JP2014157856A - Optical conversion member, and illumination light source having the same - Google Patents

Optical conversion member, and illumination light source having the same Download PDF

Info

Publication number
JP2014157856A
JP2014157856A JP2013026583A JP2013026583A JP2014157856A JP 2014157856 A JP2014157856 A JP 2014157856A JP 2013026583 A JP2013026583 A JP 2013026583A JP 2013026583 A JP2013026583 A JP 2013026583A JP 2014157856 A JP2014157856 A JP 2014157856A
Authority
JP
Japan
Prior art keywords
conversion member
light
light conversion
glass
inorganic phosphor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013026583A
Other languages
Japanese (ja)
Inventor
Masamichi Tanida
正道 谷田
Tatsuo Nagashima
達雄 長嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2013026583A priority Critical patent/JP2014157856A/en
Publication of JP2014157856A publication Critical patent/JP2014157856A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an optical conversion member which includes glass and an inorganic fluorescent material capable of converting excitation light of a light source, and has an improved light extraction efficiency.SOLUTION: An optical conversion member of the invention comprises an inorganic fluorescent material and glass. The glass has a refraction index nd of 1.7-2.8. The optical conversion member has a surface roughness Ra of 0.75 μm or larger as to one or more faces thereof.

Description

本発明は、LED光等の光変換部材として使用する無機蛍光体を分散した光変換部材に関する。   The present invention relates to a light conversion member in which an inorganic phosphor used as a light conversion member for LED light or the like is dispersed.

LED(Light Emitting Diode)は、微小電力の照明光源として利用され、様々な照明用途への展開が期待されている。LEDの中でも白色LEDは、青色LED素子から発せれられる青色光と、前記青色光の一部を無機蛍光体で黄色に変換した黄色光とを合成して白色光が得られる。   An LED (Light Emitting Diode) is used as an illumination light source of minute electric power, and is expected to be developed for various illumination applications. Among LEDs, a white LED obtains white light by synthesizing blue light emitted from a blue LED element and yellow light obtained by converting a part of the blue light into yellow with an inorganic phosphor.

入射した光の波長を変換する部材としては、ガラス中に無機蛍光体を分散させた構成の光の変換部材(以下、単に光変換部材ともいう)が知られている(例えば、特許文献1)。光変換部材は、透過率が高く、素子から発せられる熱を外部に効率よく放出できる。また、光や熱による部材の損傷も低く、長期の信頼性が得られる。   As a member for converting the wavelength of incident light, there is known a light conversion member (hereinafter also simply referred to as a light conversion member) having a configuration in which an inorganic phosphor is dispersed in glass (for example, Patent Document 1). . The light conversion member has high transmittance, and can efficiently release heat generated from the element to the outside. Moreover, the damage of the member by light and a heat | fever is also low, and long-term reliability is acquired.

特許文献1には、白色発光デバイスに使用される光変換部材で、無機材料のみから構成され、表面粗さRaが0.05〜3μmの塊状蛍光体が記載されている。しかし、無機蛍光体と結晶化していないガラスを含有する光変換部材は記載されていない。   Patent Document 1 describes a bulk phosphor having a surface roughness Ra of 0.05 to 3 μm, which is a light conversion member used for a white light emitting device and is composed of only an inorganic material. However, a light conversion member containing an inorganic phosphor and uncrystallized glass is not described.

特許文献2には、ガラス中に無機蛍光体を分散してなる光変換部材が記載されている。具体的には、無機蛍光体とガラスとのビッカース硬度差が300以上であり、表面粗さRaが0.1μm以下の光変換部材が記載されている。   Patent Document 2 describes a light conversion member formed by dispersing an inorganic phosphor in glass. Specifically, a light conversion member having a Vickers hardness difference of 300 or more between an inorganic phosphor and glass and a surface roughness Ra of 0.1 μm or less is described.

特開2007−161944号公報JP 2007-161944 A 特開2011−122067号公報JP 2011-122067 A

しかしながら、従来の光変換部材においては、光源の光取り出し効率を十分に高くできていなかった。本発明は、ガラスと光源の励起光を変換する無機蛍光体とを含有する光変換部材であって、光取り出し効率が向上した光変換部材の提供を目的とする。   However, in the conventional light conversion member, the light extraction efficiency of the light source cannot be sufficiently increased. An object of the present invention is to provide a light conversion member containing glass and an inorganic phosphor that converts excitation light of a light source, and having improved light extraction efficiency.

本発明者らは、光変換部材が光源の光取り出し効率を低下させており、その原因が、光が入射する面と光が出射する面における反射によるものであることを見出し、本発明を完成するに至った。本発明者らが、鋭意検討した結果、光変換部材に光が入射する界面における反射する光の量を小さくするために、光源と光変換部材の屈折率差を小さくし、また、光変換部材から光が出射する界面における反射する光の量を小さくするために、表面粗度を適切な範囲に調整することで、光変換部材の取り出し効率を高くできることを見出した。   The present inventors have found that the light conversion member reduces the light extraction efficiency of the light source, and that the cause is due to the reflection on the light incident surface and the light exit surface, thereby completing the present invention. It came to do. As a result of intensive studies by the present inventors, in order to reduce the amount of light reflected at the interface where light enters the light conversion member, the difference in refractive index between the light source and the light conversion member is reduced, and the light conversion member In order to reduce the amount of light reflected at the interface from which light is emitted, the inventors have found that the light conversion member extraction efficiency can be increased by adjusting the surface roughness to an appropriate range.

すなわち、本発明の光変換部材は、無機蛍光体とガラスを含有する光変換部材を有し、前記ガラスの屈折率ndが1.7〜2.8であり、光変換部材の1以上の面の表面粗さRaが0.75μm以上であることを特徴とする。   That is, the light conversion member of the present invention has a light conversion member containing an inorganic phosphor and glass, the refractive index nd of the glass is 1.7 to 2.8, and one or more surfaces of the light conversion member The surface roughness Ra is 0.75 μm or more.

本発明の光変換部材は、光源と光変換部材との界面および、光変換部材と大気との界面における全反射を抑制でき、光源から発せられた光の取り出し効率を向上できる。また、光取り出し効率の高い照明光源が得られる。   The light conversion member of the present invention can suppress total reflection at the interface between the light source and the light conversion member and the interface between the light conversion member and the atmosphere, and can improve the extraction efficiency of light emitted from the light source. Moreover, an illumination light source with high light extraction efficiency can be obtained.

(光変換部材)
本発明の光変換部材(以下、本光変換部材)について説明する。本光変換部材を使用すれば、光源から発せられた光の一部を透過し、残部の光の波長を入射光(以下、励起光ともいう)と異なる波長の光に変換し、透過した光と波長を変換した光とを合成することにより、光源の光の色とを所望の色に変換できる。本光変換部材は、青色光源を白色に変換するための光変換部材としての使用が好ましい。また、半導体発光素子を光源として使用することがより好ましい。
(Light conversion member)
The light conversion member of the present invention (hereinafter, this light conversion member) will be described. If this light conversion member is used, a part of the light emitted from the light source is transmitted, the wavelength of the remaining light is converted into light having a wavelength different from that of incident light (hereinafter also referred to as excitation light), and the transmitted light And the light whose wavelength has been converted can be converted into the desired color of the light from the light source. The light conversion member is preferably used as a light conversion member for converting a blue light source into white. Moreover, it is more preferable to use a semiconductor light emitting element as a light source.

本光変換部材は、ガラスと無機蛍光体を含有する。上記した光変換部材としての機能を発揮する限りにおいて、無機蛍光体はガラス中に含有されていれば、その分布は特に限定されない。すなわち、無機蛍光体がガラス中に均一に分散されていても、ガラス中の一部に偏在していてもよい。製造効率の観点から、無機蛍光体はガラス中に分散されている構成が好ましい。   The light conversion member contains glass and an inorganic phosphor. As long as the function as the light conversion member described above is exhibited, the distribution of the inorganic phosphor is not particularly limited as long as it is contained in the glass. That is, the inorganic phosphor may be uniformly dispersed in the glass or may be unevenly distributed in a part of the glass. From the viewpoint of production efficiency, the inorganic phosphor is preferably dispersed in the glass.

