JPH11251640A - Semiconductor light emitting device - Google Patents

Semiconductor light emitting device

Info

Publication number
JPH11251640A
JPH11251640A JP10047944A JP4794498A JPH11251640A JP H11251640 A JPH11251640 A JP H11251640A JP 10047944 A JP10047944 A JP 10047944A JP 4794498 A JP4794498 A JP 4794498A JP H11251640 A JPH11251640 A JP H11251640A
Authority
JP
Japan
Prior art keywords
light emitting
semiconductor light
glass layer
emitting device
emitting element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10047944A
Other languages
Japanese (ja)
Other versions
JP3307316B2 (en
Inventor
Takeshi Sano
武志 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanken Electric Co Ltd
Original Assignee
Sanken Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=12789486&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH11251640(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sanken Electric Co Ltd filed Critical Sanken Electric Co Ltd
Priority to JP04794498A priority Critical patent/JP3307316B2/en
Publication of JPH11251640A publication Critical patent/JPH11251640A/en
Application granted granted Critical
Publication of JP3307316B2 publication Critical patent/JP3307316B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85909Post-treatment of the connector or wire bonding area
    • H01L2224/8592Applying permanent coating, e.g. protective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Abstract

PROBLEM TO BE SOLVED: To improve the enviromental resistance and ultraviolet ray resistance of a semiconductor light emitting device. SOLUTION: In a semiconductor light emitting device provided with a pair of wiring conductors (3, 4), a semiconductor light emitting element (2) fixed to one ends of the pair of wiring conductors (3, 4) as well as a photo- transmissible insulator sealing body, the insulator sealing body is composed of a glass layer (10). In such a constitution, granular fine crystal grains (10a) having phototransmittancy to the irradiated beams from the semiconductor light emitting element (2) as well as made of a fluorescent material absorbing the beams irradiated from the semiconductor light emitting element (2) and converting into the other light emitting wavelength are mixed in the glass layer (10). Besides, the external light emission is performed by converting into specific light emitting wavelength using the granular fine crystal grains (10a) comprising the fluorescent material in the glass layer (10) through the glass layer (10) and a sealing resin (8) encircling the semiconductor light emitting element (2).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、発光ダイオード装
置、特に半導体発光素子から照射される光を波長変換し
て外部に放出する半導体発光装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light emitting diode device, and more particularly, to a semiconductor light emitting device that converts the wavelength of light emitted from a semiconductor light emitting element and emits the light to the outside.

【0002】[0002]

【従来の技術】図5は、発光ダイオードチップから照射
される光の波長を蛍光体によって変換する従来の発光ダ
イオード装置の断面図を示す。図5に示す発光ダイオー
ド装置(1)では、カソード側のリードとしての配線導
体(3)のカップ部(3a)の底面(3b)に発光ダイ
オードチップ(2)が固着され、ボンディングワイヤ
(5)により発光ダイオードチップ(2)のカソード電
極はカソード側の配線導体(3)の上端部(9a)に接
続される。また、発光ダイオードチップ(2)のアノー
ド電極はボンディングワイヤ(6)によりアノード側の
リードとしての配線導体(4)の上端部(9b)に接続
される。カップ部(3a)に固着された発光ダイオード
チップ(2)は、カップ部(3a)内に充填され且つ蛍
光物質が混入された光透過性の保護樹脂(7)により被
覆される。発光ダイオードチップ(2)、カソード側の
配線導体(3)のカップ部(3a)及び上端部(9
a)、アノード側の配線導体(4)の上端部(9b)、
ボンディングワイヤ(5、6)は、更に光透過性の封止
樹脂(8)内に封入される。
2. Description of the Related Art FIG. 5 is a sectional view of a conventional light emitting diode device for converting the wavelength of light emitted from a light emitting diode chip by a phosphor. In the light emitting diode device (1) shown in FIG. 5, a light emitting diode chip (2) is fixed to a bottom surface (3b) of a cup portion (3a) of a wiring conductor (3) as a cathode-side lead, and a bonding wire (5) is provided. As a result, the cathode electrode of the light emitting diode chip (2) is connected to the upper end (9a) of the wiring conductor (3) on the cathode side. The anode electrode of the light emitting diode chip (2) is connected to the upper end (9b) of the wiring conductor (4) as a lead on the anode side by a bonding wire (6). The light emitting diode chip (2) fixed to the cup (3a) is covered with a light transmitting protective resin (7) filled in the cup (3a) and mixed with a fluorescent substance. The light emitting diode chip (2), the cup (3a) and the upper end (9) of the cathode side wiring conductor (3)
a), the upper end portion (9b) of the anode-side wiring conductor (4),
The bonding wires (5, 6) are further sealed in a light-transmitting sealing resin (8).

【0003】発光ダイオード装置(1)のカソード側の
配線導体(3)とアノード側の配線導体(4)との間に
電圧を印加し、発光ダイオードチップ(2)に通電する
と、発光ダイオードチップ(2)から照射される光は、
保護樹脂(7)内を通り配線導体(3)のカップ部(3
a)の側壁(3c)で反射した後に、透明な封止樹脂
(8)を通り発光ダイオード装置(1)の外部に放出さ
れる。また、発光ダイオードチップ(2)の上面から放
射されてカップ部(3a)の側壁(3c)で反射されず
に直接に保護樹脂(7)及び封止樹脂(8)を通って発
光ダイオード装置(1)の外部に放出される光もある。
封止樹脂(8)の先端にはレンズ部(8a)が形成さ
れ、封止樹脂(8)内を通過する光は、レンズ部(8
a)によって集光されて指向性が高められる。発光ダイ
オードチップ(2)の発光時に、発光ダイオードチップ
(2)から照射される光は保護樹脂(7)内に混入され
た蛍光物質によって異なる波長に変換されて放出され
る。この結果、発光ダイオードチップ(2)から照射さ
れた光とは異なる波長の光が発光ダイオード装置(1)
から放出される。
When a voltage is applied between the wiring conductor (3) on the cathode side and the wiring conductor (4) on the anode side of the light emitting diode device (1) and the light emitting diode chip (2) is energized, the light emitting diode chip (2) is turned on. The light emitted from 2) is
The inside of the protective resin (7) passes through the cup portion (3) of the wiring conductor (3).
After being reflected by the side wall (3c) of a), the light is emitted to the outside of the light emitting diode device (1) through the transparent sealing resin (8). Further, the light-emitting diode device is radiated from the upper surface of the light-emitting diode chip (2) and is not reflected by the side wall (3c) of the cup portion (3a) but directly passes through the protective resin (7) and the sealing resin (8). Some light is emitted to the outside of 1).
A lens portion (8a) is formed at the tip of the sealing resin (8), and light passing through the sealing resin (8) is transmitted through the lens portion (8).
The light is condensed by a) and the directivity is enhanced. When the light emitting diode chip (2) emits light, light emitted from the light emitting diode chip (2) is converted into a different wavelength by a fluorescent substance mixed in the protective resin (7) and emitted. As a result, light having a different wavelength from the light emitted from the light emitting diode chip (2) is emitted from the light emitting diode device (1).
Released from

【0004】複数の発光ダイオード装置(1)が互いに
隣接して配置されるとき、通電され且つ点灯された発光
ダイオード装置(1)からの放射光によって隣接する他
の発光ダイオード装置(1)の保護樹脂(7)中の蛍光
体が励起されて、非通電時でも、あたかも点灯している
ように見える不具合(偽灯)が生じるおそれがある。保
護樹脂(7)がカップ部(3a)の上端部(9a)より
上方に突出しないように保護樹脂(7)の充填量を調整
すると、保護樹脂(7)により光の波長変換を行いつつ
外部光による偽灯も防止できる。
When a plurality of light emitting diode devices (1) are arranged adjacent to each other, protection of another adjacent light emitting diode device (1) by radiation emitted from the light emitting diode device (1) that is energized and turned on. The fluorescent substance in the resin (7) is excited, and there is a possibility that a defect (false lamp) that appears as if the lamp is lit even when no current is supplied. When the filling amount of the protective resin (7) is adjusted so that the protective resin (7) does not protrude above the upper end (9a) of the cup portion (3a), the protective resin (7) converts the wavelength of light to the external False lighting by light can also be prevented.

