JP6222452B2 - Wavelength conversion member and light emitting device - Google Patents

Wavelength conversion member and light emitting device Download PDF

Info

Publication number
JP6222452B2
JP6222452B2 JP2013259849A JP2013259849A JP6222452B2 JP 6222452 B2 JP6222452 B2 JP 6222452B2 JP 2013259849 A JP2013259849 A JP 2013259849A JP 2013259849 A JP2013259849 A JP 2013259849A JP 6222452 B2 JP6222452 B2 JP 6222452B2
Authority
JP
Japan
Prior art keywords
wavelength conversion
conversion member
glass
powder
phosphor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013259849A
Other languages
Japanese (ja)
Other versions
JP2015118970A (en
Inventor
藤田 直樹
直樹 藤田
克 岩尾
克 岩尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2013259849A priority Critical patent/JP6222452B2/en
Priority to KR1020167012094A priority patent/KR102258536B1/en
Priority to PCT/JP2014/081720 priority patent/WO2015093267A1/en
Priority to CN201480056307.1A priority patent/CN105637659B/en
Priority to TW103143110A priority patent/TWI628261B/en
Publication of JP2015118970A publication Critical patent/JP2015118970A/en
Application granted granted Critical
Publication of JP6222452B2 publication Critical patent/JP6222452B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/06Other methods of shaping glass by sintering, e.g. by cold isostatic pressing of powders and subsequent sintering, by hot pressing of powders, by sintering slurries or dispersions not undergoing a liquid phase reaction
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/77347Silicon Nitrides or Silicon Oxynitrides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C14/00Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix
    • C03C14/004Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix the non-glass component being in the form of particles or flakes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/066Glass compositions containing silica with less than 40% silica by weight containing boron containing zinc
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/068Glass compositions containing silica with less than 40% silica by weight containing boron containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/095Glass compositions containing silica with 40% to 90% silica, by weight containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/097Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/77348Silicon Aluminium Nitrides or Silicon Aluminium Oxynitrides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7774Aluminates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/0883Arsenides; Nitrides; Phosphides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials

Description

本発明は、発光ダイオード(LED:Light Emitting Diode)やレーザーダイオード(LD:Laser Diode)等の発する光の波長を別の波長に変換する波長変換部材に関するものである。   The present invention relates to a wavelength conversion member that converts the wavelength of light emitted from a light emitting diode (LED) or a laser diode (LD) to another wavelength.

近年、蛍光ランプや白熱灯に変わる次世代の光源として、低消費電力、小型軽量、容易な光量調節という観点から、LEDやLDを用いた光源に対する注目が高まってきている。そのような次世代光源の一例として、例えば特許文献1には、青色光を出射するLED上に、LEDからの光の一部を吸収して黄色光に変換する波長変換部材が配置された光源が開示されている。この光源は、LEDから出射された青色光と、波長変換部材から出射された黄色光との合成光である白色光を発する。   In recent years, as a next-generation light source that replaces fluorescent lamps and incandescent lamps, attention has been focused on light sources using LEDs and LDs from the viewpoints of low power consumption, small size and light weight, and easy light quantity adjustment. As an example of such a next-generation light source, for example, Patent Document 1 discloses a light source in which a wavelength conversion member that absorbs part of light from an LED and converts it into yellow light is disposed on an LED that emits blue light. Is disclosed. This light source emits white light which is a combined light of blue light emitted from the LED and yellow light emitted from the wavelength conversion member.

波長変換部材としては、従来、樹脂マトリクス中に無機蛍光体粉末を分散させたものが用いられている。しかしながら、当該波長変換部材を用いた場合、LEDからの光により樹脂が劣化し、光源の輝度が低くなりやすいという問題がある。特に、LEDが発する熱や高エネルギーの短波長(青色〜紫外)光によってモールド樹脂が劣化し、変色や変形を起こすという問題がある。   As the wavelength conversion member, a material in which an inorganic phosphor powder is dispersed in a resin matrix has been conventionally used. However, when the wavelength conversion member is used, there is a problem that the resin is deteriorated by the light from the LED and the luminance of the light source tends to be lowered. In particular, there is a problem that the mold resin deteriorates due to heat generated by the LED or high energy short wavelength (blue to ultraviolet) light, causing discoloration or deformation.

そこで、樹脂に代えてガラスマトリクス中に無機蛍光体粉末を分散固定した完全無機固体からなる波長変換部材が提案されている(例えば、特許文献2及び3参照)。当該波長変換部材は、母材となるガラスがLEDチップの熱や照射光により劣化しにくく、変色や変形といった問題が生じにくいという特徴を有している。   Therefore, a wavelength conversion member made of a completely inorganic solid in which an inorganic phosphor powder is dispersed and fixed in a glass matrix instead of a resin has been proposed (see, for example, Patent Documents 2 and 3). The wavelength conversion member has a feature that glass as a base material is not easily deteriorated by heat of the LED chip or irradiation light, and problems such as discoloration and deformation hardly occur.

しかしながら、上記波長変換部材は、製造時の焼成により無機蛍光体粉末が劣化し、輝度劣化しやすいという問題がある。特に、一般照明、特殊照明等の用途においては、高い演色性が求められるため、赤色や緑色といった比較的耐熱性の低い無機蛍光体粉末を使用する必要があり、無機蛍光体粉末の劣化が顕著になる傾向がある。そこで、ガラス粉末組成中にアルカリ金属元素を含有させることにより、軟化点を低下させた波長変換部材が提案されている(例えば、特許文献4参照)。当該波長変換部材は、比較的低温での焼成により製造可能なため、焼成時における無機蛍光体粉末の劣化を抑制することができる。   However, the wavelength conversion member has a problem in that the inorganic phosphor powder deteriorates due to firing at the time of manufacture, and the luminance easily deteriorates. In particular, in applications such as general lighting and special lighting, since high color rendering properties are required, it is necessary to use inorganic phosphor powder with relatively low heat resistance such as red and green, and the deterioration of inorganic phosphor powder is remarkable. Tend to be. Then, the wavelength conversion member which reduced the softening point by containing an alkali metal element in a glass powder composition is proposed (for example, refer patent document 4). Since the wavelength conversion member can be manufactured by firing at a relatively low temperature, deterioration of the inorganic phosphor powder during firing can be suppressed.

特開2000−208815号公報JP 2000-208815 A 特開2003−258308号公報JP 2003-258308 A 特許第4895541号公報Japanese Patent No. 4895541 特開2007−302858号公報JP 2007-302858 A

しかしながら、ガラスマトリクス中にアルカリ金属元素を含む前記波長変換部材は、発光強度が経時的に低下しやすいという問題がある。近年のLEDやLD等の光源のさらなる出力増大に伴って、発光強度の経時的な低下はますます顕著になっている。   However, the wavelength conversion member containing an alkali metal element in the glass matrix has a problem that the emission intensity tends to decrease with time. With the further increase in output of light sources such as LEDs and LDs in recent years, the decrease in light emission intensity over time has become more prominent.

そこで、本発明は、LEDやLDの光を照射した場合に、経時的な発光強度の低下の少ない波長変換部材を提供することを目的とする。   Therefore, an object of the present invention is to provide a wavelength conversion member with little decrease in light emission intensity over time when irradiated with light from an LED or LD.

本発明の波長変換部材は、(a)ガラス組成として、アルカリ金属元素及び多価元素を含有するガラス粉末と、(b)無機蛍光体粉末と、を含有する混合粉末の焼結体からなることを特徴とする。本発明において、「多価元素」とは、複数の価数を取り得る元素をいう。   The wavelength conversion member of the present invention is composed of a sintered body of a mixed powder containing (a) a glass powder containing an alkali metal element and a polyvalent element and (b) an inorganic phosphor powder as a glass composition. It is characterized by. In the present invention, the “multivalent element” refers to an element that can take a plurality of valences.

既述の通り、ガラスマトリクス中にアルカリ金属元素を含む波長変換部材に高出力のLEDやLDの光を照射すると、経時的に発光強度が低下する傾向がある。原因の詳細につき、本発明者らは以下のように推察している。   As described above, when the wavelength conversion member containing an alkali metal element in the glass matrix is irradiated with light from a high-power LED or LD, the emission intensity tends to decrease with time. About the details of the cause, the present inventors infer as follows.

