WO2013047876A1 - Light-emitting device - Google Patents

Light-emitting device Download PDF

Info

Publication number
WO2013047876A1
WO2013047876A1 PCT/JP2012/075393 JP2012075393W WO2013047876A1 WO 2013047876 A1 WO2013047876 A1 WO 2013047876A1 JP 2012075393 W JP2012075393 W JP 2012075393W WO 2013047876 A1 WO2013047876 A1 WO 2013047876A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
layer
inorganic
emitting device
reflective layer
Prior art date
Application number
PCT/JP2012/075393
Other languages
French (fr)
Japanese (ja)
Inventor
堀田 吉則
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2013047876A1 publication Critical patent/WO2013047876A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01327Intermediate phases, i.e. intermetallics compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/483Containers
    • H01L33/486Containers adapted for surface mounting

Definitions

  • the present invention relates to a light emitting device, and more particularly to a light emitting device that emits light from a light emitting element such as a light emitting diode (LED).
  • a light emitting element such as a light emitting diode (LED).
  • FIG. 3 is a schematic cross-sectional view of a conventional light emitting device.
  • a light-emitting device 300 shown in FIG. 3 has a white resist layer 130 having a resin matrix on the surface of a base 110 such as metal or white alumina as an insulating layer, and the metal wiring layer 5 and the light-emitting element 10 are formed on the surface of the insulating layer. It has.
  • the pad electrode 18 provided on the metal wiring layer 5 and the light emitting element 10 are electrically connected by a bonding wire 19.
  • the sealing resin layer 170 made of a resin having a phosphor is used as the sealing layer of the light emitting element 10 or the like, when the light emitting device 300 is used over time, moisture enters from the sealing resin layer 170 to operate the light emitting diode. There is a problem of inhibiting. Further, when the light from the light emitting diode contains ultraviolet light, the sealing resin layer 170 is discolored by receiving the ultraviolet light, and the light transmission property from the light emitting diode is lowered, thereby effectively reducing the performance of the light emitting diode. There is a problem of lowering.
  • Patent Document 1 discloses that phosphor powder is mixed in the glass layer, and the glass layer is provided in contact with the wiring conductor. It is in the resin.
  • a technology is described in which light emitted from a semiconductor light-emitting element is converted to a desired light emission wavelength by a fluorescent substance in a glass layer and is emitted to the outside through a glass layer surrounding the semiconductor light-emitting element and a transparent sealing resin on the glass layer.
  • Patent Document 2 describes an LED light-emitting device in which an LED element is mounted on a white alumina substrate and an insulating film formed of sol-gel glass is provided so as to surround or surround the bottom surface, side surface, or top surface of the LED element.
  • the insulating film has substantially the same thermal expansion coefficient as that of the LED element, so that the non-lighting of the LED element and the decrease in luminous intensity can be avoided.
  • the present inventor is a light emitting device formed entirely of an inorganic material or an inorganic material (hereinafter referred to as inorganic material), and an anodized film layer is formed on the surface of a valve metal substrate.
  • inorganic material an inorganic material
  • an anodized film layer is formed on the surface of a valve metal substrate.
  • An anodized film layer is provided on at least a part of the surface of the valve metal substrate, and an inorganic reflective layer having inorganic particles and an inorganic binder is provided on the anodized film layer.
  • a metal wiring layer and a light emitting element are provided on the inorganic reflective layer,
  • the inorganic particles have a refractive index of 1.5 to 1.8 and an average particle diameter of 0.1 ⁇ m to 5 ⁇ m.
  • the valve metal substrate is at least one metal plate selected from the group consisting of aluminum, tantalum, niobium, titanium, hafnium, zirconium, zinc, tungsten, bismuth and antimony (1) to (6
  • the light emitting device according to any one of (1) to (9), wherein the light emitting element is a light emitting diode (LED), and the light emitting device is a light emitting diode device.
  • the light emitting element is a light emitting diode (LED), and the light emitting device is a light emitting diode device.
  • (11) Anodizing at least part of the surface of the valve metal substrate; An inorganic reflective layer is formed on the obtained anodized film layer, A metal wiring layer is provided on the inorganic reflective layer, a light emitting element is mounted, the mounted light emitting element is electrically connected to an external electrode, A method of manufacturing a light emitting device, wherein the inorganic reflective layer, the metal wiring layer, and the light emitting element are sealed with a glass material containing a phosphor.
  • the present invention is a light emitting device that is entirely composed of an inorganic material, has high adhesion between an inorganic reflective layer and a glass material layer containing a phosphor, and has little deterioration over time even when light is emitted for a long time with a large current.
  • FIG. 4 (A) shows sectional drawing
  • FIG.4 (B) shows a partially expanded view.
  • the light-emitting device of the present invention has an anodized film layer on at least a part of the surface of the valve metal substrate, and an inorganic reflective layer having inorganic particles and an inorganic binder on the surface thereof.
  • a metal wiring layer and a light emitting element are provided on the inorganic reflective layer,
  • FIG. 1 is a schematic cross-sectional view showing an example of a preferred embodiment of the light emitting device of the present invention.
  • the light emitting device 30 of the present invention has an anodized film layer 2 on at least a part of the surface of a valve metal substrate 1, and an inorganic reflection having inorganic particles and an inorganic binder on the surface.
  • layer 3 With layer 3; A metal wiring layer 5 and a light emitting element 10 are provided on the inorganic reflective layer 3,
  • the light emitting device includes a glass material layer 7 including a phosphor 6 that seals the inorganic reflective layer 3, the metal wiring layer 5, and the light emitting element 10.
  • a pad electrode 18 is provided on the metal wiring layer 5 and is electrically connected to the light emitting element 10 by wire bonding 19. Since the valve metal substrate 1 has the anodized film layer 2 on at least a part of its surface, the insulating property of the substrate is improved, and the adhesion between the inorganic reflective layer 5 and the valve metal substrate 1 is also improved.
  • FIG. 2 is a schematic cross-sectional view showing another example of a preferred embodiment of the light emitting device of the present invention.
  • the inorganic reflective layer 3 having inorganic particles and an inorganic binder is provided on at least a part of the surface of the valve metal substrate 1.
  • through holes hereinafter sometimes referred to as through holes 20 and 21 penetrating the valve metal substrate 1 and the inorganic reflective layer 3 are provided.
  • a metal wiring layer 5 is provided on the inorganic reflective layer 3.
  • the through hole serves as a conductive path. Since the insulating property of a through-hole is high when using, it is preferable.
  • the metal wiring layer 5 may be provided on at least a part of the through holes 20 and 21.
  • the light-emitting element 10 is flip-chip mounted (surface mounted) directly on the metal wiring layer 5 through the conductive bumps 17. Since the light emitting device 32 having this configuration does not use a bonding wire, there is no possibility that the bonding wire is peeled off or disconnected.
  • the inorganic reflection layer 3, the metal wiring layer 5, and the light emitting element 10 are sealed with a glass material layer 7 including a phosphor 6.
  • the surface of the valve metal substrate 1 opposite to the side on which the light emitting element 10 is mounted is penetrated by the through holes 20 and 21, and the electrode plate 15 is provided via an insulating layer such as the anodized film layer 2. It is done.
  • the electrode plate 15 and the light emitting element 10 can be electrically connected via the metal wiring layer 5 using the through hole 21 as a conductive path.
  • the inorganic reflective layer of the present invention is an aggregate composed of a large number of inorganic particles that contain inorganic particles and an inorganic binder, which will be described later, and that are partially bound to each other by the inorganic binder.
  • the inorganic reflective layer is not particularly limited as long as the constituent material is an inorganic component. It is preferable not to include an organic component. If the inorganic reflective layer is composed only of an inorganic material, it has high heat resistance and light resistance and is resistant to aging.
  • the thickness of the inorganic reflective layer is preferably 10 ⁇ m or more, more preferably 10 to 50 ⁇ m, and even more preferably 20 to 40 ⁇ m.
  • the thickness of the inorganic reflective layer is 10 ⁇ m or more, the insulating properties are good.
  • the thickness of the inorganic reflective layer is 50 ⁇ m or less because flexibility is maintained and processability, handling, and the like are improved.
  • the inorganic reflective layer is provided on an anodic oxide film described later on the valve metal substrate.
  • the anodized film layer 2 and the inorganic reflective layer 3 may be provided on a part of the valve metal substrate 1, or only the anodized film layer 2 may be present. This is because the position where the insulating layer, which is an anodized film layer, and the inorganic reflective layer are required differs depending on the shape of the element to be mounted and the position of the wiring, and it is necessary to arrange them in various designs.
  • Inorganic binder In the inorganic reflective layer of the present invention, it is preferable to use aluminum phosphate, aluminum chloride, or sodium silicate as a binder which is a binder for inorganic particles. A mixture of two or more of these may be used.
  • the inorganic binder is a substance that forms inorganic reflection layers by bonding inorganic particles described later by low-temperature firing. The following can be illustrated in detail.
  • Al phosphate aluminum metaphosphate, aluminum orthophosphate, and aluminum polyphosphate.
  • Al chloride examples include aluminum chloride, anhydrous aluminum chloride, aluminum chloride hexahydrate, and polyaluminum chloride (a polymer of basic aluminum chloride formed by dissolving aluminum hydroxide in hydrochloric acid).
  • Sodium silicate The above-mentioned sodium silicate is also called sodium silicate or water glass, and is generally Na 2 SiO 3 which is a sodium salt of metasilicate, but Na 4 SiO 4 , Na 2 Si 2 O 5 , Na 2 Si 4 O 9 or the like can also be used.
  • the sodium salt of metasilicic acid can be obtained by melting silicon dioxide with sodium carbonate or sodium hydroxide.
  • the inorganic binder can be obtained by reacting an inorganic binder precursor in the presence of water.
  • Inorganic binder precursors include inorganic acids such as phosphoric acid, hydrochloric acid, sulfuric acid, aluminum, and aluminum compounds such as aluminum oxide, aluminum sulfate, aluminum hydroxide, aluminum chloride, aluminum phosphate, and mixtures thereof. It is done. If neutralization of the reactant is necessary, sodium hydroxide solution is used.
  • the aluminum compound may be produced by reacting each raw material as an inorganic binder precursor.
  • aluminum hydroxide and aluminum chloride it is preferable to add both aluminum hydroxide and aluminum chloride to the inorganic binder precursor, and the amount of aluminum chloride is 5% by mass to 10% by mass with respect to the amount of aluminum hydroxide. It is preferable that Aluminum chloride is considered to have a role of catalytically promoting the reaction between aluminum hydroxide and phosphoric acid, and the amount is preferably in the above range. In addition, when aluminum chloride and hydrochloric acid are used and the aluminum phosphate precursor is not used, aluminum chloride, which is an inorganic binder, is not colored, so that the light reflectance is high.
  • a phosphate compound may be used instead of or together with aluminum phosphate, and the phosphate compound is not particularly limited as long as it is insoluble in water. Specific examples include magnesium phosphate, calcium phosphate, zinc phosphate, barium phosphate, aluminum phosphate, gallium phosphate, lanthanum phosphate, titanium phosphate, and zirconium phosphate.
  • Aluminum phosphate is preferable, and when mixed with other phosphates, 50% by mass or more is preferably aluminum phosphate.
  • sodium silicate When sodium silicate is used, it is dissolved in water, heated and adjusted to a viscosity suitable for water glass, and used as an inorganic binder precursor. These inorganic binder precursors can be mixed and used in any combination so as to produce the desired inorganic binder.
  • the inorganic particles are not particularly limited, and for example, conventionally known inorganic salts such as metal oxides, metal hydroxides, carbonates, and sulfates can be used, and among them, metal oxides are used. Is preferred.
  • the inorganic particles include metal oxides such as aluminum oxide (alumina), magnesium oxide, yttrium oxide, titanium oxide, zinc oxide, silicon dioxide, and zirconium oxide; aluminum hydroxide, calcium hydroxide, Hydroxides such as magnesium hydroxide; calcium carbonate (light calcium carbonate, heavy calcium carbonate, ultrafine calcium carbonate, etc.), carbonates such as barium carbonate, magnesium carbonate, strontium carbonate; sulfates such as calcium sulfate and barium sulfate Other examples include calcium carbonate, calcite, marble, gypsum, kaolin clay, calcined clay, talc, sericite, optical glass, glass beads, and the like.
  • aluminum oxide, silicon dioxide, aluminum hydroxide, and barium sulfate are preferable because of their good affinity with the inorganic binder described later.
  • the inorganic particles used in a suitable inorganic reflective layer have a refractive index of 1.5 or more and 1.8 or less, preferably 1.55 or more and 1.75 or less. When the refractive index is within this range, the obtained inorganic reflective layer has a high reflectance. This reason is considered to be due to a difference in reflectance from air.
  • the average particle diameter of the inorganic particles is preferably 0.1 ⁇ m or more and 5 ⁇ m or less. More preferably, it is 0.5-2 ⁇ m, and still more preferably 0.5-1.5 ⁇ m. When inorganic particles having an average particle diameter in this range are used, it is considered that appropriate voids can be secured between the particles and adhesion with the anodized film layer can be obtained. When the average particle size is 0.1 ⁇ m or more and 5 ⁇ m or less, the reflectance is excellent and the adhesion with the anodized film layer is excellent.
  • the average particle diameter means an average value of the particle diameters of the inorganic particles.
  • a laser diffraction particle size distribution measuring device laser diffraction / scattering particle size distribution measuring device, Partica LA-910.
  • the preferred inorganic reflective layer of the present invention is that the inorganic reflective layer produced using the above inorganic binder can be dried by heating at a low temperature and does not sinter at a high temperature, so the average particle size of the inorganic particles as a raw material is important. Factor.
  • aluminum hydroxide (1.58 to 1.65 to 1.76 hydroxide Calcium (1.57 to 1.6)
  • two or more kinds of particles or two or more kinds of particles having an average particle diameter may be mixed and used as long as the above characteristics are satisfied.
  • the shape of the inorganic particles is not particularly limited, and for example, spherical, polyhedral (for example, icosahedron, dodecahedron, etc.), cubic, tetrahedral, and uneven or convex protrusions on the surface. Any of a plurality of shapes (hereinafter, also referred to as “compete shape”), a plate shape, a needle shape, or the like may be used. Among these, spherical, polyhedral, cubic, tetrahedral, and complex shapes are preferred for the reason of excellent heat insulation, and spherical is more preferred for reasons of easy availability and excellent heat insulation.
  • the preferred inorganic reflective layer exemplified above is preferably 20 g / m 2 to 500 g / m 2 in terms of mass per unit area after heat drying. Within this range, the air gap is left in the interior, so light transmission is suppressed and the reflectance is high. By using the specific inorganic binder described above, high temperature sintering is unnecessary, and an inorganic reflective layer can be produced at a lower cost.
  • the inorganic reflective layer is an inorganic material and is resistant to aging. Furthermore, it reacts with the anodized film of the substrate when forming the reflective layer, and it is possible to ensure adhesion with the substrate.
  • the amount of inorganic particles in a suitable inorganic reflective layer and the amount of at least one inorganic binder selected from the group consisting of aluminum phosphate, aluminum chloride, and sodium silicate are based on 100 parts by mass of the inorganic particles.
  • the inorganic binder is preferably 5 to 100 parts by mass, more preferably 10 to 50 parts by mass.
  • a suitable inorganic reflective layer may contain other compounds in addition to the inorganic particles and the inorganic binder. Examples of other compounds include dispersants, reaction accelerators, and the like, and these and the above inorganic particles, inorganic binder precursors, reaction products of inorganic particles and inorganic binders, and the like. It is done.
  • the method for producing a suitable inorganic reflective layer described above is not particularly limited, but an inorganic binder and / or an inorganic binder precursor and inorganic particles are mixed as a binder liquid described below, and this mixed liquid is mixed. It is preferable to apply a predetermined amount on the anodized film layer using a coater whose film thickness can be adjusted, and then heat treatment (low temperature firing) at 100 to 300 ° C. for 10 to 60 minutes.
  • the coating method is not particularly limited, and various methods can be used. Examples thereof include bar coater coating, spin coating, spray coating, curtain coating, dip coating, air knife coating, blade coating, and roll coating. it can.
  • the reaction proceeds and the viscosity of the liquid increases rapidly.
  • the formation of aluminum phosphate, aluminum chloride, or sodium silicate in the heat-dried film can be easily confirmed by analyzing the film surface with an infrared spectrophotometer.
  • the inorganic reflective layer it is also possible to adjust the inorganic reflective layer to two or more layers by adjusting two or more kinds of binder liquids having different compositions and sequentially applying the binder liquid onto the anodized film.
  • two or more inorganic reflective layers it is possible to improve the strength of the inorganic reflective layer and the strength of adhesion to the substrate. Furthermore, the effect of smoothing the surface by improving the properties of the coated surface can be expected.
  • the low-temperature firing temperature is 100 ° C. to 300 ° C., preferably 150 ° C. to 300 ° C., and more preferably 180 ° C. to 250 ° C. If it is less than 100 ° C., moisture removal is not suitable, and if it exceeds 300 ° C., the strength of the aluminum substrate changes, which is not desirable. In addition, a temperature of 150 ° C. or higher is desirable for proceeding and binding the reaction between the inorganic binder precursors, and 180 ° C.
  • the strength of the valve metal base material is changed.
  • the firing time is 10 minutes to 60 minutes, more preferably 20 minutes to 40 minutes. In a short time, the progress of the reaction is insufficient, and when the time is long, the strength of the valve metal substrate, particularly the aluminum metal substrate, changes in relation to the firing temperature. If it is more than 60 minutes, it is not desirable in terms of production cost. For this reason, the firing time is most preferably 20 minutes to 40 minutes.
  • a drying step may be performed after the coating and before the low-temperature baking treatment. Drying is performed at a temperature of 100 ° C. or lower which does not cause a formation reaction of an inorganic binder such as aluminum phosphate or a binding reaction of inorganic particles.
  • the obtained inorganic reflective layer may be subjected to a surface treatment such as a hydrophilization treatment, a heating steam treatment, or a polydimethylsiloxane modification treatment. It is preferable to perform any of these treatments because adhesion to a metal wiring layer and a glass material layer described later is enhanced.
  • a suitable inorganic reflective layer may be subjected to a hydrophilic treatment after the low-temperature baking treatment.
  • the hydrophilic treatment method include a method of immersing in an aqueous solution of an alkali metal silicate.
  • hydrophilization treatment using an aqueous solution of alkali metal silicate is performed according to the method and procedure described in US Pat. No. 2,714,066 and US Pat. No. 3,181,461. It can be carried out.
  • alkali metal silicate examples include sodium silicate, potassium silicate, and lithium silicate.
  • the aqueous solution of the alkali metal silicate may further contain sodium hydroxide, potassium hydroxide, lithium hydroxide and the like.
  • the aqueous solution of the alkali metal silicate may further contain an alkaline earth metal salt or a Group 4 (Group IVA) metal salt.
  • alkaline earth metal salt include nitrates such as calcium nitrate, strontium nitrate, magnesium nitrate, and barium nitrate; sulfates; hydrochlorides; phosphates; acetates; Borate; and the like.
  • Group 4 (Group IVA) metal salt include, for example, titanium tetrachloride, titanium trichloride, potassium fluoride titanium, potassium oxalate, titanium sulfate, titanium tetraiodide, and chloride oxidation.
  • the aqueous solution of the alkali metal silicate is a ratio of silicon oxide SiO 2 and alkali metal oxide M 2 O, which are components of the silicate (
  • the protective film thickness can be adjusted by the concentration of [SiO 2 ] / [M 2 O]) and the concentration.
  • M sodium and potassium are particularly preferably used.
  • the molar ratio of [SiO 2 ] / [M 2 O] is preferably 0.1 to 5.0, more preferably 0.5 to 3.0. Further, the content of SiO 2 is preferably 0.1 to 20% by mass, and more preferably 0.5 to 10% by mass.
  • the temperature of the aqueous alkali metal silicate solution is preferably 1 to 70 ° C., more preferably 2 to 50 ° C., and still more preferably 3 to 35 ° C.
  • the treatment time in the case of using the alkali metal silicate aqueous solution is preferably 5 seconds to 90 minutes, more preferably 8 seconds to 60 minutes, and preferably 12 seconds to 30 minutes. Further preferred.
  • the steam treatment may be performed after the low-temperature firing treatment.
  • the heated steam treatment is a treatment including boiling water treatment, hot water treatment, steam treatment, and the like based on temperature and pressure conditions.
  • the water used may be any of ion exchange water, distilled water, natural water, tap water, etc., but ion exchange water and distilled water are preferred.
  • an organic solvent, an amine compound, an organic acid, phosphorus or boron oxyacid salt, or the like may be used alone or in combination.
  • the water used may also contain ions of alkali metal alkaline earth metals such as lithium, sodium or magnesium.
  • the surface treatment is preferably carried out continuously using water vapor, and the temperature for the water vapor treatment is about 80 ° C. to 200 ° C., preferably about 90 ° C. to 120 ° C.
  • the treatment time is 3 seconds to 30 minutes, preferably 5 seconds to 10 minutes.
  • the hydrogen ion concentration is suitably about 2 to 11, preferably about 3 to 10.
  • About 1 to 15 kg / cm 2 (absolute pressure) is appropriate as the pressure when treating with pressurized steam, and preferably about 1 to 5 kg / cm 2 is preferred.
  • the temperature of water in a water tank provided in the processing chamber is heated, whereby the temperature in the processing chamber is set to 80 ° C. or more and 105 ° C. or less, and the processing chamber pressure is maintained at ⁇ 50 to 300 mmAq with respect to normal pressure.
  • a method may be used in which the inorganic reflective layer requiring heating steam treatment is passed through the state.
  • a light transmissive flexible film may be formed on the surface of the inorganic reflective layer using one or a mixture of polyorganosiloxanes such as polydimethylsiloxane.
  • the polyorganosiloxane is diluted with an aqueous solution or an organic solvent, and applied onto the inorganic reflective layer, sprayed, or immersed in the liquid.
  • the adhesiveness with the glass material layer provided thereon is increased.
  • the metal wiring layer is formed on at least a part of the surface of the inorganic reflective layer of the light emitting device of the present invention.
  • “formed on at least a part of the surface of the inorganic reflective layer” means that the metal wiring layer is formed on the inorganic reflective layer or on the inorganic reflective layer and in the inorganic reflective layer. This includes a case where a part of the material forming the layer enters the inorganic reflective layer and the rest is formed on the inorganic reflective layer.
  • the metal wiring layer formed in the surface becomes favorable [adhesiveness with an inorganic reflection layer] by an anchor effect.
  • the material of the metal wiring layer is not particularly limited as long as it is a material that conducts electricity (hereinafter also referred to as “metal material”). Specific examples thereof include gold (Au), silver (Ag), and copper (Cu ), Aluminum (Al), magnesium (Mg), nickel (Ni) and the like, and these may be used alone or in combination of two or more. Of these, Cu is preferably used because of its low electrical resistance.
  • the metal wiring layer may have a multilayer structure using these materials. For example, an embodiment in which an Ag layer, a Ni layer, and an Au layer are provided in this order from the bottom layer is preferable.
  • the thickness of the metal wiring layer may be a desired thickness depending on the purpose and application, but is preferably 0.5 to 1000 ⁇ m, more preferably 1 to 500 ⁇ m from the viewpoint of conduction reliability and package compactness. 5 to 250 ⁇ m is particularly preferable.
  • the thickness of the lowermost layer for example, Ag layer
  • the thickness of the uppermost layer is preferably 0.05 to 0.5 ⁇ m in consideration of wire bonding properties, More preferably, the thickness is ⁇ 0.4 ⁇ m.
  • a metal ink containing the metal material and a liquid component for example, a solvent, a resin component, etc.
  • a method for forming the metal wiring layer for example, a metal ink containing the metal material and a liquid component (for example, a solvent, a resin component, etc.) is pattern-printed on the receiving layer by an inkjet printing method, a screen printing method, or the like. Methods and the like.
  • a forming method it is possible to easily form a wiring layer having a pattern on the surface of the uneven receiving layer without requiring many steps.
  • various plating treatments such as electrolytic plating treatment, electroless plating treatment, displacement plating treatment, sputtering treatment, vapor deposition treatment, vacuum pasting treatment of metal foil, Examples include an adhesion treatment with an adhesive layer.
  • electrolytic plating treatment electroless plating treatment
  • displacement plating treatment displacement plating treatment
  • sputtering treatment vapor deposition treatment
  • vacuum pasting treatment of metal foil examples include an adhesion treatment with an adhesive layer.
  • the glass material layer includes a glass material and a phosphor mixed therein.
  • the phosphor is made of a phosphor material that is transparent to the light emitted from the light emitting element and absorbs the light emitted from the light emitting element and converts it to another emission wavelength.
  • the glass material layer includes SiO 2 including at least one of a group selected from PbO, Ga 2 O 3 , Bi 2 O 3 , CdO, ZnO, BaO, and Al 2 O 3. or made of SiO 2 which does not contain these substantially.
  • the reason for incorporating the compound selected from PbO, Ga 2 O 3 , Bi 2 O 3 , CdO, ZnO, BaO and Al 2 O 3 by devising the configuration of the glass material layer as described above is as follows. is there. Reflection occurs at the interface between the light emitting element and the surrounding packaging material such as a glass material layer. The ratio at which total reflection occurs increases as the difference in refractive index increases. When total reflection occurs, the light is bounced inside, and the light extraction efficiency is reduced. Therefore, in order to efficiently transmit light from the light emitter to the air, it is desirable to reduce reflection at the interface through which the light from the light emitter passes as much as possible. For this purpose, it is necessary to reduce the difference in refractive index between the interfaces.
  • the light-emitting device is composed of two layers of a light-emitting element and a glass material layer
  • there are two interfaces ie, a light-emitting element and a glass material layer, and a glass material layer and an air layer.
  • the glass material layer is formed by using a coating glass material made of a metal alkoxide (tetramethoxysilane, tetraethoxysilane, etc.) as a starting material or a coating precursor glass material made of a ceramic precursor polymer (perhydropolysilazane, etc.). It is preferable. A coating type glass material starting from a metal alkoxide (tetramethoxysilane, tetraethoxysilane, etc.) is more preferred. These coating type glass materials can be fired at around 150 ° C., and a glass material layer can be formed in a low temperature region.
  • a coating glass material made of a metal alkoxide (tetramethoxysilane, tetraethoxysilane, etc.) as a starting material or a coating precursor glass material made of a ceramic precursor polymer (perhydropolysilazane, etc.). It is preferable. A coating type glass material starting from a metal al
  • These coating-type glass materials are usually liquid, but when heated in air or in an oxygen atmosphere, the SiO 2 (silicon oxide) siloxane bond is mainly formed by decomposition and scattering of components or absorption of oxygen and moisture.
  • a transparent solid glass material layer was produced. Moreover, you may use the water glass which has sodium silicate etc. as a main component.
  • a glass material layer can be easily formed by baking viscous liquid water glass as a coating-type glass material.
  • Appropriate amount may be mixed according to. If these glass materials are mixed with a phosphor made of a phosphor material and applied to the periphery of an inorganic reflective layer having a metal wiring layer, a glass material layer having the following characteristics in addition to the light conversion function is formed. Can do.
  • a GaN blue light emitting diode chip having an emission wavelength peak of about 440 nm to about 470 nm is used as a light emitting element, and an active material is used as a material constituting the phosphor.
  • YAG yttrium, aluminum, garnet, chemical formula Y 3 Al 5 O 12 , excitation wavelength peak of about 450 nm, emission wavelength peak of about 540 nm
  • Ce Ce
  • the emission color of the light emitting diode device (20) is further adjusted to a different color tone.
  • the emission color of the light emitting diode device (20) is further adjusted to a different color tone.
  • Ga (gallium) or Lu (lutetium) can be added to shift to the short wavelength side
  • Gd (gadolinium) can be added to shift to the long wavelength side.
  • a light-absorbing substance such as a dye or a pigment into the glass material layer so as to absorb a part of the light emission wavelength of the light-emitting diode chip or the phosphor and adjust the light emission color of the light-emitting diode device.
  • fluorescence of Y 2 SiO 5 activated by Ce and Tb (terbium) activated with a GaN-based light-emitting diode chip that generates ultraviolet light having an emission peak wavelength of about 360 nm to 380 nm and an excitation peak wavelength of about 360 nm and an emission peak wavelength of about 543 nm.
  • a phosphor made of a material a green light emitting diode device having a very sharp light emission distribution with a half width of about 12 nm can be obtained.
  • the phosphor used may be any phosphor.
  • a phosphor having desired characteristics is selected from phosphors such as calcium halophosphate, calcium phosphate, silicate, aluminate, and tungstate. You can choose.
  • M 2 O 2 S Eu
  • Mn any one of La, Gd, and Y
  • Mn any one of La, Gd, and Y
  • Mn any one of La, Gd, and Y
  • Mn any one of La, Gd, and Y
  • Mn any one of La, Gd, and Y
  • MgF 2 Mn
  • 2MgO ⁇ 2LiO 2 ⁇ Sb 2 O 3 Mn
  • O 4 Eu
  • YVO 4 Eu
  • O 3 Eu
  • CaSiO 3 Pb, Mn, and the like.
  • BaMg 2 Al 16 O 27 Eu, Mn, Zn 2 SiO 4: Mn, (Ce, Tb, Mn) MgAl 11 O 19 , LaPO 4 : Ce, Tb, (Ce, Tb) MgAl 11 O 19 , Y 2 SiO 5 : Ce, Tb, ZnS: Cu, Al, ZnS: Cu, Au, Al, (Zn, Cd) S : Cu, Al, SrAl 2 O 4: Eu, SrAl 2 O 4: Eu, Dy, Sr 4 Al 14 O 25: Eu, Dy, Y 3 Al 5 O 12: Tb, Y 3 (Al, Ga) 5 O 12 : Tb, Y 3 Al 5 O 12 : Ce, Y 3 (Al, Ga) 5 O 12 : Ce, and the like.
  • Y 3 Al is used as a phosphor for yellow light emission that converts light emitted from the LED chip into yellow visible light as a complementary color.
  • 5 O 12 Ce, YBO 3 : Ce, BaMgAl 10 O 17 : Eu, Mn, (Sr, Ca, Ba) (Al, Ga) 2 S 4 : Eu, Ba 2 SiO 4 : Eu, (Sr, Ba) 2 SiO 4 : Eu, SiAlON: Eu and the like.
  • valve metal substrate Specific examples of the valve metal include aluminum, tantalum, niobium, titanium, hafnium, zirconium, zinc, tungsten, bismuth, and antimony.
  • the anodized film layer of the valve metal is an insulating film having high electrical resistance (about 10 14 ⁇ ⁇ cm) and high heat resistance. Of these, an anodic oxide film layer of aluminum is preferable because it has good dimensional stability and is relatively inexpensive.
  • the valve metal substrate may be a single plate used for the reflective substrate of the present invention. If necessary, the valve metal substrate is laminated on another metal plate such as a steel plate, a glass plate, a ceramic plate, a resin plate or the like and used for the reflective substrate of the present invention.
  • the bubble metal substrate In order to form an anodized film and ensure insulation, the bubble metal substrate only needs to have a plate-like portion having a thickness of 10 ⁇ m or more.
  • a laminated plate of a steel plate or metal plate that is flexible and has high heat resistance is preferable.
  • the aluminum plate used in the present invention is a metal whose main component is dimensionally stable aluminum, and is made of aluminum or an aluminum alloy.
  • an alloy plate containing aluminum as a main component and containing a trace amount of foreign elements can also be used.
  • various substrates made of the above-described aluminum or aluminum alloy are collectively referred to as an aluminum plate.
  • the foreign elements that may be contained in the aluminum alloy include silicon, iron, copper, manganese, magnesium, chromium, zinc, bismuth, nickel, titanium, etc., and the content of foreign elements in the alloy is 10% by mass or less. Is preferred.
  • the composition of the aluminum plate used in the present invention is not specified, and the purity of aluminum is not particularly limited, but 1000 series, 3000 series, and 5000 series alloys that are usually used as plate materials are used. it can.
  • the purity of aluminum is not particularly limited, but 1000 series, 3000 series, and 5000 series alloys that are usually used as plate materials are used. it can.
  • when used as a reflective substrate for a light emitting device it is required to have excellent withstand voltage, and it is desirable to reduce particles such as intermetallic compounds in the material as much as possible. If it cannot be avoided under heat treatment conditions, it is also useful to use high purity aluminum of 99.9% or more.
  • conventionally known materials described in Aluminum Handbook 4th edition (1990, published by Light Metal Association) for example, JIS A1050, JIS A1100, JIS A1070, JIS A3004 containing Mn, international registered alloy 3103A, etc.
  • Al-Mn aluminum plates can be used as appropriate.
  • an Al—Mg alloy or an Al—Mn—Mg alloy (JIS A3005) in which 0.1% by mass or more of magnesium is added to these aluminum alloys can also be used.
  • an Al—Zr alloy or an Al—Si alloy containing Zr or Si can also be used.
  • an Al—Mg—Si based alloy can also be used.
  • Al—Mg alloys Al—Mn alloys, Al—Mn—Mg alloys, Al—Zr alloys, and Al—Mg—Si alloys, paragraphs [0034] to [0038] of International Publication No. WO2010 / 150810. Is described in the publication.
  • an aluminum plate as shown above can be used by roughening it by forming irregularities by laminating rolling, transferring or the like in its final rolling step or the like. If the surface of the substrate is roughened in advance, the adhesion between the inorganic reflective layer formed on the substrate and the substrate can be improved after the anodic oxide film layer is formed. Other roughening treatment methods will be described later.
  • the aluminum plate used in the present invention may be an aluminum web or a sheet-like sheet.
  • An anodized film layer may be formed by directly anodizing an aluminum plate that has been subjected to alkali degreasing when the substrate is manufactured.
  • Roughening treatment is a method of performing mechanical roughening treatment on an aluminum plate, alkali etching treatment, desmutting treatment with acid, and electrochemical roughening treatment using an electrolytic solution, and mechanical roughening treatment on an aluminum plate.
  • Treatment alkali etching treatment, desmutting treatment with acid and electrochemical surface roughening treatment using different electrolytes multiple times, alkali etching treatment on aluminum plate, desmutting treatment with acid and electrochemical using electrolyte solution
  • Examples include a method of sequentially performing a surface roughening treatment, a method of applying an alkali etching treatment to an aluminum plate, a desmutting treatment with an acid, and an electrochemical surface roughening treatment using different electrolytes a plurality of times, but the present invention is not limited thereto. Not. In these methods, after the electrochemical roughening treatment, an alkali etching treatment and an acid desmutting treatment may be further performed.
  • a mechanical surface roughening treatment and nitric acid are mainly used.
  • Preferred examples include a method of sequentially performing an electrochemical surface roughening treatment using an electrolytic solution and an electrochemical surface roughening treatment using an electrolytic solution mainly composed of hydrochloric acid.
  • a through hole (through hole) processing for providing a conductive path as appropriate, and a routing processing for forming a chip assuming the final product (to the final product) Processing for individualization) can also be performed.
  • Through-hole processing is drilling to a required part.
  • a conventionally well-known method can be employ
  • the shape of the through-hole to be processed is not particularly limited as long as it is the length between a plurality of layers that require wiring, and the cross-section has a size / shape that can be secured by placing the necessary wiring therein.
  • the shape is circular, and the size is preferably 0.01 mm ⁇ to 2 mm ⁇ , more preferably 0.05 mm ⁇ to 1 mm ⁇ , and 0.1 mm ⁇ . Particularly preferred is ⁇ 0.8 mm ⁇ .
  • the routing process is an individual separation process that separates into the size of the reflective substrate for light emitting elements (hereinafter referred to as a chip) that is individualized in the final product, or a process that makes it easy to separate into chips in advance. It is also called one-side processing.
  • a cutting device such as an inner saw, a slicer, or a dicer can be used.
  • the routing process includes a process of making a notch penetrating in the thickness direction of the substrate with a device called a router or making a notch so as not to cut in the thickness direction using a dicer. Since the light emitting device of the present invention does not include a resin layer, it can be separated into pieces by a dicing device at the final stage. If the resin layer is contained, the resin layer may be peeled off due to processing strain when it is singulated at the final stage.
  • the light emitting device of the present invention does not need to be subjected to routing processing or the like in advance.
  • the tensile strength (hereinafter referred to as tensile strength) in the tensile test (tensile speed: 2 mm / min) of the aluminum plate in the routing processing and through-hole processing described above according to JISZ2241 indicates that the substrate is a soft substrate such as 100 MPa or less.
  • tensile strength tensile strength
  • the baking treatment after the machining and before the anodizing treatment is preferably performed at 250 to 400 ° C. for 1 to 120 minutes.
  • the baking temperature is preferably 200 ° C. to 250 ° C.
  • the heat treatment is preferably performed for 60 minutes to 300 minutes.
  • ⁇ Anodizing treatment> It is preferable to further anodize the aluminum plate that has been surface-treated and processed as described above.
  • anodizing treatment an anodized film layer made of alumina is formed on the surface of the aluminum plate, and a porous or non-porous surface insulating layer is obtained.
  • the anodizing treatment can be performed by a conventional method.
  • an anodized film layer can be formed by energizing an aluminum plate as an anode in an aqueous solution having a sulfuric acid concentration of 50 to 300 g / L and an aluminum concentration of 5% by mass or less.
  • the conditions of the anodizing treatment cannot be determined unconditionally because they vary depending on the electrolyte used, but generally the electrolyte concentration is 1 to 80% by mass, the solution temperature is 5 to 70 ° C., and the current density is 0.5. It is appropriate that ⁇ 60 A / dm 2 , voltage 1 ⁇ 100 V, electrolysis time 15 seconds ⁇ 50 minutes, and the anodic oxide film layer amount is adjusted to a desired amount.
  • direct current may be applied between the aluminum plate and the counter electrode, or alternating current may be applied.
  • the current density is preferably 1 to 60 A / dm 2 , and more preferably 5 to 40 A / dm 2 .
  • a low current of 5 to 10 A / dm 2 is initially introduced so that so-called “burning” does not occur due to current concentration on a part of the aluminum plate. It is preferable to increase the current density to 30 to 50 A / dm 2 or more as the current is passed at the density and the anodization process proceeds.
  • the feeding method to the aluminum plate is performed by a liquid feeding method.
  • the liquid power supply method is an indirect power supply method that does not use a conductor roll, and power is supplied through an electrolytic solution.
  • the anodized film layer may be porous or nonporous.
  • the average pore diameter is about 5 to 1000 nm, and the average micropore density is about 1 ⁇ 10 6 to 1 ⁇ 10 10 / mm 2 .
  • the length (length / depth) of the center line of the micropore with respect to the depth of the micropore is 1.0 to 1.2 because the shape of the micropore is almost a straight tube.
  • Aluminum has a very high thermal conductivity and is excellent in heat dissipation. In addition to being superior to other metals, it is possible to provide insulation by forming an anodized film layer on the surface layer. You may anodize at least 1 surface of what was processed into the board
  • the front and back surfaces of the aluminum plate may be anodized, or the inner wall surface of the formed through hole may be anodized. After anodizing and forming the inorganic reflective layer, processing such as through holes may be performed.
  • the thickness of the anodized film layer is preferably 1 to 200 ⁇ m.
  • the thickness of the anodized film layer is preferably 20 ⁇ m or more, and more preferably 40 ⁇ m or more.
  • inorganic reflective layer is formed only on the portions where light reflection is required by various printing methods such as screen printing on a substrate that has been processed in advance so that it can be disassembled into chips or parts including a plurality of chips. Also good. If the inorganic reflective layer is formed by this method, the raw material used for the inorganic reflective layer can be saved.
  • the substrate for a light emitting device having the inorganic reflection layer described above uses a valve metal plate alone as a valve metal base material, and when other metal plates are not used for reinforcing a core material or the like, the strength is tensile according to JISZ2241.
  • the tensile strength (hereinafter referred to as tensile strength) in the test (tensile speed: 2 mm / min) is preferably 100 MPa or less, and more preferably 30 to 80 MPa. If it is less than this range, the strength as a substrate is not sufficient, and if it exceeds this range, the handleability when processing the substrate to form a light emitting device is poor.
  • the light emitting device 32 having the through-hole shown in FIG. 2 of the present invention and mounted by flip chip preferably has the following anodized film layer.
  • a metal wiring layer and a light emitting element are provided on the inorganic reflective layer, A glass material layer containing a phosphor that seals the inorganic reflective layer, the metal wiring layer, and the light emitting element;
  • the anodized film has micropores in the thickness direction from the surface of the anodized film.
  • the light emitting device 32 of the present invention includes an aluminum plate 1 having an anodized film 2, a light emitting element 10, an inorganic reflective layer 3, and a metal wiring layer 5.
  • the aluminum plate 1 having the anodized film 2 has through holes 20 and 21 which are through holes formed through in the thickness direction. Further, the aluminum plate 1 having the anodized film 2 is covered with the anodized film 2 on the front surface, the back surface, and the inner wall surface of the through hole.
  • the through holes 20 and 21 are filled with the material forming the metal wiring layer 5, but the electrode plate 15 and the light emitting element 10 provided on the back surface of the aluminum plate. Are electrically connected through the through holes 20 and 21, the through holes may be partially connected with a metal material.
  • the anodic oxide film 2 has micropores 25 extending from the surface of the anodic oxide film 2 in the thickness direction (the direction of the aluminum plate 1).
  • the micropore 25 has a straight tubular shape in the thickness direction.
  • the length (length / depth) of the center line of the micropore 25 with respect to the depth of the micropore 25 is 1.0 to 1.2. It is preferably formed so as to be 1.0 to 1.05.
  • the aluminum plate 1 having the anodized film 2 shown in FIG. 4 (A) has the front surface, the back surface, and the inner wall surface of the through hole covered with the anodized film 2.
  • the aluminum plate 1 is processed such as through-holes, the processed aluminum plate is anodized, and the front surface, the back surface, and the inner wall surface of the through-hole are covered with the anodized film 2.
  • the inorganic reflective layer 3 is manufactured by a method of printing and coating with a pattern having holes of the through holes 20 and 21, but is not limited to this manufacturing method.
  • the present invention will be specifically described below with reference to examples. However, the present invention is not limited to these.
  • the light emitting devices of Examples and Comparative Examples were manufactured by the following steps. ⁇ 1. Preparation of substrate> As the substrate, aluminum plates (thickness 0.2 mm, 0.8 mm, 1.5 mm 1050 material, manufactured by Nippon Light Metal Co., Ltd.) were used, and the following processing was performed to prepare substrates A to B, respectively.
  • Substrate A Alkaline degreasing treatment was performed on the aluminum plate. Table 1 describes the metal species Al, anodized film, and “-” (none). In the following description, “-” in the table indicates that the treatment was not performed or that no member or material was used.
  • Substrate B The above aluminum plate was subjected to alkali degreasing treatment and anodizing treatment. In Table 1, it describes as metal seed
  • Substrate Ti An anodizing treatment was performed under the following conditions using a metal seed titanium plate (manufactured by Soekawa Riken) and a plate thickness of 0.5 mm. In Table 1, it describes as valve metal base material Ti, an anodic oxide film, and existence.
  • White Alumina In Comparative Example 1, a ceramic substrate obtained by sintering alumina particles (average particle size 4.7 ⁇ m) at 1450 ° C. for 2 hours has no anodized film. Table 1 describes white alumina.
  • Processing conditions for substrate A a. Degreasing treatment in alkaline aqueous solution An aqueous solution having a sodium hydroxide concentration of 27% by mass, an aluminum ion concentration of 6.5% by mass, and a temperature of 70 ° C. was sprayed onto an aluminum plate for 20 seconds. Thereafter, the liquid was drained with a nip roller, and further, a water washing treatment described later was performed, and then the liquid was drained with a nip roller. The water washing treatment was carried out using an apparatus for washing with a free-falling curtain-like liquid film, and further washed with water for 5 seconds using a spray tube having a structure having spray tips with fan-shaped spreading at 80 mm intervals. . b.
  • Desmutting treatment in acidic aqueous solution After the degreasing treatment, desmutting treatment was performed.
  • the acidic aqueous solution used for the desmut treatment was a 1% by mass sulfuric acid aqueous solution, which was sprayed from a spray tube at a liquid temperature of 35 ° C. for 5 seconds. Then, after performing the water washing process similarly to the case after a degreasing process, it drained with the nip roller.
  • an aqueous solution in which 25 g / L phosphoric acid, 35 g / L sulfuric acid, and 10 g / L hydrogen peroxide water are mixed is used as an electrolyte (temperature: 20 ° C.), and the substrate is 3 A / dm 2 . It was carried out until a voltage of 250 V was reached at a constant current. The thickness of the anodized film was 8 ⁇ m. In this way, a substrate Ti having a titanium anodized film on the surface as an insulating layer was produced.
  • the coating liquid adjusted under the following conditions was applied by forming a predetermined pattern on the substrate with a coater capable of adjusting the coating film thickness. Then, it put into the oven heated up to the temperature of Table 1, and heat-dried for 5 minutes.
  • the amount of the inorganic reflective layer after drying was in the range of 20 g / m 2 to 500 g / m 2 in the examples.
  • Comparative Examples 1 to 3 Comparative Example 1 had no inorganic reflective layer, and Comparative Example 2 had the same amount of inorganic reflective layer as the Example.
  • the inorganic reflective layer material is white filler (titanium oxide particles described below, shown as titanium oxide * 1 in Table 1) at a ratio of 60 parts by mass of silicone resin (KR510 manufactured by Shin-Etsu Silicone) 100 parts by mass.
  • a light-emitting device was manufactured in the same manner as in Example 1 except that the mixture was changed to the one obtained by mixing the above.
  • the inorganic particles shown below were added to the inorganic binder solution to prepare an inorganic reflective layer coating solution.
  • Alumina The alumina particles used are described below. Table 1 shows the refractive index, average particle diameter, type, and composition. 1-1) AL-160SG-3 average particle size 0.52 ⁇ m, purity 99.9%, manufactured by Showa Denko KK was used. 1-2) A42-2 average particle diameter 4.7 ⁇ m, Purity 99.57%, manufactured by Showa Denko KK was used. 1-3) As a mixture of two kinds of aluminas having different average particle diameters, a mixture of average particle diameters shown in Table 1 as CAI Kasei Nanotek alumina was used.
  • the mixing ratio was set such that particles having an average particle diameter of 0.01 ⁇ m were 20% by mass in the total mass of the particles.
  • Table 1 it is indicated by alumina (different particle size) * 0. 2) Titanium oxide: Fuji Titanium Industry Co., Ltd. TA-100 was used. The refractive index and average particle diameter are shown in Table 1. In Table 1, it is indicated by titanium oxide * 1. 3) Barium sulfate * 2: Toshin Kasei Co., Ltd. B-30 was used. Shown in Table 1 as barium sulfate * 2. Barium sulfate * 3: Takehara Chemical Industry Co., Ltd. W-1 was used. Shown in Table 1 as barium sulfate * 3.
  • a diluted solution of silver nanoparticle ink (XA-436, manufactured by Fujikura Chemical Co., Ltd.) is ejected onto the surface of the obtained reflective substrate in a pattern of a metal wiring layer using an ink jet apparatus (DMP-2831, manufactured by Fuji Film Co., Ltd.).
  • DMP-2831 manufactured by Fuji Film Co., Ltd.
  • an Ag wiring (wiring width: 100 ⁇ m) was formed.
  • plating was performed with a plating solution containing nickel to form an Ag—Ni wiring.
  • plating was performed with a plating solution containing gold to form an Ag—Ni—gold wiring.
  • the thickness of each layer was Ag (20 ⁇ m), Ni (4 ⁇ m), Au (0.4 ⁇ m).
  • the phosphor material is Y 3 Al 5 O 12 : Ce, and this phosphor material is mixed with the glass material layer shown in the table, and a sealing layer is formed under the conditions shown below.
  • Got the device (1) After adding ethanol and water to metal alkoxide tetraethoxysilane [Si (OC 2 H 5 ) 4 ] and stirring, hydrochloric acid was added dropwise as a reaction catalyst, and the mixture was further stirred at room temperature and allowed to stand for 24 hours. A precursor was obtained.
  • a phosphor material (Y 3 Al 5 O 12 : Ce) is added to this precursor, and after stirring and dispersing, pipetting is performed on the upper surface of the mounted light emitting device, and then heating is performed at 300 ° C. for 1 hour to form a sealing layer. Created. In the case of flip chip mounting, coating was performed to form a uniform sealing layer on the entire surface.
  • Ceramic precursor polymer 15 g of hydridopolysilazane prepared by the method of US Pat. No. 4,540,803, 2 g of glycidoxypropyltrimethoxysilane, and 4 g of dimethylcyclosiloxane were mixed to form a viscous Created a paste.
  • the sealing layer was formed by pipetting on the surface of the mounted light emitting element in the same manner as the metal alkoxide and then heating at 400 ° C. for 1 hour.
  • ⁇ Evaluation of light emitting device> (1) Reflectance The total reflectivity (total average of SPIN mode) of 400 to 700 nm was measured using a reflection densitometer (CM2600D, manufactured by Konica Minolta Co., Ltd.) for the prepared substrate before metal wiring formation. (2) Aging deterioration property The light emission efficiency after 100 hours was measured by continuously emitting light at the maximum allowable current of the light emitting element. As the light-emitting device shown in Table 1, a sufficient amount of phosphor with respect to the light-emitting element was used in the glass material layer, and a light-emitting element manufactured by GeneLite, product number OBL-CH1818 was mounted. Light was emitted at 60 mA.
  • the initial light emission intensity at the maximum allowable current and the light emission intensity after 100 hours were measured, and the light emission intensity after 100 hours passed was evaluated as% of the initial light emission intensity value.
  • the results are shown in Table 2.
  • the emission intensity was measured with a spectroradiometer “USR-45V / D” manufactured by USHIO INC.
  • Heat-resistant temperature In Table 2, the heat-resistant temperature (melting temperature) of each layer was described.
  • the light emitting device of the example has high reflectance and high heat resistance temperature.
  • the adhesion between the inorganic reflective layer and the metal substrate is high, and the processability is excellent.
  • Examples 5 and 17 in which the inorganic reflective layer is modified are particularly excellent in adhesion between the inorganic reflective layer and the glass material layer. It was found that in Examples 13 and 15, which were flip-chip mounting after the through-holes were processed by anodizing, singulation could be carried out with a safety factor in the final stage.
  • Comparative Example 1 it is difficult to process a ceramic substrate that is a white alumina sintered body, and since the ceramic substrate is in direct contact with the glass material layer, the adhesion between the alumina surface and the glass material layer is insufficient. Damaged during processing. The reflectance of white alumina is also low.
  • Comparative Example 2 since there was no anodized layer, the adhesion between the inorganic reflective layer and the metal plate was insufficient, and the processability was poor.
  • Comparative Example 3 had a white filler-containing resin layer instead of the inorganic reflective layer, had no anodized layer, and had good adhesion, but was deteriorated with time.

