WO2013047874A1 - Reflective substrate for light-emitting element - Google Patents

Reflective substrate for light-emitting element Download PDF

Info

Publication number
WO2013047874A1
WO2013047874A1 PCT/JP2012/075390 JP2012075390W WO2013047874A1 WO 2013047874 A1 WO2013047874 A1 WO 2013047874A1 JP 2012075390 W JP2012075390 W JP 2012075390W WO 2013047874 A1 WO2013047874 A1 WO 2013047874A1
Authority
WO
WIPO (PCT)
Prior art keywords
inorganic
substrate
emitting element
light
layer
Prior art date
Application number
PCT/JP2012/075390
Other languages
French (fr)
Japanese (ja)
Inventor
堀田 吉則
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2013047874A1 publication Critical patent/WO2013047874A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/16Layered products comprising a layer of metal next to a particulate layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/16Pretreatment, e.g. desmutting
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/18After-treatment, e.g. pore-sealing
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/26Anodisation of refractory metals or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/34Anodisation of metals or alloys not provided for in groups C25D11/04 - C25D11/32
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/0808Mirrors having a single reflecting layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/025Particulate layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/024Anodisation under pulsed or modulated current or potential
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • the present invention relates to a light reflecting substrate used for a light emitting element, and more specifically to a light emitting element reflecting substrate used for a light emitting element such as a light emitting diode (hereinafter referred to as LED) and a method for manufacturing the same.
  • a light emitting element reflecting substrate used for a light emitting element such as a light emitting diode (hereinafter referred to as LED) and a method for manufacturing the same.
  • Patent Document 1 describes a coating composition in which a resin and a silica airgel are mixed, and the resin is a powder coating, and a reflector for a lighting fixture in which a coating film of the coating composition is formed on the surface of a metal substrate. Since the powder coating is a solid content of 100% resin and does not contain an organic solvent, the hydrophobic silica aerogel does not shrink due to the action of the organic solvent or the like and becomes cloudy. It is described that the light reflectance is excellent.
  • the light reflecting substrate for a light emitting element contains a resin binder
  • the reflective layer itself has low heat resistance and poor light resistance, and cannot withstand aging.
  • the present inventor examines the problems of the background art described above, and aims to provide a reflective substrate for a light-emitting element that has higher heat resistance, excellent light resistance, and high light reflectance.
  • the inventor has a specific inorganic reflective layer on the substrate surface, and when the inorganic reflective layer has a surface structure derived from a specific OH group, the light reflectance is high, and the sealing resin layer provided on the surface Alternatively, the present invention has been achieved by finding that the surface structure derived from this OH group is excellent in adhesion to the metal wiring layer and has no adverse effect on the withstand voltage, but rather the withstand voltage is improved.
  • the present invention provides the following. (1) at least a portion of the valve metal substrate to comprise an inorganic reflective layer, the inorganic reflective layer, Vickers hardness (Hv) 1 GPa or more, the wave number was measured by infrared spectroscopy 3000 cm -1 and a wavenumber of 1900 cm -1 A reflective substrate for a light emitting device, wherein an OH surface structure absorption coefficient indicated by a difference in absorbance is 0.40 or more. (2) The reflective substrate for a light-emitting element according to (1), which has an anodized film layer of a valve metal substrate between the valve metal substrate and the inorganic reflective layer.
  • the inorganic reflective layer has at least one inorganic binder selected from the group consisting of aluminum phosphate, aluminum chloride and sodium silicate, a refractive index of 1.5 to 1.8, and an average particle size of 0
  • the reflective substrate for light emitting elements according to (1) or (2) which contains inorganic particles of 1 ⁇ m or more and 5 ⁇ m or less.
  • the valve metal is at least one metal selected from the group consisting of aluminum, tantalum, niobium, titanium, hafnium, zirconium, zinc, tungsten, bismuth, and antimony.
  • An inorganic reflective layer having a Vickers hardness (Hv) of 1 GPa or more provided on at least a part of the surface of the valve metal substrate is subjected to a heat steam treatment or a hydrophilization treatment, and a wave number of 3000 cm ⁇ 1 measured by infrared spectroscopy.
  • a method for producing a reflective substrate for a light emitting device (C) forming a metal wiring layer for electric signal transmission to the light emitting element and patterning the metal wiring layer; (D) The process of providing a metal layer in the electrode part corresponded to the part which mounts a light emitting element.
  • a white light-emitting diode including a blue light-emitting element on the reflective substrate for a light-emitting element according to any one of (1) to (10), and a fluorescent light-emitting body around and / or above the blue light-emitting element apparatus.
  • the reflective substrate for a light emitting device of the present invention has high heat resistance, excellent light resistance, and high light reflectance. Moreover, it is excellent in adhesiveness with the sealing resin layer and / or metal wiring layer provided on the surface.
  • FIG. 1A is an enlarged cross-sectional view illustrating an example of a preferred embodiment of the reflective substrate for a light-emitting element of the present invention
  • FIG. 1B illustrates another preferred embodiment of the present invention. It is an expanded sectional view.
  • It is a schematic sectional drawing explaining an example of the suitable embodiment of the reflective substrate for light emitting elements of this invention. It is sectional drawing explaining the light-emitting device using another embodiment of the reflective substrate for light emitting elements of this invention. It is the schematic explaining the wiring pattern used for evaluation. It is a chart which shows the measurement result of the light absorbency by infrared spectroscopy.
  • the reflective substrate for a light-emitting element of the present invention is a substrate provided with an inorganic reflective layer on at least a part of the surface of the valve metal substrate, and the inorganic reflective layer has a Vickers hardness of 1 GPa or more and is measured by an infrared spectrophotometer.
  • the difference in absorbance at a wavenumber of 3000 cm -1 and a wavenumber 1900 cm -1 (hereinafter sometimes referred to as OH surface structure absorption coefficient) is a reflective substrate for light-emitting element is 0.40 or more.
  • the Vickers hardness is preferably 1 GPa or more and 10 GPa or less, and the OH surface structure absorption coefficient is 0.40 or more and 0.8 or less.
  • FIG. 1 is a schematic view showing an example of a preferred embodiment of the reflective substrate for a light emitting device of the present invention.
  • the reflective substrate 30 for a light-emitting element of the present invention has a Vickers hardness of 1 GPa or more on at least a part of the surface of the valve metal substrate 1 and a wave number measured by an infrared spectrophotometer. 3000 cm -1 and the difference in absorbance at wave number 1900 cm -1 (OH surface structure absorption coefficient) is a reflective substrate for light-emitting device including an inorganic reflective layer 3 is 0.40 or more. Further, as shown in FIG.
  • the reflective substrate 30 for a light-emitting element of the present invention has a good withstand voltage of the substrate, and a good adhesion between the inorganic reflective layer and the substrate for the reason that the valve metal base material is used.
  • first insulating layer such as anodized film layer 2 is provided on at least part of the surface, and Vickers hardness 1GPa or more as an upper layer, and the wave number 3000 cm -1 and a wavenumber 1900 cm -1 as measured by infrared spectrophotometry
  • a reflective substrate for a light-emitting element including the inorganic reflective layer 3 having a difference in absorbance (OH surface structure absorption coefficient) of 0.40 or more is preferable.
  • the constituent material of the inorganic reflective layer is an inorganic component and has a Vickers hardness of 1 GPa or more.
  • the Vickers hardness is preferably 1 GPa or more and 10 GPa or less.
  • the Vickers hardness test method calculates the surface area S (mm 2 ) from the diagonal length d (mm) of the dent remaining after the diamond indenter is pushed into the material surface and the load is removed.
  • a value that is 0.102 times the value obtained by dividing the test load F (N) by the calculated surface area S (mm 2 ) is the Vickers hardness (Hv), and is obtained by the following equation.
  • Infrared spectroscopy (abbreviated as IR) is a method of obtaining the spectrum by irradiating the substance to be measured with infrared rays and dispersing the transmitted (or reflected) light to know the characteristics of the object.
  • the infrared spectrum is slightly changed depending on the surface structure of the object. From this, it is possible to know the surface structure of a specific substance.
  • Example 1 and Comparative Example 3 The result of having measured the infrared absorption spectrum of the inorganic reflective layer surface of Example 1 and Comparative Example 3 which are demonstrated later is shown in FIG.
  • FIG. 5 shows the difference in the surface state between Example 1 and Comparative Example 3 is shown in the wave number range of 3000 to 4000 cm ⁇ 1 .
  • This wave number range corresponds to the stretching vibration of the OH group caused by water or the like.
  • the present inventor can indicate the difference in surface state by setting the following OH surface structure absorption coefficient. I discovered that.
  • OH surface structure absorption coefficient [absorbance at a wavenumber of 3000 cm -1] - [absorbance at a wavenumber of 1900 cm -1]
  • the following OH surface structure absorption coefficient can be obtained from the measured values shown in FIG. 5 for Example 1 and Comparative Example 3.
  • the reference example was adjusted under the following conditions.
  • the inorganic reflective layer of the present invention is not particularly limited as long as it satisfies the above conditions 1) and 2) and the constituent material is an inorganic component. It is preferable not to include an organic component. Since the inorganic reflective layer is an inorganic material, it has high heat resistance and light resistance and is resistant to aging.
  • the inorganic reflective layer is provided on the valve metal substrate in the reflective substrate for a light emitting device of the present invention.
  • a substrate having an insulating layer on the metal base is preferred for the reason that the insulating properties are better.
  • the anodized film layer 2 and the inorganic reflective layer 3 may be provided on a part of the valve metal substrate 1, or only the anodized film layer 2 may be present. This is because the required positions of the insulating layer, which is an anodized film layer, and the inorganic reflective layer differ depending on the shape of the element to be mounted and the position of the wiring, and it is necessary to arrange them in various designs.
  • the inorganic reflective layer has a thickness of 10 ⁇ m or more, preferably 10 to 60 ⁇ m, and more preferably 20 to 50 ⁇ m.
  • the thickness of the inorganic reflective layer is 10 ⁇ m or more, the withstand voltage is good. Further, when the thickness of the inorganic reflective layer is 60 ⁇ m or less, flexibility is maintained and processability, handleability and the like are improved.
  • the thickness of the valve metal base plate used in the present invention is preferably 0.1 to 2.0 mm.
  • the thickness of the aluminum plate is about 0.1 to 2.0 mm, preferably 0.15 to 1.5 mm, and more preferably 0.2 to 1.0 mm. This thickness can be appropriately changed according to the user's wishes or the like.
  • the thickness of the anodized film layer is preferably 1 to 200 ⁇ m. If it is less than 1 ⁇ m, the withstand voltage is poor and the withstand voltage is lowered. On the other hand, if it exceeds 200 ⁇ m, a large amount of electric power is required for production, which is economically disadvantageous.
  • the thickness of the anodized film layer is preferably 10 ⁇ m or more, and more preferably 20 ⁇ m or more.
  • the measuring method of the film thickness of the anodized film layer or the inorganic reflective layer is as follows. First, a fracture surface produced by bending a substrate provided with an anodized film layer or an inorganic reflective layer is observed and photographed with an ultra-high resolution scanning electron microscope (for example, S-4000, manufactured by Hitachi, Ltd.). Note that the observation magnification is appropriately adjusted depending on the film thickness and the like. Specifically, the magnification is preferably 100 to 10,000 times. Moreover, the observation range shall observe a part with a cross-sectional length of 100 ⁇ m or more.
  • the thickness of the thickest portion in the observation range is defined as the thickness of the inorganic reflective layer.
  • a suitable inorganic reflective layer is an aggregate composed of a large number of inorganic particles containing inorganic particles and an inorganic binder and partially bound to each other by the inorganic binder. It is the inorganic reflective layer being processed. This will be specifically described below.
  • Inorganic binder In the present invention, aluminum phosphate, aluminum chloride, or sodium silicate is used as a binder for specific inorganic particles. A mixture of two or more of these may be used.
  • the inorganic binder is a substance that forms inorganic reflection layers by bonding inorganic particles described later by low-temperature firing. The following can be illustrated in detail.
  • Al phosphate examples include aluminum metaphosphate, aluminum orthophosphate, and aluminum polyphosphate.
  • Al chloride examples include aluminum chloride, anhydrous aluminum chloride, aluminum chloride hexahydrate, and polyaluminum chloride (a polymer of basic aluminum chloride formed by dissolving aluminum hydroxide in hydrochloric acid).
  • Sodium silicate The above-mentioned sodium silicate is also called sodium silicate or water glass, and Na 2 SiO 3, which is a sodium salt of metasilicate, is commonly used. In addition, Na 4 SiO 4 , Na 2 Si 2 O 5 , Na 2 Si 4 O 9 or the like can also be used.
  • the sodium salt of metasilicic acid can be obtained by melting silicon dioxide with sodium carbonate or sodium hydroxide.
  • the inorganic binder can be obtained by reacting an inorganic binder precursor in the presence of water.
  • Inorganic binder precursors include inorganic acids such as phosphoric acid, hydrochloric acid, sulfuric acid, aluminum, and aluminum compounds such as aluminum oxide, aluminum sulfate, aluminum hydroxide, aluminum chloride, aluminum phosphate, and mixtures thereof. It is done. If neutralization of the reactant is necessary, sodium hydroxide solution is used.
  • the aluminum compound may be produced by reacting each raw material as an inorganic binder precursor.
  • aluminum hydroxide and aluminum chloride it is preferable to add both aluminum hydroxide and aluminum chloride to the inorganic binder precursor, and the amount of aluminum chloride is 5% by mass to 10% by mass with respect to the amount of aluminum hydroxide. It is preferable that Aluminum chloride is considered to have a role of catalytically promoting the reaction between aluminum hydroxide and phosphoric acid, and the amount is preferably in the above range.
  • polyaluminum chloride which is an inorganic binder, is not colored, so that the light reflectance is high.
  • a phosphate compound may be used instead of or together with aluminum phosphate, and the phosphate compound is not particularly limited as long as it is insoluble in water. Specific examples include magnesium phosphate, calcium phosphate, zinc phosphate, barium phosphate, aluminum phosphate, gallium phosphate, lanthanum phosphate, titanium phosphate, and zirconium phosphate.
  • Aluminum phosphate is preferable, and when mixed with other phosphates, 50% by mass or more is preferably aluminum phosphate.
  • sodium silicate When sodium silicate is used, it is dissolved in water, heated and adjusted to a viscosity suitable for water glass, and used as an inorganic binder precursor. These inorganic binder precursors can be mixed and used in any combination so as to produce the desired inorganic binder.
  • the inorganic particles are not particularly limited.
  • conventionally known metal oxides, metal hydroxides, carbonates, sulfates, and the like can be used, and among these, metal oxides are preferably used. .
  • the inorganic particles include metal oxides such as aluminum oxide (alumina), magnesium oxide, yttrium oxide, titanium oxide, zinc oxide, silicon dioxide, and zirconium oxide; aluminum hydroxide, calcium hydroxide, Hydroxides such as magnesium hydroxide; calcium carbonate (light calcium carbonate, heavy calcium carbonate, ultrafine calcium carbonate, etc.), carbonates such as barium carbonate, magnesium carbonate, strontium carbonate; sulfates such as calcium sulfate and barium sulfate Other examples include calcium carbonate, calcite, marble, gypsum, kaolin clay, calcined clay, talc, sericite, optical glass, glass beads, and the like.
  • aluminum oxide, silicon dioxide, aluminum hydroxide, and barium sulfate are preferable because of their good affinity with the inorganic binder described later. More preferred is aluminum oxide.
  • the inorganic particles used in a suitable inorganic reflective layer have a refractive index of 1.5 or more and 1.8 or less, preferably 1.55 or more and 1.75 or less. When the refractive index is within this range, the obtained inorganic reflective layer has a high reflectance. This reason is considered to be due to a difference in reflectance from air.
  • the average particle diameter of the inorganic particles is preferably 0.1 ⁇ m or more and 5 ⁇ m or less. More preferably, it is 0.5-2 ⁇ m, and still more preferably 0.5-1.5 ⁇ m. When inorganic particles having an average particle diameter in this range are used, it is considered that appropriate voids can be secured between the particles and adhesion with the anodized film layer can be obtained.
  • the average particle diameter is, for example, a 50% cumulative volume diameter (D50) measured using a laser diffraction / scattering method (laser diffraction / scattering particle size distribution measuring device, Partica LA-910, manufactured by Horiba, Ltd.).
  • D50 50% cumulative volume diameter measured using a laser diffraction / scattering method (laser diffraction / scattering particle size distribution measuring device, Partica LA-910, manufactured by Horiba, Ltd.).
  • the preferred inorganic reflective layer of the present invention does not perform high-temperature sintering by heat drying at a low temperature, so the average particle size of the inorganic particles as the raw material determines the porosity and surface hardness of the inorganic reflective layer, thus affecting the reflectance. It becomes an important factor to do. It was binding the inorganic particles in the high-temperature sintering, such as 1000 ° C. or higher in the prior art, so-called ceramic layer, OH surface structure which is the difference in absorbance of the infrared wave number 3000 cm -1 was determined by spectroscopy and the wave number 1900 cm -1 Absorption coefficient is less than 0.10.
  • aluminum hydroxide (1.58 to 1.65 to 1.76 hydroxide Calcium (1.57 to 1.6)
  • two or more kinds of particles or two or more kinds of particles having an average particle diameter may be mixed and used as long as the above characteristics are satisfied.
  • the shape of the inorganic particles is not particularly limited, and for example, spherical, polyhedral (for example, icosahedron, dodecahedron, etc.), cubic, tetrahedral, and uneven or convex protrusions on the surface. Any of a plurality of shapes (hereinafter, also referred to as “compete shape”), a plate shape, a needle shape, or the like may be used. Among these, spherical, polyhedral, cubic, tetrahedral, and complex shapes are preferred for the reason of excellent heat insulation, and spherical is more preferred for reasons of easy availability and excellent heat insulation.
  • the preferred inorganic reflective layer exemplified above is preferably 20 g / m 2 to 500 g / m 2 in terms of mass per unit area after heat drying. Within this range, the air gap is left in the interior, so light transmission is suppressed and the reflectance is high.
  • the inorganic reflective layer is an inorganic material and is resistant to aging. Furthermore, it reacts with the anodized film of the substrate when forming the reflective layer, and it is possible to ensure adhesion with the substrate.
  • the amount of inorganic particles in a suitable inorganic reflective layer and the amount of at least one inorganic binder selected from the group consisting of aluminum phosphate, aluminum chloride, and sodium silicate are based on 100 parts by mass of the inorganic particles.
  • the inorganic binder is preferably 5 to 100 parts by mass, more preferably 10 to 50 parts by mass.
  • a suitable inorganic reflective layer may contain other compounds in addition to the inorganic particles and the inorganic binder. Examples of other compounds include dispersants, reaction accelerators, and the like, and these and the above inorganic particles, inorganic binder precursors, reaction products of inorganic particles and inorganic binders, and the like. It is done.
  • the method for producing a suitable inorganic reflective layer described above is not particularly limited, but an inorganic binder and / or an inorganic binder precursor and inorganic particles are mixed as a binder liquid described below, and this mixed liquid is mixed. It is preferable to apply a predetermined amount on the anodized film layer using a coater whose film thickness can be adjusted, and then heat treatment (low temperature firing) at 100 to 300 ° C. for 10 to 60 minutes.
  • the coating method is not particularly limited, and various methods can be used. Examples thereof include bar coater coating, spin coating, spray coating, curtain coating, dip coating, air knife coating, blade coating, and roll coating. it can.
  • the reaction proceeds and the viscosity of the liquid increases rapidly.
  • the formation of aluminum phosphate, aluminum chloride, or sodium silicate in the heat-dried film can be easily confirmed by analyzing the film surface with an infrared spectrophotometer.
  • the inorganic reflective layer can be made to have two or more layers by adjusting two or more kinds of binder liquids having different compositions and sequentially applying the binder liquid onto the anodized film.
  • two or more inorganic reflective layers it is possible to improve the strength of the inorganic reflective layer and the strength of adhesion to the substrate. Furthermore, the effect of smoothing the surface by improving the properties of the coated surface can be expected.
  • the inorganic reflective layer has two or more layers
  • the inorganic reflective layer that is the outermost surface has a Vickers hardness of 1 GPa or more and an OH surface structure absorption coefficient of 0.40 or more
  • the other inorganic reflective layers are Inorganic reflective layers other than this requirement can also be used.
  • each of the two or more inorganic reflective layers has a Vickers hardness of 1 GPa or more and 10 GPa or less, and an OH surface structure absorption coefficient of 0.40 or more and 0.80 or less.
  • the low-temperature firing temperature is 100 ° C. to 300 ° C., preferably 150 ° C. to 300 ° C., and more preferably 180 ° C. to 250 ° C. If it is less than 100 ° C., moisture removal is not suitable, and if it exceeds 300 ° C., the strength of the aluminum substrate changes, which is not desirable. In addition, a temperature of 150 ° C. or higher is desirable for proceeding and binding the reaction between the inorganic binder precursors, and 180 ° C.
  • the strength of the valve metal base material is changed.
  • the firing time is 10 minutes to 60 minutes, more preferably 20 minutes to 40 minutes. In a short time, the progress of the reaction is insufficient, and when the time is long, the strength of the valve metal substrate, particularly the aluminum metal substrate, changes in relation to the firing temperature. If it is more than 60 minutes, it is not desirable in terms of production cost. For this reason, the firing time is most preferably 20 minutes to 40 minutes.
  • the surface hardness of the inorganic reflective layer obtained by firing at such a low temperature varies depending on the binding treatment conditions, the particle size used, etc., but in order to obtain high hardness, it is important to select the particle size together with the firing temperature. is there.
  • the average particle diameter of the inorganic particles is preferably 0.1 ⁇ m or more and 5 ⁇ m or less. When the particles having an average particle diameter in this range are fired at a temperature in the above range, the surface hardness of the inorganic reflective layer obtained is appropriate. Since the binder liquid is a liquid containing water, a drying step may be performed after the coating and before the low-temperature baking treatment. Drying is performed at a temperature of 100 ° C. or lower which does not cause a formation reaction of an inorganic binder such as aluminum phosphate or a binding reaction of inorganic particles.