【0005】[0005]

【発明が解決しようとする課題】蛍光体を含有する保護
樹脂(7)で発光ダイオードチップ(2)を包囲し、更
に全体を封止樹脂(8)で包囲する従来の発光ダイオー
ド装置(1)では、実用上種々の問題が生ずる。第1
に、保護樹脂(7)及び封止樹脂(8)の耐環境性が必
ずしも十分でないとき、保護樹脂(7)に配合できる蛍
光体が特定の種類に限定される。即ち、一般に樹脂は水
分を透過し、高湿度の雰囲気中に放置されると、時間の
経過とともに樹脂の内部に水分が浸透する。この場合、
侵入する水分によって分解又は変質して光波長変換機能
が低下し又は消失する耐湿性の悪い蛍光体もある。例え
ば、水分によって加水分解する公知の代表的な硫化カル
シュウム系の蛍光体は従来の発光ダイオード装置(1)
に使用できない。
A conventional light emitting diode device (1) in which a light emitting diode chip (2) is surrounded by a protective resin (7) containing a phosphor and the whole is further surrounded by a sealing resin (8). Then, various problems arise practically. First
In addition, when the environmental resistance of the protective resin (7) and the sealing resin (8) is not always sufficient, the phosphor that can be blended in the protective resin (7) is limited to a specific type. That is, generally, resin permeates moisture, and when left in an atmosphere of high humidity, moisture permeates into the resin over time. in this case,
There is also a phosphor having poor moisture resistance, which is decomposed or deteriorated by invading moisture to reduce or eliminate the light wavelength conversion function. For example, a known typical calcium sulfide-based phosphor that is hydrolyzed by moisture is a conventional light emitting diode device (1).
Can not be used for

【0006】また、水分のみならずナトリウム又は塩素
等の不純物イオンも樹脂を透過し、発光ダイオードチッ
プに有害な影響を与える。従って、清浄な環境で製造さ
れた発光ダイオード装置(1)でも、不純物イオンを含
む雰囲気中に放置すると、不純物イオンが樹脂の内部に
次第に浸透して発光ダイオードチップ(2)の電気的特
性が劣化する難点がある。特に、重大な問題は、有害不
純物イオンが遊離する化学的に不安定な有機蛍光体も少
なくない点である。従って従来の発光ダイオード装置
(1)では、この種の有機蛍光体を使用することができ
ない。
In addition, not only moisture but also impurity ions such as sodium and chlorine permeate the resin and have a harmful effect on the light emitting diode chip. Therefore, even if the light emitting diode device (1) manufactured in a clean environment is left in an atmosphere containing impurity ions, the impurity ions gradually penetrate into the resin and the electrical characteristics of the light emitting diode chip (2) deteriorate. There are difficulties to do. In particular, a serious problem is that there are many chemically unstable organic phosphors from which harmful impurity ions are released. Therefore, this kind of organic phosphor cannot be used in the conventional light emitting diode device (1).

【0007】次に、発光ダイオードチップ(2)から発
生する紫外線成分によって被覆樹脂及び蛍光体が劣化す
る問題がある。一般に、炭素、水素、酸素、窒素等の元
素が網目状に結合した有機高分子化合物によって構成さ
れる保護樹脂(7)及び封止樹脂(8)は、紫外線が照
射されると、有機高分子の繋ぎ目が切断され、各種の光
学的特性及び化学的特性が劣化することが知られてい
る。例えばGaN(窒化ガリウム)の青色発光ダイオー
ドチップは、可視光成分以外にも波長380nm以下の
紫外波長域に発光成分を持つため、被覆樹脂は光強度の
強い発光ダイオードチップの周囲から次第に黄変し、着
色現象が発生する。このため、発光ダイオードチップが
発した可視光は着色部で吸収され減衰する。更に、被覆
樹脂の劣化に伴って耐湿性が低下すると共にイオン透過
性が増大するため、発光ダイオードチップ自体も劣化
し、その結果、発光ダイオード装置(1)の発光強度は
相乗的に低減する。
Next, there is a problem that the coating resin and the phosphor are deteriorated by the ultraviolet component generated from the light emitting diode chip (2). Generally, the protective resin (7) and the encapsulating resin (8), which are composed of an organic polymer compound in which elements such as carbon, hydrogen, oxygen, and nitrogen are bonded in a mesh pattern, emit organic polymer when irradiated with ultraviolet rays. It is known that the seam of the is cut and various optical and chemical properties are degraded. For example, a blue light emitting diode chip of GaN (gallium nitride) has a light emitting component in an ultraviolet wavelength range of 380 nm or less in addition to a visible light component, so that the coating resin gradually turns yellow from around the light emitting diode chip having a high light intensity. , A coloring phenomenon occurs. Therefore, the visible light emitted from the light emitting diode chip is absorbed and attenuated by the colored portion. Furthermore, since the moisture resistance is reduced and the ion permeability is increased with the deterioration of the coating resin, the light emitting diode chip itself is also deteriorated, and as a result, the light emitting intensity of the light emitting diode device (1) is reduced synergistically.

【0008】また、被覆樹脂と同様に、紫外線によって
劣化する蛍光体もある。例えば、硫化亜鉛系の蛍光体は
放射線や紫外線によって光分解を起こし亜鉛が遊離する
いわゆる「黒化」現象を起こすことが知られている。被
覆樹脂中の蛍光体が光分解を生ずると、発光ダイオード
装置(1)の発光強度は著しく低下する。
Also, there are phosphors that are deteriorated by ultraviolet rays, like the coating resin. For example, it is known that a zinc sulfide-based phosphor undergoes photodecomposition by radiation or ultraviolet rays to cause a so-called "blackening" phenomenon in which zinc is released. When the phosphor in the coating resin undergoes photodecomposition, the light emission intensity of the light emitting diode device (1) is significantly reduced.

【0009】紫外線による被覆樹脂及び蛍光体の劣化を
防止するため、被覆樹脂中に紫外線吸収物質を混入する
方法も考えられるが、可視光成分自体を吸収せず、被覆
樹脂本来の特性に悪影響を与えない紫外線吸収物質を慎
重に選定しなければならない。また、紫外線吸収物質を
採用する際に、付加的に使用する材料及び作業工程が増
加するので、製品価格が上昇する難点がある。
In order to prevent the deterioration of the coating resin and the phosphor due to ultraviolet rays, a method of mixing an ultraviolet absorbing substance into the coating resin is conceivable. However, it does not absorb the visible light component itself and adversely affects the intrinsic properties of the coating resin. Care must be taken to select UV absorbers that will not be given. In addition, when an ultraviolet absorbing material is used, the number of additional materials and the number of working processes are increased, so that there is a problem that the product price increases.

【0010】更に、紫外線を発する紫外線発光ダイオー
ドチップを使用できないため、蛍光体の材料選択と発光
ダイオード装置の発光特性が大きな制限を受けることが
第三の問題である。蛍光ランプ又は水銀ランプに使用す
る紫外線で励起される紫外線用の蛍光体は、古くから開
発・改良が行われた結果、現在では様々な発光波長分布
を持つ安価で光変換効率の高い数多くの蛍光体が実用化
されている。紫外線発光ダイオードチップと紫外線用の
蛍光体を組み合わせると、一層明るく且つ変化に富む色
調の発光ダイオード装置が得られると予想される。しか
しながら、紫外線により樹脂が劣化する従来の発光ダイ
オード装置では、紫外線発光ダイオードチップを使用で
きず、優れた蛍光体を利用できない。
A third problem is that since an ultraviolet light emitting diode chip that emits ultraviolet light cannot be used, the selection of a phosphor material and the light emitting characteristics of the light emitting diode device are greatly restricted. Ultraviolet phosphors excited by ultraviolet light used in fluorescent lamps or mercury lamps have been developed and improved for a long time. The body is in practical use. It is expected that a combination of an ultraviolet light emitting diode chip and a phosphor for ultraviolet light will provide a light emitting diode device with a brighter and more varied color tone. However, in a conventional light emitting diode device in which the resin is deteriorated by ultraviolet light, an ultraviolet light emitting diode chip cannot be used, and an excellent phosphor cannot be used.

【0011】第四の問題は、耐熱性の低い被覆樹脂が黄
変・着色するため、発光ダイオードチップから照射され
た光が被覆樹脂を通過する際に減衰する点にある。例え
ば順方向電圧が高いGaN(窒化ガリウム)の青色発光
ダイオードチップは、比較的低い順方向電流でも電力損
失が大きく、作動時にチップ温度はかなり上昇する。一
般に、樹脂は高温に加熱されると次第に劣化して黄変・
着色を起こすことが知られている。従ってGaNの発光
ダイオードチップを従来の発光ダイオード装置に用いる
と、高温の発光ダイオードチップと接する部分から樹脂
が次第に黄変・着色するため、発光ダイオード装置
(1)の外観品質と発光強度は次第に低下する。このよ
うに、従来の発光ダイオード装置では、蛍光体を樹脂中
に配合すると前記問題が生じ、このため選択する材料種
類の減少、信頼性の低下、光変換機能の不完全性、製品
価格の上昇を招来する原因となる。
A fourth problem is that since the coating resin having low heat resistance is yellowed or colored, light emitted from the light emitting diode chip is attenuated when passing through the coating resin. For example, a GaN (gallium nitride) blue light emitting diode chip having a high forward voltage has a large power loss even at a relatively low forward current, and the chip temperature rises considerably during operation. Generally, the resin gradually deteriorates when heated to a high temperature,
It is known to cause coloring. Therefore, when a GaN light emitting diode chip is used in a conventional light emitting diode device, the resin gradually turns yellow and is colored from the portion in contact with the high-temperature light emitting diode chip, so that the appearance quality and light emission intensity of the light emitting diode device (1) gradually decrease. I do. As described above, in the conventional light emitting diode device, when the phosphor is mixed in the resin, the above-described problem occurs. Therefore, the selection of the material type is reduced, the reliability is reduced, the light conversion function is incomplete, and the product price is increased. May cause inconvenience.