Abstract

The present invention provides a light-emitting device that has a positive electrode oxide film layer at at least a portion of the surface of a valve metal substrate, is provided on the positive electrode oxide film layer with an inorganic reflecting layer having inorganic particles and an inorganic binder, is provided on the inorganic reflecting layer with a metal wiring layer and a light-emitting element, and has a glass material layer that contains fluorescent bodies and seals the inorganic reflecting layer, the metal wiring layer, and the light-emitting element, wherein the entirety of the light-emitting device is configured from inorganic materials, the adhesion between the glass material layer containing fluorescent bodies and the inorganic reflecting layer is high, and there is little degradation over time even if light emission is caused over the long term at a high current.

Description

発光装置Light emitting device
 本発明は、発光装置に関し、特に、発光ダイオード(LED)等の発光素子から光を放射する発光装置に関する。 The present invention relates to a light emitting device, and more particularly to a light emitting device that emits light from a light emitting element such as a light emitting diode (LED).
 従来公知の発光装置では、発光ダイオードを保護するための保護層(モールド部材)が樹脂で形成されているためさまざまな問題が生じている。図3は、従来技術の発光装置の断面模式図を示している。図3に示す発光装置300は、金属または白色アルミナ等の基材110の表面に樹脂をマトリックスとする白色レジスト層130を絶縁層として有し、絶縁層の表面に金属配線層5や発光素子10を備えている。金属配線層5上に設けられたパッド電極18と発光素子10とはボンディングワイヤ19で電気的に接続されている。発光素子10等の封止層として蛍光体を有する樹脂からなる封止樹脂層170を用いるので、発光装置300が経年使用されると封止樹脂層170から水分が進入して発光ダイオードの動作を阻害するという問題がある。また、発光ダイオードからの光に紫外線が含まれている場合には、紫外線を受けて封止樹脂層170が変色し、発光ダイオードからの発光の透過性を低下させ、発光ダイオードの性能を事実上低下させるという問題がある。 Conventionally known light emitting devices have various problems because a protective layer (mold member) for protecting the light emitting diodes is formed of resin. FIG. 3 is a schematic cross-sectional view of a conventional light emitting device. A light-emitting device 300 shown in FIG. 3 has a white resist layer 130 having a resin matrix on the surface of a base 110 such as metal or white alumina as an insulating layer, and the metal wiring layer 5 and the light-emitting element 10 are formed on the surface of the insulating layer. It has. The pad electrode 18 provided on the metal wiring layer 5 and the light emitting element 10 are electrically connected by a bonding wire 19. Since the sealing resin layer 170 made of a resin having a phosphor is used as the sealing layer of the light emitting element 10 or the like, when the light emitting device 300 is used over time, moisture enters from the sealing resin layer 170 to operate the light emitting diode. There is a problem of inhibiting. Further, when the light from the light emitting diode contains ultraviolet light, the sealing resin layer 170 is discolored by receiving the ultraviolet light, and the light transmission property from the light emitting diode is lowered, thereby effectively reducing the performance of the light emitting diode. There is a problem of lowering.
 このような樹脂製の発光ダイオード保護層の問題を改善するために特許文献1には蛍光体粉末をガラス層中に混入させ、ガラス層は配線導体に接して設けられ、これらは透明な封止樹脂中にある。半導体発光素子の発光をガラス層中の蛍光物質によって所望の発光波長に変換し、半導体発光素子を包囲するガラス層及びその上層の透明な封止樹脂を通して外部に放出させる技術が記載されている。 In order to improve such a problem of the resin-made light-emitting diode protective layer, Patent Document 1 discloses that phosphor powder is mixed in the glass layer, and the glass layer is provided in contact with the wiring conductor. It is in the resin. A technology is described in which light emitted from a semiconductor light-emitting element is converted to a desired light emission wavelength by a fluorescent substance in a glass layer and is emitted to the outside through a glass layer surrounding the semiconductor light-emitting element and a transparent sealing resin on the glass layer.
 また、特許文献2には、白色アルミナ基板上にLED素子を実装し、LED素子の底面、側面、上面、または包囲するようにゾルゲルガラスで形成された絶縁性皮膜を設けたLED発光装置が記載されている。絶縁性皮膜はLED素子の熱膨張係数と略同じ熱膨張係数を有するのでLED素子の不点灯及び光度低下を回避することができると記載されている。 Patent Document 2 describes an LED light-emitting device in which an LED element is mounted on a white alumina substrate and an insulating film formed of sol-gel glass is provided so as to surround or surround the bottom surface, side surface, or top surface of the LED element. Has been. It is described that the insulating film has substantially the same thermal expansion coefficient as that of the LED element, so that the non-lighting of the LED element and the decrease in luminous intensity can be avoided.
特開平11-251640号Japanese Patent Laid-Open No. 11-251640 特開2006-13324号JP 2006-13324 A
 しかし、近年、発光素子では大電流で発光させる要求があり、蛍光体を有する樹脂封止層を備える発光装置では、大電流を流すと発光素子付近が高温になり、経時による樹脂の劣化が起こり、発光効率が悪くなる。
 特許文献1に記載された技術では、配線導体とガラス層間の密着性不足で加工時破損や経時劣化の問題がある。
 特許文献2に記載された技術では、アルミナを高温で焼結して製造する白色アルミナは高価である。白色アルミナ基板とAlアルコキシドで形成された絶縁性皮膜との密着性に問題があり、基板を加工する際に破損することがある。また、アルミナ基板は光反射率が低いのでAg反射層等を別に設ける必要があり、ネジ止め等の加工が困難でありネジ止め実装が難しいという問題がある。
However, in recent years, there has been a demand for light emitting elements to emit light with a large current, and in a light emitting device including a resin sealing layer having a phosphor, when a large current is passed, the vicinity of the light emitting element becomes high temperature and the resin deteriorates with time. , The luminous efficiency becomes worse.
In the technique described in Patent Document 1, there is a problem of breakage during processing and deterioration with time due to insufficient adhesion between the wiring conductor and the glass layer.
In the technique described in Patent Document 2, white alumina produced by sintering alumina at a high temperature is expensive. There is a problem in the adhesion between the white alumina substrate and the insulating film formed of Al alkoxide, and the substrate may be damaged when it is processed. In addition, since the alumina substrate has a low light reflectance, it is necessary to separately provide an Ag reflecting layer or the like, and there is a problem that processing such as screwing is difficult and screwing mounting is difficult.
 本発明者は上記従来技術の問題を解決するには、全体が無機材料もしくは無機系材料(以下無機材料という)で形成される発光装置であり、かつバルブ金属基材表面に陽極酸化皮膜層を介して無機反射層を備え、上記無機反射層と金属配線層と発光素子とを封止するガラス材料層を用いれば、各層の密着性が高く、大電流で長期に発光させても経時の劣化が少ない発光装置が得られることを知見し本発明に至った。
 すなわち、本発明は、以下を提供する。
In order to solve the above-mentioned problems of the prior art, the present inventor is a light emitting device formed entirely of an inorganic material or an inorganic material (hereinafter referred to as inorganic material), and an anodized film layer is formed on the surface of a valve metal substrate. By using a glass material layer that includes an inorganic reflective layer and seals the inorganic reflective layer, the metal wiring layer, and the light emitting element, the adhesion of each layer is high, and deterioration over time is possible even if light is emitted for a long time with a large current. As a result, the inventors have found that a light emitting device with a small amount of light can be obtained, and have reached the present invention.
That is, the present invention provides the following.
(1)バルブ金属基材表面の少なくとも一部に陽極酸化皮膜層を有し、上記陽極酸化皮膜層上に無機粒子と無機結着剤とを有する無機反射層を備え、
 上記無機反射層上に金属配線層および発光素子を備え、
 上記無機反射層、金属配線層および発光素子を封止する、蛍光体を含むガラス材料層を有する発光装置。
(2)上記ガラス材料層が金属アルコキシド、セラミック前駆体ポリマーまたは水ガラスからなる材料を塗布硬化して得られる(1)に記載の発光装置。
(3)上記無機結着剤がケイ酸ナトリウム、リン酸アルミニウムおよび塩化アルミニウムからなる群から選択される少なくとも一つである(1)または(2)に記載の発光装置。
(4)上記無機粒子は、屈折率1.5以上1.8以下、平均粒子径0.1μm以上5μm以下である(1)~(3)のいずれか1項に記載の発光装置。
(5)上記無機反射層が、100℃~300℃の温度で低温焼成されて得られる(1)~(4)のいずれか1項に記載の発光装置。
(6)上記無機反射層が、さらに表面修飾処理されている(1)~(5)のいずれか1項に記載の発光装置。
(7)上記バルブ金属基材が、アルミニウム、タンタル、ニオブ、チタン、ハフニウム、ジルコニウム、亜鉛、タングステン、ビスマスおよびアンチモンからなる群から選択される少なくとも1種の金属板である(1)~(6)のいずれか1項に記載の発光装置。
(8)上記バルブ金属基材および無機反射層を貫通する貫通孔を有し、上記発光素子がフリップチップ実装されている(1)~(7)のいずれか1項に記載の発光装置。
(9)上記無機粒子が、上記無機反射層中に2種類以上含まれる(1)~(8)のいずれか1項に記載の発光装置。
(10)上記発光素子が発光ダイオード(LED)であり、上記発光装置が発光ダイオード装置である(1)~(9)のいずれか1項に記載の発光装置。
(11)バルブ金属基材表面の少なくとも一部を陽極酸化し、
 得られた陽極酸化皮膜層上に無機反射層を形成し、
 上記無機反射層上に金属配線層を設け、発光素子を実装し、実装された発光素子を外部電極と電気的に接続し、
 上記無機反射層、金属配線層および発光素子を、蛍光体を含むガラス材料で封止する発光装置の製造方法。
(12)上記陽極酸化工程の前にバルブ金属基材を機械加工して貫通孔を形成し、上記発光素子をフリップチップ実装する(11)に記載の発光装置の製造方法。
(13)上記無機反射層、金属配線層および発光素子を、上記蛍光体を含むガラス材料で封止して発光装置を製造した後、所望の単位の発光装置に切り離す(12)に記載の発光装置の製造方法。
(1) An anodized film layer is provided on at least a part of the surface of the valve metal substrate, and an inorganic reflective layer having inorganic particles and an inorganic binder is provided on the anodized film layer.
A metal wiring layer and a light emitting element are provided on the inorganic reflective layer,
A light-emitting device having a glass material layer containing a phosphor that seals the inorganic reflective layer, the metal wiring layer, and the light-emitting element.
(2) The light emitting device according to (1), wherein the glass material layer is obtained by applying and curing a material made of a metal alkoxide, a ceramic precursor polymer, or water glass.
(3) The light emitting device according to (1) or (2), wherein the inorganic binder is at least one selected from the group consisting of sodium silicate, aluminum phosphate, and aluminum chloride.
(4) The light emitting device according to any one of (1) to (3), wherein the inorganic particles have a refractive index of 1.5 to 1.8 and an average particle diameter of 0.1 μm to 5 μm.
(5) The light emitting device according to any one of (1) to (4), wherein the inorganic reflective layer is obtained by low-temperature baking at a temperature of 100 ° C. to 300 ° C.
(6) The light-emitting device according to any one of (1) to (5), wherein the inorganic reflective layer is further surface-modified.
(7) The valve metal substrate is at least one metal plate selected from the group consisting of aluminum, tantalum, niobium, titanium, hafnium, zirconium, zinc, tungsten, bismuth and antimony (1) to (6 The light emitting device according to any one of the above.
(8) The light-emitting device according to any one of (1) to (7), wherein the light-emitting device has a through-hole penetrating the valve metal substrate and the inorganic reflective layer, and the light-emitting element is flip-chip mounted.
(9) The light-emitting device according to any one of (1) to (8), wherein two or more kinds of the inorganic particles are included in the inorganic reflective layer.
(10) The light emitting device according to any one of (1) to (9), wherein the light emitting element is a light emitting diode (LED), and the light emitting device is a light emitting diode device.
(11) Anodizing at least part of the surface of the valve metal substrate;
An inorganic reflective layer is formed on the obtained anodized film layer,
A metal wiring layer is provided on the inorganic reflective layer, a light emitting element is mounted, the mounted light emitting element is electrically connected to an external electrode,
A method of manufacturing a light emitting device, wherein the inorganic reflective layer, the metal wiring layer, and the light emitting element are sealed with a glass material containing a phosphor.
(12) The method for manufacturing a light emitting device according to (11), wherein the valve metal substrate is machined before the anodizing step to form a through hole, and the light emitting element is flip-chip mounted.
(13) The light emitting device according to (12), wherein the inorganic reflective layer, the metal wiring layer, and the light emitting element are sealed with a glass material containing the phosphor to produce a light emitting device, and then separated into a desired unit of the light emitting device. Device manufacturing method.
 本発明は、全体が無機材料で構成され、無機反射層と蛍光体を含むガラス材料層との密着性が高く、大電流で長期に発光させても経時の劣化が少ない発光装置である。 The present invention is a light emitting device that is entirely composed of an inorganic material, has high adhesion between an inorganic reflective layer and a glass material layer containing a phosphor, and has little deterioration over time even when light is emitted for a long time with a large current.
本発明の発光装置の好適な実施態様の一例を説明する断面模式図である。It is a cross-sectional schematic diagram explaining an example of the suitable embodiment of the light-emitting device of this invention. 本発明の発光装置の別の好適な実施態様の一例を説明する断面模式図である。It is a cross-sectional schematic diagram explaining an example of another suitable embodiment of the light-emitting device of this invention. 従来技術の発光装置を説明する断面模式図である。It is a cross-sectional schematic diagram explaining the light-emitting device of a prior art. 本発明の発光装置の別の例を示す模式図であり、図4(A)は断面図を示し、図4(B)は一部拡大図を示す。It is a schematic diagram which shows another example of the light-emitting device of this invention, FIG. 4 (A) shows sectional drawing, FIG.4 (B) shows a partially expanded view.
 〔発光装置〕
 以下に、本発明の発光装置について詳細に説明する。
 本発明の発光装置は、バルブ金属基材表面の少なくとも一部に陽極酸化皮膜層を有し、その表面に無機粒子と無機結着剤とを有する無機反射層を備え、
 上記無機反射層上に金属配線層および発光素子を備え、
 上記無機反射層、金属配線層および発光素子を封止する、蛍光体を含むガラス材料層を有する発光装置である。
 次に、本発明の発光装置の構成について、図1を用いて説明する。
[Light emitting device]
Hereinafter, the light-emitting device of the present invention will be described in detail.
The light-emitting device of the present invention has an anodized film layer on at least a part of the surface of the valve metal substrate, and an inorganic reflective layer having inorganic particles and an inorganic binder on the surface thereof.
A metal wiring layer and a light emitting element are provided on the inorganic reflective layer,
A light-emitting device having a glass material layer containing a phosphor that seals the inorganic reflective layer, the metal wiring layer, and the light-emitting element.
Next, the structure of the light-emitting device of the present invention will be described with reference to FIG.
 図1は、本発明の発光装置の好適な実施形態の一例を示す断面模式図である。
 図1に示すように、本発明の発光装置30は、バルブ金属基材1表面の少なくとも一部に陽極酸化皮膜層2を有し、その表面に無機粒子と無機結着剤とを有する無機反射層3を備え、
 上記無機反射層3上に金属配線層5および発光素子10を備え、
 上記無機反射層3、金属配線層5および発光素子10を封止する、蛍光体6を含むガラス材料層7を有する発光装置である。金属配線層5にはパッド電極18が設けられ、発光素子10とワイヤボンディング19で電気的に接続される。
 上記バルブ金属基材1が少なくとも一部の表面に陽極酸化皮膜層2を有するので、基板の絶縁性が良好となり、無機反射層5とバルブ金属基材1との密着性も良好となる。
FIG. 1 is a schematic cross-sectional view showing an example of a preferred embodiment of the light emitting device of the present invention.
As shown in FIG. 1, the light emitting device 30 of the present invention has an anodized film layer 2 on at least a part of the surface of a valve metal substrate 1, and an inorganic reflection having inorganic particles and an inorganic binder on the surface. With layer 3;
A metal wiring layer 5 and a light emitting element 10 are provided on the inorganic reflective layer 3,
The light emitting device includes a glass material layer 7 including a phosphor 6 that seals the inorganic reflective layer 3, the metal wiring layer 5, and the light emitting element 10. A pad electrode 18 is provided on the metal wiring layer 5 and is electrically connected to the light emitting element 10 by wire bonding 19.
Since the valve metal substrate 1 has the anodized film layer 2 on at least a part of its surface, the insulating property of the substrate is improved, and the adhesion between the inorganic reflective layer 5 and the valve metal substrate 1 is also improved.
 図2は、本発明の発光装置の好適な実施形態の別の一例を示す断面模式図である。
 図2に示す発光装置32の例では、バルブ金属基材1表面の少なくとも一部に無機粒子と無機結着剤とを有する無機反射層3を備える。さらに上記バルブ金属基材1および無機反射層3を貫通する貫通孔(以下スルーホールということがある)20、21が設けられる。無機反射層3上には金属配線層5が設けられている。
 陽極酸化皮膜層2が、バルブ金属基材1の表面と無機反射層との間に設けられ、貫通孔20.21の内表面にも陽極酸化皮膜層2が設けられると貫通孔を導電経路として使用する際に貫通孔の絶縁性が高いので好ましい。貫通孔20、21の絶縁性が充分である場合は、金属配線層5は、貫通孔20、21の少なくとも一部の上に設けられてもよい。金属配線層が貫通孔の上に設けられると、貫通孔が導電性金属で充填されて導電経路として用いられる場合に、金属配線層5と導電経路とを電気的に接続する際に接続経路を短くできるので好ましい。
 貫通孔を有する発光装置とすれば、発光素子10は、導電バンプ17を介して直接、金属配線層5にフリップチップ実装(表面実装)される。この構成を有する発光装置32は、ボンディングワイヤを用いないのでボンディングワイヤが剥がれたり断線したりする恐れがない。
 上記無機反射層3、金属配線層5および発光素子10は、蛍光体6を含むガラス材料層7で封止されている。
 発光素子10が実装される側と反対側のバルブ金属基材1の表面は、上記貫通孔20、21により貫通されていて、陽極酸化皮膜層2等の絶縁層を介して電極板15が設けられる。図2に示す発光装置32の例では、電極板15と、貫通孔21を導電経路として金属配線層5を経由して発光素子10とが電気的に接続できる。
FIG. 2 is a schematic cross-sectional view showing another example of a preferred embodiment of the light emitting device of the present invention.
In the example of the light emitting device 32 shown in FIG. 2, the inorganic reflective layer 3 having inorganic particles and an inorganic binder is provided on at least a part of the surface of the valve metal substrate 1. Furthermore, through holes (hereinafter sometimes referred to as through holes) 20 and 21 penetrating the valve metal substrate 1 and the inorganic reflective layer 3 are provided. A metal wiring layer 5 is provided on the inorganic reflective layer 3.
When the anodized film layer 2 is provided between the surface of the valve metal substrate 1 and the inorganic reflective layer, and the anodized film layer 2 is also provided on the inner surface of the through hole 20.21, the through hole serves as a conductive path. Since the insulating property of a through-hole is high when using, it is preferable. When the insulating properties of the through holes 20 and 21 are sufficient, the metal wiring layer 5 may be provided on at least a part of the through holes 20 and 21. When the metal wiring layer is provided on the through hole, when the through hole is filled with a conductive metal and used as a conductive path, the connection path is electrically connected between the metal wiring layer 5 and the conductive path. This is preferable because it can be shortened.
If the light-emitting device has a through hole, the light-emitting element 10 is flip-chip mounted (surface mounted) directly on the metal wiring layer 5 through the conductive bumps 17. Since the light emitting device 32 having this configuration does not use a bonding wire, there is no possibility that the bonding wire is peeled off or disconnected.
The inorganic reflection layer 3, the metal wiring layer 5, and the light emitting element 10 are sealed with a glass material layer 7 including a phosphor 6.
The surface of the valve metal substrate 1 opposite to the side on which the light emitting element 10 is mounted is penetrated by the through holes 20 and 21, and the electrode plate 15 is provided via an insulating layer such as the anodized film layer 2. It is done. In the example of the light emitting device 32 shown in FIG. 2, the electrode plate 15 and the light emitting element 10 can be electrically connected via the metal wiring layer 5 using the through hole 21 as a conductive path.
 [無機反射層]
 本発明の無機反射層は、後述する無機粒子と無機結着剤とを含有し、無機結着剤によって互いの一部が結着した多数の無機粒子からなる集合体である。無機反射層は、構成材料が無機成分であれば、特に限定されない。有機成分を含まないことが好ましい。無機反射層を無機材料のみで構成すれば、耐熱性、耐光性が高く、経年変化にも強い。
[Inorganic reflective layer]
The inorganic reflective layer of the present invention is an aggregate composed of a large number of inorganic particles that contain inorganic particles and an inorganic binder, which will be described later, and that are partially bound to each other by the inorganic binder. The inorganic reflective layer is not particularly limited as long as the constituent material is an inorganic component. It is preferable not to include an organic component. If the inorganic reflective layer is composed only of an inorganic material, it has high heat resistance and light resistance and is resistant to aging.
 本発明においては、上記無機反射層の厚さは、10μm以上であるのが好ましく、10~50μmであるのがより好ましく、20~40μmであるのがさらに好ましい。
 上記無機反射層の厚さが10μm以上であると、絶縁性が良好となる。また、上記無機反射層の厚さが50μm以下であると、可撓性が保持され、加工性、取扱性等が良好になるので好ましい。
In the present invention, the thickness of the inorganic reflective layer is preferably 10 μm or more, more preferably 10 to 50 μm, and even more preferably 20 to 40 μm.
When the thickness of the inorganic reflective layer is 10 μm or more, the insulating properties are good. Moreover, it is preferable that the thickness of the inorganic reflective layer is 50 μm or less because flexibility is maintained and processability, handling, and the like are improved.
 無機反射層は、バルブ金属基材上の後述する陽極酸化皮膜上に設けられる。具体的には、バルブ金属基材1上の一部に陽極酸化皮膜層2と無機反射層3とを有していてもよく、陽極酸化皮膜層2だけの部分が存在してもよい。実装する素子の形や配線の位置によって陽極酸化皮膜層である絶縁層や、無機反射層が必要な位置が異なり、各種のデザインで配置される必要があるからである。 The inorganic reflective layer is provided on an anodic oxide film described later on the valve metal substrate. Specifically, the anodized film layer 2 and the inorganic reflective layer 3 may be provided on a part of the valve metal substrate 1, or only the anodized film layer 2 may be present. This is because the position where the insulating layer, which is an anodized film layer, and the inorganic reflective layer are required differs depending on the shape of the element to be mounted and the position of the wiring, and it is necessary to arrange them in various designs.
 (無機結着剤)
 本発明の無機反射層では無機粒子の結着剤であるバインダーとして、リン酸アルミニウム、塩化アルミニウム、またはケイ酸ナトリウムを用いるのが好ましい。これらの2種以上の混合物を用いてもよい。
 無機結着剤は、後に説明する無機粒子同士を低温焼成によって結合し無機反射層を構成する物質である。詳細には以下が例示できる。
 (リン酸アルミニウム)
 上記リン酸アルミニウムは、メタリン酸アルミニウム、オルトリン酸アルミニウム、ポリリン酸アルミニウムが例示できる。
 (塩化アルミニウム)
 上記塩化アルミニウムは、塩化アルミニウム、無水塩化アルミニウム、塩化アルミニウム6水和物、ポリ塩化アルミニウム(水酸化アルミニウムを塩酸に溶解させて生成する塩基性塩化アルミニウムの重合体)が例示できる。
 (ケイ酸ナトリウム)
 上記ケイ酸ナトリウムは、ケイ酸ソーダまたは水ガラスとも呼ばれるものであり、メタケイ酸のナトリウム塩であるNaSiOが一般的だが、その他に、NaSiO、NaSi、NaSiなども用いることができる。メタケイ酸のナトリウム塩は、二酸化ケイ素を炭酸ナトリウムまたは水酸化ナトリウムと融解して得ることができる。
(Inorganic binder)
In the inorganic reflective layer of the present invention, it is preferable to use aluminum phosphate, aluminum chloride, or sodium silicate as a binder which is a binder for inorganic particles. A mixture of two or more of these may be used.
The inorganic binder is a substance that forms inorganic reflection layers by bonding inorganic particles described later by low-temperature firing. The following can be illustrated in detail.
(Aluminum phosphate)
Examples of the aluminum phosphate include aluminum metaphosphate, aluminum orthophosphate, and aluminum polyphosphate.
(Aluminum chloride)
Examples of the aluminum chloride include aluminum chloride, anhydrous aluminum chloride, aluminum chloride hexahydrate, and polyaluminum chloride (a polymer of basic aluminum chloride formed by dissolving aluminum hydroxide in hydrochloric acid).
(Sodium silicate)
The above-mentioned sodium silicate is also called sodium silicate or water glass, and is generally Na 2 SiO 3 which is a sodium salt of metasilicate, but Na 4 SiO 4 , Na 2 Si 2 O 5 , Na 2 Si 4 O 9 or the like can also be used. The sodium salt of metasilicic acid can be obtained by melting silicon dioxide with sodium carbonate or sodium hydroxide.
 (無機結着剤前駆物質)
 無機結着剤は無機結着剤前駆物質を水の存在下で反応させて得ることができる。
