JP6861952B2 - Wavelength conversion member and light emitting device using it - Google Patents

Wavelength conversion member and light emitting device using it Download PDF

Info

Publication number
JP6861952B2
JP6861952B2 JP2019191631A JP2019191631A JP6861952B2 JP 6861952 B2 JP6861952 B2 JP 6861952B2 JP 2019191631 A JP2019191631 A JP 2019191631A JP 2019191631 A JP2019191631 A JP 2019191631A JP 6861952 B2 JP6861952 B2 JP 6861952B2
Authority
JP
Japan
Prior art keywords
wavelength conversion
conversion member
light
inorganic phosphor
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019191631A
Other languages
Japanese (ja)
Other versions
JP2020023438A (en
Inventor
藤田 直樹
直樹 藤田
克 岩尾
克 岩尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Publication of JP2020023438A publication Critical patent/JP2020023438A/en
Application granted granted Critical
Publication of JP6861952B2 publication Critical patent/JP6861952B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)
  • Glass Compositions (AREA)

Description

本発明は、発光ダイオード(LED:Light Emitting Diode)やレーザーダイオード(LD:Laser Diode)等の発光素子の発する光の波長を別の波長に変換するための波長変換部材に関するものである。 The present invention relates to a wavelength conversion member for converting the wavelength of light emitted by a light emitting element such as a light emitting diode (LED: Light Emitting Diode) or a laser diode (LD: Laser Diode) into another wavelength.

近年、蛍光ランプや白熱灯に変わる次世代の光源として、低消費電力、小型軽量、容易な光量調節という観点から、LEDやLDを用いた光源に対する注目が高まってきている。そのような次世代光源の一例として、例えば特許文献1には、青色光を出射するLED上に、LEDからの光の一部を吸収して黄色光に変換する波長変換部材が配置された光源が開示されている。この光源は、LEDから出射された青色光と、波長変換部材から出射された黄色光との合成光である白色光を発する。 In recent years, as a next-generation light source that replaces fluorescent lamps and incandescent lamps, attention has been increasing to light sources using LEDs and LDs from the viewpoints of low power consumption, small size and light weight, and easy light intensity adjustment. As an example of such a next-generation light source, for example, in Patent Document 1, a light source in which a wavelength conversion member that absorbs a part of the light from the LED and converts it into yellow light is arranged on an LED that emits blue light. Is disclosed. This light source emits white light, which is a composite light of blue light emitted from an LED and yellow light emitted from a wavelength conversion member.

波長変換部材としては、従来、樹脂マトリクス中に無機蛍光体を分散させたものが用いられている。しかしながら、当該波長変換部材を用いた場合、LEDからの光により樹脂が劣化し、光源の輝度が低くなりやすいという問題がある。特に、LEDが発する熱や高エネルギーの短波長(青色〜紫外)光によって樹脂マトリクスが劣化し、変色や変形を起こすという問題がある。 Conventionally, as the wavelength conversion member, a member in which an inorganic phosphor is dispersed in a resin matrix has been used. However, when the wavelength conversion member is used, there is a problem that the resin is deteriorated by the light from the LED and the brightness of the light source tends to be lowered. In particular, there is a problem that the resin matrix is deteriorated by the heat generated by the LED or high-energy short-wavelength (blue to ultraviolet) light, causing discoloration or deformation.

そこで、樹脂に代えてガラスマトリクス中に無機蛍光体を分散固定した完全無機固体からなる波長変換部材が提案されている(例えば、特許文献2及び3参照)。当該波長変換部材は、母材となるガラスがLEDチップの熱や照射光により劣化しにくく、変色や変形といった問題が生じにくいという特徴を有している。 Therefore, a wavelength conversion member made of a completely inorganic solid in which an inorganic phosphor is dispersed and fixed in a glass matrix instead of a resin has been proposed (see, for example, Patent Documents 2 and 3). The wavelength conversion member has a feature that the glass as a base material is less likely to be deteriorated by the heat of the LED chip or the irradiation light, and problems such as discoloration and deformation are less likely to occur.

しかしながら、特許文献2及び3に記載の波長変換部材は、製造時の焼成により無機蛍光体が劣化し、輝度劣化しやすいという問題がある。特に、一般照明、特殊照明等の用途においては、高い演色性が求められるため、赤色や緑色といった比較的耐熱性の低い無機蛍光体を使用する必要があり、無機蛍光体の劣化が顕著になる傾向がある。そこで、ガラス組成中にアルカリ金属酸化物を含有させることにより、ガラス粉末の軟化点を低下させた波長変換部材が提案されている(例えば、特許文献4参照)。当該波長変換部材は、比較的低温での焼成により製造可能なため、焼成時における無機蛍光体の劣化を抑制することができる。 However, the wavelength conversion members described in Patent Documents 2 and 3 have a problem that the inorganic phosphor is deteriorated by firing at the time of manufacture and the brightness is easily deteriorated. In particular, in applications such as general lighting and special lighting, high color rendering properties are required, so it is necessary to use an inorganic phosphor having relatively low heat resistance such as red or green, and the deterioration of the inorganic phosphor becomes remarkable. Tend. Therefore, a wavelength conversion member in which the softening point of the glass powder is lowered by containing an alkali metal oxide in the glass composition has been proposed (see, for example, Patent Document 4). Since the wavelength conversion member can be manufactured by firing at a relatively low temperature, deterioration of the inorganic phosphor during firing can be suppressed.

特開2000−208815号公報Japanese Unexamined Patent Publication No. 2000-208815 特開2003−258308号公報Japanese Unexamined Patent Publication No. 2003-258308 特許第4895541号公報Japanese Patent No. 4895541 特開2007−302858号公報JP-A-2007-302858

特許文献4に記載の波長変換部材は、発光強度が経時的に低下しやすいという問題がある。近年のLEDやLD等の光源のさらなる出力増大に伴って、発光強度の経時的な低下はますます顕著になっている。 The wavelength conversion member described in Patent Document 4 has a problem that the emission intensity tends to decrease with time. With the further increase in the output of light sources such as LEDs and LDs in recent years, the decrease in emission intensity with time has become more and more remarkable.

そこで、本発明は、LEDやLDの光を照射した場合に、経時的な発光強度の低下の少ない波長変換部材及びそれを用いてなる発光デバイスを提供することを目的とする。 Therefore, an object of the present invention is to provide a wavelength conversion member having a small decrease in emission intensity with time when irradiated with light from an LED or LD, and a light emitting device using the same.

本発明の波長変換部材は、ガラスマトリクス中に無機蛍光体が分散してなり、ガラスマトリクスが、モル%で、SiO 40〜60%、B 0.1〜35%、Al 0.1〜10%、LiO 0〜10%、NaO 0〜10%、KO 0〜10%、LiO+NaO+KO 0.1〜10%、MgO 0〜45%、CaO 0〜45%、SrO 0〜45%、BaO 0〜45%、MgO+CaO+SrO+BaO 0.1〜45%、及びZnO 0〜15%を含有し、無機蛍光体が、酸化物蛍光体、窒化物蛍光体、酸窒化物蛍光体、塩化物蛍光体、酸塩化物蛍光体、ハロゲン化物蛍光体、アルミン酸塩蛍光体及びハロリン酸塩化物蛍光体からなる群より選択される少なくとも1種であることを特徴とする。 In the wavelength conversion member of the present invention, the inorganic phosphor is dispersed in the glass matrix, and the glass matrix is in mol%, SiO 2 40 to 60%, B 2 O 3 0.1 to 35%, Al 2 O. 3 0.1 to 10%, Li 2 O 0 to 10%, Na 2 O 0 to 10%, K 2 O 0 to 10%, Li 2 O + Na 2 O + K 2 O 0.1 to 10%, MgO 0 to 45 %, CaO 0-45%, SrO 0-45%, BaO 0-45%, MgO + CaO + SrO + BaO 0.1-45%, and ZnO 0-15%. At least one selected from the group consisting of phosphors, oxynitride phosphors, chloride phosphors, acidified phosphors, halide phosphors, aluminate phosphors and halophosphate phosphors. It is characterized by.