【0012】本発明は、耐環境性及び紫外線耐性を有す
る半導体発光装置を提供することを目的とする。
An object of the present invention is to provide a semiconductor light emitting device having environmental resistance and ultraviolet light resistance.

【0013】[0013]

【課題を解決するための手段】本発明による半導体発光
装置は、一対の配線導体(3、4)と、一対の配線導体
(3、4)の一方の端部に固着された半導体発光素子
(2)と、半導体発光素子(2)を被覆する光透過性の
絶縁物封止体とを備えている。絶縁物封止体は、ガラス
層(10)と、ガラス層(10)中に混入された粉末状
微細結晶粒(10a)とを含む。粉末状微細結晶粒(1
0a)は、半導体発光素子(2)から照射される光に対
して光透過性を有し且つ半導体発光素子(2)から照射
される光を吸収して他の発光波長に変換する蛍光物質よ
り成る。
A semiconductor light emitting device according to the present invention comprises a pair of wiring conductors (3, 4) and a semiconductor light emitting element (3) fixed to one end of the pair of wiring conductors (3, 4). 2) and a light-transmitting insulator sealing body that covers the semiconductor light emitting element (2). The sealed insulator includes a glass layer (10) and powdery fine crystal grains (10a) mixed in the glass layer (10). Powdery fine crystal grains (1
0a) is a fluorescent substance having a light transmitting property to light emitted from the semiconductor light emitting element (2) and absorbing light emitted from the semiconductor light emitting element (2) and converting the light to another emission wavelength. Become.

【0014】金属アルコキシド(テトラメトキシシラ
ン、テトラエトキシシラン等)を出発原料とする塗布形
ガラス材料又はセラミック前駆体ポリマー(ペルヒドロ
ポリシラザン等)等から成る塗布型ガラス材料は、摂氏
150度前後で焼成可能であり、低温領域でのガラス層
の形成が可能である。これらの塗布型ガラス材料は通常
は液状であるが、空気中又は酸素雰囲気中で加熱する
と、成分の分解・飛散又は酸素や水分の吸収によりSi
2(酸化珪素)のシロキサン(siloxane)結合を主体と
した透明な固形ガラス層を生成する。これらのガラス材
料に蛍光物質より成る粉末状微細結晶粒(10a)を混
合して半導体発光素子(2)の周囲に塗布すれば、光変
換作用のみならず、下記の優れた特性を兼ねそなえた蛍
光物質含有ガラス層(10)を形成することができる。 [1] 耐湿性に優れ、内部への水分の浸透がなく、半導
体発光素子(2)及び蛍光物質の劣化を抑制する。 [2] 有害イオンの浸透を防ぐイオンバリア効果が高い
ため、発光ダイオード装置の外部や蛍光物質からの有害
イオンによる発光ダイオードチップの劣化も抑制する。 [3] 耐熱性及び紫外線耐性に優れ、高温環境下又は紫
外線発光下でも黄変・着色を起こさず、半導体発光素子
(2)の発光を減衰させない。 [4] ガラス中の珪素原子が金属又はセラミックの表面
酸化物層の酸素原子と強固に結合するので、半導体発光
素子(2)、配線導体(3、4)又は酸化物系無機蛍光
物質から成る粉末状微細結晶粒(10a)との密着性が
よい。 [5] 配線導体(3、4)のカップ部(3a)内全体に
塗布した塗布型ガラス材料が固化する時、添加した粉末
状微細結晶粒(10a)粉末が核となるので、厚塗りを
してもクラックが生じにくい。
A coating type glass material starting from a metal alkoxide (tetramethoxysilane, tetraethoxysilane, etc.) or a coating type glass material comprising a ceramic precursor polymer (perhydropolysilazane, etc.) is fired at about 150 degrees Celsius. It is possible to form a glass layer in a low temperature region. These coating-type glass materials are usually liquid, but when heated in air or an oxygen atmosphere, decomposition or scattering of components or absorption of oxygen or moisture causes Si.
It produces a transparent solid glass layer mainly composed of siloxane bonds of O 2 (silicon oxide). If powdery fine crystal grains (10a) made of a fluorescent substance are mixed with these glass materials and applied around the semiconductor light emitting device (2), not only the light conversion effect but also the following excellent characteristics are obtained. A phosphor-containing glass layer (10) can be formed. [1] It has excellent moisture resistance, does not penetrate moisture into the inside, and suppresses deterioration of the semiconductor light emitting device (2) and the fluorescent substance. [2] Since the ion barrier effect for preventing harmful ions from penetrating is high, deterioration of the light emitting diode chip due to harmful ions from outside the light emitting diode device or from a fluorescent substance is also suppressed. [3] It is excellent in heat resistance and ultraviolet light resistance, does not cause yellowing or coloring even in a high-temperature environment or under ultraviolet light emission, and does not attenuate the light emission of the semiconductor light emitting element (2). [4] Since the silicon atoms in the glass are strongly bonded to the oxygen atoms in the surface oxide layer of the metal or ceramic, the silicon light-emitting device (2), the wiring conductors (3, 4), or the oxide-based inorganic fluorescent material Good adhesion to the powdery fine crystal grains (10a). [5] When the coating type glass material applied to the entire inside of the cup portion (3a) of the wiring conductor (3, 4) solidifies, the powdery fine crystal grains (10a) powder added becomes a nucleus. Even if cracks do not easily occur.

【0015】このように、ガラス層(10)を使用する
ことにより従来の発光ダイオード装置の種々の弱点を克
服でき、安価で信頼性の高い、蛍光物質による波長変換
機能を有する半導体発光装置を得ることができる。
As described above, by using the glass layer (10), various weaknesses of the conventional light emitting diode device can be overcome, and a semiconductor light emitting device which is inexpensive and highly reliable and has a wavelength conversion function using a fluorescent substance is obtained. be able to.

【0016】本発明の実施の形態では、ガラス層(1
0)は蛍光物質から成る粉末状微細結晶粒(10a)を
含む。ガラス層(10)はガラス材料を半導体発光素子
(2)の融点よりも低い温度で焼成して形成される。ガ
ラス層(10)は、金属アルコキシドを出発原料とする
塗布形ガラス材料又はセラミック前駆体ポリマー等から
成る塗布形ガラス材料より選択され、摂氏150度前後
の温度で焼成可能である。ガラス層(10)は、シロキ
サン(siloxane)結合を主体とする透明な固形ガラス層
で、空気中又は酸素雰囲気中で加熱されたとき、成分の
分解・飛散又は酸素や水分の吸収によりSiO2(酸化珪
素)のシロキサン結合を発生する。
In the embodiment of the present invention, the glass layer (1
0) includes powdery fine crystal grains (10a) composed of a fluorescent substance. The glass layer (10) is formed by firing a glass material at a temperature lower than the melting point of the semiconductor light emitting device (2). The glass layer (10) is selected from a coated glass material made of a metal alkoxide as a starting material or a coated glass material made of a ceramic precursor polymer, and can be fired at a temperature of about 150 degrees Celsius. The glass layer (10) is a transparent solid glass layer mainly composed of siloxane bonds. When heated in air or an oxygen atmosphere, the glass layer (10) decomposes and disperses or absorbs oxygen and moisture to form SiO 2 ( A siloxane bond of silicon oxide) is generated.

