JP5125039B2 - Rare earth oxynitride phosphor and light emitting device using the same - Google Patents

Rare earth oxynitride phosphor and light emitting device using the same Download PDF

Info

Publication number
JP5125039B2
JP5125039B2 JP2006246811A JP2006246811A JP5125039B2 JP 5125039 B2 JP5125039 B2 JP 5125039B2 JP 2006246811 A JP2006246811 A JP 2006246811A JP 2006246811 A JP2006246811 A JP 2006246811A JP 5125039 B2 JP5125039 B2 JP 5125039B2
Authority
JP
Japan
Prior art keywords
light
rare earth
phosphor
earth oxynitride
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006246811A
Other languages
Japanese (ja)
Other versions
JP2008069198A (en
Inventor
昌治 細川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to JP2006246811A priority Critical patent/JP5125039B2/en
Publication of JP2008069198A publication Critical patent/JP2008069198A/en
Application granted granted Critical
Publication of JP5125039B2 publication Critical patent/JP5125039B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45139Silver (Ag) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48464Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area also being a ball bond, i.e. ball-to-ball
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49107Connecting at different heights on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details

Description

本発明は、光、電子線、X線などの電磁波や、熱等により励起され発光する希土類酸窒化物系蛍光体、特に、蛍光ランプ等の一般照明、車載照明、液晶用バックライト、ディスプレイ等の発光装置に使用される希土類酸窒化物系蛍光体及びこれを用いた発光装置に関し、例えば、半導体発光素子を用いる白色系及び多色系の発光装置に使用される希土類酸窒化物系蛍光体及びこれを用いた発光装置に関する。   The present invention relates to rare earth oxynitride phosphors that emit light when excited by electromagnetic waves such as light, electron beams, X-rays, heat, etc., in particular, general lighting such as fluorescent lamps, in-vehicle lighting, backlights for liquid crystals, displays, etc. Rare earth oxynitride phosphors used in light emitting devices and light emitting devices using the same, for example, rare earth oxynitride phosphors used in white and multicolor light emitting devices using semiconductor light emitting elements And a light emitting device using the same.

現在の白色系の照明は蛍光灯が主流であるが、蛍光灯に比べ発光素子を用いた発光装置は消費電力が少なく、水銀を使用しないため、環境面を考慮すれば将来は発光素子を用いた発光装置の照明が主流になると予測される。また、発光素子を用いた発光装置は、小型で電力効率が良く鮮やかな色の発光をする。特に発光ダイオード(LED:Light Emitting Diode)や半導体レーザ(LD:Laser Diode)等の半導体素子は球切れ等の心配がない。さらに初期駆動特性が優れ、振動やオン・オフ点灯の繰り返しに強いという特長を有する。このような優れた特性を有する半導体発光素子は、各種の光源として利用されている。例えば、現行の白色系の半導体発光素子を用いた発光装置の発光色は、光の混色の原理によって得られる。演色性や輝度が優れた高輝度の白色光をLEDで得るために、また色再現範囲を拡大するためには、光の3原色である赤色、青色、緑色の高輝度なLEDが必要である。しかしながら、現状では緑色LEDの発光効率が赤色、青色と比較して劣るため、この影響により白色としての発光効率も下がるという問題があった。   Currently, fluorescent lamps are the mainstream of white lighting, but light emitting devices that use light emitting elements consume less power and do not use mercury compared to fluorescent lamps. It is predicted that the lighting of the light emitting device will be mainstream. In addition, a light-emitting device using a light-emitting element emits light with a small color, high power efficiency, and bright colors. In particular, a semiconductor element such as a light emitting diode (LED) or a semiconductor laser (LD: Laser Diode) does not have a fear of a broken ball. In addition, it has excellent initial drive characteristics and is strong against vibration and repeated on / off lighting. Semiconductor light-emitting elements having such excellent characteristics are used as various light sources. For example, the emission color of a light emitting device using a current white semiconductor light emitting element can be obtained by the principle of color mixing of light. In order to obtain high-brightness white light with excellent color rendering and brightness, and to expand the color reproduction range, high-brightness LEDs of the three primary colors red, blue, and green are required. . However, since the luminous efficiency of the green LED is inferior to that of red and blue at present, there is a problem that the luminous efficiency of white is lowered due to this influence.

したがって緑色LEDの開発と共に、高輝度に緑色に発光する蛍光体の研究が進められている。後者の蛍光体を用いて緑色光を得る方法としては、(1)青色領域の光を放出する発光素子で蛍光体を励起させ、緑色の波長を得る方式と、(2)紫外から可視光の短波長側領域の光を放出する発光素子で蛍光体を励起させ、波長変換された緑色の波長を得る方式がある。   Therefore, with the development of green LEDs, research on phosphors that emit green light with high brightness is underway. As a method of obtaining green light using the latter phosphor, (1) a method of obtaining a green wavelength by exciting a phosphor with a light emitting element that emits light in a blue region, and (2) a method for obtaining visible light from ultraviolet rays. There is a system in which a phosphor is excited by a light emitting element that emits light in a short wavelength side region to obtain a wavelength-converted green wavelength.

(1)に係る蛍光体として、酸窒化物系蛍光体が報告されている(特許文献1参照)。具体的には、Eu2+イオンとDy3+イオンを共に賦活させたCa−アルファサイアロン蛍光体は、発光スペクトルが450nm付近の励起光源により励起され、570nm付近にピーク波長を持つ発光スペクトルを放出する。上記の蛍光体と、発光素子である青色LEDとを備えた発光装置において、青色LEDからの励起光源により励起され波長変換された光と、変換されない励起光源の青色光との混色が放出される。 As a phosphor according to (1), an oxynitride phosphor has been reported (see Patent Document 1). Specifically, the Ca-alpha sialon phosphor in which both Eu 2+ ions and Dy 3+ ions are activated is excited by an excitation light source having an emission spectrum near 450 nm and emits an emission spectrum having a peak wavelength near 570 nm. To do. In a light emitting device including the above phosphor and a blue LED that is a light emitting element, a mixed color of light that has been excited and excited by the excitation light source from the blue LED and blue light from the excitation light source that is not converted is emitted. .

しかしながら、酸窒化物ガラスの蛍光体はガラス体であるため、一般に加工し難い。さらに、青色LEDの製造バラツキや投入電流の差による励起光源の色ズレにより、励起光源の青色と、波長変換後の色との混色比率がズレやすく、発光装置から放出される色味にバラツキが生じる問題があった。   However, since the phosphor of oxynitride glass is a glass body, it is generally difficult to process. Furthermore, due to color variations of the excitation light source due to manufacturing variations of blue LEDs and differences in input current, the color mixture ratio between the blue color of the excitation light source and the color after wavelength conversion is easily shifted, and the color emitted from the light emitting device varies. There was a problem that occurred.

一方、(2)の方式では、励起光源として紫外から可視光の短波長側領域の発光素子を用いる。この波長領域では色味の感度が低く視認し難いため、製造バラツキによる励起光源の色ズレがない。よって励起光源の発光スペクトルの変化が、発光装置の色味にほとんど影響を与えないという利点を有する。   On the other hand, in the method (2), a light emitting element in the short wavelength side region from ultraviolet to visible light is used as an excitation light source. In this wavelength region, since the sensitivity of the color is low and is difficult to visually recognize, there is no color shift of the excitation light source due to manufacturing variations. Therefore, there is an advantage that the change in the emission spectrum of the excitation light source hardly affects the color of the light emitting device.

このように近紫外から可視光の短波長側領域の発光素子からの光を励起光源とし、これを緑色に波長変換させる蛍光体が報告されている(特許文献1参照)。具体的にはYb2+アルファサイアロン蛍光体は240nm付近の励起スペクトルにより励起され、510nm付近にピーク波長を持つ光を放出する。また、Er−アルファサイアロン蛍光体は263nmに広いピークと、400nm付近にラインピークの励起スペクトルを持ち、500nm〜600nmの発光スペクトルを示す。 Thus, there has been reported a phosphor that uses light from a light emitting element in the near-ultraviolet to visible light short wavelength side region as an excitation light source and converts the wavelength thereof to green (see Patent Document 1). Specifically, the Yb 2+ alpha sialon phosphor is excited by an excitation spectrum near 240 nm and emits light having a peak wavelength near 510 nm. Further, the Er-alpha sialon phosphor has a broad peak at 263 nm and a line peak excitation spectrum near 400 nm, and exhibits an emission spectrum of 500 nm to 600 nm.

さらに別の蛍光体として、La3Si8114若しくは一般式La3Si8-xAlx11-x4+x(0<x≦4)で示される酸窒化物系蛍光体は、光学活性元素Tbを発光の中心として緑色に発光することが報告されている(特許文献2参照)。具体的に、Tbを添加したLa3Si8114の蛍光体については励起波長ピークが256nmであり、La3Si7AlN105の蛍光体については励起波長ピークが258nmと開示される。つまり、いずれの蛍光体も励起波長ピークが紫外領域であるため、これらの蛍光体は、近紫外から可視光の短波長領域或いは青色領域に発光ピークを有する半導体発光素子を備えた発光装置の波長変換材料として使用できない。 Furthermore, as another phosphor, an oxynitride phosphor represented by La 3 Si 8 N 11 O 4 or a general formula La 3 Si 8-x Al x N 11-x O 4 + x (0 <x ≦ 4) Has been reported to emit green light with the optically active element Tb as the center of light emission (see Patent Document 2). Specifically, the excitation wavelength peak for the phosphor of La 3 Si 8 N 11 O 4 to which Tb is added is 256 nm, and the excitation wavelength peak for the phosphor of La 3 Si 7 AlN 10 O 5 is disclosed as 258 nm. The In other words, since all phosphors have an excitation wavelength peak in the ultraviolet region, these phosphors have a wavelength of a light emitting device including a semiconductor light emitting element having a light emission peak in the short wavelength region or the blue region from near ultraviolet to visible light. It cannot be used as a conversion material.

従って上記(1)(2)を兼ね備えた、紫外から可視光の短波長側領域及び青色領域までの広範囲な波長により励起され、緑色の光を放出する蛍光体の開発が望まれている。その一例として、Y−Si−O−N:Ce系の蛍光体が開示される(非特許文献1)。この蛍光体は、紫外から可視光の青色領域の波長により励起され、ピーク波長が423nm〜504nm付近のブロードな発光スペクトルを有する。   Accordingly, it is desired to develop a phosphor that combines the above (1) and (2) and is excited by a wide range of wavelengths from the ultraviolet to the short wavelength region of visible light and the blue region and emits green light. As an example, a Y-Si-ON: Ce-based phosphor is disclosed (Non-Patent Document 1). This phosphor is excited by a wavelength in a blue region from ultraviolet to visible light, and has a broad emission spectrum having a peak wavelength in the vicinity of 423 nm to 504 nm.

しかしながら、透過型カラー液晶表示装置等の表示装置用光源に発光体を使用する場合、シャープな発光スペクトルが要求される。これは、ブロードな発光スペクトルでは、波形の裾領域が他の色の発光スペクトルと重なってしまい混色が生じるからである。混色が生じると、色純度が悪くなり鮮やかな色彩を表示できないため、カラーフィルターにより透過光成分を制限する。これにより所望の領域のみの発光スペクトルを透過させることが可能になるが、一方で光の透過率が低下してしまう。光の透過率が低下すると全体として取り出すことのできる光出力が低下してしまう。従って、例えば透過型カラー液晶表示装置では、通常、シャープな発光スペクトルを持つ三波長冷陰極蛍光管を白色光源として使用している。また、透過型カラー液晶表示装置用光源として、LED等の発光体の利用の開発も進められており、シャープな発光スペクトルを有するLEDの重要性が高まっている。
特開2002−363554号公報 特開2005−112922号公報 Journal of Alloys and Compounds 268 (1998) 272-277
However, when a light emitter is used as a light source for a display device such as a transmissive color liquid crystal display device, a sharp emission spectrum is required. This is because in the broad emission spectrum, the bottom area of the waveform overlaps with the emission spectra of other colors, resulting in color mixing. When color mixing occurs, the color purity deteriorates and vivid colors cannot be displayed. Therefore, the transmitted light component is limited by the color filter. This makes it possible to transmit the emission spectrum of only the desired region, but on the other hand, the light transmittance decreases. When the light transmittance decreases, the light output that can be taken out as a whole decreases. Therefore, for example, in a transmissive color liquid crystal display device, a three-wavelength cold cathode fluorescent tube having a sharp emission spectrum is usually used as a white light source. In addition, the use of light emitters such as LEDs has been developed as light sources for transmissive color liquid crystal display devices, and the importance of LEDs having a sharp emission spectrum is increasing.
JP 2002-363554 A JP 2005-112922 A Journal of Alloys and Compounds 268 (1998) 272-277

本発明は、従来のこのような問題点に鑑みてなされたものである。本発明の第一の目的は、紫外から可視光まで広範囲な領域の励起光源により励起され、波長変換により緑色系にシャープに発光可能な希土類酸窒化物系蛍光体及びこれを用いた発光装置を提供することにある。また第二の目的は、発光効率の高い、再現性に優れた希土類酸窒化物系蛍光体及びこれを用いた発光装置を提供することを目的とする。   The present invention has been made in view of such conventional problems. The first object of the present invention is to provide a rare earth oxynitride phosphor that can be excited by an excitation light source in a wide range from ultraviolet to visible light, and can emit green light sharply by wavelength conversion, and a light emitting device using the same. It is to provide. Another object of the present invention is to provide a rare earth oxynitride phosphor having high luminous efficiency and excellent reproducibility, and a light emitting device using the rare earth oxynitride phosphor.