光変換部材は、光源の発光面全体を被覆できるのであれば、その大きさや平面形状は特に限定されない。光源として使用される半導体発光素子は矩形状または円盤状であるため、光変換部材も矩形状または円盤状が好ましい。また、光変換部材は加工のしやすさ、すなわち製造上の効率性の観点から、板状が好ましい。   If the light conversion member can coat | cover the whole light emission surface of a light source, the magnitude | size and plane shape will not be specifically limited. Since the semiconductor light emitting element used as the light source is rectangular or disk-shaped, the light conversion member is preferably rectangular or disk-shaped. The light conversion member is preferably plate-shaped from the viewpoint of ease of processing, that is, efficiency in production.

本光変換部材は、1以上の面の表面粗さRaが0.75μm以上である。少なくとも1以上の面の表面粗さRaが前記した範囲にあれば、他の面の表面粗さRaは特に限定されない。表面粗さRaが0.75μm以上である面は、光変換部材から光を放出する面(以下、第1の面という)であることが好ましい。   In the present light conversion member, the surface roughness Ra of one or more surfaces is 0.75 μm or more. If the surface roughness Ra of at least one surface is in the above-described range, the surface roughness Ra of the other surface is not particularly limited. The surface having a surface roughness Ra of 0.75 μm or more is preferably a surface that emits light from the light conversion member (hereinafter referred to as a first surface).

第1の面の表面粗さRaが0.75μm以上であれば、光変換部材と大気の界面における全反射を有効に抑制できる。全反射を抑制する観点から、第1の面の表面粗さRaは、0.8μm以上が好ましく、0.9μm以上がより好ましい。一方で、表面における光の散乱を低減するため、第1の面の表面Raは、10μm以下が好ましく、5μm以下がより好ましく、3μm以下がさらに好ましい。   If the surface roughness Ra of the first surface is 0.75 μm or more, total reflection at the interface between the light conversion member and the atmosphere can be effectively suppressed. From the viewpoint of suppressing total reflection, the surface roughness Ra of the first surface is preferably 0.8 μm or more, and more preferably 0.9 μm or more. On the other hand, in order to reduce light scattering on the surface, the surface Ra of the first surface is preferably 10 μm or less, more preferably 5 μm or less, and even more preferably 3 μm or less.

第1の面の表面粗さRaが0.75μm以上であれば、光変換部材に光が入射する面(以下、第2の面という)の表面粗さRaは特に限定されない。光変換部材の第2の面の表面Raは低ければ、第2の面において光変換部材に入射する光の散乱を抑制でき、発光効率を高められるため好ましい。第2の面の表面Raは、5μm以下が好ましく、3μm以下がより好ましい。   If the surface roughness Ra of the first surface is 0.75 μm or more, the surface roughness Ra of the surface on which light is incident on the light conversion member (hereinafter referred to as the second surface) is not particularly limited. If the surface Ra of the second surface of the light conversion member is low, it is preferable because scattering of light incident on the light conversion member on the second surface can be suppressed and the light emission efficiency can be increased. The surface Ra of the second surface is preferably 5 μm or less, and more preferably 3 μm or less.

第2の面の表面Raの下限値は、第2の面での全反射角を大きくし、異種屈折率界面での全反射による光の低減を抑制する観点に基づいて決定される。   The lower limit value of the surface Ra of the second surface is determined based on the viewpoint of increasing the total reflection angle on the second surface and suppressing light reduction due to total reflection at the different refractive index interface.

光源の屈折率をnd1、光変換部材の屈折率をnd2とした時、nd1<nd2または、nd1≧nd2でかつnd2/nd1が0.866以上となる場合は、全反射角を60°以上とでき、全反射による光の低減を50%以下にできる。この場合、第2の面の表面Raは、0.02μm以上が好ましく、0.05μm以上がより好ましい。   When the refractive index of the light source is nd1 and the refractive index of the light conversion member is nd2, when nd1 <nd2 or nd1 ≧ nd2 and nd2 / nd1 is 0.866 or more, the total reflection angle is 60 ° or more. And reduction of light due to total reflection can be reduced to 50% or less. In this case, the surface Ra of the second surface is preferably 0.02 μm or more, and more preferably 0.05 μm or more.

一方で、nd1≧nd2でかつnd2/nd1が0.866未満の場合には、第2の面の表面Raは、0.8μm以上が好ましく、0.9μm以上がより好ましい。第2の面の表面Raがこのような範囲にあれば、入射光の反射を抑制できるため好ましい。   On the other hand, when nd1 ≧ nd2 and nd2 / nd1 is less than 0.866, the surface Ra of the second surface is preferably 0.8 μm or more, and more preferably 0.9 μm or more. If the surface Ra of the second surface is within such a range, it is preferable because reflection of incident light can be suppressed.

なお、nd1≧nd2において、異種屈折率界面での全反射による光の低減(単位:%)は、下記式(1)により計算した値である。   Note that when nd1 ≧ nd2, the reduction (unit:%) of light due to total reflection at the interface of different refractive indices is a value calculated by the following equation (1).

Figure 2014157856
Figure 2014157856

本明細書において、前記表面Raは、JIS B0601:2001に準じて測定した値をいい、例えば、表面粗さ・輪郭形状測定器(東京精密社製、商品名:サーフコム1400D)を使用して、駆動長さ2.5mm、駆動速度0.2mm/sec.の条件で測定できる。   In the present specification, the surface Ra refers to a value measured according to JIS B0601: 2001, for example, using a surface roughness / contour measuring instrument (trade name: Surfcom 1400D, manufactured by Tokyo Seimitsu Co., Ltd.) Drive length 2.5 mm, drive speed 0.2 mm / sec. Can be measured under the following conditions.

光変換部材の厚みは、50〜300μmが好ましい。厚みが前記した範囲にあれば、光変換部材として有効に機能し、透過率を高くでき、さらに光変換部材の機械的強度を担保できる。光変換部材の厚みは、100〜200μmがより好ましく、120〜180μmがさらに好ましい。光変換部材の厚みは例えば、マイクロメータを使用して測定できる。   The thickness of the light conversion member is preferably 50 to 300 μm. If the thickness is in the above-described range, it effectively functions as a light conversion member, the transmittance can be increased, and the mechanical strength of the light conversion member can be secured. The thickness of the light conversion member is more preferably 100 to 200 μm, and further preferably 120 to 180 μm. The thickness of the light conversion member can be measured using, for example, a micrometer.

本発明の光変換部材の全光線透過率は75%以上が好ましい。透過率が高いほど、光源の光の取り出し効率を高くできるため好ましい。全光線透過率は80%以上が好ましく、85%以上がより好ましい。なお、本明細書において、前記全光線透過率は、JIS K 7136に準じて測定した値をいう。   The total light transmittance of the light conversion member of the present invention is preferably 75% or more. A higher transmittance is preferable because the light extraction efficiency of the light source can be increased. The total light transmittance is preferably 80% or more, and more preferably 85% or more. In the present specification, the total light transmittance refers to a value measured in accordance with JIS K 7136.

本発明の光変換部材のヘイズは、70〜95%が好ましい。ヘイズがこの範囲にあれば、光変換部材内での散乱が低くなり、光取り出し効率が高くなる。ヘイズは、80〜95%がより好ましく、85〜95%がさらに好ましい。本明細書において、前記ヘイズはJIS K 7136に準じて測定した値をいう。   The haze of the light conversion member of the present invention is preferably 70 to 95%. If the haze is in this range, scattering in the light conversion member is reduced, and the light extraction efficiency is increased. The haze is more preferably 80 to 95%, further preferably 85 to 95%. In the present specification, the haze refers to a value measured according to JIS K 7136.

本発明の光変換部材の光取り出し効率は、量子変換効率(QE、単位:%)により評価する。量子変換効率は、90%以上が好ましく、91%以上がより好ましく、92%以上がさらに好ましい。   The light extraction efficiency of the light conversion member of the present invention is evaluated by quantum conversion efficiency (QE, unit:%). The quantum conversion efficiency is preferably 90% or more, more preferably 91% or more, and further preferably 92% or more.

