitted from the semiconductor light emitting device (4),
One or more phosphors that emit light of a wavelength different from that of
And metalloxane bond (MOM bond, M: metal)
And a polymetalloxane gel obtained by solidifying a liquid ceramic coating agent mainly composed of The polymetalloxane gel has a light transmittance to near ultraviolet light emitted from the semiconductor light emitting device (4), and has heat resistance and ultraviolet light resistance. Therefore, it is optimal as a component of the fluorescent layer (10) of the semiconductor light emitting device of the present invention.
【0024】セラミックコーティング剤は、金属アルコ
キシド、ポリシラザン、超微粒子状金属酸化物などの出
発原料を、それぞれ下記に示す方法によって金属酸化物
ポリマを主体とする液状のゾルに加工したものである。The ceramic coating agent is obtained by processing starting materials such as metal alkoxide, polysilazane and ultrafine metal oxide into a liquid sol mainly composed of a metal oxide polymer by the following method.
【0025】金属アルコキシドは、化学式M(OR)n,M:金
属、R:アルキル基、で表される有機金属化合物であ
り、例えばシリコン、アルミニウム、チタン、ジルコニ
ウムなどの単一の金属元素より成る単一金属アルコキシ
ド、又は複数の金属元素より成る複合金属アルコキシド
である。また、金属アルコキシドの官能基の一部を修飾
して有機樹脂モノマーを導入した無機・有機複合体を用
いることも可能である。The metal alkoxide is an organometallic compound represented by the chemical formula M (OR) n , where M is a metal and R is an alkyl group, and is composed of a single metal element such as silicon, aluminum, titanium and zirconium. It is a single metal alkoxide or a composite metal alkoxide composed of a plurality of metal elements. It is also possible to use an inorganic-organic composite in which an organic resin monomer is introduced by modifying a part of the functional group of the metal alkoxide.
【0026】金属アルコキシドをアルコールなどの溶媒
に分散し水と微量の触媒とを滴下して混合すると下記の
化学式で示す加水分解縮合反応を生じる。 M(OR)n+xH2O→M(OH)x(OR)n-x+xROH (-M-OH)+(H-O-M)→(-M-O-M)+H2O (-M-OH)+(R-O-M)→(-M-O-M)+ROHWhen a metal alkoxide is dispersed in a solvent such as alcohol and water and a small amount of a catalyst are added dropwise and mixed, a hydrolysis condensation reaction represented by the following chemical formula occurs. M (OR) n + xH 2 O → M (OH) x (OR) nx + xROH (-M-OH) + (HOM) → (-MOM) + H 2 O (-M-OH) + (ROM) → ( -MOM) + ROH
【0027】上記の反応により、溶媒中には金属酸化物
のポリマが生じるが、途中で反応を停止させると金属酸
化物のポリマが溶媒に分散した状態となった液状のゾル
が得られ、セラミックコーティング剤として用いること
ができる。The above reaction produces a metal oxide polymer in the solvent, but if the reaction is stopped halfway, a liquid sol in which the metal oxide polymer is dispersed in the solvent is obtained, and It can be used as a coating agent.
【0028】ポリシラザンは、化学式-SiH2-NH-を基本
構造とした無機化合物であり、ジクロロシランとピリジ
ンの錯体にアンモニアを導入して合成される。ポリシラ
ザンをキシレンなど適当な溶媒で希釈した液状のゾルを
セラミックコーティング剤として用いることができる。Polysilazane is an inorganic compound having a chemical structure of —SiH 2 —NH— as a basic structure, and is synthesized by introducing ammonia into a complex of dichlorosilane and pyridine. A liquid sol obtained by diluting polysilazane with a suitable solvent such as xylene can be used as a ceramic coating agent.
【0029】超微粒子状金属酸化物は、例えばシリコ
ン、アルミニウム、チタン、ジルコニウムなどの単一の
金属元素より成る単一超微粒子状金属酸化物、又は複数
の金属元素より成る複合超微粒子状金属酸化物であり、
金属塩化物ガス及び水素、酸素の混合気体を高温で燃焼
させる火炎加水分解法によって生成された直径が約5nm
〜50nmの金属酸化物微粉体である。超微粒子状金属酸
化物をアルコールなどの溶媒に分散させ水を滴下して混
合すると液状のゾルが得られ、セラミックコーティング
剤として用いることができる。The ultrafine metal oxide is, for example, a single ultrafine metal oxide composed of a single metal element such as silicon, aluminum, titanium or zirconium, or a composite ultrafine metal oxide composed of a plurality of metal elements. Things
The diameter produced by the flame hydrolysis method of burning a mixed gas of metal chloride gas, hydrogen and oxygen at a high temperature is about 5 nm.
It is a fine metal oxide powder of 5050 nm. When the ultrafine metal oxide is dispersed in a solvent such as alcohol and water is added dropwise and mixed, a liquid sol is obtained, which can be used as a ceramic coating agent.
【0030】本発明による第一の半導体発光装置の蛍光
層(10)は、セラミックコーティング剤に粉末状の蛍光体
(9)を混合し、予め接着剤(5)によって半導体発光素子
(4)が接着されたカップ部(3)にディスペンス、プリディ
ップなどの方法によって注入し、空気中に放置して溶媒
を揮発させた後、加熱硬化させて形成される。また、本
発明による第二の半導体発光装置の蛍光層(10)は、セラ
ミックコーティング剤に粉末状の蛍光体(9)を混合し、
ディスペンス、プリディップなどの方法によってカップ
部(3)の内面に薄く塗布し、空気中に放置して溶媒を揮
発させた後、加熱硬化させて形成される。The phosphor layer (10) of the first semiconductor light emitting device according to the present invention is formed by adding a powdery phosphor to a ceramic coating agent.
(9) is mixed, and the semiconductor light-emitting element is
(4) is injected into the cup part (3) to which the adhesive is adhered by a method such as dispensing or pre-dipping, left in air to volatilize the solvent, and then cured by heating. Further, the fluorescent layer (10) of the second semiconductor light emitting device according to the present invention, a powdery phosphor (9) mixed with a ceramic coating agent,
It is formed by applying thinly on the inner surface of the cup portion (3) by a method such as dispensing or pre-dipping, leaving it in the air to evaporate the solvent, and then heating and curing.
【0031】封止体(8)は、光透過性を有するエポキシ
樹脂、シリコーン樹脂、ポリエステル樹脂、アクリル樹
脂などの有機樹脂、又は金属アルコキシドの官能基の一
部を修飾して有機樹脂モノマーを導入した無機・有機複
合体ポリマより成り、ポッティング、射出成形などの方
法によって形成される。半導体発光素子(4)の近紫外光
によって封止体(8)の劣化を防ぐため、封止体(8)に紫外
線吸収剤を添加してもよい。The sealing body (8) is formed by introducing a light-transmitting organic resin such as an organic resin such as an epoxy resin, a silicone resin, a polyester resin, or an acrylic resin, or by modifying a part of the functional groups of a metal alkoxide. It is made of an inorganic-organic composite polymer, and is formed by a method such as potting or injection molding. In order to prevent deterioration of the sealing body (8) due to near ultraviolet light of the semiconductor light emitting element (4), an ultraviolet absorber may be added to the sealing body (8).