  • the surface of the inorganic reflective layer of the present invention can have an OH surface structure absorption coefficient of 0.40 or more depending on the combination of constituent materials and manufacturing methods.
  • the suitable inorganic reflective layer illustrated above is post-processed on the surface after a low-temperature baking process.
  • a preferable post-treatment is exemplified by the following heating steam treatment or hydrophilization treatment, but is not limited to these, and the surface of the above-mentioned suitable inorganic reflective layer which is equivalent to these is measured by infrared spectroscopy. In this treatment, the obtained OH surface structure absorption coefficient is 0.40 or more.
  • the inorganic reflective layer of the present invention is subjected to post-treatment, so that the presence of the hydrate of alumina hydrate or aluminum phosphate or the like causes the reflective substrate for light emitting device of the present invention.
  • the withstand voltage can be improved without impairing the thermal conductivity and reflectance. This was a remarkable and unexpected effect.
  • a suitable inorganic reflective layer is subjected to a heat steam treatment after the low temperature firing treatment.
  • the heated steam treatment is a treatment including boiling water treatment, hot water treatment, steam treatment, and the like based on temperature and pressure conditions.
  • the water used may be any of ion exchange water, distilled water, natural water, tap water, etc., but ion exchange water and distilled water are preferred.
  • an organic solvent, an amine compound, an organic acid, phosphorus or boron oxyacid salt, or the like may be used alone or in combination.
  • the water used may contain ions of alkali metal alkaline earth metal such as lithium, sodium or magnesium.
  • the surface treatment is preferably carried out continuously using water vapor, and the temperature for the water vapor treatment is about 80 ° C. to 200 ° C., preferably about 90 ° C. to 120 ° C.
  • the treatment time is 3 seconds to 30 minutes, preferably 5 seconds to 10 minutes.
  • the hydrogen ion concentration is suitably about 2 to 11, preferably about 3 to 10.
  • About 1 to 15 kg / cm 2 (absolute pressure) is appropriate as the pressure when treating with pressurized steam, and preferably about 1 to 5 kg / cm 2 is preferred.
  • the temperature of water in a water tank provided in the processing chamber is heated, whereby the temperature in the processing chamber is set to 80 ° C. or more and 105 ° C. or less, and the processing chamber pressure is maintained at ⁇ 50 to 300 mmAq with respect to normal pressure.
  • a method may be used in which the inorganic reflective layer requiring heating steam treatment is passed through the state.
  • a suitable inorganic reflective layer is preferably subjected to a hydrophilization treatment after the low-temperature baking treatment.
  • the hydrophilic treatment method include a method of immersing in an aqueous solution of an alkali metal silicate.
  • hydrophilization treatment using an aqueous solution of alkali metal silicate is performed according to the method and procedure described in US Pat. No. 2,714,066 and US Pat. No. 3,181,461. It can be carried out.
  • alkali metal silicate examples include sodium silicate, potassium silicate, and lithium silicate.
  • the aqueous solution of the alkali metal silicate may further contain sodium hydroxide, potassium hydroxide, lithium hydroxide and the like.
  • the aqueous solution of the alkali metal silicate may further contain an alkaline earth metal salt or a Group 4 (Group IVA) metal salt.
  • alkaline earth metal salt include nitrates such as calcium nitrate, strontium nitrate, magnesium nitrate, and barium nitrate; sulfates; hydrochlorides; phosphates; acetates; Borate; and the like.
  • Group 4 (Group IVA) metal salt include, for example, titanium tetrachloride, titanium trichloride, potassium fluoride titanium, potassium oxalate, titanium sulfate, titanium tetraiodide, and chloride oxidation.
  • the aqueous solution of the alkali metal silicate is a ratio of silicon oxide SiO 2 and alkali metal oxide M 2 O, which are components of the silicate (
  • the protective film thickness can be adjusted by the concentration of [SiO 2 ] / [M 2 O]) and the concentration.
  • M sodium and potassium are particularly preferably used.
  • the molar ratio of [SiO 2 ] / [M 2 O] is preferably 0.1 to 5.0, more preferably 0.5 to 3.0. Further, the content of SiO 2 is preferably 0.1 to 20% by mass, and more preferably 0.5 to 10% by mass.
  • the temperature of the aqueous alkali metal silicate solution is preferably 1 to 70 ° C., more preferably 2 to 50 ° C., and still more preferably 3 to 35 ° C.
  • the treatment time in the case of using the alkali metal silicate aqueous solution is preferably 5 seconds to 90 minutes, more preferably 8 seconds to 60 minutes, and preferably 12 seconds to 30 minutes. Further preferred.
  • valve metal substrate Specific examples of the valve metal include aluminum, tantalum, niobium, titanium, hafnium, zirconium, zinc, tungsten, bismuth, and antimony.
  • the anodized film layer of the valve metal is an insulating film having an electrical resistivity (about 10 14 ⁇ ⁇ cm) and high heat resistance. Of these, an anodic oxide film layer of aluminum is preferable because it has good dimensional stability and is relatively inexpensive.
  • the valve metal substrate may be a single plate used for the reflective substrate of the present invention. If necessary, the valve metal substrate is laminated on another metal plate such as a steel plate, a glass plate, a ceramic plate, a resin plate, or the like, and provided on the reflective substrate of the present invention.
  • the bubble metal substrate In order to form an anodized film and ensure a withstand voltage, the bubble metal substrate only needs to have a plate-like portion having a thickness of 10 ⁇ m or more.
  • a laminated plate of a steel plate or metal plate that is flexible and has high heat resistance is preferable.
  • the aluminum plate used in the present invention is a metal whose main component is dimensionally stable aluminum, and is made of aluminum or an aluminum alloy.
  • an alloy plate containing aluminum as a main component and containing a trace amount of foreign elements can also be used.
  • various substrates made of the above-described aluminum or aluminum alloy are collectively referred to as an aluminum plate.
  • the foreign elements that may be contained in the aluminum alloy include silicon, iron, copper, manganese, magnesium, chromium, zinc, bismuth, nickel, titanium, etc., and the content of the foreign elements in the alloy is 10% by mass or less. It is.
  • the composition of the aluminum plate used in the present invention is not specified, and the purity of aluminum is not particularly limited, but 1000 series, 3000 series, and 5000 series alloys that are usually used as plate materials are used. it can.
  • the purity of aluminum is not particularly limited, but 1000 series, 3000 series, and 5000 series alloys that are usually used as plate materials are used. it can.
  • when used as a reflective substrate for a light emitting device it is required to have excellent withstand voltage, and it is desirable to reduce particles such as intermetallic compounds in the material as much as possible. If it cannot be avoided under heat treatment conditions, it is also useful to use high purity aluminum of 99.9% or more.
  • conventionally known materials described in Aluminum Handbook 4th edition (1990, published by Light Metal Association) for example, JIS A1050, JIS A1100, JIS A1070, JIS A3004 containing Mn, international registered alloy 3103A, etc.
  • Al-Mn aluminum plates can be used as appropriate.
  • an Al—Mg alloy or an Al—Mn—Mg alloy (JIS A3005) in which 0.1% by mass or more of magnesium is added to these aluminum alloys can also be used.
  • an Al—Zr alloy or an Al—Si alloy containing Zr or Si can also be used.
  • an Al—Mg—Si based alloy can also be used.
  • Al—Mg alloys Al—Mn alloys, Al—Mn—Mg alloys, Al—Zr alloys, and Al—Mg—Si alloys, paragraphs [0034] to [0038] of International Publication No. WO2010 / 150810. Is described in the publication.
  • an aluminum plate as shown above can be used by roughening it by forming irregularities by laminating rolling, transferring or the like in its final rolling step or the like. If the surface of the substrate is roughened in advance, the adhesion between the inorganic reflective layer formed on the substrate and the substrate can be improved after the anodic oxide film layer is formed. Other roughening treatment methods will be described later.
  • the aluminum plate used in the present invention may be an aluminum web or a sheet-like sheet.
  • an anodized film layer may be formed by directly anodizing an aluminum plate degreased by alkali. Further, if the aluminum surface is roughened in advance and anodized, the adhesion between the anodized film layer and the aluminum plate can be improved.
  • Roughening treatment is a method of performing mechanical roughening treatment on an aluminum plate, alkali etching treatment, desmutting treatment with acid, and electrochemical roughening treatment using an electrolytic solution, and mechanical roughening treatment on an aluminum plate.
  • Treatment alkali etching treatment, desmutting treatment with acid and electrochemical surface roughening treatment using different electrolytes multiple times, alkali etching treatment on aluminum plate, desmutting treatment with acid and electrochemical using electrolyte solution
  • Examples include a method of sequentially performing a surface roughening treatment, a method of applying an alkali etching treatment to an aluminum plate, a desmutting treatment with an acid, and an electrochemical surface roughening treatment using different electrolytes a plurality of times, but the present invention is not limited thereto. Not. In these methods, after the electrochemical roughening treatment, an alkali etching treatment and an acid desmutting treatment may be further performed.
  • a mechanical surface roughening treatment and nitric acid are mainly used.
  • Preferred examples include a method of sequentially performing an electrochemical surface roughening treatment using an electrolytic solution and an electrochemical surface roughening treatment using an electrolytic solution mainly composed of hydrochloric acid.
  • a through-hole process for appropriately providing a wiring portion and a routing process for forming a chip assuming the final product (to the final product) Processing for individualization can also be performed.
  • Through-hole processing is drilling to the required location, but the shape of the processed through-hole is the length between multiple layers where wiring is required, and the cross-section is the required wiring in it.
  • the size / shape is not particularly limited as long as it can be secured by insertion, but considering the final chip size and reliable wiring formation, a circular shape is preferable, and the size is from 0.01 mm ⁇ to 2 mm ⁇ is preferable, 0.05 mm ⁇ to 1 mm ⁇ is more preferable, and 0.1 mm ⁇ to 0.8 mm ⁇ is particularly preferable.
  • the routing process is an individual separation process that separates the light-emitting element reflective substrate (hereinafter referred to as a chip) that is individualized into the final product, or a process that makes it easy to separate into chips in advance, and is also referred to as patterning or chip formation. .
  • the routing process includes a process of making a notch penetrating in the thickness direction of the substrate with a device called a router or making a notch so as not to cut in the thickness direction using a dicer.
  • the tensile strength (hereinafter referred to as tensile strength) in the tensile test (tensile speed: 2 mm / min) according to JIS Z2241 of the aluminum plate in the routing processing and through-hole processing described above is that the substrate is a soft substrate such as 100 MPa or less.
  • tensile strength tensile strength
  • the aluminum plate is fired to soften the aluminum plate after mechanical processing such as routing processing or through-hole processing. Further, if firing is performed after the anodizing treatment, cracks and the like due to the difference in thermal expansion coefficient between the aluminum and the coating may occur, which is not desirable.
  • the baking treatment after the machining and before the anodizing treatment is preferably performed at 250 to 400 ° C. for 1 to 120 minutes.
  • the baking temperature is preferably 200 ° C. to 250 ° C.
  • the heat treatment is preferably performed for 60 minutes to 300 minutes.
  • the anodizing treatment can be performed by a conventional method.
  • an anodized film layer can be formed by energizing an aluminum plate as an anode in an aqueous solution having a sulfuric acid concentration of 50 to 300 g / L and an aluminum concentration of 5% by mass or less.
  • the conditions of the anodizing treatment cannot be determined unconditionally because they vary depending on the electrolyte used, but generally the electrolyte concentration is 1 to 80% by mass, the solution temperature is 5 to 70 ° C., and the current density is 0.5. It is appropriate that ⁇ 60 A / dm 2 , voltage 1 ⁇ 100 V, electrolysis time 15 seconds ⁇ 50 minutes, and the anodic oxide film layer amount is adjusted to a desired amount.
  • direct current may be applied between the aluminum plate and the counter electrode, or alternating current may be applied.
  • the current density is preferably 1 to 60 A / dm 2 , and more preferably 5 to 40 A / dm 2 .
  • a low current of 5 to 10 A / dm 2 is initially introduced so that so-called “burning” does not occur due to current concentration on a part of the aluminum plate. It is preferable to increase the current density to 30 to 50 A / dm 2 or more as the current is passed at the density and the anodization process proceeds.
  • the feeding method to the aluminum plate is performed by a liquid feeding method.
  • the liquid power supply method is an indirect power supply method that does not use a conductor roll, and power is supplied through an electrolytic solution.
  • the anodized film layer may be porous or nonporous.
  • the average pore diameter is about 5 to 1000 nm, and the average pore density is about 1 ⁇ 10 6 to 1 ⁇ 10 10 / mm 2 .
  • Aluminum has a very high thermal conductivity and is excellent in heat dissipation. In addition to being superior to other metals, it is possible to provide a withstand voltage by forming an anodized film layer on the surface layer.
  • a substrate that has been pre-processed into a substrate shape on which an LED is mounted, for example, a hexagonal shape, an octagonal shape, or a through-hole-formed one may be anodized and used as a substrate. You may process after forming an inorganic reflection layer.
  • the thickness of the anodized film layer is preferably 1 to 200 ⁇ m. If the thickness is less than 1 ⁇ m, the insulation is poor and the withstand voltage is lowered.
  • the thickness of the anodized film layer is preferably 10 ⁇ m or more, and more preferably 20 ⁇ m or more.
  • inorganic reflective layer is formed only on the portions where light reflection is required by various printing methods such as screen printing on a substrate that has been processed in advance so that it can be disassembled into chips or parts including a plurality of chips. Also good. If the inorganic reflective layer is formed by this method, the raw material used for the inorganic reflective layer can be saved.
  • the strength is preferably 100 MPa or less, more preferably 30 to 90 MPa, in the tensile strength (hereinafter referred to as tensile strength) in a tensile test according to JIS Z2241 (tensile speed: 2 mm / min). More preferably, it is 40 to 80 MPa. If it is less than this range, the strength as a reflective substrate for a light-emitting element is not sufficient, and if it exceeds this range, the handleability when processing the substrate into a light-emitting device is poor.
  • the reflective substrate for light emitting element of the present invention may further form a metal wiring layer.
  • the metal wiring layer may be provided on the anodized film layer on which the light emitting element is mounted and the inorganic reflective layer, or on the back side opposite to the anodized film layer on which the light emitting element is mounted.
  • the light emitting element mounting surface may be electrically connected through a through hole.
  • the inorganic reflective layer of the present invention has high adhesion to the metal wiring layer provided thereon. This is because, in the inorganic reflective layer of the present invention, the OH surface structure absorption coefficient measured by infrared spectroscopy is 0.40 or more, so it is considered that hydroxides and hydrates exist on the surface. It is thought that the wettability with the ink which manufactures a wiring layer is high, and the adhesiveness with the inorganic reflection layer of the metal wiring layer obtained is considered high.
  • the material of the metal wiring layer is not particularly limited as long as it is a material that conducts electricity (hereinafter also referred to as “metal material”). Specific examples thereof include gold (Au), silver (Ag), and copper (Cu ), Aluminum (Al), magnesium (Mg), nickel (Ni) and the like, and these may be used alone or in combination of two or more. Of these, Cu is preferably used because of its low electrical resistance. Note that an Au layer or a Ni / Au layer may be provided on the surface layer of the wiring layer made of Cu from the viewpoint of improving the ease of wire bonding.
  • the metal wiring layer may have a multilayer structure using these materials. For example, an embodiment in which an Ag layer, a Ni layer, and an Au layer are provided in this order from the bottom layer is preferable.
  • the thickness of the metal wiring layer may be a desired thickness depending on the purpose and application, but is preferably 0.5 to 1000 ⁇ m from the viewpoint of conduction reliability and package compactness, and preferably 1 to 500 ⁇ m. More preferred is 5 to 250 ⁇ m.
  • metal wiring layer for example, a metal ink containing the metal material and a liquid component (for example, a solvent, a resin component, etc.) is pattern-printed on the receiving layer by an inkjet printing method, a screen printing method, or the like. Methods and the like. By such a forming method, a metal wiring layer having a pattern can be easily formed on the surface of the uneven inorganic reflective layer without requiring many steps.
  • a metal ink containing the metal material and a liquid component for example, a solvent, a resin component, etc.
  • metal wiring layer formation methods include, for example, various plating processes such as electrolytic plating, electroless plating, and displacement plating, sputtering, vapor deposition, vacuum pasting of metal foil, and adhesion. Examples thereof include an adhesion treatment with a layer.
  • the metal wiring layer thus formed is patterned by a known method according to the design of the light emitting element mounting. Further, a metal layer (including solder) is again provided at a place where the light emitting element is actually mounted, and can be appropriately processed so as to be easily connected by thermocompression bonding, flip chip, wire bonding, or the like.
  • a metal layer a metal material such as solder or gold (Au), silver (Ag), copper (Cu), aluminum (Al), magnesium (Mg), nickel (Ni) is preferable.
  • a method of providing Au or Ag via solder or Ni is preferable from the viewpoint of connection reliability.
  • the reflective layer has a low hardness
  • the wire does not melt well when wire bonding is performed by rubbing the wire to the electrode, and connection failure tends to occur.
  • the surface hardness was 1 GPa or more, and no connection failure occurred.
  • a metal having a pattern can be easily formed on an uneven surface without requiring many steps.
  • a wiring layer can be formed, and since the anchor effect by the unevenness
  • a metal layer including solder
  • the metal wiring layer can be processed appropriately.
  • FIG. 3 is a schematic view showing a configuration example of the white light emitting device of the present invention.
  • the valve metal substrate has a shape with a recess, and the anodized film layer 2 and the inorganic reflective layer 3 are provided on the surface of the valve metal substrate 11 with a shape having a recess 13.
  • the light emitting element 110 is mounted in the recess 13 on the inorganic reflective layer 3, and the surface opposite to the surface on which the light emitting element 110 is mounted through the anodized film layer 2 of the valve metal substrate 11 is for heat dissipation.
  • the heat sink 18 is provided.
  • the LED element which is the light emitting element 110 is mounted on the light emitting element reflecting substrate 30 having the electrode for external connection, and the electrode is electrically connected by the wire bonding 19. Yes.
  • the light emitting element 110 is sealed with a resin material 160 including a phosphor (fluorescent particle) 150.
  • a resin material 160 including a phosphor (fluorescent particle) 150 In the white light emitting device 100, light having a desired wavelength can be obtained by mixing the light emitted from the LED element and the excitation light from the phosphor 150.
  • a blue light-emitting LED element is used as the LED element, sealed with a resin containing a phosphor (fluorescent particle) 150 such as YAG (yttrium aluminum garnet), and the blue color from the LED element.
  • Pseudo white light is emitted to the light emitting surface side by the color mixture of the light emission and the yellow region excitation light from the phosphor (fluorescent particle) 150.
  • a light emitting layer using a semiconductor such as GaAlN, ZnS, ZnSe, SiC, GaP, GaAlAs, AlN, InN, AlInGaP, InGaN, GaN, or AlInGaN can be used.
  • the semiconductor structure include a homostructure, a heterostructure, or a double heterostructure having a MIS junction, a PIN junction, or a PN junction.
  • the emission wavelength can be variously selected from ultraviolet light to infrared light depending on the semiconductor material and the degree of mixed crystal.
  • the white light emitting device 100 of the present invention is provided with the anodized film layer 2 and the inorganic reflective layer 3 that are excellent in film strength and adhesion to the substrate on the valve metal substrate 11 as the reflective substrate 30, The light reflectance of the reflective layer is also high.
  • the inorganic reflective layer of the present invention has high adhesion with a resin layer containing a phosphor provided thereon. This is because, in the inorganic reflective layer of the present invention, the OH surface structure absorption coefficient measured by infrared spectroscopy is 0.40 or more, so it is considered that hydroxides and hydrates exist on the surface. It is considered that the adhesiveness with the resin layer is high.
  • Reflection for light-emitting elements of the present invention having high light reflection characteristics without high-temperature sintering by expanding the use range of LED elements to various fields such as indoor and outdoor lighting, automobile headlights, backlight units of display devices, etc.
  • the substrate is useful.
  • Binders and water shown in Tables 3 and 4 were mixed, stirred and mixed to prepare a binder liquid for an inorganic reflective layer.
  • the formulation of the binder liquid will be described.
  • binder liquids described as aluminum phosphate / aluminum chloride in the binder types in Tables 3 and 4 are as follows.
  • the binder liquids described as epoxy resin and PDMS in the binder types shown in Tables 3 and 4 are as follows.
  • binder liquid epoxy resin
  • BPA type epoxy resin YD-128 manufactured by Nippon Steel Chemical Co., Ltd.
  • PDMS polydimethylsiloxane: manufactured by Wako Pure Chemical Industries, Ltd.
  • the following inorganic particles shown in Tables 3 and 4 were added at a ratio of 100 g to 100 g of the binder liquid to prepare an inorganic reflective layer coating liquid.
  • Alumina The alumina particles used are described below. Tables 3 and 4 list the refractive index, average particle diameter, type, and composition.
  • AL-160SG-3 made by Showa Denko Co., Ltd. Average particle size 0.52 ⁇ m Purity 99.9% is used, and the one with a small average particle size is pulverized with zirconia beads using a ball mill and using a particle size measuring device. Those having a desired average particle diameter were taken out and used.
  • AL-160SG-3 was used as it was without crushing.
  • substrate As the substrate, aluminum plates (thickness 0.2 mm, 0.8 mm, 1.5 mm, 4 mm 1050 material, manufactured by Nippon Light Metal Co., Ltd.) were used, and the following processing was performed to prepare substrates A to C, respectively.
  • Substrate A Alkaline degreasing treatment and desmutting treatment were performed on the aluminum plate. Tables 3 and 4 describe metal species Al, anodized film, and nothing.
  • Substrate B The above aluminum plate was subjected to alkali degreasing treatment and anodizing treatment. Tables 3 and 4 describe the metal species Al, anodized film, and existence.