本発明者等は、波長変換部材における発光強度の経時的な低下が、特にガラス組成中に含まれるアルカリ金属成分やSiO成分の影響を受けることを突き止めた。そのメカニズムは以下のように推察される。 The present inventors have found that the decrease in emission intensity of the wavelength conversion member with time is particularly affected by the alkali metal component and the SiO 2 component contained in the glass composition. The mechanism is inferred as follows.

組成中にアルカリ金属元素を含有するガラスマトリクスに励起光が照射されると、励起光のエネルギーにより、ガラスマトリクス中の酸素イオンの最外殻に存在する電子が励起され、酸素イオンから離れる。その一部は、ガラスマトリクス中のアルカリイオンと結合して着色中心を形成する(ここで、アルカリイオンが抜けた後には空孔が形成される)。一方、電子が抜けることにより生成した正孔はガラスマトリクス中を移動し、一部はアルカリイオンが抜けた後に形成された空孔に捕えられて着色中心を形成する。ガラスマトリクス中に形成されたこれらの着色中心が励起光や蛍光の吸収源となり、波長変換部材の発光強度が低下すると考えられる。さらに、無機蛍光体から発生する熱(波長変換ロスが原因となって発生する熱)によって、ガラスマトリクス中の電子、正孔、アルカリイオンの移動が活発になる傾向がある。それにより、着色中心の形成が加速され、発光強度が低下しやすくなる。そこで、本発明では、アルカリ金属元素を必須成分として含有しながら、その含有量を上記の通り少なく規制することにより、軟化点の上昇を抑制しつつ、着色中心の発生を抑制している。 When the glass matrix containing an alkali metal element in the composition is irradiated with excitation light, the electrons existing in the outermost shell of oxygen ions in the glass matrix are excited by the energy of the excitation light and separated from the oxygen ions. A part of it combines with alkaline ions in the glass matrix to form a colored center (where vacancies are formed after the alkaline ions are removed). On the other hand, the holes generated by the escape of electrons move in the glass matrix, and some of them are captured by the holes formed after the alkali ions are removed to form a colored center. It is considered that these colored centers formed in the glass matrix serve as an absorption source of excitation light and fluorescence, and the emission intensity of the wavelength conversion member decreases. Further, the heat generated from the inorganic phosphor (heat generated due to the wavelength conversion loss) tends to activate the movement of electrons, holes, and alkaline ions in the glass matrix. As a result, the formation of the coloring center is accelerated, and the emission intensity tends to decrease. Therefore, in the present invention, while containing the alkali metal element as an essential component, the content thereof is regulated to be small as described above, thereby suppressing the increase in the softening point and suppressing the generation of the coloring center.

また、組成中にSiO含有量が多い場合、ガラスマトリクス中においてネットワークフォーマーであるSi−O−Si結合の割合が多くなり、ガラスマトリクス構造が安定化する。そのため、Si−O−Si結合におけるSiとOの間の結合が切断されることによって形成される非架橋酸素が安定して保持され、当該非架橋酸素が着色中心となり発光強度の低下の原因となる。一方、組成中にSiO含有量が少ない場合は、相対的に他の成分の含有量が多くなり、Si−O−Si結合以外の結合が増える(例えば、SiとOの間にBaやNa等の他の元素が入り込む)ことによって、ガラスマトリクス構造の安定性が低下する。その状態において非架橋酸素が形成された場合、Si元素周りの結合状態の安定性が低下しているために、非架橋酸素が安定して保持されにくくなる。その結果、着色中心の形成が抑制される。 Further, when the SiO 2 content is high in the composition, the proportion of Si—O—Si bonds, which are network formers, increases in the glass matrix, and the glass matrix structure is stabilized. Therefore, the non-crosslinked oxygen formed by breaking the bond between Si and O in the Si—O—Si bond is stably retained, and the non-crosslinked oxygen becomes a coloring center and causes a decrease in emission intensity. Become. On the other hand, when the SiO 2 content is low in the composition, the content of other components is relatively high, and bonds other than the Si—O—Si bond increase (for example, Ba or Na between Si and O). The stability of the glass matrix structure is reduced due to the entry of other elements such as. When non-crosslinked oxygen is formed in that state, the stability of the bonded state around the Si element is reduced, so that the non-crosslinked oxygen is less likely to be stably retained. As a result, the formation of coloring centers is suppressed.

なお、本発明の波長変換部材におけるガラスマトリクスはアルカリ土類酸化物(MgOを含む)を必須成分として含有する。アルカリ土類酸化物は、ガラスマトリクス中のアルカリ金属イオンや他のイオンの移動を阻害する。その結果、着色中心が形成されにくくなり、発光強度の経時的な低下を抑制することができる。 The glass matrix in the wavelength conversion member of the present invention contains an alkaline earth oxide (including MgO) as an essential component. Alkali earth oxides inhibit the movement of alkali metal ions and other ions in the glass matrix. As a result, it becomes difficult to form a colored center, and it is possible to suppress a decrease in emission intensity with time.

本発明の波長変換部材において、ガラスマトリクスが、LiO、NaO及びKOをそれぞれ0.1%以上含有することが好ましい。 In the wavelength conversion member of the present invention, it is preferable that the glass matrix contains 0.1% or more of Li 2 O, Na 2 O and K 2 O, respectively.

本発明の波長変換部材において、ガラスマトリクスの軟化点が400〜800℃であることが好ましい。 In the wavelength conversion member of the present invention, the softening point of the glass matrix is preferably 400 to 800 ° C.

本発明の波長変換部材は、無機蛍光体を0.01〜30質量%含有することが好ましい。 The wavelength conversion member of the present invention preferably contains an inorganic phosphor in an amount of 0.01 to 30% by mass.

本発明の波長変換部材は、粉末焼結体からなることが好ましい。 The wavelength conversion member of the present invention is preferably made of a powder sintered body.

本発明の発光デバイスは、上記の波長変換部材、及び、波長変換部材に励起光を照射する光源を備えてなることを特徴とする。 The light emitting device of the present invention is characterized by comprising the above-mentioned wavelength conversion member and a light source for irradiating the wavelength conversion member with excitation light.

本発明によれば、LEDやLDの光を照射した場合に、経時的な発光強度の低下の少ない波長変換部材及びそれを用いてなる発光デバイスを提供することが可能となる。 According to the present invention, it is possible to provide a wavelength conversion member having a small decrease in emission intensity with time when irradiated with light from an LED or LD, and a light emitting device using the same.

本発明の一実施形態に係る発光デバイスの模式的側面図である。It is a schematic side view of the light emitting device which concerns on one Embodiment of this invention.

本発明の波長変換部材は、ガラスマトリクス中に無機蛍光体が分散してなるものである。ガラスマトリクスは、モル%で、SiO 40〜60%、B 0.1〜35%、Al 0.1〜10%、LiO 0〜10%、NaO 0〜10%、KO 0〜10%、LiO+NaO+KO 0.1〜10%、MgO 0〜45%、CaO 0〜45%、SrO 0〜45%、BaO 0〜45%、MgO+CaO+SrO+BaO 0.1〜45%、及びZnO 0〜15%を含有する。このようにガラス組成範囲を限定した理由を以下に説明する。 The wavelength conversion member of the present invention is formed by dispersing an inorganic phosphor in a glass matrix. Glass matrix, in mol%, SiO 2 40~60%, B 2 O 3 0.1~35%, Al 2 O 3 0.1~10%, Li 2 O 0~10%, Na 2 O 0~ 10%, K 2 O 0-10%, Li 2 O + Na 2 O + K 2 O 0.1-10%, MgO 0-45%, CaO 0-45%, SrO 0-45%, BaO 0-45%, MgO + CaO + SrO + BaO It contains 0.1 to 45% and ZnO 0 to 15%. The reason for limiting the glass composition range in this way will be described below.