【0032】光散乱層(13)は、封止体(8)と同一の有機
樹脂又は蛍光層(10)に用いられるセラミックコーティン
グ剤と同一のセラミックコーティング剤に、シリカ、ア
ルミナ、酸化チタンなどのセラミック粉末を適量混合
し、カップ部(3)にディスペンス、プリディップなどの
方法によって注入した後、所定の硬化条件で固化して形
成される。なお、光散乱層(13)は半導体発光素子(4)か
らの近紫外光を受けるので、光散乱層(13)の劣化を防ぐ
には構成材料としてセラミックコーティング剤を選択す
ることが望ましい。The light scattering layer (13) is made of the same organic resin as the sealing body (8) or the same ceramic coating agent as the ceramic coating agent used for the fluorescent layer (10), such as silica, alumina or titanium oxide. An appropriate amount of ceramic powder is mixed, injected into the cup part (3) by a method such as dispensing or pre-dipping, and then solidified under predetermined curing conditions. Since the light scattering layer (13) receives near-ultraviolet light from the semiconductor light emitting element (4), it is desirable to select a ceramic coating agent as a constituent material in order to prevent deterioration of the light scattering layer (13).
【0033】ボンディングワイヤ(6, 7)は、金、銀、ア
ルミニウム、銅などからなる金属細線である。接着剤
(5)は金、銀などの微少な金属薄片を混合した一液性エ
ポキシ樹脂より成る熱硬化性導電ペースト、又は、一液
性エポキシ樹脂より成る熱硬化性有機樹脂に光透過性セ
ラミック粉末を混合した光透過性ペースト、又は金属ア
ルコキシドまたは超微粒子状金属酸化物を出発原料とし
た光透過性無機系接着剤である。The bonding wires (6, 7) are thin metal wires made of gold, silver, aluminum, copper or the like. adhesive
(5) is a thermosetting conductive paste made of a one-part epoxy resin mixed with fine metal flakes such as gold and silver, or a thermosetting organic resin made of a one-part epoxy resin, and a light-transmitting ceramic powder. It is a light-transmitting inorganic adhesive using a mixed light-transmitting paste or a metal alkoxide or an ultrafine metal oxide as a starting material.
【0034】半導体素子(4)及び蛍光層(10)が形成され
たカップ部(3)を含む一対の配線導体(1, 2)の端部をポ
ット内に収容し、一対の配線導体(1, 2)の周囲に透明な
ビスフェノール系エポキシ樹脂を充填し硬化させるポッ
ティング法によって、封止体(8)が形成される。封止体
(8)には紫外線吸収剤が添加されないが、必要に応じて
添加してもよい。表1は蛍光体(9)の諸特性を示す。The ends of the pair of wiring conductors (1, 2) including the cup (3) on which the semiconductor element (4) and the fluorescent layer (10) are formed are housed in a pot, and the pair of wiring conductors (1 A sealed body (8) is formed by a potting method of filling and curing a transparent bisphenol-based epoxy resin around (2). Sealed body
No ultraviolet absorber is added to (8), but may be added as needed. Table 1 shows various properties of the phosphor (9).
【0035】[0035]
【表1】 [Table 1]
【0036】従来の半導体発光装置では、図7に示すよ
うに非常に幅の広い発光スペクトルが発生したのに対
し、本発明による実施の形態の半導体発光装置の発光ス
ペクトルは、図3に示すように、非常に鋭利なピークを
持ち尖鋭度が高いのが特徴である。図8に示す三波長冷
陰極蛍光管の発光スペクトルに近似するため、本発明に
よる半導体発光装置は三波長冷陰極蛍光管に代わる白色
光源として透過型カラー液晶表示装置に使用することも
できる。図3に示すように、異なる5つの波長領域にピ
ークが発生するが、一番短波長側のピークは半導体発光
素子(4)からの透過光成分を示し、その他の4つのピー
クは表1に示す各蛍光体(9)の発光である。また700n
mの波長付近に赤色蛍光体(9)Y2O2S:Euの小さなピーク
が見られる。図3に示すように、半導体発光素子(4)か
らの透過光成分が強く照射されるが、蛍光層(10)の各材
質及び各量を最適化し又は紫外線吸収剤を封止体(8)に
添加することにより、半導体発光素子(4)からの近紫外
光を十分吸収すれば、実用上問題のない水準まで近紫外
光量を減少させることができる。従来の半導体発光装置
の図10に示す色度分布と比べると、本発明による半導
体発光装置の色度分布は、図4に示すように、バラつき
の幅が非常に狭く、優れた特性を持つ。In the conventional semiconductor light emitting device, a very wide emission spectrum is generated as shown in FIG. 7, whereas the emission spectrum of the semiconductor light emitting device according to the embodiment of the present invention is as shown in FIG. It is characterized by a very sharp peak and a high degree of sharpness. In order to approximate the emission spectrum of the three-wavelength cold cathode fluorescent tube shown in FIG. 8, the semiconductor light emitting device according to the present invention can be used in a transmission type color liquid crystal display device as a white light source instead of the three-wavelength cold cathode fluorescent tube. As shown in FIG. 3, peaks occur in five different wavelength regions. The shortest wavelength side peak indicates a transmitted light component from the semiconductor light emitting device (4), and the other four peaks are shown in Table 1. It is the luminescence of each phosphor (9) shown. Also 700n
red phosphor in the vicinity of the wavelength of the m (9) Y 2 O 2 S: small peak of Eu is observed. As shown in FIG. 3, the transmitted light component from the semiconductor light emitting element (4) is strongly irradiated, but each material and amount of the fluorescent layer (10) are optimized or the ultraviolet absorber is sealed (8). By sufficiently adding near-ultraviolet light from the semiconductor light-emitting element (4), the amount of near-ultraviolet light can be reduced to a level at which there is no practical problem. Compared with the chromaticity distribution of the conventional semiconductor light emitting device shown in FIG. 10, the chromaticity distribution of the semiconductor light emitting device according to the present invention has a very narrow variation width and excellent characteristics as shown in FIG.