本発明に係る希土類酸窒化物系蛍光体は、一般式がJxyab:Ce,Tbで示され、x、y、a、bを以下の範囲とし、セリウム及びテルビウムで共付活され、紫外線ないし青色光を吸収して緑色に発光することを特徴とする。
JはSc、Y、La、Pr、Nd、Sm、Gd、Dy、Ho、Er、Tm、Yb、Lu、LはSi、Ge、Ti、Zr、Hfの群から選ばれる少なくとも1つである。Oは酸素、Nは窒素であり、0.5≦x≦8.5、0.5≦y≦12、0.5≦a≦16、0.5≦b≦16とできる。
The rare earth oxynitride-based phosphor according to the present invention has a general formula of J x L y O a N b : Ce, Tb, and x, y, a, b are in the following ranges, and is shared by cerium and terbium. It is activated and absorbs ultraviolet or blue light and emits green light.
J is Sc, Y, La, Pr, Nd, Sm, Gd, Dy, Ho, Er, Tm, Yb, Lu, and L are at least one selected from the group of Si, Ge, Ti, Zr, and Hf. O is oxygen and N is nitrogen, and 0.5 ≦ x ≦ 8.5, 0.5 ≦ y ≦ 12, 0.5 ≦ a ≦ 16, and 0.5 ≦ b ≦ 16.

また、本発明に係る希土類酸窒化物系蛍光体は、一般式がY4Si272:Ce,Tbで示され、セリウム及びテルビウムで共付活され、紫外線ないし青色光を吸収して緑色に発光することができる。 The rare earth oxynitride phosphor according to the present invention has a general formula of Y 4 Si 2 O 7 N 2 : Ce, Tb, is co-activated with cerium and terbium, and absorbs ultraviolet or blue light. Can emit green light.

また希土類酸窒化物系蛍光体は、460nm以下に発光ピーク波長を有する励起光源からの励起光により励起され、530nm〜570nmの波長の範囲にピーク波長を持つ蛍光を発することができる。   The rare earth oxynitride phosphor is excited by excitation light from an excitation light source having an emission peak wavelength of 460 nm or less, and can emit fluorescence having a peak wavelength in a wavelength range of 530 nm to 570 nm.

さらにまた希土類酸窒化物系蛍光体は、一般式がJxyzab:Ce,Tbで示され、JはSc、Y、La、Pr、Nd、Sm、Gd、Dy、Ho、Er、Tm、Yb、Lu、LはSi、Ge、Ti、Zr、Hf、MはB、Al、Ga、Inの群から選ばれる少なくとも1つであり、Oは酸素、Nは窒素であり、x、y、z、a、bの範囲は、0.5≦x≦8.5、0.5≦y≦12、0.001≦z≦5、0.5≦a≦16、0.5≦b≦16であり、セリウム及びテルビウムで共付活され、紫外線ないし青色光を吸収して緑色に発光することができる。 Furthermore rare earth oxynitride-based fluorescent material is represented by the general formula is J x L y M z O a N b: Ce, represented by Tb, J is Sc, Y, La, Pr, Nd, Sm, Gd, Dy, Ho, Er, Tm, Yb, Lu, and L are at least one selected from the group of Si, Ge, Ti, Zr, Hf, and M, B is Al, Ga, and In, O is oxygen, and N is nitrogen. Yes, the ranges of x, y, z, a, b are 0.5 ≦ x ≦ 8.5, 0.5 ≦ y ≦ 12, 0.001 ≦ z ≦ 5, 0.5 ≦ a ≦ 16, 0 5 ≦ b ≦ 16, which is co-activated with cerium and terbium, and can emit green light by absorbing ultraviolet light or blue light.

また、希土類酸窒化物系蛍光体は、一般式がY4Si2-mAlm7+m2-m:Ce,Tbで示され、mの範囲は、0<m≦0.2であり、セリウム及びテルビウムで共付活され、紫外線ないし青色光を吸収して緑色に発光することができる。 The rare earth oxynitride phosphor has a general formula Y 4 Si 2−m Al m O 7 + m N 2−m : Ce, Tb, and the range of m is 0 <m ≦ 0.2. It is co-activated with cerium and terbium and can absorb ultraviolet light or blue light to emit green light.

また希土類酸窒化物系蛍光体は、460nm以下に発光ピーク波長を有する励起光源からの励起光により励起され、530nm〜570nmの波長の範囲にピーク波長を持つ蛍光を発するものとできる。   The rare earth oxynitride phosphor can be excited by excitation light from an excitation light source having an emission peak wavelength of 460 nm or less and emit fluorescence having a peak wavelength in a wavelength range of 530 nm to 570 nm.

さらに希土類酸窒化物系蛍光体は、蛍光体の平均粒径が2μm以上であって20μm以下であることが好ましい。   Further, the rare earth oxynitride phosphor preferably has an average particle size of 2 μm or more and 20 μm or less.

一方発光装置は、460nm以下の波長を発する第1の発光スペクトルを有する励起光源と、第1の発光スペクトルの少なくとも一部を吸収して、第2の発光スペクトルを発光する1種又は2種以上の波長変換部材とを有する発光装置であって、波長変換部材として上記の希土類酸窒化物系蛍光体を利用することができる。   On the other hand, the light-emitting device is an excitation light source having a first emission spectrum that emits a wavelength of 460 nm or less, and one or more types that absorb at least part of the first emission spectrum and emit a second emission spectrum. The above-described rare earth oxynitride phosphor can be used as the wavelength conversion member.

以上のように、希土類酸窒化物系蛍光体及びこれを用いた発光装置は、460nm以下の近紫外から可視光の短波長領域の光により励起され、緑色領域にライン発光する発光効率の極めて良好な発光装置を実現できる。また、製造及び加工しやすい結晶性の希土類酸窒化物系蛍光体、あるいは安定性に優れた希土類酸窒化物系蛍光体を実現できる。   As described above, the rare earth oxynitride phosphor and the light-emitting device using the same are excited by light in the short wavelength region from near ultraviolet to visible light of 460 nm or less and have a very good light emission efficiency for line emission in the green region. A light emitting device can be realized. In addition, a crystalline rare earth oxynitride phosphor that is easy to manufacture and process or a rare earth oxynitride phosphor excellent in stability can be realized.

以下、本発明の実施の形態を図面に基づいて説明する。ただし、以下に示す実施の形態は、本発明の技術思想を具体化するための、希土類酸窒化物系蛍光体及びこれを用いた発光装置を例示するものであって、本発明は、希土類酸窒化物系蛍光体及びこれを用いた発光装置を以下のものに特定しない。なお特許請求の範囲に示される部材を、実施の形態の部材に特定するものでは決してない。特に実施の形態に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、本発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。なお、各図面が示す部材の大きさや位置関係等は、説明を明確にするため誇張していることがある。さらに以下の説明において、同一の名称、符号については同一もしくは同質の部材を示しており、詳細説明を適宜省略する。さらに、本発明を構成する各要素は、複数の要素を同一の部材で構成して一の部材で複数の要素を兼用する態様としてもよいし、逆に一の部材の機能を複数の部材で分担して実現することもできる。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the embodiment described below exemplifies a rare earth oxynitride phosphor and a light emitting device using the same for embodying the technical idea of the present invention. Nitride-based phosphors and light-emitting devices using the same are not specified as follows. In addition, the member shown by the claim is not what specifies the member of embodiment. In particular, the dimensions, materials, shapes, relative arrangements, and the like of the component parts described in the embodiments are not intended to limit the scope of the present invention unless otherwise specified, and are merely explanations. It's just an example. Note that the size, positional relationship, and the like of the members shown in each drawing may be exaggerated for clarity of explanation. Furthermore, in the following description, the same name and symbol indicate the same or the same members, and detailed description thereof will be omitted as appropriate. Furthermore, each element constituting the present invention may be configured such that a plurality of elements are constituted by the same member and the plurality of elements are shared by one member, and conversely, the function of one member is constituted by a plurality of members. It can also be realized by sharing.

本明細書における近紫外線から可視光の短波長領域は、特に限定されない。好適には240nm〜480nmの領域とする。励起光源は、240nm〜430nmに発光ピーク波長を有するものを用いることができる。そのうち、240nm〜280nm及び350nm〜430nm付近に発光ピーク波長を有する励起光源を用いることが好ましい。特に、半導体発光素子で使用されている350nm〜420nmの励起光源を用いることが好ましい。   The short wavelength region from near ultraviolet to visible light in this specification is not particularly limited. The region is preferably 240 nm to 480 nm. As the excitation light source, one having an emission peak wavelength at 240 nm to 430 nm can be used. Among these, it is preferable to use an excitation light source having an emission peak wavelength in the vicinity of 240 nm to 280 nm and 350 nm to 430 nm. In particular, it is preferable to use an excitation light source having a wavelength of 350 nm to 420 nm that is used in semiconductor light emitting devices.

なお色名と色度座標との関係、光の波長範囲と単色光の色名との関係等は、JIS Z8110に従う。具体的には、380nm〜455nmが青紫色、455nm〜485nmが青色、485nm〜495nmが青緑色、495nm〜548nmが緑色、548nm〜573nmが黄緑色、573nm〜584nmが黄色、584nm〜610nmが黄赤色、610nm〜780nmが赤色である。   The relationship between the color name and chromaticity coordinates, the relationship between the wavelength range of light and the color name of monochromatic light, and the like comply with JIS Z8110. Specifically, 380 nm to 455 nm is blue purple, 455 nm to 485 nm is blue, 485 nm to 495 nm is blue green, 495 nm to 548 nm is green, 548 nm to 573 nm is yellow green, 573 nm to 584 nm is yellow, 584 nm to 610 nm is yellow red , 610 nm to 780 nm is red.

(蛍光体)
実施の形態における希土類酸窒化物系蛍光体は、460nm以下に発光ピーク波長を有する励起光源からの光により励起され、励起光の発光ピーク波長よりも長波長側に蛍光の発光ピーク波長を有する。さらに好適には発光ピーク波長を有する励起光源の範囲を240nm〜460nmとする。当該範囲の励起光源を用いることにより、発光効率の高い蛍光体を提供することができるからである。特に、240nm〜430nmに発光ピーク波長を有する励起光源を用いることが好ましく、そのうち更に、240nm〜280nm或いは350nm〜420nmに発光ピーク波長を有する励起光源を用いることが好ましい。この際、本発明の実施の形態における希土類酸窒化物系蛍光体は、後者の範囲を励起光源とした方が発光輝度が高い。
(Phosphor)
The rare earth oxynitride phosphor in the embodiment is excited by light from an excitation light source having an emission peak wavelength of 460 nm or less, and has a fluorescence emission peak wavelength longer than the emission peak wavelength of excitation light. More preferably, the range of the excitation light source having the emission peak wavelength is set to 240 nm to 460 nm. This is because a phosphor with high luminous efficiency can be provided by using an excitation light source in this range. In particular, it is preferable to use an excitation light source having an emission peak wavelength at 240 nm to 430 nm, and it is preferable to use an excitation light source having an emission peak wavelength at 240 nm to 280 nm or 350 nm to 420 nm. At this time, the rare earth oxynitride phosphor in the embodiment of the present invention has higher emission luminance when the latter range is used as the excitation light source.