【0017】半導体発光素子(2)の上面に形成された
電極(2a、2b)と一対の配線導体(3、4)とがボ
ンディングワイヤ(5、6)により電気的に接続され、
ガラス層(10)は半導体発光素子(2)、電極(2
a、2b)及び電極(2a、2b)に接続されたボンデ
ィングワイヤ(5、6)の端部を被覆する。一対の配線
導体(3、4)の一方の端部にカップ部(3a)が形成
され、半導体発光素子(2)がカップ部(3a)の底部
(3b)に接着される。絶縁性基板(11)の一方の主
面にカップ部(3a)と、絶縁性基板(11)の一方の
主面に沿って互いに反対方向に延びる一対の配線導体
(3、4)とが形成され、カップ部(3a)の底部(3
b)にて一対の配線導体(3、4)の一方に半導体発光
素子(2)が固着される。ガラス層(10)はカップ部
(3a)の上端部(3d)から突出しない。配線導体
(3、4)は絶縁性基板(11)の一方の主面から側面
に沿って他方の主面に延びる。ガラス層(10)は更に
封止樹脂(8)により封止され、半導体発光素子(2)
から照射される光は、ガラス層(10)内を通過した
後、封止樹脂(8)の外部に放出される。半導体発光素
子(2)から放射された光成分の一部がガラス層(1
0)に達してガラス層(10)内で異なる波長に波長変
換された光と、波長変換されない半導体発光素子(2)
からの光成分とが混合して封止樹脂(8)を通して外部
に放出される。特定の発光波長を吸収する光吸収物質、
半導体発光素子(2)の発光を散乱する光散乱物質又は
ガラス層(10)のクラックを防止する結合材又は粉末
状微細結晶粒(10a)、結合材又はその他の混合した
諸物質の沈降を防ぐ沈降防止剤をガラス層(10)内に
配合してもよい。
The electrodes (2a, 2b) formed on the upper surface of the semiconductor light emitting element (2) and the pair of wiring conductors (3, 4) are electrically connected by bonding wires (5, 6),
The glass layer (10) includes the semiconductor light emitting device (2) and the electrode (2).
a, 2b) and the ends of the bonding wires (5, 6) connected to the electrodes (2a, 2b). A cup (3a) is formed at one end of the pair of wiring conductors (3, 4), and the semiconductor light emitting element (2) is bonded to the bottom (3b) of the cup (3a). A cup (3a) is formed on one main surface of the insulating substrate (11), and a pair of wiring conductors (3, 4) extending in opposite directions along one main surface of the insulating substrate (11). And the bottom (3) of the cup (3a)
In b), the semiconductor light emitting element (2) is fixed to one of the pair of wiring conductors (3, 4). The glass layer (10) does not protrude from the upper end (3d) of the cup (3a). The wiring conductors (3, 4) extend from one main surface of the insulating substrate (11) along the side surface to the other main surface. The glass layer (10) is further sealed with a sealing resin (8), and the semiconductor light emitting device (2)
Is emitted from the sealing resin (8) after passing through the glass layer (10). A part of the light component emitted from the semiconductor light emitting device (2) is a glass layer (1).
0), the light of which wavelength is converted to a different wavelength in the glass layer (10) and the semiconductor light emitting element (2) of which the wavelength is not converted.
And the light component from the mixture is emitted to the outside through the sealing resin (8). A light-absorbing substance that absorbs a specific emission wavelength,
A light scattering material that scatters light emitted from the semiconductor light emitting element (2) or a binder that prevents cracks in the glass layer (10) or powdery fine crystal grains (10a), and prevents sedimentation of the binder or other mixed substances. An antisettling agent may be incorporated in the glass layer (10).

【0018】[0018]

【発明の実施の形態】以下、発光ダイオード装置に適用
した本発明による半導体発光装置の実施の形態を図1〜
図4について説明する。図1〜図4に示す実施の形態で
は、図5に示す箇所と同一の部分には同一の符号を付
し、説明を省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a semiconductor light emitting device according to the present invention applied to a light emitting diode device is shown in FIGS.
Referring to FIG. In the embodiment shown in FIGS. 1 to 4, the same parts as those shown in FIG. 5 are denoted by the same reference numerals, and description thereof will be omitted.

【0019】図1は、本発明による発光ダイオード装置
(20)の第1の実施の形態を示す断面図である。発光
ダイオード装置(20)ではカップ部(3a)に固着さ
れた発光ダイオードチップ(2)は、絶縁物封止体とし
て粉末状微細結晶粒(10a)を含有するガラス層(1
0)により被覆され、更に封止樹脂(8)により被覆さ
れる。製造の際に、発光ダイオードチップ(2)の上部
より粉末状微細結晶粒(10a)を含む塗布型ガラス材
料をカップ部(3a)内に注入して、約摂氏150度の
温度で焼成し、粉末状微細結晶粒(10a)を含有する
ガラス層(10)を固化形成した後に、配線導体(3、
4)の端部全体を透明な封止樹脂(8)で封止する。ガ
ラス層(10)の焼成温度は発光ダイオードチップ
(2)の融点よりも十分に低い。粉末状微細結晶粒(1
0a)は、半導体発光素子(2)から照射される光に対
して光透過性を有し且つ半導体発光素子(2)から照射
される光を吸収して他の発光波長に変換する蛍光物質を
含む。ガラス層(10)は蛍光物質から成る粉末状微細
結晶粒(10a)を同一空間内で封止する。
FIG. 1 is a sectional view showing a first embodiment of a light emitting diode device (20) according to the present invention. In the light-emitting diode device (20), the light-emitting diode chip (2) fixed to the cup (3a) is a glass layer (1) containing powdery fine crystal grains (10a) as an insulator sealing body.
0), and further covered with a sealing resin (8). At the time of manufacture, a coating type glass material containing fine powdery crystal grains (10a) is injected into the cup part (3a) from above the light emitting diode chip (2) and baked at a temperature of about 150 degrees Celsius, After solidifying and forming the glass layer (10) containing the powdery fine crystal grains (10a), the wiring conductor (3,
The entire end of 4) is sealed with a transparent sealing resin (8). The firing temperature of the glass layer (10) is sufficiently lower than the melting point of the light emitting diode chip (2). Powdery fine crystal grains (1
0a) is a fluorescent substance having a light-transmitting property with respect to light emitted from the semiconductor light emitting element (2) and absorbing light emitted from the semiconductor light emitting element (2) and converting the light to another emission wavelength. Including. The glass layer (10) seals powdery fine crystal grains (10a) made of a fluorescent substance in the same space.

【0020】発光ダイオード装置(20)の配線導体
(3、4)間に電圧を印加して発光ダイオードチップ
(2)に通電して発光ダイオードチップ(2)を発光さ
せると、ガラス層(10)内の粉末状微細結晶粒(10
a)中の蛍光物質によってその一部又は全部がその発光
波長と異なる他の波長に変換された後、封止樹脂(8)
の先端部に形成されたレンズ部(8a)によって集光さ
れて発光ダイオード装置(20)の外部に放出される。
例えば、半導体発光素子には発光波長のピークが約44
0nmから約470nmのGaN系の青色の発光ダイオ
ードチップ(2)を用い、粉末状微細結晶粒(10a)
には付活剤としてCe(セリウム)を約6mol%添加
したYAG(イットリウム・アルミニウム・ガーネッ
ト、化学式Y3Al512、励起波長のピーク約450n
m、発光波長のピーク約540nmの黄緑色光)を用い
る。
When a voltage is applied between the wiring conductors (3, 4) of the light-emitting diode device (20) to energize the light-emitting diode chip (2) and cause the light-emitting diode chip (2) to emit light, the glass layer (10) Fine crystal grains (10
After a part or the whole is converted into another wavelength different from the emission wavelength by the fluorescent substance in a), the sealing resin (8)
The light is condensed by the lens portion (8a) formed at the front end of the light emitting device and is emitted to the outside of the light emitting diode device (20).
For example, a semiconductor light emitting device has an emission wavelength peak of about 44.
Using a GaN-based blue light emitting diode chip (2) of 0 nm to about 470 nm, powdery fine crystal grains (10a)
Is YAG (yttrium aluminum garnet, chemical formula Y 3 Al 5 O 12 , to which about 6 mol% of Ce (cerium) is added as an activator, a peak of an excitation wavelength of about 450 n
m, yellow-green light having a peak emission wavelength of about 540 nm).

【0021】ガラス層(10)は、YAG蛍光物質から
成る粉末状微細結晶粒(10a)を塗布型ガラス材料に
適量混合して成るガラス混合物を作成し、これをカップ
部(3a)内にカップ部(3a)の上端部(3d)から
突出しない量で注入した後に焼成して得られる。
The glass layer (10) is prepared by mixing a powdery fine crystal grain (10a) composed of a YAG fluorescent substance with an appropriate amount of a coating type glass material to form a glass mixture, which is placed in a cup (3a). It is obtained by injecting in an amount that does not protrude from the upper end portion (3d) of the portion (3a) and then firing.

【0022】一方、封止樹脂(8)は、液状で透明なエ
ポキシ樹脂を成形型に注入した後に発光ダイオードチッ
プ(2)、ボンディングワイヤ(5、6)、ガラス層
(10)を固着した配線導体(3、4)の端部をこのエ
ポキシ樹脂中に浸漬し且つ位置決め治具によりエポキシ
樹脂中の所定の位置に固定し、エポキシ樹脂を加熱し硬
化して得られる。発光ダイオード装置(20)から外部
に放出される光の指向角を広げるため、必要に応じて粉
末シリカ等の散乱剤を封止樹脂(8)に混合させてもよ
い。本実施の形態では、YAG蛍光物質より成る粉末状
微細結晶粒(10a)の波長変換効率の最大値が比較的
高く、発光ダイオードチップ(2)の発光波長と粉末状
微細結晶粒(10a)の励起波長とが約450nmのピ
ークでほぼ一致するため、実効波長変換効率の高い明る
い発光ダイオード装置(20)が得られる。また、粉末
状微細結晶粒(10a)がガラス層(10)中に分散し
ているので、発光ダイオード装置(20)から外部に放
出される光は、粉末状微細結晶粒(10a)で波長変換
された光成分以外に粉末状微細結晶粒(10a)を透過
せず波長変換されない本来の発光成分即ち発光ダイオー
ドチップ(2)から照射された光成分も含まれる。
On the other hand, the sealing resin (8) is formed by injecting a liquid and transparent epoxy resin into a molding die and then bonding the light emitting diode chip (2), the bonding wires (5, 6) and the glass layer (10). The ends of the conductors (3, 4) are immersed in the epoxy resin and fixed at predetermined positions in the epoxy resin by a positioning jig, and the epoxy resin is heated and cured. If necessary, a scattering agent such as powdered silica may be mixed with the sealing resin (8) in order to increase the directional angle of light emitted from the light emitting diode device (20) to the outside. In this embodiment, the maximum value of the wavelength conversion efficiency of the powdery fine crystal grains (10a) made of the YAG fluorescent substance is relatively high, and the emission wavelength of the light emitting diode chip (2) and the powdery fine crystal grains (10a) Since the excitation wavelength substantially coincides with the peak at about 450 nm, a bright light emitting diode device (20) having high effective wavelength conversion efficiency can be obtained. Further, since the powdery fine crystal grains (10a) are dispersed in the glass layer (10), light emitted from the light emitting diode device (20) to the outside is converted into a wavelength by the powdery fine crystal grains (10a). In addition to the light component thus emitted, an original light-emitting component that does not pass through the powdery fine crystal grains (10a) and is not wavelength-converted, that is, a light component emitted from the light-emitting diode chip (2) is also included.