本明細書において、前記量子変換効率(QE)は、第2の面から照射した励起光のフォトン数(Nabs)と、第1の面から発せられるフォトン数(N)との比率で表され、下記式(2)で算出される値をいう。なお、前記フォトン数は、積分球法で測定した値である。 In the present specification, the quantum conversion efficiency (QE) is expressed as a ratio between the number of photons (N abs ) of excitation light irradiated from the second surface and the number of photons (N f ) emitted from the first surface. And the value calculated by the following equation (2). The number of photons is a value measured by the integrating sphere method.

Figure 2014157856
Figure 2014157856

光変換部材の無機蛍光体とガラスとの含有割合は、上記した光変換部材として機能できる限りにおいて特に限定されない。含有割合は、体積比で無機蛍光体:ガラス=1:99〜40:60が好ましい。このような割合で無機蛍光体を含有すれば、光源の光の色を所望の色に変換でき、さらに光変換部材の透過率を高くできるため好ましい。   The content ratio of the inorganic phosphor and glass in the light conversion member is not particularly limited as long as it can function as the above-described light conversion member. The content ratio is preferably inorganic phosphor: glass = 1: 99 to 40:60 in a volume ratio. It is preferable to contain the inorganic phosphor at such a ratio because the light color of the light source can be converted into a desired color and the transmittance of the light conversion member can be increased.

光変換部材は、ガラス粉末と無機蛍光体の混合物または、前記混合物、樹脂および有機溶媒を混練して得られるペーストを焼成して得られる焼結体からなることが好ましい。また、光変換部材は、前記ペーストをグリーンシートに加工した後、焼成して得られる焼結体からなることがより好ましい。   The light conversion member is preferably made of a mixture of glass powder and inorganic phosphor, or a sintered body obtained by firing a paste obtained by kneading the mixture, resin and organic solvent. More preferably, the light conversion member is made of a sintered body obtained by processing the paste into a green sheet and firing it.

光変換部材を前記した混合物を焼成して製造する場合、光変換部材中のガラスと無機蛍光体の含有量と、ガラス粉末と無機蛍光体の含有量とでその体積割合の変動が小さいことが好ましい。体積割合の変動が小さいほど、焼成工程における無機蛍光体の失活を低減できるため好ましい。そのため、ガラス粉末と無機蛍光体との含有割合が1:99〜40:60が好ましい。   When the light conversion member is manufactured by firing the above-described mixture, the volume ratio of the glass and the inorganic phosphor content in the light conversion member and the volume ratio of the glass powder and the inorganic phosphor are small. preferable. The smaller the change in the volume ratio, the more preferable is the deactivation of the inorganic phosphor in the firing step. Therefore, the content ratio between the glass powder and the inorganic phosphor is preferably 1:99 to 40:60.

無機蛍光体を1%以上かつガラス粉末を99%以下で含有すれば、量子変換収率を高くでき、所望の色の光が得られる。無機蛍光体の体積分率は、より好ましくは5%以上、さらに好ましくは7%以上、特に好ましくは10%以上である。ガラス粉末の体積分率は、より好ましくは95%以下、さらに好ましくは93%以下、特に好ましくは90%以下である。   If the inorganic phosphor is contained at 1% or more and the glass powder is contained at 99% or less, the quantum conversion yield can be increased, and light of a desired color can be obtained. The volume fraction of the inorganic phosphor is more preferably 5% or more, further preferably 7% or more, and particularly preferably 10% or more. The volume fraction of the glass powder is more preferably 95% or less, still more preferably 93% or less, and particularly preferably 90% or less.

無機蛍光体の体積分率が40%超で、ガラス粉末の体積分率が60%未満では、無機蛍光体とガラス粉末の混合体の焼結性を損ね、さらに光変換部材の透過率が低くなるおそれがある。また、変換される蛍光色の光が多くなり、所望の色の光が得られないおそれがある。無機蛍光体の体積分率は、より好ましくは35%以下、さらに好ましくは30%以下、特に好ましくは25%以下である。ガラス粉末の体積分率は、より好ましくは65%以上、さらに好ましくは70%以上、特に好ましくは75%以上である。   If the volume fraction of the inorganic phosphor is more than 40% and the volume fraction of the glass powder is less than 60%, the sinterability of the mixture of the inorganic phosphor and the glass powder is impaired, and the transmittance of the light conversion member is low. There is a risk. Moreover, there is a possibility that light of a desired color cannot be obtained due to an increase in converted fluorescent light. The volume fraction of the inorganic phosphor is more preferably 35% or less, still more preferably 30% or less, and particularly preferably 25% or less. The volume fraction of the glass powder is more preferably 65% or more, further preferably 70% or more, and particularly preferably 75% or more.

(ガラス)
光変換部材に含有されるガラスはその屈折率ndが、1.7〜2.8である。通常、光変換部材が使用される発光素子の光源としてはLEDが使用される。LEDの基板としては、サファイア基板(nd:1.77)や窒化ガリウム基板(nd:2.39)、炭化ケイ素基板(nd:2.65)、酸化亜鉛基板(nd:2.00)が使用される。光変換部材が光源と接して置かれている場合、光源との屈折率差が低いほど、界面における全反射を抑制できる。ガラスの屈折率ndは、1.7〜2.6が好ましく、1.7〜2.4がより好ましい。
(Glass)
The glass contained in the light conversion member has a refractive index nd of 1.7 to 2.8. Usually, an LED is used as a light source of a light emitting element in which a light conversion member is used. As the substrate of the LED, a sapphire substrate (nd: 1.77), a gallium nitride substrate (nd: 2.39), a silicon carbide substrate (nd: 2.65), or a zinc oxide substrate (nd: 2.00) is used. Is done. When the light conversion member is placed in contact with the light source, the lower the refractive index difference from the light source, the more the total reflection at the interface can be suppressed. The refractive index nd of the glass is preferably 1.7 to 2.6, and more preferably 1.7 to 2.4.

前記ガラスとしては、所望の屈折率を有するものであれば特に限定されない。前記ガラスとしては、B系、SiO系、P系またはTeO系などが挙げられる。 The glass is not particularly limited as long as it has a desired refractive index. Examples of the glass include B 2 O 3 system, SiO 2 system, P 2 O 5 system, and TeO 2 system.

また、光変換部材の製造効率の観点から、ガラスの軟化点が低いことが好ましい。そのため、B系またはSiO系のガラスが好ましく、B系がより好ましく、Bi−B系のガラスがさらに好ましい。ガラスの軟化点は、850℃以下がより好ましく、600℃以下がさらに好ましい。 Moreover, it is preferable that the softening point of glass is low from a viewpoint of the manufacturing efficiency of a light conversion member. Therefore, B 2 O 3 -based or SiO 2 -based glass is preferable, B 2 O 3 -based glass is more preferable, and Bi 2 O 3 -B 2 O 3 -based glass is more preferable. The softening point of the glass is more preferably 850 ° C. or less, and further preferably 600 ° C. or less.

前記Bi−B系のガラスとしては、例えば、酸化物基準のモル%で、Bi 3〜30%、B 10〜50%、ZnO 0〜45%を含有するガラスがより好ましい。Bi 3〜30%、B 10〜50%、ZnO 0〜45%、SiO 5〜35%、BaO 0〜20%、MnO 0〜1%、CeO 0〜1%、を含有するガラスがさらに好ましい。 Examples of the Bi 2 O 3 —B 2 O 3 based glass include, for example, 3% to 30% Bi 2 O 3 , 10% to 50% B 2 O 3 , and 0% to 45% ZnO in terms of mol% based on oxide. The glass to contain is more preferable. Bi 2 O 3 3~30%, B 2 O 3 10~50%, ZnO 0~45%, SiO 2 5~35%, BaO 0~20%, MnO 2 0~1%, CeO 2 0~1% The glass containing is more preferable.