実施の形態における希土類酸窒化物系蛍光体は、励起光源として近紫外から可視光の短波長側領域の発光素子を用いる。この波長領域の光は視感度が低い。視感度とは単色光が与える明るさの感覚と光のエネルギーの関係を示す波長関数のことを称す。人間の目の感じ方と光の波長には視感度特性による関係が成り立ち、555nmの光の視感度が最も高く、短波長及び長波長に向かうほど視感度が低下する。例えば、励起光源として使用する紫外線領域の光は、視感度の低い部分に属し、実質上使用する蛍光物質の発光色によって発光装置の発光色が決定される。また、投入電流の変化等に伴う発光素子の色ズレが生じた場合でも、可視光領域に発光する蛍光物質の色ズレが極めて小さく抑えられるため、結果として色調変化の少ない発光装置を提供することができる。紫外領域は一般に380nm若しくは400nmよりも短波長のものを言うが、視感度的に420nm以下の光はほとんど見えないため、色調に大きく影響を及ぼさない。よって420nm以下の励起光源を用いることが好ましい。   The rare earth oxynitride phosphor in the embodiment uses a light emitting element in the short wavelength side region from near ultraviolet to visible light as an excitation light source. The light in this wavelength region has low visibility. Visibility refers to a wavelength function indicating the relationship between the sensation of brightness given by monochromatic light and the energy of light. The relationship between the human eye feeling and the light wavelength is based on the visibility characteristic, and the visibility of the light at 555 nm is the highest, and the visibility decreases toward the short wavelength and the long wavelength. For example, light in the ultraviolet region used as an excitation light source belongs to a portion having low visibility, and the light emission color of the light emitting device is substantially determined by the light emission color of the fluorescent material used. Further, even when a color shift of a light emitting element due to a change in input current or the like occurs, a color shift of a fluorescent material that emits light in the visible light region can be suppressed to be extremely small. As a result, a light emitting device with little color tone change is provided. Can do. Although the ultraviolet region generally has a wavelength shorter than 380 nm or 400 nm, light having a wavelength of 420 nm or less is hardly visible in terms of visual sensitivity, so that the color tone is not greatly affected. Therefore, it is preferable to use an excitation light source of 420 nm or less.

また、希土類酸窒化物系蛍光体は、少なくとも一部が結晶を有することが好ましい。特に希土類酸窒化物系蛍光体は、少なくとも50重量%以上、より好ましくは80重量%以上が結晶を有している。これは、発光性を有する結晶相の割合を示し、50重量%以上、結晶相を有しておれば、実用に耐え得る発光が得られるため好ましい。ゆえに結晶相が多いほど良い。これにより、発光輝度を高くすることができ、かつ、希土類酸窒化物系蛍光体の製造及び加工し易くすることができる。   Further, it is preferable that at least a part of the rare earth oxynitride phosphor has a crystal. In particular, the rare earth oxynitride phosphor has at least 50% by weight, more preferably 80% by weight or more of crystals. This indicates the proportion of the crystalline phase having luminescent properties, and if it has a crystalline phase of 50% by weight or more, light emission that can withstand practical use can be obtained. Therefore, the more crystal phases, the better. As a result, the luminance can be increased, and the production and processing of the rare earth oxynitride phosphor can be facilitated.

さらに希土類酸窒化物系蛍光体は、紫外線乃至可視光の短波長側領域の光を吸収して530nm〜570nmの波長の範囲にピーク波長のもつ蛍光を発光することが好ましい。   Furthermore, it is preferable that the rare earth oxynitride phosphor absorbs light in a short wavelength region of ultraviolet light or visible light and emits fluorescence having a peak wavelength in a wavelength range of 530 nm to 570 nm.

(希土類酸窒化物系蛍光体の製造方法)
次に、希土類酸窒化物系蛍光体の製造方法について実施例を用いて具体的に説明する。実施例1〜4に係る希土類酸窒化物系蛍光体の一般式はJxyab:Ce,Tbで示される。ここで、JはSc、Y、La、Pr、Nd、Sm、Gd、Dy、Ho、Er、Tm、Yb、Lu、LはSi、Ge、Ti、Zr、Hfの群から選ばれる少なくとも1つである。Oは酸素、Nは窒素であり、0.5≦x≦8.5、0.5≦y≦12、0.5≦a≦16、0.5≦b≦16とする。この希土類酸窒化物系蛍光体は、その組成式中に希土類元素が含まれており、さらにCe及びTbで共賦活されている。
(Method for producing rare earth oxynitride phosphor)
Next, a method for producing a rare earth oxynitride phosphor will be specifically described with reference to examples. Formula rare earth oxynitride-based phosphor according to Examples 1-4 J x L y O a N b : Ce, represented by Tb. Here, J is Sc, Y, La, Pr, Nd, Sm, Gd, Dy, Ho, Er, Tm, Yb, Lu, L is at least one selected from the group of Si, Ge, Ti, Zr, and Hf It is. O is oxygen, N is nitrogen, and 0.5 ≦ x ≦ 8.5, 0.5 ≦ y ≦ 12, 0.5 ≦ a ≦ 16, and 0.5 ≦ b ≦ 16. This rare earth oxynitride phosphor contains a rare earth element in its composition formula, and is co-activated with Ce and Tb.

(比較例1、実施例1〜4)
上記希土類酸窒化物系蛍光体のうち、Ce,Tbで賦活された、J=Y、L=Si、x=4、y=2、a=7、b=2なる蛍光体Y4Si272:Ce,Tbの製造方法を示す。また、添加するCe,Tbの混合比率を変化させ、生成された該蛍光体を実施例1〜4とした。
(Comparative example 1, Examples 1-4)
Among the rare earth oxynitride phosphors, phosphors Y 4 Si 2 O activated by Ce and Tb and having J = Y, L = Si, x = 4, y = 2, a = 7, and b = 2 7 A method for producing N 2 : Ce, Tb is shown. Further, the phosphors thus produced were designated as Examples 1 to 4 by changing the mixing ratio of Ce and Tb to be added.

まず原料である希土類金属元素の化合物、4族元素の化合物、窒化物、賦活剤の各々を粉砕する。粉砕された原料の平均粒径は、0.1μm以上10μm以下の範囲であることが他の原料との反応性、焼成時及び焼成後の粒径制御等の観点から好ましいが、この範囲に限定されない。また、これらの原料は精製された高純度のものを用いる方が良いが、市販の物を用いても良い。具体的に実施例1〜4では希土類金属元素の化合物として酸化イットリウム、4族元素の化合物として酸化ケイ素、窒化物として窒化珪素、共賦活剤として酸化セリウム及び酸化テルビウムを使用した。この他、希土類金属元素の炭酸塩、窒化物、水酸化物、硝酸塩、シュウ酸塩、イミド化合物及びアミド化合物を用いることもできる。   First, each of a raw material compound of a rare earth metal element, a group 4 element compound, a nitride, and an activator is pulverized. The average particle size of the pulverized raw material is preferably in the range of 0.1 μm or more and 10 μm or less from the viewpoints of reactivity with other raw materials, control of particle size at the time of firing and after firing, etc., but limited to this range Not. Moreover, although it is better to use these purified raw materials having high purity, commercially available products may be used. Specifically, in Examples 1 to 4, yttrium oxide was used as the rare earth metal element compound, silicon oxide as the group 4 element compound, silicon nitride as the nitride, and cerium oxide and terbium oxide as the coactivator. In addition, carbonates, nitrides, hydroxides, nitrates, oxalates, imide compounds and amide compounds of rare earth metal elements can also be used.

上記の原料を表1の実施例1に記載される組成((Y0.945Ce0.005Tb0.05)4Si2O7N2)になるように秤量し混合する。ただし、この組成は配合比率より推定される代表組成であり、その比率の近傍では、実用に耐える十分な特性を有する。また、各原料の配合比率を変更することにより、目的とする蛍光体の組成を変更することができる。 The above raw materials are weighed and mixed so as to have the composition described in Example 1 of Table 1 ((Y 0.945 Ce 0.005 Tb 0.05 ) 4 Si 2 O 7 N 2 ). However, this composition is a representative composition estimated from the blending ratio, and has sufficient characteristics to withstand practical use in the vicinity of the ratio. Moreover, the composition of the target phosphor can be changed by changing the blending ratio of each raw material.

組成は、管状炉、小型炉、高周波炉、メタル炉等を使用することができる。焼成温度は、1200℃から2200℃の範囲で焼成を行うことができるが、1400℃から2000℃の焼成温度が好ましい。さらに好ましくは約1800℃で約2時間焼成する。焼成は、徐々に昇温を行い1200℃から2200℃で数時間焼成を行う一段階焼成をしようすることが好ましいが、800℃から1200℃で一段階目の焼成を行い、徐々に加熱して1200℃から2200℃で二段階目の焼成を行う二段階焼成(多段階焼成)を使用することもできる。蛍光体の原料は、窒化ホウ素(BN)材質のルツボ、ボートを用いて焼成を行うことが好ましい。窒化ホウ素材質のルツボの他に、アルミナ(Al23)やMo材質等のルツボを使用することもできる。 As the composition, a tubular furnace, a small furnace, a high-frequency furnace, a metal furnace or the like can be used. Firing can be performed in the range of 1200 ° C. to 2200 ° C., but a firing temperature of 1400 ° C. to 2000 ° C. is preferable. More preferably, baking is performed at about 1800 ° C. for about 2 hours. The firing is preferably performed by gradually raising the temperature and firing at 1200 ° C. to 2200 ° C. for several hours, but the first stage firing is carried out at 800 ° C. to 1200 ° C. and gradually heated. Two-stage baking (multi-stage baking) in which the second baking is performed at 1200 to 2200 ° C. can also be used. The phosphor material is preferably fired using a boron nitride (BN) crucible or boat. In addition to a crucible made of boron nitride, a crucible made of alumina (Al 2 O 3 ) or Mo can be used.

また、出発原料は蛍光体を形成する焼成段階の間に出発原料の反応を促進させるフラックスを含有することができる。好ましくは、フラックスは、フッ化物又は塩化物化合物のようなハロゲン化合物を含む。ハロゲン化合物には、フッ化マグネシウム、アルミニウム、ストロンチウム、塩化マグネシウム、又は塩化アンモニウム等が含まれる。しかしながら、該蛍光体はフラックスを添加すること無く焼成してもよい。次いで、焼成された混合物によりランプバルブのような基体を被覆する。好ましくは、混合物粒子と液体との懸濁物を用いて基体を被覆する。   The starting material may also contain a flux that promotes the reaction of the starting material during the firing step of forming the phosphor. Preferably, the flux includes a halogen compound such as a fluoride or chloride compound. The halogen compound includes magnesium fluoride, aluminum, strontium, magnesium chloride, or ammonium chloride. However, the phosphor may be fired without adding flux. The fired mixture is then coated on a substrate such as a lamp bulb. Preferably, the substrate is coated with a suspension of mixture particles and liquid.

焼成後に粉砕を行い、化学式((Y0.945Ce0.005Tb0.05)4Si2O7N2)で示される希土類酸窒化物系蛍光体を得ることができる。ただし、この化学式は使用する原料の配合比率より求めている。実施例2〜5も表1の実施例2〜5に記載される蛍光体になるように原料の配合比率を変更する以外は、実施例1と同様の方法で蛍光体を合成した。この焼成による基本構成元素の反応式を、化1に示す。 By grinding after firing, a rare earth oxynitride phosphor represented by the chemical formula ((Y 0.945 Ce 0.005 Tb 0.05 ) 4 Si 2 O 7 N 2 ) can be obtained. However, this chemical formula is obtained from the blending ratio of the raw materials used. In Examples 2 to 5, phosphors were synthesized in the same manner as in Example 1 except that the mixing ratio of the raw materials was changed so that the phosphors described in Examples 2 to 5 in Table 1 were obtained. The reaction formula of the basic constituent elements by this firing is shown in chemical formula 1.

上記化学式において、δは、CeO2、Tb47の酸素が脱離し、Ce、Tbが3価へ還元されたことを示す。
また比較例1として、賦活剤として酸化テルビウムのみを使用し、酸化セリウムは添加しない蛍光体を合成した。
In the above chemical formula, δ indicates that oxygen of CeO 2 and Tb 4 O 7 is eliminated and Ce and Tb are reduced to trivalent.
Further, as Comparative Example 1, a phosphor was synthesized using only terbium oxide as an activator and not adding cerium oxide.

