JP2011222751A - Wavelength conversion member and semiconductor light-emitting element device having and using the wavelength conversion member - Google Patents
Wavelength conversion member and semiconductor light-emitting element device having and using the wavelength conversion member Download PDFInfo
- Publication number
- JP2011222751A JP2011222751A JP2010090381A JP2010090381A JP2011222751A JP 2011222751 A JP2011222751 A JP 2011222751A JP 2010090381 A JP2010090381 A JP 2010090381A JP 2010090381 A JP2010090381 A JP 2010090381A JP 2011222751 A JP2011222751 A JP 2011222751A
- Authority
- JP
- Japan
- Prior art keywords
- wavelength conversion
- conversion member
- inorganic phosphor
- glass
- phosphor powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Led Device Packages (AREA)
Abstract
Description
本発明は、白色LED等の構成部材として用いられる波長変換部材に関するものである。 The present invention relates to a wavelength conversion member used as a constituent member such as a white LED.
近年、白色LEDの開発が盛んになっている。白色LEDは白熱灯や蛍光灯に比べ消費電力が低く寿命が長いことを特徴としており、携帯電話やデジタルカメラ等のバックライトとして使用されつつある。今後は、白熱灯や蛍光灯に替わる次世代の光源として、照明用途への応用が期待されている。 In recent years, white LEDs have been actively developed. White LEDs are characterized by low power consumption and long life compared to incandescent lamps and fluorescent lamps, and are being used as backlights for mobile phones and digital cameras. In the future, as a next-generation light source that replaces incandescent and fluorescent lamps, it is expected to be applied to lighting applications.
白色LEDは、例えば青色や紫外の励起光を発するLEDと、無機蛍光体粉末が樹脂等のマトリクス中に分散されてなる波長変換部材から構成されている。無機蛍光体粉末はLEDからの励起光を受けて励起光とは異なる波長の光(蛍光)を発する。一方、LEDからの励起光のうち一部は波長変換に寄与せずに波長変換部材を透過する。これらの光が混ざり合って白色光が得られる。 The white LED is composed of, for example, an LED that emits blue or ultraviolet excitation light, and a wavelength conversion member in which inorganic phosphor powder is dispersed in a matrix such as a resin. The inorganic phosphor powder receives the excitation light from the LED and emits light (fluorescence) having a wavelength different from that of the excitation light. On the other hand, a part of the excitation light from the LED does not contribute to wavelength conversion and passes through the wavelength conversion member. These lights are mixed to obtain white light.
ところで、白色LEDは用途によってはますます高い輝度(ハイパワー化)が要求されている。従来のように樹脂マトリクス中に無機蛍光体粉末を分散させる方法では、LEDからの熱によって樹脂マトリクスが変色し、長期間使用すると輝度が低下するという問題があった。また、無機蛍光体粉末を含有する樹脂をLED上に塗布する際、厚みを均一に調整することが困難であり、色度ばらつきが生じやすいといった問題があった。 Incidentally, white LEDs are required to have higher luminance (higher power) depending on applications. In the conventional method of dispersing the inorganic phosphor powder in the resin matrix, there is a problem that the resin matrix is discolored by heat from the LED and the luminance is lowered when used for a long time. Further, when a resin containing an inorganic phosphor powder is applied on the LED, it is difficult to adjust the thickness uniformly, and there is a problem that chromaticity variation is likely to occur.
これらの問題を解決するために、無機蛍光体粉末をガラス中に分散させ、波長変換部材を完全に無機化する方法が提案されている(例えば、特許文献1および2参照)。当該方法によれば、波長変換部材の耐熱性および耐候性を向上させることが可能となる。具体的には、長時間の高温環境下(例えば、150℃で600時間)や長時間の高温高湿環境下(例えば、温度85℃、湿度85%で2000時間)に晒しても白色LEDの発光特性がほとんど変化せず、また太陽光の紫外線に長時間晒されても着色や劣化がほとんどない。さらには、加工性に優れることから、厚みの不均一性が原因の色度ばらつきも抑制することが可能となる。 In order to solve these problems, a method has been proposed in which inorganic phosphor powder is dispersed in glass to completely mineralize the wavelength conversion member (see, for example, Patent Documents 1 and 2). According to this method, the heat resistance and weather resistance of the wavelength conversion member can be improved. Specifically, the white LED can be exposed to a long-time high temperature environment (for example, 150 ° C. for 600 hours) or a long-time high temperature and high humidity environment (for example, temperature 85 ° C. and humidity 85% for 2000 hours). The light emission characteristics hardly change, and there is almost no coloring or deterioration even when exposed to ultraviolet rays of sunlight for a long time. Furthermore, since it is excellent in workability, it is possible to suppress chromaticity variations due to thickness non-uniformity.
無機蛍光体粉末をガラスマトリクスに分散させてなる波長変換部材は、LEDの励起光が波長変換部材内部で十分に散乱せずに直進してしまうという問題がある。特にガラスマトリクスと無機蛍光体粉末との屈折率差が小さい場合は、両者の界面における光の散乱が少なくなるためその傾向が顕著である。励起光の直進成分が多いと、白色LEDの照射光の配光が均質でなくなり、励起光源の光軸に近い範囲と光軸から離れた範囲では色度が異なることとなる。なお、波長変換部材における無機蛍光体粉末の含有量を多くすることにより、全体としてガラスマトリクスと無機蛍光体粉末の界面における光の散乱量が多くなり配光特性は改善されるが、色度が所望の範囲からずれてしまうという別の問題が発生してしまう。 A wavelength conversion member obtained by dispersing inorganic phosphor powder in a glass matrix has a problem that the excitation light of the LED goes straight without being sufficiently scattered inside the wavelength conversion member. In particular, when the difference in refractive index between the glass matrix and the inorganic phosphor powder is small, the tendency is remarkable because light scattering at the interface between the two is reduced. When there are many linear components of the excitation light, the light distribution of the light emitted from the white LED is not uniform, and the chromaticity is different between the range close to the optical axis of the excitation light source and the range away from the optical axis. Increasing the content of the inorganic phosphor powder in the wavelength conversion member increases the amount of light scattering at the interface between the glass matrix and the inorganic phosphor powder as a whole, improving the light distribution characteristics, but increasing the chromaticity. Another problem arises that it deviates from the desired range.
したがって、本発明は、ガラスマトリクス中に無機蛍光体粉末が分散された波長変換部材であって、半導体発光素子デバイスに用いた際に、所望の色度範囲を維持しながら配光特性を向上させることが可能な波長変換部材を提供することを課題とする。 Accordingly, the present invention is a wavelength conversion member in which inorganic phosphor powder is dispersed in a glass matrix, and improves light distribution characteristics while maintaining a desired chromaticity range when used in a semiconductor light emitting device. It is an object of the present invention to provide a wavelength conversion member that can be used.
本発明者等は鋭意検討した結果、ガラスマトリクス中に無機蛍光体粉末が分散してなる波長変換部材において、ガラスマトリクスが特定の状態を有することにより、無機蛍光体粉末の含有量が少なくても、励起光の散乱を大きくして配光特性を向上できることを見出し、本発明として提案するものである。 As a result of intensive studies, the present inventors have found that in a wavelength conversion member in which an inorganic phosphor powder is dispersed in a glass matrix, the glass matrix has a specific state, so that the content of the inorganic phosphor powder is small. The present inventors have found that the light distribution characteristics can be improved by increasing the scattering of the excitation light, and are proposed as the present invention.
すなわち、本発明は、ガラスマトリクス中に無機蛍光体粉末が分散してなる波長変換部材であって、ガラスマトリクスの一部に結晶が析出していることを特徴とする波長変換部材に関する。 That is, the present invention relates to a wavelength conversion member in which an inorganic phosphor powder is dispersed in a glass matrix, and crystals are precipitated in a part of the glass matrix.