【0037】従来の半導体発光装置に用いられるYAG:C
e系蛍光体の比重4.8〜4.9に対して、本実施の形態
に用いる青色及び緑色蛍光体(9)の比重は小さいが、赤
色蛍光体(9)の比重は若干大きいため、赤色蛍光体(9)の
沈降量はYAG:Ce系蛍光体の沈降量に比べて大きい。青
色系半導体発光素子(4)の発光を蛍光体の励起光成分と
半導体発光装置自体の発光成分とに兼用する従来の半導
体発光装置に対し、本発明の半導体発光装置では、蛍光
体(9)を励起する近紫外光は観察者に殆ど視認されない
ため、赤色蛍光体(9)の比重がYAG:Ce系蛍光体の比重よ
り大きいにも拘わらず、蛍光体(9)の発光成分だけで本
発明による半導体発光装置の放射光の色調が決定され
る。従って、従来に比べて、本発明による実施の形態の
方が色度バラつきが遙かに小さくなると考えられる。YAG: C used in a conventional semiconductor light emitting device
The specific gravity of the blue and green phosphors (9) used in the present embodiment is smaller than the specific gravity of the e-based phosphor of 4.8 to 4.9, but the specific gravity of the red phosphor (9) is slightly larger. The sedimentation amount of the red phosphor (9) is larger than that of the YAG: Ce-based phosphor. In contrast to the conventional semiconductor light emitting device that also uses the light emission of the blue semiconductor light emitting element (4) as the excitation light component of the phosphor and the light emitting component of the semiconductor light emitting device itself, the semiconductor light emitting device of the present invention includes the phosphor (9) The near-ultraviolet light that excites the light is hardly visible to the observer. Therefore, despite the specific gravity of the red phosphor (9) being larger than the specific gravity of the YAG: Ce-based phosphor, only the luminescent component of the phosphor (9) is used. The color tone of the emitted light of the semiconductor light emitting device according to the invention is determined. Therefore, it is considered that the chromaticity variation is much smaller in the embodiment according to the present invention than in the related art.
【0038】一般に半導体発光素子(4)は、構成する半
導体の持つエネルギギャップに応じた波長の光を発する
ため、半導体発光素子の組成を変えない限り発光波長を
変えることができないが、本発明による半導体発光装置
は、同一の半導体発光素子(4)を用いながら、使用する
蛍光体(9)の種類と配合を変えて様々な色調を作成する
ことができ、応用範囲が広く商品価値の高い半導体発光
装置である。Generally, the semiconductor light emitting device (4) emits light having a wavelength corresponding to the energy gap of the semiconductor constituting the semiconductor light emitting device. Therefore, the emission wavelength cannot be changed unless the composition of the semiconductor light emitting device is changed. Semiconductor light-emitting devices can create various colors by changing the type and composition of the phosphor (9) used, while using the same semiconductor light-emitting element (4). It is a light emitting device.
【0039】また、図2に本発明による半導体発光装置
の第2の実施の形態を示す。第二の実施の形態による半
導体発光装置は、カップ部(3)の内面を被覆する蛍光層
(10)と、半導体発光素子(4)と蛍光層(10)とを被覆する
光散乱層(13)と、半導体発光素子(4)、ボンディングワ
イヤ(6, 7)、配線導体の一方の端部、蛍光層(10)及び光
散乱層(13)とを被覆する透明な封止体(8)より成り、他
の構成は図1と同じである。FIG. 2 shows a second embodiment of the semiconductor light emitting device according to the present invention. The semiconductor light emitting device according to the second embodiment has a fluorescent layer covering the inner surface of the cup portion (3).
(10), a light-scattering layer (13) covering the semiconductor light-emitting element (4) and the fluorescent layer (10), a semiconductor light-emitting element (4), bonding wires (6, 7), and one end of a wiring conductor. 1 and a transparent sealing body (8) covering the fluorescent layer (10) and the light scattering layer (13), and the other configuration is the same as that of FIG.
【0040】なお、特に図示しないが、本発明による半
導体発光装置のその他の形態として、一対の配線導体
(1, 2)と、一対の配線導体(1, 2)の一方の端部の双方に
渡って設けられたカップ部(3)と、同一平面上に設けら
れた第一の電極と第二の電極とが金属バンプ又は導電性
接着剤を介してカップ部(3)に接着された半導体発光素
子(4)と、カップ部(3)の内面又は半導体発光素子(4)の
周囲を被覆する蛍光層(10)と、半導体発光素子(4)、金
属バンプ又は導電性接着剤、一対の配線導体(1, 2)の一
方の端部及び蛍光層(10)とを被覆する透明な封止体(8)
とで構成することもできる。本発明による半導体発光装
置は、いわゆるフリップチップ構造で構成することもで
きる。Although not specifically shown, another embodiment of the semiconductor light emitting device according to the present invention includes a pair of wiring conductors.
(1, 2), a cup (3) provided over both ends of the pair of wiring conductors (1, 2), a first electrode and a second electrode provided on the same plane. Of the semiconductor light-emitting element (4) adhered to the cup part (3) via a metal bump or a conductive adhesive, and cover the inner surface of the cup part (3) or the periphery of the semiconductor light-emitting element (4). Transparent sealing covering the fluorescent layer (10), the semiconductor light emitting element (4), the metal bump or the conductive adhesive, one end of the pair of wiring conductors (1, 2) and the fluorescent layer (10) Body (8)
It can also be composed of The semiconductor light emitting device according to the present invention may be configured with a so-called flip chip structure.
【0041】従来の半導体発光装置に比べ、本発明によ
る半導体発光装置は、下記の優れた特徴を持つ。まず、
本発明による半導体発光装置の第一の特徴は、365nm
〜400nmの波長領域に発光ピーク波長が存在する半導
体発光素子(4)の近紫外光により励起される多種類の蛍
光体(9)を蛍光層(10)に混入するので、発光スペクトル
等を所望の特性に合致する蛍光体(9)を選択できる点に
ある。一般に可視光で励起できる蛍光体は極めて少な
く、近紫外域より短波長で励起できる蛍光体が殆どであ
る。従来の半導体発光装置の励起光源に用いられる青色
系の半導体発光素子のピーク波長範囲である400nm〜
530nmで励起でき且つ劣化の少ない実用的な蛍光体
は、実際上、YAG:Ce系蛍光体以外に殆どない。As compared with the conventional semiconductor light emitting device, the semiconductor light emitting device according to the present invention has the following excellent features. First,
The first characteristic of the semiconductor light emitting device according to the present invention is
Since various kinds of phosphors (9) excited by near-ultraviolet light of the semiconductor light emitting device (4) having an emission peak wavelength in a wavelength region of ~ 400 nm are mixed into the fluorescent layer (10), an emission spectrum or the like is desired. In that the phosphor (9) that matches the characteristic of (9) can be selected. Generally, very few phosphors can be excited with visible light, and most can be excited with a wavelength shorter than the near ultraviolet region. The peak wavelength range of a blue semiconductor light emitting element used as an excitation light source of a conventional semiconductor light emitting device is 400 nm to
There are practically no practical phosphors that can be excited at 530 nm and have little deterioration except for the YAG: Ce phosphor.