表1に実施例1〜4及び比較例1の仕込み組成、及び得られた蛍光体を253.7nmの波長で励起させた際の発光特性を評価した。同様に表2に、蛍光体の365nmの波長に励起された際の発光特性を示す。さらに表3に、蛍光体の400nmの波長に励起された際の発光特性を示す。実施例1〜4及び比較例1に示す希土類酸窒化物系蛍光体の発光輝度は、実施例1を100%とし、これを基準に相対値で表す。また、図1に比較例1及び実施例1〜4の希土類酸窒化物系蛍光体を253.7nmで励起したときの発光スペクトルを示す。同様に、図2(a)に比較例1及び実施例1〜4の希土類酸窒化物系蛍光体を365nmで励起したときの発光スペクトルを示す。さらに、比較例1及び実施例1〜4を365nmで励起した時の各々の発光スペクトルを図2(b)、(c)、(d)、(e)、(f)に示す。また、図3(a)に比較例1及び実施例1〜4の希土類酸窒化物系蛍光体を400nmで励起したときの発光スペクトルを示す。さらに、比較例1及び実施例1〜4を400nmで励起した時の各々の発光スペクトルを図3(b)、(c)、(d)、(e)、(f)に示す。また、図4は、比較例1及び実施例1〜4の励起スペクトルである。図5の(a)は、実施例1の希土類酸窒化物系蛍光体の1000倍拡大写真であり、(b)は実施例1の希土類酸窒化物系蛍光体の5000倍拡大写真を示す。   In Table 1, the preparation compositions of Examples 1 to 4 and Comparative Example 1 and the emission characteristics when the obtained phosphors were excited at a wavelength of 253.7 nm were evaluated. Similarly, Table 2 shows emission characteristics when the phosphor is excited to a wavelength of 365 nm. Further, Table 3 shows emission characteristics when the phosphor is excited to a wavelength of 400 nm. The light emission luminance of the rare earth oxynitride phosphors shown in Examples 1 to 4 and Comparative Example 1 is set to 100% in Example 1, and is expressed as a relative value based on this. FIG. 1 shows emission spectra when the rare earth oxynitride phosphors of Comparative Example 1 and Examples 1 to 4 are excited at 253.7 nm. Similarly, FIG. 2A shows emission spectra when the rare earth oxynitride phosphors of Comparative Example 1 and Examples 1 to 4 are excited at 365 nm. Furthermore, each emission spectrum when the comparative example 1 and Examples 1-4 are excited at 365 nm is shown in FIGS. 2 (b), (c), (d), (e), and (f). FIG. 3A shows emission spectra when the rare earth oxynitride phosphors of Comparative Example 1 and Examples 1 to 4 are excited at 400 nm. Furthermore, each emission spectrum when the comparative example 1 and Examples 1-4 are excited at 400 nm is shown in FIGS. 3 (b), (c), (d), (e), and (f). FIG. 4 shows excitation spectra of Comparative Example 1 and Examples 1 to 4. FIG. 5A is a 1000 × magnified photograph of the rare earth oxynitride phosphor of Example 1, and FIG. 5B is a 5000 × magnified photograph of the rare earth oxynitride phosphor of Example 1.

実施例1〜4の希土類酸窒化物系蛍光体は、図1〜3に示されるように4つのピーク波長が観測された。即ち、各ピーク波長は480nm〜510nm、530nm〜570nm、580nm〜610nm、610nm〜640nmである。そのうち、530nm〜570nmで半値幅が25nmであるピーク波長が最も強い。つまり実施例1〜4の希土類酸窒化物系蛍光体は、545nm付近のシャープな発光ピークを有し、色度座標値はx=0.30付近、y=0.54付近である緑色に発光している。また図4の励起スペクトルから分かるように430nm付近以下の光源によって励起可能である。   In the rare earth oxynitride phosphors of Examples 1 to 4, four peak wavelengths were observed as shown in FIGS. That is, each peak wavelength is 480 nm to 510 nm, 530 nm to 570 nm, 580 nm to 610 nm, and 610 nm to 640 nm. Among them, the peak wavelength at 530 nm to 570 nm and the half width of 25 nm is the strongest. That is, the rare earth oxynitride phosphors of Examples 1 to 4 have a sharp emission peak near 545 nm, and emit light in green with chromaticity coordinate values near x = 0.30 and y = 0.54. doing. Further, as can be seen from the excitation spectrum of FIG. 4, excitation is possible with a light source of around 430 nm or less.

ところで所望の発光色を放つ蛍光体を合成するには、その発光波長に応じた希土類イオンを選択することが重要となる。例えば緑色の波長であれば3価の希土類イオンであるTb3+が挙げられる。ところが、比較例1に示すTbを含む希土類酸窒化物系蛍光体(Y0.95Tb0.05)4Si2O7N2は、図2(b)及び図3(b)の発光スペクトルが示すように、545nm付近に発光スペクトルが観測されてはいるものの、その強度が弱い。また図4に示す励起スペクトルでは、240nm〜304nm付近のみにピークがあり、近紫外から青色波長領域には十分な励起波長を有していない上、目的とする発光波長領域にはスペクトルが極わずかしか観測されていない。 By the way, in order to synthesize a phosphor that emits a desired emission color, it is important to select a rare earth ion according to the emission wavelength. For example, if the wavelength is green, Tb 3+ which is a trivalent rare earth ion can be used. However, the rare earth oxynitride-based phosphor (Y 0.95 Tb 0.05 ) 4 Si 2 O 7 N 2 containing Tb shown in Comparative Example 1 has the emission spectra shown in FIGS. 2 (b) and 3 (b). Although an emission spectrum is observed near 545 nm, its intensity is weak. Further, the excitation spectrum shown in FIG. 4 has a peak only in the vicinity of 240 nm to 304 nm, does not have a sufficient excitation wavelength in the near ultraviolet to blue wavelength region, and has a very small spectrum in the target emission wavelength region. However, it has only been observed.

一方、図2(c)、(d)、(e)、(f)及び図3(c)、(d)、(e)、(f)で示すように、実施例1〜4のTb及びCeが共賦活された希土類酸窒化物系蛍光体では545nm付近の発光スペクトルが強く観測され、さらに図4に示すように、所望の波長領域に励起スペクトルが観測された。つまりTb及びCeが共賦活されることにより、CeがTbの発光の増感剤として作用したと言える。   On the other hand, as shown in FIGS. 2 (c), (d), (e), (f) and FIGS. 3 (c), (d), (e), (f), Tb and In the rare earth oxynitride phosphor in which Ce was co-activated, an emission spectrum near 545 nm was strongly observed, and an excitation spectrum was observed in a desired wavelength region as shown in FIG. That is, it can be said that Ce acted as a sensitizer for Tb luminescence by co-activation of Tb and Ce.

(粒径)
希土類酸窒化物系蛍光体の粒径は2μm〜20μmの範囲が好ましく、より好ましくは3μm〜15μmである。2μmより小さい粒径を有する蛍光体は、凝集体を形成しやすい傾向にある。一方、3μm〜15μmの粒径範囲の蛍光体は、光の吸収率及び変換効率が高い。このように、光学的に優れた特徴を有する粒径の大きな蛍光体を含有させることにより、発光装置の量産性が向上する。
(Particle size)
The particle size of the rare earth oxynitride phosphor is preferably in the range of 2 μm to 20 μm, more preferably 3 μm to 15 μm. A phosphor having a particle size smaller than 2 μm tends to form an aggregate. On the other hand, a phosphor having a particle size range of 3 μm to 15 μm has a high light absorption rate and conversion efficiency. In this manner, the mass productivity of the light-emitting device is improved by including a phosphor having a large particle diameter and having optically excellent characteristics.

ここで粒径は、空気透過法で得られる平均粒径を指す。具体的には、気温25℃、湿度70%の環境下において、1cm3分の試料を計り取り、専用の管状容器にパッキングした後、一定圧力の乾燥空気を流し、差圧から比表面積を読み取り、平均粒径に換算した値である。本実施の形態で用いられる蛍光体の平均粒径は2μm〜15μmの範囲であることが好ましい。また、この平均粒径値を有する蛍光体が、頻度高く含有されていることが好ましい。また、粒度分布も狭い範囲に分布しているものが好ましく、特に、微粒子2μm以下の少ない物が好ましい。このように粒径、及び粒度分布のバラツキが小さい蛍光体を用いることにより、より色ムラが抑制され、良好な色調を有する発光装置が得られる。 Here, the particle size refers to the average particle size obtained by the air permeation method. Specifically, in an environment with an air temperature of 25 ° C. and a humidity of 70%, a sample of 1 cm 3 is weighed and packed in a special tubular container, then a constant pressure of dry air is flowed, and the specific surface area is read from the differential pressure. It is a value converted into an average particle diameter. The average particle diameter of the phosphor used in the present embodiment is preferably in the range of 2 μm to 15 μm. Moreover, it is preferable that the phosphor having this average particle diameter value is contained frequently. In addition, it is preferable that the particle size distribution is distributed in a narrow range. As described above, by using a phosphor having a small variation in particle size and particle size distribution, color unevenness is further suppressed, and a light emitting device having a good color tone can be obtained.

後述するが、発光装置における蛍光体の配置場所は発光素子との位置関係において種々の場所に配置することがきる。例えば、発光素子を被覆するモールド中に、蛍光体を含有させることがきる。また、発光素子と蛍光体とを、間隔をおいて配置しても良いし、発光素子の上部に蛍光体を、直接載置しても良い。   As will be described later, the fluorescent material in the light emitting device can be arranged at various locations in the positional relationship with the light emitting element. For example, a phosphor can be contained in a mold that covers the light emitting element. In addition, the light emitting element and the phosphor may be arranged with a space therebetween, or the phosphor may be directly placed on the light emitting element.

また、還元雰囲気は、窒素、水素、アルゴン、二酸化炭素、一酸化炭素、アンモニアの少なくとも1種以上を含む雰囲気をする。ただし、これら以外の還元雰囲気下でも焼成を行うことができる。   The reducing atmosphere is an atmosphere containing at least one of nitrogen, hydrogen, argon, carbon dioxide, carbon monoxide, and ammonia. However, firing can be performed in a reducing atmosphere other than these.

(Jxyzab:Ce,Tb)
次に、別の希土類酸窒化物系蛍光体について実施例を用いて具体的に説明する。実施例5〜8に係る希土類酸窒化物系蛍光体の一般式はJxyzab:Ce,Tbで示される。ここで、JはSc、Y、La、Pr、Nd、Sm、Gd、Dy、Ho、Er、Tm、Yb、Lu、LはSi、Ge、Ti、Zr、Hf、MはB、Al、Ga、Inの群から選ばれる少なくとも1つである。Oは酸素、Nは窒素であり、0.5≦x≦8.5、0.5≦y≦12、0.001≦z≦5、0.5≦a≦16、0.5≦b≦16とする。この希土類酸窒化物系蛍光体は、その組成式中に希土類元素が含まれており、さらにCe及びTbで共賦活されている。
(J x L y M z O a N b: Ce, Tb)
Next, another rare earth oxynitride phosphor will be specifically described with reference to examples. Formula rare earth oxynitride-based phosphor according to Example 5-8 J x L y M z O a N b: Ce, represented by Tb. Here, J is Sc, Y, La, Pr, Nd, Sm, Gd, Dy, Ho, Er, Tm, Yb, Lu, L is Si, Ge, Ti, Zr, Hf, M is B, Al, Ga , In. At least one selected from the group of In. O is oxygen, N is nitrogen, 0.5 ≦ x ≦ 8.5, 0.5 ≦ y ≦ 12, 0.001 ≦ z ≦ 5, 0.5 ≦ a ≦ 16, 0.5 ≦ b ≦ 16 This rare earth oxynitride phosphor contains a rare earth element in its composition formula, and is co-activated with Ce and Tb.