既述の通り、無機蛍光体粉末をガラスマトリクスに分散させてなる波長変換部材において、LEDからの励起光の直進成分が多いと、白色LEDの照射光の配光が均質でなくなり、照射角度によって色度が変化してしまう。そこで、ガラスマトリクスの一部に結晶が析出したものであれば、当該析出結晶が励起光の散乱を高め、結果として配光特性に優れた波長変換部材を得ることができる。 As described above, in the wavelength conversion member in which the inorganic phosphor powder is dispersed in the glass matrix, if there are many linear components of the excitation light from the LED, the light distribution of the irradiation light of the white LED is not uniform, and depending on the irradiation angle The chromaticity will change. Therefore, if the crystal is precipitated in a part of the glass matrix, the precipitated crystal increases the scattering of excitation light, and as a result, a wavelength conversion member having excellent light distribution characteristics can be obtained.
なお、ガラスマトリクス中にセラミック粉末を分散させることにより、励起光の散乱を高めることも可能であるが、当該方法ではガラスマトリクス中にセラミック粉末を分散させる際に、両者の界面に気泡等の欠陥が生じやすい。このような欠陥は光の吸収要因となるため、発光効率低下の原因となる。一方、本発明の波長変換部材は、ガラスマトリクスの内部から結晶を析出してなるものであるため、ガラスマトリクスと結晶粒子の界面に光吸収性の欠陥が形成されることなく、発光効率の低下を抑制することができる。 Although it is possible to increase the scattering of excitation light by dispersing the ceramic powder in the glass matrix, in this method, when the ceramic powder is dispersed in the glass matrix, defects such as bubbles are formed at the interface between the two. Is likely to occur. Such a defect becomes a light absorption factor, which causes a decrease in luminous efficiency. On the other hand, since the wavelength conversion member of the present invention is formed by precipitating crystals from the inside of the glass matrix, the light emission efficiency is reduced without forming a light absorbing defect at the interface between the glass matrix and the crystal particles. Can be suppressed.
第二に、本発明の波長変換部材は、ガラスマトリクスと析出結晶の屈折率差が0.05以上であることを特徴とする。 Second, the wavelength conversion member of the present invention is characterized in that the difference in refractive index between the glass matrix and the precipitated crystal is 0.05 or more.
当該構成によれば、励起光が析出結晶により散乱されやすく、配光特性に優れた波長変換部材が得られやすくなる。 According to the said structure, excitation light is easy to be scattered by the precipitation crystal | crystallization, and it becomes easy to obtain the wavelength conversion member excellent in the light distribution characteristic.
第三に、本発明の波長変換部材は、析出結晶が、ウォラストナイト、アノーサイト、ガーナイト、スピネルから選択される少なくとも1種であることを特徴とする。 Third, the wavelength conversion member of the present invention is characterized in that the precipitated crystal is at least one selected from wollastonite, anorthite, garnite, and spinel.
第四に、本発明の波長変換部材は、JIS K7105に準拠して測定した平行光線透過率が5%以下、ヘイズが90%以上であることを特徴とする。 Fourth, the wavelength conversion member of the present invention is characterized in that the parallel light transmittance measured in accordance with JIS K7105 is 5% or less and the haze is 90% or more.
第五に、本発明の波長変換部材は、セラミック粉末を0.1〜10質量%含有することを特徴とする。 Fifth, the wavelength conversion member of the present invention contains 0.1 to 10% by mass of ceramic powder.
当該構成によれば、励起光を散乱させる効果がより大きくなり、配光特性に優れた波長変換部材が得られやすくなる。 According to the said structure, the effect which scatters excitation light becomes larger and it becomes easy to obtain the wavelength conversion member excellent in the light distribution characteristic.
第六に、本発明の波長変換部材は、無機蛍光体粉末が、酸化物、窒化物、酸窒化物、硫化物、酸硫化物、希土類硫化物、アルミン酸塩化物およびハロリン酸塩化物から選ばれた少なくとも1種であることを特徴とする。 Sixth, in the wavelength conversion member of the present invention, the inorganic phosphor powder is selected from oxides, nitrides, oxynitrides, sulfides, oxysulfides, rare earth sulfides, aluminate chlorides, and halophosphates. It is characterized by being at least one kind.
第七に、本発明は、前記いずれかに記載の波長変換部材を用いたことを特徴とする半導体発光素子デバイスに関する。 Seventh, the present invention relates to a semiconductor light-emitting element device using any of the wavelength conversion members described above.
本発明の波長変換部材は、ガラスマトリクス中に無機蛍光体粉末が分散してなるものである。 The wavelength conversion member of the present invention is obtained by dispersing inorganic phosphor powder in a glass matrix.
ガラスマトリクスには無機蛍光体粉末を安定に保持するための媒体としての役割がある。また、ガラスマトリクスのガラス組成によって無機蛍光体粉末との反応性に差が出るため、使用する無機蛍光体粉末に適したガラス組成を選択することが好ましい。さらに、所望の色度が得られるように、無機蛍光体粉末の含有量や波長変換部材の厚みを決定することも重要である。 The glass matrix has a role as a medium for stably holding the inorganic phosphor powder. Further, since the reactivity with the inorganic phosphor powder varies depending on the glass composition of the glass matrix, it is preferable to select a glass composition suitable for the inorganic phosphor powder to be used. Furthermore, it is also important to determine the content of the inorganic phosphor powder and the thickness of the wavelength conversion member so that the desired chromaticity can be obtained.
ガラスマトリクスに使用できるガラスとしては、例えばSiO2−B2O3−RO系ガラス(RはMg、Ca、Sr、Baの少なくとも1種)等が挙げられる。SiO2−B2O3−RO系ガラスを用いれば、ガラス中からウォラストナイト、アノーサイト等の結晶を析出させることができるため好ましい。 Examples of the glass that can be used for the glass matrix include SiO 2 —B 2 O 3 —RO-based glass (R is at least one of Mg, Ca, Sr, and Ba). Use of SiO 2 —B 2 O 3 —RO-based glass is preferable because crystals such as wollastonite and anorthite can be precipitated from the glass.
SiO2−B2O3−RO系ガラスとしては、例えば組成としてモル%で、SiO2 30〜80%、B2O3 1〜40%、MgO 0〜10%、CaO 0〜30%、SrO 0〜20%、BaO 0〜40%、MgO+CaO+SrO+BaO 5〜45%、Al2O3 0〜10%、ZnO 0〜10%を含有するものが好ましい。 The SiO 2 -B 2 O 3 -RO based glass, for example, in mol% composition, SiO 2 30~80%, B 2 O 3 1~40%, 0~10% MgO, CaO 0~30%, SrO 0~20%, BaO 0~40%, MgO + CaO + SrO + BaO 5~45%, Al 2 O 3 0~10%, those containing 0% ZnO preferred.
SiO2はガラスネットワークを形成するとともに、ウォラストナイト、アノーサイト等の結晶を構成する成分である。SiO2の含有量は30〜80%、特に40〜60%であることが好ましい。SiO2の含有量が30%よりも少なくなると、化学的耐久性が悪化する傾向にある。また、結晶が析出しにくくなる。一方、SiO2の含有量が80%よりも多くなると、焼成温度が高温になり、無機蛍光体粉末が劣化しやすくなる。 SiO 2 is a component that forms a glass network and constitutes crystals such as wollastonite and anorthite. The content of SiO 2 is preferably 30 to 80%, particularly preferably 40 to 60%. When the content of SiO 2 is less than 30%, chemical durability tends to deteriorate. Moreover, it becomes difficult to precipitate crystals. On the other hand, if the content of SiO 2 exceeds 80%, the firing temperature becomes high, and the inorganic phosphor powder tends to deteriorate.
B2O3は溶融温度を低下させて溶融性を改善する効果が大きい成分である。B2O3の含有量は1〜40%、5〜35%、特に10〜30%であることが好ましい。B2O3の含有量が1%よりも少なくなると、前記効果が得られにくくなる。一方、B2O3の含有量が40%よりも多くなると、化学的耐久性が悪化する傾向にある。 B 2 O 3 is a component having a great effect of improving the meltability by lowering the melting temperature. The content of B 2 O 3 is preferably 1 to 40%, 5 to 35%, particularly preferably 10 to 30%. If the content of B 2 O 3 is less than 1%, the effect is difficult to obtain. On the other hand, when the content of B 2 O 3 exceeds 40%, chemical durability tends to deteriorate.