【0023】従って、発光波長ピーク約440nm〜約
470nmの青色光である発光ダイオードチップ(2)
の発光成分と、半値幅約130nmの幅広い波長分布を
持った発光波長ピーク約540nmの黄緑色光である粉
末状微細結晶粒(10a)の発光成分とが混合された白
色光が発光ダイオード装置(20)から外部に放出され
る。この場合、塗布型ガラス材料に混合する粉末状微細
結晶粒(10a)の量を調整し、ガラス層(10)内の
分布濃度を変更することにより発光ダイオード装置(2
0)の発光色の色調を調整することができる。また、Y
AG蛍光物質より成る粉末状微細結晶粒(10a)の製
造時に適当な添加物を適量添加して結晶構造を一部変更
して発光波長分布をシフトすると、発光ダイオード装置
(20)の発光色を更に異なる色調に調整することがで
きる。例えばGa(ガリウム)又はLu(ルテチウム)
を添加して短波長側にシフトし、Gd(ガドリニウム)
を添加して長波長側にシフトすることができる。また、
ガラス層(10)に染料又は顔料等の光吸収物質を配合
して発光ダイオードチップ(2)又は粉末状微細結晶粒
(10a)の発光波長の一部を吸収させ、発光ダイオー
ド装置(20)の発光色を調整することも可能である。
Therefore, the light emitting diode chip (2) which emits blue light having an emission wavelength peak of about 440 nm to about 470 nm
Is mixed with the light-emitting component of the powdery fine crystal grains (10a), which are yellowish green light having an emission wavelength peak of about 540 nm having a broad wavelength distribution with a half-value width of about 130 nm. 20) to the outside. In this case, by adjusting the amount of the powdery fine crystal grains (10a) mixed with the coating type glass material and changing the distribution concentration in the glass layer (10), the light emitting diode device (2) is formed.
The color tone of the emission color of 0) can be adjusted. Also, Y
When the powdery fine crystal grains (10a) made of the AG fluorescent material are manufactured, an appropriate additive is added in an appropriate amount to partially change the crystal structure and shift the emission wavelength distribution, thereby changing the emission color of the light emitting diode device (20). Furthermore, different colors can be adjusted. For example, Ga (gallium) or Lu (lutetium)
To shift to the shorter wavelength side, and Gd (gadolinium)
To shift to the longer wavelength side. Also,
A light absorbing substance such as a dye or a pigment is blended into the glass layer (10) to absorb a part of the emission wavelength of the light emitting diode chip (2) or the powdery fine crystal grains (10a). It is also possible to adjust the emission color.

【0024】本発明では更に光学的特性や作業性を向上
するため、例えば下記の改善も可能である。 [1] ガラス層(10)内に散乱剤を混入して発光ダイ
オードチップ(2)の光を散乱させることにより粉末状
微細結晶粒(10a)中の蛍光物質に当たる発光ダイオ
ードチップ(2)の光量を増加且つ平均化し、波長変換
効率を向上すると共に、発光ダイオード装置(20)か
ら外部に放出される光の放射方向によって生ずる色調の
違いを抑制することができる。 [2] ガラス層(10)のクラックを防止する結合材を
配合する。 [3] 沈降防止剤を添加して塗布型ガラス材料の粘度を
高くすることにより、粉末状微細結晶粒(10a)、散
乱剤及び結合材の沈降を防ぎ、塗布形ガラス材料中の濃
度分布の偏りを抑制することができる。
In the present invention, the following improvements can be made to further improve the optical characteristics and workability. [1] Light quantity of the light emitting diode chip (2) hitting the fluorescent substance in the powdery fine crystal grains (10a) by scattering the light of the light emitting diode chip (2) by mixing a scattering agent into the glass layer (10) Can be increased and averaged, the wavelength conversion efficiency can be improved, and the difference in color tone caused by the emission direction of light emitted from the light emitting diode device (20) to the outside can be suppressed. [2] A binder for preventing cracking of the glass layer (10) is blended. [3] The addition of an anti-settling agent to increase the viscosity of the coating type glass material prevents the powdery fine crystal grains (10a), the scattering agent and the binder from settling, and reduces the concentration distribution in the coating type glass material. Unevenness can be suppressed.

【0025】このような場合は、図2に示すように、塗
布型ガラス材料に粉末状微細結晶粒(10a)ととも
に、散乱剤、結合材、沈降防止剤としてシリカ、酸化チ
タン、アルミナ、超微粒子状無水シリカ等のセラミック
粉末(10b)を目的に応じて適量混合すればよい。
In such a case, as shown in FIG. 2, a powdery fine crystal grain (10a) is added to a coating-type glass material together with a scattering agent, a binder, and silica, titanium oxide, alumina, ultrafine particles as an anti-settling agent. An appropriate amount of ceramic powder (10b) such as anhydrous silica may be mixed according to the purpose.

【0026】図2に示す本発明の第2の実施の形態で
は、混合するセラミック粉末の種類及び量によって得ら
れる効果が異なる。例えばセラミック粉末がシリカの場
合は本来ガラス層(10)と同じ物質なので[1]の効果
は少なく[2]の効果が大きい。しかしセラミック粉末が
酸化チタンやアルミナの場合は[1]及び[2]の効果とも
大きい。また、セラミック粉末が超微粒子状無水シリカ
の場合はシリカと同様に、[1]の効果は少なく、[2]の
効果は大きいが、それ以外に[3]の効果が得られる。従
って混合するセラミック粉末は目的によって単一でも複
数の種類を組み合わせても良い。
In the second embodiment of the present invention shown in FIG. 2, the effect obtained differs depending on the type and amount of the ceramic powder to be mixed. For example, when the ceramic powder is silica, the effect of [1] is small and the effect of [2] is large because the same substance as the glass layer (10) is used. However, when the ceramic powder is titanium oxide or alumina, the effects of [1] and [2] are both large. When the ceramic powder is ultrafine anhydrous silica, the effect of [1] is small and the effect of [2] is large, but the effect of [3] is obtained in addition to silica, similarly to silica. Therefore, the ceramic powder to be mixed may be a single type or a combination of plural types depending on the purpose.

【0027】また、本発明では紫外線で劣化しないガラ
スを用いるので、半導体発光素子に紫外線発光ダイオー
ドチップ(2)も用いることができる。従って、従来の
発光ダイオード装置よりも明るく且つ変化に富む色調の
発光ダイオード装置(20)を実現することができる。
In the present invention, since a glass which does not deteriorate by ultraviolet rays is used, an ultraviolet light emitting diode chip (2) can be used for a semiconductor light emitting element. Therefore, it is possible to realize a light emitting diode device (20) that is brighter and more varied in color than the conventional light emitting diode device.

【0028】本発明による発光ダイオード装置(20)
の第3の実施の形態を図3に示す。
Light emitting diode device (20) according to the present invention
FIG. 3 shows a third embodiment of the present invention.

【0029】例えば、約360nm〜380nmの発光
ピーク波長を有する紫外線を発生するGaN系発光ダイ
オードチップ(2)と、励起ピーク波長約360nm、
発光ピーク波長約543nmのCe及びTb(テルビウ
ム)付活のY2SiO5の蛍光物質より成る粉末状微細結
晶粒(10a)を使用すると、半値幅約12nmの非常
にシャープな発光分布を持つ緑色発光ダイオード装置
(20)が得られる。
For example, a GaN-based light emitting diode chip (2) that generates ultraviolet light having an emission peak wavelength of about 360 nm to 380 nm, an excitation peak wavelength of about 360 nm,
When powdery fine crystal grains (10a) made of Ce and Tb (terbium) -activated Y 2 SiO 5 phosphors having an emission peak wavelength of about 543 nm are used, a green color having a very sharp emission distribution with a half width of about 12 nm is obtained. A light emitting diode device (20) is obtained.