(無機蛍光体)
光変換部材に含有される無機蛍光体は、励起光を受けて励起光とは異なる波長の蛍光を発するものであれば、その種類は特に限定されない。前記無機蛍光体としては、酸化物、窒化物、酸窒化物、硫化物、酸硫化物、希土類硫化物、アルミン酸塩化物およびハロリン酸塩化物からなる群から選ばれる1種以上が好ましい。無機蛍光体は、酸化物またはアルミン酸塩化物がより好ましい。酸化物またはアルミン酸塩化物としては、耐水性や耐熱性に優れるためガーネット系結晶がさらに好ましい。前記ガーネット系結晶としては、イットリウムとアルミニウムの複合酸化物(以下、本明細書においてYAGともいう)が特に好ましい。無機蛍光体は、2種以上を使用してもよく、いずれか1種のみを使用してもよい。
(Inorganic phosphor)
The inorganic phosphor contained in the light conversion member is not particularly limited as long as it emits fluorescence having a wavelength different from that of the excitation light upon receiving the excitation light. The inorganic phosphor is preferably at least one selected from the group consisting of oxides, nitrides, oxynitrides, sulfides, oxysulfides, rare earth sulfides, aluminate chlorides, and halophosphates. The inorganic phosphor is more preferably an oxide or aluminate chloride. As oxides or aluminate chlorides, garnet crystals are more preferred because of their excellent water resistance and heat resistance. As the garnet-based crystal, a complex oxide of yttrium and aluminum (hereinafter also referred to as YAG in the present specification) is particularly preferable. Two or more inorganic phosphors may be used, or only one of them may be used.

前記無機蛍光体は、可視光領域である波長380〜780nmに発光ピークを有するものが好ましい。特に青色(波長440〜480nm)、緑色(波長500〜540nm)、黄色(波長540〜595nm)、赤色(波長600〜700nm)に発光ピークを有するものがより好ましい。   The inorganic phosphor preferably has an emission peak at a wavelength of 380 to 780 nm which is a visible light region. In particular, those having emission peaks in blue (wavelength 440 to 480 nm), green (wavelength 500 to 540 nm), yellow (wavelength 540 to 595 nm), and red (wavelength 600 to 700 nm) are more preferable.

波長300〜440nmの紫外〜近紫外の励起光を照射すると青色の発光を発する無機蛍光体としては、Sr(POCl:Eu2+、(Sr,Ba)MgAl1017:Eu2+、または(Sr,Ba)MgSi:Eu2+などが挙げられる。 As an inorganic phosphor that emits blue light when irradiated with ultraviolet to near-ultraviolet excitation light having a wavelength of 300 to 440 nm, Sr 5 (PO 4 ) 3 Cl: Eu 2+ , (Sr, Ba) MgAl 10 O 17 : Eu 2+ Or (Sr, Ba) 3 MgSi 2 O 8 : Eu 2+ .

波長300〜440nmの紫外〜近紫外の励起光を照射すると緑色の蛍光を発する無機蛍光体としては、SrAl:Eu2+、SrGa:Eu2+、SrBaSiO:Eu2+、CdS:In、CaS:Ce3+、Y(Al,Gd)12:Ce2+、CaScSi12:Ce3+、SrSiO:Eu2+、ZnS:Al3+,Cu、CaS:Sn2+、CaS:Sn2+,F、CaSO:Ce3+,Mn2+、LiAlO:Mn2+、BaMgAl1017:Eu2+,Mn2+、ZnS:Cu,Cl、CaWO:U、CaSiOCl:Eu2+、Sr0.2Ba0.7Cl1.1Al3.45:Ce3+,Mn2+、BaMgSi:Eu2+、BaSiO:Eu2+、BaLiSi:Eu2+、ZnO:S、ZnO:Zn、CaBa(POCl:Eu2+、またはBaAl:Eu2+などが挙げられる。 Inorganic phosphors that emit green fluorescence when irradiated with ultraviolet to near-ultraviolet excitation light having a wavelength of 300 to 440 nm include SrAl 2 O 4 : Eu 2+ , SrGa 2 S 4 : Eu 2+ , SrBaSiO 4 : Eu 2+ , CdS: In, CaS: Ce 3+ , Y 3 (Al, Gd) 5 O 12 : Ce 2+ , Ca 3 Sc 2 Si 3 O 12 : Ce 3+ , SrSiO n : Eu 2+ , ZnS: Al 3+ , Cu + , CaS: Sn 2+ , CaS: Sn 2+ , F, CaSO 4 : Ce 3+ , Mn 2+ , LiAlO 2 : Mn 2+ , BaMgAl 10 O 17 : Eu 2+ , Mn 2+ , ZnS: Cu + , Cl , Ca 3 WO 6 : U, Ca 3 SiO 4 Cl 2 : Eu 2+ , Sr 0.2 Ba 0.7 Cl 1.1 Al 2 O 3.45 : Ce 3+ , M n 2+ , Ba 2 MgSi 2 O 7 : Eu 2+ , Ba 2 SiO 4 : Eu 2+ , Ba 2 Li 2 Si 2 O 7 : Eu 2+ , ZnO: S, ZnO: Zn, Ca 2 Ba 3 (PO 4 ) 3 Examples thereof include Cl: Eu 2+ , BaAl 2 O 4 : Eu 2+, and the like.

波長440〜480nmの青色の励起光を照射すると緑色の蛍光を発する無機蛍光体としては、SrAl:Eu2+、SrGa:Eu2+、SrBaSiO:Eu2+、CdS:In、CaS:Ce3+、Y(Al,Gd)12:Ce2+、CaScSi12:Ce3+、またはSrSiO:Eu2+などが挙げられる。 As inorganic phosphors that emit green fluorescence when irradiated with blue excitation light having a wavelength of 440 to 480 nm, SrAl 2 O 4 : Eu 2+ , SrGa 2 S 4 : Eu 2+ , SrBaSiO 4 : Eu 2+ , CdS: In, CaS : Ce 3+ , Y 3 (Al, Gd) 5 O 12 : Ce 2+ , Ca 3 Sc 2 Si 3 O 12 : Ce 3+ , or SrSiO n : Eu 2+ .

波長300〜440nmの紫外〜近紫外の励起光を照射すると黄色の蛍光を発する無機蛍光体としては、ZnS:Eu2+、Ba(POCl:U、SrWO:U、CaGa:Eu2+、SrSO:Eu2+,Mn2+、ZnS:P、ZnS:P3−,Cl、またはZnS:Mn2+などが挙げられる。 Inorganic phosphors that emit yellow fluorescence when irradiated with ultraviolet to near ultraviolet excitation light having a wavelength of 300 to 440 nm include ZnS: Eu 2+ , Ba 5 (PO 4 ) 3 Cl: U, Sr 3 WO 6 : U, CaGa 2 S 4 : Eu 2+ , SrSO 4 : Eu 2+ , Mn 2+ , ZnS: P, ZnS: P 3− , Cl , ZnS: Mn 2+, and the like.

波長440〜480nmの青色の励起光を照射すると黄色の蛍光を発する無機蛍光体としては、Y(Al,Gd)12:Ce2+、Ba(POCl:U、またはCaGa:Eu2+などが挙げられる。 As an inorganic phosphor that emits yellow fluorescence when irradiated with blue excitation light having a wavelength of 440 to 480 nm, Y 3 (Al, Gd) 5 O 12 : Ce 2+ , Ba 5 (PO 4 ) 3 Cl: U, or CaGa 2 S 4 : Eu 2+ and the like.