MgOは溶融温度を低下させて溶融性を改善する成分である。MgOの含有量は0〜10%、特に0.1〜5%であることが好ましい。MgOの含有量が10%よりも多くなると、化学的耐久性が悪化する傾向にある。なお、MgOはスピネルの構成成分であるため、当該結晶を析出させる場合は、MgOを積極的に添加することが好ましい。 MgO is a component that improves the meltability by lowering the melting temperature. The content of MgO is preferably 0 to 10%, particularly preferably 0.1 to 5%. When the content of MgO exceeds 10%, chemical durability tends to deteriorate. In addition, since MgO is a component of spinel, it is preferable to add MgO positively when the crystal is precipitated.
CaOは溶融温度を低下させて溶融性を改善する成分である。また、CaOはウォラストナイト、アノーサイト等の結晶の構成成分である。CaOの含有量は0〜30%、特に3〜20%であることが好ましい。CaOの含有量が25%よりも多くなると、化学的耐久性が悪化する傾向にある。なお、CaOはウォラストナイト、アノーサイトの結晶の構成成分であるため、これらの結晶を析出させる場合は、CaOを積極的に添加することが好ましい。 CaO is a component that improves the meltability by lowering the melting temperature. CaO is a structural component of crystals such as wollastonite and anorthite. The CaO content is preferably 0 to 30%, particularly preferably 3 to 20%. When the content of CaO is more than 25%, chemical durability tends to deteriorate. Since CaO is a constituent of wollastonite and anorthite crystals, it is preferable to add CaO positively when these crystals are precipitated.
SrOは溶融温度を低下させて溶融性を改善する成分である。SrOの含有量は0〜20%、0〜10%、特に0.1〜5%であることが好ましい。SrOの含有量が10%よりも多くなると、化学的耐久性が悪化する傾向にある。 SrO is a component that improves the meltability by lowering the melting temperature. The SrO content is preferably 0 to 20%, 0 to 10%, particularly preferably 0.1 to 5%. If the SrO content is more than 10%, chemical durability tends to deteriorate.
BaOは溶融温度を低下させて溶融性を改善するとともに、無機蛍光体粉末との反応を抑制する成分である。BaOの含有量は0〜40%、特に5〜30%であることが好ましい。BaOの含有量が40%よりも多くなると、化学的耐久性が悪化する傾向にある。 BaO is a component that improves the meltability by lowering the melting temperature and suppresses the reaction with the inorganic phosphor powder. The BaO content is preferably 0 to 40%, particularly preferably 5 to 30%. When the content of BaO exceeds 40%, the chemical durability tends to deteriorate.
なお、化学的耐久性を悪化させることなく溶融性を向上させるためには、MgO、CaO、SrO、BaOの合量を5〜45%、特に10〜40%とすることが好ましい。これらの成分の合量が5%より少なくなると、溶融性を改善する効果が得られにくくなり、45%より多くなると、化学的耐久性が悪化しやすくなる。 In order to improve the meltability without deteriorating the chemical durability, the total amount of MgO, CaO, SrO and BaO is preferably 5 to 45%, particularly 10 to 40%. When the total amount of these components is less than 5%, it becomes difficult to obtain the effect of improving the meltability, and when it exceeds 45%, the chemical durability tends to deteriorate.
Al2O3は化学的耐久性を向上させる成分である。Al2O3の含有量は0〜10%、好ましくは1〜8%である。Al2O3の含有量が10%よりも多くなると、溶融性が悪化する傾向にある。なお、Al2O3はアノーサイト、ガーナイト、スピネル等の結晶の構成成分であるため、これらの結晶を析出させる場合は、Al2O3を積極的に添加することが好ましい。 Al 2 O 3 is a component that improves chemical durability. The content of Al 2 O 3 is 0 to 10%, preferably 1 to 8%. When the content of Al 2 O 3 is more than 10%, the meltability tends to deteriorate. Incidentally, Al 2 O 3 is anorthite, gahnite, since a component of the crystal of spinel, if precipitating these crystals, it is preferable to positively added Al 2 O 3.
ZnOは溶融温度を低下させて溶融性を改善する成分である。ZnOの含有量は0〜10%、特に1〜8%であることが好ましい。ZnOの含有量が10%よりも多くなると、化学的耐久性が悪化する傾向にある。なお、ZnOはガーナイトの構成成分であるため、当該結晶を析出させる場合は、ZnOを積極的に添加することが好ましい。 ZnO is a component that improves the meltability by lowering the melting temperature. The content of ZnO is preferably 0 to 10%, particularly 1 to 8%. When the content of ZnO exceeds 10%, chemical durability tends to deteriorate. In addition, since ZnO is a constituent component of garnite, it is preferable to positively add ZnO when the crystal is precipitated.
また上記成分以外にも、ガラスの溶融性を向上させたり、軟化点を低下させて低温焼成しやすくするために、Li2O、Na2O、K2Oを合量で5%まで添加することができる。他にも、ガラスの溶融性を向上させるためにP2O5を5%まで、ガラスの化学的耐久性を向上させるためにTa2O5、TiO2、Nb2O5、Gd2O3、La2O3をそれぞれ15%まで添加してもよい。 In addition to the above components, Li 2 O, Na 2 O, and K 2 O are added up to 5% in total in order to improve the meltability of the glass or to lower the softening point to facilitate low-temperature firing. be able to. In addition, up to 5% of P 2 O 5 in order to improve the meltability of the glass, and Ta 2 O 5 , TiO 2 , Nb 2 O 5 , Gd 2 O 3 in order to improve the chemical durability of the glass. , La 2 O 3 may be added up to 15% each.
本発明の波長変換部材は、無機蛍光体粉末がガラスマトリクス中に分散してなるものであれば特に限定されないが、無機蛍光体粉末およびガラス粉末を含む混合粉末の焼結体からなるものであると、無機蛍光体粉末をガラスマトリクス中に容易かつ均一に分散させることができるため好ましい。 The wavelength conversion member of the present invention is not particularly limited as long as the inorganic phosphor powder is dispersed in a glass matrix, but is composed of a sintered body of a mixed powder containing the inorganic phosphor powder and the glass powder. Inorganic phosphor powder is preferable because it can be easily and uniformly dispersed in the glass matrix.
ガラス粉末の平均粒径D50は0.1〜100μm、特に1〜50μmであることが好ましい。ガラス粉末の平均粒径D50が小さすぎると、焼成する際に気泡の発生量が多くなる。波長変換部材中に気泡が多く含まれると光吸収の原因となり発光効率が低下する傾向がある。好ましい気孔率は2%以下、特に1%以下である。一方、平均粒径D50が大きすぎると、波長変換部材中に無機蛍光体粉末が均一に分散されにくくなり、結果として、波長変換部材の発光効率が低下する傾向がある。 The average particle diameter D50 of the glass powder is preferably from 0.1 to 100 [mu] m, particularly preferably from 1 to 50 [ mu] m. When the average particle diameter D 50 of the glass powder is too small, the greater the amount of generation of bubbles during the firing. If many bubbles are contained in the wavelength conversion member, light emission will be caused and the light emission efficiency tends to decrease. The preferred porosity is 2% or less, particularly 1% or less. On the other hand, when the average particle diameter D 50 is too large, the inorganic phosphor powder is less likely to be uniformly dispersed in the wavelength conversion member, as a result, there is a tendency that emission efficiency of the wavelength conversion member is reduced.