【0042】本発明による半導体発光装置の第二の特徴
は、蛍光体(9)を封入する蛍光層(10)に紫外線耐性の高
いポリメタロキサンゲルを用いる点である。従来の半導
体発光装置では、YAG:Ce系蛍光体を含有するコーティ
ングとして使用される樹脂は紫外線を受けると劣化する
ため、近紫外光を発生する半導体発光素子(4)を使用で
きない。A second feature of the semiconductor light emitting device according to the present invention resides in that a polymetalloxane gel having high ultraviolet resistance is used for the fluorescent layer (10) enclosing the phosphor (9). In a conventional semiconductor light emitting device, a resin used as a coating containing a YAG: Ce-based phosphor degrades when exposed to ultraviolet rays, so that the semiconductor light emitting element (4) that generates near ultraviolet light cannot be used.
【0043】本発明による半導体発光装置の第三の特徴
は、色純度の優れた鮮やかな色彩を表現できる白色光源
を実現できる点である。発光スペクトルの幅が非常に広
いYAG:Ce系蛍光体を使用するため、色純度が悪く鮮や
かな色彩を表現できない従来の半導体発光装置は、透過
型カラー液晶表示装置の用途に適さない。A third feature of the semiconductor light emitting device according to the present invention is that a white light source capable of expressing vivid colors with excellent color purity can be realized. Since a YAG: Ce-based phosphor having an extremely wide emission spectrum is used, a conventional semiconductor light-emitting device that has poor color purity and cannot express a vivid color is not suitable for use in a transmission type color liquid crystal display device.
【0044】一方、本発明による半導体発光装置は、青
色、緑色、赤色のシャープなスペクトルを持つ蛍光体
(9)を組み合わせると、冷陰極蛍光管と同様なスペクト
ル分布が得られ、色純度の優れた鮮やかな色彩を表現で
きる白色光源を実現できる。On the other hand, the semiconductor light emitting device according to the present invention is a phosphor having sharp blue, green and red spectra.
When (9) is combined, a spectral distribution similar to that of a cold cathode fluorescent tube is obtained, and a white light source with excellent color purity and capable of expressing vivid colors can be realized.
【0045】本発明による半導体発光装置の第四の特徴
は、原理的に色調バラつき及び色調ムラが少ない点であ
る。従来の半導体発光装置は、青色系半導体発光素子の
発光をYAG:Ce系蛍光体の励起光と、従来の半導体発光
装置自体の放射光の一成分とに兼用する動作原理を持
つ。このためコーティングの注入量及びコーティング中
のYAG:Ce系蛍光体の濃度がわずかでもバラつくと、従
来の半導体発光装置の放射光の色調は大きくバラつく。
また、従来の半導体発光装置は、カップ部(3)内で比重
の大きいYAG:Ce系蛍光体が沈降すると、側面から正面
に至る各指向角方向における放射光の色調ムラが大き
い。The fourth feature of the semiconductor light emitting device according to the present invention is that, in principle, there is little color tone variation and color tone unevenness. A conventional semiconductor light emitting device has an operating principle in which light emitted from a blue semiconductor light emitting element is used as both excitation light of a YAG: Ce phosphor and one component of emitted light of the conventional semiconductor light emitting device itself. For this reason, even if the injection amount of the coating and the concentration of the YAG: Ce-based phosphor in the coating slightly vary, the color tone of the emitted light of the conventional semiconductor light emitting device greatly varies.
Further, in the conventional semiconductor light emitting device, when the YAG: Ce-based phosphor having a large specific gravity sinks in the cup portion (3), the color tone unevenness of the emitted light in each directional angle direction from the side to the front is large.
【0046】本発明による半導体発光装置では、近紫外
光により蛍光体(9)を励起するため観察者に殆ど視認さ
れず、蛍光体(9)の発光成分だけで放射光の色調が決定
されるので、蛍光体(9)の注入量や濃度が不均一でも色
調のバラつきは起こらない。また同様に、カップ部(3)
内で蛍光体(9)の沈降が発生しても各指向角方向への放
射光の色調ムラは発生しない。この様に、本発明による
半導体発光装置は、従来の半導体発光装置の持つ多くの
問題点を根本的に解決し、より優れた半導体発光装置を
実現することができる。In the semiconductor light emitting device according to the present invention, the phosphor (9) is excited by near-ultraviolet light, so that it is hardly visually recognized by an observer, and the color tone of the emitted light is determined only by the light emitting component of the phosphor (9). Therefore, even if the injection amount and the concentration of the phosphor (9) are not uniform, the color tone does not vary. Similarly, the cup part (3)
Even when the phosphor (9) is settled in the inside, the color tone unevenness of the radiated light in each direction angle direction does not occur. As described above, the semiconductor light emitting device according to the present invention can fundamentally solve many problems of the conventional semiconductor light emitting device, and can realize a more excellent semiconductor light emitting device.
【0047】図5は、絶縁性基板を使用するチップ形発
光ダイオード装置に適用した本発明による第三の実施の
形態を示す。チップ形発光ダイオード装置は、一方の主
面にカップ部(3)が形成された基体となる絶縁性基板(1
4)と、絶縁性基板(14)に相互に離間して形成された第一
の配線導体(1)及び第二の配線導体(2)と、第一の配線導
体(1)のカップ部(3)に接着剤(5)を介して固着された半
導体発光素子(4)と、半導体発光素子(4)のアノード電極
(4a)と第1の配線導体(1)とを電気的に接続する第一の
ボンディングワイヤ(6)と、半導体発光素子(4)のカソー
ド電極(4b)と第2の配線導体(2)とを電気的に接続する
第二のボンディングワイヤ(7)と、カップ部(3)内に充填
され半導体発光素子(4)、アノード電極(4a)、カソード
電極(4b)及びアノード電極(4a)、カソード電極(4b)に接
続されたボンディングワイヤ(6, 7)の端部を被覆する蛍
光層(10)と、絶縁性基板(14)の一方の主面に形成され且
つ蛍光層(10)の外側を被覆する台形状断面の封止体(8)
とを備えている。第1の配線導体(1)及び第2の配線導
体(2)の一方の端部は、カップ部(3)内に配置される。半
導体発光素子(4)はカップ部(3)の底部(3a)にて第1の配
線導体(1)に接着剤(5)を介して固着される。第1の配線
導体(1)及び第2の配線導体(2)の各他方の端部は、絶縁
性基板(14)の側面及び他方の主面に延びて配置される。
蛍光層(10)はカップ部(3)の上端部(3b)から突出しな
い。半導体発光素子(4)から照射される光は、蛍光層(1
0)内を通過した後、蛍光層(10)を被覆する封止体(8)の
外部に放出される。FIG. 5 shows a third embodiment of the present invention applied to a chip type light emitting diode device using an insulating substrate. The chip-type light-emitting diode device has an insulating substrate (1) serving as a base having a cup (3) formed on one main surface.