波長300〜440nmの紫外〜近紫外の励起光を照射すると赤色の蛍光を発する無機蛍光体としては、CaS:Yb2+,Cl、GdGa12:Cr3+、CaGa:Mn2+、Na(Mg,Mn)LiSi10:Mn、ZnS:Sn2+、YAl12:Cr3+、SrB13:Sm2+、MgSrSi:Eu2+,Mn2+、α−SrO・3B:Sm2+、ZnS−CdS、ZnSe:Cu,Cl、ZnGa:Mn2+、ZnO:Bi3+、BaS:Au,K、ZnS:Pb2+、ZnS:Sn2+,Li、ZnS:Pb,Cu、CaTiO:Pr3+、CaTiO:Eu3+、Y:Eu3+、(Y、Gd):Eu3+、CaS:Pb2+,Mn2+、YPO:Eu3+、CaMgSi:Eu2+,Mn2+、Y(P、V)O:Eu3+、YS:Eu3+、SrAl:Eu3+、CaYAlO:Eu3+、LaOS:Eu3+、LiW:Eu3+,Sm3+、(Sr,Ca,Ba,Mg)10(POCl:Eu2+,Mn2+、またはBaMgSi:Eu2+,Mn2+などが挙げられる。 As inorganic phosphors that emit red fluorescence when irradiated with ultraviolet to near-ultraviolet excitation light having a wavelength of 300 to 440 nm, CaS: Yb 2+ , Cl, Gd 3 Ga 4 O 12 : Cr 3+ , CaGa 2 S 4 : Mn 2+ Na (Mg, Mn) 2 LiSi 4 O 10 F 2 : Mn, ZnS: Sn 2+ , Y 3 Al 5 O 12 : Cr 3+ , SrB 8 O 13 : Sm 2+ , MgSr 3 Si 2 O 8 : Eu 2+ , Mn 2+ , α-SrO · 3B 2 O 3 : Sm 2+ , ZnS—CdS, ZnSe: Cu + , Cl, ZnGa 2 S 4 : Mn 2+ , ZnO: Bi 3+ , BaS: Au, K, ZnS: Pb 2+ , ZnS: Sn 2+ , Li + , ZnS: Pb, Cu, CaTiO 3 : Pr 3+ , CaTiO 3 : Eu 3+ , Y 2 O 3 : Eu 3+ , (Y, Gd) 2 O 3 : Eu 3+ , CaS: Pb 2+ , Mn 2+ , YPO 4 : Eu 3+ , Ca 2 MgSi 2 O 7 : Eu 2+ , Mn 2+ , Y (P, V) O 4 : Eu 3+ , Y 2 O 2 S: Eu 3+ , SrAl 4 O 7 : Eu 3+ , CaYAlO 4 : Eu 3+ , LaO 2 S: Eu 3+ , LiW 2 O 8 : Eu 3+ , Sm 3+ , (Sr, Ca, Ba, Mg) 10 ( PO 4 ) 6 Cl 2 : Eu 2+ , Mn 2+ , Ba 3 MgSi 2 O 8 : Eu 2+ , Mn 2+ and the like.

波長440〜480nmの青色の励起光を照射すると赤色の蛍光を発する無機蛍光体としては、ZnS:Mn2+,Te2+、MgTiO:Mn4+、KSiF:Mn4+、SrS:Eu2+、CaS:Eu2+、Na1.230.42Eu0.12TiSi11、Na1.230.42Eu0.12TiSi13:Eu3+、CdS:In,Te、CaAlSiN:Eu2+、CaSiN:Eu2+、(Ca,Sr)Si:Eu2+、またはEu7、(Sr1-xEu(Si1-yAl(ON)などが挙げられる。 Examples of inorganic phosphors that emit red fluorescence when irradiated with blue excitation light having a wavelength of 440 to 480 nm include ZnS: Mn 2+ , Te 2+ , Mg 2 TiO 4 : Mn 4+ , K 2 SiF 6 : Mn 4+ , SrS: Eu. 2+ , CaS: Eu 2+ , Na 1.23 K 0.42 Eu 0.12 TiSi 4 O 11 , Na 1.23 K 0.42 Eu 0.12 TiSi 5 O 13 : Eu 3+ , CdS: In, Te, CaAlSiN 3 : Eu 2+ , CaSiN 3 : Eu 2+ , (Ca, Sr) 2 Si 5 N 8 : Eu 2+ , or Eu 2 W 2 O 7, (Sr 1-x Eu x ) 2 (Si 1-y Al y ) 5 (ON) 8 or the like.

無機蛍光体の平均粒子直径(以下、平均粒径と略す)D50は20μm以下が好ましい。無機蛍光体のD50が前記の所望の大きさであれば、光変換部材内で均一に分散でき、光の変換効率を向上できる。無機蛍光体のD50は15μm以下がより好ましく、10μm以下がさらに好ましい。一方、製造効率の観点から、無機蛍光体の平均粒径D50は3μm以上が好ましく、5μm以上がより好ましい。 The average particle diameter (hereinafter abbreviated as the average particle diameter) D 50 of the inorganic phosphor is preferably 20 μm or less. If desired size D 50 of the inorganic phosphor, be uniformly dispersed in the light conversion member, it can improve the conversion efficiency of light. D 50 of the inorganic phosphor is more preferably 15 μm or less, and further preferably 10 μm or less. On the other hand, from the viewpoint of production efficiency, the average particle diameter D 50 of the inorganic phosphor is preferably at least 3 [mu] m, more preferably not less than 5 [mu] m.

なお、本明細書において、前記平均粒径D50は、レーザ回折式粒度分布測定により算出した値である。 In the present specification, the average particle diameter D 50 is a value calculated by a laser diffraction type particle size distribution measurement.

(光変換部材の製造方法)
本発明において、光変換部材が上記した特性を有するのであれば、その製造方法は特に限定されない。例えば、本発明の光変換部材の製造方法としては、無機蛍光体を含有するガラスの表面を研磨することで、特定の表面Raを有する光変換部材を効率よく製造できる。前記ガラスは、板状であれば、研磨を面全体にわたって均一にできるため好ましい。
(Method for producing light conversion member)
In the present invention, the production method is not particularly limited as long as the light conversion member has the above-described characteristics. For example, as a method for producing a light conversion member of the present invention, a light conversion member having a specific surface Ra can be efficiently produced by polishing the surface of glass containing an inorganic phosphor. If the said glass is plate shape, since grinding | polishing can be made uniform over the whole surface, it is preferable.

前記研磨工程における、研磨方法は、光変換部材が所望の表面Raを有するものであれば特に限定されない。具体的には、ブラスト処理、固定砥粒平面研磨または遊離砥粒平面研磨が挙げられる。クラックなどを抑えつつ粗度をコントロールできる点から、遊離砥粒平面研磨による研磨がより好ましい。なお、必要な表面Raが得られるのであれば、研磨工程は不要である。   The polishing method in the polishing step is not particularly limited as long as the light conversion member has a desired surface Ra. Specific examples include blasting, fixed abrasive surface polishing, or free abrasive surface polishing. From the viewpoint of controlling the roughness while suppressing cracks and the like, polishing by free abrasive flat surface polishing is more preferable. Note that the polishing step is unnecessary if the necessary surface Ra can be obtained.

前記ガラスは、所望の組成または所望の特性を有するガラスのガラス粉末と無機蛍光体とを焼結して形成することが好ましい。このような方法であれば、光変換部材の形状、大きさ、厚みまたはガラスと無機蛍光体の体積割合を容易に制御できるため好ましい。また、無機蛍光体とガラス粉体とを混合する工程と、混合物を予備成形する工程と、予備成形された物を焼成する工程をさらに有することが好ましい。   The glass is preferably formed by sintering glass powder having a desired composition or desired characteristics and an inorganic phosphor. Such a method is preferable because the shape, size, thickness, or volume ratio of the glass and the inorganic phosphor can be easily controlled. Moreover, it is preferable to further have the process of mixing an inorganic fluorescent substance and glass powder, the process of preforming a mixture, and the process of baking the preformed thing.

前記ガラス粉末は、上記した所望のガラスを粉砕し、分級して製造される。ガラス粉末の平均粒径D50は2.0μm以下が好ましい。D50が2.0μm以下では、無機蛍光体とガラス粉末を均一に混合でき、焼結後の光変換部材中での無機蛍光体の分散状態を良好にできる。ガラス粉末の平均粒径D50は、1.5μm以下がより好ましく、1.4μm以下がさらに好ましい。 The glass powder is produced by pulverizing and classifying the desired glass. The average particle diameter D 50 of the glass powder is preferably 2.0μm or less. D 50 is 2.0μm or less, the inorganic phosphor and glass powder be uniformly mixed, the dispersion state of the inorganic phosphor in a light conversion member after sintering can be improved. Glass powder having an average particle diameter D 50 of the following more preferably 1.5 [mu] m, more preferably not more than 1.4 [mu] m.