【0030】発光ダイオードチップと粉末状微細結晶粒
(10a)の前記組合わせは例示に過ぎず、紫外線発光
ダイオードチップ(2)の発光波長に適合する励起波長
分布を持ち且つ波長変換効率が高ければ、いかなる蛍光
物質より成る粉末状微細結晶粒(10a)でも使用でき
る。例えばハロ燐酸カルシュウム系、燐酸カルシュウム
系、珪酸塩系、アルミン酸塩系、タングステン酸塩系等
の蛍光物質から所望の特性を持つ粉末状微細結晶粒(1
0a)を選択できる。
The above-mentioned combination of the light emitting diode chip and the powdery fine crystal grains (10a) is merely an example, and if it has an excitation wavelength distribution suitable for the emission wavelength of the ultraviolet light emitting diode chip (2) and has a high wavelength conversion efficiency. Fine powdery crystal grains (10a) made of any fluorescent material can be used. For example, powdery fine crystal grains (1) having desired characteristics are obtained from fluorescent materials such as calcium halophosphate, calcium phosphate, silicate, aluminate, and tungstate.
0a) can be selected.

【0031】また、第2の実施の形態と同様に、第3の
実施の形態の発光ダイオード装置(20)のガラス層
(10)にもセラミック粉末を混合することは可能であ
る。
Further, similarly to the second embodiment, it is possible to mix ceramic powder into the glass layer (10) of the light emitting diode device (20) according to the third embodiment.

【0032】前記の実施の形態では、カップ部(3a)
の上端部より上方に突出しないようにガラス層(10)
の充填量を調整すれば、隣接して他の発光ダイオード装
置(20)を設置しても偽灯を発生しない。
In the above embodiment, the cup portion (3a)
Glass layer (10) so as not to protrude above the upper end of the
By adjusting the filling amount, false light does not occur even if another light emitting diode device (20) is installed adjacently.

【0033】図4は、チップ形発光ダイオード装置(2
0)に適用した本発明の他の実施の形態を示す。チップ
形発光ダイオード装置(20)では、絶縁性基板(1
1)の一方の主面にカップ部(3a)と、相互に離間し
た配線導体(3、4)とが形成され、配線導体(3、
4)の一方の端部は、カップ部(3a)内に配置され
る。発光ダイオードチップ(2)はカップ部(3a)の
底部(3b)にて配線導体(3)に接着剤(12)を介
して固着される。配線導体(3、4)の他方の端部は、
絶縁性基板(11)の側面及び他方の主面に延びて配置
される。発光ダイオードチップ(2)のカソード電極
(2a)及びアノード電極(2b)はそれぞれボンディ
ングワイヤ(5、6)により配線導体(3、4)に接続
される。発光ダイオードチップ(2)、カップ部(3
a)、ボンディングワイヤ(5、6)、配線導体(3、
4)の一方の端部側はガラス層(10)により被覆さ
れ、絶縁性基板(11)の一方の主面に形成された台形
状断面の封止樹脂(8)によって更に被覆される。図4
の発光ダイオード装置(20)でも、発光ダイオードチ
ップ(2)から照射された光の一部がガラス層(10)
の粉末状微細結晶粒(10a)によって発光波長が変換
され、図1の発光ダイオード装置と同様の作用効果が得
られる。尚、図4の発光ダイオードにおいても、ガラス
層(10)にセラミック粉末を混入することができる。
また、図1〜図4の発光ダイオードでは、粉末状微細結
晶粒(10a)をガラス層(10)内に均一に分散させ
ているが、不均一に分散させることもできる。例えば、
LEDチップ(3a)側で粉末状微細結晶粒(10a)
の混入濃度を増加してもよい。
FIG. 4 shows a chip type light emitting diode device (2).
Another embodiment of the present invention applied to (0) is shown. In the chip type light emitting diode device (20), the insulating substrate (1
A cup portion (3a) and wiring conductors (3, 4) separated from each other are formed on one main surface of 1), and the wiring conductors (3, 4) are formed.
One end of 4) is arranged in the cup part (3a). The light emitting diode chip (2) is fixed to the wiring conductor (3) via an adhesive (12) at the bottom (3b) of the cup (3a). The other ends of the wiring conductors (3, 4)
The insulating substrate (11) is disposed so as to extend on the side surface and the other main surface. The cathode electrode (2a) and the anode electrode (2b) of the light emitting diode chip (2) are connected to the wiring conductors (3, 4) by bonding wires (5, 6), respectively. LED chip (2), cup (3
a), bonding wires (5, 6), wiring conductors (3,
One end side of 4) is covered with a glass layer (10), and further covered with a sealing resin (8) having a trapezoidal cross section formed on one main surface of the insulating substrate (11). FIG.
In the light emitting diode device (20), a part of the light emitted from the light emitting diode chip (2) is
The emission wavelength is converted by the powdery fine crystal grains (10a), and the same operation and effect as the light emitting diode device of FIG. 1 can be obtained. In the light emitting diode of FIG. 4, ceramic powder can be mixed in the glass layer (10).
In the light emitting diodes of FIGS. 1 to 4, the powdery fine crystal grains (10 a) are uniformly dispersed in the glass layer (10), but may be unevenly dispersed. For example,
Powdery fine crystal grains (10a) on the LED chip (3a) side
May be increased.

【0034】[0034]

【発明の効果】前記のように、本発明では、水分や有害
物質の浸透を防ぎ且つ紫外線耐性に優れるガラス層によ
り半導体発光素子及び蛍光物質及び付活剤を被覆するの
で、湿度、温度又は紫外線等によってガラス層や半導体
発光素子及び蛍光物質の劣化を十分に抑制して、耐環境
性が向上し、蛍光物質による発光波長変換機能を有しつ
つも信頼性が高く安価な半導体発光装置を得ることがで
きる。
As described above, according to the present invention, since the semiconductor light emitting element, the fluorescent substance and the activator are covered with a glass layer which prevents moisture and harmful substances from penetrating and has excellent UV resistance, the humidity, the temperature or the ultraviolet ray Deterioration of the glass layer, the semiconductor light emitting element and the fluorescent substance is sufficiently suppressed by, for example, the environmental resistance is improved, and a highly reliable and inexpensive semiconductor light emitting device having the emission wavelength conversion function by the fluorescent substance is obtained. be able to.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 発光ダイオード装置に適用した本発明による
半導体発光装置の断面図
FIG. 1 is a cross-sectional view of a semiconductor light emitting device according to the present invention applied to a light emitting diode device.

【図2】 本発明の第2の実施の形態を示す部分断面図FIG. 2 is a partial cross-sectional view showing a second embodiment of the present invention.

【図3】 本発明の第3の実施の形態を示す部分断面図FIG. 3 is a partial cross-sectional view showing a third embodiment of the present invention.

【図4】 チップ型発光ダイオード装置に適用した本発
明の実施の形態を示す断面図
FIG. 4 is a sectional view showing an embodiment of the present invention applied to a chip type light emitting diode device.

【図5】 従来の発光ダイオード装置の断面図FIG. 5 is a sectional view of a conventional light emitting diode device.

【符号の説明】[Explanation of symbols]

(2)・・半導体発光素子、 (2a、2b)・・電
極、 (3、4)・・配線導体、 (3a)・・カップ
部、 (3b)・・底部、 (3c)・・側壁、(3
d)・・上端部、 (5、6)・・ボンディングワイ
ヤ、 (8)・・封止樹脂、 (10)・・ガラス層、
(11)・・絶縁性基板、
(2) ·· Semiconductor light emitting element, (2a, 2b) ··· electrode, (3, 4) ··· wiring conductor, (3a) ··· cup part, (3b) ··· bottom part, (3c) ··· side wall, (3
d) top edge, (5, 6) bonding wire, (8) sealing resin, (10) glass layer,
(11) ..insulating substrate,