4), a first wiring conductor (1) and a second wiring conductor (2) formed apart from each other on the insulating substrate (14), and a cup portion of the first wiring conductor (1) ( A semiconductor light emitting device (4) fixed to the 3) via an adhesive (5), and an anode electrode of the semiconductor light emitting device (4);
(4a) a first bonding wire (6) for electrically connecting the first wiring conductor (1), a cathode electrode (4b) of the semiconductor light emitting element (4) and a second wiring conductor (2). And a second bonding wire (7) for electrically connecting the semiconductor light emitting element (4) filled in the cup portion (3), the anode electrode (4a), the cathode electrode (4b), and the anode electrode (4a). A fluorescent layer (10) covering the ends of the bonding wires (6, 7) connected to the cathode electrode (4b), and a fluorescent layer (10) formed on one main surface of the insulating substrate (14). Body with trapezoidal cross section covering the outside of the box (8)
And One ends of the first wiring conductor (1) and the second wiring conductor (2) are arranged in the cup (3). The semiconductor light emitting element (4) is fixed to the first wiring conductor (1) via an adhesive (5) at the bottom (3a) of the cup (3). The other end of each of the first wiring conductor (1) and the second wiring conductor (2) extends to the side surface and the other main surface of the insulating substrate (14).
The fluorescent layer (10) does not protrude from the upper end (3b) of the cup (3). Light emitted from the semiconductor light emitting element (4) is emitted from the fluorescent layer (1).
After passing through the inside of 0), it is emitted to the outside of the sealing body (8) covering the fluorescent layer (10).
【0048】半導体発光素子(4)から放射された光は蛍
光層(10)に達し、その一部は蛍光層(10)内で異なる波長
に波長変換され、波長変換されない半導体発光素子(4)
からの光成分と混合されて封止体(8)を通して外部に放
出される。特定の発光波長を吸収する光吸収物質、半導
体発光素子(4)の発光を散乱する光散乱物質(10b)又は蛍
光層(10)のクラックを防止する結合材を蛍光層(10)内に
配合してもよい。The light emitted from the semiconductor light emitting element (4) reaches the fluorescent layer (10), and a part of the light is converted into a different wavelength in the fluorescent layer (10), and the wavelength of the semiconductor light emitting element (4) is not converted.
Mixed with the light component from the substrate and emitted to the outside through the sealing body (8). A light-absorbing substance that absorbs a specific emission wavelength, a light-scattering substance (10b) that scatters light emitted from the semiconductor light-emitting element (4), or a binder that prevents cracking of the fluorescent layer (10) is compounded in the fluorescent layer (10). May be.
【0049】前記のいずれの点でも、本発明による半導
体発光装置の優位性は明らかである。前記実施の形態は
例示に過ぎず、本発明はこれらに限定されない。例え
ば、表1に示す青色、緑色、赤色の各蛍光体(9)を単独
で用いれば、それぞれ青色、緑色、赤色の光を発する半
導体発光装置が得られる。また、二種以上の蛍光体(9)
を適当な配合比で組み合わせれば、その配合比に応じた
中間色の光を発する半導体発光装置が得られる。In any of the above points, the advantage of the semiconductor light emitting device according to the present invention is clear. The above embodiments are merely examples, and the present invention is not limited to these. For example, if each of the blue, green, and red phosphors (9) shown in Table 1 is used alone, a semiconductor light emitting device that emits blue, green, and red light, respectively, can be obtained. Also, two or more phosphors (9)
Are combined at an appropriate compounding ratio to obtain a semiconductor light emitting device that emits light of an intermediate color according to the compounding ratio.
【0050】[0050]
【発明の効果】前記のように、本発明による半導体発光
装置は、従来の半導体発光装置に比べ、発光スペクトル
がシャープで鮮やかな色彩表現が可能であり、色度バラ
つきが少なく複数個を並べて点灯できるなど優れた特徴
を持つため、管球式光源に代わる本格的な次世代固体化
光源として大いに期待される。As described above, the semiconductor light emitting device according to the present invention has a sharper emission spectrum and is capable of expressing vivid colors as compared with the conventional semiconductor light emitting device, and has a small variation in chromaticity, and is lighted in a row. Due to its excellent features, such as being able to be used, it is highly expected as a full-scale next-generation solid-state light source that replaces the tube-type light source.
【図1】 本発明による第一の半導体発光装置を示す断
面図FIG. 1 is a sectional view showing a first semiconductor light emitting device according to the present invention.
【図2】 本発明による第二の実施の形態を示す断面図FIG. 2 is a sectional view showing a second embodiment according to the present invention.
【図3】 本発明による半導体発光装置の発光スペクト
ルを示すグラフFIG. 3 is a graph showing an emission spectrum of the semiconductor light emitting device according to the present invention.
【図4】 本発明による半導体発光装置の色度分布を示
すグラフFIG. 4 is a graph showing a chromaticity distribution of the semiconductor light emitting device according to the present invention.
【図5】 チップ型半導体発光素子に適用した本発明の
第三の実施の形態を示す断面図FIG. 5 is a sectional view showing a third embodiment of the present invention applied to a chip type semiconductor light emitting device.
【図6】 従来の半導体発光装置を示す断面図FIG. 6 is a sectional view showing a conventional semiconductor light emitting device.
【図7】 従来の半導体発光装置から得られる発光スペ
クトルを示すグラフFIG. 7 is a graph showing an emission spectrum obtained from a conventional semiconductor light emitting device.
【図8】 三波長冷陰極蛍光管の発光スペクトルを示す
グラフFIG. 8 is a graph showing an emission spectrum of a three-wavelength cold cathode fluorescent tube.
【図9】 透過型カラー液晶表示装置のカラーフィルタ
の透過スペクトルの一例FIG. 9 shows an example of a transmission spectrum of a color filter of a transmission type color liquid crystal display device.
【図10】 従来の半導体発光装置の色度分布の一例FIG. 10 shows an example of a chromaticity distribution of a conventional semiconductor light emitting device.
【図11】 従来の半導体発光装置のYAG:Ce系蛍光体
の沈降状態の模式図FIG. 11 is a schematic view showing a sedimentation state of a YAG: Ce-based phosphor of a conventional semiconductor light emitting device.