無機蛍光体とガラス粉末の含有量は、体積分率で、無機蛍光体を1〜40%としガラス粉末を60〜99%とすることがより好ましい。無機蛍光体の体積分率は、より好ましくは5%以上、さらに好ましくは7%以上、特に好ましくは10%以上である。無機蛍光体の体積分率は、より好ましくは35%以下、さらに好ましくは30%以下、特に好ましくは25%以下である。ガラス粉末の体積分率は、より好ましくは95%以下、さらに好ましくは93%以下、特に好ましくは90%以下である。ガラス粉末の体積分率は、より好ましくは65%以上、さらに好ましくは70%以上、特に好ましくは75%以上である。   As for content of an inorganic fluorescent substance and glass powder, it is more preferable that an inorganic fluorescent substance is 1 to 40% and glass powder is 60 to 99% by a volume fraction. The volume fraction of the inorganic phosphor is more preferably 5% or more, further preferably 7% or more, and particularly preferably 10% or more. The volume fraction of the inorganic phosphor is more preferably 35% or less, still more preferably 30% or less, and particularly preferably 25% or less. The volume fraction of the glass powder is more preferably 95% or less, still more preferably 93% or less, and particularly preferably 90% or less. The volume fraction of the glass powder is more preferably 65% or more, further preferably 70% or more, and particularly preferably 75% or more.

前記予備成形する工程は、所望の形状が付与できれば、その方法は制限されない。予備成形方法としては、具体的には、プレス成形法、ロール成形法またはドクターブレード成形法などの方法が挙げられる。予備成形がドクターブレード成形法であれば、均一な膜厚の板状態のガラスを大面積で効率よく製造できるため好ましい。   As long as a desired shape can be imparted to the preforming step, the method is not limited. Specific examples of the preforming method include a press molding method, a roll molding method, a doctor blade molding method, and the like. If the preforming is a doctor blade molding method, it is preferable because a glass sheet having a uniform film thickness can be efficiently produced in a large area.

前記予備成形では、ガラス粉末と無機蛍光体を含有するグリーンシートを成形することが好ましい。グリーンシートは、例えば、以下の工程で製造できる。ガラス粉末と無機蛍光体を混合した後、混合粉末をビヒクルに混練し、脱泡してスラリーを得る工程を経る。次に、前記スラリーをドクターブレード法により、透明樹脂上に途工し、乾燥する工程を経る。その後、乾燥後、所望の大きさに切り出し、透明樹脂を剥がして、グリーンシートを得る工程を経る。さらに、所望の厚みを得るには、1枚のグリーンシートを複数枚積層し、これらをプレスする工程を経ることで達成できる。   In the preliminary molding, it is preferable to mold a green sheet containing glass powder and an inorganic phosphor. The green sheet can be manufactured, for example, by the following process. After mixing the glass powder and the inorganic phosphor, the mixed powder is kneaded in a vehicle and defoamed to obtain a slurry. Next, the slurry is processed on a transparent resin by a doctor blade method and dried. Then, after drying, it cuts out to a desired magnitude | size, peels off transparent resin, and passes through the process of obtaining a green sheet. Furthermore, obtaining a desired thickness can be achieved by laminating a plurality of one green sheet and pressing them.

本明細書において、前記ビヒクルは、樹脂を有機溶媒に溶解したものである。樹脂としては、エチルセルロース、ニトロセルロース、アクリル樹脂、酢酸ビニル、ブチラール樹脂、メラミン樹脂、アルキッド樹脂またはロジン樹脂などを使用できる。また、有機溶媒としては、芳香族炭化水素、脂肪族炭化水素、アルコール、エーテル、ケトンまたはエステル類などを使用できる。なお、グリーンシートの強度は、ビヒクルに、さらに、ブチラール樹脂、メラミン樹脂、アルキッド樹脂またはロジン樹脂などを含有することで向上できる。   In the present specification, the vehicle is obtained by dissolving a resin in an organic solvent. As the resin, ethyl cellulose, nitrocellulose, acrylic resin, vinyl acetate, butyral resin, melamine resin, alkyd resin, rosin resin, or the like can be used. As the organic solvent, aromatic hydrocarbons, aliphatic hydrocarbons, alcohols, ethers, ketones or esters can be used. The strength of the green sheet can be improved by further containing a butyral resin, a melamine resin, an alkyd resin, a rosin resin, or the like in the vehicle.

スラリーを塗工する透明樹脂としては、均一な膜厚のグリーンシートが得られ、剥離可能であれば、限定されない。例えば、PETフィルムなどが挙げられる。   The transparent resin for applying the slurry is not limited as long as a green sheet having a uniform film thickness is obtained and can be peeled off. For example, a PET film etc. are mentioned.

前記焼成の工程、ガラス粉末を焼成(以下、本焼成ともいう)してガラスを形成する工程である。焼成工程は、本焼成よりも低い温度で焼成(以下、脱バイともいう)を含み、2段階で行うことが好ましい。本焼成前に脱バイをすれば、予備成形した物に含まれる有機物を十分に除去でき、焼成工程後の板状のガラス中の不純物を低減できる。特に、予備成形においてグリーンシートを使用する場合には、2段階で行うことが好ましい。   The firing step is a step of firing glass powder (hereinafter also referred to as main firing) to form glass. The firing step includes firing (hereinafter also referred to as debuying) at a lower temperature than the main firing and is preferably performed in two stages. If removal is performed before the main firing, the organic matter contained in the preformed product can be sufficiently removed, and impurities in the plate-like glass after the firing step can be reduced. In particular, when a green sheet is used in preforming, it is preferably performed in two stages.

前記本焼成の焼成条件は、使用するガラス粉末によって異なる。焼成温度は、焼成温度が450〜900℃または、使用するガラスの軟化点をTsとしたときに、Ts±50℃が好ましく、焼成時間は1〜6時間が好ましい。このような焼成条件であれば、光変換部材内に発生する気泡(以下、内包泡ともいう)を低減できる。内包泡が多いと光変換部材内で光が散乱するおそれがあり、光変換部材の透過率が低下し、ヘイズが大きくなり、量子収率(QE)が低下するおそれがある。   The firing conditions for the main firing differ depending on the glass powder used. The firing temperature is preferably 450 to 900 ° C. or Ts ± 50 ° C. when the softening point of the glass used is Ts, and the firing time is preferably 1 to 6 hours. With such firing conditions, bubbles generated in the light conversion member (hereinafter also referred to as encapsulated bubbles) can be reduced. If the encapsulated foam is large, light may be scattered in the light conversion member, the transmittance of the light conversion member may be decreased, haze may be increased, and the quantum yield (QE) may be decreased.

脱バイ工程の焼成条件は、予備成形体グリーンシートの製造で使用したビヒクル中のバインダの種類や量により異なる。例えば、電気炉などを使用して、400〜480℃で1〜6時間保持して行うことが好ましい。   The firing conditions for the debuying process vary depending on the type and amount of the binder in the vehicle used in the production of the preform green sheet. For example, it is preferable to carry out by using an electric furnace etc. and hold | maintaining at 400-480 degreeC for 1 to 6 hours.

(光変換部材を有する照明光源)
本発明の光変換部材は、光源と組合せることで、所望の波長を発する照明光源が得られる。光変換部材は、光源の発光面と接することで、光源の光取り出し効率をより高くできるため好ましい。
(Illumination light source having light conversion member)
The light conversion member of the present invention can be combined with a light source to obtain an illumination light source that emits a desired wavelength. The light conversion member is preferable because it can make the light extraction efficiency of the light source higher by contacting the light emitting surface of the light source.

前記した光源としては、発光面が平面の発光素子チップが好ましく、半導体発光素子チップがより好ましい。また、青色を発する半導体発光素子チップが特に好ましい。半導体発光素子チップと光変換部材が組合せられた照明光源は、LEDとも呼ばれる   As the light source described above, a light emitting element chip having a flat light emitting surface is preferable, and a semiconductor light emitting element chip is more preferable. A semiconductor light emitting element chip that emits blue light is particularly preferable. An illumination light source in which a semiconductor light emitting element chip and a light conversion member are combined is also called an LED.