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】 一対の配線導体(3、4)と、該一対の
配線導体(3、4)の一方の端部に固着された半導体発
光素子(2)と、前記半導体発光素子(2)を被覆する
光透過性の絶縁物封止体とを備えた半導体発光装置にお
いて、 前記絶縁物封止体は、ガラス層(10)と、該ガラス層
(10)中に混入された粉末状微細結晶粒(10a)と
を含み、 前記粉末状微細結晶粒(10a)は、前記半導体発光素
子(2)から照射される光に対して光透過性を有し且つ
前記半導体発光素子(2)から照射される光を吸収して
他の発光波長に変換する蛍光物質より成ることを特徴と
する半導体発光装置。
1. A pair of wiring conductors (3, 4), a semiconductor light emitting element (2) fixed to one end of the pair of wiring conductors (3, 4), and the semiconductor light emitting element (2) A semiconductor light-emitting device comprising: a light-transmitting insulator sealing member for covering the glass layer; wherein the insulator sealing member has a glass layer (10) and powdery fine particles mixed in the glass layer (10). The powdery fine crystal grains (10a) have a light-transmitting property with respect to light emitted from the semiconductor light-emitting element (2), and have a light-transmitting property with respect to the semiconductor light-emitting element (2). A semiconductor light emitting device comprising a fluorescent substance that absorbs irradiated light and converts the light into another emission wavelength.
【請求項2】 前記ガラス層(10)はガラス材料を前
記半導体発光素子(2)の融点よりも低い温度で焼成し
て形成された請求項1に記載の半導体発光装置。
2. The semiconductor light emitting device according to claim 1, wherein the glass layer is formed by firing a glass material at a temperature lower than a melting point of the semiconductor light emitting element.
【請求項3】 前記ガラス層(10)は、金属アルコキ
シドを出発原料とするガラス材料又はセラミック前駆体
ポリマーから成るガラス材料を焼成して形成された請求
項1又は請求項2のいずれかに記載の半導体発光装置。
3. The glass layer (10) according to claim 1, wherein the glass layer is formed by firing a glass material starting from a metal alkoxide or a glass material comprising a ceramic precursor polymer. Semiconductor light emitting device.
【請求項4】 前記ガラス層(10)はシロキサン(si
loxane)結合を主体とする透明な固形ガラス層である請
求項1〜請求項3のいずれか1項に記載の半導体発光装
置。
4. The glass layer (10) comprises a siloxane (si)
The semiconductor light-emitting device according to claim 1, wherein the semiconductor light-emitting device is a transparent solid glass layer mainly composed of a loxane) bond.
【請求項5】 前記半導体発光素子(2)の上面に形成
された電極(2a、2b)と前記一対の配線導体(3、
4)とをボンディングワイヤ(5、6)により電気的に
接続し、前記ガラス層(10)は前記半導体発光素子
(2)、電極(2a、2b)及び該電極(2a、2b)
に接続された前記ボンディングワイヤ(5、6)の端部
を被覆する請求項1〜請求項4のいずれか1項に記載の
半導体発光装置。
5. An electrode (2a, 2b) formed on an upper surface of the semiconductor light emitting element (2) and the pair of wiring conductors (3, 2).
4) are electrically connected by bonding wires (5, 6), and the glass layer (10) is composed of the semiconductor light emitting element (2), the electrodes (2a, 2b) and the electrodes (2a, 2b).
The semiconductor light emitting device according to any one of claims 1 to 4, which covers an end of the bonding wire (5, 6) connected to the semiconductor light emitting device.
【請求項6】 前記一対の配線導体(3、4)の一方の
端部にカップ部(3a)を形成し、前記半導体発光素子
(2)を前記カップ部(3a)の底部(3b)に固着し
た請求項1〜請求項5のいずれか1項に記載の半導体発
光装置。
6. A cup (3a) is formed at one end of the pair of wiring conductors (3, 4), and the semiconductor light emitting element (2) is mounted on a bottom (3b) of the cup (3a). The semiconductor light emitting device according to claim 1, wherein the semiconductor light emitting device is fixed.
【請求項7】 絶縁性基板(11)の一方の主面にカッ
プ部(3a)と、前記絶縁性基板(11)の一方の主面
に沿って互いに反対方向に延びる前記一対の配線導体
(3、4)とを形成し、前記カップ部(3a)の底部
(3b)にて前記一対の配線導体(3、4)の一方に前
記半導体発光素子(2)を固着した請求項1〜請求項6
のいずれか1項に記載の半導体発光装置。
7. A cup portion (3a) on one main surface of an insulating substrate (11), and the pair of wiring conductors extending in opposite directions along one main surface of the insulating substrate (11). 3. The semiconductor light-emitting device (2) is fixed to one of the pair of wiring conductors (3, 4) at the bottom (3b) of the cup portion (3a). Item 6
The semiconductor light emitting device according to claim 1.
【請求項8】 前記ガラス層(10)は前記カップ部
(3a)の上端部(3d)から突出しない請求項6又は
請求項7の何れかに記載の半導体発光装置。
8. The semiconductor light emitting device according to claim 6, wherein the glass layer (10) does not protrude from an upper end (3d) of the cup portion (3a).
【請求項9】 前記配線導体(3、4)は前記絶縁性基
板(11)の一方の主面から側面に沿って他方の主面に
延びる請求項7に記載の半導体発光装置。
9. The semiconductor light emitting device according to claim 7, wherein the wiring conductors extend from one main surface of the insulating substrate to the other main surface along a side surface.
【請求項10】 前記ガラス層(10)は更に封止樹脂
(8)により封止され、前記半導体発光素子(2)から
照射される光は、前記ガラス層(10)内を通過した
後、前記封止樹脂(8)の外部に放出される請求項1〜
請求項9に記載の半導体発光装置。
10. The glass layer (10) is further sealed with a sealing resin (8), and light emitted from the semiconductor light emitting element (2) passes through the glass layer (10), The resin is discharged to the outside of the sealing resin (8).
A semiconductor light emitting device according to claim 9.
【請求項11】 前記半導体発光素子(2)から放射さ
れた光成分の一部が前記ガラス層(10)に達して前記
ガラス層(10)内で異なる波長に波長変換された光
と、波長変換されない前記半導体発光素子(2)からの
光成分とが混合して前記封止樹脂(8)を通して外部に
放出される請求項10に記載の半導体発光装置。
11. Light whose part of the light component emitted from the semiconductor light emitting element (2) reaches the glass layer (10) and is wavelength-converted to a different wavelength in the glass layer (10); The semiconductor light emitting device according to claim 10, wherein a light component from the semiconductor light emitting element that is not converted is mixed and emitted outside through the sealing resin.
【請求項12】 前記ガラス層(10)には前記粉末状
微細結晶粒(10a)の沈降を防止する沈降防止剤が混
入された請求項1〜請求項11のいずれか1項に記載の
半導体発光装置。
12. The semiconductor according to claim 1, wherein the glass layer (10) is mixed with a sedimentation preventing agent for preventing sedimentation of the powdery fine crystal grains (10a). Light emitting device.
【請求項13】 特定の発光波長を吸収する光吸収物
質、前記半導体発光素子(2)の発光を散乱する光散乱
物質又は前記ガラス層(10)のクラックを防止する結
合材を前記ガラス層(10)内に配合した請求項1〜請
求項12に記載の半導体発光装置。
13. A light-absorbing substance that absorbs a specific light-emitting wavelength, a light-scattering substance that scatters light emitted from the semiconductor light-emitting element (2), or a binder that prevents cracks in the glass layer (10). The semiconductor light-emitting device according to claim 1, wherein the semiconductor light-emitting device is included in (10).
【請求項14】 前記ガラス層(10)には前記粉末状
微細結晶粒(10a)、前記光吸収物質、前記光散乱物
質及び前記結合材の沈降を防止する沈降防止剤が混入さ
れた請求項13に記載の半導体発光装置。
14. The glass layer (10) contains a sedimentation preventing agent for preventing sedimentation of the powdery fine crystal grains (10a), the light absorbing material, the light scattering material and the binder. 14. The semiconductor light emitting device according to claim 13.
JP04794498A 1998-02-27 1998-02-27 Semiconductor light emitting device Expired - Fee Related JP3307316B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04794498A JP3307316B2 (en) 1998-02-27 1998-02-27 Semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04794498A JP3307316B2 (en) 1998-02-27 1998-02-27 Semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JPH11251640A true JPH11251640A (en) 1999-09-17
JP3307316B2 JP3307316B2 (en) 2002-07-24

Family

ID=12789486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04794498A Expired - Fee Related JP3307316B2 (en) 1998-02-27 1998-02-27 Semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP3307316B2 (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002105449A (en) * 2000-09-28 2002-04-10 Toshiba Corp Green luminous phosphor, and light-emitting device using it
JP2002203989A (en) * 2000-12-21 2002-07-19 Lumileds Lighting Us Llc Light emitting device and its manufacturing method
JP2004158635A (en) * 2002-11-06 2004-06-03 Stanley Electric Co Ltd Surface-mounted chip led and manufacturing method thereof
US6850001B2 (en) 2001-10-09 2005-02-01 Agilent Technologies, Inc. Light emitting diode
JP2005524737A (en) * 2002-05-06 2005-08-18 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Reactive resin material for wavelength conversion and light emitting diode element
JP2007324256A (en) * 2006-05-31 2007-12-13 Toyoda Gosei Co Ltd Led apparatus
JP2007329511A (en) * 2001-09-03 2007-12-20 Matsushita Electric Ind Co Ltd Semiconductor light-emitting device
JP2009111245A (en) * 2007-10-31 2009-05-21 Nichia Corp Light-emitting device and its manufacturing method
US7592639B2 (en) 2001-09-03 2009-09-22 Panasonic Corporation Light-emitting semiconductor device, light-emitting system and method for fabricating light-emitting semiconductor device
JP2011155187A (en) * 2010-01-28 2011-08-11 Konica Minolta Opto Inc Method for manufacturing light-emitting diode unit
JP2011155188A (en) * 2010-01-28 2011-08-11 Konica Minolta Opto Inc Method for manufacturing light-emitting diode unit
WO2011129320A1 (en) * 2010-04-13 2011-10-20 コニカミノルタオプト株式会社 Light emitting device and method for manufacturing same
JP2011222751A (en) * 2010-04-09 2011-11-04 Nippon Electric Glass Co Ltd Wavelength conversion member and semiconductor light-emitting element device having and using the wavelength conversion member
WO2012023425A1 (en) * 2010-08-17 2012-02-23 コニカミノルタオプト株式会社 Method of manufacturing light-emitting device
JP2012186319A (en) * 2011-03-07 2012-09-27 Konica Minolta Advanced Layers Inc Light-emitting device manufacturing method
JP2012212770A (en) * 2011-03-31 2012-11-01 Konica Minolta Advanced Layers Inc Manufacturing method of light-emitting device, light-emitting device, and phosphor particle dispersion liquid
JP2013507746A (en) * 2009-10-12 2013-03-04 オスラム ゲーエムベーハー LED module, operation method of LED module, and lighting device including LED module
WO2013047876A1 (en) * 2011-09-30 2013-04-04 富士フイルム株式会社 Light-emitting device
JP2013539916A (en) * 2010-10-05 2013-10-28 インテマティックス・コーポレーション Solid state light emitting device and signage with photoluminescence wavelength conversion
US8957585B2 (en) 2010-10-05 2015-02-17 Intermatix Corporation Solid-state light emitting devices with photoluminescence wavelength conversion
US9045688B2 (en) 2006-08-03 2015-06-02 Intematix Corporation LED lighting arrangement including light emitting phosphor
US9512970B2 (en) 2013-03-15 2016-12-06 Intematix Corporation Photoluminescence wavelength conversion components
US9546765B2 (en) 2010-10-05 2017-01-17 Intematix Corporation Diffuser component having scattering particles
US10557594B2 (en) 2012-12-28 2020-02-11 Intematix Corporation Solid-state lamps utilizing photoluminescence wavelength conversion components