(1, 2)・・配線導体、 (3)・・カップ部、 (4)・・半
導体発光素子、 (5)・・接着剤、 (6, 7)・・ボンデ
ィングワイヤ、 (8)・・封止体、 (9)・・蛍光体、
(10)・・蛍光層、 (11)・・コーティング、 (12)・・
モールド部材、(13)・・光拡散層、(1, 2) ・ ・ Wiring conductor, (3) ・ ・ Cup, (4) ・ ・ Semiconductor light emitting device, (5) ・ ・ Adhesive, (6, 7) ・ ・ Bonding wire, (8) ・ ・Sealing body, (9)
(10) ・ ・ Fluorescent layer, (11) ・ coating, (12) ・ ・
Mold member, (13) Light diffusion layer,
Claims (12)
一方の端部に形成されたカップ部と、前記カップ部内に
接着され且つ前記配線導体に電気的に接続されて近紫外
光を発生する半導体発光素子と、前記半導体発光素子の
周囲に設けられた蛍光層と、前記半導体発光素子、ボン
ディングワイヤ、配線導体の一方の端部及び蛍光層とを
被覆する透明な封止体とを備えた半導体発光装置におい
て、 前記蛍光層は、前記半導体発光素子から照射される近紫
外光によって励起され且つ前記半導体発光素子の発光波
長と異なる波長の光を発する一種以上の蛍光体を含み、 前記蛍光体層は、メタロキサン結合を主体とする液状の
セラミックコーティング剤を固化させた透明なポリメタ
ロキサンゲルより成ることを特徴とする半導体発光装
置。1. A pair of wiring conductors, a cup formed at one end of the pair of wiring conductors, and a near-ultraviolet light adhered inside the cup and electrically connected to the wiring conductor. A semiconductor light emitting element to be generated, a fluorescent layer provided around the semiconductor light emitting element, and a transparent sealing body covering the semiconductor light emitting element, the bonding wire, one end of the wiring conductor and the fluorescent layer. In the provided semiconductor light emitting device, the fluorescent layer includes one or more phosphors that are excited by near-ultraviolet light emitted from the semiconductor light emitting element and emit light having a wavelength different from the emission wavelength of the semiconductor light emitting element, A semiconductor light-emitting device, wherein the phosphor layer is made of a transparent polymetalloxane gel in which a liquid ceramic coating agent mainly containing metalloxane bonds is solidified.
化合物半導体層を有する発光ピーク波長365nm〜40
0nmの近紫外線を発生する請求項1に記載の半導体発光
装置。2. The semiconductor light emitting device according to claim 1, wherein the semiconductor light emitting device has a gallium nitride based compound semiconductor layer and has an emission peak wavelength of 365 nm to 40 nm.
2. The semiconductor light emitting device according to claim 1, which generates near-ultraviolet light of 0 nm.
囲を被覆する請求項1又は2に記載の半導体発光装置。3. The semiconductor light emitting device according to claim 1, wherein the fluorescent layer covers a periphery of the semiconductor light emitting element.
けられた請求項1又は2に記載の半導体発光装置。4. The semiconductor light emitting device according to claim 1, wherein said fluorescent layer is provided on an inner surface of said cup portion.
記蛍光層により波長変換された光とを混合する光散乱層
が前記カップ部内に設けられた請求項1、2又は4の何
れか1項に記載の半導体発光装置。5. A light scattering layer for mixing light generated from the semiconductor light emitting element and light converted in wavelength by the fluorescent layer is provided in the cup. The semiconductor light emitting device according to claim 1.
した透明樹脂又はセラミック粉末を混合した前記セラミ
ックコーティング剤を固化して形成される請求項5に記
載の半導体発光装置。6. The semiconductor light emitting device according to claim 5, wherein the light scattering layer is formed by solidifying a transparent resin mixed with a ceramic powder or the ceramic coating agent mixed with a ceramic powder.
の金属元素より成る単一金属アルコキシド、複数の金属
元素より成る複合金属アルコキシド又は単一金属アルコ
キシド若しくは複合金属アルコキシドの官能基の一部を
修飾して有機樹脂モノマーを導入した無機・有機複合体
を加水分解縮重合して得られる金属酸化物ポリマを主体
とした液状のゾルである請求項1〜6の何れか1項に記
載の半導体発光装置。7. The ceramic coating agent modifies a single metal alkoxide composed of a single metal element, a composite metal alkoxide composed of a plurality of metal elements, or a part of functional groups of the single metal alkoxide or the composite metal alkoxide. 7. A semiconductor light emitting device according to any one of claims 1 to 6, wherein the sol is a liquid sol mainly composed of a metal oxide polymer obtained by hydrolysis-condensation polymerization of an inorganic / organic composite into which an organic resin monomer has been introduced. .
シラザンを主体とする液状のゾルである請求項1〜6の
何れか1項に記載の半導体発光装置。8. The semiconductor light emitting device according to claim 1, wherein the ceramic coating agent is a liquid sol mainly composed of polysilazane.
塩化物ガス及び水素、酸素の混合気体を高温で燃焼させ
る火炎加水分解法によって生成された約5nm〜50nmの
直径を有する単一の金属元素より成る単一超微粒子状金
属酸化物又は複数の金属元素より成る複合超微粒子状金
属酸化物を主体とする液状のゾルである請求項1〜6の
何れか1項に記載の半導体発光装置。9. The ceramic coating agent comprises a single metal element having a diameter of about 5 nm to 50 nm, produced by a flame hydrolysis method in which a mixed gas of metal chloride gas, hydrogen and oxygen is burned at a high temperature. The semiconductor light emitting device according to any one of claims 1 to 6, which is a liquid sol mainly composed of a single ultrafine metal oxide or a composite ultrafine metal oxide composed of a plurality of metal elements.
接着する接着剤は、微小な金属薄片を混合した一液性エ
ポキシ樹脂より成る熱硬化性導電ペースト、一液性エポ
キシ樹脂より成る熱硬化性有機樹脂に光透過性セラミッ
ク粉末を混合した光透過性ペースト、前記金属アルコキ
シド又は前記超微粒子状金属酸化物を出発原料とする光
透過性無機系接着剤である請求項1〜9の何れか1項に
記載の半導体発光装置。10. An adhesive for bonding the semiconductor light emitting device to the cup portion is a thermosetting conductive paste made of a one-component epoxy resin mixed with fine metal flakes, or a thermosetting conductive paste made of a one-component epoxy resin. 10. A light-transmitting inorganic adhesive which is a light-transmitting paste obtained by mixing a light-transmitting ceramic powder with an organic resin, the metal alkoxide or the ultrafine metal oxide as a starting material. 13. The semiconductor light emitting device according to item 9.
樹脂又は前記金属アルコキシドの官能基の一部を修飾し
て有機樹脂モノマーを導入した無機若しくは有機複合体
ポリマーより成る請求項1〜10の何れか1項に記載の
半導体発光装置。11. The sealed body is made of an inorganic or organic composite polymer in which an organic resin having light transmissivity or an organic resin monomer is introduced by modifying a part of functional groups of the metal alkoxide. The semiconductor light emitting device according to claim 10.
る請求項1〜11の何れか1項に記載の半導体発光装
置。12. The semiconductor light emitting device according to claim 1, wherein the sealing body contains an ultraviolet absorber.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000265891A JP2002076445A (en) | 2000-09-01 | 2000-09-01 | Semiconductor light emitting device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000265891A JP2002076445A (en) | 2000-09-01 | 2000-09-01 | Semiconductor light emitting device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002076445A true JP2002076445A (en) | 2002-03-15 |
Family
ID=18753082
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000265891A Pending JP2002076445A (en) | 2000-09-01 | 2000-09-01 | Semiconductor light emitting device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002076445A (en) |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004032251A1 (en) * | 2002-09-30 | 2004-04-15 | Toyoda Gosei Co., Ltd. | White light emitting device |
JP2004311822A (en) * | 2003-04-09 | 2004-11-04 | Solidlite Corp | Purplish red light emitting diode |
WO2004107459A1 (en) * | 2003-05-30 | 2004-12-09 | Mitsubishi Chemical Corporation | Light-emitting device |
JP2005136005A (en) * | 2003-10-28 | 2005-05-26 | Matsushita Electric Works Ltd | Light emitting element |
JP2006080443A (en) * | 2004-09-13 | 2006-03-23 | Fujikura Ltd | Light emitting diode and manufacturing method thereof |
JP2006100543A (en) * | 2004-09-29 | 2006-04-13 | Stanley Electric Co Ltd | Method for manufacturing semiconductor light-emitting device |
JP2006114879A (en) * | 2004-09-16 | 2006-04-27 | Sharp Corp | Optical semiconductor device and electronic apparatus |
WO2006118104A1 (en) * | 2005-04-26 | 2006-11-09 | Kabushiki Kaisha Toshiba | White led, and backlight and liquid crystal display device using the same |
JP2007258006A (en) * | 2006-03-23 | 2007-10-04 | Pioneer Electronic Corp | Method of manufacturing sealing member for optical device, method of manufacturing optical device, optical device, and sealing member for optical device |
JP2008103688A (en) * | 2006-09-01 | 2008-05-01 | Cree Inc | Position of phosphor in light emitting diode |
US7425727B2 (en) | 2004-09-16 | 2008-09-16 | Sharp Kabushiki Kaisha | Optical semiconductor device, method for fabricating the same, lead frame and electronic equipment |
JPWO2011027511A1 (en) * | 2009-09-02 | 2013-01-31 | 株式会社東芝 | White LED, backlight using the same, and liquid crystal display device |
WO2013099193A1 (en) | 2011-12-26 | 2013-07-04 | コニカミノルタ株式会社 | Sealant for led device, led device, and method for producing led device |
JP2013225573A (en) * | 2012-04-20 | 2013-10-31 | Kaneka Corp | Resin molding for surface mounted light emitting device and light emitting device using the same |
JP2013225692A (en) * | 2005-03-14 | 2013-10-31 | Philips Lumileds Lightng Co Llc | Wavelength-converted semiconductor light emitting device |
US8878219B2 (en) | 2008-01-11 | 2014-11-04 | Cree, Inc. | Flip-chip phosphor coating method and devices fabricated utilizing method |
US9024349B2 (en) | 2007-01-22 | 2015-05-05 | Cree, Inc. | Wafer level phosphor coating method and devices fabricated utilizing method |
US9041285B2 (en) | 2007-12-14 | 2015-05-26 | Cree, Inc. | Phosphor distribution in LED lamps using centrifugal force |
US9093616B2 (en) | 2003-09-18 | 2015-07-28 | Cree, Inc. | Molded chip fabrication method and apparatus |
US9159888B2 (en) | 2007-01-22 | 2015-10-13 | Cree, Inc. | Wafer level phosphor coating method and devices fabricated utilizing method |
US9166126B2 (en) | 2011-01-31 | 2015-10-20 | Cree, Inc. | Conformally coated light emitting devices and methods for providing the same |
US9954148B2 (en) | 2014-10-24 | 2018-04-24 | Citizen Electronics Co., Ltd. | Light-emitting apparatus with optical element and method of manufacturing the same |
US10546846B2 (en) | 2010-07-23 | 2020-01-28 | Cree, Inc. | Light transmission control for masking appearance of solid state light sources |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05299172A (en) * | 1992-04-17 | 1993-11-12 | Nichia Chem Ind Ltd | El element |
JPH06132067A (en) * | 1992-10-15 | 1994-05-13 | Masao Sakurai | Ceramic coat electrode |
JPH0918121A (en) * | 1995-06-27 | 1997-01-17 | S I I R D Center:Kk | Electronic component mounted body and production thereof |
JPH09316661A (en) * | 1996-05-31 | 1997-12-09 | Toyota Motor Corp | Heat insulating ceramic layer and its formation |
JPH1092684A (en) * | 1996-09-11 | 1998-04-10 | Mitsubishi Materials Corp | Intergranular insulated semiconductor ceramic capacitor and its manufacturing method |
JP2924961B1 (en) * | 1998-01-16 | 1999-07-26 | サンケン電気株式会社 | Semiconductor light emitting device and method of manufacturing the same |
JPH11233822A (en) * | 1998-02-13 | 1999-08-27 | Mitsubishi Materials Corp | Nitride semiconductor light-emitting element |
JP2000031530A (en) * | 1998-07-14 | 2000-01-28 | Toshiba Electronic Engineering Corp | Semiconductor light emitter and its manufacture |
JP2000073012A (en) * | 1998-08-28 | 2000-03-07 | Techno Syst:Kk | Coating agent |
JP2000509912A (en) * | 1997-03-03 | 2000-08-02 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | White light emitting diode |
JP2000223750A (en) * | 1999-02-02 | 2000-08-11 | Nichia Chem Ind Ltd | Light emitting diode and its forming method |
-
2000
- 2000-09-01 JP JP2000265891A patent/JP2002076445A/en active Pending
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05299172A (en) * | 1992-04-17 | 1993-11-12 | Nichia Chem Ind Ltd | El element |
JPH06132067A (en) * | 1992-10-15 | 1994-05-13 | Masao Sakurai | Ceramic coat electrode |
JPH0918121A (en) * | 1995-06-27 | 1997-01-17 | S I I R D Center:Kk | Electronic component mounted body and production thereof |
JPH09316661A (en) * | 1996-05-31 | 1997-12-09 | Toyota Motor Corp | Heat insulating ceramic layer and its formation |
JPH1092684A (en) * | 1996-09-11 | 1998-04-10 | Mitsubishi Materials Corp | Intergranular insulated semiconductor ceramic capacitor and its manufacturing method |
JP2000509912A (en) * | 1997-03-03 | 2000-08-02 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | White light emitting diode |
JP2924961B1 (en) * | 1998-01-16 | 1999-07-26 | サンケン電気株式会社 | Semiconductor light emitting device and method of manufacturing the same |
JPH11233822A (en) * | 1998-02-13 | 1999-08-27 | Mitsubishi Materials Corp | Nitride semiconductor light-emitting element |
JP2000031530A (en) * | 1998-07-14 | 2000-01-28 | Toshiba Electronic Engineering Corp | Semiconductor light emitter and its manufacture |
JP2000073012A (en) * | 1998-08-28 | 2000-03-07 | Techno Syst:Kk | Coating agent |
JP2000223750A (en) * | 1999-02-02 | 2000-08-11 | Nichia Chem Ind Ltd | Light emitting diode and its forming method |
Cited By (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004127988A (en) * | 2002-09-30 | 2004-04-22 | Toyoda Gosei Co Ltd | White light emitting device |
WO2004032251A1 (en) * | 2002-09-30 | 2004-04-15 | Toyoda Gosei Co., Ltd. | White light emitting device |
US7227190B2 (en) | 2002-09-30 | 2007-06-05 | Toyoda Gosei Co., Ltd. | White light emitting device |
CN100428505C (en) * | 2002-09-30 | 2008-10-22 | 丰田合成株式会社 | White light emitting device |
JP2004311822A (en) * | 2003-04-09 | 2004-11-04 | Solidlite Corp | Purplish red light emitting diode |
WO2004107459A1 (en) * | 2003-05-30 | 2004-12-09 | Mitsubishi Chemical Corporation | Light-emitting device |
US10546978B2 (en) | 2003-09-18 | 2020-01-28 | Cree, Inc. | Molded chip fabrication method and apparatus |
US9093616B2 (en) | 2003-09-18 | 2015-07-28 | Cree, Inc. | Molded chip fabrication method and apparatus |
US9105817B2 (en) | 2003-09-18 | 2015-08-11 | Cree, Inc. | Molded chip fabrication method and apparatus |
US10164158B2 (en) | 2003-09-18 | 2018-12-25 | Cree, Inc. | Molded chip fabrication method and apparatus |
JP2005136005A (en) * | 2003-10-28 | 2005-05-26 | Matsushita Electric Works Ltd | Light emitting element |
JP4729281B2 (en) * | 2004-09-13 | 2011-07-20 | 株式会社フジクラ | Light emitting diode and light emitting diode manufacturing method |
JP2006080443A (en) * | 2004-09-13 | 2006-03-23 | Fujikura Ltd | Light emitting diode and manufacturing method thereof |
US7425727B2 (en) | 2004-09-16 | 2008-09-16 | Sharp Kabushiki Kaisha | Optical semiconductor device, method for fabricating the same, lead frame and electronic equipment |
JP2006114879A (en) * | 2004-09-16 | 2006-04-27 | Sharp Corp | Optical semiconductor device and electronic apparatus |
JP2006100543A (en) * | 2004-09-29 | 2006-04-13 | Stanley Electric Co Ltd | Method for manufacturing semiconductor light-emitting device |
JP2013225692A (en) * | 2005-03-14 | 2013-10-31 | Philips Lumileds Lightng Co Llc | Wavelength-converted semiconductor light emitting device |
JPWO2006118104A1 (en) * | 2005-04-26 | 2008-12-18 | 株式会社東芝 | White LED, backlight using the same, and liquid crystal display device |
WO2006118104A1 (en) * | 2005-04-26 | 2006-11-09 | Kabushiki Kaisha Toshiba | White led, and backlight and liquid crystal display device using the same |
US8896004B2 (en) | 2005-04-26 | 2014-11-25 | Kabushiki Kaisha Toshiba | White LED, backlight using the same, and liquid crystal display device |
JP2007258006A (en) * | 2006-03-23 | 2007-10-04 | Pioneer Electronic Corp | Method of manufacturing sealing member for optical device, method of manufacturing optical device, optical device, and sealing member for optical device |
US8425271B2 (en) | 2006-09-01 | 2013-04-23 | Cree, Inc. | Phosphor position in light emitting diodes |
JP2012009905A (en) * | 2006-09-01 | 2012-01-12 | Cree Inc | Position of phosphor in light emitting diode |
JP2008103688A (en) * | 2006-09-01 | 2008-05-01 | Cree Inc | Position of phosphor in light emitting diode |
US9024349B2 (en) | 2007-01-22 | 2015-05-05 | Cree, Inc. | Wafer level phosphor coating method and devices fabricated utilizing method |
US9159888B2 (en) | 2007-01-22 | 2015-10-13 | Cree, Inc. | Wafer level phosphor coating method and devices fabricated utilizing method |
US9041285B2 (en) | 2007-12-14 | 2015-05-26 | Cree, Inc. | Phosphor distribution in LED lamps using centrifugal force |
US8878219B2 (en) | 2008-01-11 | 2014-11-04 | Cree, Inc. | Flip-chip phosphor coating method and devices fabricated utilizing method |
US8872421B2 (en) | 2009-09-02 | 2014-10-28 | Kabushiki Kaisha Toshiba | White LED, backlight using the same, and liquid crystal display device |
TWI405359B (en) * | 2009-09-02 | 2013-08-11 | Toshiba Kk | White light emitting diodes and the use of its backlight and liquid crystal display device |
JPWO2011027511A1 (en) * | 2009-09-02 | 2013-01-31 | 株式会社東芝 | White LED, backlight using the same, and liquid crystal display device |
US10546846B2 (en) | 2010-07-23 | 2020-01-28 | Cree, Inc. | Light transmission control for masking appearance of solid state light sources |
US9166126B2 (en) | 2011-01-31 | 2015-10-20 | Cree, Inc. | Conformally coated light emitting devices and methods for providing the same |
WO2013099193A1 (en) | 2011-12-26 | 2013-07-04 | コニカミノルタ株式会社 | Sealant for led device, led device, and method for producing led device |
JP2013225573A (en) * | 2012-04-20 | 2013-10-31 | Kaneka Corp | Resin molding for surface mounted light emitting device and light emitting device using the same |
US9954148B2 (en) | 2014-10-24 | 2018-04-24 | Citizen Electronics Co., Ltd. | Light-emitting apparatus with optical element and method of manufacturing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2002076445A (en) | Semiconductor light emitting device | |
JP3866092B2 (en) | Method for producing wavelength conversion casting material | |
US7910940B2 (en) | Semiconductor light-emitting device | |
US8098005B2 (en) | White light emitting device | |
JP4792751B2 (en) | Light emitting device and manufacturing method thereof | |
US20070090381A1 (en) | Semiconductor light emitting device | |
JP5326182B2 (en) | Light emitting device, phosphor for light emitting element, and method for manufacturing the same | |
JP2007049114A (en) | Light emitting device and method of manufacturing the same | |
WO2002089219A1 (en) | Light-emitting apparatus | |
CN102017206A (en) | White light-emitting device, backlight, liquid crystal display device and illuminating device | |
JP4661032B2 (en) | Light emitting device and manufacturing method thereof | |
KR20060000313A (en) | White led comprising photo-luminescent powder with large mean particle size and manufacturing method thereof and transparent resin composition used therein | |
JP2011151419A (en) | Light emitting device and fabricating method thereof | |
JP2004327518A (en) | White light emitting device | |
JP5125039B2 (en) | Rare earth oxynitride phosphor and light emitting device using the same | |
JP2002050800A (en) | Light-emitting device and forming method therefor | |
JP3399342B2 (en) | Method of forming light emitting diode | |
KR20050089490A (en) | White color light emitting diode using violet light emitting diode | |
JP6743630B2 (en) | Light emitting device and manufacturing method thereof | |
JP4948015B2 (en) | Aluminate blue phosphor and light emitting device using the same | |
JP4890514B2 (en) | Phosphor and light emitting diode | |
WO2016035508A1 (en) | Light emitting device | |
KR20110056186A (en) | White light emitting diode package |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070822 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100413 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100415 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100602 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20101013 |