以下、本発明の具体的な態様を説明する。ただし、本発明はこれらに限定して解釈されるものではない。例1〜3は本発明の実施例であり、例4および5は比較例である。   Hereinafter, specific embodiments of the present invention will be described. However, the present invention is not construed as being limited to these. Examples 1 to 3 are examples of the present invention, and examples 4 and 5 are comparative examples.

(例1)
酸化物基準のモル%表記で、SiO 15%、B 31%、ZnO 34%、BaO 11%、Bi 9%となるようにガラス原料を混合した。これを、白金ルツボ中で1200〜1400℃に電気炉で加熱し、溶融して、融液を回転ロールで急冷して、ガラスリボンを形成した。ガラスリボンを、ボールミルで粉砕し、目開き150μmの網目を有する篩にかけ、さらに気流分級し、ガラス粉末を得た。
(Example 1)
The glass raw materials were mixed so as to be 15% of SiO 2 , 31% of B 2 O 3 , 34% of ZnO, 11% of BaO, and 9% of Bi 2 O 3 in terms of mol% based on oxide. This was heated in an electric furnace to 1200 to 1400 ° C. in a platinum crucible and melted, and the melt was quenched with a rotating roll to form a glass ribbon. The glass ribbon was pulverized with a ball mill, passed through a sieve having a mesh with an opening of 150 μm, and further subjected to air classification to obtain a glass powder.

ガラスの屈折率ndは、1.79で、軟化点Tsは591℃であった。   The refractive index nd of the glass was 1.79, and the softening point Ts was 591 ° C.

無機蛍光体として、YAG無機蛍光体を準備した。YAG無機蛍光体のD50は10μmであった。 A YAG inorganic phosphor was prepared as the inorganic phosphor. D 50 of the YAG inorganic phosphor was 10 [mu] m.

ガラス粉末と無機蛍光体とを、ガラス粉末を84体積%と無機蛍光体を16体積%で混合し、さらにビヒクルと混練し、脱泡してスラリーを得た。このスラリーをPETフィルム(帝人社製)にドクターブレード法で塗工した。これを、乾燥炉で約30分間乾燥し、約7cm四方の大きさに切り出し、PETフィルムを剥がして、厚み600μmと300μのグリーンシートをそれぞれ得た。   The glass powder and the inorganic phosphor were mixed with 84% by volume of the glass powder and 16% by volume of the inorganic phosphor, kneaded with the vehicle, and defoamed to obtain a slurry. This slurry was applied to a PET film (manufactured by Teijin Limited) by the doctor blade method. This was dried in a drying furnace for about 30 minutes, cut into a size of about 7 cm square, and the PET film was peeled off to obtain green sheets having a thickness of 600 μm and 300 μm, respectively.

これらのグリーンシートを2枚積層し、プレスした。これを、離型剤を塗布したムライト基板に載せて大気中で、380℃で4時間脱バイ処理し、さらに、570℃で減圧下において1時間焼成した。   Two of these green sheets were laminated and pressed. This was placed on a mullite substrate coated with a release agent, deburied at 380 ° C. for 4 hours in the atmosphere, and further fired at 570 ° C. under reduced pressure for 1 hour.

このようにして得られた光変換部材について、第1の面の表面粗さRa、量子変換効率(QE)、ヘイズおよび透過率を測定した。これらの結果を表1に示す。なお、表1中の「−」は未評価であることを示す。   The light conversion member thus obtained was measured for surface roughness Ra, quantum conversion efficiency (QE), haze, and transmittance of the first surface. These results are shown in Table 1. In Table 1, “-” indicates that it has not been evaluated.

光変換部材の板厚は、マイクロメータにより測定した。光変換部材の第1の面の表面粗さRaは表面粗さ・輪郭形状測定器(東京精密社製、商品名:サーフコム1400D)により測定した。量子変換効率は、絶対PL量子収率測定装置(浜松ホトニクス社製、商品名:Quantauru−QY)を使用して、励起光波長460nmにて測定した。励起光は第2の面から入射させ、第1の面から出射する変換光を積分球により検出し、式(2)のとおりQEを算出した。光変換部材のヘイズ、透過率は、ヘイズ測定装置(スガ試験機社製、商品名:ヘイズメーターHZ−2)を使用して、C光源にて測定した。   The plate thickness of the light conversion member was measured with a micrometer. The surface roughness Ra of the first surface of the light conversion member was measured with a surface roughness / contour shape measuring instrument (trade name: Surfcom 1400D, manufactured by Tokyo Seimitsu Co., Ltd.). The quantum conversion efficiency was measured at an excitation light wavelength of 460 nm using an absolute PL quantum yield measuring apparatus (manufactured by Hamamatsu Photonics, trade name: Quantauru-QY). Excitation light was made incident from the second surface, and converted light emitted from the first surface was detected by an integrating sphere, and QE was calculated as in equation (2). The haze and transmittance of the light conversion member were measured with a C light source using a haze measuring device (manufactured by Suga Test Instruments Co., Ltd., trade name: haze meter HZ-2).

(例2)
ガラス粉末と無機蛍光体とを、ガラス粉末を80体積%と無機蛍光体を20体積%で混合する以外は、例1と同様にして光変換部材を作製した。
(Example 2)
A light conversion member was produced in the same manner as in Example 1 except that the glass powder and the inorganic phosphor were mixed at 80% by volume of the glass powder and 20% by volume of the inorganic phosphor.

得られた光変換部材について、例1と同様の方法で、部材の厚み、第1の面の表面粗さRa、量子変換効率(QE)、ヘイズおよび透過率を測定した。これらの結果を表1に示す。   About the obtained light conversion member, the thickness of the member, the surface roughness Ra of the first surface, the quantum conversion efficiency (QE), the haze, and the transmittance were measured in the same manner as in Example 1. These results are shown in Table 1.

(例3)
ガラス粉末と無機蛍光体とを、ガラス粉末1を76体積%と無機蛍光体を24体積%で混合する以外は、例1と同様にして光変換部材を作製した。
(Example 3)
A light conversion member was produced in the same manner as in Example 1 except that glass powder and inorganic phosphor were mixed with glass powder 1 at 76% by volume and inorganic phosphor at 24% by volume.

得られた光変換部材について、例1と同様の方法で、部材の厚み、第1の面の表面粗さRa、量子変換効率(QE)、ヘイズおよび透過率を測定した。これらの結果を表1に示す。   About the obtained light conversion member, the thickness of the member, the surface roughness Ra of the first surface, the quantum conversion efficiency (QE), the haze, and the transmittance were measured in the same manner as in Example 1. These results are shown in Table 1.

(例4)
第1の面の研磨を遊離砥粒平面研磨したこと以外は、例2と同様の方法で光変換部材を作製した。
(Example 4)
A light conversion member was produced in the same manner as in Example 2 except that the first surface was polished with a free abrasive grain.

得られた光変換部材について、例1と同様の方法で、部材の厚み、第1の面の表面粗さRa、量子変換効率(QE)、ヘイズおよび透過率を測定した。これらの結果を表1に示す。   About the obtained light conversion member, the thickness of the member, the surface roughness Ra of the first surface, the quantum conversion efficiency (QE), the haze, and the transmittance were measured in the same manner as in Example 1. These results are shown in Table 1.

(例5)
第1の面の研磨を遊離砥粒平面研磨したこと以外は、例3と同様の方法で光変換部材を作製した。
(Example 5)
A light conversion member was produced in the same manner as in Example 3 except that the first surface was polished with a free abrasive grain.

得られた光変換部材について、例1と同様の方法で、部材の厚み、第1の面の表面粗さRa、量子変換効率(QE)、ヘイズおよび透過率を測定した。これらの結果を表1に示す。   About the obtained light conversion member, the thickness of the member, the surface roughness Ra of the first surface, the quantum conversion efficiency (QE), the haze, and the transmittance were measured in the same manner as in Example 1. These results are shown in Table 1.

Figure 2014157856
Figure 2014157856

(実施例と比較例の比較)
例1〜3は、無機蛍光体の含有量が異なるが、いずれもQEが90%以上と高くなっており、光取り出し効率の高い光変換部材が得られている。
(Comparison of Example and Comparative Example)
Although Examples 1-3 differ in content of inorganic fluorescent substance, all have QE as high as 90% or more, and the light conversion member with high light extraction efficiency is obtained.

例4および5は、いずれもQEが90%未満である。これらは、第1の面の表面Raが0.75μmより小さいため、第1の面における出射光が反射し、検出されるフォトン数が減少したと考えられる。   Examples 4 and 5 both have a QE of less than 90%. Since the surface Ra of the first surface is smaller than 0.75 μm, it is considered that the emitted light on the first surface is reflected and the number of detected photons is reduced.

本発明の光変換部材は、LED等の光源から発せられる光変換部材として使用する無機蛍光体を分散した光変換部材として使用される。   The light conversion member of the present invention is used as a light conversion member in which an inorganic phosphor used as a light conversion member emitted from a light source such as an LED is dispersed.

Claims (11)

無機蛍光体とガラスを含有する光変換部材であって、
ガラスの屈折率ndが1.7〜2.8であり、
光変換部材の1以上の面の表面粗さRaが0.75μm以上であることを特徴とする光変換部材。
A light conversion member containing an inorganic phosphor and glass,
The refractive index nd of the glass is 1.7 to 2.8,
A light conversion member, wherein the surface roughness Ra of one or more surfaces of the light conversion member is 0.75 μm or more.
光変換部材が板状である請求項1記載の光変換部材。   The light conversion member according to claim 1, wherein the light conversion member has a plate shape. 厚みが50〜300μmである請求項1または2記載の光変換部材。   The light conversion member according to claim 1, wherein the thickness is 50 to 300 μm. 無機蛍光体が、酸化物、窒化物、酸窒化物、硫化物、酸硫化物、希土類硫化物、アルミン酸塩化物およびハロリン酸塩化物からなる群から選ばれた1種以上である請求項1〜3のいずれかに1項記載の光変換部材。   2. The inorganic phosphor is at least one selected from the group consisting of oxides, nitrides, oxynitrides, sulfides, oxysulfides, rare earth sulfides, aluminate chlorides, and halophosphates. The light conversion member according to any one of 1 to 3. ガラスが、850℃以下の軟化点を有する請求項1〜4のいずれか1項記載の光変換部材。   The light conversion member according to claim 1, wherein the glass has a softening point of 850 ° C. or less. 量子変換効率が90%以上である請求項1〜5のいずれか1項記載の光変換部材。   The light conversion member according to any one of claims 1 to 5, wherein the quantum conversion efficiency is 90% or more. 全光線透過率が75%以上である請求項1〜6のいずれか1項記載の光変換部材。   The light conversion member according to any one of claims 1 to 6, wherein the total light transmittance is 75% or more. 無機蛍光体とガラス粉末とを含有する混合物の焼結体からなる請求項1〜7のいずれか1項記載の光変換部材。   The light conversion member according to any one of claims 1 to 7, comprising a sintered body of a mixture containing an inorganic phosphor and glass powder. 前記無機蛍光体とガラス粉末の含有割合が、体積比で無機蛍光体:ガラス粉末=1:99〜40:60である請求項8記載の光変換部材。   The light conversion member according to claim 8, wherein the content ratio of the inorganic phosphor and the glass powder is, by volume ratio, inorganic phosphor: glass powder = 1: 99 to 40:60. 請求項1〜9のいずれかに記載の光変換部材と、光源とを有する照明光源であって、
光変換部材が光源の発光面と接し、光源と接しない面の表面粗さRaが0.75μm以上であることを特徴とする照明光源。
An illumination light source comprising the light conversion member according to claim 1 and a light source,
An illumination light source, wherein the light conversion member is in contact with the light emitting surface of the light source and the surface roughness Ra of the surface not in contact with the light source is 0.75 μm or more.
前記光源が、発光素子チップである請求項10記載の照明光源。   The illumination light source according to claim 10, wherein the light source is a light emitting element chip.
JP2013026583A 2013-02-14 2013-02-14 Optical conversion member, and illumination light source having the same Pending JP2014157856A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013026583A JP2014157856A (en) 2013-02-14 2013-02-14 Optical conversion member, and illumination light source having the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013026583A JP2014157856A (en) 2013-02-14 2013-02-14 Optical conversion member, and illumination light source having the same

Publications (1)

Publication Number Publication Date
JP2014157856A true JP2014157856A (en) 2014-08-28

Family

ID=51578574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013026583A Pending JP2014157856A (en) 2013-02-14 2013-02-14 Optical conversion member, and illumination light source having the same

Country Status (1)

Country Link
JP (1) JP2014157856A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015118970A (en) * 2013-12-17 2015-06-25 日本電気硝子株式会社 Wavelength conversion member and light-emitting device
WO2019021846A1 (en) * 2017-07-27 2019-01-31 日本電気硝子株式会社 Wavelength conversion member and light emitting device
JP2019029648A (en) * 2017-07-27 2019-02-21 日本電気硝子株式会社 Wavelength conversion member and light emitting device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015118970A (en) * 2013-12-17 2015-06-25 日本電気硝子株式会社 Wavelength conversion member and light-emitting device
KR20160098176A (en) * 2013-12-17 2016-08-18 니폰 덴키 가라스 가부시키가이샤 Wavelength-conversion member and light-emitting device
KR102258536B1 (en) 2013-12-17 2021-05-28 니폰 덴키 가라스 가부시키가이샤 Wavelength-conversion member and light-emitting device
WO2019021846A1 (en) * 2017-07-27 2019-01-31 日本電気硝子株式会社 Wavelength conversion member and light emitting device
JP2019029648A (en) * 2017-07-27 2019-02-21 日本電気硝子株式会社 Wavelength conversion member and light emitting device
JP7090842B2 (en) 2017-07-27 2022-06-27 日本電気硝子株式会社 Wavelength conversion member and light emitting device

Similar Documents

Publication Publication Date Title
RU2436829C2 (en) Electroluminescent device
WO2013147195A1 (en) Semiconductor light-emitting device, and illumination device
CN108026442B (en) Wavelength conversion member and light emitting apparatus
JP6019842B2 (en) Method for manufacturing wavelength conversion member, wavelength conversion member and light emitting device
JP6273799B2 (en) Glass used for wavelength conversion material, wavelength conversion material, wavelength conversion member, and light emitting device
JP2011187798A (en) Wavelength converting member and optical device using the same
JP2010509764A (en) Illumination system including a monolithic ceramic luminescence converter
JP5532508B2 (en) Wavelength conversion member and manufacturing method thereof
JP7212319B2 (en) Wavelength conversion member and light emitting device
JP2008021868A (en) Phosphor composite member
JP5854367B2 (en) Method for manufacturing phosphor composite member
JP2013055269A (en) Wavelength conversion member and light-emitting device
CN107586127B (en) Ceramic composite, and phosphor for projector and light-emitting device containing same
US20240014357A1 (en) Glass for use in wavelength conversion material, wavelength conversion material, wavelength conversion member, and light-emitting device
WO2017047412A1 (en) Wavelength conversion member and light-emitting device
JP2014157856A (en) Optical conversion member, and illumination light source having the same
JP2011222751A (en) Wavelength conversion member and semiconductor light-emitting element device having and using the wavelength conversion member
EP2246909B1 (en) White light emitting device and lighting fitting for vehicles using the white light emitting device
JP2013095849A (en) Wavelength conversion member and light emitting device using the same
KR20220087490A (en) Phosphor plate, light emitting device and manufacturing method of phosphor plate
TWI757521B (en) Wavelength conversion member and light-emitting device
KR20130027816A (en) Micro size phosphor for minimizing scattering
CN110494776B (en) Wavelength conversion member and light emitting device
WO2014119603A1 (en) Light conversion member, method for producing light conversion member, lighting light source and liquid crystal display device
WO2014050684A1 (en) Glass composition for phosphor-dispersed glass sheets, and phosphor-dispersed glass sheet using same