本発明の波長変換部材において、ガラスマトリクスは析出結晶を含有してなるものである。析出結晶はガラスマトリクスの種類に応じて異なるが、例えばウォラストナイト、アノーサイト、ガーナイト、スピネル等が挙げられる。当該析出結晶は、ガラスマトリクスを構成するガラスに対して、ガラス転移点−100℃〜ガラス転移点の温度範囲で熱処理することにより生成させることができる。例えば、本発明の波長変換部材を、ガラス粉末と無機蛍光体粉末を含む混合粉末を焼成して作製する場合は、あらかじめ熱処理を施し結晶を析出させたガラス粉末を原料として用いてもよいし、ガラス粉末と無機蛍光体粉末を含む混合粉末を調製しプレス成形等で圧粉体を作製した後、熱処理を施して結晶を析出させてもよい。 In the wavelength conversion member of the present invention, the glass matrix contains a precipitated crystal. The precipitated crystal varies depending on the type of the glass matrix, and examples thereof include wollastonite, anorthite, garnite, spinel and the like. The said precipitation crystal | crystallization can be produced | generated by heat-processing with respect to the glass which comprises a glass matrix in the temperature range of glass transition point-100 degreeC-glass transition point. For example, when the wavelength conversion member of the present invention is produced by firing a mixed powder containing glass powder and inorganic phosphor powder, glass powder that has been preliminarily subjected to heat treatment to precipitate crystals may be used as a raw material, After preparing a mixed powder containing glass powder and inorganic phosphor powder and producing a green compact by press molding or the like, heat treatment may be performed to precipitate crystals.
ガラスマトリクス中における析出結晶の含有量は、0.1〜10質量%、特に1〜8質量%であることが好ましい。析出結晶の含有量が0.1質量%未満であると、励起光を散乱させる効果が得られにくく、配光特性に劣る傾向がある。一方、析出結晶の含有量が10質量%を超えると、散乱損失が大きくなり発光強度が低下する傾向がある。 The content of the precipitated crystals in the glass matrix is preferably 0.1 to 10% by mass, particularly 1 to 8% by mass. If the content of the precipitated crystals is less than 0.1% by mass, the effect of scattering the excitation light is difficult to obtain, and the light distribution characteristics tend to be inferior. On the other hand, when the content of the precipitated crystal exceeds 10% by mass, the scattering loss increases and the emission intensity tends to decrease.
析出結晶のサイズは長径で1〜30μm、特に10〜20μmであることが好ましい。結晶サイズが長径で1μm未満であると励起光を散乱させる効果が得られにくく、配光特性に劣る傾向がある。一方、析出結晶のサイズが30μmを超えると、散乱損失が大きくなり発光強度が低下する傾向がある。 The size of the precipitated crystal is preferably 1 to 30 μm, particularly 10 to 20 μm in major axis. If the crystal size is longer and less than 1 μm, it is difficult to obtain the effect of scattering excitation light, and the light distribution characteristics tend to be inferior. On the other hand, if the size of the precipitated crystal exceeds 30 μm, the scattering loss tends to increase and the emission intensity tends to decrease.
無機蛍光体粉末としては、紫外または可視の励起光を入射すると、該励起光の波長よりも長波長の蛍光を発するものが挙げられる。例えば、可視光線からなる励起光を入射すると該励起光の色相に対して補色の蛍光を発する無機蛍光体粉末を用いると、透過した励起光と蛍光との混色により白色光が得られるため、容易に白色LEDを製造することができる。特に、可視光線からなる励起光が中心波長430〜490nmを有する光線であり、蛍光が中心波長530〜590nmを有する光線であると、白色光が得られやすいため好ましい。 Examples of the inorganic phosphor powder include those that emit fluorescence having a wavelength longer than the wavelength of the excitation light when ultraviolet or visible excitation light is incident. For example, when an inorganic phosphor powder that emits complementary fluorescence to the hue of excitation light when incident excitation light consisting of visible light is incident, white light can be easily obtained by mixing the transmitted excitation light and fluorescence. A white LED can be manufactured. In particular, it is preferable that excitation light composed of visible light is light having a central wavelength of 430 to 490 nm and fluorescence is light having a central wavelength of 530 to 590 nm because white light can be easily obtained.
本発明において使用可能な無機蛍光体粉末としては、一般に市場で入手できるものであれば特に限定されない。例えば、YAG等のガーネット系、その他の酸化物、窒化物、酸窒化物、硫化物、酸硫化物、希土類硫化物、アルミン酸塩化物、ハロリン酸塩化物などからなるものが挙げられる。 The inorganic phosphor powder usable in the present invention is not particularly limited as long as it is generally available on the market. Examples thereof include garnets such as YAG, and other oxides, nitrides, oxynitrides, sulfides, oxysulfides, rare earth sulfides, aluminate chlorides, halophosphates, and the like.
上記無機蛍光体粉末の中でも、波長300〜500nmに励起帯を有し波長380〜780nmに発光ピークを有するもの、特に青色(波長440〜480nm)、緑色(波長500〜540nm)、黄色(波長540〜595nm)、赤色(波長600〜700nm)に発光するものを用いることが好ましい。 Among the inorganic phosphor powders, those having an excitation band at a wavelength of 300 to 500 nm and an emission peak at a wavelength of 380 to 780 nm, particularly blue (wavelength 440 to 480 nm), green (wavelength 500 to 540 nm), yellow (wavelength 540) ˜595 nm) and red (wavelength of 600 to 700 nm) are preferably used.
波長300〜440nmの紫外〜近紫外の励起光を照射すると青色の発光を発する無機蛍光体粉末としては、Sr5(PO4)3Cl:Eu2+、(Sr,Ba)MgAl10O17:Eu2+、(Sr,Ba)3MgSi2O8:Eu2+などが挙げられる。 Examples of inorganic phosphor powder that emits blue light when irradiated with ultraviolet to near-ultraviolet excitation light having a wavelength of 300 to 440 nm include Sr 5 (PO 4 ) 3 Cl: Eu 2+ , (Sr, Ba) MgAl 10 O 17 : Eu 2+ , (Sr, Ba) 3 MgSi 2 O 8 : Eu 2+ and the like.
波長300〜440nmの紫外〜近紫外の励起光を照射すると緑色の蛍光を発する無機蛍光体粉末としては、SrAl2O4:Eu2+、SrGa2S4:Eu2+、SrBaSiO4:Eu2+、CdS:In、CaS:Ce3+、Y3(Al,Gd)5O12:Ce2+、Ca3Sc2Si3O12:Ce3+、SrSiOn:Eu2+、ZnS:Al3+,Cu+、CaS:Sn2+、CaS:Sn2+,F、CaSO4:Ce3+,Mn2+、LiAlO2:Mn2+、BaMgAl10O17:Eu2+,Mn2+、ZnS:Cu+,Cl−、Ca3WO6:U、Ca3SiO4Cl2:Eu2+、Sr0.2Ba0.7Cl1.1Al2O3.45:Ce3+,Mn2+、Ba2MgSi2O7:Eu2+、Ba2SiO4:Eu2+、Ba2Li2Si2O7:Eu2+、ZnO:S、ZnO:Zn、Ca2Ba3(PO4)3Cl:Eu2+、BaAl2O4:Eu2+などが挙げられる。 As inorganic phosphor powders that emit green fluorescence when irradiated with ultraviolet to near-ultraviolet excitation light having a wavelength of 300 to 440 nm, SrAl 2 O 4 : Eu 2+ , SrGa 2 S 4 : Eu 2+ , SrBaSiO 4 : Eu 2+ , CdS : In, CaS: Ce 3+ , Y 3 (Al, Gd) 5 O 12 : Ce 2+ , Ca 3 Sc 2 Si 3 O 12 : Ce 3+ , SrSiOn: Eu 2+ , ZnS: Al 3+ , Cu + , CaS: Sn 2+ , CaS: Sn 2+ , F, CaSO 4 : Ce 3+ , Mn 2+ , LiAlO 2 : Mn 2+ , BaMgAl 10 O 17 : Eu 2+ , Mn 2+ , ZnS: Cu + , Cl − , Ca 3 WO 6 : U, Ca 3 SiO 4 Cl 2: Eu 2+, Sr 0.2 Ba 0.7 Cl 1.1 Al 2 O 3.45: Ce 3+ Mn 2+, Ba 2 MgSi 2 O 7: Eu 2+, Ba 2 SiO 4: Eu 2+, Ba 2 Li 2 Si 2 O 7: Eu 2+, ZnO: S, ZnO: Zn, Ca 2 Ba 3 (PO 4) 3 Cl: Eu 2+ , BaAl 2 O 4 : Eu 2+ and the like.