SiOはガラスネットワークを形成する成分である。SiOの含有量は40〜60%であり、45〜55%であることが好ましい。SiOの含有量が少なすぎると、耐候性や機械的強度が低下する傾向がある。一方、SiOの含有量が多すぎると、発光強度が経時的に低下しやすくなる。また、波長変換部材製造時において焼結温度が高温になり、無機蛍光体が劣化しやすくなる。 SiO 2 is a component that forms a glass network. The content of SiO 2 is 40 to 60%, preferably 45 to 55%. If the content of SiO 2 is too small, the weather resistance and mechanical strength tend to decrease. On the other hand, if the content of SiO 2 is too large, the emission intensity tends to decrease with time. In addition, the sintering temperature becomes high during the manufacture of the wavelength conversion member, and the inorganic phosphor tends to deteriorate.

は溶融温度を低下させて溶融性を著しく改善する成分である。Bの含有量は0.1〜35%であり、1〜30%であることが好ましい。Bの含有量が少なすぎると、上記効果が得られにくくなる。また、波長変換部材製造時において焼結温度が高温になり、無機蛍光体が劣化しやすくなる。一方、Bの含有量が多すぎると、発光強度が経時的に低下しやすくなる。また耐候性が低下しやすくなる。 B 2 O 3 is a component that lowers the melting temperature and significantly improves the meltability. The content of B 2 O 3 is 0.1 to 35%, preferably 1 to 30%. If the content of B 2 O 3 is too small, it becomes difficult to obtain the above effect. In addition, the sintering temperature becomes high during the manufacture of the wavelength conversion member, and the inorganic phosphor tends to deteriorate. On the other hand, if the content of B 2 O 3 is too large, the emission intensity tends to decrease with time. In addition, the weather resistance tends to decrease.

なお、SiOとBの割合SiO/B(モル比)の値は1〜7、1〜6.5、1.1〜6、1.15〜5、1.2〜4、1.5〜3.5、特に1.7〜2.5であることが好ましい。SiO/Bの値が大きすぎると、SiOの割合が大きくなって、O元素脱離に起因する着色中心が形成されやすくなり、発光強度が経時的に低下する傾向がある。一方、SiO/Bの値が小さすぎると、Bの割合が大きくなって、耐候性が低下しやすくなる。 The ratio of SiO 2 and B 2 O 3 SiO 2 / B 2 O 3 (molar ratio) is 1 to 7, 1 to 6.5, 1.1 to 6, 1.15 to 5, 1.2. It is preferably ~ 4, 1.5 to 3.5, particularly 1.7 to 2.5. If the value of SiO 2 / B 2 O 3 is too large, the proportion of SiO 2 becomes large, a colored center due to desorption of the O element is likely to be formed, and the emission intensity tends to decrease with time. On the other hand, if the value of SiO 2 / B 2 O 3 is too small, the ratio of B 2 O 3 becomes large, and the weather resistance tends to decrease.

Alは耐候性や機械的強度を向上させる成分である。Alの含有量は0.1〜10%であり、2〜8%であることが好ましい。Alの含有量が少なすぎると、上記効果が得られにくくなる。一方、Alの含有量が多すぎると、溶融性が低下する傾向がある。 Al 2 O 3 is a component that improves weather resistance and mechanical strength. The content of Al 2 O 3 is 0.1 to 10%, preferably 2 to 8%. If the content of Al 2 O 3 is too small, it becomes difficult to obtain the above effect. On the other hand, if the content of Al 2 O 3 is too large, the meltability tends to decrease.

なお、高い耐候性を達成するためには、SiO+B+Alの含有量を55%以上とすることが好ましく、60%以上とすることがより好ましく、65%以上とすることがさらに好ましく、67%以上とすることが特に好ましく、70%以上とすることが最も好ましい。SiO+B+Alの含有量の上限は特に限定されないが、多すぎると溶融性が低下しやすくなるため、85%以下とすることが好ましく、84%以下とすることがより好ましく、83%以下とすることがさらに好ましい。 In order to achieve high weather resistance, the content of SiO 2 + B 2 O 3 + Al 2 O 3 is preferably 55% or more, more preferably 60% or more, and 65% or more. More preferably, it is particularly preferably 67% or more, and most preferably 70% or more. The upper limit of the content of SiO 2 + B 2 O 3 + Al 2 O 3 is not particularly limited, but if it is too large, the meltability tends to decrease, so it is preferably 85% or less, and more preferably 84% or less. It is preferably 83% or less, and more preferably 83% or less.

LiO、NaO及びKOは溶融温度を低下させて溶融性を改善し、軟化点を低下させる成分である。これらの成分の含有量はそれぞれ0〜10%であり、0〜5%であることが好ましく、0.1〜2%であることがより好ましい。これらの成分の含有量が多すぎると、耐候性が低下する傾向がある。 Li 2 O, Na 2 O and K 2 O are components that lower the melting temperature to improve the meltability and lower the softening point. The contents of these components are 0 to 10%, preferably 0 to 5%, and more preferably 0.1 to 2%, respectively. If the content of these components is too high, the weather resistance tends to decrease.

なお、LiO+NaO+KOの含有量は0.1〜10%であり、1〜7%であることが好ましく、2〜5%であることがより好ましい。LiO+NaO+KOの含有量が少なすぎると、軟化点が低下しにくくなる。一方、LiO+NaO+KO含有量が多すぎると、耐候性が低下しやすくなり、かつ、LEDやLDの光照射により発光強度が経時的に低下しやすくなる。LiO、NaO及びKOは、2種以上、特に3種を混合して用いることが好ましい。具体的には、LiO、NaO及びKOをそれぞれ0.1%以上含有することが好ましい。このようにすれば、混合アルカリ効果により、軟化点を効率良く低下させることが可能になる。また、各アルカリ酸化物の含有量は同等にすると、混合アルカリ効果が得られやすい。 The content of Li 2 O + Na 2 O + K 2 O is 0.1 to 10%, preferably 1 to 7%, and more preferably 2 to 5%. If the content of Li 2 O + Na 2 O + K 2 O is too small, the softening point is unlikely to decrease. On the other hand, if the content of Li 2 O + Na 2 O + K 2 O is too large, the weather resistance tends to decrease, and the light emission intensity tends to decrease with time due to the light irradiation of the LED or LD. Li 2 O, Na 2 O and K 2 O are preferably used in combination of two or more, particularly three. Specifically, it is preferable to contain Li 2 O, Na 2 O and K 2 O in an amount of 0.1% or more, respectively. In this way, the softening point can be efficiently lowered due to the mixed alkali effect. Further, when the contents of each alkali oxide are the same, the mixed alkali effect can be easily obtained.

高い耐候性を達成するため、耐候性向上に寄与する成分であるSiO、B及びAlの合量と、耐候性低下の原因となるアルカリ金属酸化物(LiO、NaO及びKO)の含量の比率を適宜調整することが好ましい。具体的には、(LiO+NaO+KO)/(SiO+B+Al)(モル比)が0.2以下であることが好ましく、0.18以下であることがより好ましく、0.15以下であることがさらに好ましい。 In order to achieve high weather resistance, the total amount of SiO 2 , B 2 O 3 and Al 2 O 3 , which are components that contribute to the improvement of weather resistance, and the alkali metal oxide (Li 2 O,) that causes a decrease in weather resistance. It is preferable to appropriately adjust the ratio of the contents of Na 2 O and K 2 O). Specifically, (Li 2 O + Na 2 O + K 2 O) / (SiO 2 + B 2 O 3 + Al 2 O 3 ) (molar ratio) is preferably 0.2 or less, and preferably 0.18 or less. More preferably, it is 0.15 or less.

MgO、CaO、SrO及びBaOは溶融温度を低下させて溶融性を改善し、軟化点を低下させる成分である。また、LEDやLDの光照射による着色中心形成の原因となるイオンの移動を阻害するため、発光強度の経時的な低下を抑制する効果も有する。これらの成分の含有量はそれぞれ0〜45%であり、10〜45%、特に15〜35%であることが好ましい。これらの成分の含有量が多すぎると、耐候性が低下する傾向がある。なお、質量数の大きいBaOは、着色中心形成の原因となるイオンの移動を阻害する効果が大きく、発光強度の経時的な低下を効果的に抑制できる。 MgO, CaO, SrO and BaO are components that lower the melting temperature to improve the meltability and lower the softening point. In addition, since it inhibits the movement of ions that cause the formation of colored centers due to light irradiation of LEDs and LDs, it also has the effect of suppressing a decrease in emission intensity over time. The content of each of these components is 0 to 45%, preferably 10 to 45%, particularly preferably 15 to 35%. If the content of these components is too high, the weather resistance tends to decrease. In addition, BaO having a large mass number has a large effect of inhibiting the movement of ions that cause the formation of colored centers, and can effectively suppress a decrease in emission intensity with time.

なお、MgO+CaO+SrO+BaOの含有量は0.1〜45%であり、0.1〜40%であることが好ましく、0.1〜35%であることがより好ましく、1〜30%であることがさらに好ましく、5〜25%であることが特に好ましい。MgO+CaO+SrO+BaOの含有量が少なすぎると、軟化点が低下しにくくなり、かつ、発光強度の経時的な低下を抑制する効果が得られにくくなる。一方、MgO+CaO+SrO+BaOの含有量が多すぎると、耐候性が低下しやすくなる。 The content of MgO + CaO + SrO + BaO is 0.1 to 45%, preferably 0.1 to 40%, more preferably 0.1 to 35%, and further preferably 1 to 30%. It is preferably 5 to 25%, and particularly preferably 5 to 25%. If the content of MgO + CaO + SrO + BaO is too small, it becomes difficult to reduce the softening point, and it becomes difficult to obtain the effect of suppressing the decrease in emission intensity over time. On the other hand, if the content of MgO + CaO + SrO + BaO is too large, the weather resistance tends to decrease.

ZnOは溶融温度を低下させて溶融性を改善する成分である。ZnOの含有量は0〜15%であり、0〜12%であることが好ましく、0〜10%であることがより好ましく、1〜7%であることがさらに好ましい。ZnOの含有量が多すぎると、耐候性が低下する傾向がある。 ZnO is a component that lowers the melting temperature and improves the meltability. The ZnO content is 0 to 15%, preferably 0 to 12%, more preferably 0 to 10%, and even more preferably 1 to 7%. If the ZnO content is too high, the weather resistance tends to decrease.

また、上記成分以外にも、本発明の効果を損なわない範囲で種々の成分を含有させることができる。例えば、P、La、Ta、TeO、TiO、Nb、Gd、Y、CeO、Sb、SnO、Bi及びZrO等をそれぞれ15%以下、さらには10%以下、特に5%以下、合量で30%以下の範囲で含有させてもよい。またFを含有させることもできる。Fは軟化点を低減する効果があるため、着色中心形成の原因の1つであるアルカリ金属成分の代わりに含有させることにより、軟化点を維持したまま、発光強度の経時的な低下を抑制することができる。Fの含有量はアニオン%で0〜20%、0〜10%、特に0.1〜5%であることが好ましい。 In addition to the above components, various components can be contained as long as the effects of the present invention are not impaired. For example, P 2 O 5 , La 2 O 3 , Ta 2 O 5 , TeO 2 , TiO 2 , Nb 2 O 5 , Gd 2 O 3 , Y 2 O 3 , CeO 2 , Sb 2 O 3 , SnO 2 , Bi. 2 O 3 and ZrO 2 and the like may be contained in a range of 15% or less, further 10% or less, particularly 5% or less, and a total amount of 30% or less. It can also contain F. Since F has the effect of reducing the softening point, by containing it instead of the alkali metal component, which is one of the causes of the formation of the coloring center, the softening point is maintained and the decrease in emission intensity with time is suppressed. be able to. The content of F is preferably 0 to 20%, 0 to 10%, particularly 0.1 to 5% in terms of anion%.

ガラスマトリクスの軟化点は400〜800℃であることが好ましく、450〜750℃であることがより好ましく、500〜700℃であることがさらに好ましい。軟化点が低すぎると、機械的強度及び耐候性が低下しやすくなる。一方、軟化点が高すぎると、製造時の焼成により無機蛍光体が劣化しやすくなる。 The softening point of the glass matrix is preferably 400 to 800 ° C., more preferably 450 to 750 ° C., and even more preferably 500 to 700 ° C. If the softening point is too low, the mechanical strength and weather resistance are likely to decrease. On the other hand, if the softening point is too high, the inorganic phosphor tends to deteriorate due to firing during production.

なお一般に、無機蛍光体はガラスよりも屈折率が高い場合が多い。波長変換部材において、無機蛍光体とガラスマトリクスの屈折率差が大きいと、無機蛍光体とガラスマトリクスの界面で励起光が散乱されやすくなる。その結果、無機蛍光体に対する励起光の照射効率が高くなり、発光効率が向上しやすくなる。ただし、無機蛍光体とガラスマトリクスの屈折率差が大きすぎると、励起光の散乱が過剰になり、散乱損失となって逆に発光効率が低下する傾向がある。以上に鑑み、無機蛍光体とガラスマトリクスの屈折率差は0.001〜0.5程度であることが好ましい。また、ガラスマトリクスの屈折率(nd)は1.45〜1.8であることが好ましく、1.47〜1.75であることがより好ましく、1.48〜1.6であることがさらに好ましい。 In general, inorganic phosphors often have a higher refractive index than glass. In the wavelength conversion member, if the difference in refractive index between the inorganic phosphor and the glass matrix is large, the excitation light is likely to be scattered at the interface between the inorganic phosphor and the glass matrix. As a result, the irradiation efficiency of the excitation light on the inorganic phosphor becomes high, and the luminous efficiency tends to improve. However, if the difference in refractive index between the inorganic phosphor and the glass matrix is too large, the excitation light is scattered excessively, resulting in scattering loss and conversely, the luminous efficiency tends to decrease. In view of the above, the difference in refractive index between the inorganic phosphor and the glass matrix is preferably about 0.001 to 0.5. The refractive index (nd) of the glass matrix is preferably 1.45 to 1.8, more preferably 1.47 to 1.75, and further preferably 1.48 to 1.6. preferable.