組成中にアルカリ金属元素を含有するガラスマトリクスに励起光が照射されると、励起光のエネルギーによりガラスマトリクス中の酸素イオンの最外殻に存在する電子が励起され、酸素イオンから離れて一部はガラスマトリクス中のアルカリイオンと結合して、着色中心を形成する(ここで、アルカリイオンが抜けた後には空孔が形成される)。一方、電子が抜けることにより生成した正孔は、ガラスマトリクス中を移動し、一部はアルカリイオンが抜けた後に形成された空孔に捕えられて着色中心を形成する。ガラスマトリクス中に形成されたこれらの着色中心が、励起光や蛍光の吸収源となり、波長変換部材の発光強度が低下すると考えられる。   When a glass matrix containing an alkali metal element in the composition is irradiated with excitation light, the electrons existing in the outermost shell of oxygen ions in the glass matrix are excited by the energy of the excitation light and partly away from the oxygen ions. Binds to alkali ions in the glass matrix to form a colored center (here, vacancies are formed after the alkali ions are released). On the other hand, the holes generated by the escape of electrons move in the glass matrix, and a part of the holes are captured by the vacancies formed after the escape of alkali ions to form a colored center. It is considered that these colored centers formed in the glass matrix serve as an absorption source of excitation light and fluorescence, and the emission intensity of the wavelength conversion member decreases.

そこで、上記の現象を抑制するために、本発明の波長変換部材は、ガラス組成中に多価元素を含有している。上述の正孔を捕らえた着色中心の近傍に価数変化しやすい多価元素のイオンが存在すると、多価元素イオンは正孔に電子を与え、当該正孔を消滅させる。ここで、電子を捕らえた着色中心が多価元素イオンの近傍に存在すると、多価元素イオンは、着色中心から電子を奪うことによって始めの電子状態に戻る。結局、多価元素イオンは電子のキャリヤーとして、電子を捕えた着色中心から電子を奪い、電子の不足する着色中心に当該電子を与えることによって、電子と正孔の再結合を行うものと考えられる。結果として、ガラスマトリクス中に発生した電子と正孔が、ガラスマトリクス中のアルカリイオンや空孔へ作用することが抑制され、波長変換部材の経時的な発光強度の低下を抑制することが可能になる。   Then, in order to suppress said phenomenon, the wavelength conversion member of this invention contains the polyvalent element in a glass composition. When there is an ion of a polyvalent element that easily changes in valence near the colored center that captures the hole, the polyvalent element ion gives an electron to the hole and extinguishes the hole. Here, when the coloring center that has captured the electron exists in the vicinity of the polyvalent element ion, the polyvalent element ion returns to the initial electronic state by taking the electron from the colored center. Eventually, it is thought that the polyvalent element ions recombine electrons and holes as electron carriers by taking the electrons from the coloring centers that have captured the electrons and giving them to the coloring centers that are lacking electrons. . As a result, the electrons and holes generated in the glass matrix are prevented from acting on alkali ions and vacancies in the glass matrix, and it is possible to suppress a decrease in emission intensity of the wavelength conversion member over time. Become.

本発明の波長変換部材において、前記多価元素が、Ce、As、Mo及びWから選択される少なくとも1種であることが好ましい。   In the wavelength conversion member of the present invention, it is preferable that the polyvalent element is at least one selected from Ce, As, Mo, and W.

本発明の波長変換部材において、前記ガラス粉末が、下記酸化物換算のモル%で、LiO+NaO+KO 0.1〜35%を含有することが好ましい。 In the wavelength conversion member of the present invention, it is preferable that the glass powder contains 0.1 to 35% of Li 2 O + Na 2 O + K 2 O in mol% in terms of the following oxide.

本発明の波長変換部材において、前記ガラス粉末が、下記酸化物換算のモル%で、CeO+As+MoO+WO 0.001〜10%を含有することが好ましい。 In the wavelength conversion member of the present invention, it is preferable that the glass powder contains CeO 2 + As 2 O 3 + MoO 2 + WO 3 0.001 to 10% in mol% in terms of the following oxide.

本発明の波長変換部材において、前記ガラス粉末が、下記酸化物換算のモル%で、SiO 30〜80%、B 1〜40%、LiO+NaO+KO 0.1〜35%、MgO+CaO+SrO+BaO 0.1〜45%、及び、CeO+As+MoO+WO 0.001〜10%を含有することが好ましい。 In the wavelength converting member of the present invention, the glass powder, as represented by mol% terms of oxide, SiO 2 30~80%, B 2 O 3 1~40%, Li 2 O + Na 2 O + K 2 O 0.1~35 %, MgO + CaO + SrO + BaO 0.1 to 45%, and CeO 2 + As 2 O 3 + MoO 2 + WO 3 0.001 to 10% are preferably contained.

本発明の波長変換部材において、前記ガラス粉末が、下記酸化物換算のモル%で、SiO 30〜80%、B 1〜55%、LiO 0〜20%、NaO 0〜25%、KO 0〜25%、LiO+NaO+KO 0.1〜35%、及び、CeO+As+MoO+WO 0.001〜10%を含有することが好ましい。 In the wavelength converting member of the present invention, the glass powder, as represented by mol% terms of oxide, SiO 2 30~80%, B 2 O 3 1~55%, Li 2 O 0~20%, Na 2 O 0 ~25%, K 2 O 0~25% , Li 2 O + Na 2 O + K 2 O 0.1~35%, and preferably contains CeO 2 + As 2 O 3 + MoO 2 + WO 3 0.001~10% .

本発明の波長変換部材において、前記無機蛍光体粉末が、窒化物蛍光体、酸窒化物蛍光体、酸化物蛍光体、硫化物蛍光体、酸硫化物蛍光体、ハロゲン化物蛍光体及びアルミン酸塩蛍光体から選択される少なくとも1種であることが好ましい。   In the wavelength conversion member of the present invention, the inorganic phosphor powder includes a nitride phosphor, an oxynitride phosphor, an oxide phosphor, a sulfide phosphor, an oxysulfide phosphor, a halide phosphor, and an aluminate. It is preferably at least one selected from phosphors.

本発明の波長変換部材は、ガラス組成として、アルカリ金属元素及び多価元素を含有するガラス粉末の焼結体からなるマトリクス中に、無機蛍光体粉末が分散してなることを特徴とする。   The wavelength conversion member of the present invention is characterized in that the inorganic phosphor powder is dispersed in a matrix composed of a sintered body of glass powder containing an alkali metal element and a polyvalent element as a glass composition.

本発明の発光デバイスは、前記いずれかの波長変換部材、及び、前記波長変換部材に励起光を照射する光源を備えてなることを特徴とする。   The light-emitting device of the present invention includes any one of the wavelength conversion members and a light source that irradiates the wavelength conversion member with excitation light.

本発明によれば、LEDやLDの光を照射した場合に、経時的な発光強度の低下の少ない波長変換部材を提供することが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, when irradiating the light of LED or LD, it becomes possible to provide the wavelength conversion member with little fall of emitted light intensity with time.

本発明の発光デバイスの一実施形態を示す模式図である。It is a schematic diagram which shows one Embodiment of the light-emitting device of this invention.

本発明の波長変換部材は、(a)ガラス組成として、アルカリ金属元素及び多価元素を含有するガラス粉末と、(b)無機蛍光体粉末と、を含有する混合粉末の焼結体からなることを特徴とする。以下に、各構成成分について詳細に説明する。   The wavelength conversion member of the present invention is composed of a sintered body of a mixed powder containing (a) a glass powder containing an alkali metal element and a polyvalent element and (b) an inorganic phosphor powder as a glass composition. It is characterized by. Below, each component is demonstrated in detail.

ガラス粉末は、本発明の波長変換部材において、無機蛍光体粉末を安定に保持するための媒体としての役割がある。ここで、ガラス粉末の組成によって、焼成時における無機蛍光体粉末との反応性に差が出るため、使用する無機蛍光体粉末に適したガラス組成を選択することが好ましい。   The glass powder serves as a medium for stably holding the inorganic phosphor powder in the wavelength conversion member of the present invention. Here, since the reactivity with the inorganic phosphor powder during firing varies depending on the composition of the glass powder, it is preferable to select a glass composition suitable for the inorganic phosphor powder to be used.

ガラス粉末は、軟化点を低下させることを目的として、ガラス組成としてアルカリ金属元素(Li、Na及びKから選択される少なくとも1種)を含有している。具体的には、ガラス粉末は、下記酸化物換算のモル%で、LiO+NaO+KOを0.1〜35%を含有することが好ましく、1〜25%含有することがより好ましく、2〜20%含有することがさらに好ましい。LiO+NaO+KOの含有量が少なすぎると、上記効果が得られにくくなり、一方、多すぎると、化学耐久性が低下しやすくなる。なお、後述するように、LiO、NaO及びKOの含有量は、ガラス組成系に応じて、適宜適切な範囲を設定することが好ましい。 The glass powder contains an alkali metal element (at least one selected from Li, Na and K) as a glass composition for the purpose of lowering the softening point. Specifically, the glass powder preferably contains 0.1 to 35%, more preferably 1 to 25% of Li 2 O + Na 2 O + K 2 O in mol% in terms of the following oxides. It is more preferable to contain 2 to 20%. If the content of Li 2 O + Na 2 O + K 2 O is too small, the above effect is difficult to obtain. On the other hand, if the content is too large, the chemical durability tends to decrease. In addition, as will be described later, it is preferable that the contents of Li 2 O, Na 2 O, and K 2 O are appropriately set in accordance with the glass composition system.

また、ガラス粉末は多価元素を含有することにより、波長変換部材の経時的な発光強度の低下を抑制することができる。多価元素としては、Ce、As、Mo及びWから選択される少なくとも1種が挙げられる。特に、Ceは経時的な発光強度の低下を顕著に抑制でき、さらに、ガラス粉末自体も着色しにくいため好ましい。   Moreover, the glass powder can contain a polyvalent element, thereby suppressing a decrease in light emission intensity over time of the wavelength conversion member. Examples of the multivalent element include at least one selected from Ce, As, Mo, and W. In particular, Ce is preferable because it can remarkably suppress a decrease in emission intensity over time, and the glass powder itself is difficult to be colored.

ガラス粉末は、下記酸化物換算のモル%で、CeO+As+MoO+WOを0.001〜10%含有することが好ましく、0.01〜5%含有することがより好ましく、0.1〜3%含有することがさらに好ましい。CeO+As+MoO+WOの含有量が少なすぎると、上記効果が得られにくくなり、一方、多すぎると、ガラス粉末自体が着色して発光強度が低下する傾向がある。なお、各多価元素の含有量も、それぞれ上記範囲とすることが好ましい。 The glass powder preferably contains 0.001 to 10%, more preferably 0.01 to 5% of CeO 2 + As 2 O 3 + MoO 2 + WO 3 in mol% in terms of the following oxide. More preferably, the content is 1 to 3%. If the content of CeO 2 + As 2 O 3 + MoO 2 + WO 3 is too small, the above effect is difficult to obtain. On the other hand, if the content is too large, the glass powder itself is colored and the emission intensity tends to decrease. In addition, it is preferable that content of each polyvalent element is also made into the said range, respectively.

また、ガラス粉末は、SiO、B、P、Bi及びTeOから選択される少なくとも1種を10〜99モル%含有するものが好ましい。具体的には、SiO−B−RO(RはMg、Ca、Sr及びBaから選択される少なくとも1種)−R’O(R’はLi、Na及びKから選択される少なくとも1種)系ガラス、SnO−P−R’O系ガラス、SiO−B−R’O系ガラス、SiO−B−ZnO−R’O系ガラス等が挙げられる。 Furthermore, glass powder, SiO 2, B 2 O 3 , P 2 O 5, Bi 2 O 3 and at least one member selected from the TeO 2 those containing 10 to 99 mol% are preferred. Specifically, SiO 2 —B 2 O 3 —RO (R is at least one selected from Mg, Ca, Sr and Ba) —R ′ 2 O (R ′ is selected from Li, Na and K) At least one) glass, SnO—P 2 O 5 —R ′ 2 O glass, SiO 2 —B 2 O 3 —R ′ 2 O glass, SiO 2 —B 2 O 3 —ZnO—R ′ 2 O System glass and the like.

SiO−B−RO−R’O系ガラスとしては、例えば、下記酸化物換算のモル%で、SiO 30〜80%、B 1〜40%、LiO+NaO+KO 0.1〜35%、MgO+CaO+SrO+BaO 0.1〜45%、及び、CeO+As+MoO+WO 0.001〜10%を含有するものが好ましい。ガラス組成をこのように限定した理由を以下に説明する。 The SiO 2 -B 2 O 3 -RO- R '2 O -based glass, for example, in mol% terms of oxide, SiO 2 30~80%, B 2 O 3 1~40%, Li 2 O + Na 2 Those containing O + K 2 O 0.1-35%, MgO + CaO + SrO + BaO 0.1-45% and CeO 2 + As 2 O 3 + MoO 2 + WO 3 0.001-10% are preferred. The reason for limiting the glass composition in this way will be described below.

SiOはガラスネットワークを形成する成分である。SiOの含有量は30〜80%であることが好ましく、40〜60%であることがより好ましい。SiOの含有量が少なすぎると、化学的耐久性が低下する傾向にある。一方、SiOの含有量が多すぎると、軟化点が高くなることから、十分に焼結させるために高温焼成が必要となる。その結果、焼成時に無機蛍光体粉末が劣化しやすくなる。 SiO 2 is a component that forms a glass network. The content of SiO 2 is preferably 30 to 80%, and more preferably 40 to 60%. When the content of SiO 2 is too small, chemical durability tends to decrease. On the other hand, if the content of SiO 2 is too large, the softening point becomes high, so that high-temperature firing is necessary for sufficient sintering. As a result, the inorganic phosphor powder tends to deteriorate during firing.

は溶融温度を低下させて溶融性を改善する効果が大きい成分である。Bの含有量は1〜40%であることが好ましく、5〜30%であることがより好ましい。Bの含有量が少なすぎると、上記効果が得られにくくなる。一方、Bの含有量が多すぎると、化学的耐久性が低下する傾向にある。 B 2 O 3 is a component having a great effect of improving the meltability by lowering the melting temperature. The content of B 2 O 3 is preferably 1 to 40%, and more preferably 5 to 30%. If the content of B 2 O 3 is too small, the effect is difficult to obtain. On the other hand, when the content of B 2 O 3 is too large, chemical durability tends to decrease.

LiO、NaO及びKOは軟化点を低下させる成分である。LiO、NaO及びKOの含有量(合量)は0.1〜35%であることが好ましく、1〜25%であることがより好ましく、2〜20%であることがさらに好ましい。これら成分の含有量が少なすぎると、軟化点が低下しにくくなり、一方、これら成分が多すぎると、化学耐久性や耐候性が低下しやすくなる。 Li 2 O, Na 2 O and K 2 O are components that lower the softening point. The content (total amount) of Li 2 O, Na 2 O and K 2 O is preferably 0.1 to 35%, more preferably 1 to 25%, and more preferably 2 to 20%. Further preferred. If the content of these components is too small, the softening point is difficult to decrease, whereas if the content of these components is too large, chemical durability and weather resistance are likely to decrease.

なお、LiO、NaO及びKOの各成分の含有量の好ましい範囲は以下の通りである。LiOの含有量は0〜10%であることが好ましく、0.1〜5%であることがより好ましい。NaOの含有量は0〜15%であることが好ましく、0.1〜10%であることがより好ましい。KOの含有量は0〜15%であることが好ましく、0.1〜10%であることがより好ましい。 Incidentally, Li 2 O, the preferred range of the content of each component of Na 2 O and K 2 O is as follows. The content of Li 2 O is preferably 0 to 10%, and more preferably 0.1 to 5%. The content of Na 2 O is preferably 0 to 15%, and more preferably 0.1 to 10%. The content of K 2 O is preferably 0 to 15%, and more preferably 0.1 to 10%.

MgO、CaO、SrO及びBaOは溶融温度を低下させて溶融性を改善する成分である。なお、BaOには無機蛍光体粉末との反応を抑制する効果もある。MgO、CaO、SrO及びBaOの含有量(合量)は0.1〜45%であることが好ましく、1〜40%であることがより好ましく、2〜35%であることがさらに好ましい。これらの成分の含有量が少なすぎると、上記効果が得られにくくなり、一方、多すぎると、化学的耐久性が低下する傾向にある。   MgO, CaO, SrO and BaO are components that improve the meltability by lowering the melting temperature. BaO also has an effect of suppressing the reaction with the inorganic phosphor powder. The content (total amount) of MgO, CaO, SrO and BaO is preferably 0.1 to 45%, more preferably 1 to 40%, and further preferably 2 to 35%. If the content of these components is too small, it is difficult to obtain the above effect, while if too much, the chemical durability tends to decrease.

なお、MgO、CaO、SrO及びBaOの各成分の含有量の好ましい範囲は以下の通りである。MgOの含有量は0〜10%であることが好ましく、0〜5%であることがより好ましい。CaOの含有量は0〜30%であることが好ましく、0〜20%であることがより好ましい。SrOの含有量は0〜20%であることが好ましく、0〜10%であることがより好ましい。BaOの含有量は0〜40%であることが好ましく、0.1〜30%であることがより好ましい。   In addition, the preferable range of content of each component of MgO, CaO, SrO, and BaO is as follows. The content of MgO is preferably 0 to 10%, and more preferably 0 to 5%. The content of CaO is preferably 0 to 30%, and more preferably 0 to 20%. The content of SrO is preferably 0 to 20%, and more preferably 0 to 10%. The content of BaO is preferably 0 to 40%, and more preferably 0.1 to 30%.

CeO、As、MoO、WOの合量及び個別の含有量については、上述の通りである。 The total amount and individual content of CeO 2 , As 2 O 3 , MoO 2 , and WO 3 are as described above.

ガラス粉末には、上記成分以外にも下記の成分を含有させることができる。   In addition to the above components, the glass powder may contain the following components.

Alは化学的耐久性を向上させる成分である。Alの含有量は0〜20%であることが好ましく、1〜18%であることがより好ましい。Alの含有量が多すぎると、溶融性が低下する傾向がある。 Al 2 O 3 is a component that improves chemical durability. The content of Al 2 O 3 is preferably 0 to 20%, and more preferably 1 to 18%. When the content of Al 2 O 3 is too large, there is a tendency that the melting is lowered.

ZnOは溶融温度を低下させて溶融性を改善する成分である。ZnOの含有量は0〜20%であることが好ましく、0.1〜10%であることがより好ましい。ZnOの含有量が多すぎると、化学的耐久性が低下しやすくなる。   ZnO is a component that improves the meltability by lowering the melting temperature. The content of ZnO is preferably 0 to 20%, and more preferably 0.1 to 10%. When there is too much content of ZnO, chemical durability will fall easily.

また、化学的耐久性の向上等を目的として、Ta、TiO、Nb、Gd、La、Y、BiまたはZrOをそれぞれ15%まで含有させてもよい。 For the purpose of improving chemical durability, Ta 2 O 5 , TiO 2 , Nb 2 O 5 , Gd 2 O 3 , La 2 O 3 , Y 2 O 3 , Bi 2 O 3 or ZrO 2 is used. You may make it contain to 15%.

SnO−P−R’O系ガラスとしては、例えば、モル%で、SnO 35〜80%、P 5〜40%、B 0〜30%、LiO+NaO+KO 0.1〜5%、及び、CeO+As+MoO+WO 0.001〜10%を含有するものが好ましい。ガラス組成をこのように限定した理由を以下に説明する。 The SnO-P 2 O 5 -R ' 2 O -based glass, for example, in mol%, SnO 35~80%, P 2 O 5 5~40%, B 2 O 3 0~30%, Li 2 O + Na 2 O + K 2 O 0.1~5%, and those containing CeO 2 + as 2 O 3 + MoO 2 + WO 3 0.001~10% is preferred. The reason for limiting the glass composition in this way will be described below.

SnOはガラスネットワークを形成するとともに、軟化点を低下させる成分である。SnOの含有量は35〜80%であることが好ましく、45〜75%であることがより好ましい。SnOの含有量が少なすぎると、軟化点が高くなったり、耐候性が低下する傾向がある。一方、SnOの含有量が多すぎると、Snに起因する失透物が析出して透過率が低下する傾向にあり、結果として、波長変換部材の発光強度が低下しやすくなる。また、ガラス化しにくくなる。   SnO is a component that forms a glass network and lowers the softening point. The SnO content is preferably 35 to 80%, and more preferably 45 to 75%. When there is too little content of SnO, there exists a tendency for a softening point to become high or for a weather resistance to fall. On the other hand, when there is too much content of SnO, the devitrification thing resulting from Sn will precipitate and it will exist in the tendency for the transmittance | permeability to fall, As a result, the emitted light intensity of a wavelength conversion member will fall easily. Moreover, it becomes difficult to vitrify.

はガラスネットワークを形成する成分である。Pの含有量は5〜40%であることが好ましく、10〜30%であることがより好ましい。Pの含有量が少なすぎると、ガラス化しにくくなる。一方、Pの含有量が多すぎると、軟化点が高くなったり、耐候性が著しく低下したりする傾向がある。 P 2 O 5 is a component that forms a glass network. The content of P 2 O 5 is preferably 5 to 40%, and more preferably 10 to 30%. When the content of P 2 O 5 is too small, it is difficult to vitrify. On the other hand, when the content of P 2 O 5 is too large, or higher the softening point tends to weather resistance is remarkably lowered.

は耐候性を向上させるとともに、分相を促進する成分である。また、ガラスを安定化させる効果もある。Bの含有量は0〜30%であることが好ましく、1〜25%であることがより好ましい。Bの含有量が多すぎると、耐候性が低下しやすくなる。また、軟化点が高くなりすぎる傾向がある。 B 2 O 3 is a component that improves weather resistance and promotes phase separation. It also has the effect of stabilizing the glass. The content of B 2 O 3 is preferably 0 to 30%, and more preferably 1 to 25%. If the B 2 O 3 content is too large, the weather resistance tends to lower. Also, the softening point tends to be too high.

LiO、NaO及びKOは軟化点を低下させる成分である。LiO、NaO及びKOの含有量(合量)は0.1〜5%であることが好ましく、1〜4%であることがより好ましい。これら成分の含有量が少なすぎると、軟化点が低下しにくくなる。一方、これら成分が多すぎると、化学耐久性が低下しやすくなる。また、分相性が大きくなりすぎて、光散乱ロスが大きくなる傾向がある。LiO、NaO及びKOの各成分の含有量は、それぞれ好ましくは0〜5%、より好ましくは0.1〜4%、さらに好ましくは1〜4%である。 Li 2 O, Na 2 O and K 2 O are components that lower the softening point. The content (total amount) of Li 2 O, Na 2 O and K 2 O is preferably 0.1 to 5%, and more preferably 1 to 4%. When there is too little content of these components, it will become difficult to reduce a softening point. On the other hand, when there are too many these components, chemical durability will fall easily. In addition, the phase separation becomes too large, and the light scattering loss tends to increase. The content of each component of Li 2 O, Na 2 O and K 2 O is preferably 0 to 5%, more preferably 0.1 to 4%, and still more preferably 1 to 4%.

CeO、As、MoO、WOの合量及び個別の含有量については、上述の通りである。 The total amount and individual content of CeO 2 , As 2 O 3 , MoO 2 , and WO 3 are as described above.

また上記成分以外にも、溶融性を向上させたり、軟化点を低下させて低温焼成しやすくするために、MgO、CaO、SrOまたはBaOを合量で5%まで含有させることができる。他にも、化学的耐久性の向上等を目的として、Al、ZrO、ZnO、Ta、TiO、Nb、Gd、Bi、TeOまたはLaをそれぞれ15%まで含有させてもよい。 In addition to the above components, MgO, CaO, SrO or BaO can be contained in a total amount of up to 5% in order to improve the meltability or lower the softening point to facilitate low temperature firing. In addition, for the purpose of improving chemical durability, etc., Al 2 O 3 , ZrO 2 , ZnO, Ta 2 O 5 , TiO 2 , Nb 2 O 5 , Gd 2 O 3 , Bi 2 O 3 , TeO 2 are used. or La 2 O 3 may be contained up to 15%, respectively.

SiO−B−R’O系ガラスとしては、例えば、モル%で、SiO 30〜80%、B 1〜55%、LiO 0〜20%、NaO 0〜25%、KO 0〜25%、LiO+NaO+KO 0.1〜35%、及び、CeO+As+MoO+WO 0.001〜10%を含有するものが好ましい。 Examples of the SiO 2 —B 2 O 3 —R ′ 2 O glass include mol%, SiO 2 30 to 80%, B 2 O 3 1 to 55%, Li 2 O 0 to 20%, and Na 2 O. 0~25%, K 2 O 0~25% , Li 2 O + Na 2 O + K 2 O 0.1~35%, and those containing 0.001~10% CeO 2 + as 2 O 3 + MoO 2 + WO 3 preferable.

また上記成分以外にも、溶融性を向上させるためにMgO、CaO、SrOおよびBaOを合量で30%まで含有させることができる。他にも、溶融性を向上させるためにZnOを10%まで、Pを5%まで、化学的耐久性を向上させるためにAlを10%まで、Ta、TiO、Nb、GdまたはLaをそれぞれ15%まで含有させてもよい。 In addition to the above components, MgO, CaO, SrO, and BaO can be added up to 30% in total in order to improve the meltability. In addition, ZnO can be up to 10% to improve the meltability, P 2 O 5 can be up to 5%, Al 2 O 3 can be up to 10% to improve chemical durability, Ta 2 O 5 , TiO. 2 , Nb 2 O 5 , Gd 2 O 3 or La 2 O 3 may be contained up to 15% each.

SiO−B−ZnO−R’O系ガラスとしては、例えば、モル%で、SiO 5〜50%、B 10〜55%、ZnO 30〜80%、LiO 0〜20%、NaO 0〜20%、KO 0〜20%、LiO+NaO+KO 0.1〜25%、MgO 0〜10%、CaO 0〜10%、SrO 0〜10%、BaO 0〜10%、及び、CeO+As+MoO+WO 0.001〜10%を含有するものが好ましい。 Examples of the SiO 2 —B 2 O 3 —ZnO—R ′ 2 O glass include mol%, SiO 2 5-50%, B 2 O 3 10-55%, ZnO 30-80%, Li 2 O. 0~20%, Na 2 O 0~20% , K 2 O 0~20%, Li 2 O + Na 2 O + K 2 O 0.1~25%, 0~10% MgO, CaO 0~10%, SrO 0~ 10%, BaO 0%, and those containing CeO 2 + as 2 O 3 + MoO 2 + WO 3 0.001~10% is preferred.

また上記成分以外にも、化学的耐久性を向上させるためにAlを5%まで、Ta、TiO、Nb、GdまたはLaをそれぞれ15%まで含有させてもよい。 In addition to the above components, in order to improve chemical durability, Al 2 O 3 is added up to 5%, Ta 2 O 5 , TiO 2 , Nb 2 O 5 , Gd 2 O 3 or La 2 O 3 is added to 15%. % May be included.

ガラス粉末の粒子径は特に限定されないが、例えば、最大粒子径D99が200μm以下(特に150μm以下、さらには105μm以下)、かつ、平均粒子径D50が0.1μm以上(特に1μm以上、さらには2μm以上)であることが好ましい。ガラス粉末の最大粒子径D99が大きすぎると、得られる波長変換部材において、励起光が散乱しにくくなり発光効率が低下しやすくなる。また、平均粒子径D50が小さすぎると、得られる波長変換部材において、励起光が過剰に散乱して発光効率が低下しやすくなる。 The particle size of the glass powder is not particularly limited, for example, the maximum particle diameter D 99 is 200μm or less (especially 150μm or less, more 105μm or less), and an average particle diameter D 50 of more than 0.1 [mu] m (in particular 1μm or more, further Is preferably 2 μm or more. If the maximum particle diameter D 99 of the glass powder is too large, in the wavelength conversion member obtained, luminous efficiency becomes excitation light is less likely to scatter tends to decrease. When the average particle diameter D 50 is too small, in the wavelength conversion member obtained, luminous efficiency tends to decrease with the excitation light is excessively scattered.

なお、本発明において、平均粒子径D50及び最大粒子径D99はレーザー回折法により測定した値を指す。 In the present invention, the average particle diameter D 50 and the maximum particle diameter D 99 indicate values measured by a laser diffraction method.

無機蛍光体粉末としては、一般に市場で入手できるものであれば特に限定されない。例えば、窒化物蛍光体粉末、酸窒化物蛍光体粉末、酸化物蛍光体粉末(YAG蛍光体粉末等のガーネット系蛍光体粉末を含む)、硫化物蛍光体粉末、酸硫化物蛍光体粉末、ハロゲン化物蛍光体粉末(ハロリン酸塩化物等)及びアルミン酸塩蛍光体粉末等が挙げられる。これらの無機蛍光体粉末のうち、窒化物蛍光体粉末、酸窒化物蛍光体粉末及び酸化物蛍光体粉末は耐熱性が高く、焼成時に比較的劣化しにくいため好ましい。なお、窒化物蛍光体粉末及び酸窒化物蛍光体粉末は、近紫外〜青の励起光を緑〜赤という幅広い波長領域に変換し、しかも発光強度も比較的高いという特徴を有している。そのため、窒化物蛍光体粉末及び酸窒化物蛍光体粉末は、特に白色LED素子用波長変換部材に用いられる無機蛍光体粉末として有効である。   The inorganic phosphor powder is not particularly limited as long as it is generally available on the market. For example, nitride phosphor powder, oxynitride phosphor powder, oxide phosphor powder (including garnet phosphor powder such as YAG phosphor powder), sulfide phosphor powder, oxysulfide phosphor powder, halogen Fluoride phosphor powder (halophosphate chloride, etc.) and aluminate phosphor powder. Of these inorganic phosphor powders, nitride phosphor powders, oxynitride phosphor powders and oxide phosphor powders are preferable because they have high heat resistance and are relatively unlikely to deteriorate during firing. The nitride phosphor powder and the oxynitride phosphor powder are characterized by converting near-ultraviolet to blue excitation light into a wide wavelength region from green to red and having a relatively high emission intensity. Therefore, the nitride phosphor powder and the oxynitride phosphor powder are particularly effective as inorganic phosphor powders used for the wavelength conversion member for white LED elements.

上記無機蛍光体粉末としては、波長300〜500nmに励起帯を有し波長380〜780nmに発光ピークを有するもの、特に青色(波長440〜480nm)、緑色(波長500〜540nm)、黄色(波長540〜595nm)または赤色(波長600〜700nm)に発光するものが挙げられる。   Examples of the inorganic phosphor powder include those having an excitation band at a wavelength of 300 to 500 nm and an emission peak at a wavelength of 380 to 780 nm, particularly blue (wavelength 440 to 480 nm), green (wavelength 500 to 540 nm), yellow (wavelength 540). ˜595 nm) or red light (wavelength 600 to 700 nm).

波長300〜440nmの紫外〜近紫外の励起光を照射すると青色の発光を発する無機蛍光体粉末としては、(Sr,Ba)MgAl1017:Eu2+、(Sr,Ba)MgSi:Eu2+等が挙げられる。 Examples of inorganic phosphor powder that emits blue light when irradiated with ultraviolet to near-ultraviolet excitation light having a wavelength of 300 to 440 nm include (Sr, Ba) MgAl 10 O 17 : Eu 2+ , (Sr, Ba) 3 MgSi 2 O 8. : Eu 2+ and the like.

波長300〜440nmの紫外〜近紫外の励起光を照射すると緑色の蛍光を発する無機蛍光体粉末としては、SrAl:Eu2+、SrBaSiO:Eu2+、Y(Al,Gd)12:Ce3+、SrSiO:Eu2+、BaMgAl1017:Eu2+,Mn2+、BaMgSi:Eu2+、BaSiO:Eu2+、BaLiSi:Eu2+、BaAl:Eu2+等が挙げられる。 As inorganic phosphor powders that emit green fluorescence when irradiated with ultraviolet to near-ultraviolet excitation light having a wavelength of 300 to 440 nm, SrAl 2 O 4 : Eu 2+ , SrBaSiO 4 : Eu 2+ , Y 3 (Al, Gd) 5 O 12 : Ce 3+ , SrSiO n : Eu 2+ , BaMgAl 10 O 17 : Eu 2+ , Mn 2+ , Ba 2 MgSi 2 O 7 : Eu 2+ , Ba 2 SiO 4 : Eu 2+ , Ba 2 Li 2 Si 2 O 7 : Eu 2+ , BaAl 2 O 4 : Eu 2+ and the like.

波長440〜480nmの青色の励起光を照射すると緑色の蛍光を発する無機蛍光体粉末としては、SrAl:Eu2+、SrBaSiO:Eu2+、Y(Al,Gd)12:Ce3+、SrSiOn:Eu2+、β−SiAlON:Eu2+等が挙げられる。 As inorganic phosphor powders that emit green fluorescence when irradiated with blue excitation light having a wavelength of 440 to 480 nm, SrAl 2 O 4 : Eu 2+ , SrBaSiO 4 : Eu 2+ , Y 3 (Al, Gd) 5 O 12 : Ce 3+ , SrSiOn: Eu 2+ , β-SiAlON: Eu 2+ and the like.

波長300〜440nmの紫外〜近紫外の励起光を照射すると黄色の蛍光を発する無機蛍光体粉末としては、LaSi11:Ce3+等が挙げられる。 Examples of the inorganic phosphor powder that emits yellow fluorescence when irradiated with excitation light having a wavelength of 300 to 440 nm include La 3 Si 6 N 11 : Ce 3+ .

波長440〜480nmの青色の励起光を照射すると黄色の蛍光を発する無機蛍光体粉末としては、Y(Al,Gd)12:Ce3+、SrSiO:Eu2+が挙げられる。 Examples of the inorganic phosphor powder that emits yellow fluorescence when irradiated with blue excitation light having a wavelength of 440 to 480 nm include Y 3 (Al, Gd) 5 O 12 : Ce 3+ and Sr 2 SiO 4 : Eu 2+ .

波長300〜440nmの紫外〜近紫外の励起光を照射すると赤色の蛍光を発する無機蛍光体粉末としては、CaGa:Mn2+、MgSrSi:Eu2+,Mn2+、CaMgSi:Eu2+,Mn2+等が挙げられる。 Inorganic phosphor powders that emit red fluorescence when irradiated with ultraviolet to near-ultraviolet excitation light having a wavelength of 300 to 440 nm include CaGa 2 S 4 : Mn 2+ , MgSr 3 Si 2 O 8 : Eu 2+ , Mn 2+ , Ca 2. MgSi 2 O 7: Eu 2+, Mn 2+ , and the like.

波長440〜480nmの青色の励起光を照射すると赤色の蛍光を発する無機蛍光体粉末としては、CaAlSiN:Eu2+、CaSiN:Eu2+、(Ca,Sr)Si:Eu2+、α−SiAlON:Eu2+等が挙げられる。 Inorganic phosphor powders that emit red fluorescence when irradiated with blue excitation light having a wavelength of 440 to 480 nm include CaAlSiN 3 : Eu 2+ , CaSiN 3 : Eu 2+ , (Ca, Sr) 2 Si 5 N 8 : Eu 2+ , α-SiAlON: Eu 2+ and the like can be mentioned.

なお、励起光や発光の波長域に合わせて、複数の無機蛍光体粉末を混合して用いてもよい。例えば、紫外域の励起光を照射して白色光を得る場合は、青色、緑色、黄色、赤色の蛍光を発する無機蛍光体粉末を混合して使用すればよい。   A plurality of inorganic phosphor powders may be mixed and used in accordance with the wavelength range of excitation light or light emission. For example, when white light is obtained by irradiation with ultraviolet excitation light, inorganic phosphor powders emitting blue, green, yellow, and red fluorescence may be mixed and used.

波長変換部材における無機蛍光体粉末の含有量が多すぎると、焼結しにくくなったり、気孔率が大きくなる傾向がある。その結果、得られる波長変換部材において、励起光が効率良く無機蛍光体粉末に照射されにくくなったり、機械強度が低下しやすくなる等の問題が生じる。一方、無機蛍光体粉末の含有量が少なすぎると、所望の発光強度を得ることが困難になる。このような観点から、波長変換部材における無機蛍光体粉末の含有量は、質量%で、好ましくは0.01〜50%、より好ましくは0.05〜40%、さらに好ましくは0.1〜30%の範囲で調整される。   When there is too much content of the inorganic fluorescent substance powder in a wavelength conversion member, it will become difficult to sinter or there exists a tendency for a porosity to become large. As a result, in the obtained wavelength conversion member, problems such as it becomes difficult for the excitation light to be efficiently irradiated onto the inorganic phosphor powder, and the mechanical strength tends to decrease. On the other hand, when there is too little content of inorganic fluorescent substance powder, it will become difficult to obtain desired luminescence intensity. From such a viewpoint, the content of the inorganic phosphor powder in the wavelength conversion member is mass%, preferably 0.01 to 50%, more preferably 0.05 to 40%, and still more preferably 0.1 to 30. % Is adjusted.

なお、波長変換部材において発生した蛍光を、励起光入射側へ反射させ、主に蛍光のみを外部に取り出すことを目的とした波長変換部材においては、上記の限りではなく、発光強度が最大になるように、無機蛍光体粉末の含有量を多くする(例えば、質量%で、50%〜80%、さらには55〜75%)ことができる。   Note that the wavelength conversion member for the purpose of reflecting the fluorescence generated in the wavelength conversion member to the excitation light incident side and mainly taking out only the fluorescence to the outside is not limited to the above, and the emission intensity is maximized. As described above, the content of the inorganic phosphor powder can be increased (for example, in mass%, 50% to 80%, and further 55 to 75%).

本発明の波長変換部材は、ガラス組成として、アルカリ金属元素及び多価元素を含有するガラス粉末の混合粉末を焼成することにより製造される。これにより、ガラス組成として、アルカリ金属元素及び多価元素を含有するガラス粉末の焼結体からなるマトリクス中に、無機蛍光体粉末が分散してなる波長変換部材が得られる。   The wavelength conversion member of this invention is manufactured by baking the mixed powder of the glass powder containing an alkali metal element and a polyvalent element as a glass composition. Thereby, the wavelength conversion member by which inorganic fluorescent substance powder disperse | distributes in the matrix which consists of a sintered compact of the glass powder containing an alkali metal element and a polyvalent element as a glass composition is obtained.

焼成温度は、ガラス粉末の軟化点±150℃以内、好ましくは±100℃以内の範囲で適宜調整される。焼成温度が低すぎると、ガラス粉末が十分に流動せず、緻密な焼結体が得られにくい。一方、焼成温度が高すぎると、無機蛍光体粉末がガラス粉末中に溶出して発光強度が低下するおそれがある。あるいは、無機蛍光体粉末に含まれる成分がガラス粉末中に拡散して着色し、発光強度が低下するおそれがある。   The firing temperature is appropriately adjusted within the softening point of the glass powder within ± 150 ° C, preferably within ± 100 ° C. If the firing temperature is too low, the glass powder does not flow sufficiently and it is difficult to obtain a dense sintered body. On the other hand, if the firing temperature is too high, the inorganic phosphor powder may elute into the glass powder and the emission intensity may decrease. Or the component contained in inorganic fluorescent substance powder may diffuse and color in glass powder, and there exists a possibility that emitted light intensity may fall.

なお、焼成は減圧雰囲気中で行うことが好ましい。具体的には、焼成雰囲気は、1.013×10Pa未満であることが好ましく、1000Pa以下であることがより好ましく、400Pa以下であることがさらに好ましい。それにより、波長変換部材中に残存する気泡の量を少なくすることができる。その結果、波長変換部材内の光散乱因子を少なくすることができ、発光効率を向上させることができる。なお、焼成工程全体を減圧雰囲気中で行ってもよいし、例えば焼成工程のみを減圧雰囲気中で行い、その前後の昇温工程や降温工程を、減圧雰囲気ではない雰囲気(例えば大気圧下)で行ってもよい。 Note that firing is preferably performed in a reduced-pressure atmosphere. Specifically, the firing atmosphere is preferably less than 1.013 × 10 5 Pa, more preferably 1000 Pa or less, and even more preferably 400 Pa or less. Thereby, the amount of bubbles remaining in the wavelength conversion member can be reduced. As a result, the light scattering factor in the wavelength conversion member can be reduced, and the luminous efficiency can be improved. In addition, you may perform the whole baking process in a pressure-reduced atmosphere, for example, only a baking process is performed in a pressure-reduced atmosphere, and the temperature raising process and temperature-falling process before and behind that are performed in the atmosphere (for example, atmospheric pressure) which is not a pressure-reduced atmosphere. You may go.

本発明の波長変換部材の形状は特に制限されず、例えば、板状、柱状、球状、半球状、半球ドーム状等、それ自身が特定の形状を有する部材だけでなく、ガラス基板やセラミック基板等の基材表面に形成された被膜状のものであってもよい。   The shape of the wavelength conversion member of the present invention is not particularly limited. For example, a plate shape, a column shape, a spherical shape, a hemispherical shape, a hemispherical dome shape, etc. It may be a film formed on the surface of the substrate.

図1に、本発明の発光デバイスの一実施形態を示す。図1に示すように、発光デバイス1は波長変換部材2及び光源3を備えてなる。光源3は、波長変換部材2に対して励起光Linを照射する。波長変換部材2に入射した励起光Linは、別の波長の光に変換され、光源3とは反対側からLoutとして出射する。この際、波長変換後の光と、波長変換されずに透過した励起光との合成光を出射させるようにしてもよい。 FIG. 1 shows an embodiment of a light emitting device of the present invention. As shown in FIG. 1, the light emitting device 1 includes a wavelength conversion member 2 and a light source 3. Light source 3 irradiates the excitation light L in respect to the wavelength conversion member 2. Excitation light L in incident to the wavelength conversion member 2 is converted into light of another wavelength, the light source 3 emits as L out from the opposite side. At this time, the combined light of the light after wavelength conversion and the excitation light transmitted without wavelength conversion may be emitted.

以下に、本発明を実施例に基づいて詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   Hereinafter, the present invention will be described in detail based on examples, but the present invention is not limited to these examples.

(1)ガラス粉末の作製
表1は本実施例で使用するガラス粉末の組成を示している。
(1) Production of glass powder Table 1 shows the composition of the glass powder used in this example.

まず、表1に示す組成となるように原料を調合した。原料を白金坩堝内において800〜1500℃の温度で1〜2時間溶融してガラス化し、溶融ガラスを一対の冷却ローラー間に流し出すことによりフィルム状に成形した。フィルム状のガラスをボールミルで粉砕した後、分級して平均粒子径D50が2.5μmのガラス粉末を得た。 First, the raw materials were prepared so as to have the composition shown in Table 1. The raw material was melted and vitrified in a platinum crucible at a temperature of 800 to 1500 ° C. for 1 to 2 hours, and the molten glass was cast between a pair of cooling rollers to form a film. After the film-shaped glass was pulverized by a ball mill, the average particle diameter D 50 and classified to obtain a glass powder 2.5 [mu] m.

各ガラス粉末の密度及び軟化点は、溶融ガラスを各測定に応じてブロック状または円柱状に成形し、アニールして得られた試料を用いて測定した。軟化点は、ファイバーエロンゲーション法を用い、粘度が107.6dPa・sとなる温度を採用した。密度はアルキメデス法より求めた。 The density and softening point of each glass powder were measured using a sample obtained by forming molten glass into a block shape or a cylindrical shape according to each measurement and annealing. For the softening point, a fiber elongation method was used, and a temperature at which the viscosity was 10 7.6 dPa · s was adopted. The density was determined by the Archimedes method.

(2)波長変換部材の作製
表2〜4は、本発明の実施例(試料No.2〜3、5〜6、8〜9、11〜12、14〜15、17〜18、20〜21、23〜24、26〜27)及び比較例(試料No.1、4、7、10、13、16、19、22、25)を示している。
(2) Production of Wavelength Conversion Member Tables 2 to 4 are examples of the present invention (Sample Nos. 2-3, 5-6, 8-9, 11-12, 14-15, 17-18, 20-21). 23-24, 26-27) and comparative examples (sample Nos. 1, 4, 7, 10, 13, 16, 19, 22, 25).

表1に記載のガラス粉末に対し、表2では、Y(Al,Gd)12:Ce3+(YAG)蛍光体粉末を、表3では、(Ca,Sr)Si:Eu2+(SCASN)蛍光体粉末を、表4では、α−SiAlON:Eu2+(α−SiAlON)蛍光体粉末を、所定量混合して混合粉末を得た。混合粉末を金型で加圧成型して直径1cmの円柱状予備成型体を作製した。予備成型体を表に記載の温度で焼成して得られた焼結体に加工を施すことにより、1.2mm角、厚さ0.2mmの波長変換部材を得た。得られた波長変換部材を発光波長445nmのLEDチップ上に載置し、700mAで通電して100時間連続照射を積分球内で行った。発光スペクトルは波長変換部材上面から発せられる光のエネルギー分布スペクトルを汎用の発光スペクトル測定装置を用いて測定した。得られた発光スペクトルに標準比視感度を掛け合わせることにより、全光束値を算出した。全光束値は照射前及び100時間照射後に算出した。全光束値の変化率は、100時間照射後の全光束値を、照射前の全光束値で除して、100を掛けた値(%)で表し、表2〜4に示した。 In Table 2, Y 3 (Al, Gd) 5 O 12 : Ce 3+ (YAG) phosphor powder is used in Table 2, and in Table 3, (Ca, Sr) 2 Si 5 N 8 : Eu 2+ (SCASN) phosphor powder, and in Table 4, a predetermined amount of α-SiAlON: Eu 2+ (α-SiAlON) phosphor powder was mixed to obtain a mixed powder. The mixed powder was pressure-molded with a mold to prepare a cylindrical preform with a diameter of 1 cm. By processing the sintered body obtained by firing the preform at a temperature shown in the table, a wavelength conversion member having a 1.2 mm square and a thickness of 0.2 mm was obtained. The obtained wavelength conversion member was placed on an LED chip having an emission wavelength of 445 nm, energized at 700 mA, and continuously irradiated for 100 hours in an integrating sphere. The emission spectrum was obtained by measuring the energy distribution spectrum of light emitted from the upper surface of the wavelength conversion member using a general-purpose emission spectrum measuring device. The total luminous flux value was calculated by multiplying the obtained emission spectrum by the standard relative luminous sensitivity. The total luminous flux value was calculated before irradiation and after irradiation for 100 hours. The change rate of the total luminous flux value is expressed as a value (%) obtained by dividing the total luminous flux value after irradiation for 100 hours by the total luminous flux value before irradiation and multiplying by 100, and is shown in Tables 2 to 4.

表2〜4から明らかなように、実施例の波長変換部材は、100時間の励起光照射後も全光束値はほとんど低下しなかった。一方、比較例の波長変換部材は、100時間の励起光照射後に全光束値が大きく低下した。   As is apparent from Tables 2 to 4, the total light flux values of the wavelength conversion members of the examples hardly decreased even after 100 hours of excitation light irradiation. On the other hand, in the wavelength conversion member of the comparative example, the total luminous flux value greatly decreased after 100 hours of excitation light irradiation.

本発明の波長変換部材は、白色LED等の一般照明や特殊照明(例えば、プロジェクター光源、自動車のヘッドランプ光源)等の構成部材として好適である。   The wavelength conversion member of the present invention is suitable as a structural member for general illumination such as white LEDs and special illumination (for example, a projector light source and a headlamp light source of an automobile).

1 発光デバイス
2 波長変換部材
3 光源
DESCRIPTION OF SYMBOLS 1 Light emitting device 2 Wavelength conversion member 3 Light source

Claims (8)

(a)ガラス組成として、アルカリ金属元素及びCe、As及びMoから選択される少なくとも1種の多価元素を含有するガラス粉末と、(b)無機蛍光体粉末と、を含有する混合粉末の焼結体からなることを特徴とする波長変換部材。 (A) As a glass composition, a mixed powder containing a glass powder containing an alkali metal element and at least one polyvalent element selected from Ce, As and Mo ; and (b) an inorganic phosphor powder. A wavelength conversion member comprising a bonded body. 前記ガラス粉末が、下記酸化物換算のモル%で、LiO+NaO+KO 0.1〜35%を含有することを特徴とする請求項1に記載の波長変換部材。 2. The wavelength conversion member according to claim 1, wherein the glass powder contains 0.1 to 35% of Li 2 O + Na 2 O + K 2 O in mol% in terms of the following oxide. 前記ガラス粉末が、下記酸化物換算のモル%で、CeO+As+MoO+WO 0.001〜10%を含有することを特徴とする請求項1又は2に記載の波長変換部材。 The glass powder, as represented by mol% terms of oxide, CeO 2 + As 2 O 3 + MoO 2 + wavelength converting member according to claim 1 or 2 WO 3, characterized in that it contains 0.001 to 10%. 前記ガラス粉末が、下記酸化物換算のモル%で、SiO 30〜80%、B 1〜40%、LiO+NaO+KO 0.1〜35%、MgO+CaO+SrO+BaO 0.1〜45%、及び、CeO+As+MoO+WO 0.001〜10%を含有することを特徴とする請求項1〜のいずれか一項に記載の波長変換部材。 The glass powder, as represented by mol% terms of oxide, SiO 2 30~80%, B 2 O 3 1~40%, Li 2 O + Na 2 O + K 2 O 0.1~35%, MgO + CaO + SrO + BaO 0.1~45 %, and, CeO 2 + as 2 O 3 + MoO 2 + wavelength converting member according to any one of claims 1 to 3, WO 3, characterized in that it contains 0.001 to 10%. 前記ガラス粉末が、下記酸化物換算のモル%で、SiO 30〜80%、B 1〜55%、LiO 0〜20%、NaO 0〜25%、KO 0〜25%、LiO+NaO+KO 0.1〜35%、及び、CeO+As+MoO+WO 0.001〜10%を含有することを特徴とする請求項1〜のいずれか一項に記載の波長変換部材。 The glass powder, as represented by mol% terms of oxide, SiO 2 30~80%, B 2 O 3 1~55%, Li 2 O 0~20%, Na 2 O 0~25%, K 2 O 0 ~25%, Li 2 O + Na 2 O + K 2 O 0.1~35%, and, according to claim 1-4, characterized in that it contains CeO 2 + as 2 O 3 + MoO 2 + WO 3 0.001~10% The wavelength conversion member as described in any one. 前記無機蛍光体粉末が、窒化物蛍光体、酸窒化物蛍光体、酸化物蛍光体、硫化物蛍光体、酸硫化物蛍光体、ハロゲン化物蛍光体及びアルミン酸塩蛍光体から選択される少なくとも1種であることを特徴とする請求項1〜のいずれか一項に記載の波長変換部材。 The inorganic phosphor powder is at least one selected from a nitride phosphor, an oxynitride phosphor, an oxide phosphor, a sulfide phosphor, an oxysulfide phosphor, a halide phosphor, and an aluminate phosphor. It is a seed | species, The wavelength conversion member as described in any one of Claims 1-5 characterized by the above-mentioned. ガラス組成として、アルカリ金属元素及びCe、As及びMoから選択される少なくとも1種の多価元素を含有するガラス粉末の焼結体からなるマトリクス中に、無機蛍光体粉末が分散してなることを特徴とする波長変換部材。 As a glass composition, the inorganic phosphor powder is dispersed in a matrix composed of a sintered body of glass powder containing an alkali metal element and at least one polyvalent element selected from Ce, As and Mo. A characteristic wavelength conversion member. 請求項またはに記載の波長変換部材、及び、前記波長変換部材に励起光を照射する光源を備えてなることを特徴とする発光デバイス。 Wavelength conversion member according to claim 6 or 7, and, the light emitting device characterized by including a light source for irradiating excitation light on the wavelength conversion member.
JP2013259849A 2013-12-17 2013-12-17 Wavelength conversion member and light emitting device Active JP6222452B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2013259849A JP6222452B2 (en) 2013-12-17 2013-12-17 Wavelength conversion member and light emitting device
KR1020167012094A KR102258536B1 (en) 2013-12-17 2014-12-01 Wavelength-conversion member and light-emitting device
PCT/JP2014/081720 WO2015093267A1 (en) 2013-12-17 2014-12-01 Wavelength-conversion member and light-emitting device
CN201480056307.1A CN105637659B (en) 2013-12-17 2014-12-01 Wavelength convert component and luminescent device
TW103143110A TWI628261B (en) 2013-12-17 2014-12-10 Wavelength conversion member and light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013259849A JP6222452B2 (en) 2013-12-17 2013-12-17 Wavelength conversion member and light emitting device

Publications (2)

Publication Number Publication Date
JP2015118970A JP2015118970A (en) 2015-06-25
JP6222452B2 true JP6222452B2 (en) 2017-11-01

Family

ID=53402617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013259849A Active JP6222452B2 (en) 2013-12-17 2013-12-17 Wavelength conversion member and light emitting device

Country Status (5)

Country Link
JP (1) JP6222452B2 (en)
KR (1) KR102258536B1 (en)
CN (1) CN105637659B (en)
TW (1) TWI628261B (en)
WO (1) WO2015093267A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI598540B (en) 2015-09-07 2017-09-11 台達電子工業股份有限公司 Wavelength converting module and light source module using the same
JP6906277B2 (en) * 2016-06-27 2021-07-21 日本電気硝子株式会社 Wavelength conversion member and light emitting device using it
JP7022367B2 (en) 2017-09-27 2022-02-18 日本電気硝子株式会社 Glass used as wavelength conversion material, wavelength conversion material, wavelength conversion member and light emitting device
CN109516694B (en) * 2018-11-07 2021-11-30 深圳市齐尚光科技有限公司 Fluorescent glass, preparation method thereof and light-emitting device
US20220153631A1 (en) * 2019-03-08 2022-05-19 Nippon Electric Glass Co., Ltd. Wavelength-conversion member and light-emitting device
CN113054082B (en) * 2019-12-27 2022-10-18 鑫虹光电有限公司 Fluorescent glass composite material, fluorescent glass substrate comprising same, and light conversion device
CN111574062B (en) * 2020-03-31 2022-10-18 温州大学 Nitride red-light glass and application thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW383508B (en) 1996-07-29 2000-03-01 Nichia Kagaku Kogyo Kk Light emitting device and display
JP4158012B2 (en) 2002-03-06 2008-10-01 日本電気硝子株式会社 Luminescent color conversion member
JP4895541B2 (en) 2005-07-08 2012-03-14 シャープ株式会社 Wavelength conversion member, light emitting device, and method of manufacturing wavelength conversion member
JP5483795B2 (en) 2006-04-11 2014-05-07 日本電気硝子株式会社 Luminescent color conversion material and luminescent color conversion member
JP5757238B2 (en) * 2009-07-27 2015-07-29 コニカミノルタ株式会社 Phosphor-dispersed glass and method for producing the same
JP2013055269A (en) * 2011-09-06 2013-03-21 Nippon Electric Glass Co Ltd Wavelength conversion member and light-emitting device
JP2014157856A (en) * 2013-02-14 2014-08-28 Asahi Glass Co Ltd Optical conversion member, and illumination light source having the same

Also Published As

Publication number Publication date
KR20160098176A (en) 2016-08-18
CN105637659A (en) 2016-06-01
KR102258536B1 (en) 2021-05-28
CN105637659B (en) 2018-10-19
WO2015093267A1 (en) 2015-06-25
TW201527487A (en) 2015-07-16
JP2015118970A (en) 2015-06-25
TWI628261B (en) 2018-07-01

Similar Documents

Publication Publication Date Title
CN109301057B (en) Wavelength conversion member and light emitting device using the same
JP6273799B2 (en) Glass used for wavelength conversion material, wavelength conversion material, wavelength conversion member, and light emitting device
JP6222452B2 (en) Wavelength conversion member and light emitting device
KR102588722B1 (en) Wavelength conversion member, and light emitting device using same
KR102588721B1 (en) Wavelength conversion member, and light emitting device using same
JP6425001B2 (en) Wavelength conversion material, wavelength conversion member and light emitting device
JP2014234487A (en) Wavelength conversion member and light-emitting device
JP6365828B2 (en) Glass used for wavelength conversion material, wavelength conversion material, wavelength conversion member, and light emitting device
JP2013055269A (en) Wavelength conversion member and light-emitting device
JP6004250B2 (en) Wavelength conversion member and light emitting device
JP6168284B2 (en) Wavelength conversion material, wavelength conversion member, and light emitting device
JP2013095849A (en) Wavelength conversion member and light emitting device using the same
JP2019019011A (en) Glass used for wavelength conversion material, wavelength conversion material, wavelength conversion member and light-emitting device
JP6617948B2 (en) Wavelength conversion member and light emitting device
JP2018002492A (en) Wavelength conversion member and light-emitting device using the same
JP6861952B2 (en) Wavelength conversion member and light emitting device using it
JP2020045255A (en) Powder material for wavelength conversion member
JP7205808B2 (en) WAVELENGTH CONVERSION MEMBER AND LIGHT-EMITTING DEVICE USING THE SAME
JP7382013B2 (en) Wavelength conversion member and light emitting device using the same
JP2022063277A (en) Glass for use in wavelength conversion material, wavelength conversion material, wavelength conversion member, and light-emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170919

R150 Certificate of patent or registration of utility model

Ref document number: 6222452

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150