波長440〜480nmの青色の励起光を照射すると緑色の蛍光を発する無機蛍光体粉末としては、SrAl2O4:Eu2+、SrGa2S4:Eu2+、SrBaSiO4:Eu2+、CdS:In、CaS:Ce3+、Y3(Al,Gd)5O12:Ce2+、Ca3Sc2Si3O12:Ce3+、SrSiOn:Eu2+などが挙げられる。 Examples of inorganic phosphor powders that emit green fluorescence when irradiated with blue excitation light having a wavelength of 440 to 480 nm include SrAl 2 O 4 : Eu 2+ , SrGa 2 S 4 : Eu 2+ , SrBaSiO 4 : Eu 2+ , CdS: In, CaS: Ce 3+ , Y 3 (Al, Gd) 5 O 12 : Ce 2+ , Ca 3 Sc 2 Si 3 O 12 : Ce 3+ , SrSiOn: Eu 2+ and the like.
波長300〜440nmの紫外〜近紫外の励起光を照射すると黄色の蛍光を発する無機蛍光体粉末としては、ZnS:Eu2+、Ba5(PO4)3Cl:U、Sr3WO6:U、CaGa2S4:Eu2+、SrSO4:Eu2+,Mn2+、ZnS:P、ZnS:P3−,Cl−、ZnS:Mn2+などが挙げられる。 Examples of inorganic phosphor powder that emits yellow fluorescence when irradiated with ultraviolet to near-ultraviolet excitation light having a wavelength of 300 to 440 nm include ZnS: Eu 2+ , Ba 5 (PO 4 ) 3 Cl: U, Sr 3 WO 6 : U, CaGa 2 S 4 : Eu 2+ , SrSO 4 : Eu 2+ , Mn 2+ , ZnS: P, ZnS: P 3− , Cl − , ZnS: Mn 2+ and the like can be mentioned.
波長440〜480nmの青色の励起光を照射すると黄色の蛍光を発する無機蛍光体粉末としては、Y3(Al,Gd)5O12:Ce2+、Ba5(PO4)3Cl:U、CaGa2S4:Eu2+、Sr2SiO4:Eu2+が挙げられる。 As an inorganic phosphor powder that emits yellow fluorescence when irradiated with blue excitation light having a wavelength of 440 to 480 nm, Y 3 (Al, Gd) 5 O 12 : Ce 2+ , Ba 5 (PO 4 ) 3 Cl: U, CaGa 2 S 4 : Eu 2+ , Sr 2 SiO 4 : Eu 2+ .
波長300〜440nmの紫外〜近紫外の励起光を照射すると赤色の蛍光を発する無機蛍光体粉末としては、CaS:Yb2+,Cl、Gd3Ga4O12:Cr3+、CaGa2S4:Mn2+、Na(Mg,Mn)2LiSi4O10F2:Mn、ZnS:Sn2+、Y3Al5O12:Cr3+、SrB8O13:Sm2+、MgSr3Si2O8:Eu2+,Mn2+、α−SrO・3B2O3:Sm2+、ZnS−CdS、ZnSe:Cu+,Cl、ZnGa2S4:Mn2+、ZnO:Bi3+、BaS:Au,K、ZnS:Pb2+、ZnS:Sn2+,Li+、ZnS:Pb,Cu、CaTiO3:Pr3+、CaTiO3:Eu3+、Y2O3:Eu3+、(Y、Gd)2O3:Eu3+、CaS:Pb2+,Mn2+、YPO4:Eu3+、Ca2MgSi2O7:Eu2+,Mn2+、Y(P、V)O4:Eu3+、Y2O2S:Eu3+、SrAl4O7:Eu3+、CaYAlO4:Eu3+、LaO2S:Eu3+、LiW2O8:Eu3+,Sm3+、(Sr,Ca,Ba,Mg)10(PO4)6Cl2:Eu2+,Mn2+、Ba3MgSi2O8:Eu2+,Mn2+などが挙げられる。 Examples of the inorganic phosphor powder that emits red fluorescence when irradiated with ultraviolet to near-ultraviolet excitation light having a wavelength of 300 to 440 nm include CaS: Yb 2+ , Cl, Gd 3 Ga 4 O 12 : Cr 3+ , CaGa 2 S 4 : Mn. 2+ , Na (Mg, Mn) 2 LiSi 4 O 10 F 2 : Mn, ZnS: Sn 2+ , Y 3 Al 5 O 12 : Cr 3+ , SrB 8 O 13 : Sm 2+ , MgSr 3 Si 2 O 8 : Eu 2+ , Mn 2+ , α-SrO · 3B 2 O 3 : Sm 2+ , ZnS—CdS, ZnSe: Cu + , Cl, ZnGa 2 S 4 : Mn 2+ , ZnO: Bi 3+ , BaS: Au, K, ZnS: Pb 2+ , ZnS: Sn 2+ , Li + , ZnS: Pb, Cu, CaTiO 3 : Pr 3+ , CaTiO 3 : Eu 3+ , Y 2 O 3 : Eu 3+ , ( Y, Gd) 2 O 3 : Eu 3+ , CaS: Pb 2+ , Mn 2+ , YPO 4 : Eu 3+ , Ca 2 MgSi 2 O 7 : Eu 2+ , Mn 2+ , Y (P, V) O 4 : Eu 3+ , Y 2 O 2 S: Eu 3+ , SrAl 4 O 7 : Eu 3+ , CaYAlO 4 : Eu 3+ , LaO 2 S: Eu 3+ , LiW 2 O 8 : Eu 3+ , Sm 3+ , (Sr, Ca, Ba, Mg) 10 (PO 4 ) 6 Cl 2 : Eu 2+ , Mn 2+ , Ba 3 MgSi 2 O 8 : Eu 2+ , Mn 2+ and the like.
波長440〜480nmの青色の励起光を照射すると赤色の蛍光を発する無機蛍光体粉末としては、ZnS:Mn2+,Te2+、Mg2TiO4:Mn4+、K2SiF6:Mn4+、SrS:Eu2+、CaS:Eu2+、Na1.23K0.42Eu0.12TiSi4O11、Na1.23K0.42Eu0.12TiSi5O13:Eu3+、CdS:In,Te、CaAlSiN3:Eu2+、CaSiN3:Eu2+、(Ca,Sr)2Si5N8:Eu2+、Eu2W2O7などが挙げられる。 Examples of inorganic phosphor powders that emit red fluorescence when irradiated with blue excitation light having a wavelength of 440 to 480 nm include ZnS: Mn 2+ , Te 2+ , Mg 2 TiO 4 : Mn 4+ , K 2 SiF 6 : Mn 4+ , SrS: Eu 2+ , CaS: Eu 2+ , Na 1.23 K 0.42 Eu 0.12 TiSi 4 O 11 , Na 1.23 K 0.42 Eu 0.12 TiSi 5 O 13 : Eu 3+ , CdS: In, Te CaAlSiN 3 : Eu 2+ , CaSiN 3 : Eu 2+ , (Ca, Sr) 2 Si 5 N 8 : Eu 2+ , Eu 2 W 2 O 7 and the like.
なお、励起光や発光の波長域に合わせて、複数の無機蛍光体粉末を混合して用いてもよい。例えば、紫外域の励起光を照射して白色光を得る場合は、青色、緑色、黄色、赤色の蛍光を発する無機蛍光体粉末を混合して使用すればよい。 A plurality of inorganic phosphor powders may be mixed and used in accordance with the wavelength range of excitation light or light emission. For example, when white light is obtained by irradiation with ultraviolet excitation light, inorganic phosphor powders emitting blue, green, yellow, and red fluorescence may be mixed and used.