本発明における無機蛍光体は、酸化物蛍光体(YAG蛍光体等のガーネット系蛍光体を含む)、窒化物蛍光体、酸窒化物蛍光体、塩化物蛍光体、酸塩化物蛍光体、ハロゲン化物蛍光体、アルミン酸塩蛍光体及びハロリン酸塩化物蛍光体からなる群より選択される少なくとも1種である。これらの無機蛍光体のうち、酸化物蛍光体、窒化物蛍光体及び酸窒化物蛍光体は耐熱性が高く、焼成時に比較的劣化しにくいため好ましい。なお、窒化物蛍光体及び酸窒化物蛍光体は、近紫外〜青の励起光を緑〜赤という幅広い波長領域に変換し、しかも発光強度も比較的高いという特徴を有している。そのため、窒化物蛍光体及び酸窒化物蛍光体は、特に白色LED素子用波長変換部材に用いられる無機蛍光体として有効である。無機蛍光体から発生した熱がガラスマトリクスに伝導するのを抑制するため、被覆処理された無機蛍光体を用いても良い。これにより、ガラスマトリクス中の電子、正孔、アルカリイオンの移動の活発化を抑制し、結果として着色中心の形成を抑制することができる。被覆材としては酸化物が好ましい。なお、上記以外の蛍光体として硫化物蛍光体が挙げられるが、硫化物蛍光体は経時的に劣化したり、ガラスマトリクスと反応したりして発光強度が低下しやすいため、本発明では使用しない。 The inorganic phosphor in the present invention includes an oxide phosphor (including a garnet-based phosphor such as a YAG phosphor), a nitride phosphor, an oxynitride phosphor, a chloride phosphor, a acidified phosphor, and a halide. It is at least one selected from the group consisting of a fluorescent substance, an aluminate fluorescent substance and a halophosphate-ized fluorescent substance. Of these inorganic phosphors, oxide phosphors, nitride phosphors and oxynitride phosphors are preferable because they have high heat resistance and are relatively resistant to deterioration during firing. The nitride phosphor and the oxynitride phosphor have a feature that the excitation light of near-ultraviolet to blue is converted into a wide wavelength region of green to red, and the emission intensity is relatively high. Therefore, the nitride phosphor and the oxynitride phosphor are particularly effective as the inorganic phosphor used in the wavelength conversion member for the white LED element. In order to suppress the heat generated from the inorganic phosphor from being conducted to the glass matrix, a coated inorganic phosphor may be used. As a result, the activation of the movement of electrons, holes, and alkaline ions in the glass matrix can be suppressed, and as a result, the formation of colored centers can be suppressed. Oxides are preferable as the coating material. Examples of phosphors other than the above include sulfide phosphors, but the sulfide phosphors are not used in the present invention because they tend to deteriorate over time or react with the glass matrix to reduce the emission intensity. ..

上記無機蛍光体としては、波長300〜500nmに励起帯を有し波長380〜780nmに発光ピークを有するもの、特に青色(波長440〜480nm)、緑色(波長500〜540nm)、黄色(波長540〜595nm)、赤色(波長600〜700nm)に発光するものが挙げられる。 Examples of the inorganic phosphor have an excitation band at a wavelength of 300 to 500 nm and an emission peak at a wavelength of 380 to 780 nm, particularly blue (wavelength 440 to 480 nm), green (wavelength 500 to 540 nm), and yellow (wavelength 540 to 540 nm). Those that emit light in red (wavelength 600 to 700 nm) can be mentioned.

波長300〜440nmの紫外〜近紫外の励起光を照射すると青色の発光を発する無機蛍光体としては、(Sr,Ba)MgAl1017:Eu2+、(Sr,Ba)MgSi:Eu2+等が挙げられる。 Examples of the inorganic phosphor that emits blue light when irradiated with ultraviolet-near-ultraviolet excitation light having a wavelength of 300 to 440 nm include (Sr, Ba) MgAl 10 O 17 : Eu 2+ , (Sr, Ba) 3 MgSi 2 O 8 :. Eu 2+ and the like can be mentioned.

波長300〜440nmの紫外〜近紫外の励起光を照射すると緑色の蛍光を発する無機蛍光体としては、SrAl:Eu2+、SrBaSiO:Eu2+、Y(Al,Gd)12:Ce3+、SrSiON:Eu2+、BaMgAl1017:Eu2+,Mn2+、BaMgSi:Eu2+、BaSiO:Eu2+、BaLiSi:Eu2+、BaAl:Eu2+等が挙げられる。 Inorganic phosphors that emit green fluorescence when irradiated with excitation light with a wavelength of 300 to 440 nm from ultraviolet to near ultraviolet are SrAl 2 O 4 : Eu 2+ , SrBaSiO 4 : Eu 2+ , Y 3 (Al, Gd) 5 O 12 : Ce 3+ , SrSiON: Eu 2+ , BaMgAl 10 O 17 : Eu 2+ , Mn 2+ , Ba 2 MgSi 2 O 7 : Eu 2+ , Ba 2 SiO 4 : Eu 2+ , Ba 2 Li 2 Si 2 O 7 : Eu 2+ BaAl 2 O 4 : Eu 2+ and the like can be mentioned.

波長440〜480nmの青色の励起光を照射すると緑色の蛍光を発する無機蛍光体としては、SrAl:Eu2+、SrBaSiO:Eu2+、Y(Al,Gd)12:Ce3+、SrSiON:Eu2+、β−SiAlON:Eu2+等が挙げられる。 Examples of inorganic phosphors that emit green fluorescence when irradiated with blue excitation light having a wavelength of 440 to 480 nm include SrAl 2 O 4 : Eu 2+ , SrBaSiO 4 : Eu 2+ , and Y 3 (Al, Gd) 5 O 12 : Ce 3+. , SrSiON: Eu 2+ , β-SiAlON: Eu 2+ and the like.

波長300〜440nmの紫外〜近紫外の励起光を照射すると黄色の蛍光を発する無機蛍光体としては、LaSi11:Ce3+等が挙げられる。 Examples of the inorganic phosphor that emits yellow fluorescence when irradiated with ultraviolet-near-ultraviolet excitation light having a wavelength of 300 to 440 nm include La 3 Si 6 N 11 : Ce 3+ and the like.

波長440〜480nmの青色の励起光を照射すると黄色の蛍光を発する無機蛍光体としては、Y(Al,Gd)12:Ce3+、SrSiO:Eu2+が挙げられる。 Examples of the inorganic phosphor that emits yellow fluorescence when irradiated with blue excitation light having a wavelength of 440 to 480 nm include Y 3 (Al, Gd) 5 O 12 : Ce 3+ and Sr 2 SiO 4 : Eu 2+ .

波長300〜440nmの紫外〜近紫外の励起光を照射すると赤色の蛍光を発する無機蛍光体としては、MgSrSi:Eu2+,Mn2+、CaMgSi:Eu2+,Mn2+等が挙げられる。 As inorganic phosphors that emit red fluorescence when irradiated with ultraviolet to near-ultraviolet excitation light with a wavelength of 300 to 440 nm, MgSr 3 Si 2 O 8 : Eu 2+ , Mn 2+ , Ca 2 MgSi 2 O 7 : Eu 2+ , Mn 2+ and the like can be mentioned.

波長440〜480nmの青色の励起光を照射すると赤色の蛍光を発する無機蛍光体としては、CaAlSiN:Eu2+、CaSiN:Eu2+、(Ca,Sr)Si:Eu2+、α−SiAlON:Eu2+等が挙げられる。 Examples of inorganic phosphors that emit red fluorescence when irradiated with blue excitation light having a wavelength of 440 to 480 nm include CaAlSiN 3 : Eu 2+ , CaSiN 3 : Eu 2+ , (Ca, Sr) 2 Si 5 N 8 : Eu 2+ , α. −SiAlON: Eu 2+ and the like.

なお、励起光や発光の波長域に合わせて、複数の無機蛍光体を混合して用いてもよい。例えば、紫外域の励起光を照射して白色光を得る場合は、青色、緑色、黄色、赤色の蛍光を発する無機蛍光体を混合して使用すればよい。 In addition, a plurality of inorganic phosphors may be mixed and used according to the wavelength range of excitation light or emission. For example, when white light is obtained by irradiating excitation light in the ultraviolet region, an inorganic phosphor that emits blue, green, yellow, and red fluorescence may be mixed and used.

波長変換部材の発光効率(lm/W)は、無機蛍光体の種類や含有量、さらには波長変換部材の厚み等によって変化する。無機蛍光体の含有量と波長変換部材の厚みは、発光効率が最適になるように適宜調整すればよい。無機蛍光体の含有量が多くなりすぎると、焼結しにくくなったり、気孔率が大きくなって、励起光が効率良く無機蛍光体に照射されにくくなったり、波長変換部材の機械的強度が低下する等の問題が生じるおそれがある。一方、無機蛍光体の含有量が少なすぎると、所望の発光強度を得ることが困難になる。このような観点から、本発明の波長変換部材における無機蛍光体の含有量は、0.01〜30質量%であることが好ましく、0.05〜25質量%であることがより好ましく、0.08〜20質量%であることがさらに好ましい。 The luminous efficiency (lm / W) of the wavelength conversion member changes depending on the type and content of the inorganic phosphor, the thickness of the wavelength conversion member, and the like. The content of the inorganic phosphor and the thickness of the wavelength conversion member may be appropriately adjusted so as to optimize the luminous efficiency. If the content of the inorganic phosphor is too high, it becomes difficult to sinter, the porosity becomes large, it becomes difficult for the excitation light to be efficiently irradiated to the inorganic phosphor, and the mechanical strength of the wavelength conversion member decreases. There is a risk of problems such as On the other hand, if the content of the inorganic phosphor is too small, it becomes difficult to obtain a desired emission intensity. From such a viewpoint, the content of the inorganic phosphor in the wavelength conversion member of the present invention is preferably 0.01 to 30% by mass, more preferably 0.05 to 25% by mass, and 0. It is more preferably 08 to 20% by mass.

なお、波長変換部材において発生した蛍光を、励起光入射側へ反射させ、主に蛍光のみを外部に取り出すことを目的とした波長変換部材においては、上記の限りではなく、発光強度が最大になるように、無機蛍光体の含有量を多くする(例えば、30〜80質量%、さらには40〜75質量%)ことができる。 In addition, in the wavelength conversion member whose purpose is to reflect the fluorescence generated in the wavelength conversion member to the side where the excitation light is incident and mainly extract only the fluorescence to the outside, the emission intensity is maximized, not limited to the above. As described above, the content of the inorganic phosphor can be increased (for example, 30 to 80% by mass, and further 40 to 75% by mass).

本発明の波長変換部材には、無機蛍光体以外にも、アルミナ、シリカ、マグネシア等の光拡散材を合量で30質量%まで含有していてもよい。 In addition to the inorganic phosphor, the wavelength conversion member of the present invention may contain a total amount of a light diffusing material such as alumina, silica, and magnesia up to 30% by mass.

本発明の波長変換部材は粉末焼結体からなることが好ましい。具体的には、ガラス粉末と無機蛍光体粉末を含む混合粉末の焼結体からなることが好ましい。このようにすれば、ガラスマトリクス中に無機蛍光体が均一に分散した波長変換部材を容易に作製することが可能となる。 The wavelength conversion member of the present invention is preferably made of a powder sintered body. Specifically, it is preferably composed of a sintered body of a mixed powder containing a glass powder and an inorganic fluorescent substance powder. In this way, it is possible to easily manufacture a wavelength conversion member in which the inorganic phosphor is uniformly dispersed in the glass matrix.

ガラス粉末の最大粒子径Dmaxは200μm以下であることが好ましく、150μm以下であることがより好ましく、105μm以下であることがさらに好ましい。ガラス粉末の平均粒子径D50は0.1μm以上であることが好ましく、1μm以上であることがより好ましく、2μm以上であることがさらに好ましい。ガラス粉末の最大粒子径Dmaxが大きすぎると、得られる波長変換部材において、励起光が散乱しにくくなり発光効率が低下しやすくなる。また、ガラス粉末の平均粒子径D50が小さすぎると、得られる波長変換部材において、励起光が過剰に散乱して発光効率が低下しやすくなる。 The maximum particle size D max of the glass powder is preferably 200 μm or less, more preferably 150 μm or less, and further preferably 105 μm or less. The average particle size D 50 of the glass powder is preferably 0.1 μm or more, more preferably 1 μm or more, and further preferably 2 μm or more. If the maximum particle size D max of the glass powder is too large, the excitation light is less likely to be scattered in the obtained wavelength conversion member, and the luminous efficiency is likely to decrease. Further, if the average particle size D 50 of the glass powder is too small, the excitation light is excessively scattered in the obtained wavelength conversion member, and the luminous efficiency tends to decrease.

なお、本発明において、最大粒子径Dmax及び平均粒子径D50はレーザー回折法により測定した値を指す。 In the present invention, the maximum particle size D max and the average particle size D 50 refer to the values measured by the laser diffraction method.

ガラス粉末及び無機蛍光体を含む混合粉末の焼成温度は、ガラス粉末の軟化点±150℃以内であることが好ましく、ガラス粉末の軟化点±100℃以内であることがより好ましい。焼成温度が低すぎると、ガラス粉末が流動せず、緻密な焼結体が得られにくい。一方、焼成温度が高すぎると、無機蛍光体成分がガラス中に溶出して発光強度が低下したり、無機蛍光体成分がガラス中に拡散してガラスが着色して発光強度が低下するおそれがある。 The firing temperature of the mixed powder containing the glass powder and the inorganic phosphor is preferably within ± 150 ° C., and more preferably within ± 100 ° C., the softening point of the glass powder. If the firing temperature is too low, the glass powder does not flow and it is difficult to obtain a dense sintered body. On the other hand, if the firing temperature is too high, the inorganic phosphor component may be eluted into the glass to reduce the emission intensity, or the inorganic phosphor component may diffuse into the glass to color the glass and reduce the emission intensity. is there.

また、焼成は減圧雰囲気中で行うことが好ましい。具体的には、焼成中の雰囲気は1.013×10Pa未満であることが好ましく、1000Pa以下であることがより好ましく、400Pa以下であることがさらに好ましい。それにより、波長変換部材中に残存する気泡の量を少なくすることができる。その結果、波長変換部材内の散乱因子を低減することができ、発光効率を向上させることができる。なお、焼成工程全体を減圧雰囲気中で行ってもよいし、例えば焼成工程のみを減圧雰囲気中で行い、その前後の昇温工程や降温工程を、減圧雰囲気ではない雰囲気(例えば大気圧下)で行ってもよい。 Further, it is preferable that the firing is performed in a reduced pressure atmosphere. Specifically, it is preferable that the atmosphere during firing is less than 1.013 × 10 5 Pa, more preferably at most 1000 Pa, and more preferably less 400 Pa. Thereby, the amount of bubbles remaining in the wavelength conversion member can be reduced. As a result, the scattering factor in the wavelength conversion member can be reduced, and the luminous efficiency can be improved. The entire firing step may be performed in a reduced pressure atmosphere. For example, only the firing step is performed in a reduced pressure atmosphere, and the temperature raising and lowering steps before and after the firing step are performed in an atmosphere other than the reduced pressure atmosphere (for example, under atmospheric pressure). You may go.

本発明の波長変換部材の形状は特に制限されず、例えば、板状、柱状、半球状、半球ドーム状等、それ自身が特定の形状を有する部材だけでなく、ガラス基板やセラミック基板等の基材表面に形成された被膜状の焼結体等も含まれる。 The shape of the wavelength conversion member of the present invention is not particularly limited, and is not limited to a member having a specific shape itself such as a plate shape, a columnar shape, a hemispherical shape, or a hemispherical dome shape, but also a base such as a glass substrate or a ceramic substrate. A film-like sintered body formed on the surface of the material is also included.

図1に、本発明の発光デバイスの実施形態を示す。図1に示すように、発光デバイス1は波長変換部材2及び光源3を備えてなる。光源3は、波長変換部材2に対して励起光L1を照射する。波長変換部材2に入射した励起光L1は、別の波長の蛍光L2に変換され、光源3とは反対側から出射する。この際、波長変換されずに透過した励起光L1と、蛍光L2との合成光を出射させるようにしてもよい。 FIG. 1 shows an embodiment of the light emitting device of the present invention. As shown in FIG. 1, the light emitting device 1 includes a wavelength conversion member 2 and a light source 3. The light source 3 irradiates the wavelength conversion member 2 with the excitation light L1. The excitation light L1 incident on the wavelength conversion member 2 is converted into fluorescence L2 having a different wavelength, and is emitted from the side opposite to the light source 3. At this time, the combined light of the excitation light L1 transmitted without wavelength conversion and the fluorescence L2 may be emitted.

以下に、本発明を実施例に基づいて詳細に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described in detail based on examples, but the present invention is not limited to these examples.

(1)ガラス粉末の作製 表1及び2は実施例で使用するガラス粉末(試料A〜M)及び比較例で使用するガラス粉末(試料N〜P)を示している。 (1) Preparation of glass powder Tables 1 and 2 show the glass powders (samples A to M) used in Examples and the glass powders (Samples N to P) used in Comparative Examples.

Figure 0006861952
Figure 0006861952

Figure 0006861952
Figure 0006861952

まず、表1及び2に示すガラス組成となるように原料を調合した。原料を白金坩堝を用いて800〜1500℃の温度で1〜2時間溶融してガラス化し、溶融ガラスを一対の冷却ローラー間に流し出すことによりフィルム状に成形した。フィルム状ガラス成形体をボールミルで粉砕した後、分級して平均粒子径D50が2.5μmのガラス粉末を得た。得られたガラス粉末につき、下記の方法により、軟化点及び耐候性を測定した。 First, the raw materials were prepared so as to have the glass composition shown in Tables 1 and 2. The raw material was melted and vitrified at a temperature of 800 to 1500 ° C. for 1 to 2 hours using a platinum crucible, and the molten glass was poured between a pair of cooling rollers to form a film. The film-shaped glass molded body was pulverized with a ball mill and then classified to obtain a glass powder having an average particle diameter D 50 of 2.5 μm. The softening point and weather resistance of the obtained glass powder were measured by the following methods.

軟化点は、ファイバーエロンゲーション法を用い、粘度が107.6dPa・sとなる温度を採用した。 For the softening point, a fiber erongation method was used, and a temperature at which the viscosity was 107.6 dPa · s was adopted.

耐候性は次のようにして評価した。ガラス粉末を金型で加圧成型して直径1cmの円柱状予備成型体を作製し、表1及び2に記載の焼成温度で焼成することにより円柱状の焼結体試料を得た。平山製作所製HAST試験機PC−242HSR2を用いて試料を121℃、95%RH、2気圧の条件下、300時間保持し、試料表面を観察することによって耐候性を評価した。具体的には、光学顕微鏡観察(×500)にて、試験前後で試料表面に変化がないものは「○」、試料表面にガラス成分が析出していたり、光沢が失われたりしたものを「×」として評価した。 Weather resistance was evaluated as follows. The glass powder was pressure-molded with a mold to prepare a columnar premolded body having a diameter of 1 cm, and the columnar sintered body sample was obtained by firing at the firing temperatures shown in Tables 1 and 2. The weather resistance was evaluated by holding the sample for 300 hours under the conditions of 121 ° C., 95% RH, and 2 atm using a HAST tester PC-242HSR2 manufactured by Hirayama Seisakusho, and observing the sample surface. Specifically, in optical microscope observation (× 500), “○” indicates that the sample surface does not change before and after the test, and “○” indicates that the glass component is precipitated or the gloss is lost on the sample surface. It was evaluated as "x".

(2)波長変換部材の作製 表3〜6は本発明の実施例(試料1〜13、17〜29)及び比較例(14〜16、30〜32)を示している。 (2) Preparation of Wavelength Converting Member Tables 3 to 6 show Examples (Samples 1 to 13, 17 to 29) and Comparative Examples (14 to 16, 30 to 32) of the present invention.

Figure 0006861952
Figure 0006861952

Figure 0006861952
Figure 0006861952

Figure 0006861952
Figure 0006861952

Figure 0006861952
Figure 0006861952

表1及び2に記載の各ガラス粉末試料に、表3〜6に示す無機蛍光体粉末を所定の質量比で混合して混合粉末を得た。混合粉末を金型で加圧成型して直径1cmの円柱状予備成型体を作製した。予備成型体を焼成した後、得られた焼結体に加工を施すことにより、直径8mm、厚さ0.2mmの円盤状の波長変換部材を得た。なお、焼成温度は、使用したガラス粉末に応じて、表1及び2に記載の焼成温度を採用した。得られた波長変換部材について発光スペクトルを測定し、発光効率を算出した。結果を表3〜6に示す。 The inorganic fluorescent powders shown in Tables 3 to 6 were mixed with each of the glass powder samples shown in Tables 1 and 2 at a predetermined mass ratio to obtain a mixed powder. The mixed powder was pressure-molded with a mold to prepare a columnar premolded body having a diameter of 1 cm. After firing the preformed body, the obtained sintered body was processed to obtain a disk-shaped wavelength conversion member having a diameter of 8 mm and a thickness of 0.2 mm. As the firing temperature, the firing temperatures shown in Tables 1 and 2 were adopted according to the glass powder used. The emission spectrum of the obtained wavelength conversion member was measured, and the luminous efficiency was calculated. The results are shown in Tables 3-6.

発光効率は次のようにして求めた。まず、励起波長460nmの光源上に波長変換部材を設置し、積分球内で、波長変換部材上面から発せられる光のエネルギー分布スペクトルを測定した。次に、得られたスペクトルに標準比視感度を掛け合わせて全光束を計算し、全光束を光源の電力で除して発光効率を算出した。 Luminous efficiency was determined as follows. First, a wavelength conversion member was placed on a light source having an excitation wavelength of 460 nm, and the energy distribution spectrum of light emitted from the upper surface of the wavelength conversion member was measured in the integrating sphere. Next, the total luminous flux was calculated by multiplying the obtained spectrum by the standard luminous efficiency, and the total luminous flux was divided by the power of the light source to calculate the luminous efficiency.

次に、上記の波長変換部材を1.2mm角に加工を施し、小片の波長変換部材を得た。小片の波長変換部材を、650mAで通電した発光波長445nmのLEDチップ上に載置し、100時間連続光照射を行った。光照射前及び100時間光照射後の波長変換部材について、積分球内で波長変換部材上面から発せられる光のエネルギー分布スペクトルを、汎用の発光スペクトル測定装置を用いて測定した。得られた発光スペクトルに標準比視感度を掛け合わせることにより、全光束値を算出した。全光束値の変化率は、100時間光照射後の全光束値を、光照射前の全光束値で除して、100を掛けた値(%)で表し、表3〜6に示した。 Next, the above wavelength conversion member was processed into a 1.2 mm square to obtain a small piece of wavelength conversion member. A small piece of wavelength conversion member was placed on an LED chip having an emission wavelength of 445 nm energized at 650 mA, and continuous light irradiation was performed for 100 hours. For the wavelength conversion member before and after light irradiation for 100 hours, the energy distribution spectrum of the light emitted from the upper surface of the wavelength conversion member in the integrating sphere was measured using a general-purpose emission spectrum measuring device. The total luminous flux value was calculated by multiplying the obtained emission spectrum by the standard luminous efficiency. The rate of change of the total luminous flux value is represented by a value (%) obtained by dividing the total luminous flux value after 100 hours of light irradiation by the total luminous flux value before light irradiation and multiplying by 100, and is shown in Tables 3 to 6.

表3及び4から明らかなように、無機蛍光体としてα−SiAlONを使用した場合、実施例である1〜13の波長変換部材は、100時間の光照射後の全光束値が、光照射前の98%以上を維持していたのに対し、比較例である14〜16の波長変換部材は、100時間の光照射後の全光束値が、光照射前の96.5%以下と大きく低下した。 As is clear from Tables 3 and 4, when α-SiAlON is used as the inorganic phosphor, the wavelength conversion members of Examples 1 to 13 have a total luminous flux value after 100 hours of light irradiation before light irradiation. In contrast to the wavelength conversion member of 14 to 16 which is a comparative example, the total luminous flux value after 100 hours of light irradiation is greatly reduced to 96.5% or less before light irradiation. did.

表5及び6から明らかなように、無機蛍光体としてYAGを使用した場合、実施例である17〜29の波長変換部材は、100時間の光照射後においても全光束値の低下が確認されなかったのに対し、比較例である30〜32の波長変換部材は、100時間の光照射後の全光束値が、光照射前の98.5%以下と大きく低下した。 As is clear from Tables 5 and 6, when YAG was used as the inorganic phosphor, the wavelength conversion members of Examples 17 to 29 were not confirmed to have a decrease in the total luminous flux value even after 100 hours of light irradiation. On the other hand, in the wavelength conversion members of 30 to 32, which are comparative examples, the total luminous flux value after 100 hours of light irradiation was significantly reduced to 98.5% or less before the light irradiation.

本発明の波長変換部材は、白色LED等の一般照明、特殊照明(例えば、プロジェクター光源、自動車のヘッドランプ光源)等の構成部材として好適である。 The wavelength conversion member of the present invention is suitable as a constituent member for general lighting such as a white LED, special lighting (for example, a projector light source, an automobile headlamp light source), and the like.

1 発光デバイス
2 波長変換部材
3 光源
1 Light emitting device 2 Wavelength conversion member 3 Light source

Claims (7)

ガラスマトリクス中に無機蛍光体が分散してなる波長変換部材であって、
前記ガラスマトリクスが、モル%で、SiO 40〜53%、B 0.1〜35%、Al 0.1〜10%、LiO 0〜10%、NaO 0〜10%、KO 0〜10%、LiO+NaO+KO 0.1〜10%(ただしLiO、NaO、KOから選ばれる少なくとも2種以上を含む)、MgO 0〜45%、CaO 0〜45%、SrO 0〜45%、BaO 0〜45%、MgO+CaO+SrO+BaO 0.1〜45%、及びZnO 0〜15%を含有し、
(LiO+NaO+KO)/(SiO+B+Al)が0.04〜0.09であり、
前記無機蛍光体が、α−SiAlONであることを特徴とする波長変換部材。
A wavelength conversion member in which an inorganic phosphor is dispersed in a glass matrix.
Said glass matrix, in mol%, SiO 2 40~53%, B 2 O 3 0.1~35%, Al 2 O 3 0.1~10%, Li 2 O 0~10%, Na 2 O 0 10%, K 2 O 0 to 10%, Li 2 O + Na 2 O + K 2 O 0.1 to 10% (provided that at least two types selected from Li 2 O, Na 2 O, K 2 O are included), MgO It contains 0-45%, CaO 0-45%, SrO 0-45%, BaO 0-45%, MgO + CaO + SrO + BaO 0.1-45%, and ZnO 0-15%.
(Li 2 O + Na 2 O + K 2 O) / (SiO 2 + B 2 O 3 + Al 2 O 3 ) is 0.04 to 0.0 9 .
A wavelength conversion member characterized in that the inorganic phosphor is α-SiAlON.
前記ガラスマトリクスが、SiO+B+Al 55%以上含有することを特徴とする、請求項1に記載の波長変換部材。 The wavelength conversion member according to claim 1, wherein the glass matrix contains SiO 2 + B 2 O 3 + Al 2 O 3 55% or more. 前記ガラスマトリクスが、LiO、NaO及びKOをそれぞれ0.1%以上含有することを特徴とする請求項1又は2に記載の波長変換部材。 The wavelength conversion member according to claim 1 or 2 , wherein the glass matrix contains 0.1% or more of Li 2 O, Na 2 O, and K 2 O, respectively. 前記ガラスマトリクスの軟化点が400〜800℃であることを特徴とする請求項1〜のいずれかに記載の波長変換部材。 The wavelength conversion member according to any one of claims 1 to 3 , wherein the softening point of the glass matrix is 400 to 800 ° C. 前記無機蛍光体を0.01〜30質量%含有することを特徴とする請求項1〜のいずれかに記載の波長変換部材。 The wavelength conversion member according to any one of claims 1 to 4 , wherein the inorganic phosphor is contained in an amount of 0.01 to 30% by mass. 粉末焼結体からなることを特徴とする請求項1〜のいずれかに記載の波長変換部材。 The wavelength conversion member according to any one of claims 1 to 5 , wherein the wavelength conversion member is made of a powder sintered body. 請求項1〜に記載の波長変換部材、及び、前記波長変換部材に励起光を照射する光源を備えてなることを特徴とする発光デバイス。 A light emitting device comprising the wavelength conversion member according to claims 1 to 6 and a light source for irradiating the wavelength conversion member with excitation light.
JP2019191631A 2014-04-01 2019-10-21 Wavelength conversion member and light emitting device using it Active JP6861952B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014075123 2014-04-01
JP2014075123 2014-04-01

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015032745A Division JP2015199640A (en) 2014-04-01 2015-02-23 Wavelength conversion member and light-emitting device using the same

Publications (2)

Publication Number Publication Date
JP2020023438A JP2020023438A (en) 2020-02-13
JP6861952B2 true JP6861952B2 (en) 2021-04-21

Family

ID=69618224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019191631A Active JP6861952B2 (en) 2014-04-01 2019-10-21 Wavelength conversion member and light emitting device using it

Country Status (1)

Country Link
JP (1) JP6861952B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4895541B2 (en) * 2005-07-08 2012-03-14 シャープ株式会社 Wavelength conversion member, light emitting device, and method of manufacturing wavelength conversion member
JP5271340B2 (en) * 2010-12-07 2013-08-21 シャープ株式会社 Light emitting device, lighting device, and vehicle headlamp
JP2013055269A (en) * 2011-09-06 2013-03-21 Nippon Electric Glass Co Ltd Wavelength conversion member and light-emitting device

Also Published As

Publication number Publication date
JP2020023438A (en) 2020-02-13

Similar Documents

Publication Publication Date Title
CN109301057B (en) Wavelength conversion member and light emitting device using the same
JP7022398B2 (en) Wavelength conversion member and light emitting device using it
JP6273799B2 (en) Glass used for wavelength conversion material, wavelength conversion material, wavelength conversion member, and light emitting device
JP6880528B2 (en) Wavelength conversion member and light emitting device using it
KR102258536B1 (en) Wavelength-conversion member and light-emitting device
JP6365828B2 (en) Glass used for wavelength conversion material, wavelength conversion material, wavelength conversion member, and light emitting device
JP6902199B2 (en) Wavelength conversion member and light emitting device using it
JP2019019011A (en) Glass used for wavelength conversion material, wavelength conversion material, wavelength conversion member and light-emitting device
JP7022367B2 (en) Glass used as wavelength conversion material, wavelength conversion material, wavelength conversion member and light emitting device
JP6861952B2 (en) Wavelength conversion member and light emitting device using it
JP7205808B2 (en) WAVELENGTH CONVERSION MEMBER AND LIGHT-EMITTING DEVICE USING THE SAME
JP2022063277A (en) Glass for use in wavelength conversion material, wavelength conversion material, wavelength conversion member, and light-emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191021

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201021

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210314

R150 Certificate of patent or registration of utility model

Ref document number: 6861952

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150