(実施例5〜8)
上記希土類酸窒化物系蛍光体のうち、Ce,Tbで賦活され、J=Y、L=Si、M=Alであり、一般式がY4Si2-mAlm7+m2-m:Ce,Tbで示され、mの範囲を0<m≦0.2とする希土類酸窒化物系蛍光体を実施例5〜8に示す。さらに好適にはmの範囲を0.01≦m≦0.1とする。mがこの範囲であれば、紫外から可視光までの広範囲な領域の励起光源により励起され、波長変換により緑色系にシャープに発光できる希土類酸窒化物系蛍光体となる。実施例5〜8の希土類酸窒化物系蛍光体は、組成中のSi/Al比率、及びO/N比率を変化させており、具体的には蛍光体の一般式のmの値をそれぞれ、m=0.01、0.02、0.05、0.1とした。
(Examples 5 to 8)
Among the rare earth oxynitride phosphors, activated by Ce and Tb, J = Y, L = Si, M = Al, and the general formula is Y 4 Si 2−m Al m O 7 + m N 2−. Examples 5 to 8 show rare earth oxynitride phosphors represented by m : Ce, Tb and having a range of m of 0 <m ≦ 0.2. More preferably, the range of m is 0.01 ≦ m ≦ 0.1. If m is in this range, it will be a rare earth oxynitride phosphor that is excited by an excitation light source in a wide range from ultraviolet to visible light and can emit light sharply in a green color by wavelength conversion. In the rare earth oxynitride phosphors of Examples 5 to 8, the Si / Al ratio and the O / N ratio in the composition were changed, and specifically, the value of m in the general formula of the phosphor was m = 0.01, 0.02, 0.05, and 0.1.

実施例5〜8の蛍光体の製造方法は、実施例1の原料に、さらにAlの直接窒化法等で合成されたAlNを加え、生成方法及び条件は実施例1と同様である。該実施例5〜8の蛍光体を、253.7nm、365nm及び400nmの波長で励起させた際の発光特性を表4、5及び6に示す。各実施例の発光輝度は、実施例1を100%とし、これを基準に相対値で表す。また、図6(a)に実施例5〜8の希土類酸窒化物系蛍光体を253.7nmで励起したときの発光スペクトルを示す。さらに、実施例5〜8を253.7nmで励起した時の各々の発光スペクトルを図6(b)、(c)、(d)、(e)に示す。同様に、図7(a)に実施例5〜8の希土類酸窒化物系蛍光体を365nmで励起したときの発光スペクトルを示す。さらに、実施例5〜8を365nmで励起した時の各々の発光スペクトルを図7(b)、(c)、(d)、(e)に示す。また、図8(a)に実施例5〜8の希土類酸窒化物系蛍光体を400nmで励起したときの発光スペクトルを示す。さらに、実施例5〜8を400nmで励起した時の各々の発光スペクトルを図8(b)、(c)、(d)、(e)に示す。また、図9(a)に実施例5〜8の励起スペクトルを示す。さらに、実施例5〜8の各々の励起スペクトルを図9(b)、(c)、(d)、(e)に示す。   In the method for manufacturing the phosphors of Examples 5 to 8, AlN synthesized by direct nitridation of Al or the like is further added to the raw material of Example 1, and the production method and conditions are the same as those of Example 1. Tables 4, 5 and 6 show the emission characteristics when the phosphors of Examples 5 to 8 were excited at wavelengths of 253.7 nm, 365 nm and 400 nm. The light emission luminance in each example is expressed as a relative value with reference to 100% in Example 1. FIG. 6A shows emission spectra when the rare earth oxynitride phosphors of Examples 5 to 8 are excited at 253.7 nm. Furthermore, each emission spectrum when Example 5-8 was excited by 253.7 nm is shown to FIG.6 (b), (c), (d), (e). Similarly, FIG. 7A shows emission spectra when the rare earth oxynitride phosphors of Examples 5 to 8 are excited at 365 nm. Further, FIGS. 7B, 7C, 7D, and 7E show the emission spectra of Examples 5 to 8 when excited at 365 nm. FIG. 8A shows emission spectra when the rare earth oxynitride phosphors of Examples 5 to 8 are excited at 400 nm. Further, FIGS. 8B, 8C, 8D, and 8E show emission spectra when Examples 5 to 8 are excited at 400 nm, respectively. Moreover, the excitation spectrum of Examples 5-8 is shown to Fig.9 (a). Furthermore, the excitation spectrum of each of Examples 5-8 is shown in FIGS. 9B, 9C, 9D, and 9E.

実施例5〜8の希土類酸窒化物系蛍光体は、実施例1〜4の発光ピークと類似している。即ち、図6〜8に示されるように4つのピーク波長が観測され、各ピーク波長は480nm〜510nm、530nm〜570nm、580nm〜610nm、610nm〜640nmであった。そのうち、530nm〜570nmで半値幅が25nmであるピーク波長が最も強い。つまり、実施例5〜8の希土類酸窒化物系蛍光体は、545nm付近のシャープな発光ピークを有し、色度座標値はx=0.31付近、y=0.54付近である緑色に発光している。また図9の励起スペクトルから分かるように430nm付近以下の光源によって励起可能である。
(アルミニウムの効果)
The rare earth oxynitride phosphors of Examples 5 to 8 are similar to the emission peaks of Examples 1 to 4. That is, as shown in FIGS. 6 to 8, four peak wavelengths were observed, and each peak wavelength was 480 nm to 510 nm, 530 nm to 570 nm, 580 nm to 610 nm, and 610 nm to 640 nm. Among them, the peak wavelength at 530 nm to 570 nm and the half width of 25 nm is the strongest. That is, the rare earth oxynitride phosphors of Examples 5 to 8 have a sharp emission peak near 545 nm, and the chromaticity coordinate values are green where x = 0.31 and y = 0.54. Emitting light. Further, as can be seen from the excitation spectrum of FIG. 9, excitation is possible with a light source of around 430 nm or less.
(Aluminum effect)

実施例5〜8に示す一般式(Y0.93Ce0.02Tb0.05)4Si2-xAlxO7+xN2-x(0<x≦0.2)の希土類酸窒化物系蛍光体は、その組成にアルミニウムを含む。
一般的に、蛍光体の組成にアルミニウムを含有させた場合、粒径を大きくしたり、残光を短くすることが可能である。ただ、蛍光体の平均粒径が大きいほど発光輝度は高いが、希土類酸窒化物系蛍光体の粒径が20μm以上になると、発光装置に使用する場合、塗布しにくくなる。一方、蛍光体の平均粒径が小さいほど、発光装置の発光面に塗布した場合、均一に発光するが、発光輝度が低いことや、塗布時及び製造時において取り扱いにくいという問題がある。よってアルミニウムの添加量を調整することで、発光輝度、量子効率、残光等発光特性、粒径等の調節を行えばよい。
Rare earth oxynitride phosphors of the general formula (Y 0.93 Ce 0.02 Tb 0.05 ) 4 Si 2-x Al x O 7 + x N 2-x (0 <x ≦ 0.2) shown in Examples 5 to 8 are The composition contains aluminum.
Generally, when aluminum is included in the composition of the phosphor, it is possible to increase the particle size or shorten the afterglow. However, the larger the average particle diameter of the phosphor, the higher the emission luminance. However, when the particle diameter of the rare earth oxynitride phosphor is 20 μm or more, it becomes difficult to apply when used in a light emitting device. On the other hand, the smaller the average particle size of the phosphor, the more uniform light is emitted when it is applied to the light emitting surface of the light emitting device, but there are problems that the light emission luminance is low and that it is difficult to handle during application and manufacturing. Therefore, by adjusting the addition amount of aluminum, light emission luminance, quantum efficiency, light emission characteristics such as afterglow, particle size, and the like may be adjusted.

(実施例9)
次に、上記の希土類酸窒化物系蛍光体を波長変換部材として利用した発光装置について説明する。本発明の希土類酸窒化物系蛍光体は、多くの様々な用途で用いることができる。例えば、ランプ、陰極線管、プラズマディスプレイ、レーダー等の表示装置、又は液晶ディスプレイの蛍光体として用いることができる。該材料はまた、電磁カロリーメータ、ガンマ線カメラ、コンピュータ断層撮影スキャナ、又はレーザのシンチレータとして用いることができる。これらの用途は、単に例示的に過ぎず、全てを網羅していることを意味するものではない。
Example 9
Next, a light emitting device using the rare earth oxynitride phosphor as a wavelength conversion member will be described. The rare earth oxynitride phosphor of the present invention can be used in many different applications. For example, it can be used as a phosphor, a display device such as a lamp, a cathode ray tube, a plasma display, a radar, or a liquid crystal display. The material can also be used as an electromagnetic calorimeter, gamma camera, computed tomography scanner, or laser scintillator. These uses are merely exemplary and are not meant to be exhaustive.

波長変換部材の励起光源には、半導体発光素子を使用する。ここで発光素子には、可視光を発する素子のみならず、近紫外光や遠紫外光等を発する素子も含める意味で使用する。また励起光源として、半導体発光素子以外に、既存の蛍光灯に使用される水銀灯等、紫外から可視光の短波長領域に発光ピーク波長を有する励起光源を適宜利用できる。   A semiconductor light emitting element is used as an excitation light source for the wavelength conversion member. Here, the light emitting element is used to include not only an element that emits visible light but also an element that emits near ultraviolet light, far ultraviolet light, or the like. In addition to the semiconductor light emitting element, an excitation light source having an emission peak wavelength in the short wavelength region from ultraviolet to visible light, such as a mercury lamp used in an existing fluorescent lamp, can be appropriately used as the excitation light source.

ここでは発光装置の実施例9として、励起光源に近紫外から可視光の短波長領域の光を放つ発光素子を備えた砲弾型の半導体発光装置を使用する。発光素子は、小型で電力効率が良く鮮やかな色の発光をする。また、発光素子は半導体素子であるため球切れ等の心配がない。さらに初期駆動性が優れ、振動やオン・オフ点灯の繰り返しに強いという特長を有する。そのため、発光素子と希土類酸窒化物系蛍光体とを組み合わせる発光装置であることが好ましい。   Here, as Example 9 of the light-emitting device, a bullet-type semiconductor light-emitting device including a light-emitting element that emits light in a short wavelength region from near ultraviolet to visible light is used as an excitation light source. The light emitting element is small in size, has high power efficiency, and emits bright colors. In addition, since the light emitting element is a semiconductor element, there is no fear of a broken ball. In addition, it has excellent initial drivability and is strong against vibration and repeated on / off lighting. Therefore, a light-emitting device that combines a light-emitting element and a rare earth oxynitride phosphor is preferable.

具体的には発光素子は、In又はGaを含む窒化物半導体素子であることが好ましい。これにより、発光素子は、360nm〜410nm付近に発光ピーク波長を有する光を放出し、発光素子からの光により、希土類酸窒化物系蛍光体が励起され、所定の発光色を示す。希土類酸窒化物系蛍光体は、360nm〜410nm近傍で強く発光するため、波長域の発光素子が求められているからである。また、発光スペクトル幅を狭くさせることが可能であることから、希土類酸窒化物系蛍光体を効率よく励起することができるとともに、発光装置からは実質的に色調変化に影響を与えることのない発光スペクトルを放出することができる。   Specifically, the light emitting element is preferably a nitride semiconductor element containing In or Ga. Thereby, the light emitting element emits light having an emission peak wavelength in the vicinity of 360 nm to 410 nm, and the rare earth oxynitride phosphor is excited by the light from the light emitting element, and exhibits a predetermined emission color. This is because the rare earth oxynitride-based phosphor emits light strongly in the vicinity of 360 nm to 410 nm, and thus a light emitting element in the wavelength region is required. In addition, since the emission spectrum width can be narrowed, the rare earth oxynitride-based phosphor can be excited efficiently, and the light emission from the light emitting device does not substantially affect the color tone change. A spectrum can be emitted.

このように発光素子から放出される光を励起光源とすることで、従来の水銀ランプに比して消費電力の低い、効率の良い発光装置を実現できる。   Thus, by using the light emitted from the light emitting element as an excitation light source, an efficient light emitting device with low power consumption compared to a conventional mercury lamp can be realized.

なお、希土類酸窒化物系蛍光体は、従来のガラス体(非晶質)構造を持つ酸窒化物ガラスに比べて加工が容易であるという利点も有する。ガラス体は構造がルーズであるため、その生産工程における反応条件が厳密に一様になるよう管理できなければ、蛍光体中の成分比率が一定せず色度ムラを生じる。これに対し、本実施の形態に係る希土類酸窒化物系蛍光体は、ガラス体でなく結晶性を有する粉体乃至粒体であるため、製造及び加工し易い。また、希土類酸窒化物系蛍光体は有機媒体に均一に溶解できるため、発光性プラスチックやポリマー薄膜材料の調整が容易である。   The rare earth oxynitride phosphor also has an advantage that it is easier to process than an oxynitride glass having a conventional glass body (amorphous) structure. Since the glass body has a loose structure, if the reaction conditions in the production process cannot be controlled so as to be strictly uniform, the component ratio in the phosphor is not constant, and chromaticity unevenness occurs. On the other hand, the rare earth oxynitride-based phosphor according to the present embodiment is not a glass body but a powder or granule having crystallinity, and thus is easy to manufacture and process. In addition, since the rare earth oxynitride phosphor can be uniformly dissolved in an organic medium, it is easy to adjust the light emitting plastic or the polymer thin film material.