なお、波長変換部材のガラスマトリクスとして用いられるガラスは、通常約1.5〜2.0の屈折率(nd)を有するのに対し、無機蛍光体粉末も1.5〜2.4程度といった幅広い屈折率を有する。ガラスと無機蛍光体粉末の組み合わせは、いろいろな可能性があるが、特にガラスと無機蛍光体粉末の屈折率差が小さい場合、両者の界面での散乱が少なくなる。その結果、励起光の直進成分が増加し、配光特性が低下しやすくなる。したがって、本発明の波長変換部材は、ガラスと無機蛍光体粉末の屈折率差が小さい場合(例えば、0.05未満)に特に効果が得られやすいと言える。 The glass used as the glass matrix of the wavelength conversion member usually has a refractive index (nd) of about 1.5 to 2.0, whereas the inorganic phosphor powder is also wide as about 1.5 to 2.4. Has a refractive index. The combination of glass and inorganic phosphor powder has various possibilities, but particularly when the refractive index difference between glass and inorganic phosphor powder is small, scattering at the interface between the two becomes small. As a result, the linear component of the excitation light increases, and the light distribution characteristics are likely to deteriorate. Therefore, it can be said that the wavelength conversion member of the present invention is particularly effective when the difference in refractive index between the glass and the inorganic phosphor powder is small (for example, less than 0.05).
波長変換部材における無機蛍光体粉末の含有量は1〜30質量%、特に2〜20質量%であることが好ましい。無機蛍光体粉末の含有量が1質量%より少ないと、発光強度が不十分となり、白色照明が得られにくくなる。一方、無機蛍光体粉末の含有量が30質量%より多くなると、励起光が無機蛍光体粉末全体に十分に照射されず、発光強度が低下する傾向がある。また、気孔が発生しやすくなり、緻密な構造が得られにくい。波長変換部材に気孔が存在すると、水分等が内部に浸入しやすくなり化学的耐久性が低下するおそれがある。 The content of the inorganic phosphor powder in the wavelength conversion member is preferably 1 to 30% by mass, particularly preferably 2 to 20% by mass. When the content of the inorganic phosphor powder is less than 1% by mass, the light emission intensity becomes insufficient and it becomes difficult to obtain white illumination. On the other hand, when the content of the inorganic phosphor powder is more than 30% by mass, the excitation light is not sufficiently applied to the entire inorganic phosphor powder, and the emission intensity tends to decrease. In addition, pores are easily generated, and it is difficult to obtain a dense structure. If pores are present in the wavelength conversion member, moisture and the like are liable to enter the interior, which may reduce chemical durability.
また本発明の波長変換部材は、低温型石英、低温型クリストバル石、コランダム、ガーネット、正方晶ジルコニア、ガーナイト、コージエライトなどの透光性を有するセラミック粉末を添加することができる。波長変換部材がこれらのセラミック粉末を含有することにより、励起光を散乱させる効果がより大きくなり、配光特性に優れた波長変換部材が得られやすくなる。なお、励起光の散乱効果を高めるには、ガラスとセラミック粉末の屈折率差が大きくなるよう組み合わせることが好ましい。具体的には、ガラスとセラミック粉末の屈折率差は0.05以上、特に0.1以上であることが好ましい。 Moreover, the wavelength conversion member of this invention can add the ceramic powder which has translucency, such as low temperature type | mold quartz, low temperature type cristobalite, corundum, garnet, tetragonal zirconia, garnite, and cordierite. When the wavelength conversion member contains these ceramic powders, the effect of scattering the excitation light is further increased, and a wavelength conversion member having excellent light distribution characteristics is easily obtained. In order to enhance the scattering effect of excitation light, it is preferable to combine them so that the difference in refractive index between glass and ceramic powder becomes large. Specifically, the difference in refractive index between glass and ceramic powder is preferably 0.05 or more, particularly preferably 0.1 or more.
セラミック粉末の平均粒径D50は1〜30μm、特に2〜5μmであることが好ましい。セラミック粉末の平均粒径D50が1μm未満であると励起光を散乱させる効果が得られにくく、配光特性に劣る傾向がある。一方、セラミック粉末の平均粒径D50が30μmを超えると、散乱損失が大きくなり発光強度が低下する傾向がある。 The average particle diameter D 50 of the ceramic powder is 1 to 30 [mu] m, it is particularly preferably 2 to 5 [mu] m. The average particle diameter D 50 of the ceramic powder is difficult to obtain the effect of scattering the excitation light is less than 1 [mu] m, there tends to be inferior in light distribution characteristics. On the other hand, when the average particle diameter D 50 of the ceramic powder is more than 30 [mu] m, scattering loss is increased emission intensity tends to decrease.
波長変換部材におけるセラミック粉末の含有量は0.1〜10質量%、特に1〜8質量%であることが好ましい。セラミック粉末の含有量が0.1質量%未満であると、上記効果が得られにくくなる。一方、セラミック粉末の含有量が10質量%より多いと、散乱損失が大きくなり発光強度が低下する傾向がある。 The content of the ceramic powder in the wavelength conversion member is preferably 0.1 to 10% by mass, particularly 1 to 8% by mass. When the content of the ceramic powder is less than 0.1% by mass, the above effect is hardly obtained. On the other hand, when the content of the ceramic powder is more than 10% by mass, the scattering loss tends to increase and the emission intensity tends to decrease.
本発明の波長変換部材は、平行光線(直線)透過率が5%以下、特に3%以下であることが好ましい。また、ヘイズが90%以上、特に95%以上であることが好ましい。平行光線透過率が5%を超える、またはヘイズが90%未満であると、励起光の直進成分が多くなりすぎて、半導体発光素子デバイスの配光特性に劣る傾向がある。 The wavelength conversion member of the present invention preferably has a parallel ray (linear) transmittance of 5% or less, particularly 3% or less. Moreover, it is preferable that haze is 90% or more, especially 95% or more. When the parallel light transmittance exceeds 5% or the haze is less than 90%, the straight component of the excitation light tends to be excessive, and the light distribution characteristics of the semiconductor light emitting element device tend to be inferior.
本発明の波長変換部材は、例えば無機蛍光体粉末とガラス粉末を含む混合粉末を予備成型し、所定の温度で焼成することにより焼結体とし、その後必要に応じて、研削、研磨、リプレス等による加工を行うことにより作製することができる。 The wavelength conversion member of the present invention is, for example, preformed mixed powder containing inorganic phosphor powder and glass powder, and sintered at a predetermined temperature to obtain a sintered body, and then, if necessary, grinding, polishing, repressing, etc. It can produce by processing by.
予備成型方法は特に制限されず、プレス成形法や、射出成形法、シート成形法、押し出し成形法等の方法を採用することができる。 The preforming method is not particularly limited, and methods such as a press molding method, an injection molding method, a sheet molding method, and an extrusion molding method can be employed.
ガラス粉末と無機蛍光体粉末の混合粉末の焼成温度は、ガラス粉末の軟化点以上、特に軟化点+50℃以上であることが好ましい。焼成温度がガラス粉末の軟化点より低くなると、気孔が残存して発光効率が低下しやすくなる。一方、上限は特に限定されないが、ガラス粉末の軟化点+100℃以下であることが好ましい。焼成温度がガラス粉末の軟化点+100℃より高くなると、ガラス粉末と無機蛍光体粉末の反応が進行し、無機蛍光体粉末が一部消失して発光強度が低下する傾向がある。 The firing temperature of the mixed powder of glass powder and inorganic phosphor powder is preferably not less than the softening point of the glass powder, particularly not less than the softening point + 50 ° C. When the firing temperature is lower than the softening point of the glass powder, pores remain and the luminous efficiency tends to decrease. On the other hand, although an upper limit is not specifically limited, It is preferable that it is below the softening point of glass powder +100 degreeC. When the firing temperature is higher than the softening point of the glass powder + 100 ° C., the reaction between the glass powder and the inorganic phosphor powder proceeds, and the inorganic phosphor powder partially disappears and the emission intensity tends to decrease.