 無機結着剤前駆物質には、リン酸、塩酸、硫酸等の無機酸、アルミニウム、および酸化アルミニウム、硫酸アルミニウム、水酸化アルミニウム、塩化アルミニウム、リン酸アルミニウム等のアルミニウム化合物、およびこれらの混合物が挙げられる。反応物の中和が必要な場合は水酸化ナトリウム溶液を用いる。アルミニウム化合物はそれぞれの原料を無機結着剤前駆物質として反応させて製造してもよい。
 無機結着剤前駆物質には、上記アルミニウム塩のうち、水酸化アルミニウムと塩化アルミニウムの両方を添加することが好ましく、塩化アルミニウムの量が水酸化アルミニウムの量に対して5質量%~10質量%であることが好ましい。塩化アルミニウムは水酸化アルミニウムとリン酸との反応を触媒的に進行させる役割を有すると考えられ、上記範囲の量であることが好ましい。また、塩化アルミニウムと塩酸とを用いて、リン酸アルミニウム前駆物質を用いない場合は、無機結着剤である塩化アルミニウムが着色しないので光反射率が高い。
 リン酸アルミニウムに替えてまたはリン酸アルミニウムと共に、リン酸塩化合物を用いてもよく、リン酸塩化合物としては、水に不溶性であれば、特に限定する必要はない。具体例としてリン酸マグネシウム、リン酸カルシウム、リン酸亜鉛、リン酸バリウム、リン酸アルミニウム、リン酸ガリウム、リン酸ランタン、リン酸チタニウム、リン酸ジルコニウムを挙げることが出来る。リン酸アルミニウムが好ましく、他のリン酸塩と混合する場合は50質量%以上がリン酸アルミニウムであるのが好ましい。
 ケイ酸ナトリウムを用いる場合は、水に溶かし加熱して水ガラスとして適切な粘度に調整して無機結着剤前駆物質として用いる。
 これらの無機結着剤前駆物質は目的とする無機結着剤を生成するように任意の組合せで混合して用いることができる。
(Inorganic binder precursor)
The inorganic binder can be obtained by reacting an inorganic binder precursor in the presence of water.
Inorganic binder precursors include inorganic acids such as phosphoric acid, hydrochloric acid, sulfuric acid, aluminum, and aluminum compounds such as aluminum oxide, aluminum sulfate, aluminum hydroxide, aluminum chloride, aluminum phosphate, and mixtures thereof. It is done. If neutralization of the reactant is necessary, sodium hydroxide solution is used. The aluminum compound may be produced by reacting each raw material as an inorganic binder precursor.
Of the above aluminum salts, it is preferable to add both aluminum hydroxide and aluminum chloride to the inorganic binder precursor, and the amount of aluminum chloride is 5% by mass to 10% by mass with respect to the amount of aluminum hydroxide. It is preferable that Aluminum chloride is considered to have a role of catalytically promoting the reaction between aluminum hydroxide and phosphoric acid, and the amount is preferably in the above range. In addition, when aluminum chloride and hydrochloric acid are used and the aluminum phosphate precursor is not used, aluminum chloride, which is an inorganic binder, is not colored, so that the light reflectance is high.
A phosphate compound may be used instead of or together with aluminum phosphate, and the phosphate compound is not particularly limited as long as it is insoluble in water. Specific examples include magnesium phosphate, calcium phosphate, zinc phosphate, barium phosphate, aluminum phosphate, gallium phosphate, lanthanum phosphate, titanium phosphate, and zirconium phosphate. Aluminum phosphate is preferable, and when mixed with other phosphates, 50% by mass or more is preferably aluminum phosphate.
When sodium silicate is used, it is dissolved in water, heated and adjusted to a viscosity suitable for water glass, and used as an inorganic binder precursor.
These inorganic binder precursors can be mixed and used in any combination so as to produce the desired inorganic binder.
 (無機粒子)
 本発明においては、上記無機粒子は特に限定されず、例えば、従来公知の金属酸化物、金属水酸化物、炭酸塩、硫酸化物などの無機塩を用いることができ、中でも、金属酸化物を用いるのが好ましい。
 上記無機粒子としては、具体的には、例えば、酸化アルミニウム(アルミナ)、酸化マグネシウム、酸化イットリウム、酸化チタン、酸化亜鉛、二酸化ケイ素、酸化ジルコニウムなどの金属酸化物;水酸化アルミニウム、水酸化カルシウム、水酸化マグネシウムなどの水酸化物;炭酸カルシウム(軽質炭酸カルシウム、重質炭酸カルシウム、極微細炭酸カルシウムなど)、炭酸バリウム、炭酸マグネシウム、炭酸ストロンチウムなどの炭酸塩; 硫酸カルシウム、硫酸バリウムなどの硫酸化物;また、その他に、カルシウムカーボネート、方解石、大理石、石膏、カオリンクレー、焼成クレー、タルク、セリサイト、光学ガラス、ガラスビーズなどが挙げられる。
 この中でも、後述する無機結着剤との親和性が良好となる理由から、酸化アルミニウム、二酸化ケイ素、水酸化アルミニウム、硫酸バリウムが好ましい。
(Inorganic particles)
In the present invention, the inorganic particles are not particularly limited, and for example, conventionally known inorganic salts such as metal oxides, metal hydroxides, carbonates, and sulfates can be used, and among them, metal oxides are used. Is preferred.
Specific examples of the inorganic particles include metal oxides such as aluminum oxide (alumina), magnesium oxide, yttrium oxide, titanium oxide, zinc oxide, silicon dioxide, and zirconium oxide; aluminum hydroxide, calcium hydroxide, Hydroxides such as magnesium hydroxide; calcium carbonate (light calcium carbonate, heavy calcium carbonate, ultrafine calcium carbonate, etc.), carbonates such as barium carbonate, magnesium carbonate, strontium carbonate; sulfates such as calcium sulfate and barium sulfate Other examples include calcium carbonate, calcite, marble, gypsum, kaolin clay, calcined clay, talc, sericite, optical glass, glass beads, and the like.
Among these, aluminum oxide, silicon dioxide, aluminum hydroxide, and barium sulfate are preferable because of their good affinity with the inorganic binder described later.
 好適な無機反射層に用いる無機粒子は、屈折率が、1.5以上1.8以下であり、好ましくは1.55以上1.75以下である。屈折率がこの範囲であると得られる無機反射層の反射率が高い。この理由は、空気との反射率の差異によるものであると考えられる。
 無機粒子の平均粒子径は、好ましくは0.1μm以上5μm以下である。より好ましくは0.5~2μmであり、さらに好ましくは0.5~1.5μmである。平均粒子径がこの範囲の無機粒子を用いると、粒子間に適切な空隙を確保することができ、陽極酸化皮膜層との密着性も得ることができると考えられる。平均粒径が0.1μm以上5μm以下であると反射率に優れ、陽極酸化皮膜層との密着性に優れる。
The inorganic particles used in a suitable inorganic reflective layer have a refractive index of 1.5 or more and 1.8 or less, preferably 1.55 or more and 1.75 or less. When the refractive index is within this range, the obtained inorganic reflective layer has a high reflectance. This reason is considered to be due to a difference in reflectance from air.
The average particle diameter of the inorganic particles is preferably 0.1 μm or more and 5 μm or less. More preferably, it is 0.5-2 μm, and still more preferably 0.5-1.5 μm. When inorganic particles having an average particle diameter in this range are used, it is considered that appropriate voids can be secured between the particles and adhesion with the anodized film layer can be obtained. When the average particle size is 0.1 μm or more and 5 μm or less, the reflectance is excellent and the adhesion with the anodized film layer is excellent.
 ここで、平均粒子径とは、上記無機粒子の粒子径の平均値をいい、本発明においては、例えばレーザー回折式粒度分布測定装置(レーザー回折/散乱式粒子径分布測定装置、Partica LA-910、堀場製作所社製など)を用いて測定された50%体積累積径(D50)をいう。
 従来技術における1000℃以上などの高温焼結で無機粒子を結着させ、いわゆるセラミック層を製造する工程では、層中に特定の空隙を確保するためには高温焼結の進行の制御が必要であるが、本発明の好ましい無機反射層は上記の無機結着剤を用いて製造する無機反射層が低温で加熱乾燥でき、高温焼結を行なわないので原料としての無機粒子の平均粒子径が重要なファクターである。
Here, the average particle diameter means an average value of the particle diameters of the inorganic particles. In the present invention, for example, a laser diffraction particle size distribution measuring device (laser diffraction / scattering particle size distribution measuring device, Partica LA-910). And 50% volume cumulative diameter (D50) measured using HORIBA, Ltd.
In the process of manufacturing the so-called ceramic layer by binding inorganic particles by high-temperature sintering such as 1000 ° C. or higher in the prior art, it is necessary to control the progress of high-temperature sintering in order to secure specific voids in the layer. However, the preferred inorganic reflective layer of the present invention is that the inorganic reflective layer produced using the above inorganic binder can be dried by heating at a low temperature and does not sinter at a high temperature, so the average particle size of the inorganic particles as a raw material is important. Factor.
 上記無機粒子としては限定されないが例えば以下の無機粒子が例示できる。
 酸化アルミニウム(アルミナ)(屈折率n=1.65~1.76、以下、括弧内の数字は屈折率である)、水酸化アルミニウム(1.58~1.65~1.76)、水酸化カルシウム(1.57~1.6)、炭酸カルシウム(1.58)、方解石(1.61)、カルシウムカーボネート(1.61)、軽質炭酸カルシウム(1.59)、重質炭酸カルシウム(1.56)、極微細炭酸カルシウム(1.57)、石膏(1.55)、硫酸カルシウム(1.59)、大理石(1.57)、硫酸バリウム(1.64)、炭酸バリウム(1.6)、酸化マグネシウム(1.72)、炭酸マグネシウム(1.52)、水酸化マグネシウム(1.58)、炭酸ストロンチウム(1.52)、カオリンクレー(1.56)、焼成クレー(1.62)、タルク(1.57)、セリサイト(1.57)、光学ガラス(1.51~1.64)、ガラスビーズ(1.51)。用いる粒子の素材は上記の範囲の屈折率を満たせば良く、焼結という工程が無いため、酸化物に限らず各種の無機塩を用いる事が出来る。
Although it does not limit as said inorganic particle, For example, the following inorganic particles can be illustrated.
Aluminum oxide (alumina) (refractive index n = 1.65 to 1.76, hereinafter the number in parentheses is the refractive index), aluminum hydroxide (1.58 to 1.65 to 1.76), hydroxide Calcium (1.57 to 1.6), calcium carbonate (1.58), calcite (1.61), calcium carbonate (1.61), light calcium carbonate (1.59), heavy calcium carbonate (1. 56), ultrafine calcium carbonate (1.57), gypsum (1.55), calcium sulfate (1.59), marble (1.57), barium sulfate (1.64), barium carbonate (1.6) , Magnesium oxide (1.72), magnesium carbonate (1.52), magnesium hydroxide (1.58), strontium carbonate (1.52), kaolin clay (1.56), calcined clay (1.62), talc 1.57), sericite (1.57), optical glass (1.51 to 1.64), glass beads (1.51). The material of the particles to be used only needs to satisfy the refractive index in the above range, and since there is no step of sintering, various inorganic salts can be used without being limited to oxides.
 また、上記特性を満たすものであれば2種類以上の粒子または2種類以上の平均粒子径を有する粒子を混合して使用してもよい。異なる粒径の粒子や異なる素材のものを組み合わせることにより、膜強度の向上や、基板との密着強度の向上を図ることが出来る。
 さらには塗布面の性状の改良で表面が滑らかになる効果も期待できる。
Further, two or more kinds of particles or two or more kinds of particles having an average particle diameter may be mixed and used as long as the above characteristics are satisfied. By combining particles of different particle diameters or different materials, it is possible to improve the film strength and the adhesion strength with the substrate.
Furthermore, the effect of smoothing the surface by improving the properties of the coated surface can be expected.
 更に、上記無機粒子の形状は特に限定はされず、例えば、球状、多面体状(例えば、20面体状、12面体状等)、立方体状、4面体状、表面に凹凸状ないし凸状の突起を複数有する形状(以下、「コンペイトウ形状」ともいう。)、板状、針状等いずれであってもよい。
 これらのうち、断熱性に優れる理由から、球状、多面体状、立方体状、4面体状、コンペイトウ形状が好ましく、入手が容易で断熱性により優れる理由から、球状であるのがより好ましい。
Further, the shape of the inorganic particles is not particularly limited, and for example, spherical, polyhedral (for example, icosahedron, dodecahedron, etc.), cubic, tetrahedral, and uneven or convex protrusions on the surface. Any of a plurality of shapes (hereinafter, also referred to as “compete shape”), a plate shape, a needle shape, or the like may be used.
Among these, spherical, polyhedral, cubic, tetrahedral, and complex shapes are preferred for the reason of excellent heat insulation, and spherical is more preferred for reasons of easy availability and excellent heat insulation.
 (無機反射層)
 上記で例示する好適な無機反射層は、加熱乾燥後の単位面積当たりの質量で、20g/m~500g/mとするのが好ましい。この範囲であると、空隙をその内部に残しているために光の透過が抑制され、反射率が高い。上記の特定の無機結着剤を用いる事で高温焼結を不要とし、より低コストで無機反射層を製造することが可能である。無機反射層は無機材料であり、経年変化にも強い。更に、反射層形成時に基板の陽極酸化皮膜と反応して、基板との密着性も担保する事が可能となる。
 好適な無機反射層中の無機粒子の量と、リン酸アルミニウム、塩化アルミニウム、およびケイ酸ナトリウムからなる群から選択される少なくとも一つの無機結着剤の量とは、無機粒子100質量部に対して無機結着剤5~100質量部が好ましく、10~50質量部がより好ましい。
 好適な無機反射層には、上記無機粒子と無機結着剤以外に、他の化合物を含有してもよい。他の化合物としては、例えば、分散剤、反応促進剤等が挙げられ、また、これらと、上記無機粒子、無機結着剤前駆物質、無機粒子と無機結着剤との反応生成物等が挙げられる。
(Inorganic reflective layer)
The preferred inorganic reflective layer exemplified above is preferably 20 g / m 2 to 500 g / m 2 in terms of mass per unit area after heat drying. Within this range, the air gap is left in the interior, so light transmission is suppressed and the reflectance is high. By using the specific inorganic binder described above, high temperature sintering is unnecessary, and an inorganic reflective layer can be produced at a lower cost. The inorganic reflective layer is an inorganic material and is resistant to aging. Furthermore, it reacts with the anodized film of the substrate when forming the reflective layer, and it is possible to ensure adhesion with the substrate.
The amount of inorganic particles in a suitable inorganic reflective layer and the amount of at least one inorganic binder selected from the group consisting of aluminum phosphate, aluminum chloride, and sodium silicate are based on 100 parts by mass of the inorganic particles. The inorganic binder is preferably 5 to 100 parts by mass, more preferably 10 to 50 parts by mass.
A suitable inorganic reflective layer may contain other compounds in addition to the inorganic particles and the inorganic binder. Examples of other compounds include dispersants, reaction accelerators, and the like, and these and the above inorganic particles, inorganic binder precursors, reaction products of inorganic particles and inorganic binders, and the like. It is done.
 <好適な無機反射層の製造方法>
 以上で説明した好適な無機反射層の製造方法は、特に限定されないが、以下で説明するバインダー液として無機結着剤および/または無機結着剤前駆物質と無機粒子を混合して、この混合液を塗布膜厚が調整可能なコーターを用いて陽極酸化皮膜層上に所定量塗布し、その後100℃~300℃で、10~60分間、加熱処理(低温焼成)するのが好ましい。
 塗布方法は特に限定されず、種々の方法を用いることができるが、例えば、バーコーター塗布、回転塗布、スプレー塗布、カーテン塗布、ディップ塗布、エアーナイフ塗布、ブレード塗布、ロール塗布等を挙げることができる。
 反応式に従う化学量論組成比で無機結着剤前駆物質と無機粒子との水分散体を調整すると、反応が進むとともに液の粘度が急激に上昇する。このような現象を回避し安定的に無機反射層を形成させる目的で予め若干の水を添加しておくことが望ましい。また、陽極酸化皮膜層中にリン酸根や塩酸根が残存する事は基板の腐食や、LEDの封止材の劣化などをもたらす事があり望ましくない。よって化学量論比に対しリン酸または塩酸以外の成分の量を若干過剰に処方しておくことが望ましい。
 加熱乾燥後の皮膜中にリン酸アルミニウム、塩化アルミニウム、またはケイ酸ナトリウムが生成していることは赤外分光光度計で皮膜表面を分析すれば容易に確認する事が出来る。
<The manufacturing method of a suitable inorganic reflection layer>
The method for producing a suitable inorganic reflective layer described above is not particularly limited, but an inorganic binder and / or an inorganic binder precursor and inorganic particles are mixed as a binder liquid described below, and this mixed liquid is mixed. It is preferable to apply a predetermined amount on the anodized film layer using a coater whose film thickness can be adjusted, and then heat treatment (low temperature firing) at 100 to 300 ° C. for 10 to 60 minutes.
The coating method is not particularly limited, and various methods can be used. Examples thereof include bar coater coating, spin coating, spray coating, curtain coating, dip coating, air knife coating, blade coating, and roll coating. it can.
When the aqueous dispersion of the inorganic binder precursor and the inorganic particles is adjusted with a stoichiometric composition ratio according to the reaction formula, the reaction proceeds and the viscosity of the liquid increases rapidly. In order to avoid such a phenomenon and form an inorganic reflective layer stably, it is desirable to add some water in advance. In addition, it is not desirable that phosphate groups or hydrochloric acid groups remain in the anodized film layer, which may cause corrosion of the substrate or deterioration of the LED sealing material. Therefore, it is desirable to prescribe a slightly excessive amount of components other than phosphoric acid or hydrochloric acid with respect to the stoichiometric ratio.
The formation of aluminum phosphate, aluminum chloride, or sodium silicate in the heat-dried film can be easily confirmed by analyzing the film surface with an infrared spectrophotometer.
 また、無機反射層を異なる組成のバインダー液を2種類以上調整して陽極酸化皮膜上に順次塗布することにより2層以上とすることもできる。2層以上の無機反射層を組み合わせることにより、無機反射層強度の向上や、基板との密着強度の向上を図ることが出来る。さらには塗布面の性状の改良で表面が滑らかになる効果も期待できる。 It is also possible to adjust the inorganic reflective layer to two or more layers by adjusting two or more kinds of binder liquids having different compositions and sequentially applying the binder liquid onto the anodized film. By combining two or more inorganic reflective layers, it is possible to improve the strength of the inorganic reflective layer and the strength of adhesion to the substrate. Furthermore, the effect of smoothing the surface by improving the properties of the coated surface can be expected.
 (低温焼成)
 上記の低温焼成により、反応を進め無機粒子同士を反応により生成する無機結着剤により結着する。
 低温焼成温度は100℃~300℃であり、150℃~300℃であるのが好ましく、180℃~250℃である事がより好ましい。
 100℃未満では水分の除去が適わず、300℃超ではアルミニウム基材の強度変化が起こるので望ましくない。また、無機結着剤前駆物質間の反応を進め、結着させるには150℃以上の温度が望ましく、さらに得られる無機結着剤に残存する吸着水を完全に除去するためには180℃以上であることが望ましい。250℃を超えた温度で長時間処理を行なうとバルブ金属基材の強度が変化するため、250℃以下で処理する事が望ましい。
 焼成時間は10分~60分であり、20分~40分が更に好ましい。短時間では反応の進捗が不十分であり、長時間になると焼成温度との関係でバルブ金属基材、特にアルミニウム金属基材の強度変化をきたす。60分以上では製造コスト的にも望ましくない。この理由から、焼成時間は20分~40分がもっとも好ましい。
 バインダー液は水分を含む液であるため、塗布後上記低温焼成処理の前に乾燥工程を入れてもよい。リン酸アルミニウム等の無機結着剤の生成反応や無機粒子の結着反応を起こさない100℃以下の温度で乾燥させる。
(Low temperature firing)
By the above-mentioned low-temperature firing, the reaction proceeds and the inorganic particles are bound by an inorganic binder that is generated by the reaction.
The low-temperature firing temperature is 100 ° C. to 300 ° C., preferably 150 ° C. to 300 ° C., and more preferably 180 ° C. to 250 ° C.
If it is less than 100 ° C., moisture removal is not suitable, and if it exceeds 300 ° C., the strength of the aluminum substrate changes, which is not desirable. In addition, a temperature of 150 ° C. or higher is desirable for proceeding and binding the reaction between the inorganic binder precursors, and 180 ° C. or higher for completely removing the adsorbed water remaining in the obtained inorganic binder. It is desirable that When the treatment is performed for a long time at a temperature exceeding 250 ° C., the strength of the valve metal base material is changed.
The firing time is 10 minutes to 60 minutes, more preferably 20 minutes to 40 minutes. In a short time, the progress of the reaction is insufficient, and when the time is long, the strength of the valve metal substrate, particularly the aluminum metal substrate, changes in relation to the firing temperature. If it is more than 60 minutes, it is not desirable in terms of production cost. For this reason, the firing time is most preferably 20 minutes to 40 minutes.
Since the binder liquid is a liquid containing water, a drying step may be performed after the coating and before the low-temperature baking treatment. Drying is performed at a temperature of 100 ° C. or lower which does not cause a formation reaction of an inorganic binder such as aluminum phosphate or a binding reaction of inorganic particles.
 得られた無機反射層は、親水化処理、加熱水蒸気処理、ポリジメチルシロキサンの修飾処理等の表面処理を行ってもよい。これらの処理のいずれかの処理を行うと後に説明する金属配線層、ガラス材料層との密着性が高くなるので好ましい。 The obtained inorganic reflective layer may be subjected to a surface treatment such as a hydrophilization treatment, a heating steam treatment, or a polydimethylsiloxane modification treatment. It is preferable to perform any of these treatments because adhesion to a metal wiring layer and a glass material layer described later is enhanced.
 (親水化処理)
 本発明においては、好適な無機反射層は、上記低温焼成処理を施した後に、親水化処理をしてもよい。
 上記親水化処理の方法としては、具体的には、例えば、アルカリ金属ケイ酸塩の水溶液に浸漬させる方法等が挙げられる。
(Hydrophilic treatment)
In the present invention, a suitable inorganic reflective layer may be subjected to a hydrophilic treatment after the low-temperature baking treatment.
Specific examples of the hydrophilic treatment method include a method of immersing in an aqueous solution of an alkali metal silicate.
 ここで、アルカリ金属ケイ酸塩の水溶液を用いた親水化処理は、米国特許第2,714,066号明細書および米国特許第3,181,461号明細書に記載されている方法および手順に従って行うことができる。 Here, the hydrophilization treatment using an aqueous solution of alkali metal silicate is performed according to the method and procedure described in US Pat. No. 2,714,066 and US Pat. No. 3,181,461. It can be carried out.
 上記アルカリ金属ケイ酸塩としては、具体的には、例えば、ケイ酸ナトリウム、ケイ酸カリウム、ケイ酸リチウム等が挙げられる。
 また、上記アルカリ金属ケイ酸塩の水溶液は、更に、水酸化ナトリウム、水酸化カリウム、水酸化リチウム等を含有してもよい。
Specific examples of the alkali metal silicate include sodium silicate, potassium silicate, and lithium silicate.
The aqueous solution of the alkali metal silicate may further contain sodium hydroxide, potassium hydroxide, lithium hydroxide and the like.
 更に、上記アルカリ金属ケイ酸塩の水溶液は、更に、アルカリ土類金属塩または4族(第IVA族)金属塩を含有してもよい。
 ここで、上記アルカリ土類金属塩としては、具体的には、例えば、硝酸カルシウム、硝酸ストロンチウム、硝酸マグネシウム、硝酸バリウム等の硝酸塩;硫酸塩;塩酸塩;リン酸塩;酢酸塩;シュウ酸塩;ホウ酸塩;等が挙げられる。
 また、上記4族(第IVA族)金属塩としては、具体的には、例えば、四塩化チタン、三塩化チタン、フッ化チタンカリウム、シュウ酸チタンカリウム、硫酸チタン、四ヨウ化チタン、塩化酸化ジルコニウム、二酸化ジルコニウム、オキシ塩化ジルコニウム、四塩化ジルコニウム等が挙げられる。
 これらのアルカリ土類金属塩および4族(第IVA族)金属塩は、一種単独で用いてもよく、2種以上を併用してもよい。
 上記親水化処理は、上記アルカリ金属ケイ酸塩の水溶液を用いた場合、アルカリ金属ケイ酸塩の水溶液は、ケイ酸塩の成分である酸化ケイ素SiO2とアルカリ金属酸化物M2Oの比率(一般に〔SiO2〕/〔M2O〕のモル比で表す。)と濃度によって保護膜厚の調節が可能である。
 ここで、Mとしては、特にナトリウム、カリウムが好適に用いられる。
 また、モル比は、〔SiO2〕/〔M2O〕が0.1~5.0が好ましく、0.5~3.0がより好ましい。 更に、SiO2の含有量は、0.1~20質量%が好ましく、0.5~10質量%がより好ましい。
Furthermore, the aqueous solution of the alkali metal silicate may further contain an alkaline earth metal salt or a Group 4 (Group IVA) metal salt.
Here, specific examples of the alkaline earth metal salt include nitrates such as calcium nitrate, strontium nitrate, magnesium nitrate, and barium nitrate; sulfates; hydrochlorides; phosphates; acetates; Borate; and the like.
Specific examples of the Group 4 (Group IVA) metal salt include, for example, titanium tetrachloride, titanium trichloride, potassium fluoride titanium, potassium oxalate, titanium sulfate, titanium tetraiodide, and chloride oxidation. Zirconium, zirconium dioxide, zirconium oxychloride, zirconium tetrachloride and the like can be mentioned.
These alkaline earth metal salts and Group 4 (Group IVA) metal salts may be used alone or in combination of two or more.
In the hydrophilization treatment, when an aqueous solution of the alkali metal silicate is used, the aqueous solution of the alkali metal silicate is a ratio of silicon oxide SiO 2 and alkali metal oxide M 2 O, which are components of the silicate ( In general, the protective film thickness can be adjusted by the concentration of [SiO 2 ] / [M 2 O]) and the concentration.
Here, as M, sodium and potassium are particularly preferably used.
The molar ratio of [SiO 2 ] / [M 2 O] is preferably 0.1 to 5.0, more preferably 0.5 to 3.0. Further, the content of SiO 2 is preferably 0.1 to 20% by mass, and more preferably 0.5 to 10% by mass.
 また、上記アルカリ金属ケイ酸塩の水溶液の温度は、1~70℃であるのが好ましく、2~50℃であるのがより好ましく、3~35℃であるのが更に好ましい。
 また、上記アルカリ金属ケイ酸塩の水溶液を用いた場合の処理時間は、5秒~90分であるのが好ましく、8秒~60分であるのが好ましく、12秒~30分であるのが更に好ましい。
The temperature of the aqueous alkali metal silicate solution is preferably 1 to 70 ° C., more preferably 2 to 50 ° C., and still more preferably 3 to 35 ° C.
Further, the treatment time in the case of using the alkali metal silicate aqueous solution is preferably 5 seconds to 90 minutes, more preferably 8 seconds to 60 minutes, and preferably 12 seconds to 30 minutes. Further preferred.
 (加熱水蒸気処理)
 本発明においては、上記低温焼成処理を施した後に、加熱水蒸気処理をしてもよい。加熱水蒸気処理は、温度と圧力の条件から、沸騰水処理、熱水処理、蒸気処理、等を含む処理である。
 使用される水は、イオン交換水、蒸留水、天然水、水道水等のいずれでも使用できるがイオン交換水、蒸留水が好ましい。またこれらの水に対し処理の促進、水中の金属イオンの封鎖剤として、有機溶媒、アミン化合物、有機酸、リンまたは硼素の酸素酸塩等を単独または二種類以上混合してもよい。また、使用される水は、リチウム、ナトリウムあるいはマグネシウムなどのアルカリ金属アルカリ土類金属などのイオンを含んでも良い。
 水蒸気を使用して連続的に表面処理することが好ましく、水蒸気処理する場合の温度は約80℃~200℃で、好ましくは約90℃~120℃である。処理時間は3秒~30分で、好ましくは5秒~10分である。水素イオン濃度は約2~11が適切で、好ましくは約3~10である。加圧水蒸気で処理する時の圧力は約1~15kg/cm(絶対圧)が適切であり、好ましくは約1~5kg/cmが好ましい。
 工業的には、処理室内に設けられた水槽内の水の温度を加熱し、それによって処理室内の温度を80℃以上105℃以下にし、処理室内圧として常圧に対し-50~300mmAqに保った状態の中を、加熱水蒸気処理が必要な無機反射層を通過させる方法を行ってもよい。
(Heated steam treatment)
In the present invention, the steam treatment may be performed after the low-temperature firing treatment. The heated steam treatment is a treatment including boiling water treatment, hot water treatment, steam treatment, and the like based on temperature and pressure conditions.
The water used may be any of ion exchange water, distilled water, natural water, tap water, etc., but ion exchange water and distilled water are preferred. Further, as an accelerator for these waters and a sequestering agent for metal ions in the water, an organic solvent, an amine compound, an organic acid, phosphorus or boron oxyacid salt, or the like may be used alone or in combination. The water used may also contain ions of alkali metal alkaline earth metals such as lithium, sodium or magnesium.
The surface treatment is preferably carried out continuously using water vapor, and the temperature for the water vapor treatment is about 80 ° C. to 200 ° C., preferably about 90 ° C. to 120 ° C. The treatment time is 3 seconds to 30 minutes, preferably 5 seconds to 10 minutes. The hydrogen ion concentration is suitably about 2 to 11, preferably about 3 to 10. About 1 to 15 kg / cm 2 (absolute pressure) is appropriate as the pressure when treating with pressurized steam, and preferably about 1 to 5 kg / cm 2 is preferred.
Industrially, the temperature of water in a water tank provided in the processing chamber is heated, whereby the temperature in the processing chamber is set to 80 ° C. or more and 105 ° C. or less, and the processing chamber pressure is maintained at −50 to 300 mmAq with respect to normal pressure. Alternatively, a method may be used in which the inorganic reflective layer requiring heating steam treatment is passed through the state.
 (ポリジメチルシロキサンの修飾処理)
 ポリジメチルシロキサンなどのポリオルガノシロキサン類を1種または混合して用いて光透過性柔軟膜を無機反射層表面に形成してもよい。ポリオルガノシロキサン類を水溶液または有機溶媒で希釈して、無機反射層上に塗布したり、スプレーしたり、液中に浸漬する。無機反射層がポリジメチルシロキサンで修飾されているとその上層に設けられるガラス材料層との密着性が高くなる。
(Modification treatment of polydimethylsiloxane)
A light transmissive flexible film may be formed on the surface of the inorganic reflective layer using one or a mixture of polyorganosiloxanes such as polydimethylsiloxane. The polyorganosiloxane is diluted with an aqueous solution or an organic solvent, and applied onto the inorganic reflective layer, sprayed, or immersed in the liquid. When the inorganic reflective layer is modified with polydimethylsiloxane, the adhesiveness with the glass material layer provided thereon is increased.
 [金属配線層]
 金属配線層は、本発明の発光装置の無機反射層の少なくとも一部の表面に形成される。
 ここで、「無機反射層の少なくとも一部の表面に形成される」とは、金属配線層を無機反射層上、または、無機反射層上および無機反射層中に形成させることであり、金属配線層を形成する材料の一部が無機反射層中に入り込み、残部が無機反射層上に形成される場合を含む。
 本発明においては、上記無機反射層が多孔質であるため、その表面に形成される金属配線層は、アンカー効果により無機反射層との密着性が良好となる。
[Metal wiring layer]
The metal wiring layer is formed on at least a part of the surface of the inorganic reflective layer of the light emitting device of the present invention.
Here, “formed on at least a part of the surface of the inorganic reflective layer” means that the metal wiring layer is formed on the inorganic reflective layer or on the inorganic reflective layer and in the inorganic reflective layer. This includes a case where a part of the material forming the layer enters the inorganic reflective layer and the rest is formed on the inorganic reflective layer.
In this invention, since the said inorganic reflection layer is porous, the metal wiring layer formed in the surface becomes favorable [adhesiveness with an inorganic reflection layer] by an anchor effect.
 上記金属配線層の材料は、電気を通す素材(以下、「金属素材」ともいう。)であれば特に限定されず、その具体例としては、金(Au)、銀(Ag)、銅(Cu)、アルミニウム(Al)、マグネシウム(Mg)、ニッケル(Ni)等が挙げられ、これらを1種単独で使用してもよく2種以上を併用してもよい。これらのうち、電気抵抗が低い理由からCuを用いるのが好ましい。
 また、上記金属配線層は、これらの材料を用いた多層構造であってもよく、例えば、最下層からAg層、Ni層およびAu層をこの順で設ける態様が好適に挙げられる。
The material of the metal wiring layer is not particularly limited as long as it is a material that conducts electricity (hereinafter also referred to as “metal material”). Specific examples thereof include gold (Au), silver (Ag), and copper (Cu ), Aluminum (Al), magnesium (Mg), nickel (Ni) and the like, and these may be used alone or in combination of two or more. Of these, Cu is preferably used because of its low electrical resistance.
The metal wiring layer may have a multilayer structure using these materials. For example, an embodiment in which an Ag layer, a Ni layer, and an Au layer are provided in this order from the bottom layer is preferable.
 上記金属配線層の厚さは、目的や用途に応じて所望の厚さとすればよいが、導通信頼性およびパッケージのコンパクト性の観点から、0.5~1000μmが好ましく、1~500μmがより好ましく、5~250μmが特に好ましい。
 また、上記金属配線層が多層構造である場合、最下層(例えば、Ag層)の厚みは、上記受容層中の微小空隙の存在を考慮して、金属配線層全体の厚みの50%以上であるのが好ましく、70~80%であるのがより好ましい。具体的には、10~50μmであるのが好ましく、15~40μmであるのがより好ましい。
 同様に、上記金属配線層が多層構造である場合、最上層(例えば、Au層)の厚みは、ワイヤボンディング性を考慮して、0.05~0.5μmであるのが好ましく、0.1~0.4μmであるのがより好ましい。
The thickness of the metal wiring layer may be a desired thickness depending on the purpose and application, but is preferably 0.5 to 1000 μm, more preferably 1 to 500 μm from the viewpoint of conduction reliability and package compactness. 5 to 250 μm is particularly preferable.
Further, when the metal wiring layer has a multilayer structure, the thickness of the lowermost layer (for example, Ag layer) is 50% or more of the total thickness of the metal wiring layer in consideration of the presence of minute voids in the receiving layer. It is preferable that it is 70 to 80%. Specifically, the thickness is preferably 10 to 50 μm, more preferably 15 to 40 μm.
Similarly, when the metal wiring layer has a multilayer structure, the thickness of the uppermost layer (for example, Au layer) is preferably 0.05 to 0.5 μm in consideration of wire bonding properties, More preferably, the thickness is ~ 0.4 μm.
 <金属配線層の形成>
 上記金属配線層の形成方法としては、例えば、上記金属素材および液体成分(例えば、溶媒、樹脂成分など)を含有する金属インクをインクジェット印刷法、スクリーン印刷法等により上記受容層上にパターン印刷する方法等が挙げられる。
 このような形成方法により、凹凸のある受容層の表面に多くの工程を必要とせずに簡易にパターンを有する配線層を形成することができる。
<Formation of metal wiring layer>
As a method for forming the metal wiring layer, for example, a metal ink containing the metal material and a liquid component (for example, a solvent, a resin component, etc.) is pattern-printed on the receiving layer by an inkjet printing method, a screen printing method, or the like. Methods and the like.
By such a forming method, it is possible to easily form a wiring layer having a pattern on the surface of the uneven receiving layer without requiring many steps.
 また、その他の上記金属配線層の形成方法としては、例えば、電解めっき処理、無電解めっき処理、置換めっき処理などの種々のめっき処理の他、スパッタリング処理、蒸着処理、金属箔の真空貼付処理、接着層を設けての接着処理等が挙げられる。
 金属配線層が多層構造である場合は、2層以上の層は電解めっき処理で製造されるのが好ましい。
In addition, as other methods for forming the metal wiring layer, for example, various plating treatments such as electrolytic plating treatment, electroless plating treatment, displacement plating treatment, sputtering treatment, vapor deposition treatment, vacuum pasting treatment of metal foil, Examples include an adhesion treatment with an adhesive layer.
When the metal wiring layer has a multilayer structure, it is preferable that two or more layers are manufactured by electrolytic plating.
 [ガラス材料層]
 ガラス材料層は、ガラス材料と、その中に混入された蛍光体とを含む。蛍光体は、発光素子から照射される光に対して光透過性を有し且つ発光素子から照射される光を吸収して他の発光波長に変換する蛍光体材料より成る。
 本発明の好ましい態様では、上記ガラス材料層は、PbO、Ga、Bi、CdO、ZnO、BaOおよびAlから選択されるグループの少なくともいずれか1つを含むSiOまたはこれらを実質的に含まないSiOからなる。
[Glass material layer]
The glass material layer includes a glass material and a phosphor mixed therein. The phosphor is made of a phosphor material that is transparent to the light emitted from the light emitting element and absorbs the light emitted from the light emitting element and converts it to another emission wavelength.
In a preferred aspect of the present invention, the glass material layer includes SiO 2 including at least one of a group selected from PbO, Ga 2 O 3 , Bi 2 O 3 , CdO, ZnO, BaO, and Al 2 O 3. or made of SiO 2 which does not contain these substantially.
 このようにガラス材料層の構成を工夫して、PbO、Ga、Bi、CdO、ZnO、BaOおよびAlからから選択される化合物を含有させる理由は以下の通りである。発光素子とその周りのガラス材料層等のパッケージング材料の界面で反射を起こす。全反射が生じる割合は、屈折率の差が多いほど多くなる。全反射が起こると、内部に光が跳ねかえされてしまうので、光の外部取り出し効率が下がる。したがって、発光体からの光を効率よく空気に伝達するためには、発光体からの光が通過する界面における反射を極力少なくすることが望ましい。このためには、それぞれの界面における屈折率の差を小さくすることが必要である。発光装置が発光素子、ガラス材料層の2層からなる場合には、界面は、発光素子とガラス材料層、ガラス材料層と空気層との2つが存在することとなるから、発光素子からの光の反射量を少なくするためには、2つの界面においてそれぞれ、屈折率の差を小さくすることが望ましい。 The reason for incorporating the compound selected from PbO, Ga 2 O 3 , Bi 2 O 3 , CdO, ZnO, BaO and Al 2 O 3 by devising the configuration of the glass material layer as described above is as follows. is there. Reflection occurs at the interface between the light emitting element and the surrounding packaging material such as a glass material layer. The ratio at which total reflection occurs increases as the difference in refractive index increases. When total reflection occurs, the light is bounced inside, and the light extraction efficiency is reduced. Therefore, in order to efficiently transmit light from the light emitter to the air, it is desirable to reduce reflection at the interface through which the light from the light emitter passes as much as possible. For this purpose, it is necessary to reduce the difference in refractive index between the interfaces. In the case where the light-emitting device is composed of two layers of a light-emitting element and a glass material layer, there are two interfaces, ie, a light-emitting element and a glass material layer, and a glass material layer and an air layer. In order to reduce the amount of reflection, it is desirable to reduce the difference in refractive index between the two interfaces.
 ガラス材料層を形成する方法は、金属アルコキシド(テトラメトキシシラン、テトラエトキシシラン等)を出発原料とする塗布型ガラス材料又はセラミック前駆体ポリマー(ペルヒドロポリシラザン等)等から成る塗布型ガラス材料を用いることが好ましい。金属アルコキシド(テトラメトキシシラン、テトラエトキシシラン等)を出発原料とする塗布型ガラス材料がより好ましい。これらの塗布型ガラス材料は、150℃前後で焼成可能であり、低温領域でのガラス材料層の形成が可能である。これらの塗布型ガラス材料は通常は液状であるが、空気中又は酸素雰囲気中で加熱すると、成分の分解・飛散又は酸素や水分の吸収によりSiO(酸化珪素)のシロキサン(siloxane)結合を主体とした透明な固形ガラス材料層を生成する。
 また、ケイ酸ナトリウムなどを主成分とする水ガラスを用いても構わない。粘性液体状の水ガラスを塗布型ガラス材料として焼成する事でガラス材料層を容易に形成することが出来る。
 塗布型ガラス材料又はセラミック前駆体ポリマー等から成る塗布型ガラス材料に、蛍光体と共に、散乱剤、結合材、沈降防止剤としてシリカ、酸化チタン、アルミナ、超微粒子状無水シリカ等のセラミック粉末を目的に応じて適量混合してもよい。
 これらのガラス材料に蛍光体材料より成る蛍光体を混合して金属配線層を有する無機反射層の周囲に塗布すれば、光変換作用に加えて、以下の特性を有するガラス材料層を形成することができる。
The glass material layer is formed by using a coating glass material made of a metal alkoxide (tetramethoxysilane, tetraethoxysilane, etc.) as a starting material or a coating precursor glass material made of a ceramic precursor polymer (perhydropolysilazane, etc.). It is preferable. A coating type glass material starting from a metal alkoxide (tetramethoxysilane, tetraethoxysilane, etc.) is more preferred. These coating type glass materials can be fired at around 150 ° C., and a glass material layer can be formed in a low temperature region. These coating-type glass materials are usually liquid, but when heated in air or in an oxygen atmosphere, the SiO 2 (silicon oxide) siloxane bond is mainly formed by decomposition and scattering of components or absorption of oxygen and moisture. A transparent solid glass material layer was produced.
Moreover, you may use the water glass which has sodium silicate etc. as a main component. A glass material layer can be easily formed by baking viscous liquid water glass as a coating-type glass material.
Aiming at ceramic powders such as silica, titanium oxide, alumina, and ultrafine particulate anhydrous silica as a scattering agent, binder, and anti-settling agent, as well as phosphors, on coating glass materials consisting of coating glass materials or ceramic precursor polymers Appropriate amount may be mixed according to.
If these glass materials are mixed with a phosphor made of a phosphor material and applied to the periphery of an inorganic reflective layer having a metal wiring layer, a glass material layer having the following characteristics in addition to the light conversion function is formed. Can do.
 [1] 耐湿性に優れ、内部への水分の浸透がなく、発光素子及び蛍光体の劣化を抑制する。
 [2] 有害イオンの浸透を防ぐイオンバリア効果が高いため、発光装置の外部や蛍光体材料からの有害イオンによる発光素子の劣化を抑制する。
 [3] 耐熱性及び紫外線耐性に優れ、高温環境下又は紫外線発光下でも黄変・着色を起こさず、発光素子の発光を減衰させない。
 [4] ガラス中の珪素原子が金属又はセラミックの表面酸化物層の酸素原子と強固に結合するので、発光素子、金属配線層または無機反射層との密着性がよい。
[1] Excellent moisture resistance, no moisture permeation into the interior, and suppresses deterioration of the light emitting device and the phosphor.
[2] Since the ion barrier effect for preventing penetration of harmful ions is high, the deterioration of the light emitting element due to harmful ions from the outside of the light emitting device or from the phosphor material is suppressed.
[3] Excellent heat resistance and UV resistance, does not cause yellowing or coloration under high temperature environment or UV light emission, and does not attenuate light emission of the light emitting element.
[4] Since the silicon atoms in the glass are firmly bonded to the oxygen atoms of the metal or ceramic surface oxide layer, the adhesion to the light emitting element, the metal wiring layer or the inorganic reflective layer is good.
 このように、ガラス材料層を使用することにより従来の発光ダイオード装置の種々の弱点を克服でき、安価で信頼性の高い、蛍光体による波長変換機能を有する発光装置を得ることができる。 As described above, by using the glass material layer, various weak points of the conventional light-emitting diode device can be overcome, and a light-emitting device having a wavelength conversion function by a phosphor that is inexpensive and highly reliable can be obtained.
 (蛍光体)
 例えば、白色光の発光装置を製造するためには、発光素子には発光波長のピークが約440nmから約470nmのGaN系の青色の発光ダイオードチップを用い、蛍光体を構成する材料には付活剤としてCe(セリウム)を約6mol%添加したYAG(イットリウム・アルミニウム・ガーネット、化学式YAl O12、励起波長のピーク約450nm、発光波長のピーク約540nmの黄緑色光)を用いる。
 YAG蛍光物質より成る蛍光体の製造時に適当な添加物を適量添加して結晶構造を一部変更して発光波長分布をシフトすると、発光ダイオード装置(20)の発光色を更に異なる色調に調整することができる。例えばGa(ガリウム)又はLu(ルテチウム)を添加して短波長側にシフトし、Gd(ガドリニウム)を添加して長波長側にシフトすることができる。
 また、ガラス材料層に染料又は顔料等の光吸収物質を配合して発光ダイオードチップ又は蛍光体の発光波長の一部を吸収させ、発光ダイオード装置の発光色を調整することも可能である。
(Phosphor)
For example, in order to manufacture a white light emitting device, a GaN blue light emitting diode chip having an emission wavelength peak of about 440 nm to about 470 nm is used as a light emitting element, and an active material is used as a material constituting the phosphor. YAG (yttrium, aluminum, garnet, chemical formula Y 3 Al 5 O 12 , excitation wavelength peak of about 450 nm, emission wavelength peak of about 540 nm) added with about 6 mol% of Ce (cerium) as an agent is used.
When an appropriate amount of an appropriate additive is added at the time of manufacturing a phosphor made of a YAG fluorescent material and the crystal structure is partially changed to shift the emission wavelength distribution, the emission color of the light emitting diode device (20) is further adjusted to a different color tone. be able to. For example, Ga (gallium) or Lu (lutetium) can be added to shift to the short wavelength side, and Gd (gadolinium) can be added to shift to the long wavelength side.
It is also possible to mix a light-absorbing substance such as a dye or a pigment into the glass material layer so as to absorb a part of the light emission wavelength of the light-emitting diode chip or the phosphor and adjust the light emission color of the light-emitting diode device.
 例えば、約360nm~380nmの発光ピーク波長を有する紫外線を発生するGaN系発光ダイオードチップと、励起ピーク波長約360nm、発光ピーク波長約543nmのCe及びTb(テルビウム)付活のYSiOの蛍光物質より成る蛍光体を使用すると、半値幅約12nmの非常にシャープな発光分布を持つ緑色発光ダイオード装置が得られる。
 用いられる蛍光体はいかなる蛍光体を用いてもよく、例えばハロ燐酸カルシュウム系、燐酸カルシュウム系、珪酸塩系、アルミン酸塩系、タングステン酸塩系等の蛍光物質から所望の特性を持つ蛍光体を選択できる。
For example, fluorescence of Y 2 SiO 5 activated by Ce and Tb (terbium) activated with a GaN-based light-emitting diode chip that generates ultraviolet light having an emission peak wavelength of about 360 nm to 380 nm and an excitation peak wavelength of about 360 nm and an emission peak wavelength of about 543 nm. When a phosphor made of a material is used, a green light emitting diode device having a very sharp light emission distribution with a half width of about 12 nm can be obtained.
The phosphor used may be any phosphor. For example, a phosphor having desired characteristics is selected from phosphors such as calcium halophosphate, calcium phosphate, silicate, aluminate, and tungstate. You can choose.
 上記蛍光体としては、例えば以下の組成のものを用いることができる。
 紫外光等の短波長光を赤色可視光に変換する赤色発光用の蛍光体として、MS:Eu(Mは、La、Gd、Yの何れか1種)、0.5MgF・3.5MgO・GeO:Mn、2MgO・2LiO・Sb:Mn、Y(P,V)O:Eu、YVO:Eu、(SrMg)(PO):Sn、Y:Eu、CaSiO:Pb,Mn等がある。
 また、紫外光等の短波長光を緑色可視光に変換する緑色発光用の蛍光体として、BaMgAl1627:Eu,Mn、ZnSiO:Mn、(Ce,Tb,Mn)MgAl1119、LaPO:Ce,Tb、(Ce,Tb)MgAl1119、YSiO:Ce,Tb、ZnS:Cu,Al、ZnS:Cu,Au,Al、(Zn,Cd)S:Cu,Al、SrAl:Eu、SrAl:Eu,Dy、SrAl1425:Eu,Dy、YAl12:Tb、Y(Al,Ga)12:Tb、YAl12:Ce、Y(Al,Ga)12:Ce等がある。
 更に、紫外光等の短波長光を青色可視光に変換する青色発光用の蛍光体として、(SrCaBa)(POCl:Eu、BaMgAl1627:Eu、(SrMg):Eu、Sr:Eu、Sr:Sn、Sr(POCl:Eu、BaMgAl1627:Eu、CaWO、CaWO:Pb、ZnS:Ag,Cl、ZnS:Ag,Al、(Sr,Ca,Mg)10(POCl:Eu等がある。
 上記赤色発光用の蛍光体、緑色発光用の蛍光体、青色発光用の蛍光体を適宜選択・混合して用いることで、種々の色の発色が可能である。
 また、青色の可視光を放射するLEDチップを用いて白色光を得る場合には、LEDチップから放射される光を補色としての黄色可視光に変換する黄色発光用の蛍光体として、YAl12:Ce、YBO:Ce、BaMgAl1017:Eu,Mn、(Sr,Ca,Ba)(Al,Ga):Eu、BaSiO:Eu、(Sr,Ba)SiO:Eu、SiAlON:Eu等がある。
As said fluorescent substance, the thing of the following compositions can be used, for example.
As a phosphor for red light emission that converts short-wavelength light such as ultraviolet light into red visible light, M 2 O 2 S: Eu (M is any one of La, Gd, and Y), 0.5 MgF 2. 3.5 MgO · GeO 2 : Mn, 2MgO · 2LiO 2 · Sb 2 O 3 : Mn, Y (P, V) O 4 : Eu, YVO 4 : Eu, (SrMg) 3 (PO 4 ): Sn, Y 2 There are O 3 : Eu, CaSiO 3 : Pb, Mn, and the like.
Further, as a phosphor for green emission for converting the short-wavelength light such as ultraviolet light to green visible light, BaMg 2 Al 16 O 27: Eu, Mn, Zn 2 SiO 4: Mn, (Ce, Tb, Mn) MgAl 11 O 19 , LaPO 4 : Ce, Tb, (Ce, Tb) MgAl 11 O 19 , Y 2 SiO 5 : Ce, Tb, ZnS: Cu, Al, ZnS: Cu, Au, Al, (Zn, Cd) S : Cu, Al, SrAl 2 O 4: Eu, SrAl 2 O 4: Eu, Dy, Sr 4 Al 14 O 25: Eu, Dy, Y 3 Al 5 O 12: Tb, Y 3 (Al, Ga) 5 O 12 : Tb, Y 3 Al 5 O 12 : Ce, Y 3 (Al, Ga) 5 O 12 : Ce, and the like.
Further, as a phosphor for blue light emission that converts short wavelength light such as ultraviolet light into blue visible light, (SrCaBa) 5 (PO 4 ) 3 Cl: Eu, BaMg 2 Al 16 O 27 : Eu, (SrMg) 2 P 2 O 7 : Eu, Sr 2 P 2 O 7 : Eu, Sr 2 P 2 O 7 : Sn, Sr 5 (PO 4 ) 3 Cl: Eu, BaMg 2 Al 16 O 27 : Eu, CaWO 4 , CaWO 4 : Pb, ZnS: Ag, Cl , ZnS: Ag, Al, (Sr, Ca, Mg) 10 (PO 4) 6 Cl 2: there is Eu and the like.
By appropriately selecting and mixing the phosphors for red light emission, green light emission, and blue light emission, various colors can be developed.
In addition, when white light is obtained using an LED chip that emits blue visible light, Y 3 Al is used as a phosphor for yellow light emission that converts light emitted from the LED chip into yellow visible light as a complementary color. 5 O 12 : Ce, YBO 3 : Ce, BaMgAl 10 O 17 : Eu, Mn, (Sr, Ca, Ba) (Al, Ga) 2 S 4 : Eu, Ba 2 SiO 4 : Eu, (Sr, Ba) 2 SiO 4 : Eu, SiAlON: Eu and the like.
 〔バルブ金属基材〕
 バルブ金属としては、具体的には、例えば、アルミニウム、タンタル、ニオブ、チタン、ハフニウム、ジルコニウム、亜鉛、タングステン、ビスマス、アンチモン等が挙げられる。
 バルブ金属の陽極酸化皮膜層は、電気抵抗率(1014Ω・cm程度)を有する耐熱性の高い絶縁被膜である。
 これらのうち、寸法安定性がよく、比較的安価であることからアルミニウムの陽極酸化皮膜層であるのが好ましい。
 バルブ金属基材は、単独の板で本発明の反射基板に用いてもよい。
 バルブ金属基材は、必要な場合は鋼板等の他の金属板、ガラス板、セラミック板、樹脂製板等に積層して本発明の反射基板に用いられる。陽極酸化皮膜を形成し絶縁性を担保するためにはバブル金属基材は、厚さ10μm以上の板状の部分があればよい。他の板材とバルブ金属基材とを積層して用いる場合には、可撓性があり、耐熱性の高い鋼板や金属板との積層板が好ましい。
[Valve metal substrate]
Specific examples of the valve metal include aluminum, tantalum, niobium, titanium, hafnium, zirconium, zinc, tungsten, bismuth, and antimony.
The anodized film layer of the valve metal is an insulating film having high electrical resistance (about 10 14 Ω · cm) and high heat resistance.
Of these, an anodic oxide film layer of aluminum is preferable because it has good dimensional stability and is relatively inexpensive.
The valve metal substrate may be a single plate used for the reflective substrate of the present invention.
If necessary, the valve metal substrate is laminated on another metal plate such as a steel plate, a glass plate, a ceramic plate, a resin plate or the like and used for the reflective substrate of the present invention. In order to form an anodized film and ensure insulation, the bubble metal substrate only needs to have a plate-like portion having a thickness of 10 μm or more. When another plate material and a valve metal base material are laminated and used, a laminated plate of a steel plate or metal plate that is flexible and has high heat resistance is preferable.
 (アルミニウム板)
 本発明の反射基板の製造には、公知のアルミニウム板を用いることができる。本発明に用いられるアルミニウム板は、寸度的に安定なアルミニウムを主成分とする金属であり、アルミニウムまたはアルミニウム合金からなる。純アルミニウム板のほか、アルミニウムを主成分とし微量の異元素を含む合金板を用いることもできる。
(Aluminum plate)
A known aluminum plate can be used for the production of the reflective substrate of the present invention. The aluminum plate used in the present invention is a metal whose main component is dimensionally stable aluminum, and is made of aluminum or an aluminum alloy. In addition to a pure aluminum plate, an alloy plate containing aluminum as a main component and containing a trace amount of foreign elements can also be used.
 本明細書においては、上述したアルミニウムまたはアルミニウム合金からなる各種の基板をアルミニウム板と総称して用いる。上記アルミニウム合金に含まれてもよい異元素には、ケイ素、鉄、銅、マンガン、マグネシウム、クロム、亜鉛、ビスマス、ニッケル、チタン等があり、合金中の異元素の含有量は10質量%以下が好ましい。 In this specification, various substrates made of the above-described aluminum or aluminum alloy are collectively referred to as an aluminum plate. The foreign elements that may be contained in the aluminum alloy include silicon, iron, copper, manganese, magnesium, chromium, zinc, bismuth, nickel, titanium, etc., and the content of foreign elements in the alloy is 10% by mass or less. Is preferred.
 このように本発明に用いられるアルミニウム板は、その組成が特定されるものではなく、アルミニウムの純度は特に問わないが、通常板材として用いられる1000系、3000系、5000系の合金を用いることができる。しかし発光素子用反射基板として用いる場合に耐電圧に優れる事が求められ、素材中の金属間化合物などの粒子を出来るだけ少なくする事が望ましい。熱処理条件で回避できない場合には、99.9%以上の高純度のアルミニウムを用いる事も有用である。
 具体的には、アルミニウムハンドブック第4版(1990年、軽金属協会発行)に記載されている従来公知の素材、例えば、JIS A1050、JIS A1100、JIS A1070、Mnを含むJIS A3004、国際登録合金 3103A等のAl-Mn系アルミニウム板を適宜利用することができる。また、引張強度を増す目的で、これらのアルミニウム合金に0.1質量%以上のマグネシウムを添加したAl-Mg系合金、Al-Mn-Mg系合金(JIS A3005)を用いることもできる。更に、ZrやSiを含むAl-Zr系合金やAl-Si系合金を用いることもできる。更に、Al-Mg-Si系合金を用いることもできる。
Thus, the composition of the aluminum plate used in the present invention is not specified, and the purity of aluminum is not particularly limited, but 1000 series, 3000 series, and 5000 series alloys that are usually used as plate materials are used. it can. However, when used as a reflective substrate for a light emitting device, it is required to have excellent withstand voltage, and it is desirable to reduce particles such as intermetallic compounds in the material as much as possible. If it cannot be avoided under heat treatment conditions, it is also useful to use high purity aluminum of 99.9% or more.
Specifically, conventionally known materials described in Aluminum Handbook 4th edition (1990, published by Light Metal Association), for example, JIS A1050, JIS A1100, JIS A1070, JIS A3004 containing Mn, international registered alloy 3103A, etc. Al-Mn aluminum plates can be used as appropriate. For the purpose of increasing the tensile strength, an Al—Mg alloy or an Al—Mn—Mg alloy (JIS A3005) in which 0.1% by mass or more of magnesium is added to these aluminum alloys can also be used. Furthermore, an Al—Zr alloy or an Al—Si alloy containing Zr or Si can also be used. Furthermore, an Al—Mg—Si based alloy can also be used.
 Al-Mg系合金、Al-Mn系合金、Al-Mn-Mg系合金、Al-Zr系合金、Al-Mg-Si系合金に関しては、国際公開WO2010/150810号の段落[0034]~[0038]に記載の公報に記載されている。 Regarding Al—Mg alloys, Al—Mn alloys, Al—Mn—Mg alloys, Al—Zr alloys, and Al—Mg—Si alloys, paragraphs [0034] to [0038] of International Publication No. WO2010 / 150810. Is described in the publication.
 アルミニウム合金を板材に製造する方法、DC鋳造法、連続鋳造法、アルミニウム板の表面の結晶組織、アルミニウム板の金属間化合物については、国際公開WO2010/150810号の段落[0039]~[0050]に記載されている。 Regarding the method for producing an aluminum alloy into a plate material, DC casting method, continuous casting method, crystal structure of the surface of the aluminum plate, and intermetallic compound of the aluminum plate, paragraphs [0039] to [0050] of International Publication WO2010 / 150810 Are listed.
 本発明においては、上記に示されるようなアルミニウム板をその最終圧延工程等において、積層圧延、転写等により凹凸を形成させて粗面化処理して用いることもできる。基材表面を予め粗面化処理しておけば、陽極酸化皮膜層を形成した後に、その上に形成される無機反射層と基材との密着性を向上させることができる。その他の粗面化処理方法は後に説明する。 In the present invention, an aluminum plate as shown above can be used by roughening it by forming irregularities by laminating rolling, transferring or the like in its final rolling step or the like. If the surface of the substrate is roughened in advance, the adhesion between the inorganic reflective layer formed on the substrate and the substrate can be improved after the anodic oxide film layer is formed. Other roughening treatment methods will be described later.
 本発明に用いられるアルミニウム板は、アルミニウムウェブであってもよく、枚葉状シートであってもよい。 The aluminum plate used in the present invention may be an aluminum web or a sheet-like sheet.
 〔Al板を用いた本発明の発光装置に用いる発光装置用基板の製造方法〕
 以下に、アルミニウム板表面に陽極酸化皮膜と無機反射層とを有する本発明の発光装置に好適に用いられる発光装置用基板の製造方法の好適な一例を説明する。以下で製造する基板上に金属配線層が設けられ、発光素子が実装され、上述のように蛍光体を含むガラス材料層で封止される。
 <1.粗面化処理>
 上記基板を製造する際にアルカリ脱脂したアルミニウム板を直接陽極酸化処理して陽極酸化皮膜層を形成してもよい。また、アルミニウム表面を予め粗面化処理して、陽極酸化処理すれば、陽極酸化皮膜層とアルミニウム板との密着性を向上させ、その上層に設けられる無機反射層の密着性も向上させることができる。粗面化処理は、アルミニウム板に機械的粗面化処理、アルカリエッチング処理、酸によるデスマット処理および電解液を用いた電気化学的粗面化処理を順次施す方法、アルミニウム板に機械的粗面化処理、アルカリエッチング処理、酸によるデスマット処理および異なる電解液を用いた電気化学的粗面化処理を複数回施す方法、アルミニウム板にアルカリエッチング処理、酸によるデスマット処理および電解液を用いた電気化学的粗面化処理を順次施す方法、アルミニウム板にアルカリエッチング処理、酸によるデスマット処理および異なる電解液を用いた電気化学的粗面化処理を複数回施す方法が挙げられるが、本発明はこれらに限定されない。これらの方法において、上記電気化学的粗面化処理の後、更に、アルカリエッチング処理および酸によるデスマット処理を施してもよい。
[Method for producing substrate for light-emitting device used in light-emitting device of the present invention using Al plate]
Below, a suitable example of the manufacturing method of the board | substrate for light-emitting devices used suitably for the light-emitting device of this invention which has an anodic oxide film and an inorganic reflection layer on the aluminum plate surface is demonstrated. A metal wiring layer is provided on a substrate to be manufactured below, a light emitting element is mounted, and sealed with a glass material layer containing a phosphor as described above.
<1. Roughening>
An anodized film layer may be formed by directly anodizing an aluminum plate that has been subjected to alkali degreasing when the substrate is manufactured. Further, if the aluminum surface is roughened in advance and anodized, the adhesion between the anodized film layer and the aluminum plate can be improved, and the adhesion of the inorganic reflective layer provided thereon can also be improved. it can. Roughening treatment is a method of performing mechanical roughening treatment on an aluminum plate, alkali etching treatment, desmutting treatment with acid, and electrochemical roughening treatment using an electrolytic solution, and mechanical roughening treatment on an aluminum plate. Treatment, alkali etching treatment, desmutting treatment with acid and electrochemical surface roughening treatment using different electrolytes multiple times, alkali etching treatment on aluminum plate, desmutting treatment with acid and electrochemical using electrolyte solution Examples include a method of sequentially performing a surface roughening treatment, a method of applying an alkali etching treatment to an aluminum plate, a desmutting treatment with an acid, and an electrochemical surface roughening treatment using different electrolytes a plurality of times, but the present invention is not limited thereto. Not. In these methods, after the electrochemical roughening treatment, an alkali etching treatment and an acid desmutting treatment may be further performed.
 中でも、他の処理(アルカリエッチング処理等)の条件にもよるが、大波構造、中波構造および小波構造が重畳した表面形状を形成させるには、機械的粗面化処理、硝酸を主体とする電解液を用いた電気化学的粗面化処理および塩酸を主体とする電解液を用いた電気化学的粗面化処理を順次施す方法が好適に挙げられる。また、大波構造および小波構造が重畳した表面形状を形成させるには、塩酸を主体とする電解液を用い、アノード反応にあずかる電気量の総和を大きくした電気化学的粗面化処理のみを施す方法が好適に挙げられる。
 各粗面化処理の詳細については、国際公開WO2010/150810号の段落[0055]~[0083]に記載されている。
Among them, although depending on the conditions of other treatments (alkali etching treatment, etc.), in order to form a surface shape on which a large wave structure, a medium wave structure and a small wave structure are superimposed, a mechanical surface roughening treatment and nitric acid are mainly used. Preferred examples include a method of sequentially performing an electrochemical surface roughening treatment using an electrolytic solution and an electrochemical surface roughening treatment using an electrolytic solution mainly composed of hydrochloric acid. In addition, in order to form a surface shape in which a large wave structure and a small wave structure are superimposed, an electrolytic solution mainly composed of hydrochloric acid is used, and only an electrochemical surface roughening process is performed in which the total amount of electricity involved in the anode reaction is increased. Are preferable.
Details of each surface roughening treatment are described in paragraphs [0055] to [0083] of International Publication WO2010 / 150810.
 <貫通孔を形成する加工>
 本発明の発光装置では、発光素子を実装するにあたり、適宜導電経路を設けるための貫通孔(スルーホール)加工、並びに、最終製品を想定してのチップ化を行うためのルーティング加工(最終製品に個別化するための加工)を行うこともできる。スルーホール加工は、必要な個所への穴あけ加工である。スルーホールの加工は、従来公知の方法を採用することができ、例えば、ドリル加工、レーザー加工、金型による打ち抜き加工等を用いることができる。加工されるスルーホールの形状については、配線が必要な複数の層の間の長さで、その断面は必要な配線をその中に入れて確保できる大きさ/形状であれば特に制限されないが、最終的なチップの大きさ、及び、確実な配線の形成を考えると、円形であることが好ましく、大きさは、0.01mmφ~2mmφが好ましく、0.05mmφ~1mmφがより好ましく、0.1mmφ~0.8mmφが特に好ましい。
<Processing to form through holes>
In the light emitting device of the present invention, when mounting a light emitting element, a through hole (through hole) processing for providing a conductive path as appropriate, and a routing processing for forming a chip assuming the final product (to the final product) Processing for individualization) can also be performed. Through-hole processing is drilling to a required part. A conventionally well-known method can be employ | adopted for the process of a through hole, For example, a drill process, a laser process, the punching process by a metal mold | die, etc. can be used. The shape of the through-hole to be processed is not particularly limited as long as it is the length between a plurality of layers that require wiring, and the cross-section has a size / shape that can be secured by placing the necessary wiring therein. Considering the final chip size and the formation of reliable wiring, it is preferable that the shape is circular, and the size is preferably 0.01 mmφ to 2 mmφ, more preferably 0.05 mmφ to 1 mmφ, and 0.1 mmφ. Particularly preferred is ˜0.8 mmφ.
 (ルーティング加工)
 ルーティング加工は、最終製品に個別化された発光素子用反射基板(以下チップという)の大きさに切り離す個別切り離し加工または、予めチップに切り離しやすい形状にする加工であり、パターン加工、チップ化、個片加工ともいう。インナーソー、スライサー、ダイサー等の切断装置を用いることができる。ルーティング加工には、ルーターと呼ばれる装置で基板の厚み方向に貫通した切込みを入れたり、ダイサーを用いて厚み方向に切断しない程度に切り込み(切り欠き)を入れるような加工を含む。
 本発明の発光装置は、樹脂層が含まれないので最終段階でダイシング装置で個片化処理できる。樹脂層が含まれていると最終段階で個片化処理すると樹脂層が加工歪で剥がれ落ちる場合がある。本発明の発光装置は、予めルーティング加工などを施す必要がない。
(Routing processing)
The routing process is an individual separation process that separates into the size of the reflective substrate for light emitting elements (hereinafter referred to as a chip) that is individualized in the final product, or a process that makes it easy to separate into chips in advance. It is also called one-side processing. A cutting device such as an inner saw, a slicer, or a dicer can be used. The routing process includes a process of making a notch penetrating in the thickness direction of the substrate with a device called a router or making a notch so as not to cut in the thickness direction using a dicer.
Since the light emitting device of the present invention does not include a resin layer, it can be separated into pieces by a dicing device at the final stage. If the resin layer is contained, the resin layer may be peeled off due to processing strain when it is singulated at the final stage. The light emitting device of the present invention does not need to be subjected to routing processing or the like in advance.
 <焼成処理>
 前述のルーティング加工、スルーホール加工におけるアルミニウム板のJISZ2241による引張試験(引張速度:2mm/分)における引っ張り強度(以下引張強度という。)は、100MPa以下のように軟質な基板であることは加工性が低下するため好ましくなく、本発明の発光素子用反射基板を製造するに当たってはルーティング加工、スルーホール加工等の機械加工後、アルミニウム板を軟質化するため焼成する事が望ましい。また、陽極酸化処理を施した後に焼成を施すとアルミと皮膜の間の熱膨張率差に起因するクラックなどが入る恐れがあり、望ましくない。よって機械加工後、陽極酸化処理前にアルミニウム板の強度を調整する焼成処理を行うことが望ましい。機械加工後、陽極酸化処理前の焼成処理は250℃~400℃で、1分~120分加熱処理するのが好ましい。陽極酸化処理後の焼成処理を行う場合は、焼成温度は200℃~250℃で、60分~300分加熱処理するのが好ましい。
<Baking treatment>
The tensile strength (hereinafter referred to as tensile strength) in the tensile test (tensile speed: 2 mm / min) of the aluminum plate in the routing processing and through-hole processing described above according to JISZ2241 indicates that the substrate is a soft substrate such as 100 MPa or less. When the reflective substrate for a light emitting element of the present invention is manufactured, it is desirable to fire the aluminum plate after the machining such as routing and through-hole processing in order to soften the aluminum plate. Further, if firing is performed after the anodizing treatment, cracks and the like due to the difference in thermal expansion coefficient between the aluminum and the coating may occur, which is not desirable. Therefore, it is desirable to perform a baking treatment for adjusting the strength of the aluminum plate after the machining and before the anodizing treatment. The baking treatment after the machining and before the anodizing treatment is preferably performed at 250 to 400 ° C. for 1 to 120 minutes. When performing the baking treatment after the anodizing treatment, the baking temperature is preferably 200 ° C. to 250 ° C., and the heat treatment is preferably performed for 60 minutes to 300 minutes.
 <陽極酸化処理>
 以上のように表面処理され、加工されたアルミニウム板に、更に、陽極酸化処理を施すのが好ましい。陽極酸化処理により、アルミナからなる陽極酸化皮膜層がアルミニウム板の表面に形成され、多孔質、あるいは、非孔質の表面絶縁層が得られる。
<Anodizing treatment>
It is preferable to further anodize the aluminum plate that has been surface-treated and processed as described above. By anodizing treatment, an anodized film layer made of alumina is formed on the surface of the aluminum plate, and a porous or non-porous surface insulating layer is obtained.
 陽極酸化処理は、従来行われている方法で行うことができる。この場合、例えば、硫酸濃度50~300g/Lで、アルミニウム濃度5質量%以下の水溶液中で、アルミニウム板を陽極として通電して陽極酸化皮膜層を形成させることができる。陽極酸化処理に用いられる溶液としては、硫酸、リン酸、クロム酸、シュウ酸、スルファミン酸、ベンゼンスルホン酸、アミドスルホン酸、マロン酸、クエン酸、酒石酸、ホウ酸、等を単独でまたは2種以上を組み合わせて用いることができる。 The anodizing treatment can be performed by a conventional method. In this case, for example, an anodized film layer can be formed by energizing an aluminum plate as an anode in an aqueous solution having a sulfuric acid concentration of 50 to 300 g / L and an aluminum concentration of 5% by mass or less. As the solution used for the anodizing treatment, sulfuric acid, phosphoric acid, chromic acid, oxalic acid, sulfamic acid, benzenesulfonic acid, amidosulfonic acid, malonic acid, citric acid, tartaric acid, boric acid, etc. alone or in combination A combination of the above can be used.
 陽極酸化処理の条件は、使用される電解液によって種々変化するので一概に決定され得ないが、一般的には電解液濃度1~80質量%、液温5~70℃、電流密度0.5~60A/dm2、電圧1~100V、電解時間15秒~50分であるのが適当であり、所望の陽極酸化皮膜層量となるように調整される。 The conditions of the anodizing treatment cannot be determined unconditionally because they vary depending on the electrolyte used, but generally the electrolyte concentration is 1 to 80% by mass, the solution temperature is 5 to 70 ° C., and the current density is 0.5. It is appropriate that ˜60 A / dm 2 , voltage 1˜100 V, electrolysis time 15 seconds˜50 minutes, and the anodic oxide film layer amount is adjusted to a desired amount.
 硫酸を含有する電解液中で陽極酸化処理を行う場合には、アルミニウム板と対極との間に直流を印加してもよく、交流を印加してもよい。アルミニウム板に直流を印加する場合においては、電流密度は、1~60A/dm2であるのが好ましく、5~40A/dm2であるのがより好ましい。連続的に陽極酸化処理を行う場合には、アルミニウム板の一部に電流が集中していわゆる「焼け」が生じないように、陽極酸化処理の開始当初は、5~10A/dm2の低電流密度で電流を流し、陽極酸化処理が進行するにつれ、30~50A/dm2またはそれ以上に電流密度を増加させるのが好ましい。連続的に陽極酸化処理を行う場合には、アルミニウム板への給電方式は液給電方式により行うのが好ましい。液給電方式は、コンダクタロールを用いない間接給電方式であり、電解液を介して給電する。 When anodizing is performed in an electrolytic solution containing sulfuric acid, direct current may be applied between the aluminum plate and the counter electrode, or alternating current may be applied. When direct current is applied to the aluminum plate, the current density is preferably 1 to 60 A / dm 2 , and more preferably 5 to 40 A / dm 2 . In the case of continuous anodizing treatment, a low current of 5 to 10 A / dm 2 is initially introduced so that so-called “burning” does not occur due to current concentration on a part of the aluminum plate. It is preferable to increase the current density to 30 to 50 A / dm 2 or more as the current is passed at the density and the anodization process proceeds. When the anodizing treatment is continuously performed, it is preferable that the feeding method to the aluminum plate is performed by a liquid feeding method. The liquid power supply method is an indirect power supply method that does not use a conductor roll, and power is supplied through an electrolytic solution.
 陽極酸化皮膜層は、多孔質であっても無孔質であってもよい。多孔質である場合、その平均ポア径が5~1000nm程度であり、平均マイクロポア密度が1×106~1×1010/mm2程度である。上記マイクロポアの深さに対する上記マイクロポアの中心線の長さ(長さ/深さ)が、1.0~1.2であると、マイクロポアの形状がほぼ直管状であるので好ましい。 The anodized film layer may be porous or nonporous. When porous, the average pore diameter is about 5 to 1000 nm, and the average micropore density is about 1 × 10 6 to 1 × 10 10 / mm 2 . It is preferable that the length (length / depth) of the center line of the micropore with respect to the depth of the micropore is 1.0 to 1.2 because the shape of the micropore is almost a straight tube.
 陽極酸化処理のその他の詳細については、国際公開WO2010/150810号の段落[0091]~[0094]に記載されている。 The other details of the anodizing treatment are described in paragraphs [0091] to [0094] of International Publication No. WO2010 / 150810.
 アルミニウムは熱伝導率が非常に高いので放熱性に優れる点で、他の金属に勝るだけでなく、表層に陽極酸化皮膜層を形成させることで絶縁性を付与する事も可能である。
 予めLEDを実装する基板形状に加工したもの、例えば六角形、八角形状のものの少なくとも一つの表面を陽極酸化処理してもよい。アルミニウム板の表面、裏面を陽極酸化処理してもよいし、形成されたスルーホールの内壁面を陽極酸化処理してもよい。陽極酸化処理し、上記無機反射層を形成した後にスルーホール等の加工をしてもよい。
 陽極酸化皮膜層の厚さは1~200μmであるのが好ましい。1μm未満であると絶縁性に乏しく耐電圧が低下し、一方、200μmを超えると製造に多大な電力が必要となり、経済的に不利となる。陽極酸化皮膜層の厚さは、20μm以上が好ましく、40μm以上がさらに好ましい。
Aluminum has a very high thermal conductivity and is excellent in heat dissipation. In addition to being superior to other metals, it is possible to provide insulation by forming an anodized film layer on the surface layer.
You may anodize at least 1 surface of what was processed into the board | substrate shape which mounts LED previously, for example, a hexagonal shape and an octagonal shape. The front and back surfaces of the aluminum plate may be anodized, or the inner wall surface of the formed through hole may be anodized. After anodizing and forming the inorganic reflective layer, processing such as through holes may be performed.
The thickness of the anodized film layer is preferably 1 to 200 μm. If the thickness is less than 1 μm, the insulation is poor and the withstand voltage is lowered. On the other hand, if it exceeds 200 μm, a large amount of electric power is required for production, which is economically disadvantageous. The thickness of the anodized film layer is preferably 20 μm or more, and more preferably 40 μm or more.
 <5.無機反射層の形成>
 さらに、予めチップまたは複数のチップを含むパーツに分解できるような加工を施した基板に、各種の印刷手法例えばスクリーン印刷等によって光反射が必要な部分にのみ、前述の無機反射層を形成してもよい。この方法で無機反射層を形成すれば、無機反射層に用いる原料を節約できる。
<5. Formation of inorganic reflective layer>
Furthermore, the above-mentioned inorganic reflective layer is formed only on the portions where light reflection is required by various printing methods such as screen printing on a substrate that has been processed in advance so that it can be disassembled into chips or parts including a plurality of chips. Also good. If the inorganic reflective layer is formed by this method, the raw material used for the inorganic reflective layer can be saved.
 (発光装置用基板)
 以上で説明した無機反射層を有する発光装置用基板は、バルブ金属基材としてバルブ金属板を単独で用い、他の金属板を芯材等の補強用に用いない場合は、強度はJISZ2241による引張試験(引張速度:2mm/分)における引っ張り強度(以下引張強度という。)が、100MPa以下であるのが好ましく、30~80Mpaであるのがより好ましい。この範囲未満では基板としての強度が十分ではなく、この範囲超では、基板を加工して発光装置とする場合の取扱性が悪い。
(Light Emitting Device Substrate)
The substrate for a light emitting device having the inorganic reflection layer described above uses a valve metal plate alone as a valve metal base material, and when other metal plates are not used for reinforcing a core material or the like, the strength is tensile according to JISZ2241. The tensile strength (hereinafter referred to as tensile strength) in the test (tensile speed: 2 mm / min) is preferably 100 MPa or less, and more preferably 30 to 80 MPa. If it is less than this range, the strength as a substrate is not sufficient, and if it exceeds this range, the handleability when processing the substrate to form a light emitting device is poor.
〔発光装置〕
 本発明の図2に一例を示す貫通孔を有し、フリップチップ実装される発光装置32においては、好ましくは、以下の陽極酸化皮膜層を有する。
 厚さ方向に貫通形成されたスルーホールを有する、表面、裏面および上記スルーホールの内壁面が陽極酸化皮膜で被覆された陽極酸化皮膜付きアルミニウム基板と、
 上記アルミニウム基板の表面に無機粒子と無機結着剤とを有する無機反射層を備え、
 上記無機反射層上に金属配線層および発光素子を備え、
 上記無機反射層、金属配線層および発光素子を封止する、蛍光体を含むガラス材料層を有し、
 上記アルミニウム基板の裏面上に設けられる、上記スルーホールを通じて上記発光素子と電気的に接続し、陽極酸化皮膜を介して設けられる金属配線層とを具備し、
 上記陽極酸化皮膜が、上記陽極酸化皮膜の表面から厚さ方向にマイクロポアを有する。
[Light emitting device]
The light emitting device 32 having the through-hole shown in FIG. 2 of the present invention and mounted by flip chip preferably has the following anodized film layer.
An aluminum substrate with an anodized film having through holes formed through in the thickness direction, the front surface, the back surface and the inner wall surface of the through hole being coated with an anodized film;
An inorganic reflective layer having inorganic particles and an inorganic binder on the surface of the aluminum substrate;
A metal wiring layer and a light emitting element are provided on the inorganic reflective layer,
A glass material layer containing a phosphor that seals the inorganic reflective layer, the metal wiring layer, and the light emitting element;
A metal wiring layer provided on the back surface of the aluminum substrate, electrically connected to the light emitting element through the through hole, and provided via an anodized film;
The anodized film has micropores in the thickness direction from the surface of the anodized film.
 図4は、本発明の発光装置の一例を示す模式図であり、(A)は断面図を示し、(B)は拡大図を示す。
 図4(A)に示すように、本発明の発光装置32は、陽極酸化皮膜2を有するアルミニウム板1、発光素子10、無機反射層3および金属配線層5を備える。
 この陽極酸化皮膜2を有するアルミニウム板1は、厚さ方向に貫通形成されたスルーホールである貫通孔20、21を有する。
 また、この陽極酸化皮膜2を有するアルミニウム板1は、その表面、裏面および上記貫通孔の内壁面が陽極酸化皮膜2によって被覆されている。
 なお、図4(A)においては、貫通孔20、21の内部の全てが金属配線層5を形成する材料により充填されているが、アルミニウム板の裏面に設けられた電極板15と発光素子10とが、貫通孔20、21を通じて電気的に接続していれば、貫通孔は一部金属材料で接続されていてもよい。
4A and 4B are schematic views showing an example of the light-emitting device of the present invention, where FIG. 4A shows a cross-sectional view and FIG. 4B shows an enlarged view.
As shown in FIG. 4A, the light emitting device 32 of the present invention includes an aluminum plate 1 having an anodized film 2, a light emitting element 10, an inorganic reflective layer 3, and a metal wiring layer 5.
The aluminum plate 1 having the anodized film 2 has through holes 20 and 21 which are through holes formed through in the thickness direction.
Further, the aluminum plate 1 having the anodized film 2 is covered with the anodized film 2 on the front surface, the back surface, and the inner wall surface of the through hole.
In FIG. 4A, all of the insides of the through holes 20 and 21 are filled with the material forming the metal wiring layer 5, but the electrode plate 15 and the light emitting element 10 provided on the back surface of the aluminum plate. Are electrically connected through the through holes 20 and 21, the through holes may be partially connected with a metal material.
 図4(A)のL部の拡大図である図4(B)に示すように、陽極酸化皮膜2は、陽極酸化皮膜2の表面から厚さ方向(アルミニウム板1の方向)にマイクロポア25を有する。
 このマイクロポア25は、厚さ方向に直管状、具体的には、マイクロポア25の深さに対するマイクロポア25の中心線の長さ(長さ/深さ)が、1.0~1.2となるように形成されており、1.0~1.05となるように形成されているのが好ましい。
As shown in FIG. 4B, which is an enlarged view of the L portion in FIG. 4A, the anodic oxide film 2 has micropores 25 extending from the surface of the anodic oxide film 2 in the thickness direction (the direction of the aluminum plate 1). Have
The micropore 25 has a straight tubular shape in the thickness direction. Specifically, the length (length / depth) of the center line of the micropore 25 with respect to the depth of the micropore 25 is 1.0 to 1.2. It is preferably formed so as to be 1.0 to 1.05.
 図4(A)に示す陽極酸化皮膜2を有するアルミニウム板1は、その表面、裏面および上記貫通孔の内壁面が陽極酸化皮膜2によって被覆されている。アルミニウム板1に貫通孔等の加工をして、加工後のアルミニウム板を陽極酸化処理して、その表面、裏面および上記貫通孔の内壁面が陽極酸化皮膜2によって被覆されているアルミニウム板1を製造する。その後無機反射層3を貫通孔20,21の穴を有するパターンで印刷塗布する方法で製造されるが、この製造方法に限定されない。 The aluminum plate 1 having the anodized film 2 shown in FIG. 4 (A) has the front surface, the back surface, and the inner wall surface of the through hole covered with the anodized film 2. The aluminum plate 1 is processed such as through-holes, the processed aluminum plate is anodized, and the front surface, the back surface, and the inner wall surface of the through-hole are covered with the anodized film 2. To manufacture. Thereafter, the inorganic reflective layer 3 is manufactured by a method of printing and coating with a pattern having holes of the through holes 20 and 21, but is not limited to this manufacturing method.
 以下に実施例を示して本発明を具体的に説明する。ただし、本発明はこれらに限定されない。
 以下の工程で実施例、比較例の発光装置を製造した。
<1.基板の準備>
 基板はアルミニウム板(厚み0.2mm、0.8mm、1.5mm 1050材、日本軽金属株式会社製)を用い、以下の処理を行って基板A~Bをそれぞれ準備した。
(1)基板A・・・上記アルミニウム板にアルカリ脱脂処理のみ実施した。表1に金属種Al、陽極酸化皮膜、「-」(なし)と記載する。
 なお、以下で表中の「-」の記載は処理が行われなかったことまたは部材、材料が使用されなかったことを示す。
(2)基板B・・・上記アルミニウム板にアルカリ脱脂処理と陽極酸化処理とを行った。表1に金属種Al、陽極酸化皮膜、有と記載する。
(3)基板Ti・・・金属種チタン板(添川理化学社製)、板厚0.5mmを用い、以下の条件で陽極酸化処理を行った。表1にバルブ金属基材Ti、陽極酸化皮膜、有と記載する。
(4)白色アルミナ・・・比較例1では、アルミナ粒子(平均粒子径4.7μm)を1450℃で2時間焼結して得られたセラミック基板を用い、陽極酸化皮膜はない。表1に白色アルミナと記載する。
The present invention will be specifically described below with reference to examples. However, the present invention is not limited to these.
The light emitting devices of Examples and Comparative Examples were manufactured by the following steps.
<1. Preparation of substrate>
As the substrate, aluminum plates (thickness 0.2 mm, 0.8 mm, 1.5 mm 1050 material, manufactured by Nippon Light Metal Co., Ltd.) were used, and the following processing was performed to prepare substrates A to B, respectively.
(1) Substrate A: Alkaline degreasing treatment was performed on the aluminum plate. Table 1 describes the metal species Al, anodized film, and “-” (none).
In the following description, “-” in the table indicates that the treatment was not performed or that no member or material was used.
(2) Substrate B: The above aluminum plate was subjected to alkali degreasing treatment and anodizing treatment. In Table 1, it describes as metal seed | species Al, an anodic oxide film, and existence.
(3) Substrate Ti: An anodizing treatment was performed under the following conditions using a metal seed titanium plate (manufactured by Soekawa Riken) and a plate thickness of 0.5 mm. In Table 1, it describes as valve metal base material Ti, an anodic oxide film, and existence.
(4) White Alumina: In Comparative Example 1, a ceramic substrate obtained by sintering alumina particles (average particle size 4.7 μm) at 1450 ° C. for 2 hours has no anodized film. Table 1 describes white alumina.
(1)基板Aの処理条件
 a.アルカリ水溶液中での脱脂処理
 アルミニウム板に、水酸化ナトリウム濃度27質量%、アルミニウムイオン濃度6.5質量%、温度70℃の水溶液をスプレー管から20秒間吹き付けた。その後、ニップローラで液切りし、更に、後述する水洗処理を行った後、ニップローラで液切りした。
 水洗処理は、自由落下カーテン状の液膜により水洗処理する装置を用いて水洗し、更に、扇状に噴射水が広がるスプレーチップを80mm間隔で有する構造を有するスプレー管を用いて5秒間水洗処理した。
 b.酸性水溶液中でのデスマット処理
 上記脱脂処理の後、デスマット処理を行った。デスマット処理に用いる酸性水溶液は、硫酸1質量%水溶液を用い、液温35℃でスプレー管から5秒間吹き付けて行った。その後、脱脂処理後の場合と同様に水洗処理を行った後ニップローラで液切りした。
(1) Processing conditions for substrate A a. Degreasing treatment in alkaline aqueous solution An aqueous solution having a sodium hydroxide concentration of 27% by mass, an aluminum ion concentration of 6.5% by mass, and a temperature of 70 ° C. was sprayed onto an aluminum plate for 20 seconds. Thereafter, the liquid was drained with a nip roller, and further, a water washing treatment described later was performed, and then the liquid was drained with a nip roller.
The water washing treatment was carried out using an apparatus for washing with a free-falling curtain-like liquid film, and further washed with water for 5 seconds using a spray tube having a structure having spray tips with fan-shaped spreading at 80 mm intervals. .
b. Desmutting treatment in acidic aqueous solution After the degreasing treatment, desmutting treatment was performed. The acidic aqueous solution used for the desmut treatment was a 1% by mass sulfuric acid aqueous solution, which was sprayed from a spray tube at a liquid temperature of 35 ° C. for 5 seconds. Then, after performing the water washing process similarly to the case after a degreasing process, it drained with the nip roller.
(2)基板Bの処理条件
 基板Aと同様に作成した基板を陽極とし、陽極酸化処理装置を用いて陽極酸化処理を行った。電解液としては、70g/L硫酸水溶液に硫酸アルミニウムを溶解させてアルミニウムイオン濃度を5g/Lとした電解液(温度20℃)を用いた。陽極酸化処理は、アルミニウム板がアノード反応する間の電圧を25Vとなるように定電圧で電解を行なった。最終的な陽極酸化皮膜層厚みが20μmとなるようにした。
 その後、ニップローラで液切りし、更に、上記の水洗処理に用いたのと同様の構造のスプレー管を用いて水洗処理を行った後、ニップローラで液切りした。
(3)基板Tiの処理条件
 0.5mmの厚みのチタン板(添川理化学社製)を陽極とし、陽極酸化処理装置を用いて陽極酸化処理を施した。
 ここで、チタン板は予めトリクロロエチレンで脱脂したものを用いた。
 また、陽極酸化処理は、25g/Lのリン酸、35g/Lの硫酸、10g/Lの過酸化水素水を混合した水溶液を電解液(温度20℃)として用い、基板が3A/dmの定電流で250Vの電圧となるまで実施した。陽極酸化皮膜の厚みは8μmとなった。
 このようにしてチタンの陽極酸化皮膜を絶縁層として表面に有する基板Tiを作製した。
(2) Processing conditions for substrate B The substrate prepared in the same manner as substrate A was used as an anode, and anodization was performed using an anodizing apparatus. As the electrolytic solution, an electrolytic solution (temperature 20 ° C.) in which aluminum sulfate was dissolved in a 70 g / L sulfuric acid aqueous solution and the aluminum ion concentration was 5 g / L was used. In the anodizing treatment, electrolysis was performed at a constant voltage so that the voltage during the anodic reaction of the aluminum plate was 25V. The final anodic oxide film layer thickness was set to 20 μm.
Thereafter, the liquid was drained by a nip roller, and further, the water was washed using a spray tube having the same structure as that used in the water washing process, and then the liquid was drained by a nip roller.
(3) Processing conditions for substrate Ti Anodization was performed using an anodizing apparatus using a 0.5 mm thick titanium plate (manufactured by Soekawa Riken) as an anode.
Here, a titanium plate previously degreased with trichlorethylene was used.
In the anodizing treatment, an aqueous solution in which 25 g / L phosphoric acid, 35 g / L sulfuric acid, and 10 g / L hydrogen peroxide water are mixed is used as an electrolyte (temperature: 20 ° C.), and the substrate is 3 A / dm 2 . It was carried out until a voltage of 250 V was reached at a constant current. The thickness of the anodized film was 8 μm.
In this way, a substrate Ti having a titanium anodized film on the surface as an insulating layer was produced.
<2.基板への貫通孔の形成>
 実施例13,15は、陽極酸化処理前に基板の所定の位置に貫通孔を加工し、貫通孔の内表面も含めて陽極酸化処理した。比較例1は、白色アルミナ基板に貫通孔を加工しそのまま素子を実装した。
<2. Formation of through holes in substrate>
In Examples 13 and 15, through holes were processed at predetermined positions on the substrate before anodizing, and the inner surface of the through holes was anodized. In Comparative Example 1, a through-hole was processed in a white alumina substrate and the element was mounted as it was.
<3.基板への反射層の形成>
 以下の条件で調整したコーティング液を、塗布膜厚を調整可能なコーターにより、基板上に所定のパターンを形成して塗布した。その後、表1に記載の温度に昇温したオーブン内に入れ、5分間加熱乾燥した。乾燥後の無機反射層の量は、実施例は、20g/m~500g/mの範囲であった。
<3. Formation of reflective layer on substrate>
The coating liquid adjusted under the following conditions was applied by forming a predetermined pattern on the substrate with a coater capable of adjusting the coating film thickness. Then, it put into the oven heated up to the temperature of Table 1, and heat-dried for 5 minutes. The amount of the inorganic reflective layer after drying was in the range of 20 g / m 2 to 500 g / m 2 in the examples.
(比較例1~3)
比較例1は無機反射層なし、比較例2は、実施例と同様の無機反射層の量であった。
 比較例3は、無機反射層材料を白色フィラー(下記に記載の酸化チタン粒子、表1中酸化チタン*1で示す)を60質量部の割合でシリコーン樹脂(KR510信越シリコーン社製)100質量部に混合させて得られたものに変更した以外は実施例1と同様の方法で発光装置を製造した。
(Comparative Examples 1 to 3)
Comparative Example 1 had no inorganic reflective layer, and Comparative Example 2 had the same amount of inorganic reflective layer as the Example.
In Comparative Example 3, the inorganic reflective layer material is white filler (titanium oxide particles described below, shown as titanium oxide * 1 in Table 1) at a ratio of 60 parts by mass of silicone resin (KR510 manufactured by Shin-Etsu Silicone) 100 parts by mass. A light-emitting device was manufactured in the same manner as in Example 1 except that the mixture was changed to the one obtained by mixing the above.
 (無機反射層用コーティング液の調製)
 基板上に塗布した無機反射層材料は、下記組成の無機結着剤液100g中に対し下記の無機粒子をそれぞれ100gの比率で添加し、攪拌したものを用いた。
 <無機結着剤液(P-Al)>
 表1中、無機結着剤、P-Alと記載する。
  リン酸85%    (和光純薬) 48g
  水酸化アルミニウム(和光純薬)  11g
  水               41g
  計              100g
(Preparation of coating liquid for inorganic reflective layer)
As the inorganic reflective layer material applied on the substrate, the following inorganic particles were added at a ratio of 100 g with respect to 100 g of the inorganic binder liquid having the following composition and stirred.
<Inorganic binder liquid (P-Al)>
In Table 1, it is described as an inorganic binder, P—Al.
Phosphoric acid 85% (Wako Pure Chemical) 48g
Aluminum hydroxide (Wako Pure Chemical) 11g
Water 41g
Total 100g
 <無機結着剤液(Cl-Al)>
 表1中、無機結着剤、Cl-Alと記載する。
  塩酸35%   (和光純薬)  31.7g
  水酸化アルミニウム       7.4g
  水               60.9g
  計               100g
 <無機結着剤液(ケイ酸ナトリウム)>
 表1中、無機結着剤、ケイ酸ナトリウムと記載する。
  ケイ酸ナトリウム(3号ケイ酸ソーダ:富士化学株式会社製)  80g
  水                20g
  計               100g
<Inorganic binder solution (Cl-Al)>
In Table 1, it is described as an inorganic binder, Cl—Al.
Hydrochloric acid 35% (Wako Pure Chemical Industries) 31.7g
7.4g of aluminum hydroxide
60.9g of water
Total 100g
<Inorganic binder solution (sodium silicate)>
In Table 1, it describes as an inorganic binder and sodium silicate.
Sodium silicate (No. 3 sodium silicate: Fuji Chemical Co., Ltd.) 80g
20g of water
Total 100g
 上記無機結着剤液に以下に示す無機粒子を加え、無機反射層用コーティング液を準備した。
1)アルミナ
 用いたアルミナ粒子を以下に記載する。表1に屈折率、平均粒子径、種類、組成を記載する。
 1-1)昭和電工社製 AL-160SG-3 平均粒子径 0.52μm 純度99.9% を用いた。
 1-2)昭和電工社製 A42-2 平均粒子径 4.7μm 純度99.57%を用いた。
 1-3)平均粒子径の異なる2種のアルミナの混合物として、シーアイ化成Nanotekアルミナで、表1に示す平均粒子径の混合物を用いた。混合比率は、平均粒子径0.01μm粒子を全粒子質量中20質量%とした。表1中アルミナ(異種粒径)*0で示す。
2)酸化チタニウム:富士チタン工業株式会社 TA-100 を使用した。屈折率、平均粒子径を表1に示す。表1中酸化チタン*1で示す。
3)硫酸バリウム*2:東新化成株式会社 B‐30 を使用した。表1中硫酸バリウム*2で示す。
  硫酸バリウム*3:竹原化学工業株式会社 W‐1 を使用した。表1中硫酸バリウム*3で示す。
The inorganic particles shown below were added to the inorganic binder solution to prepare an inorganic reflective layer coating solution.
1) Alumina The alumina particles used are described below. Table 1 shows the refractive index, average particle diameter, type, and composition.
1-1) AL-160SG-3 average particle size 0.52 μm, purity 99.9%, manufactured by Showa Denko KK was used.
1-2) A42-2 average particle diameter 4.7 μm, Purity 99.57%, manufactured by Showa Denko KK was used.
1-3) As a mixture of two kinds of aluminas having different average particle diameters, a mixture of average particle diameters shown in Table 1 as CAI Kasei Nanotek alumina was used. The mixing ratio was set such that particles having an average particle diameter of 0.01 μm were 20% by mass in the total mass of the particles. In Table 1, it is indicated by alumina (different particle size) * 0.
2) Titanium oxide: Fuji Titanium Industry Co., Ltd. TA-100 was used. The refractive index and average particle diameter are shown in Table 1. In Table 1, it is indicated by titanium oxide * 1.
3) Barium sulfate * 2: Toshin Kasei Co., Ltd. B-30 was used. Shown in Table 1 as barium sulfate * 2.
Barium sulfate * 3: Takehara Chemical Industry Co., Ltd. W-1 was used. Shown in Table 1 as barium sulfate * 3.
 <4.無機反射層の修飾処理>
 得られた無機反射層付基板のうち、実施例5,17について以下の条件でPDMS(ポリジメチルシロキサン)を塗布し無機反射層の修飾処理をした。
 溶媒:トルエン 10g
 ポリジメチルシロキサン(商品名:Q7-9120 SILICONE FLUID 20CST、 DOW CORNINGR社製) 10g
<4. Modification of inorganic reflective layer>
Among the obtained substrates with an inorganic reflective layer, PDMS (polydimethylsiloxane) was applied to Examples 5 and 17 under the following conditions to modify the inorganic reflective layer.
Solvent: 10g of toluene
Polydimethylsiloxane (trade name: Q7-9120 SILICONE FLUID 20CST, manufactured by DOW CORNINGR) 10g
 <5.金属配線層の形成>
 得られた反射基板の表面にインクジェット装置(DMP-2831、富士フイルム社製)を用いて銀ナノ粒子インク(XA-436、藤倉化学社製)の希釈液を金属配線層のパターンで打滴することでAg配線(配線幅:100μm)を形成させた。次いで、ニッケルを含むめっき液でめっきし、Ag-Ni配線を形成させた。
 最後に、金を含むめっき液でめっきし、Ag-Ni-金配線を形成させた。なお、各層の厚みは、Ag(20μm),Ni(4μm),Au(0.4μm)であった。
<5. Formation of metal wiring layer>
A diluted solution of silver nanoparticle ink (XA-436, manufactured by Fujikura Chemical Co., Ltd.) is ejected onto the surface of the obtained reflective substrate in a pattern of a metal wiring layer using an ink jet apparatus (DMP-2831, manufactured by Fuji Film Co., Ltd.). Thus, an Ag wiring (wiring width: 100 μm) was formed. Next, plating was performed with a plating solution containing nickel to form an Ag—Ni wiring.
Finally, plating was performed with a plating solution containing gold to form an Ag—Ni—gold wiring. The thickness of each layer was Ag (20 μm), Ni (4 μm), Au (0.4 μm).
 <6.発光素子の実装と配線の形成>
 次いで、実施例、比較例の反射基板の表面に市販のGeneLite社製、商品番号OBL―CH1818の発光素子を実装し、金属配線層とワイヤボンディングまたはフリップチップ実装で電気的に接続した。
 実施例13,15、比較例1は、貫通孔を導電経路として用いて、導電バンプを介して発光素子をフリップチップ実装した。
<6. Mounting of light emitting element and formation of wiring>
Next, a commercially available light-emitting element manufactured by GeneLite Co., Ltd., product number OBL-CH1818 was mounted on the surface of the reflective substrate of Examples and Comparative Examples, and was electrically connected to the metal wiring layer by wire bonding or flip chip mounting.
In Examples 13 and 15 and Comparative Example 1, the light-emitting elements were flip-chip mounted through conductive bumps using the through holes as conductive paths.
 <7.発光素子封止層の形成>
 蛍光体材料はYAl12:Ceを用いて、表に示すガラス材料層にこの蛍光体材料を混合して、以下に示す条件で封止層を形成し実施例、比較例の発光装置を得た。
 (1)金属アルコキシド
 テトラエトキシシラン[Si(OC]にエタノールと水を加え攪拌した後、反応触媒として塩酸を滴下し、更に室温で攪拌した後24時間静置しゲル状の前駆体を得た。この前駆体に蛍光体材料(YAl12:Ce)を添加して攪拌分散後、実装した発光素子の上面にピペッティングし、その後300℃で1時間加熱することで封止層を作成した。またフリップチップ実装の場合は塗布を行なって全面に均一な封止層を形成した。
 (2)水ガラス
 3号ケイ酸ナトリウム原液に蛍光体材料(YAl12:Ce)を添加して攪拌分散後実装した発光素子上面にピペッティングし、その後300℃で1時間加熱することで封止層を作成した。またフリップチップ実装の場合は塗布を行なって全面に均一な封止層を形成した。
 (3)セラミック前駆体ポリマー
 米国特許第4540803号明細書の方法によって作成した15gのヒドリドポリシラザン(hydridopolysilazane)、2gのグリシドキシプロピルトリメトキシシラン、および4gのジメチルシクロシロキサンを混合し、粘稠なペーストを作成した。金属アルコキシドと同じ仕方で、実装した発光素子の表面にピペッティングしその後400℃で1時間加熱することで封止層を形成した。
<7. Formation of light-emitting element sealing layer>
The phosphor material is Y 3 Al 5 O 12 : Ce, and this phosphor material is mixed with the glass material layer shown in the table, and a sealing layer is formed under the conditions shown below. Got the device.
(1) After adding ethanol and water to metal alkoxide tetraethoxysilane [Si (OC 2 H 5 ) 4 ] and stirring, hydrochloric acid was added dropwise as a reaction catalyst, and the mixture was further stirred at room temperature and allowed to stand for 24 hours. A precursor was obtained. A phosphor material (Y 3 Al 5 O 12 : Ce) is added to this precursor, and after stirring and dispersing, pipetting is performed on the upper surface of the mounted light emitting device, and then heating is performed at 300 ° C. for 1 hour to form a sealing layer. Created. In the case of flip chip mounting, coating was performed to form a uniform sealing layer on the entire surface.
(2) Water glass Add phosphor material (Y 3 Al 5 O 12 : Ce) to No. 3 sodium silicate stock solution, stir and disperse, and then pipet on top of mounted light emitting device, then heat at 300 ° C. for 1 hour Thus, a sealing layer was created. In the case of flip chip mounting, coating was performed to form a uniform sealing layer on the entire surface.
(3) Ceramic precursor polymer 15 g of hydridopolysilazane prepared by the method of US Pat. No. 4,540,803, 2 g of glycidoxypropyltrimethoxysilane, and 4 g of dimethylcyclosiloxane were mixed to form a viscous Created a paste. The sealing layer was formed by pipetting on the surface of the mounted light emitting element in the same manner as the metal alkoxide and then heating at 400 ° C. for 1 hour.
 <発光装置の評価>
(1)反射率
 作製した金属配線形成前の基板について、反射濃度計(CM2600D、コニカミノルタ社製)を用いて、400~700nmの全反射率(SPINモードの全平均)を測定した。
(2)経時劣化性
 発光素子の最大許容電流で連続して発光させ100時間経過後の発光効率を測定した。得られた表1に示す発光装置として、ガラス材料層中に発光素子に対して十分量の蛍光体を用い、市販のGeneLite社製、商品番号OBL―CH1818の発光素子を実装し、最大電流、60mAで発光させた。最大許容電流での初期の発光強度と100時間経過後の発光強度を測定し、100時間経過後の発光強度の初期発光強度値に対する%で評価した。結果を表2に示す。発光強度はウシオ電機社製スペクトロラディオメータ「USR-45V/D」で測定した。
(3)耐熱温度
 表2中に各層の耐熱温度(溶融温度)を記載した。
<Evaluation of light emitting device>
(1) Reflectance The total reflectivity (total average of SPIN mode) of 400 to 700 nm was measured using a reflection densitometer (CM2600D, manufactured by Konica Minolta Co., Ltd.) for the prepared substrate before metal wiring formation.
(2) Aging deterioration property The light emission efficiency after 100 hours was measured by continuously emitting light at the maximum allowable current of the light emitting element. As the light-emitting device shown in Table 1, a sufficient amount of phosphor with respect to the light-emitting element was used in the glass material layer, and a light-emitting element manufactured by GeneLite, product number OBL-CH1818 was mounted. Light was emitted at 60 mA. The initial light emission intensity at the maximum allowable current and the light emission intensity after 100 hours were measured, and the light emission intensity after 100 hours passed was evaluated as% of the initial light emission intensity value. The results are shown in Table 2. The emission intensity was measured with a spectroradiometer “USR-45V / D” manufactured by USHIO INC.
(3) Heat-resistant temperature In Table 2, the heat-resistant temperature (melting temperature) of each layer was described.
(4)加工適性
 加工適性として、以下の評価結果を表2に示す。
 (AA 評価、境界層深さが向上し、ガラス層との密着性高い)
 得られた発光装置の断面を切断して電子顕微鏡で観察した結果、無機反射層とガラス材料層との境界と考えられる界面の深さが深くなっており、無機反射層とガラス材料層との密着性が非常に高いことがわかる。
 (A 評価、最終段階で個片化可能)
 得られた発光装置を最終製品にする段階で、ダイシングで30個に個片化して切り離した際にガラス材料層とその下層との間で、材料の剥がれ落ちや抜け落ちるなどの欠陥が全く認められず、工業的に個片化が十分な安全率で可能であると考えられる。
 (B 評価)得られた発光装置を最終製品にする段階で、ダイシングで30個に個片化して切り離した際に、特に欠陥が認められず、小規模実施には問題ないと考えられる場合。
 (C 評価、アルミナとガラス層間の密着性不足で加工時破損)
 上記最終製品にする段階でダイシングで30個に個片化して切り離した際に、基板の白色アルミナとガラス材料層との間で加工時破損してしまった。
 (D 評価)最終製品のダイシングで30個に個片化するとガラス材料層間とその下層との間が剥がれてしまう発光素子があった。また、剥がれなかったが一部材料が抜け落ちるなどの欠陥が見つかった発光装置があった。
(4) Workability Table 2 shows the following evaluation results as workability.
(AA evaluation, improved boundary layer depth, high adhesion to glass layer)
As a result of cutting the cross section of the obtained light emitting device and observing it with an electron microscope, the depth of the interface considered to be the boundary between the inorganic reflective layer and the glass material layer is deep. It can be seen that the adhesion is very high.
(A evaluation, can be singulated at the final stage)
At the stage where the resulting light emitting device is made into a final product, there are no defects such as peeling off or falling off of the material between the glass material layer and its lower layer when separated into 30 pieces by dicing and separating. Therefore, it can be considered that industrialization is possible with a sufficient safety factor.
(B Evaluation) When the obtained light emitting device is made into a final product, when it is separated into 30 pieces by dicing and separated, no defects are recognized, and it is considered that there is no problem for small scale implementation.
(C evaluation, damage during processing due to insufficient adhesion between alumina and glass layer)
When the final product was cut into 30 pieces by dicing and separated, the white alumina on the substrate and the glass material layer were damaged during processing.
(D Evaluation) There was a light emitting device in which the glass material layer and the lower layer were peeled off when the final product was diced into 30 pieces by dicing. In addition, there was a light-emitting device in which defects such as part of the material falling off were found although they were not peeled off.
(5)発光素子の実装性
 市販のGeneLite社製、商品番号OBL―CH1818の発光素子を実装する際に以下の評価をした。
 A:貫通孔をあける加工が容易で問題がなかった。ネジ止め実装の際にネジ穴をあける加工が容易で問題がなかった。
 B:貫通孔をあける加工が容易で問題がなかった。ネジ止め実装の際にネジを切るのが困難であった。
 C:スルーホール加工(貫通孔をあける加工)が困難であった。
(5) Mountability of light-emitting element The following evaluation was performed when mounting a light-emitting element having a product number of OBL-CH1818 manufactured by GeneLite.
A: The process of making a through hole was easy and there was no problem. There was no problem because it was easy to drill the screw holes when mounting with screws.
B: The process of making a through hole was easy and there was no problem. It was difficult to cut the screws when mounting with screws.
C: Through-hole processing (processing to open a through-hole) was difficult.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(実施例、比較例の考察)
 実施例の発光装置は、反射率が高く、耐熱温度も高い。無機反射層と金属基板との密着性が高く、加工性に優れている。
 無機反射層が修飾処理されている実施例5,17は、無機反射層とガラス材料層との密着性にとくに優れている。
 貫通孔を加工後陽極酸化処理しフリップチップ実装である実施例13,15は工業的に最終段階で個片化が安全率を持って実施できることがわかった。
 比較例1は、白色アルミナ焼結体であるセラミック基板の加工が困難であり、またセラミック基板が直接ガラス材料層と接しているため、アルミナ表面とガラス材料層との間の密着性不足で、加工時破損してしまった。白色アルミナの反射率も低い。
 比較例2は、陽極酸化層がないので無機反射層と金属板との密着が不十分であり加工性に劣った。
 比較例3は無機反射層のかわりに白色フィラー含有樹脂層を有し、陽極酸化層がなく密着性はあったが経時劣化が大きかった。
(Consideration of Examples and Comparative Examples)
The light emitting device of the example has high reflectance and high heat resistance temperature. The adhesion between the inorganic reflective layer and the metal substrate is high, and the processability is excellent.
Examples 5 and 17 in which the inorganic reflective layer is modified are particularly excellent in adhesion between the inorganic reflective layer and the glass material layer.
It was found that in Examples 13 and 15, which were flip-chip mounting after the through-holes were processed by anodizing, singulation could be carried out with a safety factor in the final stage.
In Comparative Example 1, it is difficult to process a ceramic substrate that is a white alumina sintered body, and since the ceramic substrate is in direct contact with the glass material layer, the adhesion between the alumina surface and the glass material layer is insufficient. Damaged during processing. The reflectance of white alumina is also low.
In Comparative Example 2, since there was no anodized layer, the adhesion between the inorganic reflective layer and the metal plate was insufficient, and the processability was poor.
Comparative Example 3 had a white filler-containing resin layer instead of the inorganic reflective layer, had no anodized layer, and had good adhesion, but was deteriorated with time.
 1、110 金属基材
 2 陽極酸化皮膜層
 3 無機反射層
 4 無機粒子
 5 無機結着剤
 6 蛍光体
 7 ガラス材料層
 10 発光素子
 11 アルミニウム板
 15 電極板
 17 導電バンプ
 19 ボンディングワイヤ
 20、21 貫通孔
 25 マイクロポア
 30 発光装置
 130 白色レジスト層
 170 封止樹脂
 30、32、300 発光装置
DESCRIPTION OF SYMBOLS 1,110 Metal base material 2 Anodized film layer 3 Inorganic reflecting layer 4 Inorganic particle 5 Inorganic binder 6 Phosphor 7 Glass material layer 10 Light emitting element 11 Aluminum plate 15 Electrode plate 17 Conductive bump 19 Bonding wire 20, 21 Through-hole 25 Micropore 30 Light emitting device 130 White resist layer 170 Sealing resin 30, 32, 300 Light emitting device

Claims (13)

  1.  バルブ金属基材表面の少なくとも一部に陽極酸化皮膜層を有し、前記陽極酸化皮膜層上に無機粒子と無機結着剤とを有する無機反射層を備え、
     前記無機反射層上に金属配線層および発光素子を備え、
     前記無機反射層、金属配線層および発光素子を封止する、蛍光体を含むガラス材料層を有する発光装置。
    Having an anodized film layer on at least a part of the surface of the valve metal substrate, and an inorganic reflective layer having inorganic particles and an inorganic binder on the anodized film layer;
    A metal wiring layer and a light emitting element are provided on the inorganic reflective layer,
    A light emitting device having a glass material layer containing a phosphor that seals the inorganic reflective layer, the metal wiring layer, and the light emitting element.
  2.  前記ガラス材料層が金属アルコキシド、セラミック前駆体ポリマーまたは水ガラスからなる材料を塗布硬化して得られる請求項1に記載の発光装置。 The light emitting device according to claim 1, wherein the glass material layer is obtained by applying and curing a material made of a metal alkoxide, a ceramic precursor polymer, or water glass.
  3.  前記無機結着剤がケイ酸ナトリウム、リン酸アルミニウムおよび塩化アルミニウムからなる群から選択される少なくとも一つである請求項1または2に記載の発光装置。 3. The light emitting device according to claim 1, wherein the inorganic binder is at least one selected from the group consisting of sodium silicate, aluminum phosphate and aluminum chloride.
  4.  前記無機粒子は、屈折率1.5以上1.8以下、平均粒子径0.1μm以上5μm以下である請求項1~3のいずれか1項に記載の発光装置。 4. The light emitting device according to claim 1, wherein the inorganic particles have a refractive index of 1.5 to 1.8 and an average particle size of 0.1 μm to 5 μm.
  5. 前記無機反射層が、100℃~300℃の温度で低温焼成されて得られる請求項1~4のいずれか1項に記載の発光装置。 The light emitting device according to any one of claims 1 to 4, wherein the inorganic reflective layer is obtained by low-temperature firing at a temperature of 100 ° C to 300 ° C.
  6.  前記無機反射層が、さらに表面修飾処理されている請求項1~5のいずれか1項に記載の発光装置。 The light emitting device according to any one of claims 1 to 5, wherein the inorganic reflective layer is further subjected to a surface modification treatment.
  7.  前記バルブ金属基材が、アルミニウム、タンタル、ニオブ、チタン、ハフニウム、ジルコニウム、亜鉛、タングステン、ビスマスおよびアンチモンからなる群から選択される少なくとも1種の金属板である請求項1~6のいずれか1項に記載の発光装置。 The valve metal substrate is at least one metal plate selected from the group consisting of aluminum, tantalum, niobium, titanium, hafnium, zirconium, zinc, tungsten, bismuth and antimony. The light emitting device according to item.
  8.  前記バルブ金属基材および無機反射層を貫通する貫通孔を有し、前記発光素子がフリップチップ実装されている請求項1~7のいずれか1項に記載の発光装置。 The light emitting device according to any one of claims 1 to 7, wherein the light emitting device has a through-hole penetrating the valve metal substrate and the inorganic reflective layer, and the light emitting element is flip-chip mounted.
  9.  前記無機粒子が、前記無機反射層中に2種類以上含まれる請求項1~8のいずれか1項に記載の発光装置。 The light emitting device according to any one of claims 1 to 8, wherein two or more kinds of the inorganic particles are included in the inorganic reflective layer.
  10.  前記発光素子が発光ダイオード(LED)であり、前記発光装置が発光ダイオード装置である請求項1~9のいずれか1項に記載の発光装置。 The light emitting device according to any one of claims 1 to 9, wherein the light emitting element is a light emitting diode (LED), and the light emitting device is a light emitting diode device.
  11.  バルブ金属基材表面の少なくとも一部を陽極酸化し、
     得られた陽極酸化皮膜層上に無機反射層を形成し、
     前記無機反射層上に金属配線層を設け、発光素子を実装し、実装された発光素子を外部電極と電気的に接続し、
     前記無機反射層、金属配線層および発光素子を、蛍光体を含むガラス材料で封止する発光装置の製造方法。
    Anodizing at least part of the surface of the valve metal substrate;
    An inorganic reflective layer is formed on the obtained anodized film layer,
    A metal wiring layer is provided on the inorganic reflective layer, a light emitting element is mounted, the mounted light emitting element is electrically connected to an external electrode,
    A method for manufacturing a light emitting device, wherein the inorganic reflective layer, the metal wiring layer, and the light emitting element are sealed with a glass material containing a phosphor.
  12.  前記陽極酸化工程の前にバルブ金属基材を機械加工して貫通孔を形成し、前記発光素子をフリップチップ実装する請求項11に記載の発光装置の製造方法。 The method for manufacturing a light emitting device according to claim 11, wherein the valve metal substrate is machined to form a through hole before the anodizing step, and the light emitting element is flip-chip mounted.
  13.  前記無機反射層、金属配線層および発光素子を、前記蛍光体を含むガラス材料で封止して発光装置を製造した後、所望の単位の発光装置に切り離す請求項12に記載の発光装置の製造方法。 13. The light emitting device according to claim 12, wherein the inorganic reflective layer, the metal wiring layer, and the light emitting element are sealed with a glass material containing the phosphor to manufacture a light emitting device, and then separated into a desired unit of light emitting device. Method.
PCT/JP2012/075393 2011-09-30 2012-10-01 Light-emitting device WO2013047876A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011217057 2011-09-30
JP2011-217057 2011-09-30

Publications (1)

Publication Number Publication Date
WO2013047876A1 true WO2013047876A1 (en) 2013-04-04

Family

ID=47995899

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/075393 WO2013047876A1 (en) 2011-09-30 2012-10-01 Light-emitting device

Country Status (2)

Country Link
JP (1) JP2013084954A (en)
WO (1) WO2013047876A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014229789A (en) * 2013-05-23 2014-12-08 シャープ株式会社 Light emitting device and manufacturing method of the same
CN104766916A (en) * 2014-01-07 2015-07-08 易美芯光(北京)科技有限公司 LED integrated light source adopting inverted blue light chip for packaging
EP3032595A1 (en) * 2014-12-08 2016-06-15 Millennium Substrates Sdn Bhd A method of manufacturing chip-on-board and surface mount device LED substrate
JP2020511686A (en) * 2017-02-28 2020-04-16 オスラム ゲーエムベーハーOSRAM GmbH Conversion element, optoelectronic component and method for manufacturing conversion element
WO2021111724A1 (en) * 2019-12-04 2021-06-10 シャープ株式会社 Wavelength conversion element, wavelength conversion device, and light-emission system

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8993921B2 (en) 2012-06-22 2015-03-31 Apple Inc. Method of forming white appearing anodized films by laser beam treatment
US9493876B2 (en) 2012-09-14 2016-11-15 Apple Inc. Changing colors of materials
JP2015065425A (en) * 2013-08-29 2015-04-09 株式会社日本セラテック Light emitting device and manufacturing method of the same
US9181629B2 (en) 2013-10-30 2015-11-10 Apple Inc. Methods for producing white appearing metal oxide films by positioning reflective particles prior to or during anodizing processes
CN105705681B (en) * 2013-10-30 2021-03-26 苹果公司 Method for producing white appearing metal oxide films by locating reflective particles prior to or during an anodization process
US9839974B2 (en) 2013-11-13 2017-12-12 Apple Inc. Forming white metal oxide films by oxide structure modification or subsurface cracking
JP2017126714A (en) * 2016-01-15 2017-07-20 東芝ライテック株式会社 Light emitting device
KR102443973B1 (en) * 2017-12-11 2022-09-16 (주)코미코 Anodized Al or Al alloy member having good decay resistance and insulation property and the method for manufacturing the member
JP2021052119A (en) * 2019-09-26 2021-04-01 富士フイルム株式会社 Reflective board for led light emitting element and led package

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11251640A (en) * 1998-02-27 1999-09-17 Sanken Electric Co Ltd Semiconductor light emitting device
JP2003101074A (en) * 2001-09-26 2003-04-04 Stanley Electric Co Ltd Light-emitting device
JP2010500779A (en) * 2006-08-11 2010-01-07 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Device chip carrier, module and manufacturing method thereof
JP2010003946A (en) * 2008-06-23 2010-01-07 Zeniya Sangyo Kk Package of light emitting element, and manufacturing method of light emitting element
JP2010013608A (en) * 2008-07-07 2010-01-21 Nemoto & Co Ltd Phosphor and emitter
JP2011171687A (en) * 2010-01-20 2011-09-01 Fujifilm Corp Insulated substrate, manufacturing method thereof, and forming method of wiring

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11251640A (en) * 1998-02-27 1999-09-17 Sanken Electric Co Ltd Semiconductor light emitting device
JP2003101074A (en) * 2001-09-26 2003-04-04 Stanley Electric Co Ltd Light-emitting device
JP2010500779A (en) * 2006-08-11 2010-01-07 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Device chip carrier, module and manufacturing method thereof
JP2010003946A (en) * 2008-06-23 2010-01-07 Zeniya Sangyo Kk Package of light emitting element, and manufacturing method of light emitting element
JP2010013608A (en) * 2008-07-07 2010-01-21 Nemoto & Co Ltd Phosphor and emitter
JP2011171687A (en) * 2010-01-20 2011-09-01 Fujifilm Corp Insulated substrate, manufacturing method thereof, and forming method of wiring

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014229789A (en) * 2013-05-23 2014-12-08 シャープ株式会社 Light emitting device and manufacturing method of the same
CN104766916A (en) * 2014-01-07 2015-07-08 易美芯光(北京)科技有限公司 LED integrated light source adopting inverted blue light chip for packaging
EP3032595A1 (en) * 2014-12-08 2016-06-15 Millennium Substrates Sdn Bhd A method of manufacturing chip-on-board and surface mount device LED substrate
JP2020511686A (en) * 2017-02-28 2020-04-16 オスラム ゲーエムベーハーOSRAM GmbH Conversion element, optoelectronic component and method for manufacturing conversion element
US11009205B2 (en) 2017-02-28 2021-05-18 Osram Oled Gmbh Conversion element, optoelectronic component and method for producing a conversion element
US11387391B2 (en) 2017-02-28 2022-07-12 Osram Gmbh Conversion element, optoelectronic component and method for producing a conversion element
WO2021111724A1 (en) * 2019-12-04 2021-06-10 シャープ株式会社 Wavelength conversion element, wavelength conversion device, and light-emission system

Also Published As

Publication number Publication date
JP2013084954A (en) 2013-05-09

Similar Documents

Publication Publication Date Title
WO2013047876A1 (en) Light-emitting device
WO2012133173A1 (en) Reflective substrate for light-emitting element and method for producing same
TWI411141B (en) Light emitting device
US20120256224A1 (en) Insulated substrate, process for production of insulated substrate, process for formation of wiring line, wiring substrate, and light-emitting element
US20120039066A1 (en) Radiation reflection plate for led
JP5076017B2 (en) Light emitting device
JP2012033853A (en) Insulation light reflection substrate
JP2014241431A (en) Method of manufacturing light-emitting device
US20140117840A1 (en) Insulating reflective substrate and method for producing same
JP2017050543A (en) Light-emitting device and resin composition
JP2012169653A (en) Method of manufacturing light-emitting device
JP5566263B2 (en) Light emitting module
WO2013047874A1 (en) Reflective substrate for light-emitting element
WO2015194180A1 (en) Method for manufacturing surface-treated phosphor, surface-treated phosphor, wavelength conversion member, and light emission device
JP2010245258A (en) Wiring board and light emitting device
WO2013031987A1 (en) Insulating reflective substrate and led package
KR20210080427A (en) Surface-coated phosphor particles, composites and light emitting devices
JP2012216748A (en) Wiring forming substrate, method for manufacturing the same, wiring board using the same, and electronic device
KR20190113750A (en) Wavelength conversion member
JP4863794B2 (en) Wavelength converting material, method for producing the same, and light emitting device using the same
TWI833035B (en) β-SIALON PHOSPHOR AND LIGHT-EMITTING DEVICE
JP2015041664A (en) Insulation reflecting substrate and led package
JP2013016706A (en) Insulation reflection substrate for led
KR20220049533A (en) β-Sialon phosphor and light emitting device
WO2011092798A1 (en) Phosphor and light-emitting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12836044

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12836044

Country of ref document: EP

Kind code of ref document: A1