WO2018235495A1 - Storage phosphor, method for manufacturing storage phosphor, radiation detection element, personal dosimeter, and imaging plate - Google Patents

Storage phosphor, method for manufacturing storage phosphor, radiation detection element, personal dosimeter, and imaging plate Download PDF

Info

Publication number
WO2018235495A1
WO2018235495A1 PCT/JP2018/019619 JP2018019619W WO2018235495A1 WO 2018235495 A1 WO2018235495 A1 WO 2018235495A1 JP 2018019619 W JP2018019619 W JP 2018019619W WO 2018235495 A1 WO2018235495 A1 WO 2018235495A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage phosphor
lanthanoid
mass
parts
mixture
Prior art date
Application number
PCT/JP2018/019619
Other languages
French (fr)
Japanese (ja)
Inventor
康武 早川
大平 晃也
健之 柳田
範明 河口
豪 岡田
智久 大矢
Original Assignee
Ntn株式会社
国立大学法人 奈良先端科学技術大学院大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017197639A external-priority patent/JP2019001982A/en
Application filed by Ntn株式会社, 国立大学法人 奈良先端科学技術大学院大学 filed Critical Ntn株式会社
Publication of WO2018235495A1 publication Critical patent/WO2018235495A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/59Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing silicon
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/02Dosimeters
    • G01T1/10Luminescent dosimeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/02Dosimeters
    • G01T1/10Luminescent dosimeters
    • G01T1/11Thermo-luminescent dosimeters
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K4/00Conversion screens for the conversion of the spatial distribution of X-rays or particle radiation into visible images, e.g. fluoroscopic screens

Definitions

  • the present invention relates to a storage phosphor, a method of manufacturing the storage phosphor, a radiation detection element including the storage phosphor, an individual exposure dose meter including the storage phosphor, and an imaging plate including the storage phosphor.
  • Storage phosphors are widely used in radiation detection elements.
  • the radiation detection element in the present invention represents an object having a function of detecting radiation.
  • Radiation detection elements using storage phosphors have a wide range of application fields such as medicine, security and radiation protection.
  • Personal exposure dosimeters in the field of radiation protection, imaging plates in medical image diagnosis, radiation environment monitoring, etc. are examples of radiation detection elements using typical storage phosphors.
  • LiF Mg
  • Ti mounted on thermoluminescent (TL) dosimeter
  • Al 2 O 3 C mounted on photostimulated luminescence (OSL) dosimeter
  • RPL radio photoluminescence
  • Non-Patent Document 1 describes that an alkaline earth metal halide based phosphor BaBrCl: Eu 2+ can be suitably used as a storage phosphor in medical imaging.
  • Non-Patent Document 2 describes that Al 2 O 3 : C, which is an inorganic phosphor, can be suitably used as a storage phosphor in a personal exposure dose meter.
  • many of these existing storage phosphors do not have sufficient mechanical properties, and enrichment of storage phosphors with good mechanical properties is desired.
  • An object of the present invention is to provide a novel storage phosphor having good mechanical properties, which comprises a sintered body containing a lanthanoid element and silicon nitride, and a method for producing the storage phosphor, Contribute to the enrichment of options.
  • Another object of the present invention is to provide a radiation detection element including the storage phosphor, an individual exposure dosimeter including the storage phosphor, and an imaging plate including the storage phosphor.
  • the present invention provides a storage phosphor as described below, and a radiation detection element using the storage phosphor, in particular, a personal exposure dosimeter and an imaging plate.
  • a storage phosphor comprising a sintered body containing a lanthanoid element and silicon nitride.
  • the lanthanoid element is at least one selected from the group consisting of dysprosium, ytterbium, cerium, europium, thulium, terbium, neodymium, praseodymium, samarium, holmium and erbium body.
  • the content of the lanthanoid compound contained in the mixture is at least one selected from the group: 0.1 parts by mass relative to 100 parts by mass of the total amount of the lanthanoid compound and the silicon nitride contained in the mixture.
  • a method of producing a storage phosphor which is 5 to 15 parts by mass.
  • the lanthanoid compound is Dy 2 O 3 , The content of the lanthanoid compound contained in the mixture is 0.5 to 10 parts by mass with respect to 100 parts by mass of the total amount of the lanthanoid compound and the silicon nitride contained in the mixture.
  • the lanthanoid compound is Yb 2 O 3 , The content of the lanthanoid compound contained in the mixture is 0.5 to 10 parts by mass with respect to 100 parts by mass of the total amount of the lanthanoid compound and the silicon nitride contained in the mixture.
  • the lanthanoid compound is CeO 2
  • the content of the lanthanoid compound contained in the mixture is 0.5 to 10 parts by mass with respect to 100 parts by mass of the total amount of the lanthanoid compound and the silicon nitride contained in the mixture.
  • the lanthanoid compound is Eu 2 O 3
  • the content of the lanthanoid compound contained in the mixture is 0.5 to 10 parts by mass with respect to 100 parts by mass of the total amount of the lanthanoid compound and the silicon nitride contained in the mixture.
  • the lanthanoid compound is Tm 2 O 3
  • the content of the lanthanoid compound contained in the mixture is 0.5 to 10 parts by mass with respect to 100 parts by mass of the total amount of the lanthanoid compound and the silicon nitride contained in the mixture.
  • fills either.
  • a personal exposure dosimeter comprising the storage phosphor according to any one of [1] to [3].
  • a novel storage phosphor having good mechanical properties which comprises a sintered body containing a lanthanoid element and silicon nitride, and a method of manufacturing the storage phosphor, and the storage phosphor of choice It can contribute to enrichment. Further, it is possible to provide a radiation detecting element including the storage phosphor, an individual exposure dosimeter including the storage phosphor, and an imaging plate including the storage phosphor.
  • FIG. 82 It is a schematic diagram which shows the sintering method of the molded object in Experimental example 82 and 83.
  • FIG. 82 It is a schematic diagram which shows the sintering method of the molded object in Experimental example 82 and 83.
  • Storage phosphor refers to a material that stores energy of irradiated radiation and then emits light at an intensity according to the irradiation amount.
  • lanthanoid element is generally a generic name of atomic number 57 to 71, that is, 15 elements from lanthanum (La) to lutetium (Lu), but in the present specification, an atom having no stable isotope A generic term of 14 elements excluding the 61 promethium (Pm) element is meant.
  • Good sinterability refers to the property that a compact sintered body is easily produced even at a lower sintering temperature, or the property that a denser sintered body is easily produced even at the same sintering temperature.
  • the "radiation detection element” is an object having a function of detecting radiation.
  • Examples of radiation detection elements using storage phosphors include, for example, “individual dose meter” and “imaging plate”.
  • the storage phosphor has the property of storing energy of irradiated radiation, and the detection unit operates with no power supply, and thus is suitable for these radiation detection elements.
  • the “individual dose dosimeter” is, for example, an element for portable use of a radiation worker in a nuclear power plant or the like to measure the amount of radiation irradiated at the time of carrying.
  • the “imaging plate” is a type of radiation image detector, and may be, for example, a form in which a storage phosphor is applied on a support plate such as plastic.
  • Ceramics refers to a sintered product of an inorganic compound or a sintered product of a molded product of an inorganic compound.
  • the storage phosphor is made of a sintered body containing a lanthanoid element and silicon nitride.
  • a lanthanoid element and silicon nitride and other components (impurities) that may be optionally contained will be described.
  • the lanthanoid element plays a role as an activator.
  • the storage phosphor may contain only one type of lanthanoid element, or may contain two or more types. When the storage fluorescent substance contains a lanthanoid element, the storage fluorescent substance can emit fluorescence that accompanies the electron orbital transition of the lanthanoid element ion due to the radiation irradiation.
  • the lanthanoid element is preferably at least one selected from the above 14 elements. That is, the storage phosphor according to the present invention includes lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb) At least one member selected from the group consisting of dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), and lutetium (Lu), silicon nitride and silicon nitride; And a silicon nitride, which is at least one selected from the group consisting of Dy, Yb, Ce, Eu, Tm, Tb, Nd, Pr, Sm, Ho and Er, and silicon nitride. It is more preferable to consist of a sintered body containing and.
  • the lanthanoid element can be contained in the storage phosphor as, for example, a metal lanthanoid or a lanthanoid compound such as a lanthanoid oxide.
  • the storage phosphor preferably contains a lanthanoid compound having a lanthanoid element. That is, the storage phosphor according to the present invention is preferably a storage phosphor made of a sintered body containing a lanthanoid compound having a lanthanoid element and silicon nitride.
  • Silicon nitride (Silicon nitride) Silicon nitride (Si 3 N 4 ) is widely applied to bearings, turbine blades, and cutting tools, and has high mechanical properties and thermal shock resistance. Silicon nitride is usually contained in the storage phosphor as a sintered body (silicon nitride ceramic). Therefore, when the storage phosphor contains silicon nitride, a storage phosphor having excellent mechanical properties and thermal shock resistance can be obtained. In addition, silicon nitride is preferable also from the viewpoint of resources because it does not contain a rare element. (Other ingredients that may optionally be included) The storage phosphor may further contain other components (impurities) other than the lanthanoid element and silicon nitride.
  • the unavoidable impurities and the additives may include impurity elements such as oxygen (O), carbon (C), aluminum (Al), magnesium (Mg) and the like.
  • the additive examples include a sintering aid for obtaining a storage phosphor having good sinterability.
  • the storage phosphor can comprise one or more sintering aids.
  • the sintering aid Al 2 O 3, MgO, known sintering aid such as Y 2 O 3 and the like.
  • the method of manufacturing a storage phosphor according to the present disclosure includes the following steps (1) to (3). Hereinafter, steps (1) to (3) will be described.
  • first step (1) a step of mixing a lanthanoid compound having a lanthanoid element and silicon nitride to obtain a mixture containing the lanthanoid compound and silicon nitride (first step); (2) a step of forming the mixture obtained in the above step to obtain a formed body of the mixture (second step); (3) A step (third step) of sintering the compact obtained in the above step to obtain a sintered body (storage phosphor) of the compact.
  • This step is a step of obtaining a mixture containing a lanthanoid compound and silicon nitride by mixing a lanthanoid compound having a lanthanoid element and silicon nitride.
  • the mixture containing a lanthanoid compound and silicon nitride may be in the form of powder (hereinafter, a powdery mixture containing a lanthanoid compound and silicon nitride is also referred to as “raw material powder”).
  • the lanthanoid element is at least one selected from the group consisting of Dy, Yb, Ce, Eu, Tm, Tb, Nd, Pr, Sm, Ho and Er.
  • the content of the lanthanoid compound contained in the above mixture is 0.5 to 15 parts by mass with respect to 100 parts by mass of the total amount of the lanthanoid compound and silicon nitride contained in the above mixture.
  • the content of the lanthanoid compound contained in the above mixture is less than 0.5 parts by mass with respect to 100 parts by mass of the total amount of the lanthanoid compound and silicon nitride contained in the above mixture, the manufactured storage phosphor is It may not be possible to obtain sufficient intensity of light emission.
  • the mechanical of the manufactured storage phosphor It tends to lack strength. If the mechanical strength of the storage phosphor decreases, more rare raw materials will be used, which may lead to an increase in manufacturing cost.
  • the lanthanoid compound is a lanthanoid oxide
  • a lanthanide compound Dy 2 O 3 the content of the lanthanoid compounds contained in the mixture (Dy 2 O 3) is a lanthanoid compound contained in the mixture and (Dy 2 O 3) and silicon nitride And 0.5 to 10 parts by mass (more preferably 1 to 5 parts by mass) with respect to 100 parts by mass of the total amount of
  • the content of the lanthanoid compounds contained in the mixture (Yb 2 O 3) is a lanthanoid compound contained in the mixture and (Yb 2 O 3) and silicon nitride
  • (3) lanthanide compound is CeO 2, the content of the lanthanoid compounds (CeO 2) contained in the mixture, lanthanoid compounds contained in the mixture (CeO 2) and a total amount of 100 parts by mass of the silicon nitride Relative to 0.5 to 10 parts by mass (more preferably 1 to 5 parts by mass).
  • the content of the lanthanoid compounds contained in the mixture (Eu 2 O 3) is a lanthanoid compound contained in the mixture and (Eu 2 O 3) and silicon nitride And 0.5 to 10 parts by mass (more preferably 1 to 5 parts by mass) with respect to 100 parts by mass of the total amount of
  • a lanthanide compound Tm 2 O 3 the content of the lanthanoid compound in included in the mixture (Tm 2 O 3) is a lanthanoid compound contained in the mixture (Tm 2 O 3) and silicon nitride And 0.5 to 10 parts by mass (more preferably 1 to 5 parts by mass) with respect to 100 parts by mass in total.
  • the lanthanoid compound is any of Dy 2 O 3 , Yb 2 O 3 , CeO 2 , Eu 2 O 3 , and Tm 2 O 3 in the method for producing a storage phosphor according to the present invention
  • the lanthanoid compound and The content of the lanthanoid compound in the mixture obtained in the step of obtaining a mixture by mixing it with silicon nitride (the first step) is 100 parts by mass of the total amount of the lanthanoid compound and silicon nitride contained in the mixture.
  • the amount is preferably 0.5 to 10 parts by mass.
  • the raw material powder may further contain other components (impurities) other than the lanthanoid compound and silicon nitride.
  • Other components include unavoidable impurities which are unintentionally contained in the production process, and additives which are intentionally added.
  • the unavoidable impurities and the additives may include impurity elements such as oxygen (O), carbon (C), aluminum (Al), magnesium (Mg) and the like. From the viewpoint of obtaining a storage phosphor having good sinterability, the content of the impurity element is 20 parts by mass or less with respect to 100 parts by mass in total of the lanthanoid compound and silicon nitride contained in the raw material powder. Is preferred.
  • the content of the impurity element is more preferably 10 parts by mass or less, still more preferably 5 parts by mass or less, based on 100 parts by mass of the total amount of the lanthanoid compound and silicon nitride contained in the raw material powder. .
  • the additive examples include a sintering aid for obtaining a storage phosphor having good sinterability.
  • the storage phosphor can comprise one or more sintering aids.
  • the sintering aid Al 2 O 3, MgO, known sintering aid such as Y 2 O 3 and the like.
  • the addition amount of the sintering aid is not particularly limited, it is preferable that the addition amount be such that the emission intensity at the time of radiation excitation is not significantly reduced.
  • the addition amount of the sintering aid to the raw material powder is preferably 20 parts by mass or less and 10 parts by mass or less based on 100 parts by mass of the total amount of the lanthanoid compound and silicon nitride contained in the raw material powder. Is more preferable, and 5 parts by mass or less is even more preferable. Thereby, a storage phosphor having good sinterability can be obtained without reducing the performance as a storage phosphor.
  • the particle size and particle shape of the raw material powder may be adjusted.
  • the adjustment method may, for example, be crushing or granulation.
  • the particle size of primary particles of the raw material powder can be reduced to the micrometer order or less by grinding.
  • the shape of secondary particles of the raw material powder can be changed from a shape with many corners to a rounded shape, or the particle diameter of the secondary particles can be made to a size of about 50 to 150 ⁇ m.
  • the fine particle which can observe the clear boundary which can be identified by fine structure observation is called a primary particle, and the aggregate of a primary particle is called a secondary particle.
  • the grinding method and the granulation method may be any method.
  • the grinding method include methods using mortar grinding, a ball mill, a stamp mill, a jet mill and the like. Further, in order to realize high control of particle diameter and particle shape, it may be crushed and granulated in multiple stages by using a plurality of crushing methods and granulation methods in combination.
  • the raw material powder may be ground and granulated, but in order to reduce the manufacturing cost, it is preferable to grind and granulate in the state of a mixed powder in which a plurality of raw material powders are mixed. By the above method, a mixture of a lanthanoid compound and silicon nitride can be obtained.
  • This process is a process of shape
  • the molded body may be obtained, for example, by press-forming (pressure-forming) the raw material pulverized in the first step using a mechanical press, a hydraulic press, a hydraulic press, a cold isostatic press (CIP) or the like. It can. If necessary, for example, two or more types of pressing methods may be used in combination, such as hydraulic pressing after mechanical pressing.
  • the molding method is not limited to press molding, and a general molding method such as injection molding or tape molding may be used.
  • the pressing conditions in the press molding are not particularly limited, but in the case of mechanical press molding using a mold, for example, it can be performed under the conditions of about 150 to 200 kgf / cm 2 . In the case of CIP, for example, it can be carried out under the conditions of 1000 to 2000 kgf / cm 2 .
  • a molded object can be obtained by the above method.
  • An organic binder may be added to the raw material powder in order to enhance the moldability of the molded body.
  • the pre-sintering step is a step of densifying the molded body while burning away the organic binder, and may be a heat treatment step at a temperature of 400 to 600 ° C., for example.
  • This step is a step of sintering the molded body obtained in the second step.
  • the sintering method may be any sintering method such as pressureless sintering, gas pressure sintering, hot press sintering, hot isostatic pressing sintering, pulse current pressure sintering and the like.
  • the sintering atmosphere is preferably an inert gas atmosphere such as nitrogen or argon from the viewpoint of preventing the oxidation of silicon contained in silicon nitride.
  • the sintering conditions are preferably set appropriately in accordance with the composition of the molded body and the sintering apparatus used.
  • the sintering temperature is preferably set to a temperature of about 70% of the melting point of the compact.
  • the sintering method is preferably gas pressure sintering under an inert gas atmosphere such as nitrogen.
  • the conditions for gas pressure sintering are preferably set appropriately in accordance with the composition of the compact and the sintering apparatus used.
  • the conditions for gas pressure sintering are, for example, a sintering temperature of 1700 to 1800 ° C. and a sintering time of 0.5 to 2 hours in a nitrogen atmosphere of 50 to 300 MPa.
  • the sintering method is preferably pressureless sintering.
  • the conditions for pressureless sintering are preferably set appropriately in accordance with the composition of the compact and the sintering apparatus used.
  • the conditions for normal pressure sintering are, for example, a sintering temperature of 1700 to 1800 ° C., and a sintering time of 1 to 10 hours (for example, about 6 hours) in a nitrogen atmosphere of 0.2 to 5 MPa (for example, 0.8 MPa).
  • the ceramic may be surrounded by ceramics at the time of sintering. This can further improve the scintillator performance of the obtained scintillator.
  • nitride ceramics are mentioned.
  • nitride ceramics include silicon nitride ceramics (Si 3 N 4 ), aluminum nitride ceramics (AlN), boron nitride ceramics (BN), titanium nitride ceramics (TiN), and the like.
  • boron nitride ceramics (BN) are preferably used from the viewpoint of improving the scintillator performance.
  • the ceramic member surrounding the periphery of the formed body may be disposed such that a space is formed between the formed body and the ceramic member. It may be in a state of being arranged to be in contact with the entire outer surface of the molded body, or may be in a state of being arranged to be in contact with only the outer surface of a part of the molded body.
  • Processing may be performed on the sintered body (ie, storage phosphor) obtained by sintering.
  • Examples of the processing include cutting processing and shape adjustment processing such as polishing processing.
  • a storage phosphor made of a sintered body containing a lanthanoid element and silicon nitride can be manufactured.
  • the amount of fluorescence changes in accordance with the amount of irradiated radiation, so the amount of emitted radiation can be detected by measuring the amount of fluorescence.
  • the principles of fluorescence include, for example, TL, OSL, and RPL.
  • the storage phosphor according to the present invention can be suitably used, for example, in the radiation detection elements shown below, and in particular, in personal dosimeters and imaging plates.
  • the storage phosphor according to the present invention may be included in a radiation detection element.
  • the storage phosphor according to the present invention has a radiation detection ability and can be suitably used in a radiation detection element using any conventionally known technique.
  • the radiation detection elements it can be particularly suitably used for an individual dose meter and an imaging plate.
  • the storage phosphor according to the present invention may be included in an individual dose meter.
  • Known techniques associated with personal exposure dosimeters that include storage phosphors include, for example, filter techniques.
  • the filter technology uses a personal exposure dosimeter with an open window without a filter, a window with one or more plastic filters, a window with one or more sheet metal filters with a storage phosphor. In this method, the energy of radiation irradiated to the storage phosphor is changed, and energy information of the irradiated radiation is obtained by comparing the respective measurement results.
  • the storage phosphor according to the present invention can be suitably used, for example, in an individual dose meter using such a known technique.
  • the storage phosphor according to the present invention may be included in an imaging plate.
  • the configuration of the imaging plate may be a conventionally known configuration including, for example, a storage phosphor layer formed on a flat plastic substrate, and a transparent protective layer for preventing dirt and scratches on the surface of the storage phosphor. .
  • the imaging plate having such a configuration can reduce physical impact by the flexibility of the plastic substrate, and can prevent stains and scratches while taking out light emission by the transparent protective layer.
  • the storage phosphor according to the present invention can be suitably used, for example, in an imaging plate using such a conventionally known known technique.
  • Each lanthanoid compound and Si 3 N 4 were mixed to obtain a powdery mixture (raw material powder).
  • the content of the lanthanoid compound contained in the raw material powder is 0.01 parts by mass, 0.5 parts by mass, and 1 part by mass with respect to 100 parts by mass of the total amount of the lanthanoid compound and Si 3 N 4 contained in the raw material powder. Parts, 5 parts by mass, 10 parts by mass, 15 parts by mass, or 20 parts by mass.
  • To each raw material powder add silicon nitride balls with a particle size of 10 mm so that the volume is the same as that of the raw material powder, and add ethanol as a whole to a volume of about 1.5 times that of the raw material powder. Mixed time.
  • each obtained slurry After drying each obtained slurry with an evaporator, it ground using a mortar and a pestle. Thereafter, the crushed raw materials were obtained by classifying through a sieve of 425 ⁇ m mesh. Subsequently, each of the crushed raw materials was press-molded under the condition of 200 kgf / cm 2 to obtain a molded body having a cylindrical shape (diameter 10 mm ⁇ height 4 mm). The obtained compact was sintered at atmospheric pressure under the conditions of 0.9 MPa and 1725 ° C. for 4 hours in a nitrogen atmosphere to obtain storage phosphors (sintered bodies) according to Experimental Examples 1 to 77. Further, as shown in FIG.
  • the differences between the experimental examples are the type of lanthanoid compound contained in the raw material powder and the content of the lanthanoid compound contained in the raw material powder.
  • Type of lanthanoid compound contained in raw material powder and content of lanthanoid compound contained in raw material powder relative to 100 parts by mass in total of lanthanoid compound and silicon nitride contained in raw material powder in each experimental example (parts by mass) Is as shown in Table 1.
  • Experimental Examples 78 to 81 The content of Al 2 O 3 as a sintering aid is 5 parts by mass (Experimental Example 78) and 10 parts by mass (Experimental Example) with respect to 100 parts by mass of the total amount of the lanthanoid compound and silicon nitride contained in the raw material powder. 79), 20 parts by mass (Example 80) and 25 parts by mass (Example 81), except that Al 2 O 3 was further added to the raw material powder, under the same conditions as in Example 2. Storage phosphors were produced, and storage phosphors according to Experimental Examples 78 to 81 were obtained.
  • the tube voltage is 40 kV
  • the tube current is 5.2 mA
  • an amount of air absorbed dose equivalent to 1 Gy (gray) is stored The phosphor was irradiated.
  • strength was measured, raising temperature, using the thermoluminescent measuring apparatus (made by nanoGray, TL-2000).
  • the applied temperature range when measuring the TL intensity was 50 ° C. to 490 ° C., and the temperature rise rate was 1 ° C./sec, and a graph (glow curve) was measured according to the applied temperature and the emission intensity.
  • the horizontal axis represents the applied temperature (° C.)
  • the vertical axis represents the charge (nC).
  • the unit of the vertical axis, nC represents nanocoulombs, which means 10 minus 9 coulombs.
  • One coulomb is a charge (electric quantity) carried by a current of one ampere per second, and depends on a current value measured by a photomultiplier which is a light receiver of the present measuring apparatus.
  • This current value also increases in accordance with the amount of background noise in addition to the thermal fluorescence (TL) intensity of the storage phosphor, so from the obtained measurement results, the result measured in the absence of a sample is referred to as background noise.
  • the influence of background noise was removed by subtracting as the amount of V, and the abscissa represents the applied temperature (° C.), and the ordinate represents the glow curve of TL intensity (nC).
  • the value of the vertical axis of the glow curve obtained in this manner is summed in the range of applied temperature of 50 ° C. to 490 ° C. to obtain an integrated value of TL intensity.
  • the integrated values of the obtained TL intensities are shown in Table 1 for Experimental Examples 1 to 77, 82 and 83, and in Table 2 for Experimental Examples 78 to 81. The higher the integrated value is, the better the light emission performance is.
  • the storage phosphor made of a sintered body containing a lanthanoid element and silicon nitride has sufficient light emission performance as a storage phosphor.
  • each experimental storage phosphor had sufficient mechanical strength. That is, the storage phosphor according to the present application is a novel storage phosphor having good mechanical properties, and enrichment of the storage phosphor is achieved.
  • the optimum content at which the integrated value of the TL intensity is maximum is different for each lanthanoid compound.
  • the lanthanoid compound is Dy 2 O 3 , Yb 2 O 3 , Tb 2 O 3 , Nd 2 O 3 , Ho 2 O 3 or Er 2 O 3
  • the lanthanoid compound contained in the raw material powder The integrated value of the TL strengths became maximum when the content of S is 5 parts by mass with respect to 100 parts by mass of the total amount of the lanthanoid compound and the silicon nitride contained in the raw material powder.
  • the lanthanoid compound is CeO 2 , Eu 2 O 3 , Tm 2 O 3 , Pr 2 O 3 , and Sm 2 O 3
  • the content of the lanthanoid compound contained in the raw material powder is contained in the raw material powder
  • the integrated value of the TL strength was maximum when the amount was 1 part by mass with respect to 100 parts by mass of the total amount of the lanthanoid compound and silicon nitride.
  • Example 11 and Example 82 in Table 1 sintering is performed in a state where the periphery of the formed body is surrounded by ceramics (BN). It was confirmed that the emission intensity was improved. There was no change in the peak wavelength of light. In Example 11 and Example 26, it is considered that part of the lanthanoid element was volatilized at the time of sintering. In Example 82 and Example 83, volatilization of the lanthanoid element during sintering is suppressed by surrounding the periphery of the formed body with a ceramic (BN), and the emission intensity is improved as compared with Example 11 and Example 26. It is considered to be
  • the storage phosphor according to the present invention may have good mechanical properties in place of the alkaline earth metal halide-based phosphor BaBrCl: Eu 2+ and the inorganic phosphor Al 2 O 3 : C. Is expected as a stable storage phosphor.

Abstract

Provided are: a storage phosphor comprising a sintered body containing a lanthanoid element and silicon nitride; a method for manufacturing the storage phosphor; a radiation detection element comprising the storage phosphor; a personal dosimeter comprising the storage phosphor; and an imaging plate comprising the storage phosphor.

Description

ストレージ蛍光体、ストレージ蛍光体の製造方法、放射線検出素子、個人被曝線量計及びイメージングプレートStorage phosphor, method of manufacturing storage phosphor, radiation detection element, individual dose meter and imaging plate
 本発明は、ストレージ蛍光体、当該ストレージ蛍光体の製造方法、当該ストレージ蛍光体を含む放射線検出素子、当該ストレージ蛍光体を含む個人被曝線量計及び当該ストレージ蛍光体を含むイメージングプレートに関する。 The present invention relates to a storage phosphor, a method of manufacturing the storage phosphor, a radiation detection element including the storage phosphor, an individual exposure dose meter including the storage phosphor, and an imaging plate including the storage phosphor.
 ストレージ蛍光体は、放射線検出素子に広く用いられている。本発明における放射線検出素子とは、放射線を検出する機能を持つ物体を表す。ストレージ蛍光体を用いた放射線検出素子には、医療、セキュリティ、放射線防護等の幅広い応用分野がある。放射線防護分野における個人被曝線量計、医療画像診断におけるイメージングプレート、放射線環境モニタリング等が代表的なストレージ蛍光体を用いた放射線検出素子の例である。既存のストレージ蛍光体としては、熱蛍光(TL)ドシメーターに搭載されるLiF:Mg、Ti、光刺激発光(OSL)ドシメーターに搭載されるAl:C、ラジオフォトルミネッセンス(RPL)ドシメーターに搭載されるAg添加リン酸塩ガラス及びイメージングプレートに搭載されるBaFBr:Eu等が知られている。 Storage phosphors are widely used in radiation detection elements. The radiation detection element in the present invention represents an object having a function of detecting radiation. Radiation detection elements using storage phosphors have a wide range of application fields such as medicine, security and radiation protection. Personal exposure dosimeters in the field of radiation protection, imaging plates in medical image diagnosis, radiation environment monitoring, etc. are examples of radiation detection elements using typical storage phosphors. As existing storage phosphors, LiF: Mg, Ti mounted on thermoluminescent (TL) dosimeter, Al 2 O 3 : C mounted on photostimulated luminescence (OSL) dosimeter, radio photoluminescence (RPL) dosimeter An Ag-added phosphate glass to be mounted and BaFBr: Eu to be mounted on an imaging plate are known.
 非特許文献1には、アルカリ土類金属ハロゲン化物系蛍光体であるBaBrCl:Eu2+が、ストレージ蛍光体としてメディカルイメージングにおいて好適に用い得ることが記載されている。非特許文献2には、無機蛍光体であるAl:Cが、ストレージ蛍光体として個人被曝線量計において好適に用い得ることが記載されている。しかしながら、これら既存のストレージ蛍光体は、機械的特性が十分でないものが多く、良好な機械的特性を備えたストレージ蛍光体の豊富化が望まれている。 Non-Patent Document 1 describes that an alkaline earth metal halide based phosphor BaBrCl: Eu 2+ can be suitably used as a storage phosphor in medical imaging. Non-Patent Document 2 describes that Al 2 O 3 : C, which is an inorganic phosphor, can be suitably used as a storage phosphor in a personal exposure dose meter. However, many of these existing storage phosphors do not have sufficient mechanical properties, and enrichment of storage phosphors with good mechanical properties is desired.
 本発明の目的は、ランタノイド元素と、窒化珪素とを含む焼結体からなる、良好な機械的特性を備えた新規なストレージ蛍光体、及び当該ストレージ蛍光体の製造方法を提供し、ストレージ蛍光体の選択肢の豊富化に寄与することにある。 An object of the present invention is to provide a novel storage phosphor having good mechanical properties, which comprises a sintered body containing a lanthanoid element and silicon nitride, and a method for producing the storage phosphor, Contribute to the enrichment of options.
 本発明の他の目的は、上記ストレージ蛍光体を含む放射線検出素子、その中でも特に上記ストレージ蛍光体を含む個人被曝線量計及び上記ストレージ蛍光体を含むイメージングプレートを提供することにある。 Another object of the present invention is to provide a radiation detection element including the storage phosphor, an individual exposure dosimeter including the storage phosphor, and an imaging plate including the storage phosphor.
 本発明は、以下に示すストレージ蛍光体、及びストレージ蛍光体を用いた放射線検出素子、その中でも特に個人被曝線量計及びイメージングプレートを提供する。 The present invention provides a storage phosphor as described below, and a radiation detection element using the storage phosphor, in particular, a personal exposure dosimeter and an imaging plate.
 [1] ランタノイド元素と、窒化珪素とを含む焼結体からなる、ストレージ蛍光体。
 [2] 前記ランタノイド元素は、ジスプロシウム、イッテルビウム、セリウム、ユーロピウム、ツリウム、テルビウム、ネオジム、プラセオジム、サマリウム、ホルミウム及びエルビウムからなる群より選択される少なくとも1種である、[1]に記載のストレージ蛍光体。
[1] A storage phosphor comprising a sintered body containing a lanthanoid element and silicon nitride.
[2] The storage fluorescence according to [1], wherein the lanthanoid element is at least one selected from the group consisting of dysprosium, ytterbium, cerium, europium, thulium, terbium, neodymium, praseodymium, samarium, holmium and erbium body.
 [3] 前記ランタノイド元素を有するランタノイド化合物と、前記窒化珪素とを含む焼結体からなる、[1]又は[2]に記載のストレージ蛍光体。 [3] The storage phosphor according to [1] or [2], comprising a sintered body containing the lanthanoid compound having the lanthanoid element and the silicon nitride.
 [4] ランタノイド元素を有するランタノイド化合物と窒化珪素とを混合し、前記ランタノイド化合物と前記窒化珪素とを含む混合物を得る工程と、前記混合物を成形し、前記混合物の成形体を得る工程と、前記成形体を焼結し、前記成形体の焼結体を得る工程と、を含み、前記ランタノイド元素は、ジスプロシウム、イッテルビウム、セリウム、ユーロピウム、ツリウム、テルビウム、ネオジム、プラセオジム、サマリウム、ホルミウム及びエルビウムからなる群より選択される少なくとも1種であり、前記混合物中に含まれる前記ランタノイド化合物の含有量が、前記混合物中に含まれる前記ランタノイド化合物と前記窒化珪素との合計量100質量部に対して0.5~15質量部である、ストレージ蛍光体の製造方法。 [4] A step of mixing a lanthanoid compound having a lanthanoid element and silicon nitride to obtain a mixture containing the lanthanoid compound and the silicon nitride, and forming the mixture to obtain a formed body of the mixture, Sintering the formed body to obtain a sintered body of the formed body, wherein the lanthanoid element is composed of dysprosium, ytterbium, cerium, europium, thulium, terbium, neodymium, praseodymium, samarium, holmium and erbium The content of the lanthanoid compound contained in the mixture is at least one selected from the group: 0.1 parts by mass relative to 100 parts by mass of the total amount of the lanthanoid compound and the silicon nitride contained in the mixture. A method of producing a storage phosphor, which is 5 to 15 parts by mass.
 [5] 下記(1)~(5):
 (1)前記ランタノイド化合物がDyであり、
 前記混合物中に含まれる前記ランタノイド化合物の含有量が、前記混合物中に含まれる前記ランタノイド化合物と前記窒化珪素との合計量100質量部に対して0.5~10質量部である、
 (2)前記ランタノイド化合物がYbであり、
 前記混合物中に含まれる前記ランタノイド化合物の含有量が、前記混合物中に含まれる前記ランタノイド化合物と前記窒化珪素との合計量100質量部に対して0.5~10質量部である、
 (3)前記ランタノイド化合物がCeOであり、
 前記混合物中に含まれる前記ランタノイド化合物の含有量が、前記混合物中に含まれる前記ランタノイド化合物と前記窒化珪素との合計量100質量部に対して0.5~10質量部である、
 (4)前記ランタノイド化合物がEuであり、
 前記混合物中に含まれる前記ランタノイド化合物の含有量が、前記混合物中に含まれる前記ランタノイド化合物と前記窒化珪素との合計量100質量部に対して0.5~10質量部である、
 (5)前記ランタノイド化合物がTmであり、
 前記混合物中に含まれる前記ランタノイド化合物の含有量が、前記混合物中に含まれる前記ランタノイド化合物と前記窒化珪素との合計量100質量部に対して0.5~10質量部である、
のいずれかを満たす、[4]に記載のストレージ蛍光体の製造方法。
[5] Following (1) to (5):
(1) The lanthanoid compound is Dy 2 O 3 ,
The content of the lanthanoid compound contained in the mixture is 0.5 to 10 parts by mass with respect to 100 parts by mass of the total amount of the lanthanoid compound and the silicon nitride contained in the mixture.
(2) The lanthanoid compound is Yb 2 O 3 ,
The content of the lanthanoid compound contained in the mixture is 0.5 to 10 parts by mass with respect to 100 parts by mass of the total amount of the lanthanoid compound and the silicon nitride contained in the mixture.
(3) the lanthanoid compound is CeO 2 ,
The content of the lanthanoid compound contained in the mixture is 0.5 to 10 parts by mass with respect to 100 parts by mass of the total amount of the lanthanoid compound and the silicon nitride contained in the mixture.
(4) The lanthanoid compound is Eu 2 O 3 ,
The content of the lanthanoid compound contained in the mixture is 0.5 to 10 parts by mass with respect to 100 parts by mass of the total amount of the lanthanoid compound and the silicon nitride contained in the mixture.
(5) The lanthanoid compound is Tm 2 O 3 ,
The content of the lanthanoid compound contained in the mixture is 0.5 to 10 parts by mass with respect to 100 parts by mass of the total amount of the lanthanoid compound and the silicon nitride contained in the mixture.
The manufacturing method of the storage fluorescent substance as described in [4] which satisfy | fills either.
 [6] 前記焼結は、前記成形体の周囲をセラミックスで取り囲んだ状態で実施される、[4]又は[5]に記載のストレージ蛍光体の製造方法。 [6] The method for producing a storage phosphor according to [4] or [5], wherein the sintering is performed in a state in which the periphery of the molded body is surrounded by a ceramic.
 [7] 前記セラミックスが窒化ホウ素である、[6]に記載の製造方法。
 [8] [1]~[3]のいずれかに記載のストレージ蛍光体を含む、放射線検出素子。
[7] The production method according to [6], wherein the ceramic is boron nitride.
[8] A radiation detection element comprising the storage phosphor according to any one of [1] to [3].
 [9] [1]~[3]のいずれかに記載のストレージ蛍光体を含む、個人被曝線量計。 [9] A personal exposure dosimeter comprising the storage phosphor according to any one of [1] to [3].
 [10] [1]~[3]のいずれかに記載のストレージ蛍光体を含む、イメージングプレート。 [10] An imaging plate comprising the storage phosphor according to any one of [1] to [3].
 ランタノイド元素と、窒化珪素とを含む焼結体からなる、良好な機械的特性を備えた新規なストレージ蛍光体、及び当該ストレージ蛍光体の製造方法を提供することができ、ストレージ蛍光体の選択肢の豊富化に寄与することができる。また、上記ストレージ蛍光体を含む放射線検出素子、その中でも特に上記ストレージ蛍光体を含む個人被曝線量計及び上記ストレージ蛍光体を含むイメージングプレートを提供することができる。 It is possible to provide a novel storage phosphor having good mechanical properties, which comprises a sintered body containing a lanthanoid element and silicon nitride, and a method of manufacturing the storage phosphor, and the storage phosphor of choice It can contribute to enrichment. Further, it is possible to provide a radiation detecting element including the storage phosphor, an individual exposure dosimeter including the storage phosphor, and an imaging plate including the storage phosphor.
実験例82及び83における成形体の焼結方法を示す模式図である。It is a schematic diagram which shows the sintering method of the molded object in Experimental example 82 and 83. FIG.
 本明細書において、下記の用語の意味は下記のとおりである。
 (1)「ストレージ蛍光体」とは、照射した放射線のエネルギーを蓄積し、その後、照射量に応じた強度で発光する材料をいう。
In the present specification, the meanings of the following terms are as follows.
(1) "Storage phosphor" refers to a material that stores energy of irradiated radiation and then emits light at an intensity according to the irradiation amount.
 (2)「放射線」とは、X線、ガンマ線、アルファ線、ベータ線、中性子線等をいう。
 (3)「ランタノイド元素」とは、通常、原子番号57から71、すなわちランタン(La)からルテチウム(Lu)までの15の元素の総称であるが、本明細書においては安定同位体のない原子番号61のプロメチウム(Pm)元素を除いた14の元素の総称を意味する。
(2) "Radiation" means X-rays, gamma rays, alpha rays, beta rays, neutron rays and the like.
(3) The term "lanthanoid element" is generally a generic name of atomic number 57 to 71, that is, 15 elements from lanthanum (La) to lutetium (Lu), but in the present specification, an atom having no stable isotope A generic term of 14 elements excluding the 61 promethium (Pm) element is meant.
 (4)「良好な焼結性」とは、より低い焼結温度でも緻密な焼結体ができやすい性質、又は同じ焼結温度でもより緻密な焼結体ができやすい性質をいう。 (4) "Good sinterability" refers to the property that a compact sintered body is easily produced even at a lower sintering temperature, or the property that a denser sintered body is easily produced even at the same sintering temperature.
 (5)「A~B」(A、Bは数値である。)とは、A以上B以下を意味する。
 (6)「放射線検出素子」とは、放射線を検出する機能を有する物体である。ストレージ蛍光体を用いた放射線検出素子の例としては、例えば「個人被曝線量計」、「イメージングプレート」がある。ストレージ蛍光体は照射された放射線のエネルギーを蓄積する性質を有し、検出部は無電源で動作するため、これらの放射線検出素子に適している。
(5) “A to B” (A and B are numerical values) means A or more and B or less.
(6) The "radiation detection element" is an object having a function of detecting radiation. Examples of radiation detection elements using storage phosphors include, for example, “individual dose meter” and “imaging plate”. The storage phosphor has the property of storing energy of irradiated radiation, and the detection unit operates with no power supply, and thus is suitable for these radiation detection elements.
 (7)「個人被曝線量計」とは、例えば原子力発電所等における放射線作業従事者が携帯使用する、携帯時に照射された放射線の量を測定する素子である。 (7) The “individual dose dosimeter” is, for example, an element for portable use of a radiation worker in a nuclear power plant or the like to measure the amount of radiation irradiated at the time of carrying.
 (8)「イメージングプレート」とは、放射線画像検出器の一種であり、例えば、プラスチック等の支持板上にストレージ蛍光体が塗布された形態であり得る。 (8) The “imaging plate” is a type of radiation image detector, and may be, for example, a form in which a storage phosphor is applied on a support plate such as plastic.
 (9)「セラミックス」とは、無機化合物の焼結物、又は無機化合物の成形体の焼結物をいう。 (9) "Ceramics" refers to a sintered product of an inorganic compound or a sintered product of a molded product of an inorganic compound.
 <ストレージ蛍光体>
 ストレージ蛍光体は、ランタノイド元素と、窒化珪素とを含む焼結体からなる。以下、ランタノイド元素及び窒化珪素、並びに任意で含み得る他の成分(不純物)について説明する。
(ランタノイド元素)
 ランタノイド元素は、付活剤としての役割を担う。ストレージ蛍光体は、ランタノイド元素を1種のみ含んでいてもよいし、2種以上を含んでいてもよい。ストレージ蛍光体がランタノイド元素を含むことにより、当該ストレージ蛍光体は、放射線照射によるランタノイド元素イオンの電子軌道遷移に伴う蛍光を発することができる。
<Storage phosphor>
The storage phosphor is made of a sintered body containing a lanthanoid element and silicon nitride. Hereinafter, the lanthanoid element and silicon nitride, and other components (impurities) that may be optionally contained will be described.
(Lanthanoid element)
The lanthanoid element plays a role as an activator. The storage phosphor may contain only one type of lanthanoid element, or may contain two or more types. When the storage fluorescent substance contains a lanthanoid element, the storage fluorescent substance can emit fluorescence that accompanies the electron orbital transition of the lanthanoid element ion due to the radiation irradiation.
 ランタノイド元素は、上記14の元素の中から選択される少なくとも1種であることが好ましい。すなわち、本発明に係るストレージ蛍光体は、ランタン(La)、セリウム(Ce)、プラセオジム(Pr)、ネオジム(Nd)、サマリウム(Sm)、ユーロピウム(Eu)、ガドリニウム(Gd)、テルビウム(Tb)、ジスプロシウム(Dy)、ホルミウム(Ho)、エルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)、及びルテチウム(Lu)からなる群より選択される少なくとも1種であるランタノイド元素と、窒化珪素とを含む焼結体からなることが好ましく、Dy、Yb、Ce、Eu、Tm、Tb、Nd、Pr、Sm、Ho及びErからなる群より選択される少なくとも1種であるランタノイド元素と、窒化珪素とを含む焼結体からなることが更に好ましい。 The lanthanoid element is preferably at least one selected from the above 14 elements. That is, the storage phosphor according to the present invention includes lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb) At least one member selected from the group consisting of dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), and lutetium (Lu), silicon nitride and silicon nitride; And a silicon nitride, which is at least one selected from the group consisting of Dy, Yb, Ce, Eu, Tm, Tb, Nd, Pr, Sm, Ho and Er, and silicon nitride. It is more preferable to consist of a sintered body containing and.
 ランタノイド元素は、例えば金属ランタノイドや、ランタノイド酸化物等のランタノイド化合物としてストレージ蛍光体に含有させることができる。良好な焼結性を有するストレージ蛍光体を得る観点から、ストレージ蛍光体は、ランタノイド元素を有するランタノイド化合物を含むことが好ましい。すなわち、本発明に係るストレージ蛍光体は、ランタノイド元素を有するランタノイド化合物と、窒化珪素とを含む焼結体からなる、ストレージ蛍光体であることが好ましい。
(窒化珪素)
 窒化珪素(Si)は、ベアリング、タービンブレード、切削工具に広く応用されており、高い機械的特性、耐熱衝撃性を有する。窒化珪素は、通常焼結体(窒化珪素セラミックス)としてストレージ蛍光体に含まれる。したがって、ストレージ蛍光体が窒化珪素を含むことにより、機械的特性及び耐熱衝撃性に優れた、ストレージ蛍光体が得られる。加えて、窒化珪素は、希少な元素を含まないことから、資源的観点からも好適である。(任意で含みうる他の成分)
 ストレージ蛍光体は、ランタノイド元素及び窒化珪素以外の他の成分(不純物)を更に含んでもよい。他の成分としては、生産プロセス上、意図せずに含有される不可避不純物や、意図的に添加される添加剤等が挙げられる。不可避不純物や添加剤は、酸素(O)、炭素(C)、アルミニウム(Al)、マグネシウム(Mg)等の不純物元素を含むものであってもよい。
The lanthanoid element can be contained in the storage phosphor as, for example, a metal lanthanoid or a lanthanoid compound such as a lanthanoid oxide. From the viewpoint of obtaining a storage phosphor having good sinterability, the storage phosphor preferably contains a lanthanoid compound having a lanthanoid element. That is, the storage phosphor according to the present invention is preferably a storage phosphor made of a sintered body containing a lanthanoid compound having a lanthanoid element and silicon nitride.
(Silicon nitride)
Silicon nitride (Si 3 N 4 ) is widely applied to bearings, turbine blades, and cutting tools, and has high mechanical properties and thermal shock resistance. Silicon nitride is usually contained in the storage phosphor as a sintered body (silicon nitride ceramic). Therefore, when the storage phosphor contains silicon nitride, a storage phosphor having excellent mechanical properties and thermal shock resistance can be obtained. In addition, silicon nitride is preferable also from the viewpoint of resources because it does not contain a rare element. (Other ingredients that may optionally be included)
The storage phosphor may further contain other components (impurities) other than the lanthanoid element and silicon nitride. Other components include unavoidable impurities which are unintentionally contained in the production process, and additives which are intentionally added. The unavoidable impurities and the additives may include impurity elements such as oxygen (O), carbon (C), aluminum (Al), magnesium (Mg) and the like.
 上記添加剤としては、良好な焼結性を有するストレージ蛍光体を得るための焼結助剤が挙げられる。ストレージ蛍光体は、1種又は2種以上の焼結助剤を含むことができる。焼結助剤としては、Al、MgO、Y等の公知の焼結助剤が挙げられる。 Examples of the additive include a sintering aid for obtaining a storage phosphor having good sinterability. The storage phosphor can comprise one or more sintering aids. The sintering aid, Al 2 O 3, MgO, known sintering aid such as Y 2 O 3 and the like.
 <ストレージ蛍光体の製造方法>
 本開示に係るストレージ蛍光体の製造方法は、以下の工程(1)~(3)を含む。以下、工程(1)~(3)について説明する。
<Method of Manufacturing Storage Phosphor>
The method of manufacturing a storage phosphor according to the present disclosure includes the following steps (1) to (3). Hereinafter, steps (1) to (3) will be described.
 (1)ランタノイド元素を有するランタノイド化合物と窒化珪素とを混合し、ランタノイド化合物と窒化珪素とを含む混合物を得る工程(第1工程)、
 (2)上記工程にて得られた混合物を成形して、混合物の成形体を得る工程(第2工程)、及び、
 (3)上記工程にて得られた成形体を焼結し、成形体の焼結体(ストレージ蛍光体)を得る工程(第3工程)。
(1) a step of mixing a lanthanoid compound having a lanthanoid element and silicon nitride to obtain a mixture containing the lanthanoid compound and silicon nitride (first step);
(2) a step of forming the mixture obtained in the above step to obtain a formed body of the mixture (second step);
(3) A step (third step) of sintering the compact obtained in the above step to obtain a sintered body (storage phosphor) of the compact.
 《第1工程》
 本工程は、ランタノイド元素を有するランタノイド化合物と、窒化珪素とを混合することによって、ランタノイド化合物と窒化珪素とを含む混合物を得る工程である。ランタノイド化合物と窒化珪素とを含む混合物は、粉末状であってもよい(以下、ランタノイド化合物と窒化珪素とを含む粉末状の混合物を、「原料粉末」とも記載する)。
(ランタノイド元素)
 ランタノイド元素は、Dy、Yb、Ce、Eu、Tm、Tb、Nd、Pr、Sm、Ho及びErからなる群より選択される少なくとも1種である。
(混合物中のランタノイド化合物の含有量)
 上記混合物中に含まれるランタノイド化合物の含有量は、上記混合物中に含まれるランタノイド化合物と窒化珪素との合計量100質量部に対して0.5~15質量部である。上記混合物中に含まれるランタノイド化合物の含有量が、上記混合物中に含まれるランタノイド化合物と窒化珪素との合計量100質量部に対して0.5質量部未満の場合、製造されたストレージ蛍光体が十分な強度の発光を得られない可能性がある。上記混合物中に含まれるランタノイド化合物の含有量が、上記混合物中に含まれるランタノイド化合物と窒化珪素との合計量100質量部に対して15質量部より大きい場合、製造されたストレージ蛍光体の機械的強度が不足する傾向にある。ストレージ蛍光体の機械的強度が低下すると、希少性の高い原料をより多く用いることになり、製造コストの増加を招き得る。
<< First step >>
This step is a step of obtaining a mixture containing a lanthanoid compound and silicon nitride by mixing a lanthanoid compound having a lanthanoid element and silicon nitride. The mixture containing a lanthanoid compound and silicon nitride may be in the form of powder (hereinafter, a powdery mixture containing a lanthanoid compound and silicon nitride is also referred to as “raw material powder”).
(Lanthanoid element)
The lanthanoid element is at least one selected from the group consisting of Dy, Yb, Ce, Eu, Tm, Tb, Nd, Pr, Sm, Ho and Er.
(Content of lanthanoid compound in mixture)
The content of the lanthanoid compound contained in the above mixture is 0.5 to 15 parts by mass with respect to 100 parts by mass of the total amount of the lanthanoid compound and silicon nitride contained in the above mixture. When the content of the lanthanoid compound contained in the above mixture is less than 0.5 parts by mass with respect to 100 parts by mass of the total amount of the lanthanoid compound and silicon nitride contained in the above mixture, the manufactured storage phosphor is It may not be possible to obtain sufficient intensity of light emission. When the content of the lanthanoid compound contained in the above mixture is more than 15 parts by mass with respect to 100 parts by mass of the total amount of the lanthanoid compound and silicon nitride contained in the above mixture, the mechanical of the manufactured storage phosphor It tends to lack strength. If the mechanical strength of the storage phosphor decreases, more rare raw materials will be used, which may lead to an increase in manufacturing cost.
 ランタノイド化合物がランタノイド酸化物である場合、ストレージ蛍光体としての性能を低下させずに、より良好な焼結性を得る観点から、下記(1)~(5)のいずれかを満たすことが好ましい。 When the lanthanoid compound is a lanthanoid oxide, it is preferable to satisfy any of the following (1) to (5) from the viewpoint of obtaining better sinterability without reducing the performance as a storage phosphor.
 (1)ランタノイド化合物がDyであり、上記混合物中に含まれるランタノイド化合物(Dy)の含有量が、上記混合物中に含まれるランタノイド化合物(Dy)と窒化珪素との合計量100質量部に対して、0.5~10質量部(より好ましくは1~5質量部)である。 (1) a lanthanide compound Dy 2 O 3, the content of the lanthanoid compounds contained in the mixture (Dy 2 O 3) is a lanthanoid compound contained in the mixture and (Dy 2 O 3) and silicon nitride And 0.5 to 10 parts by mass (more preferably 1 to 5 parts by mass) with respect to 100 parts by mass of the total amount of
 (2)ランタノイド化合物がYbであり、上記混合物中に含まれるランタノイド化合物(Yb)の含有量が、上記混合物中に含まれるランタノイド化合物(Yb)と窒化珪素との合計量100質量部に対して、0.5~10質量部(より好ましくは1~5質量部)である。 (2) a lanthanide compound Yb 2 O 3, the content of the lanthanoid compounds contained in the mixture (Yb 2 O 3) is a lanthanoid compound contained in the mixture and (Yb 2 O 3) and silicon nitride And 0.5 to 10 parts by mass (more preferably 1 to 5 parts by mass) with respect to 100 parts by mass of the total amount of
 (3)ランタノイド化合物がCeOであり、上記混合物中に含まれるランタノイド化合物(CeO)の含有量が、上記混合物中に含まれるランタノイド化合物(CeO)と窒化珪素との合計量100質量部に対して、0.5~10質量部(より好ましくは1~5質量部)である。 (3) lanthanide compound is CeO 2, the content of the lanthanoid compounds (CeO 2) contained in the mixture, lanthanoid compounds contained in the mixture (CeO 2) and a total amount of 100 parts by mass of the silicon nitride Relative to 0.5 to 10 parts by mass (more preferably 1 to 5 parts by mass).
 (4)ランタノイド化合物がEuであり、上記混合物中に含まれるランタノイド化合物(Eu)の含有量が、上記混合物中に含まれるランタノイド化合物(Eu)と窒化珪素との合計量100質量部に対して、0.5~10質量部(より好ましくは1~5質量部)である。 (4) a lanthanide compound Eu 2 O 3, the content of the lanthanoid compounds contained in the mixture (Eu 2 O 3) is a lanthanoid compound contained in the mixture and (Eu 2 O 3) and silicon nitride And 0.5 to 10 parts by mass (more preferably 1 to 5 parts by mass) with respect to 100 parts by mass of the total amount of
 (5)ランタノイド化合物がTmであり、上記混合物中に含まれるにおけるランタノイド化合物(Tm)の含有量が、上記混合物中に含まれるランタノイド化合物(Tm)と窒化珪素との合計量100質量部に対して、0.5~10質量部(より好ましくは1~5質量部)である。
すなわち、本発明に係るストレージ蛍光体の製造方法において、ランタノイド化合物がDy、Yb、CeO、Eu、及びTmのいずれかである場合、ランタノイド化合物と、窒化珪素とを混合し、混合物を得る工程(第1工程)において得られた混合物におけるランタノイド化合物の含有量が、当該混合物中に含まれるランタノイド化合物と窒化珪素との合計量100質量部に対して0.5~10質量部であることが好ましい。(任意で含みうる他の成分の添加量)
 原料粉末は、ランタノイド化合物及び窒化珪素以外の他の成分(不純物)を更に含んでもよい。他の成分としては、生産プロセス上、意図せずに含有される不可避不純物や、意図的に添加される添加剤等が挙げられる。不可避不純物や添加剤は、酸素(O)、炭素(C)、アルミニウム(Al)、マグネシウム(Mg)等の不純物元素を含むものであってもよい。良好な焼結性を有するストレージ蛍光体を得る観点から、不純物元素の含有量は、原料粉末に含まれるランタノイド化合物と窒化珪素との合計量100質量部に対して、20質量部以下であることが好ましい。ただし、上記不純物元素を過剰に含有させると、ストレージ蛍光体の発光強度が低下する可能性がある。したがって、不純物元素の含有量は、原料粉末に含まれるランタノイド化合物及び窒化珪素の合計量100質量部に対して、10質量部以下であることがより好ましく、5質量部以下であることが更に好ましい。
(5) a lanthanide compound Tm 2 O 3, the content of the lanthanoid compound in included in the mixture (Tm 2 O 3) is a lanthanoid compound contained in the mixture (Tm 2 O 3) and silicon nitride And 0.5 to 10 parts by mass (more preferably 1 to 5 parts by mass) with respect to 100 parts by mass in total.
That is, when the lanthanoid compound is any of Dy 2 O 3 , Yb 2 O 3 , CeO 2 , Eu 2 O 3 , and Tm 2 O 3 in the method for producing a storage phosphor according to the present invention, the lanthanoid compound and The content of the lanthanoid compound in the mixture obtained in the step of obtaining a mixture by mixing it with silicon nitride (the first step) is 100 parts by mass of the total amount of the lanthanoid compound and silicon nitride contained in the mixture. The amount is preferably 0.5 to 10 parts by mass. (Additional amount of other components that may optionally be included)
The raw material powder may further contain other components (impurities) other than the lanthanoid compound and silicon nitride. Other components include unavoidable impurities which are unintentionally contained in the production process, and additives which are intentionally added. The unavoidable impurities and the additives may include impurity elements such as oxygen (O), carbon (C), aluminum (Al), magnesium (Mg) and the like. From the viewpoint of obtaining a storage phosphor having good sinterability, the content of the impurity element is 20 parts by mass or less with respect to 100 parts by mass in total of the lanthanoid compound and silicon nitride contained in the raw material powder. Is preferred. However, when the impurity element is excessively contained, the emission intensity of the storage phosphor may be reduced. Therefore, the content of the impurity element is more preferably 10 parts by mass or less, still more preferably 5 parts by mass or less, based on 100 parts by mass of the total amount of the lanthanoid compound and silicon nitride contained in the raw material powder. .
 上記添加剤としては、良好な焼結性を有するストレージ蛍光体を得るための焼結助剤が挙げられる。ストレージ蛍光体は、1種又は2種以上の焼結助剤を含むことができる。焼結助剤としては、Al、MgO、Y等の公知の焼結助剤が挙げられる。焼結助剤の添加量は特に制限されないが、放射線励起時の発光強度を著しく低下させない程度の添加量とすることが好ましい。原料粉末への焼結助剤の添加量は、原料粉末に含まれるランタノイド化合物及び窒化珪素の合計量100質量部に対して、20質量部以下であることが好ましく、10質量部以下であることがより好ましく、5質量部以下であることが更に好ましい。これにより、ストレージ蛍光体としての性能を低下させずに、良好な焼結性を有するストレージ蛍光体を得ることができる。 Examples of the additive include a sintering aid for obtaining a storage phosphor having good sinterability. The storage phosphor can comprise one or more sintering aids. The sintering aid, Al 2 O 3, MgO, known sintering aid such as Y 2 O 3 and the like. Although the addition amount of the sintering aid is not particularly limited, it is preferable that the addition amount be such that the emission intensity at the time of radiation excitation is not significantly reduced. The addition amount of the sintering aid to the raw material powder is preferably 20 parts by mass or less and 10 parts by mass or less based on 100 parts by mass of the total amount of the lanthanoid compound and silicon nitride contained in the raw material powder. Is more preferable, and 5 parts by mass or less is even more preferable. Thereby, a storage phosphor having good sinterability can be obtained without reducing the performance as a storage phosphor.
 良好な焼結性を有するストレージ蛍光体を得るために、原料粉末の粒径や粒子形状を調整してもよい。調整方法としては、粉砕や造粒等が挙げられる。 In order to obtain a storage phosphor having good sinterability, the particle size and particle shape of the raw material powder may be adjusted. The adjustment method may, for example, be crushing or granulation.
 例えば、粉砕によって、原料粉末の一次粒子の粒径をマイクロメーターオーダー以下にすることができる。また、造粒によって、原料粉末の二次粒子の形状を角の多い形状から丸みを帯びた形状としたり、二次粒子の粒径を50~150μm程度の大きさにすることができる。なお、微細構造観察によって識別可能な明確な境界が観察できる微粒子を一次粒子、一次粒子の凝集体を二次粒子と呼ぶ。 For example, the particle size of primary particles of the raw material powder can be reduced to the micrometer order or less by grinding. Also, by granulation, the shape of secondary particles of the raw material powder can be changed from a shape with many corners to a rounded shape, or the particle diameter of the secondary particles can be made to a size of about 50 to 150 μm. In addition, the fine particle which can observe the clear boundary which can be identified by fine structure observation is called a primary particle, and the aggregate of a primary particle is called a secondary particle.
 粉砕方法や造粒方法は任意の方法であってよい。粉砕方法としては、例えば、乳鉢粉砕、ボールミル、スタンプミル、ジェットミル等を用いる方法が挙げられる。また、高度な粒径、粒子形状の制御を実現するため、複数の粉砕手法、造粒手法を併用して多段階で粉砕、造粒してもよい。原料粉末ごとに粉砕、造粒してもよいが、製造コストを低減するためには複数の原料粉末を混合した混合粉末の状態で粉砕、造粒した方が好ましい。以上の方法により、ランタノイド化合物と窒化珪素との混合物を得ることができる。 The grinding method and the granulation method may be any method. Examples of the grinding method include methods using mortar grinding, a ball mill, a stamp mill, a jet mill and the like. Further, in order to realize high control of particle diameter and particle shape, it may be crushed and granulated in multiple stages by using a plurality of crushing methods and granulation methods in combination. The raw material powder may be ground and granulated, but in order to reduce the manufacturing cost, it is preferable to grind and granulate in the state of a mixed powder in which a plurality of raw material powders are mixed. By the above method, a mixture of a lanthanoid compound and silicon nitride can be obtained.
 《第2工程》
 本工程は、第1工程にて得られた混合物を成形して、成形体を得る工程である。ランタノイド化合物と窒化珪素との混合物を成形することにより、後述する第3工程において焼結性を向上させることができる。
Second step
This process is a process of shape | molding the mixture obtained at the 1st process, and obtaining a molded object. By molding a mixture of a lanthanoid compound and silicon nitride, the sinterability can be improved in the third step described later.
 成形体は、例えば、機械プレス、水圧プレス、油圧プレス、冷間等方圧プレス(CIP)等により、第1工程にて粉砕された原料をプレス成形(加圧成形)することによって得ることができる。必要に応じて、例えば、機械プレス後に水圧プレスを行う等、2種以上のプレス手法を併用してもよい。成形方法はプレス成形に限定されるものではなく、射出成型やテープ成形等の一般的な成形法を用いてもよい。 The molded body may be obtained, for example, by press-forming (pressure-forming) the raw material pulverized in the first step using a mechanical press, a hydraulic press, a hydraulic press, a cold isostatic press (CIP) or the like. it can. If necessary, for example, two or more types of pressing methods may be used in combination, such as hydraulic pressing after mechanical pressing. The molding method is not limited to press molding, and a general molding method such as injection molding or tape molding may be used.
 プレス成形におけるプレス条件は特に限定されないが、金型を用いた機械プレス成形の場合、例えば、約150~200kgf/cmの条件で行うことができる。CIPの場合、例えば、1000~2000kgf/cmの条件で行うことができる。以上の方法により、成形体を得ることができる。 The pressing conditions in the press molding are not particularly limited, but in the case of mechanical press molding using a mold, for example, it can be performed under the conditions of about 150 to 200 kgf / cm 2 . In the case of CIP, for example, it can be carried out under the conditions of 1000 to 2000 kgf / cm 2 . A molded object can be obtained by the above method.
 成形体の成形性を高めるために、原料粉末に有機バインダを添加してもよい。有機バインダを添加する場合には、残留有機物による性能悪化を抑制するため、焼結を行う第3工程の前に仮焼結工程を行うことが好ましい。仮焼結工程は、有機バインダを焼失させながら成形体を緻密化させる工程であり、例えば400~600℃の温度下での熱処理工程であってもよい。 An organic binder may be added to the raw material powder in order to enhance the moldability of the molded body. When adding an organic binder, it is preferable to perform a pre-sintering process before the 3rd process which sinters in order to suppress the performance deterioration by a residual organic substance. The pre-sintering step is a step of densifying the molded body while burning away the organic binder, and may be a heat treatment step at a temperature of 400 to 600 ° C., for example.
 《第3工程》
 本工程は、第2工程にて得られた成形体を焼結する工程である。焼結方法は、常圧焼結、ガス圧焼結、ホットプレス焼結、熱間静水圧加圧焼結、パルス通電加圧焼結等の任意の焼結方法であってよい。焼結雰囲気は、窒化珪素に含まれる珪素の酸化を防ぐ観点から、窒素、アルゴン等の不活性ガス雰囲気であることが好ましい。焼結の条件は、成形体の組成及び使用する焼結装置に応じて適切に設定されることが好ましい。焼結温度は、成形体の融点の7割程度の温度を目安に設定することが好ましい。
<< 3rd process >>
This step is a step of sintering the molded body obtained in the second step. The sintering method may be any sintering method such as pressureless sintering, gas pressure sintering, hot press sintering, hot isostatic pressing sintering, pulse current pressure sintering and the like. The sintering atmosphere is preferably an inert gas atmosphere such as nitrogen or argon from the viewpoint of preventing the oxidation of silicon contained in silicon nitride. The sintering conditions are preferably set appropriately in accordance with the composition of the molded body and the sintering apparatus used. The sintering temperature is preferably set to a temperature of about 70% of the melting point of the compact.
 緻密な焼結体を得る観点からは、焼結方法は、窒素等の不活性ガス雰囲気下でのガス圧焼結が好ましい。ガス圧焼結の条件は、成形体の組成及び使用する焼結装置に応じて適切に設定されることが好ましい。ガス圧焼結の条件は、例えば、50~300MPaの窒素雰囲気中、焼結温度1700~1800℃、焼結時間0.5~2時間である。 From the viewpoint of obtaining a dense sintered body, the sintering method is preferably gas pressure sintering under an inert gas atmosphere such as nitrogen. The conditions for gas pressure sintering are preferably set appropriately in accordance with the composition of the compact and the sintering apparatus used. The conditions for gas pressure sintering are, for example, a sintering temperature of 1700 to 1800 ° C. and a sintering time of 0.5 to 2 hours in a nitrogen atmosphere of 50 to 300 MPa.
 製造コストの観点からは、焼結方法は、常圧焼結が好ましい。常圧焼結の条件は、成形体の組成及び使用する焼結装置に応じて適切に設定されることが好ましい。常圧焼結の条件は、例えば、0.2~5MPa(例えば0.8MPa)の窒素雰囲気中、焼結温度1700~1800℃、焼結時間1~10時間(例えば約6時間)である。 From the viewpoint of production cost, the sintering method is preferably pressureless sintering. The conditions for pressureless sintering are preferably set appropriately in accordance with the composition of the compact and the sintering apparatus used. The conditions for normal pressure sintering are, for example, a sintering temperature of 1700 to 1800 ° C., and a sintering time of 1 to 10 hours (for example, about 6 hours) in a nitrogen atmosphere of 0.2 to 5 MPa (for example, 0.8 MPa).
 雰囲気制御の観点から、焼結時に成形体の周囲をセラミックスで取り囲んでもよい。これにより、得られるシンチレータのシンチレータ性能をさらに向上させ得る。上記セラミックスとしては、窒化物セラミックスが挙げられる。窒化物セラミックスとしては、例えば、窒化ケイ素セラミックス(Si)、窒化アルミニウムセラミックス(AlN)、窒化ホウ素セラミックス(BN)、窒化チタンセラミックス(TiN)等が挙げられる。中でも、シンチレータ性能を向上させる観点から、窒化ホウ素セラミックス(BN)が好ましく用いられる。成形体の周囲をセラミックスで取り囲むことにより、焼結時に成形体に含まれるランタノイド元素の揮発が抑制されると期待される。なお、「成形体の周囲をセラミックスで取り囲んだ状態」とは、成形体の周囲を取り囲むセラミックス部材が、成形体とセラミックス部材との間に空間が形成されるように配置されてもよいし、成形体の外表面全体に接触するように配置されている状態であってもよいし、成形体の一部の外表面にのみ接触するように配置されている状態であってもよい。 From the viewpoint of atmosphere control, the ceramic may be surrounded by ceramics at the time of sintering. This can further improve the scintillator performance of the obtained scintillator. As said ceramics, nitride ceramics are mentioned. Examples of nitride ceramics include silicon nitride ceramics (Si 3 N 4 ), aluminum nitride ceramics (AlN), boron nitride ceramics (BN), titanium nitride ceramics (TiN), and the like. Among them, boron nitride ceramics (BN) are preferably used from the viewpoint of improving the scintillator performance. By surrounding the periphery of the formed body with a ceramic, it is expected that the volatilization of the lanthanoid element contained in the formed body at the time of sintering is suppressed. In the “state in which the periphery of the formed body is surrounded by the ceramic”, the ceramic member surrounding the periphery of the formed body may be disposed such that a space is formed between the formed body and the ceramic member. It may be in a state of being arranged to be in contact with the entire outer surface of the molded body, or may be in a state of being arranged to be in contact with only the outer surface of a part of the molded body.
 焼結によって得られた焼結体(すなわち、ストレージ蛍光体)に対して加工処理を施してもよい。加工処理としては、切断処理や、研磨処理等の形状調整処理が挙げられる。以上の方法により、ランタノイド元素と、窒化珪素とを含む焼結体からなる、ストレージ蛍光体を製造することができる。 Processing may be performed on the sintered body (ie, storage phosphor) obtained by sintering. Examples of the processing include cutting processing and shape adjustment processing such as polishing processing. According to the above method, a storage phosphor made of a sintered body containing a lanthanoid element and silicon nitride can be manufactured.
 <ストレージ蛍光体の用途>
 ストレージ蛍光体は、照射された放射線量に応じて蛍光量が変化するため、蛍光量を測定することにより、照射された放射線量を検出することができる。蛍光の原理としては、例えばTL、OSL、RPLがある。本発明に係るストレージ蛍光体は、例えば以下に示す放射線検出素子、その中でも特に個人被曝線量計及びイメージングプレートに好適に用い得る。
<Application of storage phosphor>
In the storage phosphor, the amount of fluorescence changes in accordance with the amount of irradiated radiation, so the amount of emitted radiation can be detected by measuring the amount of fluorescence. The principles of fluorescence include, for example, TL, OSL, and RPL. The storage phosphor according to the present invention can be suitably used, for example, in the radiation detection elements shown below, and in particular, in personal dosimeters and imaging plates.
 <放射線検出素子>
 本発明に係るストレージ蛍光体は、放射線検出素子に含まれてもよい。本発明に係るストレージ蛍光体は、放射線検出能を有し、任意の従来公知技術を用いた放射線検出素子において、好適に用いることができる。放射線検出素子の中でも個人被曝線量計及びイメージングプレートには特に好適に用い得る。
<Radiation detection element>
The storage phosphor according to the present invention may be included in a radiation detection element. The storage phosphor according to the present invention has a radiation detection ability and can be suitably used in a radiation detection element using any conventionally known technique. Among the radiation detection elements, it can be particularly suitably used for an individual dose meter and an imaging plate.
 <個人被曝線量計>
 本発明に係るストレージ蛍光体は、個人被曝線量計に含まれてもよい。ストレージ蛍光体を含んだ個人被曝線量計に関連する公知技術としては、例えばフィルター技術が挙げられる。フィルター技術は、ストレージ蛍光体を含んだ個人被曝線量計において、フィルターを用いないオープンウィンドウ、単数又は複数のプラスチックフィルター付きウィンドウ、単数又は複数の金属薄板フィルター付きウィンドウを備える個人被曝線量計を用いるものであり、ストレージ蛍光体に照射される放射線のエネルギーを変化させ、それぞれの測定結果の比較から、照射された放射線のエネルギー情報を得る手法である。本発明に係るストレージ蛍光体は、例えばこのような公知技術を用いた個人被曝線量計において、好適に用いることができる。
<Individual dose meter>
The storage phosphor according to the present invention may be included in an individual dose meter. Known techniques associated with personal exposure dosimeters that include storage phosphors include, for example, filter techniques. The filter technology uses a personal exposure dosimeter with an open window without a filter, a window with one or more plastic filters, a window with one or more sheet metal filters with a storage phosphor. In this method, the energy of radiation irradiated to the storage phosphor is changed, and energy information of the irradiated radiation is obtained by comparing the respective measurement results. The storage phosphor according to the present invention can be suitably used, for example, in an individual dose meter using such a known technique.
 <イメージングプレート>
 本発明に係るストレージ蛍光体は、イメージングプレートに含まれてもよい。イメージングプレートの構成は、例えば平坦なプラスチック基板上に形成されたストレージ蛍光体層と、当該ストレージ蛍光体表面に汚れや傷を防止する透明保護層とを備える、従来公知の構成であってもよい。このような構成のイメージングプレートとは、プラスチック基板の柔軟性によって物理的衝撃を緩和し、透明保護層により発光を取り出しながら汚れ、傷を防止することができる。本発明に係るストレージ蛍光体は、例えばこのような従来公知の公知技術を用いたイメージングプレートにおいて、好適に用いることができる。
<Imaging plate>
The storage phosphor according to the present invention may be included in an imaging plate. The configuration of the imaging plate may be a conventionally known configuration including, for example, a storage phosphor layer formed on a flat plastic substrate, and a transparent protective layer for preventing dirt and scratches on the surface of the storage phosphor. . The imaging plate having such a configuration can reduce physical impact by the flexibility of the plastic substrate, and can prevent stains and scratches while taking out light emission by the transparent protective layer. The storage phosphor according to the present invention can be suitably used, for example, in an imaging plate using such a conventionally known known technique.
 以下、実験例を示して本発明を更に具体的に説明するが、本発明はこれらの例によって限定されるものではない。 Hereinafter, the present invention will be described more specifically by showing experimental examples, but the present invention is not limited by these examples.
 <実験例1~77、82、83>
 (1)ストレージ蛍光体(焼結体)の製造
 ランタノイド化合物(ランタノイド元素供給源)として、株式会社高純度化学研究所製の各種ランタノイド酸化物(Dy、Yb、CeO、Eu、Tm、Tb、Nd、Pr、Sm、Ho、Er、いずれも純度99.9質量%、粉末状)を用意し、窒化珪素として、デンカ株式会社製のSi(商品名:SN-9FWS、粉末状)を用意した。各ランタノイド化合物と、Siとを混合し、粉末状の混合物(原料粉末)を得た。当該原料粉末に含まれるランタノイド化合物の含有量は、当該原料粉末に含まれるランタノイド化合物とSiとの合計量100質量部に対して0.01質量部、0.5質量部、1質量部、5質量部、10質量部、15質量部、あるいは20質量部とした。各原料粉末に対して、粒径10mmの窒化珪素ボールを原料粉末と同じ体積になるように加え、更にエタノールを全体で原料粉末の約1.5倍の体積となるように加え、ボールミルにより60時間混合した。得られた各スラリーをエバポレーターで乾燥後、乳鉢と乳棒を用いて粉砕した。その後、目開き425μmのふるいを通して分級することによって、粉砕された各原料を得た。ついで、当該粉砕された各原料を、200kgf/cmの条件でプレス成形して、円柱形状(直径10mm×高さ4mm)の成形体を得た。得られた成形体を、窒素雰囲気中、0.9MPa、1725℃、4時間の条件で常圧焼結して、実験例1~77に係るストレージ蛍光体(焼結体)を得た。また、実験例11、26と同組成の成形体に対して、図1に示すように成形体の周囲を窒化ホウ素(BN)で取り囲んだ状態で焼結を実施し、実験例82、83に係るストレージ蛍光体(焼結体)を得た。
<Experimental examples 1 to 77, 82, 83>
(1) Production of Storage Phosphor (Sintered Body) Various lanthanoid oxides (Dy 2 O 3 , Yb 2 O 3 , CeO 2 , manufactured by Kojundo Chemical Laboratory Co., Ltd.) as lanthanoid compounds (lanthanoid element source). Eu 2 O 3 , Tm 2 O 3 , Tb 2 O 3 , Nd 2 O 3 , Pr 2 O 3 , Sm 2 O 3 , Ho 2 O 3 , Er 2 O 3 , all having a purity of 99.9% by mass, powder ), And Si 3 N 4 (trade name: SN-9FWS, powder) manufactured by Denka Co., Ltd. was prepared as silicon nitride. Each lanthanoid compound and Si 3 N 4 were mixed to obtain a powdery mixture (raw material powder). The content of the lanthanoid compound contained in the raw material powder is 0.01 parts by mass, 0.5 parts by mass, and 1 part by mass with respect to 100 parts by mass of the total amount of the lanthanoid compound and Si 3 N 4 contained in the raw material powder. Parts, 5 parts by mass, 10 parts by mass, 15 parts by mass, or 20 parts by mass. To each raw material powder, add silicon nitride balls with a particle size of 10 mm so that the volume is the same as that of the raw material powder, and add ethanol as a whole to a volume of about 1.5 times that of the raw material powder. Mixed time. After drying each obtained slurry with an evaporator, it ground using a mortar and a pestle. Thereafter, the crushed raw materials were obtained by classifying through a sieve of 425 μm mesh. Subsequently, each of the crushed raw materials was press-molded under the condition of 200 kgf / cm 2 to obtain a molded body having a cylindrical shape (diameter 10 mm × height 4 mm). The obtained compact was sintered at atmospheric pressure under the conditions of 0.9 MPa and 1725 ° C. for 4 hours in a nitrogen atmosphere to obtain storage phosphors (sintered bodies) according to Experimental Examples 1 to 77. Further, as shown in FIG. 1, sintering is performed on a compact having the same composition as that of Experimental Examples 11 and 26 in a state in which the periphery of the compact is surrounded by boron nitride (BN). A storage phosphor (sintered body) was obtained.
 各実験例の相違点は、原料粉末中に含まれるランタノイド化合物の種類と、原料粉末中に含まれるランタノイド化合物の含有量である。各実験例における、原料粉末中に含まれるランタノイド化合物の種類、及び原料粉末に含まれるランタノイド化合物と窒化珪素との合計量100質量部に対する、原料粉末に含まれるランタノイド化合物の含有量(質量部)は、表1に示されるとおりである。 The differences between the experimental examples are the type of lanthanoid compound contained in the raw material powder and the content of the lanthanoid compound contained in the raw material powder. Type of lanthanoid compound contained in raw material powder and content of lanthanoid compound contained in raw material powder relative to 100 parts by mass in total of lanthanoid compound and silicon nitride contained in raw material powder in each experimental example (parts by mass) Is as shown in Table 1.
 <実験例78~81>
 焼結助剤であるAlの含有量が、原料粉末に含まれるランタノイド化合物及び窒化珪素の合計量100質量部に対して、5質量部(実験例78)、10質量部(実験例79)、20質量部(実験例80)及び25質量部(実験例81)となるように、原料粉末にAlを更に添加したことを除いては、実験例2と同様の条件でストレージ蛍光体を作製し、実験例78~81に係るストレージ蛍光体を得た。
Experimental Examples 78 to 81
The content of Al 2 O 3 as a sintering aid is 5 parts by mass (Experimental Example 78) and 10 parts by mass (Experimental Example) with respect to 100 parts by mass of the total amount of the lanthanoid compound and silicon nitride contained in the raw material powder. 79), 20 parts by mass (Example 80) and 25 parts by mass (Example 81), except that Al 2 O 3 was further added to the raw material powder, under the same conditions as in Example 2. Storage phosphors were produced, and storage phosphors according to Experimental Examples 78 to 81 were obtained.
 (2)ストレージ蛍光体の発光性能の評価
 各実験例に係るストレージ蛍光体について、放射線照射後、熱刺激により十分に高い強度で発光するかどうか(以下、「発光性能」とも記載する)を調べることで、ストレージ蛍光体として機能するかどうかを評価した。具体的な評価方法は以下のとおりである。
(2) Evaluation of light emission performance of storage phosphors With respect to storage phosphors according to each experimental example, it is examined whether or not light is emitted with sufficiently high intensity by thermal stimulation after irradiation (hereinafter also referred to as “light emission performance”) It was evaluated whether it functions as a storage fluorescent substance. The specific evaluation method is as follows.
 放射線源としてX線発生器(Spellman社製、Monoblock XRB80P & N200X4550)を用い、管電圧を40kV、管電流を5.2mAとし、空気吸収線量で1Gy(グレイ)に相当する量のX線をストレージ蛍光体に照射した。 Using an X-ray generator (Spellman, Monoblock XRB80P & N200X4550) as a radiation source, the tube voltage is 40 kV, the tube current is 5.2 mA, and an amount of air absorbed dose equivalent to 1 Gy (gray) is stored The phosphor was irradiated.
 放射線を照射したサンプル(ストレージ蛍光体)について、熱ルミネセンス測定装置(nanoGray社製、TL-2000)を用いて温度を上昇させながら熱蛍光(TL)強度を測定した。TL強度を測定した際の印加温度範囲は50℃から490℃とし、昇温速度は1℃/秒として、印加温度と発光強度によるグラフ(グローカーブ)を測定した。このようにして得られるグローカーブの測定結果は、横軸が印加温度(℃)、縦軸が電荷(nC)を表す。縦軸の単位であるnCはナノクーロンを表し、10のマイナス9乗クーロンの意味である。1クーロンは、1秒間に1アンペアの電流によって運ばれる電荷(電気量)であり、本測定装置の受光器である光電子増倍管で測定される電流値に依存する。この電流値はストレージ蛍光体の熱蛍光(TL)強度に加えて、バックグラウンドノイズの量に応じても上昇するため、得られた測定結果から、試料のない状態で測定した結果をバックグラウンドノイズの量として差し引くことで、バックグラウンドノイズの影響を取り除き、横軸が印加温度(℃)、縦軸がTL強度(nC)のグローカーブのグラフとした。更に、このようにして得られたグローカーブの縦軸の値を印加温度50℃から490℃の範囲で合計することでTL強度の積算値とした。得られたTL強度の積算値は、実験例1~77、82、83については表1に示され、実験例78~81については表2に示されている。積算値の値が高いほど、発光性能が優れていることを示す。 About the sample (storage fluorescent substance) which irradiated the radiation, the thermoluminescent (TL) intensity | strength was measured, raising temperature, using the thermoluminescent measuring apparatus (made by nanoGray, TL-2000). The applied temperature range when measuring the TL intensity was 50 ° C. to 490 ° C., and the temperature rise rate was 1 ° C./sec, and a graph (glow curve) was measured according to the applied temperature and the emission intensity. In the measurement result of the glow curve obtained in this manner, the horizontal axis represents the applied temperature (° C.), and the vertical axis represents the charge (nC). The unit of the vertical axis, nC, represents nanocoulombs, which means 10 minus 9 coulombs. One coulomb is a charge (electric quantity) carried by a current of one ampere per second, and depends on a current value measured by a photomultiplier which is a light receiver of the present measuring apparatus. This current value also increases in accordance with the amount of background noise in addition to the thermal fluorescence (TL) intensity of the storage phosphor, so from the obtained measurement results, the result measured in the absence of a sample is referred to as background noise. The influence of background noise was removed by subtracting as the amount of V, and the abscissa represents the applied temperature (° C.), and the ordinate represents the glow curve of TL intensity (nC). Furthermore, the value of the vertical axis of the glow curve obtained in this manner is summed in the range of applied temperature of 50 ° C. to 490 ° C. to obtain an integrated value of TL intensity. The integrated values of the obtained TL intensities are shown in Table 1 for Experimental Examples 1 to 77, 82 and 83, and in Table 2 for Experimental Examples 78 to 81. The higher the integrated value is, the better the light emission performance is.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 (3)ストレージ蛍光体の機械強度の評価
 各実験例に係るストレージ蛍光体について、ストレージ蛍光体として十分な機械的強度を有するかどうかを評価した。具体的な評価方法としては、各実験例に係るストレージ蛍光体を紙にこすりつけ、ストレージ蛍光体が崩れるかどうかを観察した。各実験例に係るストレージ蛍光体は、紙にこすりつけられても崩れなかったか、或いは崩れたとしても極めて微細な崩れであった。これにより、本願に係るストレージ蛍光体が良好な機械的特性を有することが示された。
(3) Evaluation of mechanical strength of storage fluorescent substance About the storage fluorescent substance which concerns on each experiment example, it was evaluated whether it had sufficient mechanical strength as a storage fluorescent substance. As a specific evaluation method, the storage phosphor according to each experimental example was rubbed on paper, and it was observed whether or not the storage phosphor collapsed. The storage phosphor according to each experimental example did not collapse even when rubbed on paper, or was extremely fine even if it collapsed. This indicates that the storage phosphor according to the present invention has good mechanical properties.
 <考察>
 表1の各実験例の結果から、ランタノイド元素と、窒化珪素とを含む焼結体からなるストレージ蛍光体は、ストレージ蛍光体として十分な発光性能を有することが理解できる。また、上述の通り各実験例ストレージ蛍光体は、十分な機械的強度を有していた。すなわち、本願に係るストレージ蛍光体は良好な機械的特性を備えた新規なストレージ蛍光体であり、ストレージ蛍光体の豊富化が達成された。
<Discussion>
From the results of each experimental example in Table 1, it can be understood that the storage phosphor made of a sintered body containing a lanthanoid element and silicon nitride has sufficient light emission performance as a storage phosphor. In addition, as described above, each experimental storage phosphor had sufficient mechanical strength. That is, the storage phosphor according to the present application is a novel storage phosphor having good mechanical properties, and enrichment of the storage phosphor is achieved.
 表1において、原料粉末に含まれるランタノイド化合物の含有量が、原料粉末に含まれるランタノイド化合物と窒化珪素との合計量100質量部に対して0.5~15質量部である実験例2~6、9~13、16~20、23~27、30~34、37~41、44~48、51~55、58~62、65~69、72~76、82、83に係るストレージ蛍光体は、優れた発光性能を有することが示されており、原料粉末に含まれるランタノイド化合物の含有量が、原料粉末に含まれるランタノイド化合物と窒化珪素との合計量100質量部に対して1~5質量部である実験例3、4、10、11、17、18、24、25、31、32、38、39、45、46、52、53、59、60、66、67、73、74及び82に係るストレージ蛍光体は、特に優れた発光性能を有することが示されている。なお、このように原料粉末に含まれるランタノイド化合物の含有量に応じてTL強度の積算値が変化する原因は明らかではないが、ランタノイド元素の添加によって生じる窒化珪素の焼結性の変化が影響している可能性がある。 In Table 1, Experimental Examples 2 to 6 in which the content of the lanthanoid compound contained in the raw material powder is 0.5 to 15 parts by mass with respect to 100 parts by mass of the total of the lanthanoid compound and silicon nitride contained in the raw material powder. , 9 to 13, 16 to 20, 23 to 27, 30 to 34, 37 to 41, 44 to 48, 51 to 55, 58 to 62, 65 to 69, 72 to 76, 82, 83 It is shown that the light emitting performance is excellent, and the content of the lanthanoid compound contained in the raw material powder is 1 to 5 parts by mass with respect to 100 parts by mass of the total amount of the lanthanoid compound and silicon nitride contained in the raw material powder. Examples 3, 4, 10, 11, 17, 18, 24, 25, 25, 32, 32, 38, 39, 45, 46, 52, 53, 59, 60, 66, 67, 73, 74 and 82. Strike Over di phosphors, it has been shown to have a particularly excellent luminescence performance. Although the cause of the change in the integrated value of the TL strength depending on the content of the lanthanoid compound contained in the raw material powder is not clear as such, the change in the sinterability of silicon nitride caused by the addition of the lanthanoid element affects There is a possibility.
 また、表1より、ランタノイド化合物ごとに、TL強度の積算値が最大となる最適な含有量が異なることが示された。具体的には、ランタノイド化合物がDy、Yb、Tb、Nd、Ho、及びErの場合には、原料粉末に含まれるランタノイド化合物の含有量が、原料粉末に含まれるランタノイド化合物と窒化珪素との合計量100質量部に対して5質量部である際にTL強度の積算値が最大となった。対して、ランタノイド化合物がCeO、Eu、Tm、Pr、及びSmの場合には原料粉末に含まれるランタノイド化合物の含有量が、原料粉末に含まれるランタノイド化合物と窒化珪素との合計量100質量部に対して1質量部である際にTL強度の積算値が最大となった。 Moreover, it was shown from Table 1 that the optimum content at which the integrated value of the TL intensity is maximum is different for each lanthanoid compound. Specifically, when the lanthanoid compound is Dy 2 O 3 , Yb 2 O 3 , Tb 2 O 3 , Nd 2 O 3 , Ho 2 O 3 or Er 2 O 3 , the lanthanoid compound contained in the raw material powder The integrated value of the TL strengths became maximum when the content of S is 5 parts by mass with respect to 100 parts by mass of the total amount of the lanthanoid compound and the silicon nitride contained in the raw material powder. In contrast, when the lanthanoid compound is CeO 2 , Eu 2 O 3 , Tm 2 O 3 , Pr 2 O 3 , and Sm 2 O 3 , the content of the lanthanoid compound contained in the raw material powder is contained in the raw material powder The integrated value of the TL strength was maximum when the amount was 1 part by mass with respect to 100 parts by mass of the total amount of the lanthanoid compound and silicon nitride.
 更に、表1の実施例11と実施例82との比較、及び、実施例26と実施例83との比較より、成形体の周囲をセラミックス(BN)で取り囲んだ状態で焼結を実施することで、発光強度が向上することが確認された。なお、光のピーク波長には変化はなかった。実施例11及び実施例26においては、焼結時にランタノイド元素の一部が揮発したものと考えられる。実施例82及び実施例83においては、成形体の周囲をセラミックス(BN)で取り囲むことで焼結時におけるランタノイド元素の揮発が抑制され、実施例11及び実施例26と比較して発光強度が向上したものと考えられる。 Further, from the comparison of Example 11 and Example 82 in Table 1 and the comparison of Example 26 and Example 83, sintering is performed in a state where the periphery of the formed body is surrounded by ceramics (BN). It was confirmed that the emission intensity was improved. There was no change in the peak wavelength of light. In Example 11 and Example 26, it is considered that part of the lanthanoid element was volatilized at the time of sintering. In Example 82 and Example 83, volatilization of the lanthanoid element during sintering is suppressed by surrounding the periphery of the formed body with a ceramic (BN), and the emission intensity is improved as compared with Example 11 and Example 26. It is considered to be
 表2に示すように、実験例78~81のTL強度の積算値はそれぞれ1267、721、440及び47(nC)であった。実験例81においてはTL強度の積算値が大幅に低下したが、実験例78~80においてはTL強度の積算値は大幅には低下しなかった。このことより、本発明におけるストレージ蛍光体の製造方法において、原料粉末に含まれるランタノイド化合物及び窒化珪素の合計量100質量部に対して、従来公知の焼結助剤は20質量部以下含有されていてもよいし、10質量部以下含有されていてもよいし、5質量部以下含有されていてもよいことが示された。 As shown in Table 2, integrated values of the TL intensities of Experimental Examples 78 to 81 were 1267, 721, 440, and 47 (nC), respectively. In the experimental example 81, the integrated value of the TL intensity decreased significantly, but in the experimental examples 78 to 80, the integrated value of the TL intensity did not decrease significantly. From this, in the method for producing a storage phosphor according to the present invention, 20 parts by mass or less of the conventionally known sintering aid is contained with respect to 100 parts by mass of the total amount of the lanthanoid compound and silicon nitride contained in the raw material powder. It was shown that it may be contained, 10 parts by mass or less may be contained, or 5 parts by mass or less may be contained.
 本発明に係るストレージ蛍光体は、アルカリ土類金属ハロゲン化物系蛍光体であるBaBrCl:Eu2+や、無機蛍光体であるAl:Cに代わる、良好な機械的特性を有し得る新たなストレージ蛍光体として期待される。  The storage phosphor according to the present invention may have good mechanical properties in place of the alkaline earth metal halide-based phosphor BaBrCl: Eu 2+ and the inorganic phosphor Al 2 O 3 : C. Is expected as a stable storage phosphor.
 11 成形体、 12 セラミックス(BN)。 11 compacts, 12 ceramics (BN).

Claims (10)

  1.  ランタノイド元素と、窒化珪素とを含む焼結体からなる、ストレージ蛍光体。 A storage phosphor comprising a sintered body containing a lanthanoid element and silicon nitride.
  2.  前記ランタノイド元素は、ジスプロシウム、イッテルビウム、セリウム、ユーロピウム、ツリウム、テルビウム、ネオジム、プラセオジム、サマリウム、ホルミウム及びエルビウムからなる群より選択される少なくとも1種である、請求項1に記載のストレージ蛍光体。 The storage phosphor according to claim 1, wherein the lanthanoid element is at least one selected from the group consisting of dysprosium, ytterbium, cerium, europium, thulium, terbium, neodymium, praseodymium, samarium, holmium and erbium.
  3.  前記ランタノイド元素を有するランタノイド化合物と、前記窒化珪素とを含む焼結体からなる、請求項1又は2に記載のストレージ蛍光体。 The storage fluorescent substance of Claim 1 or 2 which consists of a sintered compact containing the lanthanoid compound which has the said lanthanoid element, and the said silicon nitride.
  4.  ランタノイド元素を有するランタノイド化合物と窒化珪素とを混合し、前記ランタノイド化合物と前記窒化珪素とを含む混合物を得る工程と、
     前記混合物を成形し、前記混合物の成形体を得る工程と、
     前記成形体を焼結し、前記成形体の焼結体を得る工程と、を含み、
     前記ランタノイド元素は、ジスプロシウム、イッテルビウム、セリウム、ユーロピウム、ツリウム、テルビウム、ネオジム、プラセオジム、サマリウム、ホルミウム及びエルビウムからなる群より選択される少なくとも1種であり、
     前記混合物中に含まれる前記ランタノイド化合物の含有量が、前記混合物中に含まれる前記ランタノイド化合物と前記窒化珪素との合計量100質量部に対して0.5~15質量部である、
     ストレージ蛍光体の製造方法。
    Mixing a lanthanoid compound having a lanthanoid element and silicon nitride to obtain a mixture containing the lanthanoid compound and the silicon nitride;
    Shaping the mixture to obtain a shaped body of the mixture;
    Sintering the formed body to obtain a sintered body of the formed body,
    The lanthanoid element is at least one selected from the group consisting of dysprosium, ytterbium, cerium, europium, thulium, terbium, neodymium, praseodymium, samarium, holmium and erbium,
    The content of the lanthanoid compound contained in the mixture is 0.5 to 15 parts by mass with respect to 100 parts by mass of the total amount of the lanthanoid compound and the silicon nitride contained in the mixture.
    Storage phosphor manufacturing method.
  5.  下記(1)~(5):
     (1)前記ランタノイド化合物がDyであり、
     前記混合物中に含まれる前記ランタノイド化合物の含有量が、前記混合物中に含まれる前記ランタノイド化合物と前記窒化珪素との合計量100質量部に対して0.5~10質量部である、
     (2)前記ランタノイド化合物がYbであり、
     前記混合物中に含まれる前記ランタノイド化合物の含有量が、前記混合物中に含まれる前記ランタノイド化合物と前記窒化珪素との合計量100質量部に対して0.5~10質量部である、
     (3)前記ランタノイド化合物がCeOであり、
     前記混合物中に含まれる前記ランタノイド化合物の含有量が、前記混合物中に含まれる前記ランタノイド化合物と前記窒化珪素との合計量100質量部に対して0.5~10質量部である、
     (4)前記ランタノイド化合物がEuであり、
     前記混合物中に含まれる前記ランタノイド化合物の含有量が、前記混合物中に含まれる前記ランタノイド化合物と前記窒化珪素との合計量100質量部に対して0.5~10質量部である、
     (5)前記ランタノイド化合物がTmであり、
     前記混合物中に含まれる前記ランタノイド化合物の含有量が、前記混合物中に含まれる前記ランタノイド化合物と前記窒化珪素との合計量100質量部に対して0.5~10質量部である、
    のいずれかを満たす、請求項4に記載のストレージ蛍光体の製造方法。
    The following (1) to (5):
    (1) The lanthanoid compound is Dy 2 O 3 ,
    The content of the lanthanoid compound contained in the mixture is 0.5 to 10 parts by mass with respect to 100 parts by mass of the total amount of the lanthanoid compound and the silicon nitride contained in the mixture.
    (2) The lanthanoid compound is Yb 2 O 3 ,
    The content of the lanthanoid compound contained in the mixture is 0.5 to 10 parts by mass with respect to 100 parts by mass of the total amount of the lanthanoid compound and the silicon nitride contained in the mixture.
    (3) the lanthanoid compound is CeO 2 ,
    The content of the lanthanoid compound contained in the mixture is 0.5 to 10 parts by mass with respect to 100 parts by mass of the total amount of the lanthanoid compound and the silicon nitride contained in the mixture.
    (4) The lanthanoid compound is Eu 2 O 3 ,
    The content of the lanthanoid compound contained in the mixture is 0.5 to 10 parts by mass with respect to 100 parts by mass of the total amount of the lanthanoid compound and the silicon nitride contained in the mixture.
    (5) The lanthanoid compound is Tm 2 O 3 ,
    The content of the lanthanoid compound contained in the mixture is 0.5 to 10 parts by mass with respect to 100 parts by mass of the total amount of the lanthanoid compound and the silicon nitride contained in the mixture.
    The manufacturing method of the storage fluorescent substance of Claim 4 which satisfy | fills either of these.
  6.  前記焼結は、前記成形体の周囲をセラミックスで取り囲んだ状態で実施される、請求項4又は5に記載のストレージ蛍光体の製造方法。 The method for manufacturing a storage phosphor according to claim 4, wherein the sintering is performed in a state in which the periphery of the compact is surrounded by a ceramic.
  7.  前記セラミックスが窒化ホウ素である、請求項6に記載のストレージ蛍光体の製造方法。 The method for manufacturing a storage phosphor according to claim 6, wherein the ceramic is boron nitride.
  8.  請求項1~3のいずれか1項に記載のストレージ蛍光体を含む、放射線検出素子。 A radiation detection element comprising the storage phosphor according to any one of claims 1 to 3.
  9.  請求項1~3のいずれか1項に記載のストレージ蛍光体を含む、個人被曝線量計。 A personal exposure dosimeter comprising the storage phosphor according to any one of claims 1 to 3.
  10.  請求項1~3のいずれか1項に記載のストレージ蛍光体を含む、イメージングプレート。 An imaging plate comprising the storage phosphor according to any one of claims 1 to 3.
PCT/JP2018/019619 2017-06-19 2018-05-22 Storage phosphor, method for manufacturing storage phosphor, radiation detection element, personal dosimeter, and imaging plate WO2018235495A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-119591 2017-06-19
JP2017119591 2017-06-19
JP2017-197639 2017-10-11
JP2017197639A JP2019001982A (en) 2017-06-19 2017-10-11 Storage phosphor, method for producing storage phosphor, radiation detection element, personal exposure dosimeter and imaging plate

Publications (1)

Publication Number Publication Date
WO2018235495A1 true WO2018235495A1 (en) 2018-12-27

Family

ID=64737192

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/019619 WO2018235495A1 (en) 2017-06-19 2018-05-22 Storage phosphor, method for manufacturing storage phosphor, radiation detection element, personal dosimeter, and imaging plate

Country Status (1)

Country Link
WO (1) WO2018235495A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008069198A (en) * 2006-09-12 2008-03-27 Nichia Chem Ind Ltd Rare earth oxynitride-based phosphor and light-emitting device using the same
JP2011515536A (en) * 2008-03-21 2011-05-19 ナノグラム・コーポレイション Metallic silicon nitride or metallic silicon oxynitride submicron phosphor particles and method of synthesizing these particles
JP2013515137A (en) * 2009-12-21 2013-05-02 サビック・イノベーティブ・プラスチックス・アイピー・ベスローテン・フェンノートシャップ New aluminosilicate blue afterglow phosphor
JP2013515138A (en) * 2009-12-21 2013-05-02 サビック・イノベーティブ・プラスチックス・アイピー・ベスローテン・フェンノートシャップ Oxynitride pyrosilicate afterglow phosphor
US20130147343A1 (en) * 2011-12-09 2013-06-13 Samsung Electronics Co., Ltd. Phosphor composition, light emitting device, and the method of preparing the phosphor composition
JP2013538253A (en) * 2010-07-22 2013-10-10 ゼネラル・エレクトリック・カンパニイ Oxynitride phosphor, manufacturing method, and light emitting device
JP2013545694A (en) * 2010-09-14 2013-12-26 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング Silicate phosphor
WO2015133612A1 (en) * 2014-03-06 2015-09-11 公益財団法人神奈川科学技術アカデミー Transparent fluorescent sialon ceramic and method for producing same
JP2016033177A (en) * 2014-07-31 2016-03-10 日亜化学工業株式会社 Fluophor, light-emitting device using the same and manufacturing method of fluophor
JP2017172735A (en) * 2016-03-24 2017-09-28 Ntn株式会社 Ceramic rolling body, manufacturing method thereof, and rolling bearing

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008069198A (en) * 2006-09-12 2008-03-27 Nichia Chem Ind Ltd Rare earth oxynitride-based phosphor and light-emitting device using the same
JP2011515536A (en) * 2008-03-21 2011-05-19 ナノグラム・コーポレイション Metallic silicon nitride or metallic silicon oxynitride submicron phosphor particles and method of synthesizing these particles
JP2013515137A (en) * 2009-12-21 2013-05-02 サビック・イノベーティブ・プラスチックス・アイピー・ベスローテン・フェンノートシャップ New aluminosilicate blue afterglow phosphor
JP2013515138A (en) * 2009-12-21 2013-05-02 サビック・イノベーティブ・プラスチックス・アイピー・ベスローテン・フェンノートシャップ Oxynitride pyrosilicate afterglow phosphor
JP2013538253A (en) * 2010-07-22 2013-10-10 ゼネラル・エレクトリック・カンパニイ Oxynitride phosphor, manufacturing method, and light emitting device
JP2013545694A (en) * 2010-09-14 2013-12-26 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング Silicate phosphor
US20130147343A1 (en) * 2011-12-09 2013-06-13 Samsung Electronics Co., Ltd. Phosphor composition, light emitting device, and the method of preparing the phosphor composition
WO2015133612A1 (en) * 2014-03-06 2015-09-11 公益財団法人神奈川科学技術アカデミー Transparent fluorescent sialon ceramic and method for producing same
JP2016033177A (en) * 2014-07-31 2016-03-10 日亜化学工業株式会社 Fluophor, light-emitting device using the same and manufacturing method of fluophor
JP2017172735A (en) * 2016-03-24 2017-09-28 Ntn株式会社 Ceramic rolling body, manufacturing method thereof, and rolling bearing

Similar Documents

Publication Publication Date Title
CN101107206B (en) Fluorescent ceramic and fabrication method thereof
US6585913B2 (en) Scintillator compositions of alkali and rare-earth tungstates
JP7269994B2 (en) A transparent ceramic garnet scintillator detector for positron emission tomography
EP2634233B1 (en) Polycrystalline scintillator for detecting soft x-rays
US8377335B2 (en) Solid scintillator, radiation detector, and tomograph
CN101253128A (en) Rare earth oxysulfide scintillator and methods for producing same
US6967330B1 (en) High-density polycrystalline lutetium silicate materials activated with Ce
JP6103042B2 (en) Fluorescent material, scintillator, and radiation conversion panel
JP6037025B2 (en) Scintillator material, radiation detector and radiation inspection apparatus
WO2018235495A1 (en) Storage phosphor, method for manufacturing storage phosphor, radiation detection element, personal dosimeter, and imaging plate
JP2019001982A (en) Storage phosphor, method for producing storage phosphor, radiation detection element, personal exposure dosimeter and imaging plate
JP2016145310A (en) Scintillator material, radiation detector and radiation inspection device
JP2021024924A (en) Storage phosphor, radiation detection element, personal dosimeter, and imaging plate
JP2020012038A (en) Scintillator and radiation detection apparatus
WO2018193838A1 (en) Ceramic composition for scintillator, scintillator and radiation detection device, and method for manufacturing scintillator
WO2017119329A1 (en) Dosimeter using magnesium oxide and radiation dose measuring method
JP2016160297A (en) Scintillator material, radiation detector, and radiation inspection device
JP2018178070A (en) Ceramic composition for scintillator, scintillator and radiation detection device, and method for manufacturing scintillator
JP2021147277A (en) Ceramic composition for scintillators, and scintillator and radiation detector
JP2021098820A (en) Ceramic composition for scintillator, scintillator, and radiation detector
JP2016084248A (en) Fluorescent element
Kato et al. New Materials for Radiation Detectors: Transparent Ceramics
JP2021046458A (en) Scintillator and imaging device
CN115490517A (en) Red light flashing ceramic and preparation method and application thereof
JP2021102716A (en) Scintillator and radiation detector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18821542

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18821542

Country of ref document: EP

Kind code of ref document: A1