(発光装置)
次に、本発明の実施例9に係る発光装置として、砲弾型の発光装置を図10に示す。この発光装置1は導電性の部材からなるリードフレーム4で成型された凹形状のカップ10内であって、リードフレーム4上に載置されている発光素子2と、この発光素子2から放たれた光の少なくとも一部を波長変換する蛍光体3を有する。発光素子2に形成された正負の電極9は、導電性のボンディングワイヤ5を介してリードフレーム4と電気的に接続される。さらにリードフレーム4の一部であるリードフレーム電極4aが突出するように、発光素子2と、リードフレーム4と、ボンディングワイヤ5は、砲弾形状のモールド11で覆われる。モールド11内には光透過性の樹脂6が充填されており、さらに樹脂6には波長変換部材である蛍光体3が含有されている。樹脂6は、シリコーン樹脂組成物を使用することが好ましいが、エポキシ樹脂組成物、アクリル樹脂組成物等の透光性を有する絶縁樹脂組成物を用いることもできる。この樹脂6から突出しているリードフレーム電極4aが電源(図示せず)と電気的に接続されれば、発光素子2の層内に含有される発光層8から光が放出される。この発光層8から出力される発光ピーク波長は紫外から青色領域の500nm以下近傍の発光スペクトルを有する。この放出された光の一部が蛍光体3を励起し、発光層8からの主光源の波長とは異なった波長を持つ光が得られる。
(Light emitting device)
Next, a bullet-type light emitting device is shown in FIG. 10 as a light emitting device according to Example 9 of the present invention. The light-emitting device 1 is in a concave cup 10 formed by a lead frame 4 made of a conductive member. The light-emitting device 2 is placed on the lead frame 4 and is emitted from the light-emitting element 2. A phosphor 3 that converts the wavelength of at least a part of the emitted light. Positive and negative electrodes 9 formed on the light emitting element 2 are electrically connected to the lead frame 4 via conductive bonding wires 5. Further, the light emitting element 2, the lead frame 4, and the bonding wire 5 are covered with a shell-shaped mold 11 so that the lead frame electrode 4 a which is a part of the lead frame 4 protrudes. The mold 11 is filled with a light-transmitting resin 6, and the resin 6 contains a phosphor 3 that is a wavelength conversion member. The resin 6 is preferably a silicone resin composition, but an insulating resin composition having translucency such as an epoxy resin composition and an acrylic resin composition can also be used. When the lead frame electrode 4 a protruding from the resin 6 is electrically connected to a power source (not shown), light is emitted from the light emitting layer 8 contained in the layer of the light emitting element 2. The emission peak wavelength output from the light emitting layer 8 has an emission spectrum near 500 nm or less in the ultraviolet to blue region. Part of the emitted light excites the phosphor 3, and light having a wavelength different from the wavelength of the main light source from the light emitting layer 8 is obtained.

蛍光体3は樹脂中にほぼ均一の割合で混合されていることが好ましい。これにより色ムラのない光が得られる。ただ、蛍光体3が部分的に偏在するように配合することもできる。例えば、樹脂6の外面側に蛍光体3が多く含まれるように偏在させ、発光素子2で発生した熱が蛍光体3に伝達し難くして蛍光体3の劣化を抑制することも可能である。また、樹脂6内に2種以上の蛍光体を含有させることでもできる。これにより、発光層から出力される主光源を第1の蛍光体により波長変換し、さらに第2の蛍光体により波長変換された光を得ることができる。複数の蛍光体の配合を調整することにより、主光源、第1の蛍光体により波長変換された光、さらに第2の蛍光体により波長変換された光、また、主光源が直接第2の蛍光体により波長変換された光、とを組み合わせることにより、様々な色を表現することが可能である。   The phosphor 3 is preferably mixed in the resin at a substantially uniform ratio. Thereby, light without color unevenness is obtained. However, it can also mix | blend so that the fluorescent substance 3 may be unevenly distributed partially. For example, it is possible to make the phosphor 3 unevenly distributed on the outer surface side of the resin 6 so that the heat generated in the light emitting element 2 is difficult to be transmitted to the phosphor 3, thereby suppressing deterioration of the phosphor 3. . Further, two or more kinds of phosphors may be contained in the resin 6. Thereby, the wavelength of the main light source output from the light emitting layer can be converted by the first phosphor, and light that has been wavelength-converted by the second phosphor can be obtained. By adjusting the combination of the plurality of phosphors, the main light source, the light wavelength-converted by the first phosphor, the light wavelength-converted by the second phosphor, and the main light source directly the second fluorescence Various colors can be expressed by combining light that has been wavelength-converted by the body.

(実施例10)
次に本発明の実施例10に係る発光装置として図11に示す。この発光装置は、実施例9に係る発光装置における部材と同一の部材には同一の符号を付して、その説明を省略する。図4の発光装置20は、リードフレーム4で成型された凹形状のカップ10内のみに、蛍光体3を含む樹脂6が充填されている。モールド11内であって、カップ10の外部に充填されている樹脂6b内には蛍光体3は含有されていない。蛍光体3を含有している樹脂と、含有していない樹脂の種類は同一が好ましいが、異なっていてもかまわない。異種の樹脂であれば、各々の樹脂が硬化するのに要する温度の差を利用して、軟度を変化させることもできる。
(Example 10)
Next, FIG. 11 shows a light emitting device according to Example 10 of the present invention. In this light-emitting device, members that are the same as those in the light-emitting device according to Example 9 are given the same reference numerals, and descriptions thereof are omitted. In the light emitting device 20 of FIG. 4, the resin 6 including the phosphor 3 is filled only in the concave cup 10 molded by the lead frame 4. The phosphor 3 is not contained in the resin 6b filled in the outside of the cup 10 in the mold 11. The resin containing the phosphor 3 and the type of the resin not containing are preferably the same, but they may be different. In the case of different types of resins, the softness can be changed using the difference in temperature required for each resin to cure.

図11の発光装置20は、カップ10内の開口部を形成する底面のほぼ中央部に、発光素子2が載置されているため、発光素子2は蛍光体3を含む樹脂6内に埋設される。発光層8からの光がムラなく蛍光体3により波長変換されるためには、発光素子からの光が均一に蛍光体含有樹脂を通過すればよい。つまり、発光層8からの光が通過する蛍光体含有樹脂膜の厚さを均一にすればよい。従って発光素子2の周囲から、カップ10の壁面及び上部までの距離が均一になるよう、カップ10の大きさ及び発光素子2の載置位置を決定すればよい。図11の発光装置20であれば、蛍光体3を含有する樹脂6の膜厚を均一に調整することが容易になる。   In the light emitting device 20 of FIG. 11, since the light emitting element 2 is placed at the substantially central portion of the bottom surface forming the opening in the cup 10, the light emitting element 2 is embedded in the resin 6 including the phosphor 3. The In order for the light from the light emitting layer 8 to be wavelength-converted by the phosphor 3 without unevenness, the light from the light emitting element has only to pass through the phosphor-containing resin uniformly. That is, the phosphor-containing resin film through which light from the light emitting layer 8 passes may be made uniform. Therefore, the size of the cup 10 and the mounting position of the light emitting element 2 may be determined so that the distance from the periphery of the light emitting element 2 to the wall surface and upper part of the cup 10 is uniform. If it is the light-emitting device 20 of FIG. 11, it will become easy to adjust the film thickness of the resin 6 containing the fluorescent substance 3 uniformly.

(実施例11)
さらに、本発明の実施例11に係る発光装置として、キャップタイプの発光装置30を図12に示す。発光素子2は、約400nmに発光ピーク波長を有する発光素子を使用する。この発光装置30は、実施例10の発光装置20のモールド11の表面に蛍光体3aを分散させた光透過性樹脂からなるキャップ31を被せることにより構成される。
(Example 11)
Furthermore, FIG. 12 shows a cap-type light-emitting device 30 as a light-emitting device according to Example 11 of the present invention. As the light emitting element 2, a light emitting element having an emission peak wavelength at about 400 nm is used. The light emitting device 30 is configured by covering a cap 31 made of a light transmissive resin in which the phosphor 3a is dispersed on the surface of the mold 11 of the light emitting device 20 of the tenth embodiment.

キャップ31は、蛍光体3aを光透過性の樹脂6aに均一に分散させている。この蛍光体3aを含有する樹脂6aを、発光装置30のモールド11の外面の形状に嵌合する形状に成形している。または、所定の型枠内蛍光体を含有する光透過性の樹脂6aを入れた後、発光装置30を該型枠内に押し込み、成型する製造方法も可能である。キャップ31の樹脂6aの具体的材料としては、エポキシ樹脂、ユリア樹脂、シリコーン樹脂等の温度特性、耐候性に優れた透明樹脂、シリカゲル、ガラス、無機バインダー等が用いられる。上記の他、メラミン樹脂、フェノール樹脂等の熱硬化性樹脂を使用することができる。また、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリスチレン等の熱可塑性樹脂、スチレン−ブタジエンブロック共重合体、セグメント化ポリウレタン等の熱可塑性ゴム等も使用することができる。また、蛍光体と共に拡散在、チタン酸バリウム、酸化チタン、酸化アルミニウム等を含有させても良い。また、光安定剤や着色剤を含有させても良い。キャップ31に使用される蛍光体3aは、一種類のみならず複数の蛍光体を混合したものや、層状に積層したものが利用できる。   The cap 31 has the phosphor 3a uniformly dispersed in the light transmissive resin 6a. The resin 6 a containing the phosphor 3 a is molded into a shape that fits into the shape of the outer surface of the mold 11 of the light emitting device 30. Alternatively, a manufacturing method is also possible in which a light-transmitting resin 6a containing a predetermined in-frame phosphor is put, and then the light emitting device 30 is pushed into the mold and molded. As a specific material of the resin 6a of the cap 31, a transparent resin, silica gel, glass, an inorganic binder, etc. excellent in temperature characteristics and weather resistance, such as an epoxy resin, a urea resin, and a silicone resin, are used. In addition to the above, thermosetting resins such as melamine resins and phenol resins can be used. In addition, thermoplastic resins such as polyethylene, polypropylene, polyvinyl chloride, and polystyrene, thermoplastic rubbers such as styrene-butadiene block copolymer, segmented polyurethane, and the like can also be used. Moreover, you may contain diffusion presence, a barium titanate, a titanium oxide, aluminum oxide, etc. with a fluorescent substance. Moreover, you may contain a light stabilizer and a coloring agent. The phosphor 3a used for the cap 31 can be not only one type but also a mixture of a plurality of phosphors or a layered structure.

実施例10の発光装置20では、カップ10内の発光素子2を覆うように、蛍光体3を含有する樹脂6が充填されているが、実施例11の発光装置30では、カップ10内に蛍光体含有樹脂を充填しなくてもよい。これにより発光素子2から発生する熱の影響を蛍光体が直接受けないという利点が得られる。ただし、カップ10内に、一あるいは複数の蛍光体3を含有した樹脂6を充填し、キャップ31内には異なる蛍光体3aを用いても良い。これにより発光素子2から放出される光が、蛍光体3を励起し、青緑色から緑色及び黄色から赤色に発光する。この蛍光体3から放出される光の一部がキャップ31の蛍光体3aを励起し、緑色から黄色系領域に発光する。これら蛍光体の混色光により、キャップ31の表面からは白色系の光が外部へ放出される。カップ10内に充填される樹脂6の材質は、キャップ31内に充填される樹脂6aの材質と異なっても同一でも構わない。   In the light emitting device 20 of Example 10, the resin 6 containing the phosphor 3 is filled so as to cover the light emitting element 2 in the cup 10, but in the light emitting device 30 of Example 11, the cup 10 is fluorescent. It is not necessary to fill the body-containing resin. Thereby, the advantage that the phosphor is not directly affected by the heat generated from the light emitting element 2 is obtained. However, the cup 10 may be filled with the resin 6 containing one or a plurality of phosphors 3, and different phosphors 3 a may be used in the cap 31. Thereby, the light emitted from the light emitting element 2 excites the phosphor 3 and emits light from blue green to green and from yellow to red. A part of the light emitted from the phosphor 3 excites the phosphor 3a of the cap 31, and emits light from green to a yellow region. Due to the mixed color light of these phosphors, white light is emitted from the surface of the cap 31 to the outside. The material of the resin 6 filled in the cup 10 may be different from or the same as the material of the resin 6a filled in the cap 31.