本発明の波長変換部材は、励起光源であるLEDチップ等の半導体発光素子と組み合わせることにより半導体発光素子デバイスとして使用することができる。本発明の波長変換部材は、LEDチップ等の半導体発光素子上に直接接着してもよいし、半導体発光素子を取り囲む函体上に接着して用いてもよい。また、板状体の波長変換部材の下側にLEDチップを複数個設置することによって、発光機能と拡散機能を備えた面発光デバイスとして利用することも可能である。 The wavelength conversion member of the present invention can be used as a semiconductor light emitting device by combining with a semiconductor light emitting device such as an LED chip that is an excitation light source. The wavelength conversion member of the present invention may be directly adhered on a semiconductor light emitting element such as an LED chip, or may be adhered on a box surrounding the semiconductor light emitting element. Further, by installing a plurality of LED chips below the wavelength conversion member of the plate-like body, it can be used as a surface emitting device having a light emitting function and a diffusing function.
以下、実施例に基づき本発明を説明するが、本発明はこれらの実施例に限定されるものではない。 EXAMPLES Hereinafter, although this invention is demonstrated based on an Example, this invention is not limited to these Examples.
表1は実施例(No.1〜4)および比較例(No.5)を示している。 Table 1 shows Examples (No. 1 to 4) and Comparative Example (No. 5).
まず、表に示すガラス組成となるようにガラス原料を秤量して混合し、この混合物を白金坩堝中において900〜1400℃で1時間溶融してガラス化した。溶融ガラスをフィルム状に成形し、得られたフィルム状ガラスをボールミルで粉砕した後、325メッシュの篩に通して分級し、平均粒径D50が30μmのガラス粉末を得た。 First, glass raw materials were weighed and mixed so as to have the glass composition shown in the table, and this mixture was melted in a platinum crucible at 900 to 1400 ° C. for 1 hour to be vitrified. Molding the molten glass into a film, and the obtained film-like glass was pulverized by a ball mill and then classified through a sieve of 325 mesh, average particle diameter D 50 was obtained glass powder 30 [mu] m.
次に、ガラス粉末に対し、表1に示す無機蛍光体粉末およびセラミック粉末を混合し、金型を用いて加圧成形して直径1cmのボタン状の予備成形体を作製した。この予備成形体を表1に示す焼成温度で焼成し、焼結体を得た。なお、試料No.1〜4については、焼成前に表1に示す温度で熱処理を行い、ガラスマトリクス中に結晶を析出させた。焼結体に対して研磨処理を施し、直径8mm、厚さ0.3mmに加工した。得られた波長変換部材について、平行光線透過率、ヘイズ、配光特性を測定した。結果を表1に示す。 Next, the inorganic phosphor powder and ceramic powder shown in Table 1 were mixed with the glass powder, and pressure-molded using a mold to prepare a button-shaped preform having a diameter of 1 cm. This preform was fired at the firing temperature shown in Table 1 to obtain a sintered body. Sample No. About 1-4, it heat-processed at the temperature shown in Table 1 before baking, and the crystal | crystallization was deposited in the glass matrix. The sintered body was polished and processed into a diameter of 8 mm and a thickness of 0.3 mm. About the obtained wavelength conversion member, the parallel light transmittance, haze, and light distribution characteristic were measured. The results are shown in Table 1.
析出結晶種は粉末X線回折法により同定した。また、析出結晶量は得られたX線回折チャートのピーク強度より算出した。 Precipitated crystal seeds were identified by powder X-ray diffraction. The amount of precipitated crystals was calculated from the peak intensity of the obtained X-ray diffraction chart.
平行光線透過率およびヘイズはJIS K7105に準拠して測定した。 The parallel light transmittance and haze were measured according to JIS K7105.
配光特性は、青色LEDを波長変換部材に照射し、光軸に対して0°と60°の角度から透過光を目視によりそれぞれ観察し、色度のずれが認められない場合を「○」、色度のずれが認められた場合を「×」として評価した。 The light distribution characteristic is “◯” when the wavelength conversion member is irradiated with a blue LED, and the transmitted light is visually observed from angles of 0 ° and 60 ° with respect to the optical axis. The case where a deviation in chromaticity was recognized was evaluated as “x”.
表1から明らかなように、本発明の実施例である試料No.1〜4の波長変換部材は、平行光線透過率が2.0%以下と小さく、ヘイズが97.4%以上と大きいため、配光特性が良好であった。一方、比較例である試料No.1の波長変換部材は、平行光線透過率が11.0%と大きく、ヘイズが82.8%以上と小さいため配光特性に劣っていた。 As is apparent from Table 1, sample No. which is an example of the present invention. The wavelength conversion members 1 to 4 had good light distribution characteristics because the parallel light transmittance was as small as 2.0% or less and the haze was as large as 97.4% or more. On the other hand, sample No. which is a comparative example. The wavelength conversion member No. 1 had inferior light distribution characteristics because the parallel light transmittance was as large as 11.0% and the haze was as small as 82.8% or more.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010090381A JP2011222751A (en) | 2010-04-09 | 2010-04-09 | Wavelength conversion member and semiconductor light-emitting element device having and using the wavelength conversion member |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010090381A JP2011222751A (en) | 2010-04-09 | 2010-04-09 | Wavelength conversion member and semiconductor light-emitting element device having and using the wavelength conversion member |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2011222751A true JP2011222751A (en) | 2011-11-04 |
Family
ID=45039338
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010090381A Pending JP2011222751A (en) | 2010-04-09 | 2010-04-09 | Wavelength conversion member and semiconductor light-emitting element device having and using the wavelength conversion member |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2011222751A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013197325A (en) * | 2012-03-21 | 2013-09-30 | Nippon Electric Glass Co Ltd | Wavelength conversion member and light-emitting device |
JP2014187147A (en) * | 2013-03-22 | 2014-10-02 | Stanley Electric Co Ltd | Light emitting device and method for manufacturing the same |
JP2014203899A (en) * | 2013-04-03 | 2014-10-27 | 日本電気硝子株式会社 | Wavelength conversion material, wavelength conversion member and light-emitting device |
CN109415622A (en) * | 2016-06-27 | 2019-03-01 | 日本电气硝子株式会社 | Wavelength convert component and the luminescent device for using it |
WO2020147516A1 (en) * | 2019-01-14 | 2020-07-23 | 深圳光峰科技股份有限公司 | Multiphase fluorescent ceramic and preparation method therefor |
CN113227320A (en) * | 2018-12-27 | 2021-08-06 | 日本电气硝子株式会社 | Wavelength conversion member and light emitting device |
WO2024190593A1 (en) * | 2023-03-13 | 2024-09-19 | 日本電気硝子株式会社 | Wavelength conversion member, light emission apparatus, and method for manufacturing wavelength conversion member |
Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11183736A (en) * | 1997-12-25 | 1999-07-09 | Showa Electric Wire & Cable Co Ltd | Optical fiber, optical attenuator using same and optical filter |
JPH11251640A (en) * | 1998-02-27 | 1999-09-17 | Sanken Electric Co Ltd | Semiconductor light emitting device |
JP2001055646A (en) * | 1999-08-16 | 2001-02-27 | Nitto Boseki Co Ltd | Glass fiber sheet for light diffusion and illuminating device by using the same |
JP2001343555A (en) * | 2000-03-31 | 2001-12-14 | Ngk Insulators Ltd | Method for producing optical fiber array and its optical fiber array |
JP2002141559A (en) * | 2000-10-31 | 2002-05-17 | Sanken Electric Co Ltd | Light emitting semiconductor chip assembly and light emitting semiconductor lead frame |
JP2005063949A (en) * | 2003-07-30 | 2005-03-10 | Nippon Electric Glass Co Ltd | Top plate for cooking device, and its manufacturing method |
WO2005097938A1 (en) * | 2004-03-31 | 2005-10-20 | Nippon Electric Glass Co., Ltd. | Fluorescent substance and light emitting diode |
JP2006080312A (en) * | 2004-09-09 | 2006-03-23 | Toyoda Gosei Co Ltd | Light emitting device and its manufacturing method |
JP2006269428A (en) * | 2005-03-19 | 2006-10-05 | Schott Ag | Display with back illumination provided with light emission means having external electrode |
JP2007031196A (en) * | 2005-07-26 | 2007-02-08 | Kyoto Univ | Phosphor, and light emitting diode |
JP2007161944A (en) * | 2005-12-16 | 2007-06-28 | Nippon Electric Glass Co Ltd | Phosphor |
JP2007177207A (en) * | 2005-11-29 | 2007-07-12 | Asahi Glass Co Ltd | Curable silicone resin composition, electronic part, air tight container and light-emitting device by using the same |
JP2007226034A (en) * | 2006-02-24 | 2007-09-06 | Kyocera Corp | Light reflector, wiring substrate for mounting light emission element thereon and light emission device |
JP2008103599A (en) * | 2006-10-20 | 2008-05-01 | Toyoda Gosei Co Ltd | Light-emitting device |
JP2009003228A (en) * | 2007-06-22 | 2009-01-08 | Nichia Corp | Light emitting device |
JP2009070892A (en) * | 2007-09-11 | 2009-04-02 | Citizen Holdings Co Ltd | Led light source |
-
2010
- 2010-04-09 JP JP2010090381A patent/JP2011222751A/en active Pending
Patent Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11183736A (en) * | 1997-12-25 | 1999-07-09 | Showa Electric Wire & Cable Co Ltd | Optical fiber, optical attenuator using same and optical filter |
JPH11251640A (en) * | 1998-02-27 | 1999-09-17 | Sanken Electric Co Ltd | Semiconductor light emitting device |
JP2001055646A (en) * | 1999-08-16 | 2001-02-27 | Nitto Boseki Co Ltd | Glass fiber sheet for light diffusion and illuminating device by using the same |
JP2001343555A (en) * | 2000-03-31 | 2001-12-14 | Ngk Insulators Ltd | Method for producing optical fiber array and its optical fiber array |
JP2002141559A (en) * | 2000-10-31 | 2002-05-17 | Sanken Electric Co Ltd | Light emitting semiconductor chip assembly and light emitting semiconductor lead frame |
JP2005063949A (en) * | 2003-07-30 | 2005-03-10 | Nippon Electric Glass Co Ltd | Top plate for cooking device, and its manufacturing method |
WO2005097938A1 (en) * | 2004-03-31 | 2005-10-20 | Nippon Electric Glass Co., Ltd. | Fluorescent substance and light emitting diode |
JP2006080312A (en) * | 2004-09-09 | 2006-03-23 | Toyoda Gosei Co Ltd | Light emitting device and its manufacturing method |
JP2006269428A (en) * | 2005-03-19 | 2006-10-05 | Schott Ag | Display with back illumination provided with light emission means having external electrode |
JP2007031196A (en) * | 2005-07-26 | 2007-02-08 | Kyoto Univ | Phosphor, and light emitting diode |
JP2007177207A (en) * | 2005-11-29 | 2007-07-12 | Asahi Glass Co Ltd | Curable silicone resin composition, electronic part, air tight container and light-emitting device by using the same |
JP2007161944A (en) * | 2005-12-16 | 2007-06-28 | Nippon Electric Glass Co Ltd | Phosphor |
JP2007226034A (en) * | 2006-02-24 | 2007-09-06 | Kyocera Corp | Light reflector, wiring substrate for mounting light emission element thereon and light emission device |
JP2008103599A (en) * | 2006-10-20 | 2008-05-01 | Toyoda Gosei Co Ltd | Light-emitting device |
JP2009003228A (en) * | 2007-06-22 | 2009-01-08 | Nichia Corp | Light emitting device |
JP2009070892A (en) * | 2007-09-11 | 2009-04-02 | Citizen Holdings Co Ltd | Led light source |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013197325A (en) * | 2012-03-21 | 2013-09-30 | Nippon Electric Glass Co Ltd | Wavelength conversion member and light-emitting device |
JP2014187147A (en) * | 2013-03-22 | 2014-10-02 | Stanley Electric Co Ltd | Light emitting device and method for manufacturing the same |
JP2014203899A (en) * | 2013-04-03 | 2014-10-27 | 日本電気硝子株式会社 | Wavelength conversion material, wavelength conversion member and light-emitting device |
CN109415622A (en) * | 2016-06-27 | 2019-03-01 | 日本电气硝子株式会社 | Wavelength convert component and the luminescent device for using it |
CN115172566A (en) * | 2016-06-27 | 2022-10-11 | 日本电气硝子株式会社 | Wavelength conversion member and light emitting device using the same |
US11912621B2 (en) | 2016-06-27 | 2024-02-27 | Nippon Electric Glass Co., Ltd. | Wavelength conversion member, and light emitting device using same |
CN109415622B (en) * | 2016-06-27 | 2024-04-02 | 日本电气硝子株式会社 | Wavelength conversion member and light emitting device using same |
CN113227320A (en) * | 2018-12-27 | 2021-08-06 | 日本电气硝子株式会社 | Wavelength conversion member and light emitting device |
WO2020147516A1 (en) * | 2019-01-14 | 2020-07-23 | 深圳光峰科技股份有限公司 | Multiphase fluorescent ceramic and preparation method therefor |
WO2024190593A1 (en) * | 2023-03-13 | 2024-09-19 | 日本電気硝子株式会社 | Wavelength conversion member, light emission apparatus, and method for manufacturing wavelength conversion member |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2011111462A1 (en) | Wavelength conversion member, optical device, and process for production of wavelength conversion member | |
CN109301057B (en) | Wavelength conversion member and light emitting device using the same | |
JP6273799B2 (en) | Glass used for wavelength conversion material, wavelength conversion material, wavelength conversion member, and light emitting device | |
JP5532508B2 (en) | Wavelength conversion member and manufacturing method thereof | |
JP2014234487A (en) | Wavelength conversion member and light-emitting device | |
JP2013055269A (en) | Wavelength conversion member and light-emitting device | |
JP2007161944A (en) | Phosphor | |
JP2008021868A (en) | Phosphor composite member | |
JP2013219123A (en) | Wavelength conversion member and method for producing the same | |
JP2011222751A (en) | Wavelength conversion member and semiconductor light-emitting element device having and using the wavelength conversion member | |
TWI628261B (en) | Wavelength conversion member and light emitting device | |
JP6365828B2 (en) | Glass used for wavelength conversion material, wavelength conversion material, wavelength conversion member, and light emitting device | |
JP2015071699A (en) | Wavelength conversion material, wavelength conversion member and light-emitting device | |
JP2014041984A (en) | Wavelength conversion material | |
JP2013095849A (en) | Wavelength conversion member and light emitting device using the same | |
JP6004250B2 (en) | Wavelength conversion member and light emitting device | |
JP6168284B2 (en) | Wavelength conversion material, wavelength conversion member, and light emitting device | |
KR102654998B1 (en) | Glass used in wavelength conversion materials, wavelength conversion materials, wavelength conversion members, and light emitting devices | |
JP5807780B2 (en) | Wavelength converting member and light emitting device using the same | |
JP6617948B2 (en) | Wavelength conversion member and light emitting device | |
JP5713273B2 (en) | Joining material and member joining method using the same | |
JP2012052018A (en) | Phosphor-containing composition and wavelength conversion member obtained by firing the same | |
JP6830750B2 (en) | Wavelength conversion member and light emitting device | |
CN111480098B (en) | Wavelength conversion member and light emitting device using same | |
JP2022063277A (en) | Glass for use in wavelength conversion material, wavelength conversion material, wavelength conversion member, and light-emitting device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130304 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20131022 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20131028 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131217 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140203 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20140717 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20141008 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20141016 |
|
A912 | Removal of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20141226 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150609 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150723 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150803 |