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7550777B2 (en) 2003-01-10 2009-06-23 Toyoda Gosei, Co., Ltd. Light emitting device including adhesion layer
JP2011238811A (en) * 2010-05-12 2011-11-24 Konica Minolta Opto Inc Wavelength conversion element and light-emitting device
WO2013051281A1 (en) 2011-10-07 2013-04-11 コニカミノルタアドバンストレイヤー株式会社 Led device manufacturing method and fluorescent material-dispersed solution used in same

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002105449A (en) * 2000-09-28 2002-04-10 Toshiba Corp Green luminous phosphor, and light-emitting device using it
JP2002203989A (en) * 2000-12-21 2002-07-19 Lumileds Lighting Us Llc Light emitting device and its manufacturing method
US6642618B2 (en) 2000-12-21 2003-11-04 Lumileds Lighting U.S., Llc Light-emitting device and production thereof
US7592639B2 (en) 2001-09-03 2009-09-22 Panasonic Corporation Light-emitting semiconductor device, light-emitting system and method for fabricating light-emitting semiconductor device
USRE47453E1 (en) 2001-09-03 2019-06-25 Panasonic Corporation Luminescent layer and light-emitting semiconductor device
JP2007329511A (en) * 2001-09-03 2007-12-20 Matsushita Electric Ind Co Ltd Semiconductor light-emitting device
US7772769B2 (en) 2001-09-03 2010-08-10 Panasonic Corporation Light-emitting semiconductor device, light-emitting system and method for fabricating light-emitting semiconductor device
US6850001B2 (en) 2001-10-09 2005-02-01 Agilent Technologies, Inc. Light emitting diode
US7214116B2 (en) 2001-10-09 2007-05-08 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Light-emitting diode and method for its production
JP2005524737A (en) * 2002-05-06 2005-08-18 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Reactive resin material for wavelength conversion and light emitting diode element
JP2004158635A (en) * 2002-11-06 2004-06-03 Stanley Electric Co Ltd Surface-mounted chip led and manufacturing method thereof
JP2007324256A (en) * 2006-05-31 2007-12-13 Toyoda Gosei Co Ltd Led apparatus
US9595644B2 (en) 2006-08-03 2017-03-14 Intematix Corporation LED lighting arrangement including light emitting phosphor
US9045688B2 (en) 2006-08-03 2015-06-02 Intematix Corporation LED lighting arrangement including light emitting phosphor
JP2009111245A (en) * 2007-10-31 2009-05-21 Nichia Corp Light-emitting device and its manufacturing method
JP2013507746A (en) * 2009-10-12 2013-03-04 オスラム ゲーエムベーハー LED module, operation method of LED module, and lighting device including LED module
JP2011155187A (en) * 2010-01-28 2011-08-11 Konica Minolta Opto Inc Method for manufacturing light-emitting diode unit
JP2011155188A (en) * 2010-01-28 2011-08-11 Konica Minolta Opto Inc Method for manufacturing light-emitting diode unit
JP2011222751A (en) * 2010-04-09 2011-11-04 Nippon Electric Glass Co Ltd Wavelength conversion member and semiconductor light-emitting element device having and using the wavelength conversion member
JPWO2011129320A1 (en) * 2010-04-13 2013-07-18 コニカミノルタ株式会社 Light emitting device and manufacturing method thereof
US9112122B2 (en) 2010-04-13 2015-08-18 Konica Minolta Advanced Layers, Inc. Light-emitting device and method for manufacturing same
JP5742839B2 (en) * 2010-04-13 2015-07-01 コニカミノルタ株式会社 Light emitting device and manufacturing method thereof
WO2011129320A1 (en) * 2010-04-13 2011-10-20 コニカミノルタオプト株式会社 Light emitting device and method for manufacturing same
US9306130B2 (en) 2010-08-17 2016-04-05 Konica Minolta, Inc. Method of manufacturing light-emitting device
US9153752B2 (en) 2010-08-17 2015-10-06 Konica Minolta Advanced Layers, Inc. Method of manufacturing light-emitting device
WO2012023424A1 (en) * 2010-08-17 2012-02-23 コニカミノルタオプト株式会社 Method of manufacturing light-emitting device
JP2013229621A (en) * 2010-08-17 2013-11-07 Konica Minolta Inc Method for manufacturing light-emitting device
US8835192B2 (en) 2010-08-17 2014-09-16 Konica Minolta, Inc. Method of manufacturing light-emitting device
JP5299577B2 (en) * 2010-08-17 2013-09-25 コニカミノルタ株式会社 Method for manufacturing light emitting device
CN103081142A (en) * 2010-08-17 2013-05-01 柯尼卡美能达先进多层薄膜株式会社 Method of manufacturing light-emitting device
WO2012023425A1 (en) * 2010-08-17 2012-02-23 コニカミノルタオプト株式会社 Method of manufacturing light-emitting device
JP5870923B2 (en) * 2010-08-17 2016-03-01 コニカミノルタ株式会社 Method for manufacturing light emitting device
US8957585B2 (en) 2010-10-05 2015-02-17 Intermatix Corporation Solid-state light emitting devices with photoluminescence wavelength conversion
US9546765B2 (en) 2010-10-05 2017-01-17 Intematix Corporation Diffuser component having scattering particles
JP2013539916A (en) * 2010-10-05 2013-10-28 インテマティックス・コーポレーション Solid state light emitting device and signage with photoluminescence wavelength conversion
JP2012186319A (en) * 2011-03-07 2012-09-27 Konica Minolta Advanced Layers Inc Light-emitting device manufacturing method
JP2012212770A (en) * 2011-03-31 2012-11-01 Konica Minolta Advanced Layers Inc Manufacturing method of light-emitting device, light-emitting device, and phosphor particle dispersion liquid
WO2013047876A1 (en) * 2011-09-30 2013-04-04 富士フイルム株式会社 Light-emitting device
US10557594B2 (en) 2012-12-28 2020-02-11 Intematix Corporation Solid-state lamps utilizing photoluminescence wavelength conversion components
US9512970B2 (en) 2013-03-15 2016-12-06 Intematix Corporation Photoluminescence wavelength conversion components

Also Published As

Publication number Publication date
JP3307316B2 (en) 2002-07-24

Similar Documents

Publication Publication Date Title
JP3307316B2 (en) Semiconductor light emitting device
JP2924961B1 (en) Semiconductor light emitting device and method of manufacturing the same
JP3503131B2 (en) Semiconductor light emitting device
JP3412152B2 (en) Semiconductor light emitting device
US7432642B2 (en) Semiconductor light emitting device provided with a light conversion element using a haloborate phosphor composition
JP3337000B2 (en) Semiconductor light emitting device
US9196800B2 (en) Light-radiating semiconductor component with a luminescence conversion element
US7753553B2 (en) Illumination system comprising color deficiency compensating luminescent material
KR100645403B1 (en) White light emitting device
US7733002B2 (en) Semiconductor light emitting device provided with an alkaline earth metal boric halide phosphor for luminescence conversion
US7859182B2 (en) Warm white LED-based lamp incoporating divalent EU-activated silicate yellow emitting phosphor
US7088038B2 (en) Green phosphor for general illumination applications
JP5326182B2 (en) Light emitting device, phosphor for light emitting element, and method for manufacturing the same
US20070012931A1 (en) White semiconductor light emitting device
US20050230689A1 (en) Ce3+ and Eu2+ doped phosphors for light generation
CN101167195B (en) Luminescence conversion light emitting diode
WO2005091862A2 (en) Phosphor and blends thereof for use in leds
CN101151348A (en) Oxynitride phosphors for use in lighting applications having improved color quality
US8115223B2 (en) Radiation emitting device
JP2003179270A (en) Semiconductor light emitting device
JP2002134790A (en) Semiconductor light-emitting device and manufacturing method therefor
KR101102302B1 (en) Lighting emitting diode device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090517

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100517

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110517

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110517

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120517

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120517

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130517

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140517

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees