JP2022063277A - Glass for use in wavelength conversion material, wavelength conversion material, wavelength conversion member, and light-emitting device - Google Patents

Glass for use in wavelength conversion material, wavelength conversion material, wavelength conversion member, and light-emitting device Download PDF

Info

Publication number
JP2022063277A
JP2022063277A JP2022014850A JP2022014850A JP2022063277A JP 2022063277 A JP2022063277 A JP 2022063277A JP 2022014850 A JP2022014850 A JP 2022014850A JP 2022014850 A JP2022014850 A JP 2022014850A JP 2022063277 A JP2022063277 A JP 2022063277A
Authority
JP
Japan
Prior art keywords
wavelength conversion
glass
phosphor
conversion member
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2022014850A
Other languages
Japanese (ja)
Other versions
JP7339609B2 (en
Inventor
高宏 俣野
Takahiro Matano
民雄 安東
Tamio Ando
佳久 高山
Yoshihisa Takayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017185994A external-priority patent/JP7022367B2/en
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2022014850A priority Critical patent/JP7339609B2/en
Publication of JP2022063277A publication Critical patent/JP2022063277A/en
Application granted granted Critical
Publication of JP7339609B2 publication Critical patent/JP7339609B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a glass which can be used in a wavelength conversion material containing a phosphor, is less likely to undergo the deterioration in properties of the phosphor upon firing in the production of a wavelength conversion member, and makes it possible to produce a wavelength conversion member having excellent weather resistance.
SOLUTION: A glass can be used in a wavelength conversion material, and is characterized by containing, in mass%, 30 to 75% of SiO2, 1 to 30% of B2O3, more than 4% and up to 20% of Al2O3, 0.1 to 10% of Li2O, 0% and less than 9% of Na2O+K2O, and 0 to 10% of MgO+CaO+SrO+BaO+ZnO.
SELECTED DRAWING: Figure 1
COPYRIGHT: (C)2022,JPO&INPIT

Description

本発明は、発光ダイオード(LED:Light Emitting Diode)やレーザーダイオード(LD:Laser Diode)等の発する光の波長を別の波長に変換する波長変換部材を作製するために用いられるガラスに関するものである。 The present invention relates to a glass used for manufacturing a wavelength conversion member that converts the wavelength of light emitted by a light emitting diode (LED: Light Emitting Diode), a laser diode (LD: Laser Diode), or the like into another wavelength. ..

近年、蛍光ランプや白熱灯に変わる次世代の光源として、LEDやLDを用いた光源等に対する注目が高まってきている。そのような次世代光源の一例として、例えば特許文献1には、青色光を出射するLED上に、LEDからの光の一部を吸収して黄色光に変換する波長変換部材が配置された光源が開示されている。この光源は、LEDから出射された青色光と、波長変換部材から出射された黄色光との合成光である白色光を発する。 In recent years, as a next-generation light source that replaces fluorescent lamps and incandescent lamps, attention has been increasing to light sources using LEDs and LDs. As an example of such a next-generation light source, for example, in Patent Document 1, a light source in which a wavelength conversion member that absorbs a part of light from an LED and converts it into yellow light is arranged on an LED that emits blue light. Is disclosed. This light source emits white light, which is a composite light of blue light emitted from an LED and yellow light emitted from a wavelength conversion member.

波長変換部材としては、従来、樹脂マトリクス中に蛍光体を分散させたものが用いられている。しかしながら、当該波長変換部材を用いた場合、LEDからの光により樹脂が劣化し、光源の輝度が低くなりやすいという問題がある。特に、LEDや蛍光体が発する熱や高エネルギーの短波長(紫外)光によってモールド樹脂が劣化し、変色や変形を起こすという問題がある。 Conventionally, as the wavelength conversion member, a member in which a phosphor is dispersed in a resin matrix has been used. However, when the wavelength conversion member is used, there is a problem that the resin is deteriorated by the light from the LED and the brightness of the light source tends to be lowered. In particular, there is a problem that the mold resin is deteriorated by the heat generated by the LED or the phosphor and the high-energy short-wavelength (ultraviolet) light, causing discoloration or deformation.

そこで、樹脂に代えてガラスマトリクス中に蛍光体を分散固定した完全無機固体からなる波長変換部材が提案されている(例えば、特許文献2及び3参照)。当該波長変換部材は、母材となるガラスがLEDチップの熱や照射光により劣化しにくく、変色や変形といった問題が生じにくいという特徴を有している。 Therefore, a wavelength conversion member made of a completely inorganic solid in which a phosphor is dispersed and fixed in a glass matrix instead of a resin has been proposed (see, for example, Patent Documents 2 and 3). The wavelength conversion member has a feature that the glass as a base material is less likely to be deteriorated by the heat of the LED chip or the irradiation light, and problems such as discoloration and deformation are less likely to occur.

特開2000-208815号公報Japanese Unexamined Patent Publication No. 2000-208815 特開2003-258308号公報Japanese Unexamined Patent Publication No. 2003-258308 特許第4895541号公報Japanese Patent No. 4895541

上記波長変換部材は、製造時の焼成により蛍光体が劣化し、輝度劣化しやすいという問題がある。特に、一般照明、特殊照明等の用途においては、高い演色性が求められるため、比較的耐熱性の低い赤色蛍光体を使用する必要があり、蛍光体の劣化が顕著になる傾向がある。 The wavelength conversion member has a problem that the phosphor is deteriorated by firing at the time of manufacturing and the brightness is easily deteriorated. In particular, in applications such as general lighting and special lighting, high color rendering properties are required, so it is necessary to use a red phosphor having relatively low heat resistance, and the deterioration of the phosphor tends to be remarkable.

一方、上記問題を解決するために、低温焼結が可能な低軟化点ガラスを使用すると、得られる波長変換部材の耐侯性に劣るため、波長変換部材としての用途が限定されるという問題がある。 On the other hand, if low softening point glass capable of low temperature sintering is used in order to solve the above problem, there is a problem that the use as the wavelength conversion member is limited because the weather resistance of the obtained wavelength conversion member is inferior. ..

したがって、本発明は、蛍光体を含有する波長変換材料に用いられるガラスであって、波長変換部材製造時における焼成による蛍光体の特性劣化が少なく、かつ、耐侯性に優れた波長変換部材を作製することが可能なガラスを提供することを目的とする。 Therefore, the present invention is a glass used as a wavelength conversion material containing a phosphor, and a wavelength conversion member having less deterioration in the characteristics of the phosphor due to firing during manufacturing of the wavelength conversion member and having excellent weather resistance is produced. The purpose is to provide a glass that can be made.

本発明のガラスは、波長変換材料に用いられるガラスであって、質量%で、SiO 30~75%、B 1~30%、Al 4超~20%、LiO 0.1~10%、NaO+KO 0~9%未満、MgO+CaO+SrO+BaO+ZnO 0~10%を含有することを特徴とする。ここで、「NaO+KO」は、NaO及びKOの各含有量の合量を意味し、「MgO+CaO+SrO+BaO+ZnO」はMgO、CaO、SrO、BaO及びZnOの各含有量の合量を意味する。 The glass of the present invention is a glass used as a wavelength conversion material, and in terms of mass%, SiO 2 30 to 75%, B 2 O 3 1 to 30%, Al 2 O 3 4 or more to 20%, Li 2 O. It is characterized by containing 0.1 to 10%, Na 2 O + K 2 O 0 to less than 9%, and MgO + CaO + SrO + BaO + ZnO 0 to 10%. Here, "Na 2 O + K 2 O" means the total amount of each content of Na 2 O and K 2 O, and "MgO + CaO + SrO + BaO + ZnO" means the total amount of each content of MgO, CaO, SrO, BaO and ZnO. Means.

本発明のガラスは、上記の通りLiOを0.1質量%以上含有するため、低軟化点を達成しやすい。そのため、低温焼結が可能となり、蛍光体粉末の熱劣化を抑制できる。またSiOを30質量%以上含有するため、上記ガラスは耐候性にも優れており、波長変換部材の経時劣化が進行しにくい。さらに、紫外域の透過率を高めるSiOの含有量を30質量%以上、紫外域の透過率を低下させるアルカリ成分の含有量を19質量%未満に規制することにより紫外域において高い光透過率を達成できる。 Since the glass of the present invention contains Li 2 O in an amount of 0.1% by mass or more as described above, it is easy to achieve a low softening point. Therefore, low-temperature sintering is possible, and thermal deterioration of the fluorophore powder can be suppressed. Further, since the glass contains 30% by mass or more of SiO 2 , the glass has excellent weather resistance, and the wavelength conversion member is less likely to deteriorate with time. Furthermore, by limiting the content of SiO 2 that enhances the transmittance in the ultraviolet region to 30% by mass or more and the content of the alkaline component that reduces the transmittance in the ultraviolet region to less than 19% by mass, the light transmittance is high in the ultraviolet region. Can be achieved.

本発明のガラスは、鉛成分、ヒ素成分を実質的に含有しないことが好ましい。 The glass of the present invention preferably contains substantially no lead component or arsenic component.

鉛成分、ヒ素成分は環境負荷物質であるため、ガラス粉末がこれらの成分を実質的に含有しない構成とすることにより、環境上好ましい波長変換部材とすることができる。なお、「実質的に含有しない」とは、意図的にガラス中に含有させないという意味であり、不可避的不純物まで完全に排除することを意味するものではない。客観的には、不純物を含めたこれらの成分の含有量が、質量%で、各々0.05%未満であることを意味する。 Since the lead component and the arsenic component are environmentally hazardous substances, the glass powder can be an environmentally preferable wavelength conversion member by having a structure that does not substantially contain these components. In addition, "substantially not contained" means that the glass is intentionally not contained, and does not mean that unavoidable impurities are completely eliminated. Objectively, it means that the content of these components including impurities is less than 0.05% by mass, respectively.

本発明のガラスは、さらに、質量%で、ZrO 0~10%、F 0~5%を含有することが好ましい。 The glass of the present invention further preferably contains ZrO 20 to 10% and F 20 to 5% by mass.

本発明のガラスは、軟化点が750℃以下であることが好ましい。 The glass of the present invention preferably has a softening point of 750 ° C. or lower.

本発明のガラスは、着色度λ80が400nm以下であることが好ましい。 The glass of the present invention preferably has a coloring degree λ 80 of 400 nm or less.

なお、本発明において、着色度λ80とは、厚み10mmの試料を用いて測定した光透過率曲線において、光透過率が80%となる最短波長をいう。 In the present invention, the degree of coloration λ 80 means the shortest wavelength at which the light transmittance is 80% in the light transmittance curve measured using a sample having a thickness of 10 mm.

本発明のガラスは粉末状であることが好ましい。 The glass of the present invention is preferably in the form of powder.

本発明の波長変換材料は、上記ガラスと、蛍光体とを含有することを特徴とする。 The wavelength conversion material of the present invention is characterized by containing the above glass and a phosphor.

本発明の波長変換材料は、蛍光体が、窒化物蛍光体、酸窒化物蛍光体、酸化物蛍光体、硫化物蛍光体、酸硫化物蛍光体、ハロゲン化物蛍光体、アルミン酸塩蛍光体、バリウムマグネシウムアルミネート系蛍光体、ハロリン酸カルシウム系蛍光体、アルカリ土類クロロボレート系蛍光体、アルカリ土類アルミネート系蛍光体、アルカリ土類シリコンオキシナイトライド系蛍光体、アルカリ土類マグネシウムシリケート系蛍光体、アルカリ土類シリコンナイトライド系蛍光体及び希土類オキシカルユゲナイト系蛍光体から選択される1種以上であることが好ましい。 In the wavelength conversion material of the present invention, the fluorescent substance is a nitride fluorescent substance, an oxynitride phosphor, an oxide fluorescent substance, a sulfide fluorescent substance, an acid sulfide fluorescent substance, a halide fluorescent substance, an aluminate fluorescent substance, and the like. Barium magnesium aluminate-based fluorescent material, calcium halophosphate-based fluorescent material, alkaline earth chlorobolate-based fluorescent material, alkaline earth aluminate-based fluorescent material, alkaline earth silicon oxynitride-based fluorescent material, alkaline earth magnesium silicate-based fluorescent material It is preferably one or more selected from the body, alkaline earth silicon nitride type fluorescent material and rare earth oxycalyugenite type fluorescent material.

本発明の波長変換部材は、前記波長変換材料の焼結体からなることを特徴とする。 The wavelength conversion member of the present invention is characterized by being made of a sintered body of the wavelength conversion material.

本発明の波長変換部材は、ガラスマトリクス中に蛍光体が分散してなる波長変換部材であって、ガラスマトリクスが、質量%で、SiO 30~75%、B 1~30%、Al 4超~20%、LiO 0.1~10%、NaO+KO 0~9%未満、MgO+CaO+SrO+BaO+ZnO 0~10%を含有することを特徴とする。 The wavelength conversion member of the present invention is a wavelength conversion member in which a phosphor is dispersed in a glass matrix, and the glass matrix has a mass% of SiO 2 30 to 75%, B 2 O 3 1 to 30%, and the like. It is characterized by containing Al 2 O 34 more than 20%, Li 2 O 0.1 to 10%, Na 2 O + K 2 O 0 to less than 9%, and MgO + CaO + SrO + BaO + ZnO 0 to 10%.

本発明の発光デバイスは、上記波長変換部材、及び、波長変換部材に励起光を照射する光源を備えることを特徴とする。 The light emitting device of the present invention is characterized by comprising the wavelength conversion member and a light source for irradiating the wavelength conversion member with excitation light.

本発明によれば、蛍光体を含有する波長変換材料に用いられるガラスであって、波長変換部材製造時における焼成による蛍光体の特性劣化が少なく、かつ、耐侯性に優れた波長変換部材を作製することが可能なガラスを提供することができる。 According to the present invention, a glass used as a wavelength conversion material containing a phosphor, which has little deterioration in the characteristics of the phosphor due to firing during manufacturing of the wavelength conversion member and has excellent weather resistance, is produced. It is possible to provide a glass that can be used.

本発明の一実施形態に係る発光デバイスの模式的側面図である。It is a schematic side view of the light emitting device which concerns on one Embodiment of this invention.

本発明のガラスは、波長変換材料に用いられるものであり、質量%で、SiO 30~75%、B 1~30%、Al 4超~20%、LiO 0.1~10%、NaO+KO 0~9%未満、MgO+CaO+SrO+BaO+ZnO 0~10%を含有する。当該組成を含有するガラスであれば、低温焼成が可能なため、蛍光体とともに焼成した場合に、蛍光体が劣化しにくく、かつ、蛍光体と反応しにくいという特徴がある。また、当該ガラスを用いて得られた波長変換部材は、耐候性、紫外域の光透過率に優れているため、当該波長変換部材を用いた発光デバイスの設計の自由度を広げることができ、かつ、高信頼性の発光デバイスが作製可能である。 The glass of the present invention is used as a wavelength conversion material, and in mass%, SiO 2 30 to 75%, B 2 O 3 1 to 30%, Al 2 O 3 4 or more to 20%, Li 2 O 0. .1 to 10%, Na 2 O + K 2 O 0 to less than 9%, MgO + CaO + SrO + BaO + ZnO 0 to 10%. Since glass containing the composition can be fired at a low temperature, the fluorescent substance is less likely to deteriorate and react with the phosphor when fired together with the phosphor. Further, since the wavelength conversion member obtained by using the glass is excellent in weather resistance and light transmittance in the ultraviolet region, the degree of freedom in designing a light emitting device using the wavelength conversion member can be expanded. Moreover, a highly reliable light emitting device can be manufactured.

以下に、上記のようにガラス組成範囲を限定した理由を説明する。なお、以下の各成分の含有量に関する説明において、特に断りがない限り、「%」は「質量%」を意味する。 The reason for limiting the glass composition range as described above will be described below. In the following description of the content of each component, "%" means "mass%" unless otherwise specified.

SiOは、ガラスネットワークを形成する成分であり、また紫外域~可視域の光透過率を顕著に高める成分である。特に高屈折率のガラスの場合は、光透過率を高める効果が得られやすい。また、耐候性を向上させる成分でもある。SiOの含有量は30~75%であり、35~70%、40~65%、45~62.5%、特に45~60%であることが好ましい。SiOの含有量が少なすぎると、上記効果が得られにくくなる。一方、SiOの含有量が多すぎると、焼結温度が高温になり、焼成時に蛍光体が劣化しやすくなる。 SiO 2 is a component that forms a glass network, and is a component that remarkably enhances the light transmittance in the ultraviolet region to the visible region. Especially in the case of glass having a high refractive index, the effect of increasing the light transmittance can be easily obtained. It is also a component that improves weather resistance. The content of SiO 2 is 30 to 75%, preferably 35 to 70%, 40 to 65%, 45 to 62.5%, and particularly preferably 45 to 60%. If the content of SiO 2 is too small, it becomes difficult to obtain the above effect. On the other hand, if the content of SiO 2 is too large, the sintering temperature becomes high, and the phosphor tends to deteriorate during firing.

は、ガラスネットワークを形成する成分であり、また紫外域~可視域の光透過率を高める成分である。特に高屈折率のガラスの場合は、光透過率を高める効果が得られやすい。Bの含有量は1~30%であり、1.5~27.5%、2~25%、特に2.5~20%であることが好ましい。Bの含有量が少なすぎると、上記効果が得られにくくなる。一方、Bの含有量が多すぎると、焼結温度が高温になり、焼成時に蛍光体が劣化しやすくなる。 B 2 O 3 is a component that forms a glass network and is a component that enhances the light transmittance in the ultraviolet to visible range. Especially in the case of glass having a high refractive index, the effect of increasing the light transmittance can be easily obtained. The content of B 2 O 3 is 1 to 30%, preferably 1.5 to 27.5%, 2 to 25%, and particularly preferably 2.5 to 20%. If the content of B 2 O 3 is too small, it becomes difficult to obtain the above effect. On the other hand, if the content of B 2 O 3 is too large, the sintering temperature becomes high and the phosphor tends to deteriorate during firing.

Alは、ガラスネットワークを形成する成分であり、また紫外域~可視域の光透過率を高める成分である。特に高屈折率のガラスの場合は、光透過率を高める効果が得られやすい。Alの含有量は4超~20%であり、5~18%、6~16%、特に7~14%であることが好ましい。Alの含有量が少なすぎると、上記効果が得られにくくなる。一方、Alの含有量が多すぎると、焼結温度が高温になり、焼成時に蛍光体が劣化しやすくなる。 Al 2 O 3 is a component that forms a glass network and is a component that enhances the light transmittance in the ultraviolet to visible range. Especially in the case of glass having a high refractive index, the effect of increasing the light transmittance can be easily obtained. The content of Al 2 O 3 is more than 4 to 20%, preferably 5 to 18%, 6 to 16%, and particularly preferably 7 to 14%. If the content of Al 2 O 3 is too small, it becomes difficult to obtain the above effect. On the other hand, if the content of Al 2 O 3 is too large, the sintering temperature becomes high and the phosphor tends to deteriorate during firing.

LiOは、軟化点を顕著に低下させる成分である。LiOの含有量は、0.1~10%であり、0.5~7.5%、特に1~5%であることが好ましい。LiOの含有量が少なすぎると、上記効果が得られにくくなる。一方、LiOの含有量が多すぎると、耐候性や屈折率が低下しやすくなったり、光透過率が低下しやすくなる。 Li 2 O is a component that significantly lowers the softening point. The content of Li 2 O is 0.1 to 10%, preferably 0.5 to 7.5%, particularly preferably 1 to 5%. If the content of Li 2 O is too small, it becomes difficult to obtain the above effect. On the other hand, if the content of Li 2 O is too large, the weather resistance and the refractive index tend to decrease, and the light transmittance tends to decrease.

NaO及びKOは、軟化点を低下させる成分である。NaO+KOの含有量は0~9%未満、0.5~8%、特に1~7%であることが好ましい。NaO+KOの含有量が多すぎると、耐候性や屈折率が低下しやすくなったり、光透過率が低下しやすくなる。 Na 2 O and K 2 O are components that lower the softening point. The content of Na 2 O + K 2 O is preferably 0 to less than 9%, 0.5 to 8%, and particularly preferably 1 to 7%. If the content of Na 2 O + K 2 O is too large, the weather resistance and the refractive index tend to decrease, and the light transmittance tends to decrease.

なお、NaO及びKOの含有量の範囲は以下の通りである。 The range of Na 2 O and K 2 O contents is as follows.

NaOの含有量は、0~9%未満、0.5~7.5%、特に1~5%であることが好ましい。 The content of Na 2 O is preferably 0 to less than 9%, 0.5 to 7.5%, and particularly preferably 1 to 5%.

Oの含有量は、0~9%未満、0.5~7.5%、特に1~5%であることが好ましい。 The content of K2O is preferably 0 to less than 9%, 0.5 to 7.5%, and particularly preferably 1 to 5%.

MgO、CaO、SrO、BaO及びZnOは、融剤として作用する成分である。また、失透を抑制したり、耐候性を向上させる効果もある。MgO+CaO+SrO+BaO+ZnOの含有量は0~10%であり、0.1~9%、0.5~8%、1~7%、1.5~6%、特に2~5%であることが好ましい。MgO+CaO+SrO+BaO+ZnOの含有量が多すぎると、成形時や焼結時に失透しやすくなる。また、光透過率が低下しやすくなる。 MgO, CaO, SrO, BaO and ZnO are components that act as a flux. It also has the effect of suppressing devitrification and improving weather resistance. The content of MgO + CaO + SrO + BaO + ZnO is 0 to 10%, preferably 0.1 to 9%, 0.5 to 8%, 1 to 7%, 1.5 to 6%, and particularly preferably 2 to 5%. If the content of MgO + CaO + SrO + BaO + ZnO is too large, devitrification is likely to occur during molding or sintering. In addition, the light transmittance tends to decrease.

なお、MgO、CaO、SrO、BaO及びZnOの含有量の範囲は以下の通りである。 The range of the contents of MgO, CaO, SrO, BaO and ZnO is as follows.

MgOの含有量は0~10%、0.1~9%、0.5~8%、1~7%、1.5~6%、特に2~5%であることが好ましい。 The content of MgO is preferably 0 to 10%, 0.1 to 9%, 0.5 to 8%, 1 to 7%, 1.5 to 6%, and particularly preferably 2 to 5%.

CaOの含有量は0~10%、0.1~9%、0.5~8%、1~7%、1.5~6%、特に2~5%であることが好ましい。 The CaO content is preferably 0 to 10%, 0.1 to 9%, 0.5 to 8%, 1 to 7%, 1.5 to 6%, and particularly preferably 2 to 5%.

SrOの含有量は0~10%、0.1~9%、0.5~8%、1~7%、1.5~6%、特に2~5%であることが好ましい。 The content of SrO is preferably 0 to 10%, 0.1 to 9%, 0.5 to 8%, 1 to 7%, 1.5 to 6%, and particularly preferably 2 to 5%.

BaOの含有量は0~10%、0.1~9%、0.5~8%、1~7%、1.5~6%、特に2~5%であることが好ましい。 The content of BaO is preferably 0 to 10%, 0.1 to 9%, 0.5 to 8%, 1 to 7%, 1.5 to 6%, and particularly preferably 2 to 5%.

ZnOの含有量は0~10%、0.1~9%、0.5~8%、1~7%、1.5~6%、特に2~5%であることが好ましい。 The ZnO content is preferably 0 to 10%, 0.1 to 9%, 0.5 to 8%, 1 to 7%, 1.5 to 6%, and particularly preferably 2 to 5%.

本発明のガラスには、上記成分以外にも下記の成分を含有させることができる。 The glass of the present invention may contain the following components in addition to the above components.

ZrOは、耐候性を向上させる成分であり、また屈折率を高める成分である。ZrOの含有量は、0~10%、0.1~7.5%、0.25~5%、特に0.5~3%であることが好ましい。ZrOの含有量が多すぎると、軟化点が上昇しやすくなり、また耐失透性が悪化し液相粘度が低下しやすくなる。 ZrO 2 is a component that improves weather resistance and a component that enhances the refractive index. The content of ZrO 2 is preferably 0 to 10%, 0.1 to 7.5%, 0.25 to 5%, and particularly preferably 0.5 to 3%. If the content of ZrO 2 is too large, the softening point tends to increase, the devitrification resistance deteriorates, and the liquidus viscosity tends to decrease.

は、軟化点を低下させる成分である。また、紫外域の光透過率を顕著に高める成分である。Fの含有量は0~5%、0.1~4.5%、特に0.3~4%であることが好ましい。Fの含有量が多すぎると、耐候性、耐失透性が悪化しやすくなる。 F 2 is a component that lowers the softening point. In addition, it is a component that remarkably enhances the light transmittance in the ultraviolet region. The content of F 2 is preferably 0 to 5%, 0.1 to 4.5%, and particularly preferably 0.3 to 4%. If the content of F 2 is too large, the weather resistance and devitrification resistance tend to deteriorate.

Nbは、耐候性を向上させる成分であり、また屈折率を高める成分である。Nbの含有量は、0~20%、0.1~15%、0.5~10%、特に1~5%であることが好ましい。Nbの含有量が多すぎると、軟化点が上昇しやすくなり、また光透過率が低下しやすくなる。 Nb 2 O 5 is a component that improves weather resistance and a component that enhances the refractive index. The content of Nb 2 O 5 is preferably 0 to 20%, 0.1 to 15%, 0.5 to 10%, and particularly preferably 1 to 5%. If the content of Nb 2 O 5 is too large, the softening point tends to increase and the light transmittance tends to decrease.

Laは、高屈折率特性を得るために特に有効な成分である。Laの含有量は、0~20%、0.1~15%、0.5~10%、特に1~5%であることが好ましい。Laの含有量が多すぎると、軟化点が上昇しやすくなり、また耐失透性が悪化し液相粘度が低下しやすくなる。 La 2 O 3 is a particularly effective component for obtaining high refractive index characteristics. The content of La 2 O 3 is preferably 0 to 20%, 0.1 to 15%, 0.5 to 10%, and particularly preferably 1 to 5%. If the content of La 2 O 3 is too large, the softening point tends to increase, the devitrification resistance deteriorates, and the liquidus viscosity tends to decrease.

WOは、屈折率を高める成分である。WOの含有量は、0~20%、0.1~15%、0.5~10%、特に1~5%であることが好ましい。WOの含有量が多すぎると、軟化点が上昇しやすくなり、また光透過率が低下しやすくなる。 WO 3 is a component that increases the refractive index. The content of WO 3 is preferably 0 to 20%, 0.1 to 15%, 0.5 to 10%, and particularly preferably 1 to 5%. If the content of WO 3 is too large, the softening point tends to increase and the light transmittance tends to decrease.

は、屈折率を高め、また耐候性を向上させる効果がある。Yの含有量は、0~5%、0~4%、0~3%、特に0.1~2%であることが好ましい。Yの含有量が多すぎると、ガラスが着色し光透過率が低下したり、また液相粘度が低下しやすくなる。 Y 2 O 3 has the effect of increasing the refractive index and improving the weather resistance. The content of Y 2 O 3 is preferably 0 to 5%, 0 to 4%, 0 to 3%, and particularly preferably 0.1 to 2%. If the content of Y2O3 is too large , the glass is colored and the light transmittance is lowered, and the liquidus viscosity is likely to be lowered.

TiOは、不純物としてFe成分がガラス中に多く含まれる場合(例えば20ppm以上)は、光透過率を顕著に低下させる傾向があり、また軟化点が上昇しやすくなる。従って、TiOの含有量は、1%以下、0.5%以下、特に0.1%以下であることが好ましい。 When TiO 2 contains a large amount of Fe component as an impurity in the glass (for example, 20 ppm or more), the light transmittance tends to be remarkably lowered, and the softening point tends to increase. Therefore, the content of TiO 2 is preferably 1% or less, 0.5% or less, and particularly preferably 0.1% or less.

鉛成分(PbO等)、ヒ素成分(As等)は、環境上の理由から、実質的なガラスへの導入は避けることが好ましい。従って、これらの成分は実質的に含有しないことが好ましい。 For environmental reasons, it is preferable to avoid introducing lead components (PbO, etc.) and arsenic components (As 2 O 3 , etc.) into glass. Therefore, it is preferable that these components are not substantially contained.

本発明のガラスの軟化点は750℃以下、748℃以下、特に745℃以下であることが好ましい。軟化点が高すぎると、本発明のガラスと蛍光体を含有する波長変換材料の焼結温度が高くなるため、焼成時に蛍光体が劣化しやすくなる。なお、軟化点の下限は特に限定されないが、低すぎると耐候性が悪化しやすくなる。そのため、軟化点は400℃以上であることが好ましく、450℃以上であることがより好ましく、500℃以上であることがさらに好ましい。 The softening point of the glass of the present invention is preferably 750 ° C. or lower, 748 ° C. or lower, and particularly preferably 745 ° C. or lower. If the softening point is too high, the sintering temperature of the wavelength conversion material containing the glass and the phosphor of the present invention becomes high, so that the phosphor is likely to deteriorate during firing. The lower limit of the softening point is not particularly limited, but if it is too low, the weather resistance tends to deteriorate. Therefore, the softening point is preferably 400 ° C. or higher, more preferably 450 ° C. or higher, and even more preferably 500 ° C. or higher.

本発明のガラスの着色度λ80は400nm以下、380nm以下、特に360nm以下であることが好ましい。着色度λ80が大きすぎると、紫外域~可視域における光透過率に劣る傾向がある。結果として、蛍光体粉末に照射される励起光量が低下したり、波長変換部材から所望の色合いの出射光が得られにくくなる。 The degree of coloration λ 80 of the glass of the present invention is preferably 400 nm or less, 380 nm or less, and particularly preferably 360 nm or less. If the degree of coloring λ 80 is too large, the light transmittance in the ultraviolet region to the visible region tends to be inferior. As a result, the amount of excitation light irradiated to the phosphor powder is reduced, and it becomes difficult to obtain emitted light having a desired hue from the wavelength conversion member.

本発明のガラスの熱膨張係数(30~300℃)は30×10-7~120×10-7/℃、40×10-7~110×10-7/℃、特に50×10-7~100×10-7/℃であることが好ましい。熱膨張係数が低すぎる、或いは高すぎると、波長変換部材を固定するための基材や、波長変換部材と基材を接着するための接着材との熱膨張係数が整合しなくなって、高温下での使用時にクラックが発生しやすくなる。 The coefficient of thermal expansion (30 to 300 ° C.) of the glass of the present invention is 30 × 10-7 to 120 × 10-7 / ° C, 40 × 10-7 to 110 × 10-7 / ° C, especially 50 × 10-7 to It is preferably 100 × 10 -7 / ° C. If the coefficient of thermal expansion is too low or too high, the coefficient of thermal expansion of the base material for fixing the wavelength conversion member and the adhesive material for adhering the wavelength conversion member and the base material will not match, and the temperature will be high. Cracks are likely to occur when used in.

なお一般に、蛍光体はガラスよりも屈折率が高い場合が多い。波長変換部材において、蛍光体とガラスマトリクスの屈折率差が大きいと、蛍光体とガラスマトリクスの界面で励起光が散乱されやすくなる。その結果、蛍光体に対する励起光の照射効率が高くなり、発光効率が向上しやすくなる。ただし、蛍光体とガラスマトリクスの屈折率差が大きすぎると、励起光の散乱が過剰になり、散乱損失となって逆に発光効率が低下する傾向がある。以上に鑑み、本発明のガラスの屈折率(nd)は、1.4~1.8、より好ましくは1.42~1.75、さらに好ましくは1.45~1.7である。なお、蛍光体とガラスマトリクスの屈折率差は0.001~0.5程度であることが好ましい。 In general, a fluorescent substance often has a higher refractive index than glass. In the wavelength conversion member, if the difference in refractive index between the phosphor and the glass matrix is large, the excitation light is likely to be scattered at the interface between the phosphor and the glass matrix. As a result, the irradiation efficiency of the excitation light to the phosphor is increased, and the luminous efficiency is likely to be improved. However, if the difference in refractive index between the phosphor and the glass matrix is too large, the excitation light is excessively scattered, resulting in scattering loss and conversely, the luminous efficiency tends to decrease. In view of the above, the refractive index (nd) of the glass of the present invention is 1.4 to 1.8, more preferably 1.42 to 1.75, and even more preferably 1.45 to 1.7. The difference in refractive index between the phosphor and the glass matrix is preferably about 0.001 to 0.5.

次に、本発明のガラスの製造方法の一例について説明する。 Next, an example of the method for producing glass of the present invention will be described.

まず、所望の組成になるようにガラス原料を調合した後、ガラス溶融炉で溶融する。均質なガラスを得るため、溶融温度は1150℃以上、1200℃以上、特に1250℃以上であることが好ましい。なお溶融容器を構成する白金金属からのPt溶け込みによるガラス着色を防止する観点から、溶融温度は1450℃以下、1400℃以下、1350℃以下、特に1300℃以下であることが好ましい。 First, a glass raw material is prepared so as to have a desired composition, and then melted in a glass melting furnace. In order to obtain a homogeneous glass, the melting temperature is preferably 1150 ° C. or higher, 1200 ° C. or higher, and particularly preferably 1250 ° C. or higher. From the viewpoint of preventing glass coloring due to Pt melting from the platinum metal constituting the melting container, the melting temperature is preferably 1450 ° C. or lower, 1400 ° C. or lower, 1350 ° C. or lower, and particularly preferably 1300 ° C. or lower.

また溶融時間が短すぎると、均質なガラスが得られない可能性があるので、溶融時間は30分以上、特に1時間以上であることが好ましい。ただし溶融容器からのPt溶け込みによるガラス着色を防止する観点から、溶融時間は8時間以内、特に5時間以内であることが好ましい。 Further, if the melting time is too short, a homogeneous glass may not be obtained. Therefore, the melting time is preferably 30 minutes or more, particularly preferably 1 hour or more. However, from the viewpoint of preventing glass coloring due to Pt melting from the melting container, the melting time is preferably 8 hours or less, particularly preferably 5 hours or less.

溶融ガラスは型に流し出して板状に成形してもよいし、一対の冷却ローラー間に流し出してフィルム状に成形してもよい。ガラス粉末を得る場合は、板状またはフィルム状に成形したガラスをボールミル等で粉砕する。 The molten glass may be poured into a mold and formed into a plate shape, or may be poured between a pair of cooling rollers and formed into a film shape. To obtain glass powder, glass formed into a plate or film is crushed with a ball mill or the like.

粉末状のガラスであれば、粉末状の蛍光体と混合して焼成することで、ガラスマトリクス中に均一に蛍光体が分散した波長変換部材を容易に作製することが可能となる。 In the case of powdery glass, by mixing it with a powdery phosphor and firing it, it becomes possible to easily produce a wavelength conversion member in which the phosphor is uniformly dispersed in the glass matrix.

本発明のガラスが粉末状(すなわち、ガラス粉末)である場合、その粒度は特に限定されないが、例えば、最大粒子径Dmaxが200μm以下(特に150μm以下、さらには105μm以下)、かつ、平均粒子径D50が0.1μm以上(特に1μm以上、さらには2μm以上)であることが好ましい。ガラス粉末の最大粒子径Dmaxが大きすぎると、得られる波長変換部材において、励起光が散乱しにくくなり発光効率が低下しやすくなる。また、平均粒子径D50が小さすぎると、得られる波長変換部材において、励起光が過剰に散乱して発光効率が低下しやすくなる。 When the glass of the present invention is in the form of powder (that is, glass powder), its particle size is not particularly limited, but for example, the maximum particle size Dmax is 200 μm or less (particularly 150 μm or less, further 105 μm or less), and the average particle size. It is preferable that D50 is 0.1 μm or more (particularly 1 μm or more, further 2 μm or more). If the maximum particle diameter Dmax of the glass powder is too large, the excitation light is less likely to be scattered in the obtained wavelength conversion member, and the luminous efficiency is likely to decrease. Further, if the average particle diameter D50 is too small, the excitation light is excessively scattered in the obtained wavelength conversion member, and the luminous efficiency tends to decrease.

なお、本発明において、最大粒子径Dmax及び平均粒子径D50はレーザー回折法により測定した値を指す。 In the present invention, the maximum particle diameter Dmax and the average particle diameter D50 refer to the values measured by the laser diffraction method.

本発明のガラスは、蛍光体と組み合わせることにより波長変換材料として使用される。 The glass of the present invention is used as a wavelength conversion material in combination with a phosphor.

蛍光体としては、一般に市場で入手できるものであれば特に限定されない。例えば、窒化物蛍光体、酸窒化物蛍光体、酸化物蛍光体(YAG蛍光体等のガーネット系蛍光体を含む)、硫化物蛍光体、酸硫化物蛍光体、ハロゲン化物蛍光体(ハロリン酸塩化物蛍光体等)、アルミン酸塩蛍光体、バリウムマグネシウムアルミネート系蛍光体、ハロリン酸カルシウム系蛍光体、アルカリ土類クロロボレート系蛍光体、アルカリ土類アルミネート系蛍光体、アルカリ土類シリコンオキシナイトライド系蛍光体、アルカリ土類マグネシウムシリケート系蛍光体、アルカリ土類シリコンナイトライド系蛍光体及び希土類オキシカルユゲナイト系蛍光体等が挙げられる。これらの蛍光体は通常、粉末状である。これらの蛍光体のうち、窒化物蛍光体、酸窒化物蛍光体及び酸化物蛍光体は耐熱性が高く、焼成時に比較的劣化しにくいため好ましい。なお、窒化物蛍光体及び酸窒化物蛍光体は、近紫外~青の励起光を緑~赤という幅広い波長領域に変換し、しかも発光強度も比較的高いという特徴を有している。そのため、窒化物蛍光体及び酸窒化物蛍光体は、特に白色LED素子用波長変換部材に用いられる蛍光体として有効である。 The fluorescent substance is not particularly limited as long as it is generally available on the market. For example, nitride phosphors, oxynitride phosphors, oxide phosphors (including garnet-based phosphors such as YAG phosphors), sulfide phosphors, acid sulfide phosphors, and halide phosphors (halophosphate formation). Phosphorus, etc.), Aluminate Fluorescent, Barium Magnesium Aluminate Fluorescent, Calcium Halophosphate Fluorescent, Alkaline Earth Chlorobolate Fluorescent, Alkaline Earth Aluminate Fluorescent, Alkaline Earth Silicon Oxinite Examples thereof include a ride-based fluorescent substance, an alkaline earth magnesium silicate-based fluorescent substance, an alkaline earth silicon nitride-based fluorescent substance, and a rare earth oxycalyugenite-based fluorescent substance. These fluorophores are usually in powder form. Of these fluorescent materials, the nitride fluorescent material, the oxynitride fluorescent material, and the oxide fluorescent material are preferable because they have high heat resistance and are relatively resistant to deterioration during firing. The nitride phosphor and the oxynitride phosphor have a feature that the excitation light of near-ultraviolet to blue is converted into a wide wavelength region of green to red, and the emission intensity is relatively high. Therefore, the nitride phosphor and the oxynitride phosphor are particularly effective as phosphors used in wavelength conversion members for white LED elements.

上記蛍光体としては、波長300~500nmに励起帯を有し波長380~780nmに発光ピークを有するもの、特に青色(波長440~480nm)、緑色(波長500~540nm)、黄色(波長540~595nm)または赤色(波長600~700nm)に発光するものが挙げられる。 The phosphor has an excitation band at a wavelength of 300 to 500 nm and an emission peak at a wavelength of 380 to 780 nm, particularly blue (wavelength 440 to 480 nm), green (wavelength 500 to 540 nm), and yellow (wavelength 540 to 595 nm). ) Or those that emit light in red (wavelength 600 to 700 nm).

波長300~440nmの紫外~近紫外の励起光を照射すると青色の発光を発する蛍光体としては、(Sr,Ba)MgAl1017:Eu2+、(Sr,Ba)MgSi:Eu2+、BaMgAl1017:Eu2+、(Ca,Sr,Ba)(POCl:Eu2+、(Ca,Sr,Ba)Cl:Eu2+、LaAl(Si6-zAl)N10-z:Ce3+、(Sr1-x、Ba)AlSi:Eu2+等が挙げられる。 Examples of the phosphor that emits blue light when irradiated with ultraviolet to near-ultraviolet excitation light having a wavelength of 300 to 440 nm include (Sr, Ba) MgAl 10 O 17 : Eu 2+ , (Sr, Ba) 3 MgSi 2 O 8 : Eu. 2+ , BaMgAl 10 O 17 : Eu 2+ , (Ca, Sr, Ba) 5 (PO 4 ) 3 Cl: Eu 2+ , (Ca, Sr, Ba) 2 B 5 O 9 Cl: Eu 2+ , LaAl (Si 6- z Al z ) N 10-z Oz : Ce 3+ , (Sr 1-x , Ba x ) Al 2 Si 3 O 4 N 4 : Eu 2+ and the like.

波長300~440nmの紫外~近紫外の励起光を照射すると青緑色の発光を発する蛍光体としては、(Sr,Ca,Ba)Al:Eu2+、(Sr,Ca,Ba)Al1425:Eu2+等が挙げられる。 Examples of the phosphor that emits blue-green light when irradiated with ultraviolet-near-ultraviolet excitation light having a wavelength of 300 to 440 nm include (Sr, Ca, Ba) Al 2 O 4 : Eu 2+ , (Sr, Ca, Ba) 4 Al. 14 O 25 : Eu 2+ and the like can be mentioned.

波長300~440nmの紫外~近紫外の励起光を照射すると緑色の蛍光を発する蛍光体としては、SrAl:Eu2+、SrBaSiO:Eu2+、Y(Al,Gd)12:Ce3+、SrSiO:Eu2+、BaMgAl1017:Eu2+,Mn2+、BaMgSi:Eu2+、BaSiO:Eu2+、BaLiSi:Eu2+、BaAl:Eu2+、(Mg、Ca、Sr、Ba)Si:Eu2+、(Ba,Ca,Sr)SiO:Eu2+等が挙げられる。 SrAl 2 O 4 : Eu 2+ , SrBaSiO 4 : Eu 2+ , Y 3 (Al, Gd) 5 O 12 : Ce 3+ , SrSiO n : Eu 2+ , BaMgAl 10 O 17 : Eu 2+ , Mn 2+ , Ba 2 MgSi 2 O 7 : Eu 2+ , Ba 2 SiO 4 : Eu 2+ , Ba 2 Li 2 Si 2 O 7 : Eu 2+ , BaAl 2 O 4 : Eu 2+ , (Mg, Ca, Sr, Ba) Si 2 O 2 N 2 : Eu 2+ , (Ba, Ca, Sr) 2 SiO 4 : Eu 2+ and the like.

波長300~440nmの紫外~近紫外の励起光を照射すると赤色の蛍光を発する蛍光体としては、(Mg、Ca,Sr,Ba)Si:Eu2+、(Y,La,Gd,Lu)S:Eu2+等が挙げられる。 Examples of the phosphor that emits red fluorescence when irradiated with ultraviolet-near-ultraviolet excitation light having a wavelength of 300 to 440 nm include (Mg, Ca, Sr, Ba) 2 Si 5 N 8 : Eu 2+ , (Y, La, Gd, Lu) 2 O 2 S: Eu 2+ and the like.

波長440~480nmの青色の励起光を照射すると緑色の蛍光を発する蛍光体としては、SrAl:Eu2+、SrBaSiO:Eu2+、Y(Al,Gd)12:Ce3+、SrSiOn:Eu2+、β-SiAlON:Eu2+等が挙げられる。 Examples of phosphors that emit green fluorescence when irradiated with blue excitation light having a wavelength of 440 to 480 nm include SrAl 2 O 4 : Eu 2+ , SrBaSiO 4 : Eu 2+ , Y 3 (Al, Gd) 5 O 12 : Ce 3+ , Examples thereof include SrSiOn: Eu 2+ and β-SiAlON: Eu 2+ .

波長300~440nmの紫外~近紫外の励起光を照射すると黄色の蛍光を発する蛍光体としては、LaSi11:Ce3+等が挙げられる。 Examples of the phosphor that emits yellow fluorescence when irradiated with ultraviolet-near-ultraviolet excitation light having a wavelength of 300 to 440 nm include La 3 Si 6 N 11 : Ce 3+ and the like.

波長440~480nmの青色の励起光を照射すると黄色の蛍光を発する蛍光体としては、Y(Al,Gd)12:Ce3+、SrSiO:Eu2+が挙げられる。 Examples of the phosphor that emits yellow fluorescence when irradiated with blue excitation light having a wavelength of 440 to 480 nm include Y 3 (Al, Gd) 5 O 12 : Ce 3+ and Sr 2 SiO 4 : Eu 2+ .

波長300~440nmの紫外~近紫外の励起光を照射すると赤色の蛍光を発する蛍光体としては、CaGa:Mn2+、MgSrSi:Eu2+,Mn2+、CaMgSi:Eu2+,Mn2+等が挙げられる。 CaGa 2 S 4 : Mn 2+ , MgSr 3 Si 2 O 8 : Eu 2+ , Mn 2+ , Ca 2 MgSi 2 are examples of phosphors that emit red fluorescence when irradiated with ultraviolet to near-ultraviolet excitation light with a wavelength of 300 to 440 nm. O 7 : Eu 2+ , Mn 2+ and the like can be mentioned.

波長440~480nmの青色の励起光を照射すると赤色の蛍光を発する蛍光体としては、CaAlSiN:Eu2+、CaSiN:Eu2+、(Ca,Sr)Si:Eu2+、α-SiAlON:Eu2+等が挙げられる。 Examples of phosphors that emit red fluorescence when irradiated with blue excitation light having a wavelength of 440 to 480 nm include CaAlSiN 3 : Eu 2+ , CaSiN 3 : Eu 2+ , (Ca, Sr) 2 Si 5 N 8 : Eu 2+ , α-. SiAlON: Eu 2+ and the like.

なお、励起光や発光の波長域に合わせて、複数の蛍光体を混合して用いてもよい。例えば、紫外域の励起光を照射して白色光を得る場合は、青色、緑色、黄色、赤色の蛍光を発する蛍光体を混合して使用すればよい。 A plurality of phosphors may be mixed and used according to the wavelength range of the excitation light or the emission. For example, when white light is obtained by irradiating excitation light in the ultraviolet region, a phosphor that emits blue, green, yellow, and red fluorescence may be mixed and used.

波長変換部材における蛍光体の含有量が多すぎると、励起光が効率良く蛍光体に照射されにくくなったり、機械強度が低下しやすくなる等の問題が生じる。一方、蛍光体の含有量が少なすぎると、所望の発光強度を得ることが困難になる。このような観点から、波長変換部材における蛍光体の含有量は、質量%で、好ましくは0.01~50%、より好ましくは0.05~40%、さらに好ましくは0.1~30%の範囲で調整される。 If the content of the phosphor in the wavelength conversion member is too large, problems such as difficulty in efficiently irradiating the phosphor with excitation light and a tendency to reduce the mechanical intensity occur. On the other hand, if the content of the phosphor is too small, it becomes difficult to obtain a desired emission intensity. From this point of view, the content of the phosphor in the wavelength conversion member is mass%, preferably 0.01 to 50%, more preferably 0.05 to 40%, still more preferably 0.1 to 30%. Adjusted in range.

なお、波長変換部材において発生した蛍光を、励起光入射側へ反射させ、主に蛍光のみを外部に取り出すことを目的とした波長変換部材においては、上記の限りではなく、発光強度が最大になるように、蛍光体の含有量を多くする(例えば、質量%で、50%~80%、さらには55~75%)ことができる。 In the wavelength conversion member whose purpose is to reflect the fluorescence generated in the wavelength conversion member to the side where the excitation light is incident and mainly extract only the fluorescence to the outside, the emission intensity is maximized, not limited to the above. As described above, the content of the phosphor can be increased (for example, 50% to 80% by mass, and further 55 to 75%).

本発明の波長変換部材は、ガラス中に蛍光体が封止されてなるものであれば特に限定されない。例えば、ガラス粉末と蛍光体粉末の焼結体からなるものが挙げられる。または、複数(例えば2枚)のガラス板間に蛍光体が挟持されてなるものが挙げられる。この場合、複数のガラス板は周縁部で互いに融着しているか、あるいはガラスフリット等の封着材により封止されていることが好ましい。 The wavelength conversion member of the present invention is not particularly limited as long as it is formed by sealing a phosphor in glass. For example, those composed of a sintered body of glass powder and phosphor powder can be mentioned. Alternatively, a fluorescent substance may be sandwiched between a plurality of (for example, two) glass plates. In this case, it is preferable that the plurality of glass plates are fused to each other at the peripheral edge or sealed with a sealing material such as a glass frit.

ガラス粉末と蛍光体粉末の焼結体はロールプレス成形により作製することが可能である。具体的には、ガラス粉末と蛍光体粉末を混合して混合粉末を得た後、当該混合粉末を一対の加熱ローラー隙間に投入する。混合粉末中には、機械的強度向上等を目的として無機フィラーを混合してもよい。混合粉末は、ローラーによって加熱プレスされながら、ローラーの回転方向に押し出される。これにより、混合粉末がシート状に成形される。この成形方法によれば、加熱時間が短いため、蛍光体の熱劣化を抑制することができる。また、混合粉末を加熱ローラー間に通すことで、ガラス粉末が軟化するとともに押し潰されることから、緻密なシート状波長変換部材が得られやすくなる。なお、蛍光体としてナノ粒子蛍光体を使用した場合は、蛍光体粒子サイズが小さいため、ローラーに対する蛍光体粒子の接触抵抗が小さくなることから、成形性が向上しやすくなる。また、ガラス粉末と蛍光体粒子の間の接触抵抗も小さくなることから、ガラス粉末同士の密着性(焼結性)が向上しやすくなる。 The sintered body of glass powder and phosphor powder can be produced by roll press molding. Specifically, after the glass powder and the phosphor powder are mixed to obtain a mixed powder, the mixed powder is put into a pair of heating roller gaps. Inorganic filler may be mixed in the mixed powder for the purpose of improving mechanical strength and the like. The mixed powder is extruded in the direction of rotation of the roller while being heated and pressed by the roller. As a result, the mixed powder is formed into a sheet. According to this molding method, since the heating time is short, thermal deterioration of the phosphor can be suppressed. Further, by passing the mixed powder between the heating rollers, the glass powder is softened and crushed, so that a dense sheet-shaped wavelength conversion member can be easily obtained. When a nanoparticle phosphor is used as the phosphor, since the phosphor particle size is small, the contact resistance of the phosphor particles to the roller is small, so that the moldability is easily improved. Further, since the contact resistance between the glass powder and the phosphor particles is also reduced, the adhesion (sinterability) between the glass powders is likely to be improved.

ローラーの隙間の大きさは、目的とするシートの厚み応じて、適宜設定することができる。ローラーの回転速度は、混合粉末の種類や、ローラーの温度等に応じて、適宜設定することができる。 The size of the gap between the rollers can be appropriately set according to the thickness of the target sheet. The rotation speed of the roller can be appropriately set according to the type of the mixed powder, the temperature of the roller, and the like.

成形工程は、例えば、空気、窒素またはアルゴンの雰囲気下で行うことができる。ガラス粉末または蛍光体の特性劣化を抑制する観点から、窒素、アルゴンなどの不活性ガス中で成形を行うことが好ましい。また、成形は減圧雰囲気下で行ってもよい。成形を減圧雰囲気下で行うことにより、波長変換部材中における泡の残存を抑制することができる。 The molding step can be performed, for example, in an atmosphere of air, nitrogen or argon. From the viewpoint of suppressing deterioration of the characteristics of the glass powder or the phosphor, it is preferable to perform molding in an inert gas such as nitrogen or argon. Further, molding may be performed in a reduced pressure atmosphere. By performing the molding in a reduced pressure atmosphere, it is possible to suppress the residual bubbles in the wavelength conversion member.

ガラス粉末と紫外発光蛍光体粉末の焼結体の作製方法はロールプレス成形に限られない。具体的には、ガラス粉末と紫外発光蛍光体粉末を混合して混合粉末を得た後、焼成することにより波長変換材料が得られる。焼成温度は、ガラス粉末の軟化点以上であることが好ましい。これにより、ガラス粉末が融着してなるガラスマトリクスを形成できる。一方、焼成温度が高すぎると、無機紫外発光蛍光体粉末がガラス中に溶出して発光強度が低下したり、無機紫外発光蛍光体粉末に含まれる成分がガラス中に拡散してガラスが着色し、発光強度が低下するおそれがある。そのため、焼成温度は、ガラス粉末の軟化点+150℃以下であることが好ましく、ガラス粉末の軟化点+100℃以下であることがより好ましい。 The method for producing a sintered body of glass powder and ultraviolet luminescent phosphor powder is not limited to roll press molding. Specifically, a wavelength conversion material can be obtained by mixing glass powder and ultraviolet luminescent phosphor powder to obtain a mixed powder and then firing the powder. The firing temperature is preferably equal to or higher than the softening point of the glass powder. This makes it possible to form a glass matrix formed by fusing glass powder. On the other hand, if the firing temperature is too high, the inorganic ultraviolet luminescent phosphor powder elutes into the glass and the emission intensity decreases, or the components contained in the inorganic ultraviolet luminescent phosphor powder diffuse into the glass and the glass is colored. , The emission intensity may decrease. Therefore, the firing temperature is preferably a softening point of the glass powder + 150 ° C. or lower, and more preferably a softening point of the glass powder + 100 ° C. or lower.

焼成は減圧雰囲気中で行うことが好ましい。具体的には、焼成は、好ましくは1.013×10Pa未満、より好ましくは1000Pa以下、さらに好ましくは400Pa以下の雰囲気下で行う。それにより、波長変換部材中に残存する気泡の量を少なくすることができる。その結果、波長変換部材内の散乱因子を少なくすることができ、発光効率を向上させることができる。なお、焼成工程全体を減圧雰囲気中で行ってもよいし、焼成工程のみを減圧雰囲気中で行い、その前後の昇温工程や降温工程を、減圧雰囲気ではない雰囲気(例えば大気圧下)で行ってもよい。 Baking is preferably performed in a reduced pressure atmosphere. Specifically, the calcination is preferably carried out in an atmosphere of less than 1.013 × 105 Pa, more preferably 1000 Pa or less, still more preferably 400 Pa or less. Thereby, the amount of bubbles remaining in the wavelength conversion member can be reduced. As a result, the scattering factor in the wavelength conversion member can be reduced, and the luminous efficiency can be improved. The entire firing step may be performed in a reduced pressure atmosphere, or only the firing step may be performed in a reduced pressure atmosphere, and the temperature raising step and the temperature lowering step before and after the firing step may be performed in an atmosphere other than the reduced pressure atmosphere (for example, under atmospheric pressure). You may.

本発明の波長変換部材の形状は特に制限されず、例えば、板状、柱状、球状、半球状、半球ドーム状等、それ自身が特定の形状を有する部材だけでなく、ガラス基板やセラミック基板等の基材表面に形成された被膜状のものであってもよい。 The shape of the wavelength conversion member of the present invention is not particularly limited, and is not limited to a member having a specific shape itself such as a plate shape, a columnar shape, a spherical shape, a hemispherical shape, a hemispherical shape, etc. It may be in the form of a film formed on the surface of the base material of.

上記のようにして得られた波長変換部材は、ガラスマトリクス中に蛍光体が分散してなる波長変換部材であって、ガラスマトリクスが、質量%で、SiO 30~75%、B 1~30%、Al 4超~20%、LiO 0.1~10%、NaO+KO 0~9%未満、MgO+CaO+SrO+BaO+ZnO 0~10%を含有する。 The wavelength conversion member obtained as described above is a wavelength conversion member in which a phosphor is dispersed in a glass matrix, and the glass matrix has a mass% of SiO 2 30 to 75% and B 2 O 3 . It contains 1 to 30%, Al 2 O 3 4 to 20%, Li 2 O 0.1 to 10%, Na 2 O + K 2 O 0 to less than 9%, MgO + CaO + SrO + BaO + ZnO 0 to 10%.

図1に、本発明の発光デバイスの実施形態を示す。図1に示すように、発光デバイス1は波長変換部材2及び光源3を備えてなる。光源3は、波長変換部材2に対して蛍光体粉末の励起光Linを照射する。波長変換部材2に入射した励起光Linは、別の波長の光に変換され、光源3とは反対側からLoutとして出射する。この際、波長変換後の光と、波長変換されずに透過した励起光との合成光を出射させるようにしてもよい。 FIG. 1 shows an embodiment of the light emitting device of the present invention. As shown in FIG. 1, the light emitting device 1 includes a wavelength conversion member 2 and a light source 3. The light source 3 irradiates the wavelength conversion member 2 with the excitation light Lin of the phosphor powder. The excitation light Lin incident on the wavelength conversion member 2 is converted into light having a different wavelength, and is emitted as L out from the side opposite to the light source 3. At this time, the combined light of the light after the wavelength conversion and the excitation light transmitted without the wavelength conversion may be emitted.

以下に、本発明を実施例に基づいて詳細に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described in detail based on examples, but the present invention is not limited to these examples.

(1)ガラスの作製 表1~3は実施例(試料a~m)及び比較例(試料x、y)に係るガラスを示している。 (1) Preparation of glass Tables 1 to 3 show the glass according to Examples (samples a to m) and Comparative Examples (samples x and y).

Figure 2022063277000002
Figure 2022063277000002

Figure 2022063277000003
Figure 2022063277000003

Figure 2022063277000004
Figure 2022063277000004

まず、表1~3に示す組成となるように原料を調合した。原料を白金坩堝内において1300℃で2時間溶融してガラス化し、溶融ガラスを一対の冷却ローラー間に流し出すことによりフィルム状に成形した。フィルム状のガラスをボールミルで粉砕した後、分級して平均粒径D50が2.5μmのガラス粉末を得た。また、溶融ガラスの一部をカーボン型枠に鋳込むことにより、各測定に適した板状試料を作製した。 First, the raw materials were prepared so as to have the compositions shown in Tables 1 to 3. The raw material was melted in a platinum crucible at 1300 ° C. for 2 hours to vitrify it, and the molten glass was poured between a pair of cooling rollers to form a film. The film-shaped glass was pulverized with a ball mill and then classified to obtain a glass powder having an average particle size D50 of 2.5 μm. In addition, a plate-shaped sample suitable for each measurement was prepared by casting a part of the molten glass into a carbon mold.

得られた試料について、屈折率(nd)、軟化点、着色度、熱膨張係数(30~300℃)及び耐候性を評価した。結果を表に示す。 The obtained sample was evaluated for refractive index (nd), softening point, degree of coloring, coefficient of thermal expansion (30 to 300 ° C.) and weather resistance. The results are shown in the table.

屈折率は、ヘリウムランプのd線(587.6nm)に対する測定値で示した。 The refractive index is shown as a measured value for the d-line (587.6 nm) of the helium lamp.

軟化点は、ファイバーエロンゲーション法を用い、粘度が107.6dPa・sとなる温度を採用した。 For the softening point, a fiber elongation method was used, and a temperature at which the viscosity was 107.6 dPa · s was adopted.

着色度は次のようにして測定した。厚さ10mm±0.1mmの光学研磨された試料について、分光光度計を用いて200~800nmの波長域での光透過率を0.5nm間隔で測定し、光透過率曲線を作製した。光透過率曲線において、光透過率80%を示す最短波長を着色度λ80とした。 The degree of coloring was measured as follows. For an optically polished sample having a thickness of 10 mm ± 0.1 mm, the light transmittance in the wavelength range of 200 to 800 nm was measured at intervals of 0.5 nm using a spectrophotometer, and a light transmittance curve was prepared. In the light transmittance curve, the shortest wavelength showing the light transmittance of 80% was defined as the coloring degree λ 80 .

熱膨張係数(30~300℃)は、熱膨張測定装置(dilato meter)を用いて測定した。 The coefficient of thermal expansion (30 to 300 ° C.) was measured using a thermal expansion measuring device (dirato meter).

耐候性は、直径8mm、厚さ1mmの円盤状の評価用試料を、平山製作所製HAST試験機PC-242HSR2を用いて、121℃、95%RH、2気圧の条件下、300時間保持し、試料表面を観察することによって評価した。具体的には、試験前後で顕微鏡観察にて、試料表面に変化がないものは「○」、試料表面にガラス成分が析出していたり、光沢が失われたりしたものを「×」として評価した。なお、評価用試料は、ガラス粉末を金型で加圧成型し、表1~3に示す軟化点より20℃低い温度で焼成後、切断、研磨等の加工を施すことにより作製した。 For weather resistance, a disk-shaped evaluation sample having a diameter of 8 mm and a thickness of 1 mm was held for 300 hours under the conditions of 121 ° C., 95% RH, and 2 atm using a HAST testing machine PC-242HSR2 manufactured by Hirayama Seisakusho. It was evaluated by observing the sample surface. Specifically, by microscopic observation before and after the test, those with no change in the sample surface were evaluated as "○", and those with glass components precipitated or lost gloss were evaluated as "×". .. The evaluation sample was prepared by pressure-molding the glass powder with a mold, firing at a temperature 20 ° C. lower than the softening points shown in Tables 1 to 3, and then performing processing such as cutting and polishing.

表1~3に示すように、実施例である試料a~mは、各特性に優れていた。一方、比較例である試料xは軟化点が785℃と高かった。また、試料yは耐候性に劣っており、着色度λ80は420nmと大きかった。 (2)波長変換部材の作製 表4~6は実施例(No.1~13)及び比較例(No.14)に係る波長変換部材を示している。 As shown in Tables 1 to 3, the samples a to m of Examples were excellent in each characteristic. On the other hand, the sample x as a comparative example had a high softening point of 785 ° C. Further, the sample y was inferior in weather resistance, and the degree of coloring λ 80 was as large as 420 nm. (2) Preparation of Wavelength Converting Member Tables 4 to 6 show the wavelength conversion member according to Examples (No. 1 to 13) and Comparative Example (No. 14).

Figure 2022063277000005
Figure 2022063277000005

Figure 2022063277000006
Figure 2022063277000006

Figure 2022063277000007
Figure 2022063277000007

表1~3に記載の各ガラス粉末試料に、蛍光体粉末としてBaMgAl1017:Eu2+またはα-SiAlONを、ガラス粉末:蛍光体粉末=80:20(質量比)となるように混合して波長変換部材用原料粉末を得た。原料粉末を金型で加圧成型して直径1cmの円柱状予備成型体を作製した。この予備成型体をガラス粉末の軟化点+30℃の温度で焼成した後、得られた焼結体に加工を施すことにより、直径8mm、厚さ0.2mmの円盤状の波長変換部材を得た。得られた波長変換部材について、発光スペクトルを測定し、発光効率を算出した。結果を表4~6に示す。 BaMgAl 10 O 17 : Eu 2+ or α-SiAlON as a fluorescent substance powder is mixed with each of the glass powder samples shown in Tables 1 to 3 so that the glass powder: fluorescent substance powder = 80:20 (mass ratio). Obtained a raw material powder for a wavelength conversion member. The raw material powder was pressure-molded with a mold to prepare a columnar premolded body having a diameter of 1 cm. This preformed body was fired at a temperature of + 30 ° C. at the softening point of the glass powder, and then the obtained sintered body was processed to obtain a disk-shaped wavelength conversion member having a diameter of 8 mm and a thickness of 0.2 mm. .. The emission spectrum of the obtained wavelength conversion member was measured, and the luminous efficiency was calculated. The results are shown in Tables 4-6.

発光効率は次のようにして求めた。励起波長405nmまたは460nmの光源上に波長変換部材を設置し、積分球内で、試料上面から発せられる光のエネルギー分布スペクトルを測定した。次に、得られたスペクトルに標準比視感度を掛け合わせて全光束を計算し、全光束を光源の電力で除して発光効率を算出した。 Luminous efficiency was determined as follows. A wavelength conversion member was placed on a light source having an excitation wavelength of 405 nm or 460 nm, and the energy distribution spectrum of light emitted from the upper surface of the sample was measured in the integrating sphere. Next, the total luminous flux was calculated by multiplying the obtained spectrum by the standard luminosity factor, and the total luminous flux was divided by the power of the light source to calculate the luminous efficiency.

表4~6から明らかなように、蛍光体粉末としてBaMgAl1017:Eu2+を使用し、405nmの光源上で測定した場合、実施例であるNo.1~13の波長変換部材は、発光効率が5.5lm/W以上であったのに対し、比較例であるNo.14の波長変換部材は発光効率が2.9lm/Wと低かった。 As is clear from Tables 4 to 6, when BaMgAl 10 O 17 : Eu 2+ was used as the phosphor powder and the measurement was performed on a light source of 405 nm, No. The wavelength conversion members 1 to 13 had a luminous efficiency of 5.5 lm / W or more, whereas No. 1 was a comparative example. The wavelength conversion member of No. 14 had a low luminous efficiency of 2.9 lm / W.

また、蛍光体粉末としてα-SiAlONを使用し、460nmの光源上で測定した場合、実施例であるNo.1~13の波長変換部材は、発光効率が7.2lm/W以上であったのに対し、比較例であるNo.14の波長変換部材は発光効率が4.2lm/Wと低かった。 Further, when α-SiAlON was used as the phosphor powder and the measurement was performed on a light source of 460 nm, No. The wavelength conversion members 1 to 13 had a luminous efficiency of 7.2 lm / W or more, whereas No. 1 was a comparative example. The wavelength conversion member of No. 14 had a low luminous efficiency of 4.2 lm / W.

また、No.1~13の波長変換部材は、耐候性に優れたガラス粉末試料を用いて作製したものであるため、長期間にわたって使用しても表面が変質しにくく、発光効率が大幅に低下するといった自体が生じにくいと考えられる。 In addition, No. Since the wavelength conversion members 1 to 13 are manufactured by using a glass powder sample having excellent weather resistance, the surface is not easily deteriorated even after being used for a long period of time, and the luminous efficiency is significantly reduced. It is thought that it is unlikely to occur.

本発明のガラスは、単色あるいは白色LED等の一般照明、特殊照明(例えば、プロジェクター光源、車載用ヘッドランプ光源)等に使用される波長変換部材用ガラスとして好適である。 The glass of the present invention is suitable as a wavelength conversion member glass used for general lighting such as a single color or white LED, special lighting (for example, a projector light source, an in-vehicle head lamp light source), and the like.

1 発光デバイス
2 波長変換部材
3 光源
1 Light emitting device 2 Wavelength conversion member 3 Light source

Claims (11)

波長変換材料に用いられるガラスであって、質量%で、SiO 55~75%、B 1~30%、Al 5.5~20%、LiO 0.1~10%、NaO+KO 0~8%、MgO+CaO+SrO+BaO+ZnO 0~10%を含有することを特徴とするガラス。 Glass used as a wavelength conversion material, in terms of mass%, SiO 2 55 to 75%, B 2 O 3 1 to 30%, Al 2 O 3 5.5 to 20%, Li 2 O 0.1 to 10 %, Na 2 O + K 2 O 0 to 8%, MgO + CaO + SrO + BaO + ZnO 0 to 10%. 鉛成分、ヒ素成分を実質的に含有しないことを特徴とする請求項1に記載のガラス。 The glass according to claim 1, wherein the glass does not substantially contain a lead component and an arsenic component. さらに、質量%で、ZrO 0~10%を含有することを特徴とする請求項1又は2に記載のガラス。 The glass according to claim 1 or 2 , further comprising ZrO 20 to 10% by mass. 軟化点が750℃以下であることを特徴とする請求項1~3のいずれかに記載のガラス。 The glass according to any one of claims 1 to 3, wherein the softening point is 750 ° C. or lower. 着色度λ80が400nm以下であることを特徴とする請求項1~4のいずれかに記載のガラス。 The glass according to any one of claims 1 to 4, wherein the degree of coloring λ 80 is 400 nm or less. 粉末状であることを特徴とする請求項1~5のいずれかに記載のガラス。 The glass according to any one of claims 1 to 5, wherein the glass is in the form of powder. 請求項6に記載のガラスと、蛍光体とを含有することを特徴とする波長変換材料。 A wavelength conversion material comprising the glass according to claim 6 and a phosphor. 蛍光体が、窒化物蛍光体、酸窒化物蛍光体、酸化物蛍光体、硫化物蛍光体、酸硫化物蛍光体、ハロゲン化物蛍光体及びアルミン酸塩蛍光体から選択される1種以上であることを特徴とする請求項7に記載の波長変換材料。 The phosphor is one or more selected from a nitride phosphor, an oxynitride phosphor, an oxide phosphor, a sulfide phosphor, an acid sulfide phosphor, a halide phosphor, and an aluminate phosphor. The wavelength conversion material according to claim 7. 請求項7又は8に記載の波長変換材料の焼結体からなることを特徴とする波長変換部材。 A wavelength conversion member comprising a sintered body of the wavelength conversion material according to claim 7 or 8. ガラスマトリクス中に蛍光体が分散してなる波長変換部材であって、ガラスマトリクスが、質量%で、SiO 55~75%、B 1~30%、Al 5.5~20%、LiO 0.1~10%、NaO+KO 0~8%、MgO+CaO+SrO+BaO+ZnO 0~10%を含有することを特徴とする波長変換部材。 It is a wavelength conversion member in which a fluorescent substance is dispersed in a glass matrix, and the glass matrix has a mass% of SiO 2 55 to 75%, B 2 O 3 1 to 30%, and Al 2 O 3 5.5 to. A wavelength conversion member comprising 20%, Li 2 O 0.1 to 10%, Na 2 O + K 2 O 0 to 8%, MgO + CaO + SrO + BaO + ZnO 0 to 10%. 請求項9又は10に記載の波長変換部材、及び、波長変換部材に励起光を照射する光源を備えることを特徴とする発光デバイス。

The light emitting device according to claim 9 or 10, further comprising a wavelength conversion member and a light source for irradiating the wavelength conversion member with excitation light.

JP2022014850A 2017-09-27 2022-02-02 Glass used for wavelength conversion material, wavelength conversion material, wavelength conversion member, and light emitting device Active JP7339609B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022014850A JP7339609B2 (en) 2017-09-27 2022-02-02 Glass used for wavelength conversion material, wavelength conversion material, wavelength conversion member, and light emitting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017185994A JP7022367B2 (en) 2017-09-27 2017-09-27 Glass used as wavelength conversion material, wavelength conversion material, wavelength conversion member and light emitting device
JP2022014850A JP7339609B2 (en) 2017-09-27 2022-02-02 Glass used for wavelength conversion material, wavelength conversion material, wavelength conversion member, and light emitting device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017185994A Division JP7022367B2 (en) 2017-09-27 2017-09-27 Glass used as wavelength conversion material, wavelength conversion material, wavelength conversion member and light emitting device

Publications (2)

Publication Number Publication Date
JP2022063277A true JP2022063277A (en) 2022-04-21
JP7339609B2 JP7339609B2 (en) 2023-09-06

Family

ID=87882084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022014850A Active JP7339609B2 (en) 2017-09-27 2022-02-02 Glass used for wavelength conversion material, wavelength conversion material, wavelength conversion member, and light emitting device

Country Status (1)

Country Link
JP (1) JP7339609B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014144906A (en) * 2013-01-07 2014-08-14 Nippon Electric Glass Co Ltd Glass used for wavelength conversion material, wavelength conversion material, wavelength conversion member, and light-emitting device
JP2016013945A (en) * 2014-07-02 2016-01-28 日本電気硝子株式会社 Glass used for wavelength conversion material, wavelength conversion material, wavelength conversion member and light emitting device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014144906A (en) * 2013-01-07 2014-08-14 Nippon Electric Glass Co Ltd Glass used for wavelength conversion material, wavelength conversion material, wavelength conversion member, and light-emitting device
JP2016013945A (en) * 2014-07-02 2016-01-28 日本電気硝子株式会社 Glass used for wavelength conversion material, wavelength conversion material, wavelength conversion member and light emitting device

Also Published As

Publication number Publication date
JP7339609B2 (en) 2023-09-06

Similar Documents

Publication Publication Date Title
CN109301057B (en) Wavelength conversion member and light emitting device using the same
JP6273799B2 (en) Glass used for wavelength conversion material, wavelength conversion material, wavelength conversion member, and light emitting device
JP7022398B2 (en) Wavelength conversion member and light emitting device using it
TWI715784B (en) Wavelength conversion member and light-emitting device using the same
TWI628261B (en) Wavelength conversion member and light emitting device
US20240014357A1 (en) Glass for use in wavelength conversion material, wavelength conversion material, wavelength conversion member, and light-emitting device
JP6365828B2 (en) Glass used for wavelength conversion material, wavelength conversion material, wavelength conversion member, and light emitting device
JP7121329B2 (en) Glass used for wavelength conversion material, wavelength conversion material, wavelength conversion member, and light emitting device
KR102654998B1 (en) Glass used in wavelength conversion materials, wavelength conversion materials, wavelength conversion members, and light emitting devices
JP2022063277A (en) Glass for use in wavelength conversion material, wavelength conversion material, wavelength conversion member, and light-emitting device
JP7004235B2 (en) Glass used as wavelength conversion material, wavelength conversion material, wavelength conversion member and light emitting device
JP6861952B2 (en) Wavelength conversion member and light emitting device using it
KR20240046639A (en) Glass for use in wavelength conversion material, wavelength conversion material, wavelength conversion member, and light-emitting device
JP7205808B2 (en) WAVELENGTH CONVERSION MEMBER AND LIGHT-EMITTING DEVICE USING THE SAME

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230329

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230808

R150 Certificate of patent or registration of utility model

Ref document number: 7339609

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150