(実施例12)
さらに、本発明の実施例12に係る発光装置として、表面実装タイプの発光装置100を図13に示す。図13(a)は平面図、図13(b)は断面図をそれぞれ示している。発光素子101には、紫外光励起の窒化物半導体発光素子を用いることができる。また、発光素子101は、青色励起の窒化物半導体発光素子を用いても良い。ここでは、紫外光励起の発光素子101を例にとって説明する。発光素子101は、発光層として発光ピーク波長が約370nmのInGaN半導体を有する窒化物半導体発光素子を用いる。発光素子101には、p型半導体層とn型半導体層とが形成されており(図示せず)、p型半導体層とn型半導体層には、リード電極102へ連結される導電性ワイヤ104が形成されている。リード電極102の外周を覆うように絶縁封止材103が形成され、短絡を防止している。発光素子101の上方にはパッケージ105の上部にあるコバール製リッド106から延びる透光性の窓部107が設けられている。透光性の窓部107の内面には、蛍光体3、3a及びコーティング部材109の均一混合物がほぼ全面に塗布されている。
(Example 12)
Furthermore, as a light emitting device according to Example 12 of the present invention, a surface mount type light emitting device 100 is shown in FIG. FIG. 13A is a plan view, and FIG. 13B is a cross-sectional view. As the light-emitting element 101, an ultraviolet-excited nitride semiconductor light-emitting element can be used. The light-emitting element 101 may be a blue-excited nitride semiconductor light-emitting element. Here, the light emitting element 101 excited by ultraviolet light will be described as an example. The light emitting element 101 uses a nitride semiconductor light emitting element having an InGaN semiconductor with an emission peak wavelength of about 370 nm as a light emitting layer. The light-emitting element 101 includes a p-type semiconductor layer and an n-type semiconductor layer (not shown), and the p-type semiconductor layer and the n-type semiconductor layer have a conductive wire 104 connected to the lead electrode 102. Is formed. An insulating sealing material 103 is formed so as to cover the outer periphery of the lead electrode 102 to prevent a short circuit. A light-transmitting window 107 extending from a Kovar lid 106 at the top of the package 105 is provided above the light emitting element 101. On the inner surface of the translucent window 107, a uniform mixture of the phosphors 3, 3a and the coating member 109 is applied to almost the entire surface.

具体的なLEDの発光素子101構造として、サファイア基板上に、アンドープの窒化物半導体であるn型GaN層、Siドープのn型電極が形成されn型コンタクト層となるGaN層、アンドープの窒化物半導体であるn型GaN層、窒化物半導体であるn型AlGaN層、次に発光層を構成するInGaN層の単一量子井戸構造としてある。発光層上にはMgがドープされたp型クラッド層としてAlGaN層、Mgがドープされたp型コンタクト層であるGaN層を順次積層させた構成としてある。(なお、サファイア基板上には低温でGaN層を形成させたバッファ層とさせてある。また、p型半導体は、成膜後400℃以上でアニールさせてある。)エッチングによりサファイア基板上の窒化物半導体に同一面側で、pn各コンタクト層表面を露出させる。露出されたn型コンタクト層の上にn電極を帯状に形成し、切除されずに残ったp型コンタクト層のほぼ全面に、金属薄膜から成る透光性p電極が形成され、さらに透光性p電極の上にはn電極と平行に台座電極がスパッタリング法を用いて形成されている。   As a specific LED light emitting element 101 structure, an n-type GaN layer which is an undoped nitride semiconductor on a sapphire substrate, a GaN layer where an Si-doped n-type electrode is formed to become an n-type contact layer, an undoped nitride The single quantum well structure includes an n-type GaN layer that is a semiconductor, an n-type AlGaN layer that is a nitride semiconductor, and then an InGaN layer that constitutes a light-emitting layer. On the light emitting layer, an AlGaN layer as a p-type cladding layer doped with Mg and a GaN layer as a p-type contact layer doped with Mg are sequentially laminated. (The sapphire substrate is a buffer layer in which a GaN layer is formed at a low temperature. The p-type semiconductor is annealed at 400 ° C. or higher after film formation.) Nitriding on the sapphire substrate by etching The surface of each pn contact layer is exposed on the same side of the physical semiconductor. An n-electrode is formed in a strip shape on the exposed n-type contact layer, and a translucent p-electrode made of a metal thin film is formed on almost the entire surface of the p-type contact layer that remains without being cut. A pedestal electrode is formed on the p-electrode in parallel with the n-electrode using a sputtering method.

次に、ダイボンドされた発光素子101の各電極と、パッケージ凹部底面から露出された各リード電極102とをそれぞれAgワイヤ等の導電性ワイヤ104にて電気的導通を取る。パッケージの凹部内の水分を十分に排除した後、中央部にガラス窓部107を有するコバール製リッド106にて封止しシーム溶接を行う。ガラス窓部には、あらかじめニトロセルロース90wt%とγ−アルミナ10wt%からなるスラリーに対して波長変換部材である酸窒化物系蛍光体3、3aを含有させ、リッド106の透光性窓部107の背面に塗布し、220℃にて30分間加熱硬化させることにより色変換部材を構成してある。こうして形成された発光装置100の発光素子101から出力された光が、蛍光体3、3aを励起し、所望の色を高輝度に発光可能な発光装置とすることができる。これによって色度調整が極めて簡単で量産性、信頼性に優れた発光装置とすることができる。   Next, each electrode of the die-bonded light emitting element 101 and each lead electrode 102 exposed from the bottom of the package recess are electrically connected by a conductive wire 104 such as an Ag wire. After sufficiently removing moisture in the recess of the package, sealing is performed with a Kovar lid 106 having a glass window 107 at the center, and seam welding is performed. The glass window portion contains oxynitride phosphors 3 and 3a which are wavelength conversion members with respect to a slurry made of 90 wt% nitrocellulose and 10 wt% γ-alumina in advance, and the translucent window portion 107 of the lid 106. The color conversion member is configured by applying to the back surface of the film and curing by heating at 220 ° C. for 30 minutes. The light output from the light-emitting element 101 of the light-emitting device 100 thus formed excites the phosphors 3 and 3a, and a light-emitting device capable of emitting a desired color with high luminance can be obtained. As a result, it is possible to obtain a light emitting device that is extremely easy to adjust the chromaticity and has excellent mass productivity and reliability.

本発明の希土類酸窒化物系蛍光体及びそれを用いた発光装置は、蛍光表示管、ディスプレイ、PDP、CRT、FL、FED及び投射管等、特に青色発光ダイオード又は紫外線発光ダイオードを光源とする発光特性に極めて優れた白色の照明用光源、LEDディスプレイ、バックライト光源、信号機、照明式スイッチ、各種センサ及び各種インジケータ等に好適に利用できる。   The rare earth oxynitride phosphor of the present invention and a light-emitting device using the same emit light using a fluorescent display tube, display, PDP, CRT, FL, FED, projection tube, etc., particularly a blue light emitting diode or an ultraviolet light emitting diode as a light source. It can be suitably used for a white illumination light source, an LED display, a backlight light source, a traffic light, an illumination switch, various sensors, various indicators, and the like that have extremely excellent characteristics.

比較例1及び実施例1〜4の希土類酸窒化物系蛍光体を253.7nmで励起したときの発光スペクトルを示す。The emission spectra when the rare earth oxynitride phosphors of Comparative Example 1 and Examples 1 to 4 are excited at 253.7 nm are shown. 比較例1及び実施例1〜4の希土類酸窒化物系蛍光体を365nmで励起したときの発光スペクトルを示す。The emission spectra when the rare earth oxynitride phosphors of Comparative Example 1 and Examples 1 to 4 are excited at 365 nm are shown. 比較例1の希土類酸窒化物系蛍光体を365nmで励起したときの発光スペクトルを示す。The emission spectrum when the rare earth oxynitride phosphor of Comparative Example 1 is excited at 365 nm is shown. 実施例1の希土類酸窒化物系蛍光体を365nmで励起したときの発光スペクトルを示す。The emission spectrum when the rare earth oxynitride phosphor of Example 1 is excited at 365 nm is shown. 実施例2の希土類酸窒化物系蛍光体を365nmで励起したときの発光スペクトルを示す。2 shows an emission spectrum when the rare earth oxynitride phosphor of Example 2 is excited at 365 nm. 実施例3の希土類酸窒化物系蛍光体を365nmで励起したときの発光スペクトルを示す。The emission spectrum when the rare earth oxynitride phosphor of Example 3 is excited at 365 nm is shown. 実施例4の希土類酸窒化物系蛍光体を365nmで励起したときの発光スペクトルを示す。The emission spectrum when the rare earth oxynitride phosphor of Example 4 is excited at 365 nm is shown. 比較例1及び実施例1〜4の希土類酸窒化物系蛍光体を400nmで励起したときの発光スペクトルを示す。The emission spectra when the rare earth oxynitride phosphors of Comparative Example 1 and Examples 1 to 4 are excited at 400 nm are shown. 比較例1の希土類酸窒化物系蛍光体を400nmで励起したときの発光スペクトルを示す。The emission spectrum when the rare earth oxynitride phosphor of Comparative Example 1 is excited at 400 nm is shown. 実施例1の希土類酸窒化物系蛍光体を400nmで励起したときの発光スペクトルを示す。The emission spectrum when the rare earth oxynitride phosphor of Example 1 is excited at 400 nm is shown. 実施例2の希土類酸窒化物系蛍光体を400nmで励起したときの発光スペクトルを示す。2 shows an emission spectrum when the rare earth oxynitride phosphor of Example 2 is excited at 400 nm. 実施例3の希土類酸窒化物系蛍光体を400nmで励起したときの発光スペクトルを示す。2 shows an emission spectrum when the rare earth oxynitride phosphor of Example 3 is excited at 400 nm. 実施例4の希土類酸窒化物系蛍光体を400nmで励起したときの発光スペクトルを示す。2 shows an emission spectrum when the rare earth oxynitride phosphor of Example 4 is excited at 400 nm. 比較例1及び実施例1〜4の希土類酸窒化物系蛍光体の励起スペクトルを示すグラフである。It is a graph which shows the excitation spectrum of the rare earth oxynitride type | system | group fluorescent substance of the comparative example 1 and Examples 1-4. (a)は、実施例1の希土類酸窒化物系蛍光体の1000倍拡大写真であり、(b)は実施例1の希土類酸窒化物系蛍光体の5000倍拡大写真を示す。(A) is a 1000 times magnified photograph of the rare earth oxynitride phosphor of Example 1, and (b) is a 5000 times magnified photograph of the rare earth oxynitride phosphor of Example 1. 実施例5〜8の希土類酸窒化物系蛍光体を253.7nmで励起したときの発光スペクトルを示す。The emission spectrum when the rare earth oxynitride phosphors of Examples 5 to 8 are excited at 253.7 nm is shown. 実施例5の希土類酸窒化物系蛍光体を253.7nmで励起したときの発光スペクトルを示す。The emission spectrum when the rare earth oxynitride phosphor of Example 5 is excited at 253.7 nm is shown. 実施例6の希土類酸窒化物系蛍光体を253.7nmで励起したときの発光スペクトルを示す。The emission spectrum when the rare earth oxynitride phosphor of Example 6 is excited at 253.7 nm is shown. 実施例7の希土類酸窒化物系蛍光体を253.7nmで励起したときの発光スペクトルを示す。The emission spectrum when the rare earth oxynitride phosphor of Example 7 is excited at 253.7 nm is shown. 実施例8の希土類酸窒化物系蛍光体を253.7nmで励起したときの発光スペクトルを示す。The emission spectrum when the rare earth oxynitride phosphor of Example 8 is excited at 253.7 nm is shown. 実施例5〜8の希土類酸窒化物系蛍光体を365nmで励起したときの発光スペクトルを示す。The emission spectrum when the rare earth oxynitride phosphors of Examples 5 to 8 are excited at 365 nm is shown. 実施例5の希土類酸窒化物系蛍光体を365nmで励起したときの発光スペクトルを示す。The emission spectrum when the rare earth oxynitride phosphor of Example 5 is excited at 365 nm is shown. 実施例6の希土類酸窒化物系蛍光体を365nmで励起したときの発光スペクトルを示す。The emission spectrum when the rare earth oxynitride phosphor of Example 6 is excited at 365 nm is shown. 実施例7の希土類酸窒化物系蛍光体を365nmで励起したときの発光スペクトルを示す。The emission spectrum when the rare earth oxynitride phosphor of Example 7 is excited at 365 nm is shown. 実施例8の希土類酸窒化物系蛍光体を365nmで励起したときの発光スペクトルを示す。The emission spectrum when the rare earth oxynitride phosphor of Example 8 is excited at 365 nm is shown. 実施例5〜8の希土類酸窒化物系蛍光体を400nmで励起したときの発光スペクトルを示す。The emission spectrum when the rare earth oxynitride phosphors of Examples 5 to 8 are excited at 400 nm is shown. 実施例5の希土類酸窒化物系蛍光体を400nmで励起したときの発光スペクトルを示す。The emission spectrum when the rare earth oxynitride phosphor of Example 5 is excited at 400 nm is shown. 実施例6の希土類酸窒化物系蛍光体を400nmで励起したときの発光スペクトルを示す。The emission spectrum when the rare earth oxynitride phosphor of Example 6 is excited at 400 nm is shown. 実施例7の希土類酸窒化物系蛍光体を400nmで励起したときの発光スペクトルを示す。The emission spectrum when the rare earth oxynitride phosphor of Example 7 is excited at 400 nm is shown. 実施例8の希土類酸窒化物系蛍光体を400nmで励起したときの発光スペクトルを示す。The emission spectrum when the rare earth oxynitride phosphor of Example 8 is excited at 400 nm is shown. 実施例5〜8の希土類酸窒化物系蛍光体の励起スペクトルを示す。The excitation spectrum of the rare earth oxynitride type | system | group fluorescent substance of Examples 5-8 is shown. 実施例5の希土類酸窒化物系蛍光体の励起スペクトルを示す。The excitation spectrum of the rare earth oxynitride phosphor of Example 5 is shown. 実施例6の希土類酸窒化物系蛍光体の励起スペクトルを示す。The excitation spectrum of the rare earth oxynitride phosphor of Example 6 is shown. 実施例7の希土類酸窒化物系蛍光体の励起スペクトルを示す。The excitation spectrum of the rare earth oxynitride phosphor of Example 7 is shown. 実施例8の希土類酸窒化物系蛍光体の励起スペクトルを示す。The excitation spectrum of the rare earth oxynitride phosphor of Example 8 is shown. 本発明の実施例9に係る砲弾型の発光装置を示す断面図である。It is sectional drawing which shows the bullet-type light-emitting device based on Example 9 of this invention. 本発明の実施例10に係る砲弾型の発光装置を示す断面図である。It is sectional drawing which shows the bullet-type light-emitting device based on Example 10 of this invention. 本発明の実施例11に係る砲弾型の発光装置を示す断面図である。It is sectional drawing which shows the bullet-type light-emitting device based on Example 11 of this invention. (a)は、実施例12に係る表面実装型の発光装置を示す平面図であり、(b)は、(a)の発光装置を示す断面図である。(A) is a top view which shows the surface mount type light-emitting device based on Example 12, (b) is sectional drawing which shows the light-emitting device of (a).

符号の説明Explanation of symbols

1…発光装置
2…発光素子
3…希土類酸窒化物系蛍光体
3a…蛍光体
4…リードフレーム
4a…リードフレーム電極
5…ボンディングワイヤ
6、6a、6b…樹脂
8…発光層
9…電極
10…カップ
11…モールド
20…発光装置
30…発光装置
31…キャップ
100…発光装置
101…発光素子
102…リード電極
103…絶縁封止材
104…導電性ワイヤ
105…パッケージ
106…コバール製リッド
107…透光性窓部(ガラス窓部)
109…コーティング部材
DESCRIPTION OF SYMBOLS 1 ... Light-emitting device 2 ... Light-emitting element 3 ... Rare earth oxynitride type phosphor 3a ... Phosphor 4 ... Lead frame 4a ... Lead frame electrode 5 ... Bonding wire 6, 6a, 6b ... Resin 8 ... Light emitting layer 9 ... Electrode 10 ... Cup 11 ... Mold 20 ... Light emitting device 30 ... Light emitting device 31 ... Cap 100 ... Light emitting device 101 ... Light emitting element 102 ... Lead electrode 103 ... Insulating encapsulant 104 ... Conductive wire 105 ... Package 106 ... Kovar lid 107 ... Translucent Sex window (glass window)
109 ... Coating member

Claims (6)

一般式がY4Si272:Ce,Tbで示され、
セリウム及びテルビウムで共付活され、紫外線ないし青色光を吸収して緑色に発光することを特徴とする希土類酸窒化物系蛍光体。
The general formula is Y 4 Si 2 O 7 N 2 : Ce, Tb,
A rare earth oxynitride phosphor that is co-activated with cerium and terbium and absorbs ultraviolet or blue light to emit green light.
請求項に記載の希土類酸窒化物系蛍光体であって、
460nm以下に発光ピーク波長を有する励起光源からの励起光により励起され、
530nm〜570nmの波長の範囲にピーク波長を持つ蛍光を発することを特徴とする希土類酸窒化物系蛍光体。
The rare earth oxynitride phosphor according to claim 1 ,
Excited by excitation light from an excitation light source having an emission peak wavelength of 460 nm or less,
A rare earth oxynitride phosphor which emits fluorescence having a peak wavelength in a wavelength range of 530 nm to 570 nm.
一般式がY4Si2-mAlm7+m2-m:Ce,Tbで示され、
mの範囲は、0<m≦0.2であり、
セリウム及びテルビウムで共付活され、紫外線ないし青色光を吸収して緑色に発光することを特徴とする希土類酸窒化物系蛍光体。
The general formula is Y 4 Si 2-m Al m O 7 + m N 2-m : Ce, Tb,
The range of m is 0 <m ≦ 0.2,
A rare earth oxynitride phosphor that is co-activated with cerium and terbium and absorbs ultraviolet or blue light to emit green light.
請求項に記載の希土類酸窒化物系蛍光体であって、
460nm以下に発光ピーク波長を有する励起光源からの励起光により励起され、
530nm〜570nmの波長の範囲にピーク波長を持つ蛍光を発することを特徴とする希土類酸窒化物系蛍光体。
The rare earth oxynitride phosphor according to claim 3 ,
Excited by excitation light from an excitation light source having an emission peak wavelength of 460 nm or less,
A rare earth oxynitride phosphor which emits fluorescence having a peak wavelength in a wavelength range of 530 nm to 570 nm.
請求項1からのいずれか一に記載の希土類酸窒化物系蛍光体であって、
蛍光体の平均粒径が2μm以上であって20μm以下であることを特徴とする希土類酸窒化物系蛍光体。
The rare earth oxynitride phosphor according to any one of claims 1 to 4 ,
A rare earth oxynitride phosphor, wherein the phosphor has an average particle size of 2 μm or more and 20 μm or less.
460nm以下の波長を発する第1の発光スペクトルを有する励起光源と、
第1の発光スペクトルの少なくとも一部を吸収して、第2の発光スペクトルを発光する1種又は2種以上の波長変換部材と、
を有する発光装置であって、
前記波長変換部材は、請求項1から5のいずれか一に記載の希土類酸窒化物系蛍光体を有することを特徴とする発光装置。
An excitation light source having a first emission spectrum emitting a wavelength of 460 nm or less;
One or more wavelength conversion members that absorb at least a portion of the first emission spectrum and emit the second emission spectrum;
A light emitting device comprising:
The light emitting device, wherein the wavelength conversion member includes the rare earth oxynitride phosphor according to any one of claims 1 to 5 .
JP2006246811A 2006-09-12 2006-09-12 Rare earth oxynitride phosphor and light emitting device using the same Expired - Fee Related JP5125039B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006246811A JP5125039B2 (en) 2006-09-12 2006-09-12 Rare earth oxynitride phosphor and light emitting device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006246811A JP5125039B2 (en) 2006-09-12 2006-09-12 Rare earth oxynitride phosphor and light emitting device using the same

Publications (2)

Publication Number Publication Date
JP2008069198A JP2008069198A (en) 2008-03-27
JP5125039B2 true JP5125039B2 (en) 2013-01-23

Family

ID=39291079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006246811A Expired - Fee Related JP5125039B2 (en) 2006-09-12 2006-09-12 Rare earth oxynitride phosphor and light emitting device using the same

Country Status (1)

Country Link
JP (1) JP5125039B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4413955B2 (en) 2007-07-19 2010-02-10 株式会社東芝 Phosphor and light emitting device
JP2012057070A (en) * 2010-09-09 2012-03-22 Denki Kagaku Kogyo Kk METHOD FOR PRODUCING Eu-DOPED β-TYPE SIALON
JP5370321B2 (en) * 2010-09-17 2013-12-18 豊田合成株式会社 Phosphor and light emitting device
US9840666B2 (en) 2013-09-30 2017-12-12 Panasonic Intellectual Property Management Co., Ltd. Phosphor having inorganic oxide with cerium and terbium activators, light-emitting device illumination light source, and illumination device using same
JP6187342B2 (en) * 2014-03-20 2017-08-30 宇部興産株式会社 Oxynitride phosphor powder and method for producing the same
WO2018193838A1 (en) * 2017-04-18 2018-10-25 Ntn株式会社 Ceramic composition for scintillator, scintillator and radiation detection device, and method for manufacturing scintillator
WO2018235495A1 (en) * 2017-06-19 2018-12-27 Ntn株式会社 Storage phosphor, method for manufacturing storage phosphor, radiation detection element, personal dosimeter, and imaging plate

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8501599A (en) * 1985-06-04 1987-01-02 Philips Nv LUMINESCENT SCREEN AND LOW-PRESSURE MERCURY DISCHARGE LAMP FITTED WITH SUCH A SCREEN.
KR101102304B1 (en) * 2003-08-22 2012-01-03 도쿠리츠교세이호징 붓시쯔 자이료 겐큐키코 Oxynitride phosphor and light-emitting instrument

Also Published As

Publication number Publication date
JP2008069198A (en) 2008-03-27

Similar Documents

Publication Publication Date Title
JP5446066B2 (en) Nitride phosphor and light emitting device using the same
JP5190475B2 (en) Phosphor and light emitting device using the same
JP5361886B2 (en) Thermally stable oxynitride phosphor and light source having such a phosphor
JP4892193B2 (en) Phosphor mixture and light emitting device
JP5188687B2 (en) Phosphor, manufacturing method thereof, and light emitting device
JP6200891B2 (en) Phosphor materials and related devices
JP5511820B2 (en) Alpha-sialon phosphor
US20060208270A1 (en) Borate phosphor materials for use in lighting applications
JP4892861B2 (en) Nitride phosphor and light emitting device using the same
WO2007004493A1 (en) Fluorophor and method for production thereof and illuminator
JP2005340748A (en) Light emitting device
JP5412710B2 (en) Nitride-based phosphor or oxynitride-based phosphor
WO2004056940A1 (en) Phosphor and optical device using same
JP5125039B2 (en) Rare earth oxynitride phosphor and light emitting device using the same
JP2009094231A (en) Light-emitting device
JP2008095091A (en) Fluorescent substance and its production method, fluorescent substance containing composition, light emitting device, image display device, and illuminating device
JP5194672B2 (en) Carbonitride phosphor, light-emitting device using the same, and method for producing carbonitride phosphor
JP2008074890A (en) Light-emitting module
JP2014194019A (en) Lighting system
JP5402008B2 (en) Phosphor production method, phosphor, and light emitting device using the same
CN107636113A (en) Fluorophor and its manufacture method and LED
JP5590092B2 (en) Phosphor, phosphor-containing composition, light emitting device, image display device and lighting device
JP5194395B2 (en) Oxynitride phosphor and light-emitting device using the same
KR101176212B1 (en) Alkali-earth Phosporus Nitride system phosphor, manufacturing method thereof and light emitting devices using the same
JP2011506655A5 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090731

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121015

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5125039

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees