JP6515515B2 - Manufacturing method of light emitting device - Google Patents

Manufacturing method of light emitting device Download PDF

Info

Publication number
JP6515515B2
JP6515515B2 JP2014251332A JP2014251332A JP6515515B2 JP 6515515 B2 JP6515515 B2 JP 6515515B2 JP 2014251332 A JP2014251332 A JP 2014251332A JP 2014251332 A JP2014251332 A JP 2014251332A JP 6515515 B2 JP6515515 B2 JP 6515515B2
Authority
JP
Japan
Prior art keywords
light emitting
light
emitting device
wavelength conversion
conversion plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014251332A
Other languages
Japanese (ja)
Other versions
JP2016115729A (en
Inventor
三賀 大輔
大輔 三賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to JP2014251332A priority Critical patent/JP6515515B2/en
Publication of JP2016115729A publication Critical patent/JP2016115729A/en
Application granted granted Critical
Publication of JP6515515B2 publication Critical patent/JP6515515B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/568Temporary substrate used as encapsulation process aid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04105Bonding areas formed on an encapsulation of the semiconductor or solid-state body, e.g. bonding areas on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/19Manufacturing methods of high density interconnect preforms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • H01L2924/1815Shape
    • H01L2924/1816Exposing the passive side of the semiconductor or solid-state body
    • H01L2924/18162Exposing the passive side of the semiconductor or solid-state body of a chip with build-up interconnect

Landscapes

  • Led Device Packages (AREA)

Description

本発明は、発光装置の製造法に関する。   The present invention relates to a method of manufacturing a light emitting device.

一般に発光ダイオード(Light Emitting Diode:LED)やレーザダイオード(Laser Diode:LD)等の発光素子は、バックライト等に用いる各種光源、照明、信号機、大型ディスプレイ等に幅広く利用されている。   Generally, light emitting elements such as a light emitting diode (Light Emitting Diode: LED) and a laser diode (Laser Diode: LD) are widely used for various light sources used for backlights and the like, illuminations, traffic lights, large displays, and the like.

このような発光素子は、近年の装置の小型化、薄型化の潮流に従って、より一層の小型化が求められているところである。所謂チップサイズパッケージ(Chip Size Package:CSP)の発光装置を実現するには、実装のし易さ等を考慮し、外部接続用電極となるバンプをワイヤーボンディング装置により形成する方法が一般に採用されている。   Such a light emitting element is required to be further miniaturized in accordance with the recent trend of downsizing and thinning of a device. In order to realize a light emitting device of a so-called chip size package (CSP), a method of forming bumps serving as electrodes for external connection by a wire bonding device is generally adopted in consideration of ease of mounting and the like. There is.

しかしながら従来、バンプの接合強度をさらに高める余地があった。   However, conventionally, there is room for further increasing the bonding strength of the bumps.

特開2013−251417号公報JP, 2013-251417, A

そこで、本発明の目的の一は、バンプの接合強度をより高めた発光装置を提供することにある。   Therefore, one object of the present invention is to provide a light emitting device in which the bonding strength of bumps is further enhanced.

上記の目的を達成するために、本発明の一の側面に係る発光装置によれば、複数の発光素子を、前記発光素子の発光を異なる波長の光に変換する板状の波長変換板に、直接接合する接合工程と、前記波長変換板に直接接合された複数の前記発光素子のそれぞれにおいて、前記波長変換板との接合面の反対側の面に、バンプを加圧により設ける電極形成工程と、前記波長変換板を切断することにより、発光素子ごとに個片化する第一個片化工程とを含み、前記電極形成工程において、超音波をバンプに印加することができる。 In order to achieve the above object, according to a light emitting device according to one aspect of the present invention, a plate-like wavelength conversion plate is provided for converting a plurality of light emitting elements into light of different wavelengths. A bonding step of direct bonding, and an electrode forming step of providing a bump by pressure on a surface opposite to a bonding surface to the wavelength conversion plate in each of the plurality of light emitting elements directly bonded to the wavelength conversion plate; By cutting the wavelength conversion plate, it is possible to apply a ultrasonic wave to the bumps in the electrode forming step, including a first singulation step in which the light emitting elements are singulated.

上記構成により、波長変換板に、接着剤等を用いることなく直接接合によって発光素子を固定できる。また、接着剤等を使用しないで発光素子を波長変換板と一体化したことで、発光素子にパッド電極を設ける際のエネルギーが発光素子に対して効率よく伝達される結果、パッド電極と発光素子との密着性が高められ、パッド電極の剥離を低減して信頼性を向上できる。   According to the above configuration, the light emitting element can be fixed to the wavelength conversion plate by direct bonding without using an adhesive or the like. Further, by integrating the light emitting element with the wavelength conversion plate without using an adhesive or the like, energy at the time of providing the pad electrode to the light emitting element is efficiently transmitted to the light emitting element, and as a result, the pad electrode and the light emitting element The adhesion between the pad electrode and the pad electrode can be enhanced, the peeling of the pad electrode can be reduced, and the reliability can be improved.

本発明の実施形態1に係る発光装置を示す模式平面図である。FIG. 1 is a schematic plan view showing a light emitting device according to Embodiment 1 of the present invention. 図1の発光装置のII−II線における模式断面図である。It is a schematic cross section in the II-II line of the light-emitting device of FIG. 本発明の実施形態1に係る発光装置の製造工程を示すフローチャートである。It is a flowchart which shows the manufacturing process of the light-emitting device which concerns on Embodiment 1 of this invention. 本発明の実施形態1に係る発光装置の製造方法における直接接合工程を示す模式断面図である。It is a schematic cross section which shows the direct joining process in the manufacturing method of the light-emitting device which concerns on Embodiment 1 of this invention. 本発明の実施形態1に係る発光装置の製造方法におけるバンプの形成工程を示す模式断面図である。It is a schematic cross section which shows the formation process of the bump in the manufacturing method of the light-emitting device which concerns on Embodiment 1 of this invention. 本発明の実施形態1に係る発光装置の製造方法における粘着シート上での位置決め工程を示す模式断面図である。It is a schematic cross section which shows the positioning process on the adhesive sheet in the manufacturing method of the light-emitting device which concerns on Embodiment 1 of this invention. 本発明の実施形態1に係る発光装置の製造方法における光反射性樹脂の形成工程を示す模式断面図である。It is a schematic cross section which shows the formation process of light reflective resin in the manufacturing method of the light-emitting device which concerns on Embodiment 1 of this invention. 本発明の実施形態1に係る発光装置の製造方法における外部接続用電極の形成工程を示す模式断面図である。It is a schematic cross section which shows the formation process of the electrode for external connection in the manufacturing method of the light-emitting device which concerns on Embodiment 1 of this invention. 本発明の実施形態1に係る発光装置の製造方法における個片化工程を示す模式断面図である。It is a schematic cross section which shows the singulation process in the manufacturing method of the light-emitting device which concerns on Embodiment 1 of this invention. 本発明の実施形態2に係る発光装置を示す模式平面図である。It is a model top view which shows the light-emitting device based on Embodiment 2 of this invention. 図10の発光装置のXI−XI線における模式断面図である。It is a schematic cross section in the XI-XI line of the light-emitting device of FIG. 波長変換板のチッピング部から光の漏れが生じる様子を示す模式断面図である。It is a schematic cross section which shows a mode that the leak of light arises from the chipping part of a wavelength conversion board. 波長変換板のエッジ近傍から光の漏れが生じる様子を示す模式断面図である。It is a schematic cross section which shows a mode that the leak of light arises from edge vicinity of a wavelength conversion board. 本発明の実施形態2に係る発光装置の製造方法における外部接続用電極の形成工程を示す模式断面図である。It is a schematic cross section which shows the formation process of the electrode for external connection in the manufacturing method of the light-emitting device which concerns on Embodiment 2 of this invention. 変形例に係る発光装置を示す模式平面図である。It is a model top view which shows the light-emitting device which concerns on a modification. 図15の発光装置のXVI−XVI線における模式断面図である。It is a schematic cross section in the XVI-XVI line of the light-emitting device of FIG. 図15の発光装置をサブマウントに実装した様子を示す模式断面図である。It is a schematic cross section which shows a mode that the light-emitting device of FIG. 15 was mounted in the submount. 本発明の実施形態3に係る発光装置を示す模式平面図である。It is a model top view which shows the light-emitting device based on Embodiment 3 of this invention. 図18の発光装置のXIX−XIX線における模式断面図である。を示す模式断面図である。It is a schematic cross section in the XIX-XIX line of the light-emitting device of FIG. It is a schematic cross section showing. 本発明の実施形態3に係る発光装置の製造方法におけるパッド電極の形成工程を示す模式断面図である。It is a schematic cross section which shows the formation process of the pad electrode in the manufacturing method of the light-emitting device which concerns on Embodiment 3 of this invention. 本発明の実施形態3に係る発光装置の製造方法におけるリフレクタ部の形成工程を示す模式断面図である。It is a schematic cross section which shows the formation process of the reflector part in the manufacturing method of the light-emitting device which concerns on Embodiment 3 of this invention. 本発明の実施形態3に係る発光装置の製造方法における支持体上での位置決め工程を示す模式断面図である。It is a schematic cross section which shows the positioning process on the support body in the manufacturing method of the light-emitting device which concerns on Embodiment 3 of this invention. 本発明の実施形態3に係る発光装置の製造方法における光反射性樹脂の形成工程を示す模式断面図である。It is a schematic cross section which shows the formation process of light reflective resin in the manufacturing method of the light-emitting device which concerns on Embodiment 3 of this invention. 本発明の実施形態4に係る発光装置を示す模式断面図である。It is a schematic cross section which shows the light-emitting device based on Embodiment 4 of this invention. 本発明の実施形態4に係る発光装置の製造方法におけるレンズの圧縮成形工程を示す模式断面図である。It is a schematic cross section which shows the compression molding process of the lens in the manufacturing method of the light-emitting device which concerns on Embodiment 4 of this invention. 本発明の実施形態5に係る発光装置の製造方法におけるレンズの形成工程を示す模式断面図である。It is a schematic cross section which shows the formation process of the lens in the manufacturing method of the light-emitting device which concerns on Embodiment 5 of this invention. 本発明の実施形態5に係る発光装置の製造方法における発光素子の接合形成工程を示す模式断面図である。It is a schematic cross section which shows the joining formation process of the light emitting element in the manufacturing method of the light-emitting device which concerns on Embodiment 5 of this invention.

以下、本発明の実施の形態を図面に基づいて説明する。ただし、以下に示す実施の形態は、本発明の技術思想を具体化するための例示であって、本発明は以下のものに特定されない。また、本明細書は特許請求の範囲に示される部材を、実施の形態の部材に特定するものでは決してない。特に実施の形態に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、本発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。なお、各図面が示す部材の大きさや位置関係等は、説明を明確にするため誇張していることがある。さらに以下の説明において、同一の名称、符号については同一もしくは同質の部材を示しており、詳細説明を適宜省略する。さらに、本発明を構成する各要素は、複数の要素を同一の部材で構成して一の部材で複数の要素を兼用する態様としてもよいし、逆に一の部材の機能を複数の部材で分担して実現することもできる。
(実施形態1)
Hereinafter, embodiments of the present invention will be described based on the drawings. However, the embodiments shown below are exemplifications for embodying the technical idea of the present invention, and the present invention is not limited to the following. Further, the present specification does not in any way specify the members described in the claims to the members of the embodiment. In particular, the dimensions, materials, shapes, relative arrangements, and the like of the components described in the embodiments are not intended to limit the scope of the present invention to the scope of the present invention unless otherwise specified. It is just an example. Note that the size, positional relationship, and the like of the members shown in each drawing may be exaggerated for the sake of clarity. Further, in the following description, the same names and reference numerals indicate the same or the same members, and the detailed description will be appropriately omitted. Furthermore, each element constituting the present invention may be configured such that a plurality of elements are constituted by the same member and one member is used in common as a plurality of elements, or conversely, the function of one member is realized by a plurality of members It can be shared and realized.
(Embodiment 1)

図1に、本発明の実施形態1に係る発光装置100の平面図を、図2に、この発光装置100の断面図を、それぞれ示す。これらの図に示す発光装置100は、発光素子10を含む。発光素子10は、第一導電型を示す第一半導体層1と、第一導電型とは異なる第二導電型を示す第二半導体層2と、第一半導体層1と第二半導体層2との間に配置された活性層3と、第一半導体層1と接続された第一パッド電極20Aと、第二半導体層2と接続され、第一パッド電極20Aと同一面側に設けられている第二パッド電極20Bとを含む。第一半導体層1は例えばn型半導体層、第二半導体層2は例えばp型半導体層とでき、これらの半導体層は窒化物半導体層が好適に利用できる。   FIG. 1 shows a plan view of a light emitting device 100 according to Embodiment 1 of the present invention, and FIG. 2 shows a cross sectional view of the light emitting device 100. As shown in FIG. A light emitting device 100 shown in these figures includes a light emitting element 10. The light emitting element 10 includes a first semiconductor layer 1 showing a first conductivity type, a second semiconductor layer 2 showing a second conductivity type different from the first conductivity type, a first semiconductor layer 1 and a second semiconductor layer 2 And the first pad electrode 20A connected to the first semiconductor layer 1 and the second semiconductor layer 2 and provided on the same side as the first pad electrode 20A. And a second pad electrode 20B. The first semiconductor layer 1 can be, for example, an n-type semiconductor layer, and the second semiconductor layer 2 can be, for example, a p-type semiconductor layer. A nitride semiconductor layer can be suitably used for these semiconductor layers.

発光素子10は、第一パッド電極20Aと第二パッド電極20Bとが形成されている電極形成面と、電極形成面とは反対側に位置する発光面と、を有している。発光装置100において、電極形成面側の面には第一パッド電極20Aと第二パッド電極20Bとが露出して設けられており、外部接続用電極22がそれぞれ設けられている。第一パッド電極20Aおよび第二パッド電極20Bは、それぞれ第一半導体層1と第二半導体層2と電気的接続されている。パッド電極20は、例えば、AuまたはAuを主成分とする合金とすることができる。外部接続用電極22は、発光装置100の外部の部材と電気的に接続するための部材であり、例えば配線電極パターン、メタライズ端子等とすることができる。この発光装置100は、いわゆるチップサイズパッケージ(CSP)と呼ばれる小型の装置、例えば発光ダイオード(LED)として好適に利用できる。
(波長変換板30)
The light emitting element 10 has an electrode forming surface on which the first pad electrode 20A and the second pad electrode 20B are formed, and a light emitting surface opposite to the electrode forming surface. In the light emitting device 100, the first pad electrode 20A and the second pad electrode 20B are exposed and provided on the surface on the electrode forming surface side, and the external connection electrodes 22 are provided respectively. The first pad electrode 20A and the second pad electrode 20B are electrically connected to the first semiconductor layer 1 and the second semiconductor layer 2, respectively. The pad electrode 20 can be, for example, Au or an alloy containing Au as a main component. The external connection electrode 22 is a member for electrically connecting to a member outside the light emitting device 100, and can be, for example, a wiring electrode pattern, a metallized terminal, or the like. The light emitting device 100 can be suitably used as a small device called a so-called chip size package (CSP), for example, a light emitting diode (LED).
(Wavelength conversion plate 30)

また発光素子10の発光面には、波長変換板30が直接接合により接合されている。波長変換板30は、発光素子10の発光を異なる波長の光に変換する板状の部材である。この波長変換板30は、蛍光体等の波長変換材を含有させている。蛍光体には、例えばYAG蛍光体が使用できる。
(光反射性樹脂40)
Further, the wavelength conversion plate 30 is directly bonded to the light emitting surface of the light emitting element 10. The wavelength conversion plate 30 is a plate-like member that converts the light emission of the light emitting element 10 into light of different wavelengths. The wavelength conversion plate 30 contains a wavelength conversion material such as a phosphor. For the phosphor, for example, YAG phosphor can be used.
(Light reflective resin 40)

さらに波長変換板30の側面と、発光素子10との接合面側における発光素子10との接合領域以外の露出面と、発光素子10の側面及び電極形成面の一部と、は光反射性樹脂40で被覆されている。このような光反射性樹脂40は、例えば、TiO2、SiO2等の光散乱部材が含有された樹脂が好適に利用できる。
(発光装置100の製造工程)
Furthermore, the light reflecting resin is a side surface of the wavelength conversion plate 30 and an exposed surface other than the bonding region with the light emitting element 10 on the side of the bonding surface with the light emitting element 10; It is covered with 40. As such a light reflective resin 40, for example, a resin containing a light scattering member such as TiO 2 or SiO 2 can be suitably used.
(Manufacturing process of light emitting device 100)

この発光装置100の製造工程を、図3のフローチャート及び図4〜図9に基づいて説明する。
(波長選別工程)
The manufacturing process of the light emitting device 100 will be described based on the flowchart of FIG. 3 and FIGS. 4 to 9.
(Wavelength sorting process)

まず、ステップS1において、半導体ウェハから切り出した発光素子10を、発光ピーク波長に応じて選別する。このような選別を予め行っておくことで、波長の揃った発光素子が設けられた発光装置を得ることが容易に行える。さらに発光ピーク波長に応じて選別した状態で波長変換板と固定できるため、発光素子の波長に応じた波長変換板の組み合わせを選択できることから、発光装置の出力光を揃えた状態での製造が可能となる。なお、この工程は必須ではなく、製造工程を簡略化するために選別を行わなくてもよい。
(直接接合工程)
First, in step S1, the light emitting elements 10 cut out from the semiconductor wafer are sorted according to the emission peak wavelength. By performing such sorting in advance, it is possible to easily obtain a light emitting device provided with light emitting elements with uniform wavelengths. Further, since it can be fixed to the wavelength conversion plate in a state of being sorted according to the emission peak wavelength, a combination of wavelength conversion plates can be selected according to the wavelength of the light emitting element. It becomes. Note that this step is not essential, and sorting may not be performed to simplify the manufacturing process.
(Direct bonding process)

次にステップS2において、図4に示すように、選別された複数の発光素子10を、予め用意した波長変換板30に、直接接合する。直接接合は、例えば表面活性化結合、水酸基結合、原子拡散結合が利用できる。表面活性化結合は、接合面を真空中で処理することで化学結合しやすい表面状態として接合面同士を結合する方法である。水酸基結合は、例えば原子層堆積法などにより接合面に水酸基を形成し、それぞれの接合面の水酸基同士を結合させる方法である。原子拡散結合は、それぞれの接合面に1原子層相当の膜厚の金属膜を形成し、真空中や不活性ガス雰囲気でそれぞれの接合面を接触させることで金属原子同士を結合させる方法である。このような直接接合により、常温に近い環境下で発光素子10と波長変換板30とを一体化することができる。
(電極形成工程)
Next, in step S2, as shown in FIG. 4, the plurality of selected light emitting elements 10 are directly bonded to the wavelength conversion plate 30 prepared in advance. For direct bonding, for example, surface activation bond, hydroxyl bond, or atomic diffusion bond can be used. The surface activation bonding is a method of bonding the bonding surfaces as a surface state which is easily chemically bonded by treating the bonding surfaces in a vacuum. The hydroxyl group bond is a method of forming a hydroxyl group on a bonding surface by, for example, an atomic layer deposition method, and bonding the hydroxyl groups of each bonding surface to each other. Atomic diffusion bonding is a method in which a metal film with a thickness equivalent to one atomic layer is formed on each bonding surface, and metal atoms are bonded by bringing the bonding surfaces into contact in vacuum or in an inert gas atmosphere. . By such direct bonding, the light emitting element 10 and the wavelength conversion plate 30 can be integrated in an environment close to normal temperature.
(Electrode formation process)

さらにステップS3において、図5に示すように、波長変換板30に接合された複数の発光素子10のそれぞれに対し、波長変換板30との接合面の反対側の面にパッド電極20を、加圧により設ける。ここで、発光素子10と波長変換板30とは既に直接接合によって強固に一体化されているので、パッド電極20形成のために加圧されても、この加圧のエネルギーが接合部分で吸収、分散される事態を回避して、パッド電極20の接合強度を高めることができる。すなわち、従来のような接着剤を使用した接合と比べ、パッド電極20の接合のためのエネルギーをパッド電極20と発光素子10との界面に伝達させ易くして密着力を高め、パッド電極20の剥離を低減して信頼性を改善できる。パッド電極20には、バンプやめっき層が好適に利用できる。   Further, in step S3, as shown in FIG. 5, for each of the plurality of light emitting elements 10 bonded to the wavelength conversion plate 30, the pad electrode 20 is added to the surface opposite to the bonding surface with the wavelength conversion plate 30. Set by pressure. Here, since the light emitting element 10 and the wavelength conversion plate 30 have already been firmly integrated by direct bonding, even when pressure is applied to form the pad electrode 20, the energy of this pressure is absorbed at the bonding portion, The bonding strength of the pad electrode 20 can be enhanced by avoiding dispersion. That is, energy for bonding the pad electrode 20 can be easily transmitted to the interface between the pad electrode 20 and the light emitting element 10 as compared with the conventional bonding using an adhesive, and the adhesion is enhanced. The peeling can be reduced to improve the reliability. A bump or a plated layer can be suitably used for the pad electrode 20.

ここでパッド電極20は、加熱しながら形成してもよい。特に波長変換板30に発光素子10を直接接合しているため、従来のように接着剤として使用した樹脂が加熱により変形することがなく、密着性よく電極を形成することができる。   Here, the pad electrode 20 may be formed while being heated. In particular, since the light emitting element 10 is directly bonded to the wavelength conversion plate 30, the resin used as the adhesive is not deformed by heating as in the prior art, and the electrode can be formed with good adhesion.

あるいはパッド電極20は、超音波を印加しながら形成してもよい。同様に直接接合で発光素子10と波長変換板30とが一体的に接合されているため、超音波のエネルギーを効率よく印加してパッド電極20を接合できる。なお、超音波の印加と上述した加熱とを同時に行いながら電極を形成してもよく、さらに効率よく密着性に優れた電極を形成することができる。
(第一個片化工程)
Alternatively, the pad electrode 20 may be formed while applying ultrasonic waves. Similarly, since the light emitting element 10 and the wavelength conversion plate 30 are integrally bonded by direct bonding, energy of ultrasonic waves can be efficiently applied to bond the pad electrode 20. Note that the electrode may be formed while simultaneously performing the application of the ultrasonic wave and the above-described heating, and an electrode with more excellent adhesion can be formed more efficiently.
(First individualization process)

次いでステップS4において、図5において破線で示すように、波長変換板30を切断することにより、発光素子10ごとに個片化する。
(光反射性樹脂形成工程)
Next, in step S4, as indicated by a broken line in FIG. 5, the wavelength conversion plate 30 is cut into pieces for each light emitting element 10.
(Light reflective resin formation process)

さらにステップS5において、図6に示すように、個片化した複数の波長変換板30を有する発光素子10を、波長変換板30が支持体側となるように支持体SP上に、離間させて位置決めした状態に並べる。支持体SPには、例えば粘着シート等が利用できる。   Further, in step S5, as shown in FIG. 6, the light emitting element 10 having the plurality of singulated wavelength conversion plates 30 is separated and positioned on the support SP so that the wavelength conversion plate 30 is on the support side. Arranged in a state of For example, an adhesive sheet or the like can be used as the support SP.

次いで、図7の断面図に示すように、個片化された波長変換板30を有する発光素子10同士の間に、光反射性樹脂40を充填して形成する。光反射性樹脂40は、好ましくは圧縮成形する。圧縮成形とは、熱硬化性樹脂等を加圧しながら加熱することで硬化させる方法である。圧縮成形により光反射性樹脂40を形成した後、パッド電極20が形成された電極形成面側から光反射性樹脂40を研磨して、光反射性樹脂40の電極形成面側の面からパッド電極20を露出させる。また必要に応じて再配線を行い、パッド電極20の端子を形成してもよい。
(外部接続用電極形成工程)
Next, as shown in the cross-sectional view of FIG. 7, the light reflective resin 40 is filled and formed between the light emitting elements 10 having the wavelength conversion plate 30 which has been singulated. The light reflective resin 40 is preferably compression molded. Compression molding is a method of curing by heating a thermosetting resin or the like while pressing. After the light reflective resin 40 is formed by compression molding, the light reflective resin 40 is polished from the side of the electrode formation surface on which the pad electrode 20 is formed, and the pad electrode from the surface of the light reflective resin 40 on the electrode formation side Expose 20. Further, the terminals of the pad electrode 20 may be formed by rewiring as necessary.
(External connection electrode formation process)

さらにステップS6において、図8に示すように、光反射性樹脂40の電極形成面側の面から露出されたパッド電極20と接合するように、外部接続用電極22を形成する。外部接続用電極22の形成には、フォトリソグラフィやスパッタリング、エッチングなどの手法が適宜利用できる。
(支持体除去工程)
Further, in step S6, as shown in FIG. 8, the external connection electrode 22 is formed so as to be bonded to the pad electrode 20 exposed from the surface of the light reflective resin 40 on the electrode formation surface side. For forming the external connection electrode 22, methods such as photolithography, sputtering, and etching can be appropriately used.
(Support removal process)

さらにステップS7において、図8の状態から支持体SPを除去する。支持体SPの除去後は、波長変換板30の接合面の反対側の面と光反射性樹脂40の支持体SPが設けられていた面とが同一面となる。
(第二個片化工程)
Further, in step S7, the support SP is removed from the state of FIG. After removal of the support SP, the surface opposite to the bonding surface of the wavelength conversion plate 30 and the surface on which the support SP of the light reflective resin 40 is provided become the same surface.
(Second piece separation process)

さらにステップS8において、図8において破線で示すように、光反射性樹脂40を切断することにより、図9(図8と上下を入れ替えている)に示すように、発光素子10毎に個片化する。   Further, in step S8, as shown by a broken line in FIG. 8, the light reflective resin 40 is cut to separate the light emitting elements 10 for each light emitting element 10 as shown in FIG. Do.

このような構成により、波長変換板30に、接着剤等を用いることなく直接接合によって発光素子10を固定できる。また、接着剤等を使用しないで発光素子10と波長変換板30とを一体化したことで、発光素子10にパッド電極20を設ける際のエネルギーが発光素子10に対して効率よく伝達される結果、パッド電極20と発光素子10との密着性が高められ、パッド電極20の発光素子10からの剥離を低減して信頼性を向上できる。加えて、予め発光素子10を半導体ウェハから切り出して、発光ピーク波長に応じて選別した状態で波長変換板30と固定できるため、発光素子10の波長に応じた波長変換板30の組み合わせを選択できる。その結果、発光装置の出力光を揃えた状態での製造が可能となり、半導体ウェハの段階で波長変換板30と固定する従来の製造方法に比べ、歩留まりを大幅に改善できる。
(実施形態2)
With such a configuration, the light emitting element 10 can be fixed to the wavelength conversion plate 30 by direct bonding without using an adhesive or the like. Further, by integrating the light emitting element 10 and the wavelength conversion plate 30 without using an adhesive or the like, energy at the time of providing the pad electrode 20 to the light emitting element 10 is efficiently transmitted to the light emitting element 10 The adhesion between the pad electrode 20 and the light emitting element 10 is enhanced, the peeling of the pad electrode 20 from the light emitting element 10 can be reduced, and the reliability can be improved. In addition, since the light emitting element 10 can be cut out in advance from the semiconductor wafer and fixed to the wavelength conversion plate 30 in a state sorted according to the light emission peak wavelength, the combination of the wavelength conversion plates 30 according to the wavelength of the light emitting element 10 can be selected . As a result, it is possible to manufacture in a state where the output light of the light emitting device is equalized, and the yield can be significantly improved as compared with the conventional manufacturing method in which the wavelength conversion plate 30 is fixed at the stage of the semiconductor wafer.
Second Embodiment

また発光装置は、波長変換板30と光反射性樹脂40との界面を被覆し、遮光性を有する枠状の遮光膜50をさらに備えることもできる。このような発光装置200を実施形態2として、図10及び図11に示す。この構成により、波長変換板30と光反射性樹脂40との界面からの光漏れを遮光膜50でもって遮断し、見切りのよい発光装置200を得ることができる。   The light emitting device can further include a frame-shaped light shielding film 50 that covers the interface between the wavelength conversion plate 30 and the light reflective resin 40 and has light shielding properties. Such a light emitting device 200 is shown as Embodiment 2 in FIG. 10 and FIG. With this configuration, light leakage from the interface between the wavelength conversion plate 30 and the light reflective resin 40 can be blocked by the light shielding film 50, and the light emitting device 200 with good cutoff can be obtained.

従来の発光装置では、例えば図12に示すように、波長変換板1130のチッピング部から、半導体素子1100の光の漏れが生じることがあった。あるいは図13に示すように、波長変換板1130のエッジ近傍から、光反射性樹脂1140を透過して光の漏れが生じることがあった。このように、発光装置の光出射面側で、波長変換板の周囲で光が漏れることにより見切りが悪くなるという問題があった。   In the conventional light emitting device, for example, as shown in FIG. 12, light leakage of the semiconductor element 1100 may occur from the chipping portion of the wavelength conversion plate 1130. Alternatively, as shown in FIG. 13, the light reflective resin 1140 may be transmitted from near the edge of the wavelength conversion plate 1130 to cause light leakage. As described above, there is a problem in that the light is leaked around the wavelength conversion plate on the light emitting surface side of the light emitting device, so that the line-of-sight becomes worse.

これに対して、本発明の実施形態2に係る発光装置200では、遮光膜50を付加することで、このような漏れ光を抑制して見切りを改善することができる。具体的には、図10及び図11に示すように、波長変換板30と光反射性樹脂40との界面を被覆するように遮光膜50を配置する。遮光膜50は、平面視において枠状で、遮光性を有する素材で構成される。例えば、黒色の顔料を含んだ樹脂等が好適に利用できる。
(遮光膜形成工程)
On the other hand, in the light emitting device 200 according to the second embodiment of the present invention, by adding the light shielding film 50, such leaked light can be suppressed to improve the line-up. Specifically, as shown in FIGS. 10 and 11, the light shielding film 50 is disposed so as to cover the interface between the wavelength conversion plate 30 and the light reflective resin 40. The light shielding film 50 has a frame shape in plan view, and is made of a material having a light shielding property. For example, a resin containing a black pigment can be suitably used.
(Light shielding film formation process)

このような遮光膜50を形成するには、例えば上述した発光装置の製造工程において、第二個片化工程S8の前に支持体SPを除去し、支持体SPが除かれた側の面において、波長変換材30の周縁と光反射性樹脂40とを跨いで被覆する遮光膜50を形成する。具体的には、図14の断面図に示すように、製造工程の途中で複数の発光素子10が精度よく並べられた状態を利用し、外部接続用電極22を形成するのと同様の要領で、波長変換板30と光反射性樹脂40との界面に遮光膜50をパターン形成する。このとき、支持体SPが除かれた側の面において、波長変換板30と光反射性樹脂40とが略同一平面上に位置していることが好ましい。このようにすれば、波長変換板30と光反射性樹脂40との界面に遮光膜50を形成しやすくなる。その後、必要に応じて個片化を行い、図10及び図11に示すような遮光膜50を形成した発光装置200が得られる。
(変形例)
In order to form such a light shielding film 50, for example, in the manufacturing process of the light emitting device described above, the support SP is removed before the second singulation step S8, and the surface on the side from which the support SP is removed. A light shielding film 50 is formed which covers the peripheral edge of the wavelength conversion material 30 and the light reflective resin 40 in a straddling manner. Specifically, as shown in the cross-sectional view of FIG. 14, using the state in which the plurality of light emitting elements 10 are accurately aligned in the middle of the manufacturing process, in the same manner as forming the external connection electrode 22 A light shielding film 50 is pattern-formed on the interface between the wavelength conversion plate 30 and the light reflecting resin 40. At this time, it is preferable that the wavelength conversion plate 30 and the light reflective resin 40 be located on substantially the same plane on the side from which the support SP is removed. In this way, the light shielding film 50 can be easily formed at the interface between the wavelength conversion plate 30 and the light reflective resin 40. Thereafter, singulation is performed as necessary, and a light emitting device 200 having a light shielding film 50 as shown in FIGS. 10 and 11 is obtained.
(Modification)

なお、以上の例では発光素子を1個備える発光装置を構成する例を説明した。ただ、本発明はこの構成に限らず、一の発光装置に2以上の発光素子を含めることもできる。例えば図15及び図16に示すように、一枚の拡張した波長変換板30に、複数個の発光素子10を直接接合した発光装置300を得ることもできる。このように一の発光装置に使用する発光素子10の個数を調整することで、発光装置に必要な光量や出力を実現できる。また上述した図15及び図16の例では、横方向に発光素子10を一列(図16の例では5個)に並べた発光装置300を示しているが、本発明はこの構成に限られず、平面視において発光素子10を縦横に並べたマトリックス状の発光装置とすることもできる。   In the above example, an example in which a light emitting device including one light emitting element is configured has been described. However, the present invention is not limited to this configuration, and one light emitting device can include two or more light emitting elements. For example, as shown in FIGS. 15 and 16, it is also possible to obtain a light emitting device 300 in which a plurality of light emitting elements 10 are directly bonded to a single expanded wavelength conversion plate 30. By adjusting the number of light emitting elements 10 used in one light emitting device as described above, it is possible to realize the light amount and the output necessary for the light emitting device. Although the examples of FIGS. 15 and 16 described above show the light emitting device 300 in which the light emitting elements 10 are arranged in a row (five in the example of FIG. 16) in the lateral direction, the present invention is not limited to this configuration. A light emitting device in the form of a matrix in which the light emitting elements 10 are arranged vertically and horizontally in plan view can also be used.

また、図15及び図16に示すように遮光膜50を設けた状態の発光装置300を、必要に応じてサブマウント上に二次実装した発光装置とすることもできる。一例として、実施形態2に係る発光装置をサブマウント60に実装した発光装置400の断面図を、図17に示す。
(実施形態3)
Further, the light emitting device 300 provided with the light shielding film 50 as shown in FIGS. 15 and 16 can be a light emitting device in which the light emitting device 300 is secondarily mounted on the submount as needed. As an example, FIG. 17 shows a cross-sectional view of a light emitting device 400 in which the light emitting device according to the second embodiment is mounted on the submount 60.
(Embodiment 3)

さらに発光装置は、発光素子10の側面から波長変換板30にかけて延長されたリフレクタ部70を備えることもできる。発光素子10の側面から出射される光を、発光素子10の光取り出し面側に反射させるリフレクタ部を設けることで、光取り出し面の正面輝度を高めることができる。このような例を実施形態3に係る発光装置500として、図18及び図19に示す。リフレクタ部70は、発光素子10の側面から傾斜して張り出したフィレット状に形成される。このリフレクタ部70は、透光性の樹脂等で形成される。リフレクタ部70に使用する樹脂としては、シリコーン樹脂やエポキシ樹脂等が好適に利用できる。
(リフレクタ形成工程)
Furthermore, the light emitting device can also include a reflector portion 70 extended from the side surface of the light emitting element 10 to the wavelength conversion plate 30. By providing a reflector unit that reflects light emitted from the side surface of the light emitting element 10 to the light extraction surface side of the light emitting element 10, the front luminance of the light extraction surface can be increased. Such an example is shown in FIG. 18 and FIG. 19 as a light emitting device 500 according to the third embodiment. The reflector portion 70 is formed in the shape of a fillet that protrudes from the side surface of the light emitting element 10 at an angle. The reflector portion 70 is formed of a translucent resin or the like. As resin used for the reflector part 70, a silicone resin, an epoxy resin, etc. can be utilized suitably.
(Reflector formation process)

このようなリフレクタ部70を形成するには、例えば上述した発光装置100の製造工程において、図5に示す電極形成工程の後に複数の発光素子10のそれぞれについて、発光素子10の側面と波長変換材30の接合面側の面とを連続して被覆するようにリフレクタ部70を形成する。具体的には、図20に示すように、波長変換板30上に直接接合された各発光素子10に対し、パッド電極20を形成する。この状態で、図21に示すように、直接接合された発光素子10の周囲に、リフレクタ部70を形成する。例えば、リフレクタ部70を構成する透光性の樹脂を液状の状態で発光素子10の周囲に塗布して、這い上がり効果によってリフレクタ部70の傾斜面を形成する。あるいは、透光性の樹脂を発光素子10の周囲に充填し、硬化させた状態で、ダイシングブレードなどで切削加工してもよい。あるいはまた、樹脂成型によって所望の形状のリフレクタ部を形成することもできる。   In order to form such a reflector unit 70, for example, the side surfaces of the light emitting element 10 and the wavelength conversion material for each of the plurality of light emitting elements 10 after the electrode forming step shown in FIG. The reflector portion 70 is formed so as to continuously cover the surface on the side of the joint surface 30. Specifically, as shown in FIG. 20, pad electrodes 20 are formed for each light emitting element 10 directly bonded on the wavelength conversion plate 30. In this state, as shown in FIG. 21, the reflector portion 70 is formed around the light emitting element 10 directly bonded. For example, a translucent resin constituting the reflector portion 70 is applied in the liquid state around the light emitting element 10, and the inclined surface of the reflector portion 70 is formed by the creeping effect. Alternatively, in the state where the translucent resin is filled around the light emitting element 10 and hardened, cutting may be performed with a dicing blade or the like. Alternatively, a reflector of a desired shape can be formed by resin molding.

さらに図22に示すように、発光素子10毎に、あるいは所望の発光素子10の個数毎に、波長変換板30を切断して個片化し、粘着シート等の支持体SP上に配置する。またダイシングでリフレクタ部70を形成する場合は、別途支持体SP上に配置せずとも、ダイシングシート上に固定した状態でもって代用することもできる。   Further, as shown in FIG. 22, the wavelength conversion plate 30 is cut and singulated for each light emitting element 10 or for each desired number of light emitting elements 10, and placed on a support SP such as an adhesive sheet. When the reflector portion 70 is formed by dicing, the reflector portion 70 can be substituted as it is fixed on the dicing sheet without being separately provided on the support SP.

そして図23に示すように、光反射性樹脂40を圧縮成形する。これにより、リフレクタ部70の周囲が光反射性樹脂40で充填される結果、光反射性樹脂40で囲まれたリフレクタ部70が形成される。最後に、上記図7、図8、図9等に基づいて説明したとおり、外部接続用電極形成工程S6、支持体除去工程S7、第二個片化工程S8を経て、図18及び図19に示すリフレクタ部70を備える発光装置500が得られる。これにより、リフレクタ部70によって発光素子10の側面から漏れる光を波長変換板30に案内して、光の取り出し効率を改善できる。
(実施形態4)
Then, as shown in FIG. 23, the light reflective resin 40 is compression molded. As a result, the periphery of the reflector portion 70 is filled with the light reflective resin 40, and as a result, the reflector portion 70 surrounded by the light reflective resin 40 is formed. Finally, as described based on FIG. 7, FIG. 8, FIG. 9, etc., after the electrode formation step for external connection S6, the support removal step S7, and the second singulation step S8, FIG. A light emitting device 500 including the reflector unit 70 shown is obtained. Thus, the light leaking from the side surface of the light emitting element 10 can be guided to the wavelength conversion plate 30 by the reflector unit 70, and the light extraction efficiency can be improved.
(Embodiment 4)

さらに発光装置は、光反射性樹脂40の上面に形成されたレンズ部を備えることもできる。このような発光素子10を実施形態4に係る発光装置600として、図24に示す。レンズ部80は、例えば、透光性の樹脂やガラス等を成形することで形成できる。このようなレンズ部80を設けることで、発光素子10からの光を効率よく取り出すことができる発光装置を安価に製造できる。本実施形態4に係る発光装置600では製造工程において、光反射性樹脂30の支持基板SPが除去された面側に直接モールドガラスレンズなどを接着することができるので、低コストで、効率よくレンズ部80を形成することが可能となる。
(レンズ形成工程)
Furthermore, the light emitting device can also include a lens portion formed on the top surface of the light reflective resin 40. Such a light emitting element 10 is shown in FIG. 24 as a light emitting device 600 according to the fourth embodiment. The lens unit 80 can be formed, for example, by molding a translucent resin or glass. By providing such a lens unit 80, a light emitting device capable of efficiently extracting light from the light emitting element 10 can be manufactured inexpensively. In the light emitting device 600 according to the fourth embodiment, a mold glass lens or the like can be directly adhered to the surface side of the light reflective resin 30 from which the support substrate SP is removed in the manufacturing process. It is possible to form the portion 80.
(Lens formation process)

このようなレンズ部80を形成するには、例えば上述した発光装置100の製造工程と同様の手順によって、図8に示すような光反射性樹脂40を発光素子10と波長変換板30の周囲に充填され複数の発光素子10が連なっており、光反射性樹脂40から露出したパッド電極20に外部接続用電極22が形成された状態まで作成する。次に図25に示すように、支持体SPを除去して、除去した面側にレンズ部80を圧縮成形する。具体的には、レンズ部80を構成する透光性の樹脂を未硬化の状態で塗布し、さらにレンズ部80の外形に応じた凹部を形成した成形型MDを被せて押圧し成形する。このとき、支持体SPが除かれた側の面において、波長変換板30と光反射性樹脂40とが略同一平面上に位置していることが好ましい。このようにすれば、波長変換板30と光反射性樹脂40との界面にレンズ部80を形成しやすくなる。そして、レンズ部80を構成する樹脂を硬化した後に個片化して、図24に示す発光装置600を得る。
(実施形態5)
In order to form such a lens unit 80, for example, the light reflective resin 40 as shown in FIG. 8 is provided around the light emitting element 10 and the wavelength conversion plate 30 by the same procedure as the manufacturing process of the light emitting device 100 described above. A plurality of light emitting elements 10 are filled in series, and the pad electrode 20 exposed from the light reflective resin 40 is formed until the external connection electrode 22 is formed. Next, as shown in FIG. 25, the support SP is removed, and the lens portion 80 is compression-molded on the removed surface side. Specifically, a translucent resin that constitutes the lens unit 80 is applied in an uncured state, and a molding die MD in which a recess corresponding to the outer shape of the lens unit 80 is formed is covered and pressed and molded. At this time, it is preferable that the wavelength conversion plate 30 and the light reflective resin 40 be located on substantially the same plane on the side from which the support SP is removed. In this way, the lens portion 80 can be easily formed at the interface between the wavelength conversion plate 30 and the light reflective resin 40. Then, the resin constituting the lens unit 80 is cured and then singulated to obtain the light emitting device 600 shown in FIG.
Embodiment 5

またレンズ部80の形成方法は、上述の方法に限られず、他の方法も適宜利用できる。例えば実施形態5に係る発光装置では、図26に示すように、予め複数のレンズ部80’を配列した成形型MD’を用意し、このキャビティに未硬化の透光性樹脂やガラス等のレンズ部80’を構成する部材を充填する。複数のレンズ部80’は連結状態で硬化される。硬化後、発光素子10と接合する面を研磨する。   Moreover, the formation method of the lens part 80 is not restricted to the above-mentioned method, Other methods can also be utilized suitably. For example, in the light emitting device according to the fifth embodiment, as shown in FIG. 26, a mold MD ′ in which a plurality of lens portions 80 ′ are arranged in advance is prepared, and a lens such as uncured translucent resin or glass is prepared in this cavity. Fill the members that make up the part 80 '. The plurality of lens portions 80 'are cured in a connected state. After curing, the surface to be bonded to the light emitting element 10 is polished.

そして図27に示すように、各レンズ部80’に対して、予め個片化した発光素子10を接合させる。この接合には、接着剤等を使用する他、発光素子10の上面に形成された波長変換板30とレンズ部80’とを直接接合させてもよい。そして、上述した手順に従い、光反射性樹脂40を形成して光反射性樹脂40からパッド電極20を露出させた後、外部接続用電極22を形成し、第二個片化を経て発光装置を得る。   Then, as shown in FIG. 27, the light emitting elements 10 divided in advance are joined to the respective lens parts 80 '. For this bonding, in addition to using an adhesive or the like, the wavelength conversion plate 30 formed on the upper surface of the light emitting element 10 may be bonded directly to the lens portion 80 ′. Then, after forming the light reflective resin 40 and exposing the pad electrode 20 from the light reflective resin 40 according to the above-mentioned procedure, the external connection electrode 22 is formed, and the light emitting device is manufactured through the second separation. obtain.

このようにして得られた発光装置は、発光素子10の一面からのみ光を取り出すため、配向に優れ色むらの少ない高い光質の発光が得られる。また発光素子10からの発熱を発光素子10に直接接合された部材から放熱することができるので放熱性を高める効果も得られる。   Since the light emitting device obtained in this manner extracts light only from one surface of the light emitting element 10, light emission of high light quality with excellent alignment and little color unevenness can be obtained. Further, since the heat generated from the light emitting element 10 can be dissipated from the member directly joined to the light emitting element 10, the effect of enhancing the heat dissipation can also be obtained.

以上のように本発明の実施形態によれば、波長変換板に固定された状態でパッド電極を設けることができるため、作業性や効率に優れることに加え、打ち込む際のエネルギーを効率よく発光素子に与えることができ、強固な接続が維持される。また発光素子を波長変換板と一体化できるので、この点においても機械的強度と信頼性の向上に寄与できる。   As described above, according to the embodiment of the present invention, since the pad electrode can be provided in a state of being fixed to the wavelength conversion plate, in addition to excellent workability and efficiency, the energy at the time of driving can be efficiently emitted. Can maintain a strong connection. Further, since the light emitting element can be integrated with the wavelength conversion plate, this also contributes to the improvement of mechanical strength and reliability.

本発明の実施形態に係る半導体発光装置の製造法によれば、窒化物半導体を用いた発光ダイオード(LED)や半導体レーザ(LD)等の半導体素子の製造工程においてパッド電極を形成する際の信頼性を高めることができ、このような半導体素子の製造方法として好適に利用できる。   According to the method of manufacturing a semiconductor light emitting device according to the embodiment of the present invention, the reliability when forming a pad electrode in the manufacturing process of a semiconductor element such as a light emitting diode (LED) or a semiconductor laser (LD) using a nitride semiconductor It is possible to enhance the properties and be suitably used as a method of manufacturing such a semiconductor device.

100、200、300、400、500、600…発光装置
1…第一半導体層
2…第二半導体層
3…活性層
20…パッド電極;20A…第一パッド電極;20B…第二パッド電極
22…外部接続用電極
10…発光素子
30…波長変換板
40…光反射性樹脂
50…遮光膜
60…サブマウント
70…リフレクタ部
80、80’…レンズ部
1100…半導体素子
1130…波長変換板
1140…光反射性樹脂
SP…支持体
MD、MD’…成形型
100, 200, 300, 400, 500, 600 light emitting device 1 first semiconductor layer 2 second semiconductor layer 3 active layer 20 pad electrode 20A first pad electrode 20B second pad electrode 22 External connection electrode 10: light emitting element 30: wavelength conversion plate 40: light reflective resin 50: light shielding film 60: submount 70: reflector portion 80, 80 ′: lens portion 1100: semiconductor element 1130: wavelength conversion plate 1140: light Reflective resin SP ... Support MD, MD '... Mold

Claims (4)

複数の発光素子を、前記発光素子の発光を異なる波長の光に変換する板状の波長変換板に、直接接合する接合工程と、
前記波長変換板に直接接合された複数の前記発光素子のそれぞれにおいて、前記波長変換板との接合面の反対側の面に、バンプを加圧により設ける電極形成工程と、
前記波長変換板を切断することにより、発光素子ごとに個片化する第一個片化工程と、
を含み、
前記電極形成工程において、超音波をバンプに印加する発光装置の製造方法。
Bonding step of directly bonding a plurality of light emitting elements to a plate-like wavelength conversion plate for converting the light emission of the light emitting elements into light of different wavelengths;
In each of the plurality of light emitting elements directly bonded to the wavelength conversion plate, an electrode forming step of providing a bump by pressure on the surface opposite to the bonding surface with the wavelength conversion plate;
A first singulation step of singulating the light emitting elements by cutting the wavelength conversion plate;
Including
A method of manufacturing a light emitting device, wherein an ultrasonic wave is applied to a bump in the electrode forming step.
請求項1に記載の発光装置の製造方法であって、さらに、
前記個片化した複数の前記波長変換板を有する発光素子を、前記波長変換板が支持体側となるように支持体上に離間して並べる配置工程と、
前記波長変換板を有する発光素子同士の間に光反射性樹脂を充填して形成する樹脂形成工程と、
前記光反射性樹脂を切断することにより、発光素子ごとに個片化する第二個片化工程と、
を含む発光装置の製造方法。
The method of manufacturing a light emitting device according to claim 1, further comprising:
An arrangement step of arranging the light emitting element having the plurality of singulated wavelength conversion plates apart on the support so that the wavelength conversion plate is on the support side;
A resin forming step of filling and forming a light reflective resin between the light emitting elements having the wavelength conversion plate;
A second singulation step of singulating the light emitting elements by cutting the light reflective resin;
A method of manufacturing a light emitting device including:
請求項1又は2に記載の発光装置の製造方法であって、
前記直接接合が、表面活性化結合、水酸基結合、原子拡散結合のいずれかである発光装置の製造方法。
A method of manufacturing a light emitting device according to claim 1 or 2, wherein
A method for producing a light-emitting device, wherein the direct bonding is any one of a surface activation bond, a hydroxyl bond, and an atomic diffusion bond.
請求項1〜3のいずれか一に記載の発光装置の製造方法であって、さらに、
前記電極形成工程において、加熱する発光装置の製造方法。
The method of manufacturing a light emitting device according to any one of claims 1 to 3, further comprising:
The manufacturing method of the light-emitting device heated in the said electrode formation process.
JP2014251332A 2014-12-11 2014-12-11 Manufacturing method of light emitting device Active JP6515515B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014251332A JP6515515B2 (en) 2014-12-11 2014-12-11 Manufacturing method of light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014251332A JP6515515B2 (en) 2014-12-11 2014-12-11 Manufacturing method of light emitting device

Publications (2)

Publication Number Publication Date
JP2016115729A JP2016115729A (en) 2016-06-23
JP6515515B2 true JP6515515B2 (en) 2019-05-22

Family

ID=56142285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014251332A Active JP6515515B2 (en) 2014-12-11 2014-12-11 Manufacturing method of light emitting device

Country Status (1)

Country Link
JP (1) JP6515515B2 (en)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6380590B2 (en) * 2016-06-30 2018-08-29 日亜化学工業株式会社 LED module
US10641437B2 (en) 2016-06-30 2020-05-05 Nichia Corporation LED module
CN106058020A (en) * 2016-07-08 2016-10-26 深圳市兆驰节能照明股份有限公司 Bowl-shaped structure chip-scale package luminescence apparatus and manufacturing method thereof
JP6724634B2 (en) * 2016-07-28 2020-07-15 日亜化学工業株式会社 Method for manufacturing light emitting device
JP6504221B2 (en) * 2016-09-29 2019-04-24 日亜化学工業株式会社 Method of manufacturing light emitting device
JP6512201B2 (en) * 2016-09-30 2019-05-15 日亜化学工業株式会社 Method of manufacturing linear light emitting device and linear light emitting device
JP6955135B2 (en) * 2016-10-19 2021-10-27 日亜化学工業株式会社 Light emitting device and its manufacturing method
TWI713239B (en) * 2016-12-01 2020-12-11 晶元光電股份有限公司 Light-emitting device
JP6809203B2 (en) 2016-12-20 2021-01-06 日亜化学工業株式会社 Manufacturing method of light emitting device
JP7046493B2 (en) * 2017-03-07 2022-04-04 スタンレー電気株式会社 Manufacturing method of semiconductor light emitting device and semiconductor light emitting device
JPWO2018173913A1 (en) * 2017-03-21 2019-06-27 日本特殊陶業株式会社 Light emitting device
JP6579141B2 (en) 2017-03-24 2019-09-25 日亜化学工業株式会社 Light emitting device and method for manufacturing light emitting device
DE102017109485A1 (en) * 2017-05-03 2018-11-08 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor chip and method for producing an optoelectronic semiconductor chip
JP6766795B2 (en) * 2017-06-30 2020-10-14 日亜化学工業株式会社 Light emitting module manufacturing method and light emitting module
JP6854715B2 (en) * 2017-06-30 2021-04-07 日亜化学工業株式会社 Manufacturing method of light emitting device
JP6928244B2 (en) * 2017-08-22 2021-09-01 日亜化学工業株式会社 Light emitting device
JP7082270B2 (en) * 2017-08-28 2022-06-08 日亜化学工業株式会社 Light emitting device
JP6665872B2 (en) * 2018-01-15 2020-03-13 日亜化学工業株式会社 Light emitting device and method of manufacturing light emitting device
DE102018101424A1 (en) * 2018-01-23 2019-07-25 Osram Opto Semiconductors Gmbh LIGHT EMITTING COMPONENT AND METHOD FOR PRODUCING A LIGHT-EMITTING COMPONENT
US10995935B2 (en) * 2018-01-30 2021-05-04 Panasonic Intellectual Property Management Co., Ltd. Phosphor and method for producing same
KR102567568B1 (en) * 2018-04-06 2023-08-16 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 Semiconductor Package
JP6912730B2 (en) * 2018-07-09 2021-08-04 日亜化学工業株式会社 Manufacturing method of light emitting module
KR102675863B1 (en) * 2019-01-29 2024-06-17 삼성전자주식회사 Light emitting device package and method of manufacturing light emitting device package
JP7223938B2 (en) * 2019-02-12 2023-02-17 日亜化学工業株式会社 Method for manufacturing light emitting device
JP2020164678A (en) 2019-03-29 2020-10-08 日亜化学工業株式会社 Silicone resin composition and method for producing the same
JP6849139B1 (en) * 2019-08-02 2021-03-24 日亜化学工業株式会社 Light emitting device and surface emitting light source
KR102203649B1 (en) * 2019-09-10 2021-01-15 (주)라이타이저 Sub pixel csp, manufacturing method of the sub pixel csp, manufacturing method of display apparatus using this same and display apparatus manufactured by that method
US11398592B2 (en) 2019-09-25 2022-07-26 Nichia Corporation Method for manufacturing light emitting module and light emitting module
JP7116330B2 (en) * 2020-01-31 2022-08-10 日亜化学工業株式会社 Method for manufacturing light emitting device
JP7386417B2 (en) * 2020-03-18 2023-11-27 日亜化学工業株式会社 Light emitting device and its manufacturing method
JP7054020B2 (en) * 2020-04-28 2022-04-13 日亜化学工業株式会社 Light emitting device
WO2023007804A1 (en) * 2021-07-30 2023-02-02 ソニーグループ株式会社 Light emitting device and image display device

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1300859C (en) * 1997-01-31 2007-02-14 松下电器产业株式会社 Light emitting element, semiconductor light emitting device, and method for manufacturing them
JP3869562B2 (en) * 1998-10-16 2007-01-17 三洋電機株式会社 Manufacturing method of semiconductor device
JP2002118137A (en) * 2000-07-31 2002-04-19 Nichia Chem Ind Ltd Semiconductor light emitting element chip, bump forming method thereof, display and segment display using the same
JP4516378B2 (en) * 2004-08-13 2010-08-04 ローム株式会社 Semiconductor light emitting device
JP4162094B2 (en) * 2006-05-30 2008-10-08 三菱重工業株式会社 Devices by room temperature bonding, device manufacturing method and room temperature bonding apparatus
US8080884B2 (en) * 2008-06-27 2011-12-20 Panasonic Corporation Mounting structure and mounting method
CN102187444B (en) * 2009-04-01 2014-04-09 库力索法工业公司 Conductive bumps, wire loops, and methods of forming same
US8597963B2 (en) * 2009-05-19 2013-12-03 Intematix Corporation Manufacture of light emitting devices with phosphor wavelength conversion
JP2011166617A (en) * 2010-02-12 2011-08-25 Seiko Instruments Inc Method for manufacturing piezoelectric vibrator, piezoelectric vibrator, oscillator, electronic apparatus and radio wave clock
JPWO2011126000A1 (en) * 2010-04-08 2013-07-11 日亜化学工業株式会社 Light emitting device and manufacturing method thereof
JP2013003491A (en) * 2011-06-21 2013-01-07 Seiko Epson Corp Polarization conversion element, polarization conversion unit and projection device
JP6094062B2 (en) * 2012-06-01 2017-03-15 日亜化学工業株式会社 Light emitting device and manufacturing method thereof
JP6139071B2 (en) * 2012-07-30 2017-05-31 日亜化学工業株式会社 Light emitting device and manufacturing method thereof
JP2014103262A (en) * 2012-11-20 2014-06-05 Nichia Chem Ind Ltd Method of manufacturing light-emitting device, mounting board, and light-emitting device
JP6067408B2 (en) * 2013-02-20 2017-01-25 スタンレー電気株式会社 Flip-chip type semiconductor light emitting device, semiconductor device and manufacturing method thereof

Also Published As

Publication number Publication date
JP2016115729A (en) 2016-06-23

Similar Documents

Publication Publication Date Title
JP6515515B2 (en) Manufacturing method of light emitting device
US9269873B2 (en) Semiconductor light emitting device and method for manufacturing same
TWI594460B (en) Led packaging with integrated optics and methods of manufacturing the same
JP5995695B2 (en) Manufacturing method of LED device
US8490431B2 (en) Optical device and method for making the same
TWI481070B (en) Slim led package
WO2014091914A1 (en) Led device and manufacturing method thereof
EP2666193B1 (en) Led package comprising encapsulation
JP2014112669A (en) Semiconductor light-emitting device and manufacturing method of the same
US10461227B2 (en) Method for manufacturing light emitting device, and light emitting device
US20070278513A1 (en) Semiconductor light emitting device and method of fabricating the same
JP5720759B2 (en) Optical semiconductor device
JP2007073825A (en) Semiconductor light emitting device
JP2009117536A (en) Resin-sealed light emitter, and manufacturing method thereof
JP2007207921A (en) Method for manufacturing surface-mounting optical semiconductor device
JPWO2016021476A1 (en) Semiconductor device and manufacturing method thereof
JP2019201089A (en) Oblique angle chip reflector of chip scale packaging light emission device and manufacturing method of the same
KR101466572B1 (en) Contacting an optoelectronic semiconductor component through a conversion element and corresponding optoelectronic semiconductor component
JP2011210963A (en) Method of manufacturing light-emitting device
JP2015185685A (en) Light emitting device manufacturing method and light device
TW201739071A (en) Method for producing an optoelectronic component, and optoelectronic component
US20130065332A1 (en) Method for manufacturing led with an encapsulant having a flat top face
KR101460742B1 (en) Method of manufacutruing semiconductor device structure
US20180076367A1 (en) Optoelectronic component and method for the production thereof
JP4677653B2 (en) Optical semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180619

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180806

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181009

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181226

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20190108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190401

R150 Certificate of patent or registration of utility model

Ref document number: 6515515

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250