JP2002076445A - Semiconductor light emitting device - Google Patents

Semiconductor light emitting device

Info

Publication number
JP2002076445A
JP2002076445A JP2000265891A JP2000265891A JP2002076445A JP 2002076445 A JP2002076445 A JP 2002076445A JP 2000265891 A JP2000265891 A JP 2000265891A JP 2000265891 A JP2000265891 A JP 2000265891A JP 2002076445 A JP2002076445 A JP 2002076445A
Authority
JP
Japan
Prior art keywords
semiconductor light
light emitting
emitting device
device according
emitting element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000265891A
Other languages
Japanese (ja)
Inventor
Takeshi Sano
武志 佐野
Original Assignee
Sanken Electric Co Ltd
サンケン電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanken Electric Co Ltd, サンケン電気株式会社 filed Critical Sanken Electric Co Ltd
Priority to JP2000265891A priority Critical patent/JP2002076445A/en
Publication of JP2002076445A publication Critical patent/JP2002076445A/en
Application status is Pending legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/32257Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic the layer connector connecting to a bonding area disposed in a recess of the surface of the item
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding

Abstract

PROBLEM TO BE SOLVED: To reduce unevenness in chromaticity by improving an emission spectrum of a semiconductor light emitting device.
SOLUTION: A fluorescent layer (10) provided on a circumference of a semiconductor light emitting element (4) contains one or more types of a phosphor (9) excited by near ultraviolet light to be emitted from the element (4) to emit light having a wavelength different from that of the light emitted from the element (4) and a transparent polymetalloxan gel solidified from a liquid-like ceramic coating agent containing a metalloxan bond as a main body. Since the emission spectrum of the near ultraviolet light generated from the element (4) has a very sharp peak and high sharpness, the near ultraviolet light of the element (4) is wavelength-converted by the layer (10). Thus, a bright color having a sharp emission spectrum can be expressed as compared with a conventional semiconductor light emitting device.
COPYRIGHT: (C)2002,JPO

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【発明の属する技術分野】本発明は半導体発光装置、特に半導体発光素子から照射される近紫外光を可視光に波長変換して外部に放出する半導体発光装置に関する。 The present invention relates to a semiconductor light emitting device, a semiconductor light emitting device that emits to the outside, especially wavelength conversion of near-ultraviolet light emitted from the semiconductor light-emitting device into visible light.

【0002】 [0002]

【従来の技術】図6に示す従来の蛍光体波長変換半導体発光装置は、一対の配線導体(1, 2)と、一対の配線導体 BACKGROUND OF THE INVENTION Conventional phosphor wavelength conversion semiconductor light emitting device shown in FIG. 6, a pair of wiring conductors (1, 2), a pair of wire conductors
(1, 2)の一方の端部に設けられたカップ部(3)と、カップ部(3)の底部に固着された半導体発光素子(4)と、半導体発光素子(4)と一対の配線導体(1, 2)とを接続するボンディングワイヤ(6, 7)と、カップ部(3)内を満たし半導体発光素子(4)を被覆する蛍光体(9)を含有する樹脂より成るコーティング(11)と、一対の配線導体(1, 2)の一方の端部、カップ部(3)、半導体発光素子(4)、ボンディングワイヤ(6, 7)及びコーティング(11)とを被覆する透明樹脂より成るモールド部材(12)とを備える。 (1, 2) a cup portion provided at one end of the (3), the cup portion and the semiconductor light emitting element fixed to the bottom (3) (4), the semiconductor light emitting element (4) and a pair of wires conductors (1, 2) and a bonding wire connecting (6, 7), the coating (11 made of resin containing fluorescent substance (9) covering the semiconductor light-emitting device satisfies the cup (3) in (4) a), one end of a pair of wiring conductors (1, 2), the cup portion (3), the semiconductor light emitting element (4), than bonding wires (6, 7) and coating (11) and a transparent resin for covering the and a mold member (12) made.

【0003】半導体発光素子(4)は、400nm〜530n [0003] The semiconductor light-emitting element (4), 400nm~530n
m間にピーク波長があり且つ単色性の発光スペクトルを持つGaN系化合物半導体より成る青色系の半導体発光素子である。 A blue semiconductor light emitting device made of GaN-based compound semiconductor having an emission spectrum of and monochromatic has a peak wavelength between m. 蛍光体(9)は、化学式(RE 1-x Sm x ) 3 (Al y Ga 1-y ) Phosphor (9) has the formula (RE 1-x Sm x) 3 (Al y Ga 1-y)
5 O 12 :Ceで表され、0≦x<1、0≦y≦1、REはY、G 5 O 12: represented by Ce, 0 ≦ x <1,0 ≦ y ≦ 1, RE is Y, G
dから選択される少なくとも一種である。 Is at least one selected d. From 蛍光体(9)は、 Phosphor (9),
半導体発光素子(4)より放射される光によって励起され、黄色域をピークとして青色域から赤色域まで幅広いスペクトルで発光する。 Is excited by light emitted from the semiconductor light-emitting device (4) emits light with broad spectrum from blue region to red region of the yellow zone as a peak. 本明細書では、蛍光体(9)を「Y In this specification, a phosphor (9) "Y
AG:Ce系蛍光体」と略記する。 AG: abbreviated as Ce-based phosphor ".

【0004】コーティング(11)は、透明樹脂にYAG:Ce [0004] The coating (11), YAG transparent resin: Ce
系蛍光体(9)の粉末を混合し、例えばディスペンスやプリディップ等の方法を用いてカップ部(3)に透明樹脂を注入した後、透明樹脂を加熱硬化して形成される。 Mixing the powder system phosphors (9), for example, by injecting a transparent resin into the cup portion using a method such as dispensing or predip (3), is formed by heating and curing the transparent resin. 図6 Figure 6
に示す半導体発光装置では、半導体発光素子(4)から照射される発光成分の一部は、コーティング(11)中のYA The semiconductor light emitting device illustrated in a portion of the light-emitting components emitted from the semiconductor light emitting element (4) is, YA in the coating (11)
G:Ce系蛍光体(9)で吸収され、YAG:Ce系蛍光体(9)の発光成分に変換されるが、半導体発光素子(4)から照射される発光成分の残部は、YAG:Ce系蛍光体(9)に入射せずコーティング(11)を透過するため、半導体発光装置の外部に放出される光は、YAG:Ce系蛍光体(9)の発光成分と青色系の半導体発光素子(4)の透過光成分とが混色された光となる。 G: is absorbed by Ce phosphor (9), YAG: is converted to the light emitting component of Ce phosphor (9), the remainder of the emission component emitted from the semiconductor light emitting element (4) is, YAG: Ce for transmitting the coating (11) without entering the system phosphors (9), the light emitted to the outside of the semiconductor light-emitting device, YAG: emission component and blue semiconductor light emitting element of Ce phosphor (9) (4) a transmitted light component is light that is mixed in.

【0005】また、半導体発光素子(4)の光とYAG:Ce系蛍光体(9)の光とがxy色度図の白色点を挟む補色の関係にあるために、図6に示す半導体発光装置ではコーティング(11)中のYAG:Ce系蛍光体(9)の濃度とコーティング(11)のカップ部(3)への注入量とを適切に制御すれば、広帯域の発光スペクトルを持つ白色光を外部に放出することができる。 Further, light and YAG semiconductor light emitting element (4): To a complementary relationship and light sandwich the white point of the xy chromaticity diagram of the Ce based phosphor (9), the semiconductor light emitting shown in FIG. 6 YAG in the coating (11) in the device: by appropriately controlling the injection amount of the cup portion of the concentration and the coating (11) of Ce phosphor (9) to (3), white light having an emission spectrum of a broadband it can be released to the outside. 図7は、図6に示す半導体発光装置の発光スペクトルの一例を示す。 Figure 7 shows an example of an emission spectrum of the semiconductor light emitting device shown in FIG. 管球式白色光源である白熱電球、熱陰極蛍光管、冷陰極蛍光管等従来の発光源に比べて、白色光を発する半導体発光装置は、機械的衝撃に強く、発熱が少なく、高電圧駆動が不要であり、高周波ノイズを発生せず、寿命が長く、水銀を使用せず環境に優しい等の優れた利点があり、次世代固体化白色光源として特に期待される。 Tube white light source in which an incandescent lamp, a hot cathode fluorescent tube, in comparison with the cold cathode fluorescent tube such as a conventional light emitting source, a semiconductor light emitting device that emits white light, resistant to mechanical shock, fever less, high-voltage is not necessary, do not generate high frequency noise, long life, there are advantages of environmentally friendly, etc. without the use of mercury, especially expected as a next-generation solidified white light source.

【0006】しかしながら、優れた利点を持つ従来の半導体発光装置には、同時に多くの問題があるために、その製造及び応用に当たり様々な支障が生ずる。 [0006] However, the conventional semiconductor light emitting device having the advantages, because of the many problems simultaneously, arise various troubles Upon their production and applications.

【0007】 [0007]

【発明が解決しようとする課題】従来の半導体発光装置に付随する第一の問題は、例えばシャープな発光スペクトルが要求される透過型カラー液晶表示装置等の表示装置用光源に使用する場合、色純度が悪いため、鮮やかな色彩を表示できない欠点にある。 THE INVENTION Problems to be Solved first problem associated with conventional semiconductor light emitting device, when used in the transmissive type color display device for a light source of a liquid crystal display device or the like for example a sharp emission spectrum is required, color because of the bad purity, there is the disadvantage that can not display vivid color. 即ち、透過型カラー液晶表示装置では、通常、シャープな発光スペクトルを持つ三波長冷陰極蛍光管を白色光源として使用している。 That is, in the transmissive type color liquid crystal display device, typically using three-wavelength cold cathode fluorescent tube having a sharp emission spectrum as a white light source.
図8は、三波長冷陰極蛍光管の発光スペクトルの一例を示す。 Figure 8 shows an example of an emission spectrum of three band cold cathode fluorescent tubes. 透過型カラー液晶表示装置の各画素を構成する青色、緑色及び赤色の三原色カラーフィルタの透過スペクトルがシャープでなく、カラーフィルタの透過特性のみでは色純度の高い色彩表現を期待できないため、透過型カラー液晶表示装置の白色光源に三波長冷陰極蛍光管が用いられる。 For blue constituting each pixel of the transmissive color liquid crystal display device, the transmission spectrum of the green and red primary colors color filter is not sharp, with only the transmission characteristics of the color filter can not be expected with high color expression color purity, transmissive color three band cold cathode fluorescent tubes to a white light source of a liquid crystal display device is used. カラーフィルタの透過スペクトルの一例を示す図9から明らかなように、透過スペクトルはかなり幅広い波長領域の透過スペクトルを持つ。 As apparent from FIG. 9 shows an example of a transmission spectrum of the color filter, the transmission spectrum has a transmission spectrum of rather wide wavelength range. 従って、透過型カラー液晶表示装置では、青色、緑色及び赤色の各三原色画素の透過光スペクトルは、実際上三波長冷陰極蛍光管の発光スペクトルで決定され、一画素の透過光スペクトル(例えば、赤)に対する他の二原色成分(例えば、緑と青)の混入を防止するため、カラーフィルタは大まかな範囲で遮光するだけの役割を持つに過ぎない。 Accordingly, the transmissive color liquid crystal display device, blue, green, and transmitted light spectrum of each three primary colors pixel of red is determined by the emission spectrum of practically three band cold cathode fluorescent tubes, transmitted light spectrum of a pixel (e.g., red other two primary color components (e.g. for), in order to prevent contamination of the green and blue), the color filter is merely has a role of only shielded by the rough range.

【0008】しかしながら、従来の半導体発光装置の白色光源は、YAG:Ce系蛍光体(9)の発光スペクトルが非常に幅広いため、透過型カラー液晶表示装置に使用する各画素の透過光スペクトルをカラーフィルタの透過スペクトルで決定する他なく、この結果、従来の半導体発光装置は、表示装置を構成しても色純度が悪く鮮やかな色彩を表現できないため、透過型カラー液晶表示装置の白色光源には適さない。 However, the white light source of a conventional semiconductor light emitting device, YAG: Ce phosphor (9) emission spectrum is very broad for the color of the transmitted light spectra of the pixels to be used for transmission-type color liquid crystal display device other without determining a transmission spectrum of the filter, this result, the conventional semiconductor light emitting device, since even if a display device can not be represented poor bright colors color purity, white light source of the transmissive color liquid crystal display device not suitable.

【0009】従来の半導体発光装置に生ずる第二の問題は、コーティング(11)の注入量及びコーティング(11)中に混入される蛍光体(9)の濃度がカップ部(3)毎に不均一となり、多数の半導体発光装置からなる表示装置全体として発光色に大きな色調バラつきが発生する難点がある。 [0009] The second problem arising in the conventional semiconductor light emitting device, the coating (11) injection volume and concentration cup coating (11) phosphors to be mixed in (9) (3) non-uniformity for each of the next, a large color tone variation in emission color display device as a whole comprising a plurality of semiconductor light-emitting device has a drawback that occurs. 従来の半導体発光装置を製造する際に、カップ部 When manufacturing the conventional semiconductor light emitting device, the cup portion
(3)の底部に青色系の半導体発光素子(4)を固着し、YA Fixing a blue semiconductor light emitting element (4) in the bottom of the (3), YA
G:Ce系蛍光体(9)の粉末を液状の透明樹脂に適量混合し、ディスペンス又はプリディップなどの方法によってカップ部(3)に適量の透明樹脂を注入し加熱硬化してコーティング(11)が形成される。 G: Ce phosphor (9) powder mixed with an appropriate amount of the transparent resin liquid, the cup portion by a method such as dispensing or predip (3) an appropriate amount of the transparent resin injected heat cured to a coating (11) There is formed. 通常約1万分の1cc程度と極めて微小な容積を有するカップ部(3)内に一定量の透明樹脂を正確に注入するのは困難である。 It is difficult to accurately inject a predetermined amount of transparent resin into the cup portion (3) in having a very small volume and generally about 10,000 parts per 1cc about. また、約4.8〜4.9と非常に大きい比重を持つYAG:Ce系蛍光体(9)は、ディスペンス又はプリディップ装置内で沈降しやすい。 Also, YAG has a very large specific gravity of about 4.8-4.9: Ce phosphor (9) is likely to settle in the dispensing or the pre-dip equipment. その結果、コーティング(11)の注入量とコーティング(11)中のYAG:Ce系蛍光体(9)の濃度とがカップ部(3)毎に不均一となり、半導体発光素子(4)の青色透過光量とYAG:Ce系蛍光体(9)の発光量とのバランスが崩れ、表示装置全体として放射光の色調バラつきが増大する。 As a result, YAG injection volume and in the coating (11) of the coating (11) concentration and the cup portion of the Ce based phosphor (9) (3) become uneven in each, blue transmission of the semiconductor light emitting element (4) quantity and YAG: Ce based phosphor balance between the light emission amount is lost (9), the emitted light color tone variation is increased as the entire display device. 図10に示すように、従来の半導体発光装置の色度は白色域を中心に青色域から黄色域まで幅広く分布するため、例えば並置した複数の発光装置を点灯する構造の表示装置で従来の半導体発光装置を用いると、色調バラつきが大きく、表示品位が低下する問題が生じる。 As shown in FIG. 10, because the chromaticity of a conventional semiconductor light-emitting device be widely distributed from blue region around the white region to a yellow region, for example, conventional semiconductor display device having the structure for lighting a plurality of light emitting devices juxtaposed When using the light emitting device, a large color tone variation, there is a problem that the display quality decreases.

【0010】従来の半導体発光装置に伴う第三の問題は、側面から正面に至る各指向角方向に対する放射光に大きな色調ムラを生ずる点にある。 [0010] A third problem with conventional semiconductor light emitting device, in that produce great tone unevenness in emitted light for each directional angle direction leading to the front from the side. カップ部(3)に注入したコーティング(11)を加熱硬化する際、コーティング When heat curing the injected coating (11) on the cup (3), the coating
(11)を構成する樹脂の粘度が比較的長時間にわたり大きく低下するため、比重の大きいYAG:Ce系蛍光体(9)はコーティング(11)中で沈降し、カップ部(3)の底部と半導体発光素子(4)上に堆積する。 (11) Since the viscosity of the resin forming is greatly reduced over a relatively long period of time, large YAG specific gravity: Ce phosphor (9) is precipitated in the coating (11), and the bottom of the cup part (3) deposited on the semiconductor light emitting element (4).

【0011】図11は、YAG:Ce系蛍光体(9)の沈降状態を示す従来の半導体発光装置の部分断面図である。 [0011] Figure 11, YAG: is a partial cross-sectional view of a conventional semiconductor light emitting device showing a settling state of Ce phosphor (9). 沈降したYAG:Ce系蛍光体(9)の濃度の高いカップ部(3)の底部と青色系半導体発光素子(4)上面からの放射光は黄色味を帯びるが、YAG:Ce系蛍光体(9)の濃度が低い青色系半導体発光素子(4)側面からの放射光は青味を帯びる。 Precipitated YAG: emitted light from the bottom and the blue semiconductor light emitting element (4) the upper surface of the high concentration of the cup portion of the Ce based phosphor (9) (3) is yellowing but, YAG: Ce phosphor ( radiation from low concentration blue semiconductor light emitting element (4) sides of 9) takes on a bluish.
このため、従来の半導体発光装置の放射光を壁面等に投射すると、放射光の中心から外側に向かって黄色、青色、黄色の順で並んだリング状の色調ムラを観察できる。 Therefore, it can be observed when projecting the emitted light of the conventional semiconductor light emitting device to a wall surface or the like, yellow outward from the center of the radiation, blue, ring-like tone unevenness aligned in the order of yellow. 従って、例えば放射光を拡大して表示するバックライト等の用途に従来の半導体発光装置を用いると、色調ムラが大きく低品位表示となる。 Thus, for example, the use of conventional semiconductor light emitting device for applications such as a backlight to display an enlarged emitted light, color unevenness is largely low-quality display.

【0012】従来の半導体発光装置に派生する第四の問題は、第二の問題である色調バラつきや第三の問題である色調ムラが必然的に増幅される点にある。 [0012] Fourth derived the conventional semiconductor light emitting device of the problems is that the color tone unevenness is the second color variations and third problem is an issue is inevitably amplified. YAG:Ce系蛍光体(9)の発光成分と青色系半導体発光素子(4)の透過光成分とが混色された光が外部に放出される際に、例えばYAG:Ce系蛍光体(9)の濃度又は注入量が多いと、青色系半導体発光素子(4)から放射された光がYAG:Ce系蛍光体(9)に入射する割合は大きくなり、YAG:Ce系蛍光体 YAG: When light and transmitted light component of the light emitting component and the blue semiconductor light emitting element (4) is mixed in Ce phosphor (9) is released to the outside, for example YAG: Ce phosphor (9) When the concentration or the injection amount is large, blue light emitted from the semiconductor light emitting element (4) is YAG: rate entering the Ce phosphor (9) increases, YAG: Ce based phosphor
(9)の発光は増大するが、同時にコーティング(11)を透過する青色系半導体発光素子(4)の放射光はその分だけ減少する。 The emission increases (9), but blue emitted light of the semiconductor light emitting element (4) for transmitting simultaneously coating (11) decreases correspondingly. 逆に、YAG:Ce系蛍光体(9)の濃度又は注入量が少ないと、コーティング(11)を透過する青色系半導体発光素子(4)の放射光は増加する。 Conversely, YAG: the concentration or amount of injected Ce phosphor (9) is small, radiation coating blue semiconductor light emitting device which transmits (11) (4) increases. このように、YAG:Ce In this way, YAG: Ce
系蛍光体(9)の発光成分と青色半導体発光素子(4)の透過光成分は、一方が増えれば他方が相対的に減る関係にある。 Transmitted light component of the light emitting component and the blue semiconductor light emitting element (4) of the system phosphors (9) is in the other relatively reduced relationship The more one. 従って、従来の半導体発光装置では、コーティング Therefore, in the conventional semiconductor light emitting device, the coating
(11)の注入量及びコーティング(11)中の蛍光体(9)の濃度が僅かでも変わると混色によって生成される放射光の色調は大きく変動する。 (11) radiation shade density is generated by also changes the color mixing small injection volume and coating (11) phosphors in (9) of largely varies. このように、半導体発光素子 Thus, the semiconductor light emitting element
(4)の発光成分は、YAG:Ce系蛍光体(9)の励起光であると同時に、混色光の成分になる動作原理のため、従来の半導体発光装置では、その利点を十分に生かすことができない。 Emission component (4) is YAG: at the same time an excitation light of Ce phosphor (9), for the operation principle on which the components of the mixed color light, in a conventional semiconductor light-emitting device, to utilize the advantages thereof sufficiently can not.

【0013】要するに、従来の半導体発光装置は、下記の問題を解決しなければならない。 [0013] In summary, conventional semiconductor light emitting device has to solve the following problems. [1] シャープな発光スペクトルが要求される表示装置の光源に使用する場合に色純度が悪く鮮やかな色彩を表現できない。 [1] the color purity can not be represented with poor bright colors when used as a light source of a display device a sharp emission spectrum is required. [2] コーティング(11)の注入量及びコーティング(11) [2] injection amount and coating of the coating (11) (11)
中の蛍光体(9)の不均一な濃度により、表示装置全体の発光色調に大きなバラつきが生ずる。 The uneven concentration of phosphor in (9), occurs a large variation in the light emission color of the entire display device. [3] 側面から正面に至る各指向角方向への発光色の色調ムラが大きい。 [3] is larger luminous shades unevenness from the side to the directivity angle direction leading to the front. [4] 動作原理上の問題から色調バラつきが増幅されやすい。 [4] easy color variation is amplified from problems on operation principle.

【0014】そこで、本発明は、発光スペクトルがシャープで鮮やかな色彩表現が可能であり、色度バラつきが少ない半導体発光装置を提供することを目的とする。 [0014] Therefore, the present invention provides emission spectra are possible vivid color expression sharp, and an object thereof is to provide a semiconductor light-emitting device is small chromaticity variation. また、本発明は、長寿命で作動でき且つ水銀を使用せず環境に優しい半導体発光装置を提供することを目的とする。 The present invention also aims to provide an environment-friendly semiconductor light emitting device without the operation can and mercury long life. 更に、本発明は、機械的衝撃に強く、発熱が少なく、高電圧が不要で、高周波ノイズを発生しない半導体発光装置を提供することを目的とする。 Furthermore, the present invention is resistant to mechanical shock, fever less, requires no high voltage, and an object thereof is to provide a semiconductor light emitting device that does not generate high frequency noise.

【0015】 [0015]

【課題を解決するための手段】本発明による半導体発光装置は、一対の配線導体(1, 2)と、一対の配線導体(1, The semiconductor light-emitting device according to the present invention SUMMARY OF] includes a pair of wire conductors (1, 2), a pair of wire conductors (1,
2)の一方の端部に形成されたカップ部(3)と、カップ部 One of the cup portion formed at the end of 2) and (3), the cup portion
(3)内に接着され且つ配線導体(1, 2)に電気的に接続されて近紫外光を発生する半導体発光素子(4)と、半導体発光素子(4)の周囲に設けられた蛍光層(10)と、半導体発光素子(4)、ボンディングワイヤ(6, 7)、配線導体の一方の端部及び蛍光層(10)とを被覆する透明な封止体 (3) and bonded and wire conductors (1, 2) electrically connected to a semiconductor light-emitting element for generating near-ultraviolet light (4) in the fluorescent layer provided around the semiconductor light emitting element (4) and (10), the semiconductor light emitting element (4), bonding wires (6, 7), a transparent encapsulant which covers one end and a fluorescent layer (10) of the wiring conductor
(8)とを備えている。 (8) and a. 蛍光層(10)は、半導体発光素子(4) Fluorescent layer (10) is a semiconductor light emitting element (4)
から照射される近紫外光によって励起され半導体発光素子(4)の発光と異なる波長の光を発する一種以上の蛍光体(9)を含む。 Emitting a different one or more phosphors which emit light of a wavelength of the semiconductor light emitting element is excited by near ultraviolet light irradiated (4) from including (9). また、蛍光層(10)は、メタロキサン結合を主体とする液状のセラミックコーティング剤を固化させた透明なポリメタロキサンゲルより成る。 The fluorescent layer (10) consists of a transparent polymetalloxane gel is solidified ceramic coating liquid mainly composed of metalloxane bond. 半導体発光素子(4)から発生する近紫外光の発光スペクトルは、非常に鋭利なピークを持ち尖鋭度が高いので、半導体発光素子(4)の近紫外光を蛍光層(10)で波長変換することにより、従来の半導体発光装置に比べ、発光スペクトルがシャープで鮮やかな色彩表現が可能であり、色度バラつきが少ない。 Emission spectrum of the near ultraviolet light generated from the semiconductor light emitting element (4) has a high quality factor has a very sharp peak, wavelength conversion near ultraviolet light of the semiconductor light emitting element (4) a fluorescent layer (10) it allows comparison with the conventional semiconductor light emitting device, the emission spectrum is possible sharp vivid color expression, little chromaticity variation. また、半導体発光素子(4)の近紫外光により励起される複数類の蛍光体(9)を蛍光層(10)に混入できるので、発光スペクトル等所望の特性に合致する蛍光体(9)を選択できる。 Further, since a plurality such phosphors which are excited by near ultraviolet light of the semiconductor light emitting element (4) to (9) can be mixed into the phosphor layer (10), a phosphor that matches the desired properties such as emission spectrum (9) It can be selected. 蛍光体(9)を封入する蛍光層(10)に紫外線耐性の高いポリメタロキサンゲルを用いるため、 Since the use of high ultraviolet resistance polymetalloxane gel phosphor layer to encapsulate phosphor (9) (10),
蛍光層(10)に劣化が発生せず、衝撃等の機械的強度が向上する。 Deterioration is not generated in the fluorescent layer (10), to improve the mechanical strength such as impact. また、青色、緑色、赤色のシャープなスペクトルを持つ蛍光体(9)を組み合わせると、色純度の優れた鮮やかな色彩を表現できる白色光源を実現できる。 The blue, green, combining a phosphor (9) with a red sharp spectrum can be realized a white light source can represent an excellent vivid colors in color purity. 近紫外光により蛍光体(9)を励起するため観察者に殆ど視認されず、蛍光体(9)の発光成分だけで放射光の色調が決定されるので、蛍光体(9)の注入量や濃度が不均一でも色調のバラつきは起こらない。 Was hardly visible to the observer for exciting the phosphor by near ultraviolet light (9), since the emitted light color tone only light emission component of the phosphor (9) is determined, Ya injection amount of the phosphor (9) concentration does not occur is the color tone of the variation in non-uniform.

【0016】本発明の実施の形態では、半導体発光素子 [0016] In the embodiment of the present invention, a semiconductor light emitting element
(4)は、窒化ガリウム系化合物半導体層を有する発光ピーク波長365nm〜400nmの近紫外線を発生する。 (4) generates a near-ultraviolet emission peak wavelength 365nm~400nm having gallium nitride-based compound semiconductor layer. 半導体発光素子(4)の周囲は、カップ部(3)の内面に設けられた蛍光層(10)により被覆されるので、半導体発光素子 Around the semiconductor light emitting element (4), because are covered by a fluorescent layer provided on the inner surface of the cup portion (3) (10), the semiconductor light emitting element
(4)から発生する全ての光は蛍光層(10)を通過した後、 (4) all of the light generated from the after passing through the fluorescent layer (10),
封止体(8)を通り外部に放出される。 Sealing body (8) is released to the outside through.

【0017】半導体発光素子(4)から発生する光と蛍光層(10)により波長変換された光とを混合する光散乱層(1 The light scattering layer for mixing the light whose wavelength is converted by the semiconductor light emitting element light and the fluorescent layer generated from (4) (10) (1
3)がカップ部(3)内に設けられるので、光散乱層(13)により十分な光の混合が行われる。 Since 3) is provided in the cup portion (3) inside, mixing of sufficient light is performed by the light scattering layer (13). 光散乱層(13)は、セラミック粉末を混合した透明樹脂又はセラミック粉末を混合したセラミックコーティング剤を固化して形成される。 Light scattering layer (13) is formed by solidifying a ceramic coating agent obtained by mixing a transparent resin or ceramic powder mixed with a ceramic powder. セラミックコーティング剤は、単一の金属元素より成る単一金属アルコキシド、複数の金属元素より成る複合金属アルコキシド又は単一金属アルコキシド若しくは複合金属アルコキシドの官能基の一部を修飾して有機樹脂モノマーを導入した無機・有機複合体を加水分解縮重合して得られる金属酸化物ポリマを主体とした液状のゾル又はポリシラザンを主体とする液状のゾルである。 Ceramic coating agent, introducing a single metal alkoxide, double metal alkoxide or a single metal alkoxide or an organic resin monomer by modifying a part of the functional groups of the complex metal alkoxide consisting of a plurality of metal elements consisting of a single metal element the inorganic-organic composite is a sol liquid mainly comprising sol or polysilazane liquid consisting mainly of metal oxide polymer obtained by hydrolytic condensation polymerization.

【0018】セラミックコーティング剤は、金属塩化物ガス及び水素、酸素の混合気体を高温で燃焼させる火炎加水分解法によって生成された約5nm〜50nmの直径を有する単一の金属元素より成る単一超微粒子状金属酸化物又は複数の金属元素より成る複合超微粒子状金属酸化物を主体とする液状のゾルである。 [0018] Ceramic coatings are single than consisting of a single metal element having a diameter of about 5nm~50nm produced by flame hydrolysis method for combusting a metal chloride gas and hydrogen, oxygen mixed gas at a high temperature the particulate metal oxide or comprising a plurality of metal elements composite ultrafine particulate metal oxide is a sol liquid mainly.

【0019】半導体発光素子(4)をカップ部(3)に接着する接着剤(5)は、微小な金属薄片を混合した一液性エポキシ樹脂より成る熱硬化性導電ペースト、一液性エポキシ樹脂より成る熱硬化性有機樹脂に光透過性セラミック粉末を混合した光透過性ペースト、金属アルコキシド又は超微粒子状金属酸化物を出発原料とした光透過性無機系接着剤である。 The cup portion of the semiconductor light emitting element (4) (3) adhesive adhering to (5), the thermosetting conductive paste made of a one-component epoxy resin mixed with fine metallic flakes, one-component epoxy resin a light-transmissive inorganic adhesive optically transparent paste obtained by mixing a light-transmitting ceramic powder, a metal alkoxide or ultrafine particles metal oxide as a starting material to a more composed thermosetting organic resin. 封止体(8)は、光透過性を有する有機樹脂又は金属アルコキシドの官能基の一部を修飾して有機樹脂モノマーを導入した無機若しくは有機複合体ポリマより成る。 Sealing body (8), an inorganic or organic complex polymer were introduced organic resin monomer by modifying a part of the functional group of the organic resin or a metal alkoxide having optical transparency. 封止体(8)は、紫外線吸収剤を含有してもよい。 Sealing body (8) may contain an ultraviolet absorber.

【0020】 [0020]

【発明の実施の形態】以下、本発明による半導体発光装置の実施の形態を図1〜図4について説明する。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, an embodiment of the semiconductor light-emitting device according to the present invention FIGS about. 図1 Figure 1
は、本発明による半導体発光装置による第一の実施の形態の部分断面図を示す。 Shows a partial cross-sectional view of a first embodiment according to the semiconductor light-emitting device according to the present invention. 本実施例の半導体発光装置は、 The semiconductor light-emitting device of this embodiment,
一対の配線導体(1, 2)と、一対の配線導体(1, 2)の一方の端部に形成されたカップ部(3)と、カップ部(3)内に接着剤(5)によって接着された半導体発光素子(4)と、半導体発光素子(4)の第一の電極及び第二の電極と一対の配線導体(1, 2)の一方の端部とを接続するボンディングワイヤ(6, 7)と、半導体発光素子(4)の周囲に設けられた蛍光層(10)と、半導体発光素子(4)、ボンディングワイヤ(6, 7)、配線導体(1, 2)の一方の端部及び蛍光層(10) Bonding a pair of wire conductors (1, 2), a pair of wire conductors (1, 2) one end cup portion formed in the portion between (3), the cup portion (3) adhesive within the (5) bonding wires (6 connected to the semiconductor light emitting element (4) has, the one end portion of the first electrode and the second electrode and the pair of the wiring conductor of the semiconductor light emitting element (4) (1, 2), 7), the fluorescent layer provided around the semiconductor light emitting element (4) and (10), the semiconductor light emitting element (4), bonding wires (6, 7), the wiring conductors (1, 2) one end of and a fluorescent layer (10)
とを被覆する透明な封止体(8)とを備えている。 And a transparent encapsulant (8) that covers and. 蛍光層 Fluorescent layer
(10)は、半導体発光素子(4)から照射される近紫外光によって励起され且つ半導体発光素子(4)の発光波長と異なる波長の光を発する一種以上の蛍光体(9)を含み、かつメタロキサン結合を主体とする液状のセラミックコーティング剤を固化させた透明なポリメタロキサンゲルより成る。 (10), one or more phosphors that emit light having an emission wavelength different from the wavelength of near-ultraviolet excited by light and a semiconductor light-emitting device to be irradiated (4) from the semiconductor light emitting element (4) a (9), and metalloxane bond made of transparent polymetalloxane gel is solidified ceramic coating liquid mainly composed of.

【0021】半導体発光素子(4)は、発光ピーク波長3 The semiconductor light emitting element (4), the emission peak wavelength of 3
90nmの近紫外光を発生するInGaN系半導体発光素子により構成される。 Composed of InGaN-based semiconductor light-emitting element for generating near-ultraviolet light of 90 nm. 半導体発光素子(4)は、SiCなどの半導体基板又はサファイヤなどのセラミック基板上に、エピタキシャル成長などの単結晶成長法によって形成された The semiconductor light emitting element (4) has, on a ceramic substrate such as a semiconductor substrate or sapphire, such as SiC, which is formed by a single crystal growth method such as epitaxial growth
InGaN、GaNなどの窒化ガリウム系化合物半導体層を有する発光ピーク波長が365nm〜400nmの近紫外半導体発光素子である。 InGaN, emission peak wavelength having a gallium nitride-based compound semiconductor layer such as GaN is near-ultraviolet semiconductor light-emitting element 365Nm~400nm.

【0022】蛍光層(10)は、金属アルコキシドを出発原料とするセラミックコーティング剤に所定の比率で青色、緑色、赤色の三種の蛍光材料を混合して混合物を形成し、半導体発光素子(4)が固定されたカップ部(3)内に混合物を塗布し硬化させることにより形成される。 The phosphor layer (10) is blue in a predetermined ratio of metal alkoxide to ceramic coatings used as a starting material, green, by mixing red three kinds of fluorescent materials to form a mixture, the semiconductor light emitting element (4) There is formed by applying and curing the mixture to the fixed cup (3) within. 蛍光体(9)を構成する三種の蛍光材料は、白色光を発生する所定の比率で混合される。 Three kinds of fluorescent materials constituting the phosphor (9) are mixed in a predetermined ratio to generate white light.

【0023】蛍光層(10)は、半導体発光素子(4)から照射される近紫外光によって励起され半導体発光素子(4) The phosphor layer (10) is excited by near ultraviolet light emitted from the semiconductor light emitting element (4) semiconductor light emitting device (4)
の発光と異なる波長の光を発する一種以上の蛍光体(9) One or more phosphors which emit light when different wavelengths of light (9)
を含み、かつメタロキサン結合(MOM結合、M:金属) Includes, and metalloxane bond (MOM bonds, M: metal)
を主体とする液状のセラミックコーティング剤を固化させたポリメタロキサンゲルより成る。 Consisting polymetalloxane gel is solidified ceramic coating liquid mainly composed of. ポリメタロキサンゲルは半導体発光素子(4)から照射される近紫外光に対して光透過性を有し、かつ、耐熱性及び紫外線耐性を有する。 Polymetalloxane gel has light permeability with respect to near-ultraviolet light emitted from the semiconductor light emitting element (4), and having heat resistance and UV resistance. 従って、本発明の半導体発光装置の蛍光層(10)の構成要素としては最適である。 Therefore, the components of the fluorescent layer of the semiconductor light-emitting device of the present invention (10) is optimal.

【0024】セラミックコーティング剤は、金属アルコキシド、ポリシラザン、超微粒子状金属酸化物などの出発原料を、それぞれ下記に示す方法によって金属酸化物ポリマを主体とする液状のゾルに加工したものである。 The ceramic coating agent, a metal alkoxide, polysilazane, a starting material such as finely divided metal oxide, which has been processed into a sol liquid mainly comprising metal oxide polymer by the methods respectively shown below.

【0025】金属アルコキシドは、化学式M(OR) n ,M:金属、R:アルキル基、で表される有機金属化合物であり、例えばシリコン、アルミニウム、チタン、ジルコニウムなどの単一の金属元素より成る単一金属アルコキシド、又は複数の金属元素より成る複合金属アルコキシドである。 The metal alkoxide has the formula M (OR) n, M: Metal, R: an alkyl group, in an organic metal compound represented, made for example of silicon, aluminum, titanium, of a single metal element such as zirconium is a single metal alkoxide complex metal alkoxide or consisting of a plurality of metal elements. また、金属アルコキシドの官能基の一部を修飾して有機樹脂モノマーを導入した無機・有機複合体を用いることも可能である。 It is also possible to use inorganic-organic composite obtained by introducing an organic resin monomer by modifying a part of the functional groups of the metal alkoxide.

【0026】金属アルコキシドをアルコールなどの溶媒に分散し水と微量の触媒とを滴下して混合すると下記の化学式で示す加水分解縮合反応を生じる。 [0026] The metal alkoxide is mixed dropwise with a solvent to disperse the water and a small amount such as an alcohol catalyst causing hydrolysis condensation reaction represented by the chemical formula below. M(OR) n +xH 2 O→M(OH) x (OR) nx +xROH (-M-OH)+(HOM)→(-MOM)+H 2 O (-M-OH)+(ROM)→(-MOM)+ROH M (OR) n + xH 2 O → M (OH) x (OR) nx + xROH (-M-OH) + (HOM) → (-MOM) + H 2 O (-M-OH) + (ROM) → ( -MOM) + ROH

【0027】上記の反応により、溶媒中には金属酸化物のポリマが生じるが、途中で反応を停止させると金属酸化物のポリマが溶媒に分散した状態となった液状のゾルが得られ、セラミックコーティング剤として用いることができる。 [0027] By the above reaction, but the solvent occurs polymer metal oxides, middle polymers Stopping metal oxide reaction sol liquid was obtained with a dispersed state in a solvent, the ceramic it can be used as a coating agent.

【0028】ポリシラザンは、化学式-SiH 2 -NH-を基本構造とした無機化合物であり、ジクロロシランとピリジンの錯体にアンモニアを導入して合成される。 The polysilazane, an inorganic compound with basic structure of formula -SiH 2 -NH-, is synthesized by introducing ammonia complex of dichlorosilane and pyridine. ポリシラザンをキシレンなど適当な溶媒で希釈した液状のゾルをセラミックコーティング剤として用いることができる。 Polysilazane can be used sol liquid was diluted with a suitable solvent such as xylene as a ceramic coating.

【0029】超微粒子状金属酸化物は、例えばシリコン、アルミニウム、チタン、ジルコニウムなどの単一の金属元素より成る単一超微粒子状金属酸化物、又は複数の金属元素より成る複合超微粒子状金属酸化物であり、 The ultrafine particulate metal oxide, such as silicon, aluminum, titanium, single single ultrafine particulate metal oxide comprising a metal element, or comprises a plurality of metal elements composite ultrafine particulate metal oxide such as zirconium It is those,
金属塩化物ガス及び水素、酸素の混合気体を高温で燃焼させる火炎加水分解法によって生成された直径が約5nm Metal chloride gas and hydrogen, the diameter generated by the flame hydrolysis method of burning oxygen mixed gas at a high temperature of about 5nm
〜50nmの金属酸化物微粉体である。 A metal oxide fine powder up to 50 nm. 超微粒子状金属酸化物をアルコールなどの溶媒に分散させ水を滴下して混合すると液状のゾルが得られ、セラミックコーティング剤として用いることができる。 When mixing the ultrafine particles metal oxides added dropwise water is dispersed in a solvent such as an alcohol liquid of the sol can be obtained, it can be used as a ceramic coating.

【0030】本発明による第一の半導体発光装置の蛍光層(10)は、セラミックコーティング剤に粉末状の蛍光体 The fluorescent layer of the first semiconductor light-emitting device according to the present invention (10) is a powdery phosphor ceramic coatings
(9)を混合し、予め接着剤(5)によって半導体発光素子 (9) were mixed, the semiconductor light-emitting device in advance by an adhesive (5)
(4)が接着されたカップ部(3)にディスペンス、プリディップなどの方法によって注入し、空気中に放置して溶媒を揮発させた後、加熱硬化させて形成される。 (4) is dispensed in the cup portion which is adhered (3), is injected by a method such as pre-dip, after allowed to stand in the air to volatilize the solvent, it is formed by heat curing. また、本発明による第二の半導体発光装置の蛍光層(10)は、セラミックコーティング剤に粉末状の蛍光体(9)を混合し、 The fluorescent layer of the second semiconductor light-emitting device according to the present invention (10), the powdery fluorescent material (9) were mixed in a ceramic coating,
ディスペンス、プリディップなどの方法によってカップ部(3)の内面に薄く塗布し、空気中に放置して溶媒を揮発させた後、加熱硬化させて形成される。 Dispensing, thinly applied to the inner surface of the cup portion (3) by a method such as pre-dip, after allowed to stand in the air to volatilize the solvent, it is formed by heat curing.

【0031】封止体(8)は、光透過性を有するエポキシ樹脂、シリコーン樹脂、ポリエステル樹脂、アクリル樹脂などの有機樹脂、又は金属アルコキシドの官能基の一部を修飾して有機樹脂モノマーを導入した無機・有機複合体ポリマより成り、ポッティング、射出成形などの方法によって形成される。 The sealing body (8) an epoxy resin having optical transparency, a silicone resin, a polyester resin, introducing an organic resin, or by modifying a part of the functional group of the metal alkoxide organic resin monomer such as acrylic resin It consists inorganic-organic composite polymer, potting, is formed by a method such as injection molding. 半導体発光素子(4)の近紫外光によって封止体(8)の劣化を防ぐため、封止体(8)に紫外線吸収剤を添加してもよい。 To prevent deterioration of the sealing body (8) by near-ultraviolet light from the semiconductor light-emitting element (4), an ultraviolet absorber may be added to the sealing body (8).

【0032】光散乱層(13)は、封止体(8)と同一の有機樹脂又は蛍光層(10)に用いられるセラミックコーティング剤と同一のセラミックコーティング剤に、シリカ、アルミナ、酸化チタンなどのセラミック粉末を適量混合し、カップ部(3)にディスペンス、プリディップなどの方法によって注入した後、所定の硬化条件で固化して形成される。 The light scattering layer (13), the ceramic coating of the same ceramic coating agent used in the sealing body the same organic resin or fluorescent layer (8) (10), silica, alumina, such as titanium oxide ceramic powder mixed with an appropriate amount of, dispensing the cup portion (3), after injection by a method such as pre-dip is formed by solidifying a predetermined curing condition. なお、光散乱層(13)は半導体発光素子(4)からの近紫外光を受けるので、光散乱層(13)の劣化を防ぐには構成材料としてセラミックコーティング剤を選択することが望ましい。 Incidentally, the light scattering layer (13) is so subjected to near-ultraviolet light from the semiconductor light emitting element (4), it is desirable that the prevent deterioration of the light scattering layer (13) selects the ceramic coating as a constituent material.

【0033】ボンディングワイヤ(6, 7)は、金、銀、アルミニウム、銅などからなる金属細線である。 The bonding wire (6, 7) is a thin metal wire made of gold, silver, aluminum, copper and the like. 接着剤 adhesive
(5)は金、銀などの微少な金属薄片を混合した一液性エポキシ樹脂より成る熱硬化性導電ペースト、又は、一液性エポキシ樹脂より成る熱硬化性有機樹脂に光透過性セラミック粉末を混合した光透過性ペースト、又は金属アルコキシドまたは超微粒子状金属酸化物を出発原料とした光透過性無機系接着剤である。 (5) is gold, fine metal flakes and made of one-component epoxy resin mixed with a thermosetting conductive paste such as silver, or a light transmissive ceramic powder in a thermosetting organic resin consisting of one-component epoxy resin mixed light transmission paste, or a metal alkoxide or ultrafine particles metal oxide is a light-transmissive inorganic adhesive as the starting material.

【0034】半導体素子(4)及び蛍光層(10)が形成されたカップ部(3)を含む一対の配線導体(1, 2)の端部をポット内に収容し、一対の配線導体(1, 2)の周囲に透明なビスフェノール系エポキシ樹脂を充填し硬化させるポッティング法によって、封止体(8)が形成される。 [0034] The end portions of the semiconductor element (4) and a pair of wiring conductors including a cup portion fluorescent layer (10) is formed with (3) (1, 2) accommodated in the pot, a pair of wire conductors (1 , the potting method of filling and curing the transparent bisphenol type epoxy resin around 2), the sealing body (8) is formed. 封止体 Sealing body
(8)には紫外線吸収剤が添加されないが、必要に応じて添加してもよい。 Although ultraviolet absorber is not added to (8) may be added as necessary. 表1は蛍光体(9)の諸特性を示す。 Table 1 shows the characteristics of the phosphor (9).

【0035】 [0035]

【表1】 [Table 1]

【0036】従来の半導体発光装置では、図7に示すように非常に幅の広い発光スペクトルが発生したのに対し、本発明による実施の形態の半導体発光装置の発光スペクトルは、図3に示すように、非常に鋭利なピークを持ち尖鋭度が高いのが特徴である。 [0036] In the conventional semiconductor light emitting device, whereas a very broad emission spectrum width as shown in FIG. 7 has occurred, the emission spectrum of the semiconductor light-emitting device of the embodiment according to the present invention, as shown in FIG. 3 to a the characteristic high quality factor has a very sharp peak. 図8に示す三波長冷陰極蛍光管の発光スペクトルに近似するため、本発明による半導体発光装置は三波長冷陰極蛍光管に代わる白色光源として透過型カラー液晶表示装置に使用することもできる。 To approximate the emission spectrum of three band cold cathode fluorescent tube shown in FIG. 8, a semiconductor light-emitting device according to the present invention can also be used for transmission-type color liquid crystal display device as white light source in place of a three band cold cathode fluorescent tubes. 図3に示すように、異なる5つの波長領域にピークが発生するが、一番短波長側のピークは半導体発光素子(4)からの透過光成分を示し、その他の4つのピークは表1に示す各蛍光体(9)の発光である。 As shown in FIG. 3, a peak on five different wavelength ranges is generated, most peak on the short wavelength side indicates the transmitted light component from the semiconductor light emitting element (4), the other four peaks in Table 1 the emission of the phosphor (9) shown. また700n The 700n
mの波長付近に赤色蛍光体(9)Y 2 O 2 S:Euの小さなピークが見られる。 red phosphor in the vicinity of the wavelength of the m (9) Y 2 O 2 S: small peak of Eu is observed. 図3に示すように、半導体発光素子(4)からの透過光成分が強く照射されるが、蛍光層(10)の各材質及び各量を最適化し又は紫外線吸収剤を封止体(8)に添加することにより、半導体発光素子(4)からの近紫外光を十分吸収すれば、実用上問題のない水準まで近紫外光量を減少させることができる。 As shown in FIG. 3, but the transmitted light component from the semiconductor light emitting element (4) is irradiated strongly encapsulant optimized or ultraviolet absorber each material and each amount of the phosphor layer (10) (8) by adding to, if sufficiently absorbing near-ultraviolet light from the semiconductor light emitting element (4), to a level no practical problem can be reduced near-ultraviolet light quantity. 従来の半導体発光装置の図10に示す色度分布と比べると、本発明による半導体発光装置の色度分布は、図4に示すように、バラつきの幅が非常に狭く、優れた特性を持つ。 Compared to the chromaticity distribution shown in FIG. 10 of the conventional semiconductor light emitting device, the chromaticity distribution of the semiconductor light-emitting device according to the present invention, as shown in FIG. 4, the width of the variation is very narrow, with superior properties.

【0037】従来の半導体発光装置に用いられるYAG:C [0037] YAG used in a conventional semiconductor light emitting device: C
e系蛍光体の比重4.8〜4.9に対して、本実施の形態に用いる青色及び緑色蛍光体(9)の比重は小さいが、赤色蛍光体(9)の比重は若干大きいため、赤色蛍光体(9)の沈降量はYAG:Ce系蛍光体の沈降量に比べて大きい。 Relative density from 4.8 to 4.9 of the e-based phosphor, the specific gravity of the blue and green phosphors used in the embodiment (9) is small, because some specific gravity of the red phosphor (9) large, precipitation amount of the red phosphor (9) is YAG: greater than the settling amount of Ce phosphor. 青色系半導体発光素子(4)の発光を蛍光体の励起光成分と半導体発光装置自体の発光成分とに兼用する従来の半導体発光装置に対し、本発明の半導体発光装置では、蛍光体(9)を励起する近紫外光は観察者に殆ど視認されないため、赤色蛍光体(9)の比重がYAG:Ce系蛍光体の比重より大きいにも拘わらず、蛍光体(9)の発光成分だけで本発明による半導体発光装置の放射光の色調が決定される。 To conventional semiconductor light emitting device also serves as a blue light emission semiconductor light emitting element (4) in the light emitting component of the excitation light component and the semiconductor light-emitting device itself of the phosphor, the semiconductor light-emitting device of the present invention, a phosphor (9) because near ultraviolet light for exciting is hardly visible to the observer, the specific gravity of the red phosphor (9) is YAG: despite the specific gravity greater than that of the Ce based phosphor, the only light emission component of the phosphor (9) emitted light color tone of the semiconductor light-emitting device according to the invention is determined. 従って、従来に比べて、本発明による実施の形態の方が色度バラつきが遙かに小さくなると考えられる。 Therefore, as compared with the conventional, towards some embodiments according to the invention is considered chromaticity variation is much smaller.

【0038】一般に半導体発光素子(4)は、構成する半導体の持つエネルギギャップに応じた波長の光を発するため、半導体発光素子の組成を変えない限り発光波長を変えることができないが、本発明による半導体発光装置は、同一の半導体発光素子(4)を用いながら、使用する蛍光体(9)の種類と配合を変えて様々な色調を作成することができ、応用範囲が広く商品価値の高い半導体発光装置である。 [0038] Generally a semiconductor light emitting element (4), in order to emit light having a wavelength corresponding to an energy gap possessed by the semiconductor composing, but can not change the emission wavelength as long as they do not materially alter the composition of the semiconductor light-emitting device, according to the invention the semiconductor light-emitting device, while using the same semiconductor light-emitting element (4), by changing the type and formulation of the phosphor used (9) can create various color tones, high commercial value wide application range semiconductor it is a light-emitting device.

【0039】また、図2に本発明による半導体発光装置の第2の実施の形態を示す。 Further, it shows a second embodiment of the semiconductor light-emitting device according to the present invention in FIG. 第二の実施の形態による半導体発光装置は、カップ部(3)の内面を被覆する蛍光層 The semiconductor light emitting device according to a second embodiment, the fluorescent layer covering the inner surface of the cup portion (3)
(10)と、半導体発光素子(4)と蛍光層(10)とを被覆する光散乱層(13)と、半導体発光素子(4)、ボンディングワイヤ(6, 7)、配線導体の一方の端部、蛍光層(10)及び光散乱層(13)とを被覆する透明な封止体(8)より成り、他の構成は図1と同じである。 And (10), the semiconductor light emitting element (4) and the fluorescent layer (10) and the light scattering layer covering (13), the semiconductor light emitting element (4), bonding wires (6, 7), one end of the wiring conductor parts, fluorescent layer (10) and made of a transparent sealing body (8) that covers the light-scattering layer (13), and the other configuration is the same as FIG.

【0040】なお、特に図示しないが、本発明による半導体発光装置のその他の形態として、一対の配線導体 [0040] Although not shown, as another embodiment of a semiconductor light-emitting device according to the present invention, a pair of wire conductors
(1, 2)と、一対の配線導体(1, 2)の一方の端部の双方に渡って設けられたカップ部(3)と、同一平面上に設けられた第一の電極と第二の電極とが金属バンプ又は導電性接着剤を介してカップ部(3)に接着された半導体発光素子(4)と、カップ部(3)の内面又は半導体発光素子(4)の周囲を被覆する蛍光層(10)と、半導体発光素子(4)、金属バンプ又は導電性接着剤、一対の配線導体(1, 2)の一方の端部及び蛍光層(10)とを被覆する透明な封止体(8) (1, 2) and, over both the one end cup portion provided in the pair of wiring conductors (1, 2) and (3), the first electrode and a second which are disposed on the same plane the electrode and the semiconductor light-emitting element bonded to the cup part (3) via a metal bump or a conductive adhesive (4), covering the periphery of the inner surface or the semiconductor light emitting element of the cup portion (3) (4) fluorescent layer (10), the semiconductor light emitting element (4), a metal bump or a conductive adhesive, transparent sealing covering and a pair of wire conductors (1, 2) one end and a fluorescent layer (10) body (8)
とで構成することもできる。 It can also be composed of a. 本発明による半導体発光装置は、いわゆるフリップチップ構造で構成することもできる。 The semiconductor light-emitting device according to the present invention may be composed of a so-called flip-chip structure.

【0041】従来の半導体発光装置に比べ、本発明による半導体発光装置は、下記の優れた特徴を持つ。 [0041] Compared with the conventional semiconductor light emitting device, the semiconductor light-emitting device according to the present invention has excellent characteristics described below. まず、 First of all,
本発明による半導体発光装置の第一の特徴は、365nm The first feature of the semiconductor light-emitting device according to the present invention, 365 nm
〜400nmの波長領域に発光ピーク波長が存在する半導体発光素子(4)の近紫外光により励起される多種類の蛍光体(9)を蛍光層(10)に混入するので、発光スペクトル等を所望の特性に合致する蛍光体(9)を選択できる点にある。 Since many kinds of phosphors excited by near ultraviolet light of the semiconductor light emitting device emission peak wavelength exists in a wavelength region to 400 nm (4) (9) mixed into the phosphor layer (10), a desired emission spectrum, etc. It lies in a phosphor that matches the characteristics of (9) can be selected. 一般に可視光で励起できる蛍光体は極めて少なく、近紫外域より短波長で励起できる蛍光体が殆どである。 Generally phosphor can be excited by visible light is extremely small, the phosphor which can be excited with a shorter wavelength than the near ultraviolet range is almost. 従来の半導体発光装置の励起光源に用いられる青色系の半導体発光素子のピーク波長範囲である400nm〜 Is the peak wavelength range of blue semiconductor light emitting element used in the excitation light source of a conventional semiconductor light emitting device 400nm~
530nmで励起でき且つ劣化の少ない実用的な蛍光体は、実際上、YAG:Ce系蛍光体以外に殆どない。 Less practical phosphors excitation can and degradation in 530nm is effectively, YAG: little other than Ce phosphor.

【0042】本発明による半導体発光装置の第二の特徴は、蛍光体(9)を封入する蛍光層(10)に紫外線耐性の高いポリメタロキサンゲルを用いる点である。 The second aspect of the semiconductor light-emitting device according to the invention is that the use of high ultraviolet resistance polymetalloxane gel phosphor layer to encapsulate phosphor (9) (10). 従来の半導体発光装置では、YAG:Ce系蛍光体を含有するコーティングとして使用される樹脂は紫外線を受けると劣化するため、近紫外光を発生する半導体発光素子(4)を使用できない。 In the conventional semiconductor light emitting device, YAG: resin used as a coating containing Ce based phosphor to degrade when subjected to UV, not available semiconductor light emitting element that generates near ultraviolet light (4).

【0043】本発明による半導体発光装置の第三の特徴は、色純度の優れた鮮やかな色彩を表現できる白色光源を実現できる点である。 The third aspect of the semiconductor light-emitting device according to the present invention is the ability realize a white light source can represent an excellent vivid colors in color purity. 発光スペクトルの幅が非常に広いYAG:Ce系蛍光体を使用するため、色純度が悪く鮮やかな色彩を表現できない従来の半導体発光装置は、透過型カラー液晶表示装置の用途に適さない。 Width is very wide YAG emission spectrum: To use the Ce based phosphor, a conventional semiconductor light emitting device color purity can not represent the bad bright colors are not suitable for use of a transmission type color liquid crystal display device.

【0044】一方、本発明による半導体発光装置は、青色、緑色、赤色のシャープなスペクトルを持つ蛍光体 On the other hand, the semiconductor light-emitting device according to the present invention, a phosphor having blue, green, red sharp spectrum
(9)を組み合わせると、冷陰極蛍光管と同様なスペクトル分布が得られ、色純度の優れた鮮やかな色彩を表現できる白色光源を実現できる。 Combining (9), the same spectral distribution and the cold cathode fluorescent tube can be obtained, it can be realized a white light source can represent an excellent vivid colors in color purity.

【0045】本発明による半導体発光装置の第四の特徴は、原理的に色調バラつき及び色調ムラが少ない点である。 The fourth aspect of the semiconductor light-emitting device according to the invention is that theoretically color variation and color unevenness is small. 従来の半導体発光装置は、青色系半導体発光素子の発光をYAG:Ce系蛍光体の励起光と、従来の半導体発光装置自体の放射光の一成分とに兼用する動作原理を持つ。 Conventional semiconductor light emitting device, YAG blue light emission semiconductor light emitting device: having the Ce based phosphor of the excitation light, the operation principle of combined into a single component of the radiation of a conventional semiconductor light emitting device itself. このためコーティングの注入量及びコーティング中のYAG:Ce系蛍光体の濃度がわずかでもバラつくと、従来の半導体発光装置の放射光の色調は大きくバラつく。 Therefore YAG injection volume and in the coating of the coating: the get roses concentration even slight Ce based phosphor, the emitted light color tone of a conventional semiconductor light-emitting device greatly varies.
また、従来の半導体発光装置は、カップ部(3)内で比重の大きいYAG:Ce系蛍光体が沈降すると、側面から正面に至る各指向角方向における放射光の色調ムラが大きい。 Further, the conventional semiconductor light emitting device, the cup portion (3) having a large specific gravity in the YAG: When Ce phosphor is settling, a large radiation tone unevenness in each orientation angle direction leading to the front from the side.

【0046】本発明による半導体発光装置では、近紫外光により蛍光体(9)を励起するため観察者に殆ど視認されず、蛍光体(9)の発光成分だけで放射光の色調が決定されるので、蛍光体(9)の注入量や濃度が不均一でも色調のバラつきは起こらない。 [0046] In the semiconductor light-emitting device according to the present invention is not hardly visible to the observer for exciting the phosphor by near ultraviolet light (9), the color tone of the emitted light is determined by only light emission component of the phosphor (9) since, injection volume and concentration of the fluorescent (9) does not occur color tone variation in nonuniform. また同様に、カップ部(3) Similarly, the cup portion (3)
内で蛍光体(9)の沈降が発生しても各指向角方向への放射光の色調ムラは発生しない。 Emitted light color unevenness of the sedimentation to each orientation angle direction generated in the phosphor (9) does not occur within. この様に、本発明による半導体発光装置は、従来の半導体発光装置の持つ多くの問題点を根本的に解決し、より優れた半導体発光装置を実現することができる。 Thus, the semiconductor light-emitting device according to the present invention can fundamentally solve the many problems of the conventional semiconductor light-emitting device, to achieve a better semiconductor light-emitting device.

【0047】図5は、絶縁性基板を使用するチップ形発光ダイオード装置に適用した本発明による第三の実施の形態を示す。 [0047] Figure 5 shows a third embodiment according to the present invention applied to a chip type light emitting diode device using an insulating substrate. チップ形発光ダイオード装置は、一方の主面にカップ部(3)が形成された基体となる絶縁性基板(1 Chip emitting diode device includes an insulating substrate (1 cup portion on one main surface (3) is formed substrate
4)と、絶縁性基板(14)に相互に離間して形成された第一の配線導体(1)及び第二の配線導体(2)と、第一の配線導体(1)のカップ部(3)に接着剤(5)を介して固着された半導体発光素子(4)と、半導体発光素子(4)のアノード電極 And 4), a first wiring conductor formed apart from each other on an insulating substrate (14) (1) and a second wiring conductor (2), the cup portion of the first wiring conductor (1) ( 3) the adhesive (5) via a fixed semiconductor light emitting element (4), an anode electrode of the semiconductor light emitting element (4)
(4a)と第1の配線導体(1)とを電気的に接続する第一のボンディングワイヤ(6)と、半導体発光素子(4)のカソード電極(4b)と第2の配線導体(2)とを電気的に接続する第二のボンディングワイヤ(7)と、カップ部(3)内に充填され半導体発光素子(4)、アノード電極(4a)、カソード電極(4b)及びアノード電極(4a)、カソード電極(4b)に接続されたボンディングワイヤ(6, 7)の端部を被覆する蛍光層(10)と、絶縁性基板(14)の一方の主面に形成され且つ蛍光層(10)の外側を被覆する台形状断面の封止体(8) (4a) and the first bonding wires first wiring conductor and (1) are electrically connected (6), the cathode electrode of the semiconductor light emitting element (4) (4b) and the second wiring conductor (2) second bonding wires (7), is filled in the cup portion (3) in the semiconductor light emitting element electrically connecting the door (4), an anode electrode (4a), a cathode electrode (4b) and an anode electrode (4a) , fluorescent layer covering the end portion of the cathode electrode bonding wires (6, 7) connected to (4b) and (10), is formed on one main surface of the insulating substrate (14) and the fluorescent layer (10) sealing body of trapezoidal cross-section which covers the outer (8)
とを備えている。 It is equipped with a door. 第1の配線導体(1)及び第2の配線導体(2)の一方の端部は、カップ部(3)内に配置される。 One end portion of the first wiring conductor (1) and the second wiring conductor (2) is disposed in the cup portion (3) within. 半導体発光素子(4)はカップ部(3)の底部(3a)にて第1の配線導体(1)に接着剤(5)を介して固着される。 The semiconductor light emitting element (4) is secured via the adhesive (5) to the bottom of the cup part (3) the first wiring conductor in (3a) (1). 第1の配線導体(1)及び第2の配線導体(2)の各他方の端部は、絶縁性基板(14)の側面及び他方の主面に延びて配置される。 Each other end of the first wiring conductor (1) and the second wiring conductor (2) is arranged to extend on the side surface and the other main surface of the insulating substrate (14).
蛍光層(10)はカップ部(3)の上端部(3b)から突出しない。 Fluorescent layer (10) does not protrude from the upper end of the cup portion (3) (3b). 半導体発光素子(4)から照射される光は、蛍光層(1 Light emitted from the semiconductor light emitting element (4) is a fluorescent layer (1
0)内を通過した後、蛍光層(10)を被覆する封止体(8)の外部に放出される。 0) after passing through the is discharged to the outside of the sealing body (8) covering the fluorescent layer (10).

【0048】半導体発光素子(4)から放射された光は蛍光層(10)に達し、その一部は蛍光層(10)内で異なる波長に波長変換され、波長変換されない半導体発光素子(4) The semiconductor light emitting element (4) fluorescent layer light emitted from (10) to reach, some of which are wavelength-converted to a different wavelength in the phosphor layer (10), the semiconductor light emitting element which is not wavelength-converted (4)
からの光成分と混合されて封止体(8)を通して外部に放出される。 Is mixed with the light component from being released to the outside through the sealing body (8). 特定の発光波長を吸収する光吸収物質、半導体発光素子(4)の発光を散乱する光散乱物質(10b)又は蛍光層(10)のクラックを防止する結合材を蛍光層(10)内に配合してもよい。 Light absorbing material that absorbs a specific emission wavelength, blended in the semiconductor light emitting element (4) light scattering material that scatters the emission of (10b) or fluorescent layer binding material to prevent cracking of the phosphor layer (10) (10) it may be.

【0049】前記のいずれの点でも、本発明による半導体発光装置の優位性は明らかである。 [0049] in terms of either said, superiority of the semiconductor light-emitting device according to the present invention are apparent. 前記実施の形態は例示に過ぎず、本発明はこれらに限定されない。 The embodiment is only illustrative and the invention is not limited thereto. 例えば、表1に示す青色、緑色、赤色の各蛍光体(9)を単独で用いれば、それぞれ青色、緑色、赤色の光を発する半導体発光装置が得られる。 For example, using blue shown in Table 1, the green, the red phosphor (9) alone, blue, green, and semiconductor light emitting device that emits red light is obtained. また、二種以上の蛍光体(9) Also, two or more phosphors (9)
を適当な配合比で組み合わせれば、その配合比に応じた中間色の光を発する半導体発光装置が得られる。 The combination of a suitable mixing ratio, the semiconductor light-emitting device is obtained that emits light of an intermediate color corresponding to the mixing ratio.

【0050】 [0050]

【発明の効果】前記のように、本発明による半導体発光装置は、従来の半導体発光装置に比べ、発光スペクトルがシャープで鮮やかな色彩表現が可能であり、色度バラつきが少なく複数個を並べて点灯できるなど優れた特徴を持つため、管球式光源に代わる本格的な次世代固体化光源として大いに期待される。 [Effect of the Invention] As described above, the semiconductor light emitting device according to the present invention, compared with a conventional semiconductor light emitting device, is capable of vivid color expression emission spectrum sharp, lighting chromaticity variations side by side a plurality fewer because of its excellent features such as it is greatly expected as authentic next generation solidified light source in place of tube light source.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】 本発明による第一の半導体発光装置を示す断面図 Sectional view showing a first semiconductor light emitting device according to the invention; FIG

【図2】 本発明による第二の実施の形態を示す断面図 Sectional view showing a second embodiment according to the invention, FIG

【図3】 本発明による半導体発光装置の発光スペクトルを示すグラフ Graph showing the emission spectrum of the semiconductor light-emitting device according to the present invention; FIG

【図4】 本発明による半導体発光装置の色度分布を示すグラフ Graph illustrating the chromaticity distribution of the semiconductor light-emitting device according to the invention; FIG

【図5】 チップ型半導体発光素子に適用した本発明の第三の実施の形態を示す断面図 [5] Third cross-sectional view showing an embodiment of the present invention applied to a chip-type semiconductor light-emitting element

【図6】 従来の半導体発光装置を示す断面図 Cross-sectional view showing FIG. 6 a conventional semiconductor light emitting device

【図7】 従来の半導体発光装置から得られる発光スペクトルを示すグラフ Figure 7 is a graph showing an emission spectrum obtained from the conventional semiconductor light emitting device

【図8】 三波長冷陰極蛍光管の発光スペクトルを示すグラフ 8 is a graph showing an emission spectrum of three band cold cathode fluorescent tubes

【図9】 透過型カラー液晶表示装置のカラーフィルタの透過スペクトルの一例 [9] An example of the transmission spectrum of the color filter of the transmissive type color liquid crystal display device

【図10】 従来の半導体発光装置の色度分布の一例 [10] An example of a chromaticity distribution of the conventional semiconductor light emitting device

【図11】 従来の半導体発光装置のYAG:Ce系蛍光体の沈降状態の模式図 [11] YAG conventional semiconductor light emitting device: a schematic view of a sedimentation state of Ce based phosphor

【符号の説明】 DESCRIPTION OF SYMBOLS

(1, 2)・・配線導体、 (3)・・カップ部、 (4)・・半導体発光素子、 (5)・・接着剤、 (6, 7)・・ボンディングワイヤ、 (8)・・封止体、 (9)・・蛍光体、 (1, 2) ... wiring conductors, (3) ... cup portion, (4) ... semiconductor light-emitting element, (5) ... adhesive (6, 7) ... bonding wire (8) ... sealing body, (9) ... phosphor,
(10)・・蛍光層、 (11)・・コーティング、 (12)・・ (10) .. fluorescent layer, (11) ... coating (12) ..
モールド部材、(13)・・光拡散層、 Mold member, (13) ... light diffusion layer,

Claims (12)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 一対の配線導体と、一対の該配線導体の一方の端部に形成されたカップ部と、前記カップ部内に接着され且つ前記配線導体に電気的に接続されて近紫外光を発生する半導体発光素子と、前記半導体発光素子の周囲に設けられた蛍光層と、前記半導体発光素子、ボンディングワイヤ、配線導体の一方の端部及び蛍光層とを被覆する透明な封止体とを備えた半導体発光装置において、 前記蛍光層は、前記半導体発光素子から照射される近紫外光によって励起され且つ前記半導体発光素子の発光波長と異なる波長の光を発する一種以上の蛍光体を含み、 前記蛍光体層は、メタロキサン結合を主体とする液状のセラミックコーティング剤を固化させた透明なポリメタロキサンゲルより成ることを特徴とする半導体発光装置。 [1 claim: a pair of wire conductors, a cup portion formed in one end of the pair of the wiring conductors, the electrical connection has been near-ultraviolet light to the bonded and the wire conductor within said cup portion a semiconductor light-emitting element for generating a fluorescent layer provided on the periphery of the semiconductor light emitting device, the semiconductor light emitting device, the bonding wires, and a transparent encapsulant which covers the one end and the fluorescent layer of the wiring conductor in the semiconductor light emitting device including the fluorescent layer includes the semiconductor light emitting element is excited by near ultraviolet light emitted from and the semiconductor light-emitting one or more phosphors which emit light of the emission wavelength different from the device, the phosphor layer, a semiconductor light emitting device characterized by consisting of a transparent polymetalloxane gel is solidified ceramic coating liquid mainly composed of metalloxane bond.
  2. 【請求項2】 前記半導体発光素子は、窒化ガリウム系化合物半導体層を有する発光ピーク波長365nm〜40 Wherein said semiconductor light-emitting peak wavelength having a gallium nitride-based compound semiconductor layer 365nm~40
    0nmの近紫外線を発生する請求項1に記載の半導体発光装置。 The semiconductor light emitting device according to claim 1 for generating a near-ultraviolet 0 nm.
  3. 【請求項3】 前記蛍光層は、前記半導体発光素子の周囲を被覆する請求項1又は2に記載の半導体発光装置。 Wherein the phosphor layer is a semiconductor light emitting device according to claim 1 or 2 for covering the periphery of the semiconductor light emitting element.
  4. 【請求項4】 前記蛍光層は、前記カップ部の内面に設けられた請求項1又は2に記載の半導体発光装置。 Wherein said phosphor layer is a semiconductor light emitting device according to claim 1 or 2 provided on the inner surface of the cup portion.
  5. 【請求項5】 前記半導体発光素子から発生する光と前記蛍光層により波長変換された光とを混合する光散乱層が前記カップ部内に設けられた請求項1、2又は4の何れか1項に記載の半導体発光装置。 5. any one of the semiconductor from the light emitting element and the light produced the fluorescent layer wavelength-converted claim 1, 2 or 4 the light scattering layer is provided in the cup portion for mixing the light by the semiconductor light emitting device according to.
  6. 【請求項6】 前記光散乱層は、セラミック粉末を混合した透明樹脂又はセラミック粉末を混合した前記セラミックコーティング剤を固化して形成される請求項5に記載の半導体発光装置。 Wherein said light scattering layer, a semiconductor light emitting device according to claim 5 which is formed by solidifying the ceramic coating agent obtained by mixing a transparent resin or ceramic powder mixed with a ceramic powder.
  7. 【請求項7】 前記セラミックコーティング剤は、単一の金属元素より成る単一金属アルコキシド、複数の金属元素より成る複合金属アルコキシド又は単一金属アルコキシド若しくは複合金属アルコキシドの官能基の一部を修飾して有機樹脂モノマーを導入した無機・有機複合体を加水分解縮重合して得られる金属酸化物ポリマを主体とした液状のゾルである請求項1〜6の何れか1項に記載の半導体発光装置。 Wherein said ceramic coating agent, and modifying some of the functional groups of a single metal alkoxide, double metal alkoxide or a single metal alkoxide or mixed metal alkoxide consisting of a plurality of metal elements consisting of a single metal element the semiconductor light emitting device according to any one of claims 1 to 6 is a sol liquid with an inorganic or organic complexes introducing an organic resin monomer as a main component metal oxide polymer obtained by hydrolytic condensation polymerization Te .
  8. 【請求項8】 前記セラミックコーティング剤は、ポリシラザンを主体とする液状のゾルである請求項1〜6の何れか1項に記載の半導体発光装置。 Wherein said ceramic coating agent, the semiconductor light emitting device according to any one of claims 1 to 6 is a sol liquid mainly comprising polysilazane.
  9. 【請求項9】 前記セラミックコーティング剤は、金属塩化物ガス及び水素、酸素の混合気体を高温で燃焼させる火炎加水分解法によって生成された約5nm〜50nmの直径を有する単一の金属元素より成る単一超微粒子状金属酸化物又は複数の金属元素より成る複合超微粒子状金属酸化物を主体とする液状のゾルである請求項1〜6の何れか1項に記載の半導体発光装置。 Wherein said ceramic coating consists of a single metal element having a diameter of about 5nm~50nm produced by flame hydrolysis method for combusting a metal chloride gas and hydrogen, oxygen mixed gas at a high temperature the semiconductor light emitting device according to any one of claims 1 to 6 is a sol liquid mainly comprising single ultrafine particulate metal oxide or comprising a plurality of metal elements composite ultrafine particulate metal oxide.
  10. 【請求項10】 前記半導体発光素子を前記カップ部に接着する接着剤は、微小な金属薄片を混合した一液性エポキシ樹脂より成る熱硬化性導電ペースト、一液性エポキシ樹脂より成る熱硬化性有機樹脂に光透過性セラミック粉末を混合した光透過性ペースト、前記金属アルコキシド又は前記超微粒子状金属酸化物を出発原料とする光透過性無機系接着剤である請求項1〜9の何れか1項に記載の半導体発光装置。 10. The adhesive for bonding the semiconductor light emitting element to the cup portion, the thermosetting conductive paste made of a one-component epoxy resin mixed with fine metallic flakes, thermosetting consisting one-component epoxy resin an organic resin on the light-transmissive ceramic powder mixed light transmission paste, the metal alkoxide or the any one of claims 1 to 9 ultra particulate metal oxide is a light-transmissive inorganic adhesive used as a starting material 1 the semiconductor light emitting device according to claim.
  11. 【請求項11】 前記封止体は、光透過性を有する有機樹脂又は前記金属アルコキシドの官能基の一部を修飾して有機樹脂モノマーを導入した無機若しくは有機複合体ポリマーより成る請求項1〜10の何れか1項に記載の半導体発光装置。 Wherein said encapsulant claim 1 consisting of organic resin or an inorganic or organic complex polymer were introduced organic resin monomer by modifying a part of the functional groups of the metal alkoxide having optical transparency the semiconductor light emitting device according to any one of 10.
  12. 【請求項12】 前記封止体は、紫外線吸収剤を含有する請求項1〜11の何れか1項に記載の半導体発光装置。 12. The method of claim 11, wherein the sealing body is a semiconductor light emitting device according to any one of claims 1 to 11 containing an ultraviolet absorber.
JP2000265891A 2000-09-01 2000-09-01 Semiconductor light emitting device Pending JP2002076445A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000265891A JP2002076445A (en) 2000-09-01 2000-09-01 Semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000265891A JP2002076445A (en) 2000-09-01 2000-09-01 Semiconductor light emitting device

Publications (1)

Publication Number Publication Date
JP2002076445A true JP2002076445A (en) 2002-03-15

Family

ID=18753082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000265891A Pending JP2002076445A (en) 2000-09-01 2000-09-01 Semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP2002076445A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004032251A1 (en) * 2002-09-30 2004-04-15 Toyoda Gosei Co., Ltd. White light emitting device
JP2004311822A (en) * 2003-04-09 2004-11-04 Solidlite Corp Purplish red light emitting diode
WO2004107459A1 (en) * 2003-05-30 2004-12-09 Mitsubishi Chemical Corporation Light-emitting device
JP2006080443A (en) * 2004-09-13 2006-03-23 Fujikura Ltd Light emitting diode and manufacturing method thereof
JP2006100543A (en) * 2004-09-29 2006-04-13 Stanley Electric Co Ltd Method for manufacturing semiconductor light-emitting device
WO2006118104A1 (en) * 2005-04-26 2006-11-09 Kabushiki Kaisha Toshiba White led, and backlight and liquid crystal display device using the same
JP2007258006A (en) * 2006-03-23 2007-10-04 Pioneer Electronic Corp Method of manufacturing sealing member for optical device, method of manufacturing optical device, optical device, and sealing member for optical device
JP2008103688A (en) * 2006-09-01 2008-05-01 Cree Inc Position of phosphor in light emitting diode
US7425727B2 (en) 2004-09-16 2008-09-16 Sharp Kabushiki Kaisha Optical semiconductor device, method for fabricating the same, lead frame and electronic equipment
JPWO2011027511A1 (en) * 2009-09-02 2013-01-31 株式会社東芝 White LED, backlight using the same, and liquid crystal display device
WO2013099193A1 (en) 2011-12-26 2013-07-04 コニカミノルタ株式会社 Sealant for led device, led device, and method for producing led device
JP2013225692A (en) * 2005-03-14 2013-10-31 Philips Lumileds Lightng Co Llc Wavelength-converted semiconductor light emitting device
JP2013225573A (en) * 2012-04-20 2013-10-31 Kaneka Corp Resin molding for surface mounted light emitting device and light emitting device using the same
US8878219B2 (en) 2008-01-11 2014-11-04 Cree, Inc. Flip-chip phosphor coating method and devices fabricated utilizing method
US9024349B2 (en) 2007-01-22 2015-05-05 Cree, Inc. Wafer level phosphor coating method and devices fabricated utilizing method
US9041285B2 (en) 2007-12-14 2015-05-26 Cree, Inc. Phosphor distribution in LED lamps using centrifugal force
US9093616B2 (en) 2003-09-18 2015-07-28 Cree, Inc. Molded chip fabrication method and apparatus
US9159888B2 (en) 2007-01-22 2015-10-13 Cree, Inc. Wafer level phosphor coating method and devices fabricated utilizing method
US9166126B2 (en) 2011-01-31 2015-10-20 Cree, Inc. Conformally coated light emitting devices and methods for providing the same
US9954148B2 (en) 2014-10-24 2018-04-24 Citizen Electronics Co., Ltd. Light-emitting apparatus with optical element and method of manufacturing the same

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05299172A (en) * 1992-04-17 1993-11-12 Nichia Chem Ind Ltd El element
JPH06132067A (en) * 1992-10-15 1994-05-13 Rihei Kimura Ceramic coat electrode
JPH0918121A (en) * 1995-06-27 1997-01-17 S I I R D Center:Kk Electronic component mounted body and production thereof
JPH09316661A (en) * 1996-05-31 1997-12-09 Toyota Motor Corp Heat insulating ceramic layer and its formation
JPH1092684A (en) * 1996-09-11 1998-04-10 Mitsubishi Materials Corp Intergranular insulated semiconductor ceramic capacitor and its manufacturing method
JP2924961B1 (en) * 1998-01-16 1999-07-26 サンケン電気株式会社 The semiconductor light emitting device and its manufacturing method
JPH11233822A (en) * 1998-02-13 1999-08-27 Mitsubishi Materials Corp Nitride semiconductor light-emitting element
JP2000031530A (en) * 1998-07-14 2000-01-28 Toshiba Corp Semiconductor light emitter and its manufacture
JP2000073012A (en) * 1998-08-28 2000-03-07 Techno Syst:Kk Coating agent
JP2000509912A (en) * 1997-03-03 2000-08-02 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ White light emitting diodes
JP2000223750A (en) * 1999-02-02 2000-08-11 Nichia Chem Ind Ltd Light emitting diode and its forming method

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05299172A (en) * 1992-04-17 1993-11-12 Nichia Chem Ind Ltd El element
JPH06132067A (en) * 1992-10-15 1994-05-13 Rihei Kimura Ceramic coat electrode
JPH0918121A (en) * 1995-06-27 1997-01-17 S I I R D Center:Kk Electronic component mounted body and production thereof
JPH09316661A (en) * 1996-05-31 1997-12-09 Toyota Motor Corp Heat insulating ceramic layer and its formation
JPH1092684A (en) * 1996-09-11 1998-04-10 Mitsubishi Materials Corp Intergranular insulated semiconductor ceramic capacitor and its manufacturing method
JP2000509912A (en) * 1997-03-03 2000-08-02 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ White light emitting diodes
JP2924961B1 (en) * 1998-01-16 1999-07-26 サンケン電気株式会社 The semiconductor light emitting device and its manufacturing method
JPH11233822A (en) * 1998-02-13 1999-08-27 Mitsubishi Materials Corp Nitride semiconductor light-emitting element
JP2000031530A (en) * 1998-07-14 2000-01-28 Toshiba Corp Semiconductor light emitter and its manufacture
JP2000073012A (en) * 1998-08-28 2000-03-07 Techno Syst:Kk Coating agent
JP2000223750A (en) * 1999-02-02 2000-08-11 Nichia Chem Ind Ltd Light emitting diode and its forming method

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7227190B2 (en) 2002-09-30 2007-06-05 Toyoda Gosei Co., Ltd. White light emitting device
WO2004032251A1 (en) * 2002-09-30 2004-04-15 Toyoda Gosei Co., Ltd. White light emitting device
JP2004311822A (en) * 2003-04-09 2004-11-04 Solidlite Corp Purplish red light emitting diode
WO2004107459A1 (en) * 2003-05-30 2004-12-09 Mitsubishi Chemical Corporation Light-emitting device
US9105817B2 (en) 2003-09-18 2015-08-11 Cree, Inc. Molded chip fabrication method and apparatus
US9093616B2 (en) 2003-09-18 2015-07-28 Cree, Inc. Molded chip fabrication method and apparatus
US10164158B2 (en) 2003-09-18 2018-12-25 Cree, Inc. Molded chip fabrication method and apparatus
JP2006080443A (en) * 2004-09-13 2006-03-23 Fujikura Ltd Light emitting diode and manufacturing method thereof
JP4729281B2 (en) * 2004-09-13 2011-07-20 株式会社フジクラ Light emitting diode and light emitting diode manufacturing method
US7425727B2 (en) 2004-09-16 2008-09-16 Sharp Kabushiki Kaisha Optical semiconductor device, method for fabricating the same, lead frame and electronic equipment
JP2006100543A (en) * 2004-09-29 2006-04-13 Stanley Electric Co Ltd Method for manufacturing semiconductor light-emitting device
JP2013225692A (en) * 2005-03-14 2013-10-31 Philips Lumileds Lightng Co Llc Wavelength-converted semiconductor light emitting device
JPWO2006118104A1 (en) * 2005-04-26 2008-12-18 株式会社東芝 White led and backlight and a liquid crystal display device using the same
WO2006118104A1 (en) * 2005-04-26 2006-11-09 Kabushiki Kaisha Toshiba White led, and backlight and liquid crystal display device using the same
US8896004B2 (en) 2005-04-26 2014-11-25 Kabushiki Kaisha Toshiba White LED, backlight using the same, and liquid crystal display device
JP2007258006A (en) * 2006-03-23 2007-10-04 Pioneer Electronic Corp Method of manufacturing sealing member for optical device, method of manufacturing optical device, optical device, and sealing member for optical device
US8425271B2 (en) 2006-09-01 2013-04-23 Cree, Inc. Phosphor position in light emitting diodes
JP2012009905A (en) * 2006-09-01 2012-01-12 Cree Inc Position of phosphor in light emitting diode
JP2008103688A (en) * 2006-09-01 2008-05-01 Cree Inc Position of phosphor in light emitting diode
US9024349B2 (en) 2007-01-22 2015-05-05 Cree, Inc. Wafer level phosphor coating method and devices fabricated utilizing method
US9159888B2 (en) 2007-01-22 2015-10-13 Cree, Inc. Wafer level phosphor coating method and devices fabricated utilizing method
US9041285B2 (en) 2007-12-14 2015-05-26 Cree, Inc. Phosphor distribution in LED lamps using centrifugal force
US8878219B2 (en) 2008-01-11 2014-11-04 Cree, Inc. Flip-chip phosphor coating method and devices fabricated utilizing method
US8872421B2 (en) 2009-09-02 2014-10-28 Kabushiki Kaisha Toshiba White LED, backlight using the same, and liquid crystal display device
TWI405359B (en) * 2009-09-02 2013-08-11 Toshiba Kk White light emitting diodes and the use of its backlight and liquid crystal display device
JPWO2011027511A1 (en) * 2009-09-02 2013-01-31 株式会社東芝 White LED, backlight using the same, and liquid crystal display device
US9166126B2 (en) 2011-01-31 2015-10-20 Cree, Inc. Conformally coated light emitting devices and methods for providing the same
WO2013099193A1 (en) 2011-12-26 2013-07-04 コニカミノルタ株式会社 Sealant for led device, led device, and method for producing led device
JP2013225573A (en) * 2012-04-20 2013-10-31 Kaneka Corp Resin molding for surface mounted light emitting device and light emitting device using the same
US9954148B2 (en) 2014-10-24 2018-04-24 Citizen Electronics Co., Ltd. Light-emitting apparatus with optical element and method of manufacturing the same

Similar Documents

Publication Publication Date Title
KR100982617B1 (en) Oxonitride phosphor and luminescent device using the oxonitride phosphor
US7679101B2 (en) Light emitting device
EP1441395B1 (en) Light-emitting semiconductor device with luminescence conversion element
KR100887489B1 (en) Phosphor composition and method for producing the same, and light-emitting device using the same
US6890234B2 (en) LED cross-linkable phosphor coating
US7276736B2 (en) Wavelength-converting casting composition and white light-emitting semiconductor component
CN1729267B (en) Phosphor and optical device using same
US7658866B2 (en) Fluorescent material and light-emitting device
KR100930171B1 (en) The white light emitting device and a white light source module using the same.
JP3931239B2 (en) Light emitting device and lighting equipment
JP4991026B2 (en) Light emitting device
CN101412910B (en) Group of phosphor particles for light-emitting device, light-emitting device and backlight for liquid crystal display
US7800121B2 (en) Light emitting diode component
ES2553570T3 (en) Preparation procedure for a white light emitting device
JP5151002B2 (en) Light emitting device
JP3891115B2 (en) The light-emitting device
DE102005061828B4 (en) Wavelength-converting converter material, light-emitting optical component and method for its production
JP3956972B2 (en) Light-emitting device using a fluorescent substance
JP3690968B2 (en) Emitting device and method of forming
US7854859B2 (en) Nitride phosphor, method for producing this nitride phosphor, and light emitting device that uses this nitride phosphor
JP4450547B2 (en) Method for manufacturing light emitting device
EP1437776B1 (en) Light emitting device and method for manufacture thereof
JP5138145B2 (en) Phosphor laminate structure and light source using the same
JP4645071B2 (en) Package molded body and semiconductor device using the same
US20040094757A1 (en) Light emitting diode with wavelength conversion

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100415

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100602

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101013