  • Substrate C The above aluminum plate was subjected to alkali degreasing treatment, roughening treatment and anodizing treatment. Tables 3 and 4 describe the metal species Al (roughening), anodized film, and existence.
  • Substrate Ti In Example 15, a metal seed titanium plate (manufactured by Soekawa Richemical Co., Ltd.) and a plate thickness of 0.8 mm were used, and an anodized film having a thickness of 20 ⁇ m was prepared. Tables 3 and 4 describe the metal species Ti, anodized film, and existence.
  • Processing conditions for substrate A a. Degreasing treatment in alkaline aqueous solution An aqueous solution having a sodium hydroxide concentration of 27% by mass, an aluminum ion concentration of 6.5% by mass, and a temperature of 70 ° C. was sprayed onto an aluminum plate for 20 seconds. Thereafter, the liquid was drained with a nip roller, and further, a water washing treatment described later was performed, and then the liquid was drained with a nip roller. The water washing treatment was carried out using an apparatus for washing with a free-falling curtain-like liquid film, and further washed with water for 5 seconds using a spray tube having a structure having spray tips with fan-shaped spreading at 80 mm intervals. . b.
  • Desmutting treatment in acidic aqueous solution After the degreasing treatment, desmutting treatment was performed.
  • the acidic aqueous solution used for the desmut treatment was a 1% by mass sulfuric acid aqueous solution, which was sprayed from a spray tube at a liquid temperature of 35 ° C. for 5 seconds. Thereafter, the liquid was drained with a nip roller and subsequently washed with water using the above-described apparatus.
  • PWM Pulse Width Modulation
  • IGBT Insulated Gate Bipolar Transistor
  • the liquid was drained by a nip roller, and further, the water was washed using a spray tube having the same structure as that used in the water washing process, and then the liquid was drained by a nip roller.
  • an aqueous solution having a sodium hydroxide concentration of 27% by mass, an aluminum ion concentration of 6.5% by mass, and a temperature of 70 ° C. was sprayed onto the aluminum plate from a spray tube for 20 seconds.
  • the liquid was drained with a nip roller, and further, a water washing treatment described later was performed, and then the liquid was drained with a nip roller.
  • the water washing treatment was carried out with water using an apparatus for washing with a free-fall curtain-like liquid film, and further with water for 5 seconds using a spray tube having a structure in which fan tips were spread at intervals of 80 mm. .
  • a desmut treatment was performed.
  • the acidic aqueous solution used for the desmut treatment was a 1% by mass sulfuric acid aqueous solution, which was sprayed from a spray tube at a liquid temperature of 35 ° C. for 5 seconds. Then, the liquid was drained with a nip roller. After this treatment, anodization treatment was performed under the same conditions as those for the substrate B.
  • Example 3 Formation of reflective layer on substrate>
  • the adjusted coating solution was applied onto the substrate by a coater capable of adjusting the coating film thickness. Then, it put into the oven heated up to the temperature of Table 3, 4, and heat-dried for 5 minutes.
  • the amount of the inorganic reflective layer after drying, Example ranged from 20g / m 2 ⁇ 500g / m 2 with Comparative Example.
  • Comparative Examples 5 and 6 the inorganic particles listed in Table 4 were applied to the anodized film layer using epoxy resin and PDMS, respectively, and dried.
  • Comparative Example 7 no inorganic reflective layer was formed.
  • Table 4 “-” is described when a member is not used, measured, or not processed.
  • Post-processing> The post-treatment shown in Tables 5 and 6 below was performed on the substrate with a reflective layer obtained above.
  • (1) Heated steam treatment The substrate with a reflective layer was treated with 110 ° C. steam for 1 minute.
  • (2) Hydrophilization treatment The substrate with a reflective layer was immersed in a 2.5% by mass sodium silicate solution and dried at 180 ° C. for 5 minutes for hydrophilic treatment.
  • the withstand voltage was evaluated by measuring the withstand voltage (DC) using an insulation resistance tester (TOS9200, manufactured by Kikusui). Specifically, the produced reflective substrate was placed on a metal base material (aluminum plate), measured by pressing the probe against the inorganic reflective layer side, and the withstand voltage was measured.
  • a diluted solution of silver nanoparticle ink (XA-436, manufactured by Fujikura Chemical Co., Ltd.) was applied to the surface of the obtained reflective substrate using an ink jet apparatus (DMP-2831, manufactured by Fuji Film Co., Ltd.) of the metal wiring layer 20 shown in FIG.
  • Ag wiring (wiring width: 100 ⁇ m) was formed by droplet ejection.
  • plating was performed with a plating solution containing nickel to form an Ag—Ni wiring.
  • plating was performed with a plating solution containing gold to form an Ag—Ni—gold wiring.
  • the thickness of each layer was Ag (20 ⁇ m), Ni (4 ⁇ m), Au (0.4 ⁇ m).
  • the light emitting element (LED) 10 was mounted on the surface of the reflective substrate 30 of the example and the comparative example, and was electrically connected to the metal wiring layer 20 by wire bonding.
  • Adhesiveness between wiring and inorganic reflection layer For each of the produced wiring boards, wiring adhesiveness was evaluated according to the following criteria. A: A soldering iron heated to 350 ° C is pressed against the wiring part for 1 minute, and there is no peeling of the wiring when the iron is released. B: A soldering iron heated to 350 ° C is pressed against the wiring part for 1 minute. When the soldering iron was released, the wiring was scratched. C: Soldering iron heated to 350 ° C was pressed against the wiring part for 1 minute. When the iron was released, the wiring peeled off or “floated”. What happened
  • Examples 1 to 22 have a high OH group surface structure absorption coefficient, excellent withstand voltage and thermal conductivity, excellent adhesion between the substrate and the inorganic reflective layer, and excellent adhesion between the wiring and the inorganic reflective layer. Yes.
  • Example 2 since the aluminum substrate is roughened and anodized, the adhesion between the substrate and the inorganic reflective layer is particularly excellent. Since the substrates of Examples 1, 2, 5 to 12, and 14 to 22 have an anodized film, the adhesion between the substrate and the inorganic reflective layer is excellent.
  • Comparative Example 1 the hardness of the inorganic reflective layer is low, and the handleability during processing is poor.
  • Comparative Examples 3 and 4 since the firing temperature of the inorganic reflective layer is high, the OH group surface structure absorption coefficient is low, the inorganic reflective layer cannot follow the thermal expansion of the aluminum substrate, cracks occur, and the withstand voltage decreases. The adhesion between the substrate and the inorganic reflective layer is poor.
  • Comparative Examples 5 and 6 since the resin binder is used to bind the alumina particles, the heat resistance is inferior, the light resistance is also inferior, and the aging is deteriorated. Moreover, it is inferior to the adhesiveness of wiring and a reflection layer.
  • Comparative Example 7 has only an anodized film layer on the valve metal and no inorganic reflection layer, but is heated with steam, has a high OH-based surface structure absorption coefficient, has a high withstand voltage, and good thermal conductivity, but has a reflectivity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Led Device Packages (AREA)

Abstract

Provided is a reflective substrate for a light-emitting element, said reflective substrate exhibiting higher heat resistance, excellent light resistance and a high optical reflectance. The reflective substrate is provided with an inorganic reflective layer that covers a valve metal base at least partially, wherein the inorganic reflective layer has a Vickers hardness (Hv) of 1GPa or more and an absorbance difference between at a wavenumber of 3000cm-1 and at a wavenumber of 1900cm-1 of 0.40 or more as determined by infrared spectroscopy, said absorbance difference being correspondent to an absorption coefficient assignable to OH surface structure.

Description

発光素子用反射基板Reflective substrate for light emitting device
 本発明は、発光素子に用いられる光反射基板、より具体的には、発光ダイオード(以下、LEDという)等の発光素子に用いられる発光素子用反射基板およびその製造方法に関する。 The present invention relates to a light reflecting substrate used for a light emitting element, and more specifically to a light emitting element reflecting substrate used for a light emitting element such as a light emitting diode (hereinafter referred to as LED) and a method for manufacturing the same.
 特許文献1は、樹脂とシリカエアロゲルとの混合物で、樹脂が粉体塗料である塗料組成物、金属基板の表面に塗料組成物の塗膜を形成した照明器具用反射板が記載されている。粉体塗料は樹脂分100%の固形分であり、有機溶剤等を含まないので、疎水化処理をしたシリカエアロゲルが有機溶剤等の作用で収縮して白濁するようなことがなく、塗膜の光反射率が優れていると記載されている。 Patent Document 1 describes a coating composition in which a resin and a silica airgel are mixed, and the resin is a powder coating, and a reflector for a lighting fixture in which a coating film of the coating composition is formed on the surface of a metal substrate. Since the powder coating is a solid content of 100% resin and does not contain an organic solvent, the hydrophobic silica aerogel does not shrink due to the action of the organic solvent or the like and becomes cloudy. It is described that the light reflectance is excellent.
特開平11-29745号公報JP-A-11-29745
 しかし、発光素子用光反射基板が、樹脂バインダーを含む場合には反射層自身の耐熱性が低く、耐光性も劣るので経年変化に耐えられないという問題がある。
 本発明者は上記背景技術の問題点を検討し、より耐熱性が高く、耐光性にも優れ、光反射率の高い発光素子用反射基板を提供することを目的とする。
However, when the light reflecting substrate for a light emitting element contains a resin binder, there is a problem that the reflective layer itself has low heat resistance and poor light resistance, and cannot withstand aging.
The present inventor examines the problems of the background art described above, and aims to provide a reflective substrate for a light-emitting element that has higher heat resistance, excellent light resistance, and high light reflectance.
 発明者は、基板表面に、特定の無機反射層が存在し、この無機反射層が特定のOH基に由来する表面構造を有すると、光反射率が高く、その表面に設けられる封止樹脂層または金属配線層との密着性に優れ、このOH基に由来する表面構造は耐電圧への悪影響がなくむしろ耐電圧が向上することを知見して本発明を達成した。 The inventor has a specific inorganic reflective layer on the substrate surface, and when the inorganic reflective layer has a surface structure derived from a specific OH group, the light reflectance is high, and the sealing resin layer provided on the surface Alternatively, the present invention has been achieved by finding that the surface structure derived from this OH group is excellent in adhesion to the metal wiring layer and has no adverse effect on the withstand voltage, but rather the withstand voltage is improved.
 すなわち、本発明は、以下を提供する。    
(1)バルブ金属基材上の少なくとも一部に無機反射層を備え、上記無機反射層が、ビッカース硬度(Hv)1GPa以上、赤外分光法により測定した波数3000cm-1と波数1900cm-1の吸光度の差で示されるOH表面構造吸収係数が0.40以上である発光素子用反射基板。
(2)上記バルブ金属基材と上記無機反射層との間にバルブ金属基材の陽極酸化皮膜層を有する(1)に記載の発光素子用反射基板。
(3)上記無機反射層が、リン酸アルミニウム、塩化アルミニウムおよびケイ酸ナトリウムからなる群から選択される少なくとも一つの無機結着剤と、屈折率1.5以上1.8以下、平均粒子径0.1μm以上5μm以下の無機粒子とを含有する(1)または(2)に記載の発光素子用反射基板。
(4)上記無機粒子は、酸化物、水酸化物、および無機塩からなる群から選択される少なくとも一つである(1)~(3)のいずれか1項に記載の発光素子用反射基板。
(5)上記無機粒子が硫酸バリウムおよび酸化アルミニウムからなる群から選択される少なくとも一つである(1)~(4)のいずれか1項に記載の発光素子用反射基板。
(6)上記バルブ金属が、アルミニウム、タンタル、ニオブ、チタン、ハフニウム、ジルコニウム、亜鉛、タングステン、ビスマスおよびアンチモンからなる群から選択される少なくとも1種の金属である(1)~(5)のいずれか1項に記載の発光素子用反射基板。
(7)上記バルブ金属基材の厚さが、0.1~2mmである(1)~(6)のいずれか1項に記載の発光素子用反射基板。
(8)上記バルブ金属が、アルミニウムである(1)~(7)のいずれか1項に記載の発光素子用反射基板。
(9)上記発光素子用反射基板の引張強度が、30MPa以上100MPa以下である(1)~(8)のいずれか1項に記載の発光素子用反射基板。
(10)上記無機粒子が、2種類以上である(1)~(9)のいずれか1項に記載の発光素子用反射基板。
(11)バルブ金属基材表面に上の少なくとも一部に設けたビッカース硬度(Hv)1GPa以上の無機反射層を加熱水蒸気処理または親水化処理して、赤外分光法により測定した波数3000cm-1と波数1900cm-1の吸光度の差で示されるOH表面構造吸収係数が0.40以上である無機反射層を形成する、発光素子用反射基板の製造方法。
(12)上記無機反射層が、無機結着剤と無機粒子とを混合して前記バブル金属基材表面に塗布され、100℃~300℃の温度で低温焼成される(11)に記載の発光素子用反射基板の製造方法。
(13)上記バルブ金属基材表面を陽極酸化処理した後に上記陽極酸化処理層上に無機反射層を形成する(11)または(12)に記載の発光素子用反射基板の製造方法。
(14)上記(11)~(13)のいずれか1項に記載の工程を経た後、以下の(c)および(d)工程を任意の順序で行う、(11)~(13)のいずれか1項に記載の発光素子用反射基板の製造方法:
 (c)発光素子への電気信号伝送のための金属配線層を形成し、上記金属配線層をパターン化する工程;
 (d)発光素子を実装する部分に相当する電極部に金属層を設ける工程。
(15)上記(1)~(10)のいずれか1項に記載の発光素子用反射基板の上に青色発光素子を有し、その周りおよび/または上部に蛍光発光体を備える白色系発光ダイオード装置。
That is, the present invention provides the following.
(1) at least a portion of the valve metal substrate to comprise an inorganic reflective layer, the inorganic reflective layer, Vickers hardness (Hv) 1 GPa or more, the wave number was measured by infrared spectroscopy 3000 cm -1 and a wavenumber of 1900 cm -1 A reflective substrate for a light emitting device, wherein an OH surface structure absorption coefficient indicated by a difference in absorbance is 0.40 or more.
(2) The reflective substrate for a light-emitting element according to (1), which has an anodized film layer of a valve metal substrate between the valve metal substrate and the inorganic reflective layer.
(3) The inorganic reflective layer has at least one inorganic binder selected from the group consisting of aluminum phosphate, aluminum chloride and sodium silicate, a refractive index of 1.5 to 1.8, and an average particle size of 0 (1) The reflective substrate for light emitting elements according to (1) or (2), which contains inorganic particles of 1 μm or more and 5 μm or less.
(4) The reflective substrate for a light-emitting element according to any one of (1) to (3), wherein the inorganic particles are at least one selected from the group consisting of oxides, hydroxides, and inorganic salts. .
(5) The reflective substrate for a light-emitting element according to any one of (1) to (4), wherein the inorganic particles are at least one selected from the group consisting of barium sulfate and aluminum oxide.
(6) Any of (1) to (5), wherein the valve metal is at least one metal selected from the group consisting of aluminum, tantalum, niobium, titanium, hafnium, zirconium, zinc, tungsten, bismuth, and antimony. The reflective board | substrate for light emitting elements of any one of Claims 1-3.
(7) The reflective substrate for a light-emitting element according to any one of (1) to (6), wherein the bulb metal base has a thickness of 0.1 to 2 mm.
(8) The reflective substrate for a light-emitting element according to any one of (1) to (7), wherein the bulb metal is aluminum.
(9) The reflective substrate for light-emitting element according to any one of (1) to (8), wherein the tensile strength of the reflective substrate for light-emitting element is 30 MPa to 100 MPa.
(10) The reflective substrate for a light-emitting element according to any one of (1) to (9), wherein the inorganic particles are two or more types.
(11) An inorganic reflective layer having a Vickers hardness (Hv) of 1 GPa or more provided on at least a part of the surface of the valve metal substrate is subjected to a heat steam treatment or a hydrophilization treatment, and a wave number of 3000 cm −1 measured by infrared spectroscopy. A method for producing a reflective substrate for a light emitting device, wherein an inorganic reflective layer having an OH surface structure absorption coefficient of 0.40 or more, which is indicated by a difference in absorbance at a wave number of 1900 cm −1 , is formed.
(12) The light emitting device according to (11), wherein the inorganic reflective layer is mixed with an inorganic binder and inorganic particles, applied to the surface of the bubble metal substrate, and fired at a low temperature of 100 ° C. to 300 ° C. A method for manufacturing a reflective substrate for an element.
(13) The method for producing a reflective substrate for a light-emitting element according to (11) or (12), wherein an inorganic reflective layer is formed on the anodized layer after anodizing the surface of the valve metal substrate.
(14) After undergoing the steps described in any one of (11) to (13) above, the following steps (c) and (d) are performed in an arbitrary order, and any of (11) to (13) A method for producing a reflective substrate for a light emitting device according to claim 1:
(C) forming a metal wiring layer for electric signal transmission to the light emitting element and patterning the metal wiring layer;
(D) The process of providing a metal layer in the electrode part corresponded to the part which mounts a light emitting element.
(15) A white light-emitting diode including a blue light-emitting element on the reflective substrate for a light-emitting element according to any one of (1) to (10), and a fluorescent light-emitting body around and / or above the blue light-emitting element apparatus.
 本発明の発光素子用反射基板は、耐熱性が高く、耐光性に優れ、光反射率が高い。また、その表面に設けられる封止樹脂層および/または金属配線層との密着性に優れる。 The reflective substrate for a light emitting device of the present invention has high heat resistance, excellent light resistance, and high light reflectance. Moreover, it is excellent in adhesiveness with the sealing resin layer and / or metal wiring layer provided on the surface.
図1(A)は,本発明の発光素子用反射基板の好適な実施態様の一例を説明する拡大断面図であり、図1(B)は、本発明の別の好適な実施態様を説明する拡大断面図である。FIG. 1A is an enlarged cross-sectional view illustrating an example of a preferred embodiment of the reflective substrate for a light-emitting element of the present invention, and FIG. 1B illustrates another preferred embodiment of the present invention. It is an expanded sectional view. 本発明の発光素子用反射基板の好適な実施態様の一例を説明する概略断面図である。It is a schematic sectional drawing explaining an example of the suitable embodiment of the reflective substrate for light emitting elements of this invention. 本発明の発光素子用反射基板の別の実施態様を用いた発光装置を説明する断面図である。It is sectional drawing explaining the light-emitting device using another embodiment of the reflective substrate for light emitting elements of this invention. 評価に用いた配線パターンを説明する概略図である。It is the schematic explaining the wiring pattern used for evaluation. 赤外分光法による吸光度の測定結果を示すチャートである。It is a chart which shows the measurement result of the light absorbency by infrared spectroscopy.
 [発光素子用反射基板]
 本発明の発光素子用反射基板は、バルブ金属基材表面の少なくとも一部に無機反射層を備える基板であり、上記無機反射層が、ビッカース硬度1GPa以上であり、かつ赤外分光光度計により測定した波数3000cm-1と波数1900cm-1の吸光度の差(以下、OH表面構造吸収係数ということがある)が0.40以上である発光素子用反射基板である。好ましくはビッカース硬度1GPa以上10GPa以下であり、OH表面構造吸収係数が、0.40以上0.8以下である。
 次に、本発明の発光素子用反射基板について図1に示す好適例を用いて説明する。
[Reflective substrate for light emitting element]
The reflective substrate for a light-emitting element of the present invention is a substrate provided with an inorganic reflective layer on at least a part of the surface of the valve metal substrate, and the inorganic reflective layer has a Vickers hardness of 1 GPa or more and is measured by an infrared spectrophotometer. the difference in absorbance at a wavenumber of 3000 cm -1 and a wavenumber 1900 cm -1 (hereinafter sometimes referred to as OH surface structure absorption coefficient) is a reflective substrate for light-emitting element is 0.40 or more. The Vickers hardness is preferably 1 GPa or more and 10 GPa or less, and the OH surface structure absorption coefficient is 0.40 or more and 0.8 or less.
Next, the reflective substrate for a light emitting device of the present invention will be described with reference to a preferred example shown in FIG.
 図1は、本発明の発光素子用反射基板の好適な実施態様の一例を示す概略図である。
 図1(A)に示すように、本発明の発光素子用反射基板30は、バルブ金属基材1の少なくとも一部の表面にビッカース硬度1GPa以上であり、かつ赤外分光光度計により測定した波数3000cm-1と波数1900cm-1の吸光度の差(OH表面構造吸収係数)が0.40以上である無機反射層3を備える発光素子用反射基板である。
 また、図1(B)に示すように、本発明の発光素子用反射基板30は、基板の耐電圧が良好となり、無機反射層と基板との密着性も良好となる理由からバルブ金属基材1の少なくとも一部の表面に陽極酸化皮膜層2等の絶縁層が設けられ、その上層にビッカース硬度1GPa以上であり、かつ赤外分光光度計により測定した波数3000cm-1と波数1900cm-1の吸光度の差(OH表面構造吸収係数)が0.40以上である無機反射層3を備える発光素子用反射基板であるのが好ましい。
FIG. 1 is a schematic view showing an example of a preferred embodiment of the reflective substrate for a light emitting device of the present invention.
As shown in FIG. 1 (A), the reflective substrate 30 for a light-emitting element of the present invention has a Vickers hardness of 1 GPa or more on at least a part of the surface of the valve metal substrate 1 and a wave number measured by an infrared spectrophotometer. 3000 cm -1 and the difference in absorbance at wave number 1900 cm -1 (OH surface structure absorption coefficient) is a reflective substrate for light-emitting device including an inorganic reflective layer 3 is 0.40 or more.
Further, as shown in FIG. 1B, the reflective substrate 30 for a light-emitting element of the present invention has a good withstand voltage of the substrate, and a good adhesion between the inorganic reflective layer and the substrate for the reason that the valve metal base material is used. first insulating layer, such as anodized film layer 2 is provided on at least part of the surface, and Vickers hardness 1GPa or more as an upper layer, and the wave number 3000 cm -1 and a wavenumber 1900 cm -1 as measured by infrared spectrophotometry A reflective substrate for a light-emitting element including the inorganic reflective layer 3 having a difference in absorbance (OH surface structure absorption coefficient) of 0.40 or more is preferable.
〔無機反射層〕
 1)無機反射層は構成材料が無機成分であり、ビッカース硬度1GPa以上である。好ましくはビッカース硬度1GPa以上10GPa以下である。ビッカース硬度の試験法は、ダイヤモンド圧子を材料表面に押し込み、荷重を除いたあとに残ったへこみの対角線の長さd(mm)から表面積S(mm)を算出する。試験荷重F(N)を算出した表面積S(mm)で割った値の0.102倍の値がビッカース硬さ(Hv)であり、以下の式で求められる。
  Hv=0.102(F/S)
 2)無機反射層の表面を赤外分光光度計により測定した波数3000cm-1と波数1900cm-1の吸光度の差が0.40以上である。赤外分光法(infrared spectroscopy、略称IR)は、測定対象の物質に赤外線を照射し、透過(あるいは反射)光を分光することでスペクトルを得て、対象物の特性を知る方法で、対象物の分子構造や状態を示す値であり、対象物の表面構造によっても、赤外スペクトルは微妙に変化する。これより、特定の物質の表面構造などについても知ることができる。
 後に説明する実施例1および比較例3の無機反射層表面の赤外吸収スペクトルを測定した結果を図5に示す。
 図5の結果が示すように、実施例1と比較例3との表面状態の差は、3000~4000cm-1の波数範囲に示される。この波数範囲は、水などに起因するOH基の伸縮振動に対応する。実施例1と比較例3との3000~4000cm-1の波数範囲に示される表面状態の差を表す指標として、本発明者は、以下のOH表面構造吸収係数を設定すると表面状態の差が示せることを発見した。
[OH表面構造吸収係数]=[波数3000cm-1の吸光度]‐[波数1900cm-1の吸光度]
 例えば、実施例1と比較例3との図5に示す測定値から以下のOH表面構造吸収係数が得られる。
[Inorganic reflective layer]
1) The constituent material of the inorganic reflective layer is an inorganic component and has a Vickers hardness of 1 GPa or more. The Vickers hardness is preferably 1 GPa or more and 10 GPa or less. The Vickers hardness test method calculates the surface area S (mm 2 ) from the diagonal length d (mm) of the dent remaining after the diamond indenter is pushed into the material surface and the load is removed. A value that is 0.102 times the value obtained by dividing the test load F (N) by the calculated surface area S (mm 2 ) is the Vickers hardness (Hv), and is obtained by the following equation.
Hv = 0.102 (F / S)
2) the difference in absorbance of the surface of the inorganic reflective layer and the wave number 3000 cm -1 as measured by an infrared spectrophotometer wavenumber 1900 cm -1 is 0.40 or more. Infrared spectroscopy (abbreviated as IR) is a method of obtaining the spectrum by irradiating the substance to be measured with infrared rays and dispersing the transmitted (or reflected) light to know the characteristics of the object. The infrared spectrum is slightly changed depending on the surface structure of the object. From this, it is possible to know the surface structure of a specific substance.
The result of having measured the infrared absorption spectrum of the inorganic reflective layer surface of Example 1 and Comparative Example 3 which are demonstrated later is shown in FIG.
As the result of FIG. 5 shows, the difference in the surface state between Example 1 and Comparative Example 3 is shown in the wave number range of 3000 to 4000 cm −1 . This wave number range corresponds to the stretching vibration of the OH group caused by water or the like. As an index representing the difference in surface state shown in the wave number range of 3000 to 4000 cm −1 between Example 1 and Comparative Example 3, the present inventor can indicate the difference in surface state by setting the following OH surface structure absorption coefficient. I discovered that.
[OH surface structure absorption coefficient = [absorbance at a wavenumber of 3000 cm -1] - [absorbance at a wavenumber of 1900 cm -1]
For example, the following OH surface structure absorption coefficient can be obtained from the measured values shown in FIG. 5 for Example 1 and Comparative Example 3.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 参考例は、以下の条件で調整した。
 参考例:粒子径 0.52μm 純度99.9% のアルミナ(AL-160SG-3)粉体を1g秤量し、ハンドプレス装置で荷重1tでプレスして直径20mmのタブレットに成形し、タブレットを1600℃、2時間焼結した。
 本発明の無機反射層は、上記1)および2)の条件を満たしていて、構成材料が無機成分であれば、特に限定されない。有機成分を含まないことが好ましい。無機反射層は無機材料であるので、耐熱性、耐光性が高く、経年変化にも強い。
The reference example was adjusted under the following conditions.
Reference example: 1 g of alumina (AL-160SG-3) powder having a particle size of 0.52 μm and a purity of 99.9% was weighed with a hand press device with a load of 1 t to form a tablet with a diameter of 20 mm. Sintered at 2 ° C. for 2 hours.
The inorganic reflective layer of the present invention is not particularly limited as long as it satisfies the above conditions 1) and 2) and the constituent material is an inorganic component. It is preferable not to include an organic component. Since the inorganic reflective layer is an inorganic material, it has high heat resistance and light resistance and is resistant to aging.
 無機反射層は、本発明の発光素子用反射基板において、バルブ金属基材上に設けられる。絶縁性がより良好となる理由から、上記金属基材上に絶縁層を有する基板であるのが好ましい。具体的には、バルブ金属基材1上の一部に陽極酸化皮膜層2と無機反射層3とを有していてもよく、陽極酸化皮膜層2だけの部分が存在してもよい。実装する素子の形や配線の位置によって陽極酸化皮膜層である絶縁層や、無機反射層の必要な位置が異なり、各種のデザインで配置される必要があるからである。 The inorganic reflective layer is provided on the valve metal substrate in the reflective substrate for a light emitting device of the present invention. A substrate having an insulating layer on the metal base is preferred for the reason that the insulating properties are better. Specifically, the anodized film layer 2 and the inorganic reflective layer 3 may be provided on a part of the valve metal substrate 1, or only the anodized film layer 2 may be present. This is because the required positions of the insulating layer, which is an anodized film layer, and the inorganic reflective layer differ depending on the shape of the element to be mounted and the position of the wiring, and it is necessary to arrange them in various designs.
 本発明においては、上記無機反射層の厚さは、10μm以上であり、10~60μmであるのが好ましく、20~50μmであるのがより好ましい。
 上記無機反射層の厚さが10μm以上であると、耐電圧が良好となる。また、上記無機反射層の厚さが60μm以下であると、可撓性が保持され、加工性、取扱性等が良好になる。
 本発明に用いられるバルブ金属基材の板の厚みは、0.1~2.0mmが好ましい。特にアルミニウム板の厚みは、0.1~2.0mm程度であり、0.15~1.5mmであるのが好ましく、0.2~1.0mmであるのがより好ましい。この厚さは、ユーザーの希望等により適宜変更することができる。
 バルブ金属基材に陽極酸化皮膜層を設ける場合は、陽極酸化皮膜層の厚さは1~200μmであるのが好ましい。1μm未満であると耐電圧に乏しく耐電圧が低下し、一方、200μmを超えると製造に多大な電力が必要となり、経済的に不利となる。陽極酸化皮膜層の厚さは、10μm以上が好ましく、20μm以上がさらに好ましい。
In the present invention, the inorganic reflective layer has a thickness of 10 μm or more, preferably 10 to 60 μm, and more preferably 20 to 50 μm.
When the thickness of the inorganic reflective layer is 10 μm or more, the withstand voltage is good. Further, when the thickness of the inorganic reflective layer is 60 μm or less, flexibility is maintained and processability, handleability and the like are improved.
The thickness of the valve metal base plate used in the present invention is preferably 0.1 to 2.0 mm. In particular, the thickness of the aluminum plate is about 0.1 to 2.0 mm, preferably 0.15 to 1.5 mm, and more preferably 0.2 to 1.0 mm. This thickness can be appropriately changed according to the user's wishes or the like.
When an anodized film layer is provided on the valve metal substrate, the thickness of the anodized film layer is preferably 1 to 200 μm. If it is less than 1 μm, the withstand voltage is poor and the withstand voltage is lowered. On the other hand, if it exceeds 200 μm, a large amount of electric power is required for production, which is economically disadvantageous. The thickness of the anodized film layer is preferably 10 μm or more, and more preferably 20 μm or more.
 ここで、上記陽極酸化皮膜層、または無機反射層の膜厚の測定方法は、以下に示す通りである。
 まず、陽極酸化皮膜層または無機反射層を設けた基板を折り曲げて作製した破断面を超高分解能走査型電子顕微鏡(例えば、S-4000、日立製作所社製)によって観察して撮影する。なお、観察倍率は、膜厚等により適宜調整して行う。具体的には、倍率100~10000倍であるのが好ましい。また、観察範囲は、断面長として100μm以上の部分を観察するものとする。
Here, the measuring method of the film thickness of the anodized film layer or the inorganic reflective layer is as follows.
First, a fracture surface produced by bending a substrate provided with an anodized film layer or an inorganic reflective layer is observed and photographed with an ultra-high resolution scanning electron microscope (for example, S-4000, manufactured by Hitachi, Ltd.). Note that the observation magnification is appropriately adjusted depending on the film thickness and the like. Specifically, the magnification is preferably 100 to 10,000 times. Moreover, the observation range shall observe a part with a cross-sectional length of 100 μm or more.
 次いで、上記方法で得られた画像データ(写真)の多孔質部分について、観察範囲の中で最も厚くなる部分の膜厚を上記無機反射層の膜厚とする。 Next, regarding the porous portion of the image data (photograph) obtained by the above method, the thickness of the thickest portion in the observation range is defined as the thickness of the inorganic reflective layer.
<無機反射層の表面特性>
 OH表面構造吸収係数と無機反射層の表面構造との関係を検証するために、上記でOH表面構造吸収係数を測定した実施例1、比較例3および実施例1で使用したアルミナ粒子のみを1600℃で2時間焼結して得られた表面(参考例)を100℃~500℃での熱重量分析を行った。TGA Q500(ティー・エイ・インスツルメント・ジャパン株式会社製)を用い、昇温速度5℃/minで測定した。300℃における熱重量減少後の質量を初期値100%として規格化した値を下記表2に示す。表2の結果が示すように、OH基が多いと考えられる表面構造では、表面の水分を失うことによる熱重量分析での重量減少が大きいことが確認できた。
<Surface characteristics of inorganic reflective layer>
In order to verify the relationship between the OH surface structure absorption coefficient and the surface structure of the inorganic reflective layer, only 1600 alumina particles used in Example 1, Comparative Example 3 and Example 1 in which the OH surface structure absorption coefficient was measured as described above were used. A surface (reference example) obtained by sintering at 2 ° C. for 2 hours was subjected to thermogravimetric analysis at 100 ° C. to 500 ° C. Using TGA Q500 (manufactured by TA Instruments Japan Co., Ltd.), the measurement was performed at a temperature rising rate of 5 ° C./min. Table 2 below shows values normalized with the mass after thermogravimetric decrease at 300 ° C. as an initial value of 100%. As shown in the results of Table 2, it was confirmed that in the surface structure considered to have many OH groups, the weight loss by thermogravimetric analysis due to loss of surface moisture was large.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 <好適な無機反射層>
 好適な無機反射層は、無機粒子と無機結着剤とを含有し、無機結着剤によって互いの一部が結着した多数の無機粒子からなる集合体で、表面が加熱水蒸気処理または親水化処理されている無機反射層である。以下に具体的に説明する。
(無機結着剤)
 本発明では特定の無機粒子の結着剤(バインダー)として、リン酸アルミニウム、塩化アルミニウム、またはケイ酸ナトリウムを用いる。これらの2種以上の混合物を用いてもよい。
 無機結着剤は、後に説明する無機粒子同士を低温焼成によって結合し無機反射層を構成する物質である。詳細には以下が例示できる。
(リン酸アルミニウム)
 上記リン酸アルミニウムは、メタリン酸アルミニウム、オルトリン酸アルミニウム、ポリリン酸アルミニウムが例示できる。
(塩化アルミニウム)
 上記塩化アルミニウムは、塩化アルミニウム、無水塩化アルミニウム、塩化アルミニウム6水和物、ポリ塩化アルミニウム(水酸化アルミニウムを塩酸に溶解させて生成する塩基性塩化アルミニウムの重合体)が例示できる。
(ケイ酸ナトリウム)
 上記ケイ酸ナトリウムは、ケイ酸ソーダまたは水ガラスとも呼ばれるものであり、メタケイ酸のナトリウム塩であるNa2SiO3が一般的だが、その他に、Na4SiO4、Na2Si25、Na2Si49なども用いることができる。メタケイ酸のナトリウム塩は、二酸化ケイ素を炭酸ナトリウムまたは水酸化ナトリウムと融解して得ることができる。
<Preferable inorganic reflective layer>
A suitable inorganic reflective layer is an aggregate composed of a large number of inorganic particles containing inorganic particles and an inorganic binder and partially bound to each other by the inorganic binder. It is the inorganic reflective layer being processed. This will be specifically described below.
(Inorganic binder)
In the present invention, aluminum phosphate, aluminum chloride, or sodium silicate is used as a binder for specific inorganic particles. A mixture of two or more of these may be used.
The inorganic binder is a substance that forms inorganic reflection layers by bonding inorganic particles described later by low-temperature firing. The following can be illustrated in detail.
(Aluminum phosphate)
Examples of the aluminum phosphate include aluminum metaphosphate, aluminum orthophosphate, and aluminum polyphosphate.
(Aluminum chloride)
Examples of the aluminum chloride include aluminum chloride, anhydrous aluminum chloride, aluminum chloride hexahydrate, and polyaluminum chloride (a polymer of basic aluminum chloride formed by dissolving aluminum hydroxide in hydrochloric acid).
(Sodium silicate)
The above-mentioned sodium silicate is also called sodium silicate or water glass, and Na 2 SiO 3, which is a sodium salt of metasilicate, is commonly used. In addition, Na 4 SiO 4 , Na 2 Si 2 O 5 , Na 2 Si 4 O 9 or the like can also be used. The sodium salt of metasilicic acid can be obtained by melting silicon dioxide with sodium carbonate or sodium hydroxide.
(無機結着剤前駆物質)
 無機結着剤は無機結着剤前駆物質を水の存在下で反応させて得ることができる。
 無機結着剤前駆物質には、リン酸、塩酸、硫酸等の無機酸、アルミニウム、および酸化アルミニウム、硫酸アルミニウム、水酸化アルミニウム、塩化アルミニウム、リン酸アルミニウム等のアルミニウム化合物、およびこれらの混合物が挙げられる。反応物の中和が必要な場合は水酸化ナトリウム溶液を用いる。アルミニウム化合物はそれぞれの原料を無機結着剤前駆物質として反応させて製造してもよい。
 無機結着剤前駆物質には、上記アルミニウム塩のうち、水酸化アルミニウムと塩化アルミニウムの両方を添加することが好ましく、塩化アルミニウムの量が水酸化アルミニウムの量に対して5質量%~10質量%であることが好ましい。塩化アルミニウムは水酸化アルミニウムとリン酸との反応を触媒的に進行させる役割を有すると考えられ、上記範囲の量であることが好ましい。また、塩化アルミニウムと塩酸とを用いて、リン酸アルミニウム前駆物質を用いない場合は、無機結着剤であるポリ塩化アルミニウムが着色しないので光反射率が高い。
 リン酸アルミニウムにかえてまたはリン酸アルミニウムと共に、リン酸塩化合物を用いてもよく、リン酸塩化合物としては、水に不溶性であれば、特に限定する必要はない。具体例としてリン酸マグネシウム、リン酸カルシウム、リン酸亜鉛、リン酸バリウム、リン酸アルミニウム、リン酸ガリウム、リン酸ランタン、リン酸チタニウム、リン酸ジルコニウムを挙げることが出来る。リン酸アルミニウムが好ましく、他のリン酸塩と混合する場合は50質量%以上がリン酸アルミニウムであるのが好ましい。
 ケイ酸ナトリウムを用いる場合は、水に溶かし加熱して水ガラスとして適切な粘度に調整して無機結着剤前駆物質として用いる。
 これらの無機結着剤前駆物質は目的とする無機結着剤を生成するように任意の組合せで混合して用いることができる。
(Inorganic binder precursor)
The inorganic binder can be obtained by reacting an inorganic binder precursor in the presence of water.
Inorganic binder precursors include inorganic acids such as phosphoric acid, hydrochloric acid, sulfuric acid, aluminum, and aluminum compounds such as aluminum oxide, aluminum sulfate, aluminum hydroxide, aluminum chloride, aluminum phosphate, and mixtures thereof. It is done. If neutralization of the reactant is necessary, sodium hydroxide solution is used. The aluminum compound may be produced by reacting each raw material as an inorganic binder precursor.
Of the above aluminum salts, it is preferable to add both aluminum hydroxide and aluminum chloride to the inorganic binder precursor, and the amount of aluminum chloride is 5% by mass to 10% by mass with respect to the amount of aluminum hydroxide. It is preferable that Aluminum chloride is considered to have a role of catalytically promoting the reaction between aluminum hydroxide and phosphoric acid, and the amount is preferably in the above range. In addition, when aluminum chloride and hydrochloric acid are used and an aluminum phosphate precursor is not used, polyaluminum chloride, which is an inorganic binder, is not colored, so that the light reflectance is high.
A phosphate compound may be used instead of or together with aluminum phosphate, and the phosphate compound is not particularly limited as long as it is insoluble in water. Specific examples include magnesium phosphate, calcium phosphate, zinc phosphate, barium phosphate, aluminum phosphate, gallium phosphate, lanthanum phosphate, titanium phosphate, and zirconium phosphate. Aluminum phosphate is preferable, and when mixed with other phosphates, 50% by mass or more is preferably aluminum phosphate.
When sodium silicate is used, it is dissolved in water, heated and adjusted to a viscosity suitable for water glass, and used as an inorganic binder precursor.
These inorganic binder precursors can be mixed and used in any combination so as to produce the desired inorganic binder.
 (無機粒子)
 本発明においては、上記無機粒子は特に限定されず、例えば、従来公知の金属酸化物、金属水酸化物、炭酸塩、硫酸塩などを用いることができ、中でも、金属酸化物を用いるのが好ましい。
 上記無機粒子としては、具体的には、例えば、酸化アルミニウム(アルミナ)、酸化マグネシウム、酸化イットリウム、酸化チタン、酸化亜鉛、二酸化ケイ素、酸化ジルコニウムなどの金属酸化物;水酸化アルミニウム、水酸化カルシウム、水酸化マグネシウムなどの水酸化物;炭酸カルシウム(軽質炭酸カルシウム、重質炭酸カルシウム、極微細炭酸カルシウムなど)、炭酸バリウム、炭酸マグネシウム、炭酸ストロンチウムなどの炭酸塩;硫酸カルシウム、硫酸バリウムなどの硫酸塩;また、その他に、カルシウムカーボネート、方解石、大理石、石膏、カオリンクレー、焼成クレー、タルク、セリサイト、光学ガラス、ガラスビーズなどが挙げられる。
 この中でも、後述する無機結着剤との親和性が良好となる理由から、酸化アルミニウム、二酸化ケイ素、水酸化アルミニウム、硫酸バリウムが好ましい。酸化アルミニウムがさらに好ましい。
(Inorganic particles)
In the present invention, the inorganic particles are not particularly limited. For example, conventionally known metal oxides, metal hydroxides, carbonates, sulfates, and the like can be used, and among these, metal oxides are preferably used. .
Specific examples of the inorganic particles include metal oxides such as aluminum oxide (alumina), magnesium oxide, yttrium oxide, titanium oxide, zinc oxide, silicon dioxide, and zirconium oxide; aluminum hydroxide, calcium hydroxide, Hydroxides such as magnesium hydroxide; calcium carbonate (light calcium carbonate, heavy calcium carbonate, ultrafine calcium carbonate, etc.), carbonates such as barium carbonate, magnesium carbonate, strontium carbonate; sulfates such as calcium sulfate and barium sulfate Other examples include calcium carbonate, calcite, marble, gypsum, kaolin clay, calcined clay, talc, sericite, optical glass, glass beads, and the like.
Among these, aluminum oxide, silicon dioxide, aluminum hydroxide, and barium sulfate are preferable because of their good affinity with the inorganic binder described later. More preferred is aluminum oxide.
 好適な無機反射層に用いる無機粒子は、屈折率が、1.5以上1.8以下であり、好ましくは1.55以上1.75以下である。屈折率がこの範囲であると得られる無機反射層の反射率が高い。この理由は、空気との反射率の差異によるものであると考えられる。
 無機粒子の平均粒子径は、好ましくは0.1μm以上5μm以下である。より好ましくは0.5~2μmであり、さらに好ましくは0.5~1.5μmである。平均粒子径がこの範囲の無機粒子を用いると、粒子間に適切な空隙を確保することができ、陽極酸化皮膜層との密着性も得ることができると考えられる。平均粒径が0.1μm未満であると反射率が劣り、粒径が6μm超であると陽極酸化皮膜層との密着性に劣る場合がある。ここで、平均粒子径は例えば、レーザー回折散乱法(レーザー回折/散乱式粒子径分布測定装置、Partica LA-910、堀場製作所社製など)を用いて測定された50%体積累積径(D50)をいう。
 従来技術における1000℃以上などの高温焼結で無機粒子を結着させ、いわゆるセラミック層を製造する工程では、層中に特定の空隙を確保するためには高温焼結の進行の制御が必要である。これに対し本発明の好ましい無機反射層は低温での加熱乾燥により高温焼結を行なわないので原料としての無機粒子の平均粒子径が無機反射層の空隙率および表面硬度を決めるため反射率に影響する重要なファクターとなる。従来技術における1000℃以上などの高温焼結で無機粒子を結着させた、いわゆるセラミック層は、赤外分光法により測定した波数3000cm-1と波数1900cm-1の吸光度の差であるOH表面構造吸収係数が0.10未満である。
The inorganic particles used in a suitable inorganic reflective layer have a refractive index of 1.5 or more and 1.8 or less, preferably 1.55 or more and 1.75 or less. When the refractive index is within this range, the obtained inorganic reflective layer has a high reflectance. This reason is considered to be due to a difference in reflectance from air.
The average particle diameter of the inorganic particles is preferably 0.1 μm or more and 5 μm or less. More preferably, it is 0.5-2 μm, and still more preferably 0.5-1.5 μm. When inorganic particles having an average particle diameter in this range are used, it is considered that appropriate voids can be secured between the particles and adhesion with the anodized film layer can be obtained. When the average particle size is less than 0.1 μm, the reflectance is inferior, and when the particle size is more than 6 μm, the adhesion with the anodized film layer may be inferior. Here, the average particle diameter is, for example, a 50% cumulative volume diameter (D50) measured using a laser diffraction / scattering method (laser diffraction / scattering particle size distribution measuring device, Partica LA-910, manufactured by Horiba, Ltd.). Say.
In the process of manufacturing the so-called ceramic layer by binding inorganic particles by high-temperature sintering such as 1000 ° C. or higher in the prior art, it is necessary to control the progress of high-temperature sintering in order to secure specific voids in the layer. is there. On the other hand, the preferred inorganic reflective layer of the present invention does not perform high-temperature sintering by heat drying at a low temperature, so the average particle size of the inorganic particles as the raw material determines the porosity and surface hardness of the inorganic reflective layer, thus affecting the reflectance. It becomes an important factor to do. It was binding the inorganic particles in the high-temperature sintering, such as 1000 ° C. or higher in the prior art, so-called ceramic layer, OH surface structure which is the difference in absorbance of the infrared wave number 3000 cm -1 was determined by spectroscopy and the wave number 1900 cm -1 Absorption coefficient is less than 0.10.
 上記無機粒子としては限定されないが例えば以下の無機粒子が例示できる。
 酸化アルミニウム(アルミナ)(屈折率n=1.65~1.76、以下、括弧内の数字は屈折率である)、水酸化アルミニウム(1.58~1.65~1.76)、水酸化カルシウム(1.57~1.6)、炭酸カルシウム(1.58)、方解石(1.61)、カルシウムカーボネート(1.61)、軽質炭酸カルシウム(1.59)、重質炭酸カルシウム(1.56)、極微細炭酸カルシウム(1.57)、石膏(1.55)、硫酸カルシウム(1.59)、大理石(1.57)、硫酸バリウム(1.64)、炭酸バリウム(1.6)、酸化マグネシウム(1.72)、炭酸マグネシウム(1.52)、水酸化マグネシウム(1.58)、炭酸ストロンチウム(1.52)、カオリンクレー(1.56)、焼成クレー(1.62)、タルク(1.57)、セリサイト(1.57)、光学ガラス(1.51~1.64)、ガラスビーズ(1.51)。用いる粒子の素材は上記の範囲の屈折率を満たせば良く、焼結という工程が無いため、酸化物に限らず各種の無機塩を用いる事が出来る。
Although it does not limit as said inorganic particle, For example, the following inorganic particles can be illustrated.
Aluminum oxide (alumina) (refractive index n = 1.65 to 1.76, hereinafter the number in parentheses is the refractive index), aluminum hydroxide (1.58 to 1.65 to 1.76), hydroxide Calcium (1.57 to 1.6), calcium carbonate (1.58), calcite (1.61), calcium carbonate (1.61), light calcium carbonate (1.59), heavy calcium carbonate (1. 56), ultrafine calcium carbonate (1.57), gypsum (1.55), calcium sulfate (1.59), marble (1.57), barium sulfate (1.64), barium carbonate (1.6) , Magnesium oxide (1.72), magnesium carbonate (1.52), magnesium hydroxide (1.58), strontium carbonate (1.52), kaolin clay (1.56), calcined clay (1.62), talc 1.57), sericite (1.57), optical glass (1.51 to 1.64), glass beads (1.51). The material of the particles to be used only needs to satisfy the refractive index in the above range, and since there is no step of sintering, various inorganic salts can be used without being limited to oxides.
 また、上記特性を満たすものであれば2種類以上の粒子または2種類以上の平均粒子径を有する粒子を混合して使用してもよい。異なる粒径の粒子や異なる素材のものを組み合わせることにより、膜強度の向上や、基板との密着強度の向上を図ることが出来る。
 さらには塗布面の性状の改良で表面が滑らかになる効果も期待できる。
Further, two or more kinds of particles or two or more kinds of particles having an average particle diameter may be mixed and used as long as the above characteristics are satisfied. By combining particles of different particle diameters or different materials, it is possible to improve the film strength and the adhesion strength with the substrate.
Furthermore, the effect of smoothing the surface by improving the properties of the coated surface can be expected.
 更に、上記無機粒子の形状は特に限定はされず、例えば、球状、多面体状(例えば、20面体状、12面体状等)、立方体状、4面体状、表面に凹凸状ないし凸状の突起を複数有する形状(以下、「コンペイトウ形状」ともいう。)、板状、針状等いずれであってもよい。
 これらのうち、断熱性に優れる理由から、球状、多面体状、立方体状、4面体状、コンペイトウ形状が好ましく、入手が容易で断熱性により優れる理由から、球状であるのがより好ましい。
Further, the shape of the inorganic particles is not particularly limited, and for example, spherical, polyhedral (for example, icosahedron, dodecahedron, etc.), cubic, tetrahedral, and uneven or convex protrusions on the surface. Any of a plurality of shapes (hereinafter, also referred to as “compete shape”), a plate shape, a needle shape, or the like may be used.
Among these, spherical, polyhedral, cubic, tetrahedral, and complex shapes are preferred for the reason of excellent heat insulation, and spherical is more preferred for reasons of easy availability and excellent heat insulation.
 <無機反射層>
 上記で例示する好適な無機反射層は、加熱乾燥後の単位面積当たりの質量で、20g/m~500g/mとするのが好ましい。この範囲であると、空隙をその内部に残しているために光の透過が抑制され、反射率が高い。上記の特定の無機結着剤を用いる事で高温焼結を不要とし、より低コストで無機反射層を製造することが可能である。無機反射層は無機材料であり、経年変化にも強い。更に、反射層形成時に基板の陽極酸化皮膜と反応して、基板との密着性も担保する事が可能となる。
 好適な無機反射層中の無機粒子の量と、リン酸アルミニウム、塩化アルミニウム、およびケイ酸ナトリウムからなる群から選択される少なくとも一つの無機結着剤の量とは、無機粒子100質量部に対して無機結着剤5~100質量部が好ましく、10~50質量部がより好ましい。
 好適な無機反射層には、上記無機粒子と無機結着剤以外に、他の化合物を含有してもよい。他の化合物としては、例えば、分散剤、反応促進剤等が挙げられ、また、これらと、上記無機粒子、無機結着剤前駆物質、無機粒子と無機結着剤との反応生成物等が挙げられる。
<Inorganic reflective layer>
The preferred inorganic reflective layer exemplified above is preferably 20 g / m 2 to 500 g / m 2 in terms of mass per unit area after heat drying. Within this range, the air gap is left in the interior, so light transmission is suppressed and the reflectance is high. By using the specific inorganic binder described above, high temperature sintering is unnecessary, and an inorganic reflective layer can be produced at a lower cost. The inorganic reflective layer is an inorganic material and is resistant to aging. Furthermore, it reacts with the anodized film of the substrate when forming the reflective layer, and it is possible to ensure adhesion with the substrate.
The amount of inorganic particles in a suitable inorganic reflective layer and the amount of at least one inorganic binder selected from the group consisting of aluminum phosphate, aluminum chloride, and sodium silicate are based on 100 parts by mass of the inorganic particles. The inorganic binder is preferably 5 to 100 parts by mass, more preferably 10 to 50 parts by mass.
A suitable inorganic reflective layer may contain other compounds in addition to the inorganic particles and the inorganic binder. Examples of other compounds include dispersants, reaction accelerators, and the like, and these and the above inorganic particles, inorganic binder precursors, reaction products of inorganic particles and inorganic binders, and the like. It is done.
<好適な無機反射層の製造方法>
 以上で説明した好適な無機反射層の製造方法は、特に限定されないが、以下で説明するバインダー液として無機結着剤および/または無機結着剤前駆物質と無機粒子を混合して、この混合液を塗布膜厚が調整可能なコーターを用いて陽極酸化皮膜層上に所定量塗布し、その後100℃~300℃で、10~60分間、加熱処理(低温焼成)するのが好ましい。
 塗布方法は特に限定されず、種々の方法を用いることができるが、例えば、バーコーター塗布、回転塗布、スプレー塗布、カーテン塗布、ディップ塗布、エアーナイフ塗布、ブレード塗布、ロール塗布等を挙げることができる。
 反応式に従う化学量論組成比で無機結着剤前駆物質と無機粒子との水分散体を調整すると、反応が進むとともに液の粘度が急激に上昇する。このような現象を回避し安定的に無機反射層を形成させる目的で予め若干の水を添加しておくことが望ましい。また、陽極酸化皮膜層中にリン酸根が残存する事は基板の腐食や、LEDの封止材の劣化などをもたらす事があり望ましくない。よって化学量論比に対しリン酸以外成分の量を若干過剰に処方しておくことが望ましい。
 加熱乾燥後の皮膜中にリン酸アルミニウム、塩化アルミニウム、またはケイ酸ナトリウムが生成していることは赤外分光光度計で皮膜表面を分析すれば容易に確認する事が出来る。
<The manufacturing method of a suitable inorganic reflection layer>
The method for producing a suitable inorganic reflective layer described above is not particularly limited, but an inorganic binder and / or an inorganic binder precursor and inorganic particles are mixed as a binder liquid described below, and this mixed liquid is mixed. It is preferable to apply a predetermined amount on the anodized film layer using a coater whose film thickness can be adjusted, and then heat treatment (low temperature firing) at 100 to 300 ° C. for 10 to 60 minutes.
The coating method is not particularly limited, and various methods can be used. Examples thereof include bar coater coating, spin coating, spray coating, curtain coating, dip coating, air knife coating, blade coating, and roll coating. it can.
When the aqueous dispersion of the inorganic binder precursor and the inorganic particles is adjusted with a stoichiometric composition ratio according to the reaction formula, the reaction proceeds and the viscosity of the liquid increases rapidly. In order to avoid such a phenomenon and form an inorganic reflective layer stably, it is desirable to add some water in advance. In addition, it is not desirable that phosphate groups remain in the anodized film layer because it may cause corrosion of the substrate or deterioration of the LED sealing material. Therefore, it is desirable to prescribe a slightly excessive amount of components other than phosphoric acid with respect to the stoichiometric ratio.
The formation of aluminum phosphate, aluminum chloride, or sodium silicate in the heat-dried film can be easily confirmed by analyzing the film surface with an infrared spectrophotometer.
 また、無機反射層を異なる組成のバインダー液を2種類以上調整して陽極酸化皮膜上に順次塗布することにより2層以上とすることもできる。2層以上の無機反射層を組み合わせることにより、無機反射層強度の向上や、基板との密着強度の向上を図ることが出来る。さらには塗布面の性状の改良で表面が滑らかになる効果も期待できる。
 無機反射層が2層以上である場合は、本発明では、最表面となる無機反射層が、ビッカース硬度1GPa以上、OH表面構造吸収係数が0.40以上であれば、他の無機反射層はこの要件以外の無機反射層を用いることもできる。好ましくは2層以上の各無機反射層がそれぞれビッカース硬度1GPa以上、10GPa以下、OH表面構造吸収係数が0.40以上0.80以下である。
Alternatively, the inorganic reflective layer can be made to have two or more layers by adjusting two or more kinds of binder liquids having different compositions and sequentially applying the binder liquid onto the anodized film. By combining two or more inorganic reflective layers, it is possible to improve the strength of the inorganic reflective layer and the strength of adhesion to the substrate. Furthermore, the effect of smoothing the surface by improving the properties of the coated surface can be expected.
When the inorganic reflective layer has two or more layers, in the present invention, if the inorganic reflective layer that is the outermost surface has a Vickers hardness of 1 GPa or more and an OH surface structure absorption coefficient of 0.40 or more, the other inorganic reflective layers are Inorganic reflective layers other than this requirement can also be used. Preferably, each of the two or more inorganic reflective layers has a Vickers hardness of 1 GPa or more and 10 GPa or less, and an OH surface structure absorption coefficient of 0.40 or more and 0.80 or less.
(低温焼成)
 上記の低温焼成により、反応を進め無機粒子同士を反応により生成する無機結着剤により結着する。
 低温焼成温度は100℃~300℃であり、150℃~300℃であるのが好ましく、180℃~250℃である事がより好ましい。
 100℃未満では水分の除去が適わず、300℃超ではアルミニウム基材の強度変化が起こるので望ましくない。また、無機結着剤前駆物質間の反応を進め、結着させるには150℃以上の温度が望ましく、さらに得られる無機結着剤に残存する吸着水を完全に除去するためには180℃以上であることが望ましい。250℃を超えた温度で長時間処理を行なうとバルブ金属基材の強度が変化するため、250℃以下で処理する事が望ましい。
 焼成時間は10分~60分であり、20分~40分が更に好ましい。短時間では反応の進捗が不十分であり、長時間になると焼成温度との関係でバルブ金属基材、特にアルミニウム金属基材の強度変化をきたす。60分以上では製造コスト的にも望ましくない。この理由から、焼成時間は20分~40分がもっとも好ましい。
 このような低温での焼成処理によって得られる無機反射層の表面硬度は結着処理条件、用いる粒子サイズなどにより変化するが、高い硬度を得るには焼成温度とともに粒子サイズを選択する事が重要である。無機粒子の平均粒子径は、好ましくは0.1μm以上5μm以下である。この範囲の平均粒子径の粒子を上記範囲の温度で焼成すると得られる無機反射層の表面硬度が適切となる。
 バインダー液は水分を含む液であるため、塗布後上記低温焼成処理の前に乾燥工程を入れてもよい。リン酸アルミニウム等の無機結着剤の生成反応や無機粒子の結着反応を起こさない100℃以下の温度で乾燥させる。
(Low temperature firing)
By the above-mentioned low-temperature firing, the reaction proceeds and the inorganic particles are bound by an inorganic binder that is generated by the reaction.
The low-temperature firing temperature is 100 ° C. to 300 ° C., preferably 150 ° C. to 300 ° C., and more preferably 180 ° C. to 250 ° C.
If it is less than 100 ° C., moisture removal is not suitable, and if it exceeds 300 ° C., the strength of the aluminum substrate changes, which is not desirable. In addition, a temperature of 150 ° C. or higher is desirable for proceeding and binding the reaction between the inorganic binder precursors, and 180 ° C. or higher for completely removing the adsorbed water remaining in the obtained inorganic binder. It is desirable that When the treatment is performed for a long time at a temperature exceeding 250 ° C., the strength of the valve metal base material is changed.
The firing time is 10 minutes to 60 minutes, more preferably 20 minutes to 40 minutes. In a short time, the progress of the reaction is insufficient, and when the time is long, the strength of the valve metal substrate, particularly the aluminum metal substrate, changes in relation to the firing temperature. If it is more than 60 minutes, it is not desirable in terms of production cost. For this reason, the firing time is most preferably 20 minutes to 40 minutes.
The surface hardness of the inorganic reflective layer obtained by firing at such a low temperature varies depending on the binding treatment conditions, the particle size used, etc., but in order to obtain high hardness, it is important to select the particle size together with the firing temperature. is there. The average particle diameter of the inorganic particles is preferably 0.1 μm or more and 5 μm or less. When the particles having an average particle diameter in this range are fired at a temperature in the above range, the surface hardness of the inorganic reflective layer obtained is appropriate.
Since the binder liquid is a liquid containing water, a drying step may be performed after the coating and before the low-temperature baking treatment. Drying is performed at a temperature of 100 ° C. or lower which does not cause a formation reaction of an inorganic binder such as aluminum phosphate or a binding reaction of inorganic particles.
<後処理>
 本発明の無機反射層は構成する材料と製造方法の組合せにより、その表面が、OH表面構造吸収係数が0.40以上とすることができる。また、上記で例示する好適な無機反射層は、低温焼成処理後、その表面を後処理されるのが好ましい。好ましい後処理は、次の加熱水蒸気処理または親水化処理が例示されるが、これらのみには限定されず、これらと同等で上記好適な無機反射層の表面を、赤外分光法により測定にして得られるOH表面構造吸収係数が0.40以上とする処理である。
 本発明の無機反射層は、本発明者の知見によれば、後処理をすることで、アルミナ水和物等またはリン酸アルミニウム等の水和物の存在により、本発明の発光素子用反射基板の熱伝導性、反射率を損なわずに耐電圧を向上させることができる。このことは予想できない顕著な効果であった。
<Post-processing>
The surface of the inorganic reflective layer of the present invention can have an OH surface structure absorption coefficient of 0.40 or more depending on the combination of constituent materials and manufacturing methods. Moreover, it is preferable that the suitable inorganic reflective layer illustrated above is post-processed on the surface after a low-temperature baking process. A preferable post-treatment is exemplified by the following heating steam treatment or hydrophilization treatment, but is not limited to these, and the surface of the above-mentioned suitable inorganic reflective layer which is equivalent to these is measured by infrared spectroscopy. In this treatment, the obtained OH surface structure absorption coefficient is 0.40 or more.
According to the knowledge of the present inventor, the inorganic reflective layer of the present invention is subjected to post-treatment, so that the presence of the hydrate of alumina hydrate or aluminum phosphate or the like causes the reflective substrate for light emitting device of the present invention. The withstand voltage can be improved without impairing the thermal conductivity and reflectance. This was a remarkable and unexpected effect.
(加熱水蒸気処理)
 本発明においては、好適な無機反射層は、上記低温焼成処理を施した後に、加熱水蒸気処理を施すのが好ましい。加熱水蒸気処理は、温度と圧力の条件から、沸騰水処理、熱水処理、蒸気処理、等を含む処理である。
 使用される水は、イオン交換水、蒸留水、天然水、水道水等のいずれでも使用できるがイオン交換水、蒸留水が好ましい。またこれらの水に対し処理の促進、水中の金属イオンの封鎖剤として、有機溶媒、アミン化合物、有機酸、リンまたは硼素の酸素酸塩等を単独または二種類以上混合してもよい。また、使用される水は、リチウム、ナトリウムあるいはマグネシウムなどのアルカリ金属アルカリ土類金属のイオンを含んでも良い。
 水蒸気を使用して連続的に表面処理することが好ましく、水蒸気処理する場合の温度は約80℃~200℃で、好ましくは約90℃~120℃である。処理時間は3秒~30分で、好ましくは5秒~10分である。水素イオン濃度は約2~11が適切で、好ましくは約3~10である。加圧水蒸気で処理する時の圧力は約1~15kg/cm(絶対圧)が適切であり、好ましくは約1~5kg/cmが好ましい。
 工業的には、処理室内に設けられた水槽内の水の温度を加熱し、それによって処理室内の温度を80℃以上105℃以下にし、処理室内圧として常圧に対し-50~300mmAqに保った状態の中を、加熱水蒸気処理が必要な無機反射層を通過させる方法を行ってもよい。
(Heated steam treatment)
In the present invention, it is preferable that a suitable inorganic reflective layer is subjected to a heat steam treatment after the low temperature firing treatment. The heated steam treatment is a treatment including boiling water treatment, hot water treatment, steam treatment, and the like based on temperature and pressure conditions.
The water used may be any of ion exchange water, distilled water, natural water, tap water, etc., but ion exchange water and distilled water are preferred. Further, as an accelerator for these waters and a sequestering agent for metal ions in the water, an organic solvent, an amine compound, an organic acid, phosphorus or boron oxyacid salt, or the like may be used alone or in combination. Further, the water used may contain ions of alkali metal alkaline earth metal such as lithium, sodium or magnesium.
The surface treatment is preferably carried out continuously using water vapor, and the temperature for the water vapor treatment is about 80 ° C. to 200 ° C., preferably about 90 ° C. to 120 ° C. The treatment time is 3 seconds to 30 minutes, preferably 5 seconds to 10 minutes. The hydrogen ion concentration is suitably about 2 to 11, preferably about 3 to 10. About 1 to 15 kg / cm 2 (absolute pressure) is appropriate as the pressure when treating with pressurized steam, and preferably about 1 to 5 kg / cm 2 is preferred.
Industrially, the temperature of water in a water tank provided in the processing chamber is heated, whereby the temperature in the processing chamber is set to 80 ° C. or more and 105 ° C. or less, and the processing chamber pressure is maintained at −50 to 300 mmAq with respect to normal pressure. Alternatively, a method may be used in which the inorganic reflective layer requiring heating steam treatment is passed through the state.
(親水化処理)
 本発明においては、好適な無機反射層は、上記低温焼成処理を施した後に、親水化処理を施すのが好ましい。
 上記親水化処理の方法としては、具体的には、例えば、アルカリ金属ケイ酸塩の水溶液に浸漬させる方法等が挙げられる。
(Hydrophilic treatment)
In the present invention, a suitable inorganic reflective layer is preferably subjected to a hydrophilization treatment after the low-temperature baking treatment.
Specific examples of the hydrophilic treatment method include a method of immersing in an aqueous solution of an alkali metal silicate.
 ここで、アルカリ金属ケイ酸塩の水溶液を用いた親水化処理は、米国特許第2,714,066号明細書および米国特許第3,181,461号明細書に記載されている方法および手順に従って行うことができる。 Here, the hydrophilization treatment using an aqueous solution of alkali metal silicate is performed according to the method and procedure described in US Pat. No. 2,714,066 and US Pat. No. 3,181,461. It can be carried out.
 上記アルカリ金属ケイ酸塩としては、具体的には、例えば、ケイ酸ナトリウム、ケイ酸カリウム、ケイ酸リチウム等が挙げられる。
 また、上記アルカリ金属ケイ酸塩の水溶液は、更に、水酸化ナトリウム、水酸化カリウム、水酸化リチウム等を含有してもよい。
Specific examples of the alkali metal silicate include sodium silicate, potassium silicate, and lithium silicate.
The aqueous solution of the alkali metal silicate may further contain sodium hydroxide, potassium hydroxide, lithium hydroxide and the like.
 更に、上記アルカリ金属ケイ酸塩の水溶液は、更に、アルカリ土類金属塩または4族(第IVA族)金属塩を含有してもよい。
 ここで、上記アルカリ土類金属塩としては、具体的には、例えば、硝酸カルシウム、硝酸ストロンチウム、硝酸マグネシウム、硝酸バリウム等の硝酸塩;硫酸塩;塩酸塩;リン酸塩;酢酸塩;シュウ酸塩;ホウ酸塩;等が挙げられる。
 また、上記4族(第IVA族)金属塩としては、具体的には、例えば、四塩化チタン、三塩化チタン、フッ化チタンカリウム、シュウ酸チタンカリウム、硫酸チタン、四ヨウ化チタン、塩化酸化ジルコニウム、二酸化ジルコニウム、オキシ塩化ジルコニウム、四塩化ジルコニウム等が挙げられる。
 これらのアルカリ土類金属塩および4族(第IVA族)金属塩は、一種単独で用いてもよく、2種以上を併用してもよい。
 上記親水化処理は、上記アルカリ金属ケイ酸塩の水溶液を用いた場合、アルカリ金属ケイ酸塩の水溶液は、ケイ酸塩の成分である酸化ケイ素SiO2とアルカリ金属酸化物M2Oの比率(一般に〔SiO2〕/〔M2O〕のモル比で表す。)と濃度によって保護膜厚の調節が可能である。
 ここで、Mとしては、特にナトリウム、カリウムが好適に用いられる。
 また、モル比は、〔SiO2〕/〔M2O〕が0.1~5.0が好ましく、0.5~3.0がより好ましい。 更に、SiO2の含有量は、0.1~20質量%が好ましく、0.5~10質量%がより好ましい。
Furthermore, the aqueous solution of the alkali metal silicate may further contain an alkaline earth metal salt or a Group 4 (Group IVA) metal salt.
Here, specific examples of the alkaline earth metal salt include nitrates such as calcium nitrate, strontium nitrate, magnesium nitrate, and barium nitrate; sulfates; hydrochlorides; phosphates; acetates; Borate; and the like.
Specific examples of the Group 4 (Group IVA) metal salt include, for example, titanium tetrachloride, titanium trichloride, potassium fluoride titanium, potassium oxalate, titanium sulfate, titanium tetraiodide, and chloride oxidation. Zirconium, zirconium dioxide, zirconium oxychloride, zirconium tetrachloride and the like can be mentioned.
These alkaline earth metal salts and Group 4 (Group IVA) metal salts may be used alone or in combination of two or more.
In the hydrophilization treatment, when an aqueous solution of the alkali metal silicate is used, the aqueous solution of the alkali metal silicate is a ratio of silicon oxide SiO 2 and alkali metal oxide M 2 O, which are components of the silicate ( In general, the protective film thickness can be adjusted by the concentration of [SiO 2 ] / [M 2 O]) and the concentration.
Here, as M, sodium and potassium are particularly preferably used.
The molar ratio of [SiO 2 ] / [M 2 O] is preferably 0.1 to 5.0, more preferably 0.5 to 3.0. Further, the content of SiO 2 is preferably 0.1 to 20% by mass, and more preferably 0.5 to 10% by mass.
 また、上記アルカリ金属ケイ酸塩の水溶液の温度は、1~70℃であるのが好ましく、2~50℃であるのがより好ましく、3~35℃であるのが更に好ましい。
 また、上記アルカリ金属ケイ酸塩の水溶液を用いた場合の処理時間は、5秒~90分であるのが好ましく、8秒~60分であるのが好ましく、12秒~30分であるのが更に好ましい。
The temperature of the aqueous alkali metal silicate solution is preferably 1 to 70 ° C., more preferably 2 to 50 ° C., and still more preferably 3 to 35 ° C.
Further, the treatment time in the case of using the alkali metal silicate aqueous solution is preferably 5 seconds to 90 minutes, more preferably 8 seconds to 60 minutes, and preferably 12 seconds to 30 minutes. Further preferred.
〔バルブ金属基材〕
 バルブ金属としては、具体的には、例えば、アルミニウム、タンタル、ニオブ、チタン、ハフニウム、ジルコニウム、亜鉛、タングステン、ビスマス、アンチモン等が挙げられる。
 バルブ金属の陽極酸化皮膜層は、電気抵抗率(1014Ω・cm程度)を有する耐熱性の高い絶縁被膜である。
 これらのうち、寸法安定性がよく、比較的安価であることからアルミニウムの陽極酸化皮膜層であるのが好ましい。
 バルブ金属基材は、単独の板で本発明の反射基板に用いてもよい。
 バルブ金属基材は、必要な場合は鋼板等の他の金属板、ガラス板、セラミック板、樹脂製板等に積層して本発明の反射基板に設けられる。陽極酸化皮膜を形成し耐電圧を担保するためにはバブル金属基材は、厚さ10μm以上の板状の部分があればよい。他の板材とバルブ金属基材とを積層して用いる場合には、可撓性があり、耐熱性の高い鋼板や金属板との積層板が好ましい。
[Valve metal substrate]
Specific examples of the valve metal include aluminum, tantalum, niobium, titanium, hafnium, zirconium, zinc, tungsten, bismuth, and antimony.
The anodized film layer of the valve metal is an insulating film having an electrical resistivity (about 10 14 Ω · cm) and high heat resistance.
Of these, an anodic oxide film layer of aluminum is preferable because it has good dimensional stability and is relatively inexpensive.
The valve metal substrate may be a single plate used for the reflective substrate of the present invention.
If necessary, the valve metal substrate is laminated on another metal plate such as a steel plate, a glass plate, a ceramic plate, a resin plate, or the like, and provided on the reflective substrate of the present invention. In order to form an anodized film and ensure a withstand voltage, the bubble metal substrate only needs to have a plate-like portion having a thickness of 10 μm or more. When another plate material and a valve metal base material are laminated and used, a laminated plate of a steel plate or metal plate that is flexible and has high heat resistance is preferable.
(アルミニウム板)
 本発明の反射基板の製造には、公知のアルミニウム板を用いることができる。本発明に用いられるアルミニウム板は、寸度的に安定なアルミニウムを主成分とする金属であり、アルミニウムまたはアルミニウム合金からなる。純アルミニウム板のほか、アルミニウムを主成分とし微量の異元素を含む合金板を用いることもできる。
(Aluminum plate)
A known aluminum plate can be used for the production of the reflective substrate of the present invention. The aluminum plate used in the present invention is a metal whose main component is dimensionally stable aluminum, and is made of aluminum or an aluminum alloy. In addition to a pure aluminum plate, an alloy plate containing aluminum as a main component and containing a trace amount of foreign elements can also be used.
 本明細書においては、上述したアルミニウムまたはアルミニウム合金からなる各種の基板をアルミニウム板と総称して用いる。上記アルミニウム合金に含まれてもよい異元素には、ケイ素、鉄、銅、マンガン、マグネシウム、クロム、亜鉛、ビスマス、ニッケル、チタン等があり、合金中の異元素の含有量は10質量%以下である。 In this specification, various substrates made of the above-described aluminum or aluminum alloy are collectively referred to as an aluminum plate. The foreign elements that may be contained in the aluminum alloy include silicon, iron, copper, manganese, magnesium, chromium, zinc, bismuth, nickel, titanium, etc., and the content of the foreign elements in the alloy is 10% by mass or less. It is.
 このように本発明に用いられるアルミニウム板は、その組成が特定されるものではなく、アルミニウムの純度は特に問わないが、通常板材として用いられる1000系、3000系、5000系の合金を用いることができる。しかし発光素子用反射基板として用いる場合に耐電圧に優れる事が求められ、素材中の金属間化合物などの粒子を出来るだけ少なくする事が望ましい。熱処理条件で回避できない場合には、99.9%以上の高純度のアルミニウムを用いる事も有用である。
 具体的には、アルミニウムハンドブック第4版(1990年、軽金属協会発行)に記載されている従来公知の素材、例えば、JIS A1050、JIS A1100、JIS A1070、Mnを含むJIS A3004、国際登録合金 3103A等のAl-Mn系アルミニウム板を適宜利用することができる。また、引張強度を増す目的で、これらのアルミニウム合金に0.1質量%以上のマグネシウムを添加したAl-Mg系合金、Al-Mn-Mg系合金(JIS A3005)を用いることもできる。更に、ZrやSiを含むAl-Zr系合金やAl-Si系合金を用いることもできる。更に、Al-Mg-Si系合金を用いることもできる。
Thus, the composition of the aluminum plate used in the present invention is not specified, and the purity of aluminum is not particularly limited, but 1000 series, 3000 series, and 5000 series alloys that are usually used as plate materials are used. it can. However, when used as a reflective substrate for a light emitting device, it is required to have excellent withstand voltage, and it is desirable to reduce particles such as intermetallic compounds in the material as much as possible. If it cannot be avoided under heat treatment conditions, it is also useful to use high purity aluminum of 99.9% or more.
Specifically, conventionally known materials described in Aluminum Handbook 4th edition (1990, published by Light Metal Association), for example, JIS A1050, JIS A1100, JIS A1070, JIS A3004 containing Mn, international registered alloy 3103A, etc. Al-Mn aluminum plates can be used as appropriate. For the purpose of increasing the tensile strength, an Al—Mg alloy or an Al—Mn—Mg alloy (JIS A3005) in which 0.1% by mass or more of magnesium is added to these aluminum alloys can also be used. Furthermore, an Al—Zr alloy or an Al—Si alloy containing Zr or Si can also be used. Furthermore, an Al—Mg—Si based alloy can also be used.
 Al-Mg系合金、Al-Mn系合金、Al-Mn-Mg系合金、Al-Zr系合金、Al-Mg-Si系合金に関しては、国際公開WO2010/150810号の段落[0034]~[0038]に記載の公報に記載されている。 Regarding Al—Mg alloys, Al—Mn alloys, Al—Mn—Mg alloys, Al—Zr alloys, and Al—Mg—Si alloys, paragraphs [0034] to [0038] of International Publication No. WO2010 / 150810. Is described in the publication.
 アルミニウム合金を板材に製造する方法、DC鋳造法、連続鋳造法、アルミニウム板の表面の結晶組織、アルミニウム板の金属間化合物については、国際公開WO2010/150810号の段落[0039]~[0050]に記載されている。 Regarding the method for producing an aluminum alloy into a plate material, DC casting method, continuous casting method, crystal structure of the surface of the aluminum plate, and intermetallic compound of the aluminum plate, paragraphs [0039] to [0050] of International Publication WO2010 / 150810 Are listed.
 本発明においては、上記に示されるようなアルミニウム板をその最終圧延工程等において、積層圧延、転写等により凹凸を形成させて粗面化処理して用いることもできる。基板表面を予め粗面化処理しておけば、陽極酸化皮膜層を形成した後に、その上に形成される無機反射層と基板との密着性を向上させることができる。その他の粗面化処理方法は後に説明する。 In the present invention, an aluminum plate as shown above can be used by roughening it by forming irregularities by laminating rolling, transferring or the like in its final rolling step or the like. If the surface of the substrate is roughened in advance, the adhesion between the inorganic reflective layer formed on the substrate and the substrate can be improved after the anodic oxide film layer is formed. Other roughening treatment methods will be described later.
 本発明に用いられるアルミニウム板は、アルミニウムウェブであってもよく、枚葉状シートであってもよい。 The aluminum plate used in the present invention may be an aluminum web or a sheet-like sheet.
〔発光素子用反射基板の製造方法〕
<1.粗面化処理>
 本発明の反射基板を製造する際にアルカリ脱脂したアルミニウム板を直接陽極酸化処理して陽極酸化皮膜層を形成してもよい。また、アルミニウム表面を予め粗面化処理して、陽極酸化処理すれば、陽極酸化皮膜層とアルミニウム板との密着性を向上させることができる。粗面化処理は、アルミニウム板に機械的粗面化処理、アルカリエッチング処理、酸によるデスマット処理および電解液を用いた電気化学的粗面化処理を順次施す方法、アルミニウム板に機械的粗面化処理、アルカリエッチング処理、酸によるデスマット処理および異なる電解液を用いた電気化学的粗面化処理を複数回施す方法、アルミニウム板にアルカリエッチング処理、酸によるデスマット処理および電解液を用いた電気化学的粗面化処理を順次施す方法、アルミニウム板にアルカリエッチング処理、酸によるデスマット処理および異なる電解液を用いた電気化学的粗面化処理を複数回施す方法が挙げられるが、本発明はこれらに限定されない。これらの方法において、上記電気化学的粗面化処理の後、更に、アルカリエッチング処理および酸によるデスマット処理を施してもよい。
[Method for producing reflective substrate for light emitting element]
<1. Roughening>
When the reflective substrate of the present invention is produced, an anodized film layer may be formed by directly anodizing an aluminum plate degreased by alkali. Further, if the aluminum surface is roughened in advance and anodized, the adhesion between the anodized film layer and the aluminum plate can be improved. Roughening treatment is a method of performing mechanical roughening treatment on an aluminum plate, alkali etching treatment, desmutting treatment with acid, and electrochemical roughening treatment using an electrolytic solution, and mechanical roughening treatment on an aluminum plate. Treatment, alkali etching treatment, desmutting treatment with acid and electrochemical surface roughening treatment using different electrolytes multiple times, alkali etching treatment on aluminum plate, desmutting treatment with acid and electrochemical using electrolyte solution Examples include a method of sequentially performing a surface roughening treatment, a method of applying an alkali etching treatment to an aluminum plate, a desmutting treatment with an acid, and an electrochemical surface roughening treatment using different electrolytes a plurality of times, but the present invention is not limited thereto. Not. In these methods, after the electrochemical roughening treatment, an alkali etching treatment and an acid desmutting treatment may be further performed.
 中でも、他の処理(アルカリエッチング処理等)の条件にもよるが、大波構造、中波構造および小波構造が重畳した表面形状を形成させるには、機械的粗面化処理、硝酸を主体とする電解液を用いた電気化学的粗面化処理および塩酸を主体とする電解液を用いた電気化学的粗面化処理を順次施す方法が好適に挙げられる。また、大波構造および小波構造が重畳した表面形状を形成させるには、塩酸を主体とする電解液を用い、アノード反応にあずかる電気量の総和を大きくした電気化学的粗面化処理のみを施す方法が好適に挙げられる。
 各粗面化処理の詳細については、国際公開WO2010/150810号の段落[0055]~[0083]に記載されている。
Among them, although depending on the conditions of other treatments (alkali etching treatment, etc.), in order to form a surface shape on which a large wave structure, a medium wave structure and a small wave structure are superimposed, a mechanical surface roughening treatment and nitric acid are mainly used. Preferred examples include a method of sequentially performing an electrochemical surface roughening treatment using an electrolytic solution and an electrochemical surface roughening treatment using an electrolytic solution mainly composed of hydrochloric acid. In addition, in order to form a surface shape in which a large wave structure and a small wave structure are superimposed, an electrolytic solution mainly composed of hydrochloric acid is used, and only an electrochemical surface roughening process is performed in which the total amount of electricity involved in the anode reaction is increased. Are preferable.
Details of each surface roughening treatment are described in paragraphs [0055] to [0083] of International Publication WO2010 / 150810.
<2.スルーホール加工>
 本発明の発光素子用反射基板においては、発光素子を実装するにあたり、適宜配線部を設けるためのスルーホール加工、並びに、最終製品を想定してのチップ化を行うためのルーティング加工(最終製品に個別化するための加工)を行うこともできる。スルーホール加工は、必要な個所への穴あけ加工であるが、加工されるスルーホールの形状については、配線が必要な複数の層の間の長さで、その断面は必要な配線をその中に入れて確保できる大きさ/形状であれば特に制限されないが、最終的なチップの大きさ、及び、確実な配線の形成を考えると、円形であることが好ましく、大きさは、0.01mmφ~2mmφが好ましく、0.05mmφ~1mmφがより好ましく、0.1mmφ~0.8mmφが特に好ましい。
<2. Through-hole processing>
In the reflective substrate for a light-emitting element of the present invention, when mounting the light-emitting element, a through-hole process for appropriately providing a wiring portion and a routing process for forming a chip assuming the final product (to the final product) Processing for individualization) can also be performed. Through-hole processing is drilling to the required location, but the shape of the processed through-hole is the length between multiple layers where wiring is required, and the cross-section is the required wiring in it. The size / shape is not particularly limited as long as it can be secured by insertion, but considering the final chip size and reliable wiring formation, a circular shape is preferable, and the size is from 0.01 mmφ to 2 mmφ is preferable, 0.05 mmφ to 1 mmφ is more preferable, and 0.1 mmφ to 0.8 mmφ is particularly preferable.
(ルーティング加工)
 ルーティング加工は、最終製品に個別化された発光素子用反射基板(以下チップという)の大きさに切り離す個別切り離し加工または、予めチップに切り離しやすい形状にする加工であり、パターン加工、チップ化ともいう。ルーティング加工には、ルーターと呼ばれる装置で基板の厚み方向に貫通した切込みを入れたり、ダイサーを用いて厚み方向に切断しない程度に切り込み(切り欠き)を入れるような加工を含む。
(Routing processing)
The routing process is an individual separation process that separates the light-emitting element reflective substrate (hereinafter referred to as a chip) that is individualized into the final product, or a process that makes it easy to separate into chips in advance, and is also referred to as patterning or chip formation. . The routing process includes a process of making a notch penetrating in the thickness direction of the substrate with a device called a router or making a notch so as not to cut in the thickness direction using a dicer.
<3.焼成処理>
 前述のルーティング加工、スルーホール加工におけるアルミニウム板のJIS Z2241による引張試験(引張速度:2mm/分)における引っ張り強度(以下引張強度という。)は、100MPa以下のように軟質な基板であることは加工性が低下するため好ましくなく、本発明の発光素子用反射基板を製造するに当たってはルーティング加工、スルーホール加工等の機械加工後、アルミニウム板を軟質化するため焼成する事が望ましい。また、陽極酸化処理を施した後に焼成を施すとアルミと皮膜の間の熱膨張率差に起因するクラックなどが入る恐れがあり、望ましくない。よって機械加工後、陽極酸化処理前にアルミニウム板の強度を調整する焼成処理を行うことが望ましい。機械加工後、陽極酸化処理前の焼成処理は250℃~400℃で、1分~120分加熱処理するのが好ましい。陽極酸化処理後の焼成処理を行う場合は、焼成温度は200℃~250℃で、60分~300分加熱処理するのが好ましい。
<3. Firing treatment>
The tensile strength (hereinafter referred to as tensile strength) in the tensile test (tensile speed: 2 mm / min) according to JIS Z2241 of the aluminum plate in the routing processing and through-hole processing described above is that the substrate is a soft substrate such as 100 MPa or less. When the reflective substrate for a light emitting element of the present invention is manufactured, it is desirable that the aluminum plate is fired to soften the aluminum plate after mechanical processing such as routing processing or through-hole processing. Further, if firing is performed after the anodizing treatment, cracks and the like due to the difference in thermal expansion coefficient between the aluminum and the coating may occur, which is not desirable. Therefore, it is desirable to perform a baking treatment for adjusting the strength of the aluminum plate after the machining and before the anodizing treatment. The baking treatment after the machining and before the anodizing treatment is preferably performed at 250 to 400 ° C. for 1 to 120 minutes. When performing the baking treatment after the anodizing treatment, the baking temperature is preferably 200 ° C. to 250 ° C., and the heat treatment is preferably performed for 60 minutes to 300 minutes.
<4.陽極酸化処理>
 以上のように表面処理され、加工されたアルミニウム板に、更に、陽極酸化処理を施すのが好ましい。陽極酸化処理により、アルミナからなる陽極酸化皮膜層がアルミニウム板の表面に形成され、多孔質、あるいは、非孔質の表面絶縁層が得られる。
<4. Anodizing>
It is preferable to further anodize the aluminum plate that has been surface-treated and processed as described above. By anodizing treatment, an anodized film layer made of alumina is formed on the surface of the aluminum plate, and a porous or non-porous surface insulating layer is obtained.
 陽極酸化処理は、従来行われている方法で行うことができる。この場合、例えば、硫酸濃度50~300g/Lで、アルミニウム濃度5質量%以下の水溶液中で、アルミニウム板を陽極として通電して陽極酸化皮膜層を形成させることができる。陽極酸化処理に用いられる溶液としては、硫酸、リン酸、クロム酸、シュウ酸、スルファミン酸、ベンゼンスルホン酸、アミドスルホン酸、マロン酸、クエン酸、酒石酸、ホウ酸、等を単独でまたは2種以上を組み合わせて用いることができる。 The anodizing treatment can be performed by a conventional method. In this case, for example, an anodized film layer can be formed by energizing an aluminum plate as an anode in an aqueous solution having a sulfuric acid concentration of 50 to 300 g / L and an aluminum concentration of 5% by mass or less. As the solution used for the anodizing treatment, sulfuric acid, phosphoric acid, chromic acid, oxalic acid, sulfamic acid, benzenesulfonic acid, amidosulfonic acid, malonic acid, citric acid, tartaric acid, boric acid, etc. alone or in combination A combination of the above can be used.
 陽極酸化処理の条件は、使用される電解液によって種々変化するので一概に決定され得ないが、一般的には電解液濃度1~80質量%、液温5~70℃、電流密度0.5~60A/dm2、電圧1~100V、電解時間15秒~50分であるのが適当であり、所望の陽極酸化皮膜層量となるように調整される。 The conditions of the anodizing treatment cannot be determined unconditionally because they vary depending on the electrolyte used, but generally the electrolyte concentration is 1 to 80% by mass, the solution temperature is 5 to 70 ° C., and the current density is 0.5. It is appropriate that ˜60 A / dm 2 , voltage 1˜100 V, electrolysis time 15 seconds˜50 minutes, and the anodic oxide film layer amount is adjusted to a desired amount.
 硫酸を含有する電解液中で陽極酸化処理を行う場合には、アルミニウム板と対極との間に直流を印加してもよく、交流を印加してもよい。アルミニウム板に直流を印加する場合においては、電流密度は、1~60A/dm2であるのが好ましく、5~40A/dm2であるのがより好ましい。連続的に陽極酸化処理を行う場合には、アルミニウム板の一部に電流が集中していわゆる「焼け」が生じないように、陽極酸化処理の開始当初は、5~10A/dm2の低電流密度で電流を流し、陽極酸化処理が進行するにつれ、30~50A/dm2またはそれ以上に電流密度を増加させるのが好ましい。連続的に陽極酸化処理を行う場合には、アルミニウム板への給電方式は液給電方式により行うのが好ましい。液給電方式は、コンダクタロールを用いない間接給電方式であり、電解液を介して給電する。 When anodizing is performed in an electrolytic solution containing sulfuric acid, direct current may be applied between the aluminum plate and the counter electrode, or alternating current may be applied. When direct current is applied to the aluminum plate, the current density is preferably 1 to 60 A / dm 2 , and more preferably 5 to 40 A / dm 2 . In the case of continuous anodizing treatment, a low current of 5 to 10 A / dm 2 is initially introduced so that so-called “burning” does not occur due to current concentration on a part of the aluminum plate. It is preferable to increase the current density to 30 to 50 A / dm 2 or more as the current is passed at the density and the anodization process proceeds. When the anodizing treatment is continuously performed, it is preferable that the feeding method to the aluminum plate is performed by a liquid feeding method. The liquid power supply method is an indirect power supply method that does not use a conductor roll, and power is supplied through an electrolytic solution.
 陽極酸化皮膜層は、多孔質であっても無孔質であってもよい。多孔質である場合、その平均ポア径が5~1000nm程度であり、平均ポア密度が1×106~1×1010/mm2程度である。 The anodized film layer may be porous or nonporous. In the case of being porous, the average pore diameter is about 5 to 1000 nm, and the average pore density is about 1 × 10 6 to 1 × 10 10 / mm 2 .
 陽極酸化処理のその他の詳細については、国際公開WO2010/150810号の段落[0091]~[0094]に記載されている。 The other details of the anodizing treatment are described in paragraphs [0091] to [0094] of International Publication No. WO2010 / 150810.
 アルミニウムは熱伝導率が非常に高いので放熱性に優れる点で、他の金属に勝るだけでなく、表層に陽極酸化皮膜層を形成させることで耐電圧を付与する事も可能である。
 予めLEDを実装する基板形状に加工したもの、例えば六角形、八角形状のものやスルーホールが形成されているものを陽極酸化処理して基板として用いてもよいし、陽極酸化処理し、前述の無機反射層を形成した後に加工してもよい。
 陽極酸化皮膜層の厚さは1~200μmであるのが好ましい。1μm未満であると絶縁性に乏しく耐電圧が低下し、一方、200μmを超えると製造に多大な電力が必要となり、経済的に不利となる。陽極酸化皮膜層の厚さは、10μm以上が好ましく、20μm以上がさらに好ましい。
Aluminum has a very high thermal conductivity and is excellent in heat dissipation. In addition to being superior to other metals, it is possible to provide a withstand voltage by forming an anodized film layer on the surface layer.
A substrate that has been pre-processed into a substrate shape on which an LED is mounted, for example, a hexagonal shape, an octagonal shape, or a through-hole-formed one may be anodized and used as a substrate. You may process after forming an inorganic reflection layer.
The thickness of the anodized film layer is preferably 1 to 200 μm. If the thickness is less than 1 μm, the insulation is poor and the withstand voltage is lowered. On the other hand, if it exceeds 200 μm, a large amount of electric power is required for production, which is economically disadvantageous. The thickness of the anodized film layer is preferably 10 μm or more, and more preferably 20 μm or more.
<5.無機反射層の形成>
 さらに、予めチップまたは複数のチップを含むパーツに分解できるような加工を施した基板に、各種の印刷手法例えばスクリーン印刷等によって光反射が必要な部分にのみ、前述の無機反射層を形成してもよい。この方法で無機反射層を形成すれば、無機反射層に用いる原料を節約できる。
<5. Formation of inorganic reflective layer>
Furthermore, the above-mentioned inorganic reflective layer is formed only on the portions where light reflection is required by various printing methods such as screen printing on a substrate that has been processed in advance so that it can be disassembled into chips or parts including a plurality of chips. Also good. If the inorganic reflective layer is formed by this method, the raw material used for the inorganic reflective layer can be saved.
(発光素子用反射基板)
 以上で説明した本発明の無機反射層を有する発光素子用反射基板は、他の金属板を芯材等の補強用に用いない場合でバルブ金属基材としてバルブ金属板を単独で用いる場合は、強度はJIS Z2241による引張試験(引張速度:2mm/分)における引っ張り強度(以下引張強度という。)が、100MPa以下であるのが好ましく、30~90Mpaであるのがより好ましい。さらに好ましくは、40~80MPaである。この範囲未満では発光素子用反射基板としての強度が十分ではなく、この範囲超では、基板を加工して発光装置とする場合の取扱性が悪い。
(Reflective substrate for light emitting element)
When the reflective substrate for a light-emitting element having the inorganic reflective layer of the present invention described above is not used for reinforcing a core material or the like when using another metal plate as a valve metal substrate alone, The strength is preferably 100 MPa or less, more preferably 30 to 90 MPa, in the tensile strength (hereinafter referred to as tensile strength) in a tensile test according to JIS Z2241 (tensile speed: 2 mm / min). More preferably, it is 40 to 80 MPa. If it is less than this range, the strength as a reflective substrate for a light-emitting element is not sufficient, and if it exceeds this range, the handleability when processing the substrate into a light-emitting device is poor.
(金属配線層)
 本発明の発光素子用反射基板は、さらに金属配線層を形成してもよい。金属配線層は発光素子が実装される陽極酸化皮膜層と無機反射層との上に設けられてもよいし、発光素子が実装される陽極酸化皮膜層とは反対側の裏面側に設けられて発光素子実装面とはスルーホールを介して電気的に接続されてもよい。
 本発明の無機反射層は、その上に設けられる金属配線層との密着性が高い。この理由は、本発明の無機反射層では、赤外分光法により測定したOH表面構造吸収係数が0.40以上であるのでその表面には水酸化物、水和物が存在すると考えられ、金属配線層を製造するインクとの濡れ性が高く、得られる金属配線層の無機反射層との密着性が高いと考えられる。
(Metal wiring layer)
The reflective substrate for light emitting element of the present invention may further form a metal wiring layer. The metal wiring layer may be provided on the anodized film layer on which the light emitting element is mounted and the inorganic reflective layer, or on the back side opposite to the anodized film layer on which the light emitting element is mounted. The light emitting element mounting surface may be electrically connected through a through hole.
The inorganic reflective layer of the present invention has high adhesion to the metal wiring layer provided thereon. This is because, in the inorganic reflective layer of the present invention, the OH surface structure absorption coefficient measured by infrared spectroscopy is 0.40 or more, so it is considered that hydroxides and hydrates exist on the surface. It is thought that the wettability with the ink which manufactures a wiring layer is high, and the adhesiveness with the inorganic reflection layer of the metal wiring layer obtained is considered high.
 上記金属配線層の材料は、電気を通す素材(以下、「金属素材」ともいう。)であれば特に限定されず、その具体例としては、金(Au)、銀(Ag)、銅(Cu)、アルミニウム(Al)、マグネシウム(Mg)、ニッケル(Ni)等が挙げられ、これらを1種単独で使用してもよく2種以上を併用してもよい。これらのうち、電気抵抗が低い理由からCuを用いるのが好ましい。なお、Cuによる配線層の表層には、ワイヤボンディングの容易性を高める観点から、Au層やNi/Au層を設けていてもよい。
 また、上記金属配線層は、これらの材料を用いた多層構造であってもよく、例えば、最下層からAg層、Ni層およびAu層をこの順で設ける態様が好適に挙げられる。
The material of the metal wiring layer is not particularly limited as long as it is a material that conducts electricity (hereinafter also referred to as “metal material”). Specific examples thereof include gold (Au), silver (Ag), and copper (Cu ), Aluminum (Al), magnesium (Mg), nickel (Ni) and the like, and these may be used alone or in combination of two or more. Of these, Cu is preferably used because of its low electrical resistance. Note that an Au layer or a Ni / Au layer may be provided on the surface layer of the wiring layer made of Cu from the viewpoint of improving the ease of wire bonding.
The metal wiring layer may have a multilayer structure using these materials. For example, an embodiment in which an Ag layer, a Ni layer, and an Au layer are provided in this order from the bottom layer is preferable.
 また、上記金属配線層の厚さは、目的や用途に応じて所望の厚さとすればよいが、導通信頼性およびパッケージのコンパクト性の観点から、0.5~1000μmが好ましく、1~500μmがより好ましく、5~250μmが特に好ましい。 The thickness of the metal wiring layer may be a desired thickness depending on the purpose and application, but is preferably 0.5 to 1000 μm from the viewpoint of conduction reliability and package compactness, and preferably 1 to 500 μm. More preferred is 5 to 250 μm.
<6.金属配線層の形成>
 上記金属配線層の形成方法としては、例えば、上記金属素材および液体成分(例えば、溶媒、樹脂成分など)を含有する金属インクをインクジェット印刷法、スクリーン印刷法等により上記受容層上にパターン印刷する方法等が挙げられる。
 このような形成方法により、凹凸のある無機反射層の表面に多くの工程を必要とせずに簡易にパターンを有する金属配線層を形成することができる。
<6. Formation of metal wiring layer>
As a method for forming the metal wiring layer, for example, a metal ink containing the metal material and a liquid component (for example, a solvent, a resin component, etc.) is pattern-printed on the receiving layer by an inkjet printing method, a screen printing method, or the like. Methods and the like.
By such a forming method, a metal wiring layer having a pattern can be easily formed on the surface of the uneven inorganic reflective layer without requiring many steps.
 また、その他の上記金属配線層の形成方法としては、例えば、電解めっき処理、無電解めっき処理、置換めっき処理などの種々めっき処理の他、スパッタリング処理、蒸着処理、金属箔の真空貼付処理、接着層を設けての接着処理等が挙げられる。 Other metal wiring layer formation methods include, for example, various plating processes such as electrolytic plating, electroless plating, and displacement plating, sputtering, vapor deposition, vacuum pasting of metal foil, and adhesion. Examples thereof include an adhesion treatment with a layer.
 このようにして形成される金属配線層は、発光素子実装の設計に応じ、公知の方法でパターン形成される。また、実際に発光素子が実装される箇所には、再度金属層(半田も含む)を設け、熱圧着や、フリップチップ、ワイヤボンディング等で、接続しやすいように適宜加工することができる。
 好適な金属層としては、半田、または、金(Au)、銀(Ag)、銅(Cu)、アルミニウム(Al)、マグネシウム(Mg)、ニッケル(Ni)等の金属素材が好ましく、加熱により発光素子を実装する場合は、半田、または、Niを介してのAu、Agを設ける方法が接続信頼性の観点から好ましい。
 この際、反射層が硬度の低いものであると、電極にワイヤをこすり付けて接続するワイヤボンディングを行う際にワイヤがうまく溶融せず接続不良となりやすい。本発明の無機反射層を用いると表面硬度が1GPa以上であり接続不良は発生しなかった。
The metal wiring layer thus formed is patterned by a known method according to the design of the light emitting element mounting. Further, a metal layer (including solder) is again provided at a place where the light emitting element is actually mounted, and can be appropriately processed so as to be easily connected by thermocompression bonding, flip chip, wire bonding, or the like.
As a suitable metal layer, a metal material such as solder or gold (Au), silver (Ag), copper (Cu), aluminum (Al), magnesium (Mg), nickel (Ni) is preferable. When the element is mounted, a method of providing Au or Ag via solder or Ni is preferable from the viewpoint of connection reliability.
At this time, if the reflective layer has a low hardness, the wire does not melt well when wire bonding is performed by rubbing the wire to the electrode, and connection failure tends to occur. When the inorganic reflective layer of the present invention was used, the surface hardness was 1 GPa or more, and no connection failure occurred.
 金属配線層の形成方法として金属インクを用いてインクジェット印刷法またはスクリーン印刷法により無機反射層上にパターンを形成すれば、凹凸のある表面に多くの工程を必要とせずに簡易にパターンを有する金属配線層を形成することができ、無機反射層の凹凸によるアンカー効果が高いので金属配線層と無機反射層との密着性にも優れる。無電解メッキなどを組み合わせれば上記金属配線層上に再度金属層(半田も含む)を設け、熱圧着や、フリップチップ、ワイヤボンディング等で、配線間や、電極との接続がしやすいように適宜金属配線層を加工することができる。 If a pattern is formed on an inorganic reflective layer using an ink jet printing method or a screen printing method using a metal ink as a method for forming a metal wiring layer, a metal having a pattern can be easily formed on an uneven surface without requiring many steps. A wiring layer can be formed, and since the anchor effect by the unevenness | corrugation of an inorganic reflection layer is high, it is excellent also in the adhesiveness of a metal wiring layer and an inorganic reflection layer. If combined with electroless plating, a metal layer (including solder) is provided again on the metal wiring layer, so that it is easy to connect between wirings and electrodes with thermocompression bonding, flip chip, wire bonding, etc. The metal wiring layer can be processed appropriately.
〔白色系発光装置〕
 図3は、本発明の白色系発光装置の一構成例を示した概略図である。
 図3の例は上記バルブ金属基板が窪みを持つ形状であり、上記陽極酸化皮膜層2および無機反射層3が窪み13を持つ形状のバルブ金属基板11の表面に設けられている。発光素子110は、無機反射層3上の窪み13の部分に実装され、バルブ金属基板11の陽極酸化皮膜層2を介して発光素子110の実装される面と反対側の面には放熱のためのヒートシンク18が設けられている。
 図3に示す白色系発光装置100において、外部接続用の電極を有する発光素子用反射基板30に、発光素子110であるLED素子が実装され、電極とはワイヤボンディング19で電気的に接続されている。発光素子110は、蛍光体(蛍光粒子)150を含む樹脂材料160により封止されている。白色系発光装置100では、LED素子からの発光と、蛍光体150からの励起光との混色によって所望の波長光を得ることができる。白色系発光装置として用いられる場合、LED素子として青色発光のLED素子を使用し、YAG(イットリウムアルミニウムガーネット)などの蛍光体(蛍光粒子)150を含んだ樹脂で封止し、LED素子からの青色発光と、蛍光体(蛍光粒子)150からの黄色領域の励起光との混色によって、擬似白色光が発光面側に発光される。
 LED素子は、発光層として、GaAlN、ZnS、ZnSe、SiC、GaP、GaAlAs、AlN、InN、AlInGaP、InGaN、GaN、AlInGaN等の半導体を用いたものを用いることができる。半導体の構造としては、MIS接合、PIN接合やPN接合を有したホモ構造、ヘテロ構造あるいはダブルへテロ構造のものが挙げられる。半導体の材料やその混晶度によって発光波長を紫外光から赤外光まで種々選択することができる。
[White light emitting device]
FIG. 3 is a schematic view showing a configuration example of the white light emitting device of the present invention.
In the example of FIG. 3, the valve metal substrate has a shape with a recess, and the anodized film layer 2 and the inorganic reflective layer 3 are provided on the surface of the valve metal substrate 11 with a shape having a recess 13. The light emitting element 110 is mounted in the recess 13 on the inorganic reflective layer 3, and the surface opposite to the surface on which the light emitting element 110 is mounted through the anodized film layer 2 of the valve metal substrate 11 is for heat dissipation. The heat sink 18 is provided.
In the white light emitting device 100 shown in FIG. 3, the LED element which is the light emitting element 110 is mounted on the light emitting element reflecting substrate 30 having the electrode for external connection, and the electrode is electrically connected by the wire bonding 19. Yes. The light emitting element 110 is sealed with a resin material 160 including a phosphor (fluorescent particle) 150. In the white light emitting device 100, light having a desired wavelength can be obtained by mixing the light emitted from the LED element and the excitation light from the phosphor 150. When used as a white light-emitting device, a blue light-emitting LED element is used as the LED element, sealed with a resin containing a phosphor (fluorescent particle) 150 such as YAG (yttrium aluminum garnet), and the blue color from the LED element. Pseudo white light is emitted to the light emitting surface side by the color mixture of the light emission and the yellow region excitation light from the phosphor (fluorescent particle) 150.
In the LED element, a light emitting layer using a semiconductor such as GaAlN, ZnS, ZnSe, SiC, GaP, GaAlAs, AlN, InN, AlInGaP, InGaN, GaN, or AlInGaN can be used. Examples of the semiconductor structure include a homostructure, a heterostructure, or a double heterostructure having a MIS junction, a PIN junction, or a PN junction. The emission wavelength can be variously selected from ultraviolet light to infrared light depending on the semiconductor material and the degree of mixed crystal.
 本発明の白色系発光装置100は、反射基板30として、バルブ金属基材11上に膜強度と基板への密着性に優れる、陽極酸化皮膜層2と無機反射層3とが設けられていて、反射層の光反射率も高い。
 本発明の無機反射層は、その上に設けられる蛍光体を含んだ樹脂層との密着性が高い。この理由は、本発明の無機反射層では、赤外分光法により測定したOH表面構造吸収係数が0.40以上であるあるのでその表面には水酸化物、水和物が存在すると考えられ、樹脂層との密着性が高いと考えられる。
 LED素子の使用範囲が室内外の照明、自動車ヘッドライト、ディスプレイ装置のバックライトユニットなど様々な分野に拡がることにより、高温焼結をすることなく、高光反射特性を有する本発明の発光素子用反射基板は有用である。
The white light emitting device 100 of the present invention is provided with the anodized film layer 2 and the inorganic reflective layer 3 that are excellent in film strength and adhesion to the substrate on the valve metal substrate 11 as the reflective substrate 30, The light reflectance of the reflective layer is also high.
The inorganic reflective layer of the present invention has high adhesion with a resin layer containing a phosphor provided thereon. This is because, in the inorganic reflective layer of the present invention, the OH surface structure absorption coefficient measured by infrared spectroscopy is 0.40 or more, so it is considered that hydroxides and hydrates exist on the surface. It is considered that the adhesiveness with the resin layer is high.
Reflection for light-emitting elements of the present invention having high light reflection characteristics without high-temperature sintering by expanding the use range of LED elements to various fields such as indoor and outdoor lighting, automobile headlights, backlight units of display devices, etc. The substrate is useful.
 以下に実施例を示して本発明を具体的に説明する。ただし、本発明はこれらに限定されない。 Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to these.
(実施例1~23および比較例1~9)
 <1.基無機反射層塗布液の作成>
 表3、4に示す結着剤と水を混合し攪拌、混合して無機反射層用バインダー液を作成した。
 始めにバインダー液の処方を説明する。
 <バインダー液(リン酸アルミニウム)>
 表3、4の結着剤種類に、リン酸アルミニウムと記載するバインダー液は以下である。
  リン酸85%    (和光純薬製) 48g
  水酸化アルミニウム(和光純薬製)  11g
  水                41g
  計               100g
(Examples 1 to 23 and Comparative Examples 1 to 9)
<1. Preparation of base inorganic reflective layer coating solution>
Binders and water shown in Tables 3 and 4 were mixed, stirred and mixed to prepare a binder liquid for an inorganic reflective layer.
First, the formulation of the binder liquid will be described.
<Binder liquid (aluminum phosphate)>
The binder liquid described as aluminum phosphate in the binder types of Tables 3 and 4 is as follows.
Phosphoric acid 85% (Wako Pure Chemical Industries) 48g
Aluminum hydroxide (Wako Pure Chemical Industries) 11g
Water 41g
Total 100g
 <バインダー液(塩化アルミニウム)>
 表3、4の結着剤種類に、塩化アルミニウムと記載するバインダー液は以下である。
  塩酸35%   (和光純薬製)  31.7g
  水酸化アルミニウム        7.4g
  水               60.9g
  計               100g
 <バインダー液(ケイ酸ナトリウム)>
 表3、4の結着剤種類に、ケイ酸ナトリウムと記載するバインダー液は以下である。
  ケイ酸ナトリウム(3号ケイ酸ソーダ:富士化学株式会社製)  80g
  水                20g
  計               100g
 <バインダー液(リン酸アルミ/塩化アルミ)>
 表3、4の結着剤種類に、リン酸アルミ/塩化アルミと記載するバインダー液は以下である。
  リン酸85%    (和光純薬製) 48g
  水酸化アルミニウム(和光純薬製)   11g
  塩化アルミニウム(和光純薬製)   0.8g
  水               40.2g
  計               100g
 <バインダー液(エポキシ樹脂)、(PDMS)>
 表3、4の結着剤種類に、エポキシ樹脂、PDMSとそれぞれ記載するバインダー液は以下である。
 バインダー液(エポキシ樹脂)は、エポキシ樹脂(新日鐵化学社製BPA型エポキシ樹脂YD-128)を用い、バインダー液(PDMS)は、ポリジメチルシロキサン:和光純薬製を用いた。
<Binder liquid (aluminum chloride)>
The binder liquid described as aluminum chloride in the binder types of Tables 3 and 4 is as follows.
Hydrochloric acid 35% (made by Wako Pure Chemical Industries) 31.7g
7.4g of aluminum hydroxide
60.9g of water
Total 100g
<Binder liquid (sodium silicate)>
The binder liquid described as sodium silicate in the binder types of Tables 3 and 4 is as follows.
Sodium silicate (No. 3 sodium silicate: Fuji Chemical Co., Ltd.) 80g
20g of water
Total 100g
<Binder liquid (aluminum phosphate / aluminum chloride)>
The binder liquids described as aluminum phosphate / aluminum chloride in the binder types in Tables 3 and 4 are as follows.
Phosphoric acid 85% (Wako Pure Chemical Industries) 48g
Aluminum hydroxide (Wako Pure Chemical Industries) 11g
Aluminum chloride (Wako Pure Chemical Industries) 0.8g
Water 40.2g
Total 100g
<Binder liquid (epoxy resin), (PDMS)>
The binder liquids described as epoxy resin and PDMS in the binder types shown in Tables 3 and 4 are as follows.
As the binder liquid (epoxy resin), an epoxy resin (BPA type epoxy resin YD-128 manufactured by Nippon Steel Chemical Co., Ltd.) was used, and as the binder liquid (PDMS), polydimethylsiloxane: manufactured by Wako Pure Chemical Industries, Ltd. was used.
 上記バインダー液100g中に対し、表3,4に示す以下の無機粒子をそれぞれ100gの比率で加え、無機反射層用塗布液を準備した。
 1)アルミナ
 用いたアルミナ粒子を以下に記載する。表3,4に屈折率、平均粒子径、種類、組成を記載する。
 昭和電工株式会社製 AL-160SG-3 平均粒子径0.52μm 純度99.9%を用い、平均粒子径の小さいものについてはボールミルを用いて、ジルコニアビーズとともに粉砕を行い粒径測定装置を用いて所望の平均粒子径になったものを取り出して使用した。
 1-1)粉砕せず、AL-160SG-3をそのまま使用した。
 1-2)昭和電工株式会社製 A42-2 平均粒子径4.7μm 純度99.57%を用いた。
 1-3)昭和電工株式会社製 CB-P10 平均粒子径10μm 純度99.64%、および平均粒子径8μm 純度99.64%を用いた。
 1-4)シーアイ化成社製NanoTekアルミナパウダー(平均粒子径0.03μm)を用いた。
 2)水酸化カルシウム、宇部マテリアルズ株式会社製、CSH,純度99.99%、平均粒子径1μmを用いた。
 3)硫酸バリウム
 用いた硫酸バリウム粒子を以下に記載する。
 3-1)東新化成株式会社製 B-30、純度94%、平均粒子径 0.3μmを用いた。
 3-2)竹原化学工業株式会社製 W‐1、平均粒子径1.5μmを用いた。
 異なる2種の無機粒子の混合物は、表に示す平均粒子径の混合物を用いた。混合比率は、平均粒子径0.01μm粒子を全粒子質量中20質量%とした。
The following inorganic particles shown in Tables 3 and 4 were added at a ratio of 100 g to 100 g of the binder liquid to prepare an inorganic reflective layer coating liquid.
1) Alumina The alumina particles used are described below. Tables 3 and 4 list the refractive index, average particle diameter, type, and composition.
AL-160SG-3 made by Showa Denko Co., Ltd. Average particle size 0.52μm Purity 99.9% is used, and the one with a small average particle size is pulverized with zirconia beads using a ball mill and using a particle size measuring device. Those having a desired average particle diameter were taken out and used.
1-1) AL-160SG-3 was used as it was without crushing.
1-2) A42-2 manufactured by Showa Denko KK Average particle size 4.7 μm Purity 99.57% was used.
1-3) CB-P10 manufactured by Showa Denko Co., Ltd. An average particle diameter of 10 μm and a purity of 99.64% and an average particle diameter of 8 μm and a purity of 99.64% were used.
1-4) NanoTek alumina powder (average particle size: 0.03 μm) manufactured by CI Kasei Co., Ltd. was used.
2) Calcium hydroxide, manufactured by Ube Materials Co., Ltd., CSH, purity 99.99%, average particle diameter 1 μm was used.
3) Barium sulfate The barium sulfate particles used are described below.
3-1) B-30 manufactured by Toshin Kasei Co., Ltd., purity 94%, average particle size 0.3 μm was used.
3-2) W-1 manufactured by Takehara Chemical Industry Co., Ltd., with an average particle size of 1.5 μm was used.
As a mixture of two different kinds of inorganic particles, a mixture having an average particle size shown in the table was used. The mixing ratio was set such that particles having an average particle diameter of 0.01 μm were 20% by mass in the total mass of the particles.
<2.基板の準備>
 基板はアルミニウム板(厚み0.2mm、0.8mm、1.5mm、4mm 1050材、日本軽金属株式会社製)を用い、以下の処理を行って基板A~Cをそれぞれ準備した。
 基板A・・・上記アルミニウム板にアルカリ脱脂処理とデスマット処理を実施した。表3、4に金属種Al、陽極酸化皮膜、無と記載する。
 基板B・・・上記アルミニウム板にアルカリ脱脂処理と陽極酸化処理とを行った。表3、4に金属種Al、陽極酸化皮膜、有と記載する。
 基板C・・・上記アルミニウム板にアルカリ脱脂処理と粗面化処理と陽極酸化処理とを行った。表3、4に金属種Al(粗面化)、陽極酸化皮膜、有と記載する。
 基板Ti・・・実施例15は、金属種チタン板(添川理化学社製)、板厚0.8mmを用い、厚さ20μmの陽極酸化皮膜を作成した。表3、4に金属種Ti、陽極酸化皮膜、有と記載する。
<2. Preparation of substrate>
As the substrate, aluminum plates (thickness 0.2 mm, 0.8 mm, 1.5 mm, 4 mm 1050 material, manufactured by Nippon Light Metal Co., Ltd.) were used, and the following processing was performed to prepare substrates A to C, respectively.
Substrate A: Alkaline degreasing treatment and desmutting treatment were performed on the aluminum plate. Tables 3 and 4 describe metal species Al, anodized film, and nothing.
Substrate B: The above aluminum plate was subjected to alkali degreasing treatment and anodizing treatment. Tables 3 and 4 describe the metal species Al, anodized film, and existence.
Substrate C: The above aluminum plate was subjected to alkali degreasing treatment, roughening treatment and anodizing treatment. Tables 3 and 4 describe the metal species Al (roughening), anodized film, and existence.
Substrate Ti: In Example 15, a metal seed titanium plate (manufactured by Soekawa Richemical Co., Ltd.) and a plate thickness of 0.8 mm were used, and an anodized film having a thickness of 20 μm was prepared. Tables 3 and 4 describe the metal species Ti, anodized film, and existence.
(1)基板Aの処理条件
 a.アルカリ水溶液中での脱脂処理
 アルミニウム板に、水酸化ナトリウム濃度27質量%、アルミニウムイオン濃度6.5質量%、温度70℃の水溶液をスプレー管から20秒間吹き付けた。その後、ニップローラで液切りし、更に、後述する水洗処理を行った後、ニップローラで液切りした。
 水洗処理は、自由落下カーテン状の液膜により水洗処理する装置を用いて水洗し、更に、扇状に噴射水が広がるスプレーチップを80mm間隔で有する構造を有するスプレー管を用いて5秒間水洗処理した。
 b.酸性水溶液中でのデスマット処理
 上記脱脂処理の後、デスマット処理を行った。デスマット処理に用いる酸性水溶液は、硫酸1質量%水溶液を用い、液温35℃でスプレー管から5秒間吹き付けて行った。その後、ニップローラで液切りし、引き続き上述した装置を用いて水洗した。
(1) Processing conditions for substrate A a. Degreasing treatment in alkaline aqueous solution An aqueous solution having a sodium hydroxide concentration of 27% by mass, an aluminum ion concentration of 6.5% by mass, and a temperature of 70 ° C. was sprayed onto an aluminum plate for 20 seconds. Thereafter, the liquid was drained with a nip roller, and further, a water washing treatment described later was performed, and then the liquid was drained with a nip roller.
The water washing treatment was carried out using an apparatus for washing with a free-falling curtain-like liquid film, and further washed with water for 5 seconds using a spray tube having a structure having spray tips with fan-shaped spreading at 80 mm intervals. .
b. Desmutting treatment in acidic aqueous solution After the degreasing treatment, desmutting treatment was performed. The acidic aqueous solution used for the desmut treatment was a 1% by mass sulfuric acid aqueous solution, which was sprayed from a spray tube at a liquid temperature of 35 ° C. for 5 seconds. Thereafter, the liquid was drained with a nip roller and subsequently washed with water using the above-described apparatus.
(2)基板Bの処理条件
 基板Aと同様に作成した基板を陽極とし、陽極酸化処理装置を用いて陽極酸化処理を行った。電解液としては、70g/L硫酸水溶液に硫酸アルミニウムを溶解させてアルミニウムイオン濃度を5g/Lとした電解液(温度20℃)を用いた。陽極酸化処理は、アルミニウム板がアノード反応する間の電圧を25Vとなるように定電圧で電解を行なった。最終的な陽極酸化皮膜層厚みが20μmとなるようにした。
 その後、ニップローラで液切りし、更に、上記の水洗処理に用いたのと同様の構造のスプレー管を用いて水洗処理を行った後、ニップローラで液切りした。
(2) Processing conditions for substrate B The substrate prepared in the same manner as substrate A was used as an anode, and anodization was performed using an anodizing apparatus. As the electrolytic solution, an electrolytic solution (temperature 20 ° C.) in which aluminum sulfate was dissolved in a 70 g / L sulfuric acid aqueous solution and the aluminum ion concentration was 5 g / L was used. In the anodizing treatment, electrolysis was performed at a constant voltage so that the voltage during the anodic reaction of the aluminum plate was 25V. The final anodic oxide film layer thickness was set to 20 μm.
Thereafter, the liquid was drained by a nip roller, and further, the water was washed using a spray tube having the same structure as that used in the water washing process, and then the liquid was drained by a nip roller.
(3)基板Cの処理条件
 基板Aと同様に作成した基板を下記条件にて粗面化処理を施した後、陽極酸化処理装置を用いて基板Bと同一条件にて陽極酸化処理を行った。
 a.粗面化処理方法
 硝酸濃度1質量%、アルミニウムイオン濃度5g/L、および液温60℃の電解液を用いて、電気化学的粗面化処理を行った。アルミニウムイオン濃度は硝酸アルミニウムを加えて調整した。また、アンモニウムイオン濃度は70mg/Lであった。
 IGBT(絶縁ゲートバイポーラトランジスタ)素子を用いたPWM(Pulse Width Modulation)制御によって電流制御する、任意波形の交流電流を発生する電源を用いてカーボン製の対極を用いサンプルと対極に交流を負荷して電気化学的な粗面化処理を行った。
 交流電流は台形波を用い、周波数は60Hz、電流値がゼロからピークに達するまでの時間TP、0.1secであり、正負の電流比は0.5になるように設定した。サンプルに流れる正電流電気量が200C/dmとなるように調整した。
 その後、ニップローラで液切りし、更に、上記の水洗処理に用いたのと同様の構造のスプレー管を用いて水洗処理を行った後、ニップローラで液切りした。
 上記電解処理の後、アルミニウム板に、水酸化ナトリウム濃度27質量%、アルミニウムイオン濃度6.5質量%、温度70℃の水溶液をスプレー管から20秒間吹き付けた。
 その後、ニップローラで液切りし、更に、後述する水洗処理を行った後、ニップローラで液切りした。水洗処理は、自由落下カーテン状の液膜により水洗処理する装置を用いて水洗し、更に、扇状に噴射水が広がるスプレーチップを80mm間隔で備える構造を有するスプレー管を用いて5秒間水洗処理した。更に上記脱脂処理の後、デスマット処理を行った。デスマット処理に用いる酸性水溶液は、硫酸1質量%水溶液を用い、液温35℃でスプレー管から5秒間吹き付けて行った。その後、ニップローラで液切りした。この処理の後、基板Bと同じ条件で陽極酸化処理を施した。
(3) Processing conditions for substrate C A substrate prepared in the same manner as substrate A was roughened under the following conditions, and then anodized under the same conditions as substrate B using an anodizing apparatus. .
a. Surface roughening treatment method An electrochemical surface roughening treatment was performed using an electrolytic solution having a nitric acid concentration of 1% by mass, an aluminum ion concentration of 5 g / L, and a liquid temperature of 60 ° C. The aluminum ion concentration was adjusted by adding aluminum nitrate. The ammonium ion concentration was 70 mg / L.
Current is controlled by PWM (Pulse Width Modulation) control using IGBT (Insulated Gate Bipolar Transistor) element, using a power source that generates an alternating current of arbitrary waveform, and using a counter electrode made of carbon to load AC to the sample and counter electrode An electrochemical roughening treatment was performed.
A trapezoidal wave was used as the alternating current, the frequency was 60 Hz, the time TP until the current value reached the peak from zero, 0.1 sec, and the positive / negative current ratio was set to 0.5. The amount of positive current electricity flowing through the sample was adjusted to 200 C / dm 2 .
Thereafter, the liquid was drained by a nip roller, and further, the water was washed using a spray tube having the same structure as that used in the water washing process, and then the liquid was drained by a nip roller.
After the electrolytic treatment, an aqueous solution having a sodium hydroxide concentration of 27% by mass, an aluminum ion concentration of 6.5% by mass, and a temperature of 70 ° C. was sprayed onto the aluminum plate from a spray tube for 20 seconds.
Thereafter, the liquid was drained with a nip roller, and further, a water washing treatment described later was performed, and then the liquid was drained with a nip roller. The water washing treatment was carried out with water using an apparatus for washing with a free-fall curtain-like liquid film, and further with water for 5 seconds using a spray tube having a structure in which fan tips were spread at intervals of 80 mm. . Further, after the above degreasing treatment, a desmut treatment was performed. The acidic aqueous solution used for the desmut treatment was a 1% by mass sulfuric acid aqueous solution, which was sprayed from a spray tube at a liquid temperature of 35 ° C. for 5 seconds. Then, the liquid was drained with a nip roller. After this treatment, anodization treatment was performed under the same conditions as those for the substrate B.
<3.基板への反射層の形成>
 調整した塗布液を、塗布膜厚を調整可能なコーターにより、基板上に塗布した。その後、表3,4に記載の温度に昇温したオーブン内に入れ、5分間加熱乾燥した。乾燥後の無機反射層の量は、実施例、比較例とも20g/m2~500g/m2の範囲であった。
 比較例5,6は、エポキシ樹脂、PDMSをそれぞれ用いて表4に記載の無機粒子を陽極酸化皮膜層に塗布し、乾燥した。比較例7は無機反射層を形成しなかった。
 表4中部材を用いないもの、測定できなかったもの、または処理しなかった場合は「-」を記載する。
<3. Formation of reflective layer on substrate>
The adjusted coating solution was applied onto the substrate by a coater capable of adjusting the coating film thickness. Then, it put into the oven heated up to the temperature of Table 3, 4, and heat-dried for 5 minutes. The amount of the inorganic reflective layer after drying, Example ranged from 20g / m 2 ~ 500g / m 2 with Comparative Example.
In Comparative Examples 5 and 6, the inorganic particles listed in Table 4 were applied to the anodized film layer using epoxy resin and PDMS, respectively, and dried. In Comparative Example 7, no inorganic reflective layer was formed.
In Table 4, “-” is described when a member is not used, measured, or not processed.
<4.後処理>
 上記で得られた反射層付基板に以下の表5,6に示す後処理を行った。
(1)加熱水蒸気処理
 反射層付基板を110℃の水蒸気で1分間処理した。
(2)親水化処理
 反射層付基板を2.5質量%ケイ酸ソーダ液中に浸漬し、180℃、5分乾燥させて親水化処理した。
<4. Post-processing>
The post-treatment shown in Tables 5 and 6 below was performed on the substrate with a reflective layer obtained above.
(1) Heated steam treatment The substrate with a reflective layer was treated with 110 ° C. steam for 1 minute.
(2) Hydrophilization treatment The substrate with a reflective layer was immersed in a 2.5% by mass sodium silicate solution and dried at 180 ° C. for 5 minutes for hydrophilic treatment.
<5.評価方法>
 得られた反射層付基板を以下の条件で評価し結果を表3~6に示す。
(1)OH表面構造吸収係数
 フーリエ変換型赤外分光(FT-IR)を用い吸光度(FT-IR)を測定し、波数3000cm-1と波数1900cm-1の吸光度の差をOH表面構造吸収係数として算出した。島津製作所製FT-IR 8400S に、反射測定が可能なオプションパーツ(Thermo Spectra-Tech社製 Foundation Siries 0070-154)を装備し、基板表面にIR光を当て反射光との差分から吸光度を測定した。
(2)硬度、強度
 基材上に無機反射層を有する発光素子用反射基板のビッカース硬度は、ビッカース硬さ試験機(形式AVK-CO、株式会社ミツトヨ製)で測定した。引張強度は、JIS Z2241に準ずる引張試験(引張速度:2mm/分)で測定した。結果を表5,6に示す。
<5. Evaluation method>
The obtained substrate with a reflective layer was evaluated under the following conditions, and the results are shown in Tables 3-6.
(1) OH surface structure absorption coefficient Fourier transform infrared spectroscopy (FT-IR) was used absorbance (FT-IR) was measured, the difference of the OH surface structure absorption coefficient of absorbance at a wavenumber of 3000 cm -1 and a wavenumber 1900 cm -1 Calculated as FT-IR 8400S manufactured by Shimadzu Corporation is equipped with optional parts that allow reflection measurement (Foundation Siries 0070-154 manufactured by Thermo Spectra-Tech), and the absorbance was measured from the difference from reflected light by applying IR light to the substrate surface. .
(2) Hardness and strength The Vickers hardness of the reflective substrate for a light emitting device having an inorganic reflective layer on the substrate was measured with a Vickers hardness tester (model AVK-CO, manufactured by Mitutoyo Corporation). The tensile strength was measured by a tensile test according to JIS Z2241 (tensile speed: 2 mm / min). The results are shown in Tables 5 and 6.
(3)基板と無機反射層との密着性
 押し切りカッターで30mm四角形状に切断し、剥れなかった基板については高さ3mからコンクリートの地面に落下させ、以下の評価とした。結果を下記表5,6に示す。
 AA:剥離しない
 A:一部剥離した
 B:剥離部分がかなり見られた
 C:剥離した
 D:押し切りカッターで切断した際に剥れてしまったもの。
(3) Adhesiveness between substrate and inorganic reflective layer A substrate that was cut into a 30 mm square shape with a push cutter and was not peeled off was dropped onto a concrete ground from a height of 3 m, and the following evaluation was made. The results are shown in Tables 5 and 6 below.
AA: not peeled A: partly peeled B: peeled part was considerably seen C: peeled D: peeled off when cut with a push cutter.
(4)耐電圧
 耐電圧は、絶縁抵抗試験機(TOS9200、キクスイ社製)を用い、耐電圧(DC)を測定し評価した。
 具体的には、作製した反射基板を金属製の基材(アルミニウム板)に載せ、無機反射層側にプローブを押し当てて測定し、耐電圧を測定した。
(4) Withstand voltage The withstand voltage was evaluated by measuring the withstand voltage (DC) using an insulation resistance tester (TOS9200, manufactured by Kikusui).
Specifically, the produced reflective substrate was placed on a metal base material (aluminum plate), measured by pressing the probe against the inorganic reflective layer side, and the withstand voltage was measured.
(5)反射率
 作製した基板について、反射濃度計(CM2600D、コニカミノルタ社製)を用いて、400~700nmの全反射率(SPINモードの全平均)を測定した。
(5) Reflectance Using the reflection densitometer (CM2600D, manufactured by Konica Minolta Co., Ltd.), the total reflectance (total average of SPIN mode) of 400 to 700 nm was measured for the produced substrate.
(6)熱伝導率
 得られた絶縁基板について、アルバック理工社製TC-9000/レーザーフラッシュ型熱拡散率測定装置を用い、t1/2法に従い熱伝導率を計測した。結果を表5、6に示す。
(6) Thermal conductivity The obtained insulating substrate was measured for thermal conductivity according to the t1 / 2 method using a TC-9000 / laser flash type thermal diffusivity measuring apparatus manufactured by ULVAC-RIKO. The results are shown in Tables 5 and 6.
〔金属配線層の作製〕
 得られた反射基板の表面にインクジェット装置(DMP-2831、富士フイルム社製)を用いて銀ナノ粒子インク(XA-436、藤倉化学社製)の希釈液を図4に示す金属配線層20のパターンで打滴することでAg配線(配線幅:100μm)を形成させた。
 次いで、ニッケルを含むめっき液でめっきし、Ag-Ni配線を形成させた。
 最後に、金を含むめっき液でめっきし、Ag-Ni-金配線を形成させた。なお、各層の厚みは、Ag(20μm),Ni(4μm),Au(0.4μm)であった。
 次いで、実施例、比較例の反射基板30の表面に発光素子(LED)10を実装し、金属配線層20とワイヤボンディングで電気的に接続した。
[Production of metal wiring layer]
A diluted solution of silver nanoparticle ink (XA-436, manufactured by Fujikura Chemical Co., Ltd.) was applied to the surface of the obtained reflective substrate using an ink jet apparatus (DMP-2831, manufactured by Fuji Film Co., Ltd.) of the metal wiring layer 20 shown in FIG. Ag wiring (wiring width: 100 μm) was formed by droplet ejection.
Next, plating was performed with a plating solution containing nickel to form an Ag—Ni wiring.
Finally, plating was performed with a plating solution containing gold to form an Ag—Ni—gold wiring. The thickness of each layer was Ag (20 μm), Ni (4 μm), Au (0.4 μm).
Next, the light emitting element (LED) 10 was mounted on the surface of the reflective substrate 30 of the example and the comparative example, and was electrically connected to the metal wiring layer 20 by wire bonding.
(7)配線と無機反射層との密着性
 作製した各配線基板について、配線密着性を以下の基準で評価した。
 A:350℃に加熱した半田ごてを配線部分に1分間押し付け、こてを離したときに配線の剥がれがないもの
 B:350℃に加熱した半田ごてを配線部分に1分間押し付け、こてを離したときに配線に線状のキズが見られたもの
 C:350℃に加熱した半田ごてを配線部分に1分間押し付け、こてを離したときに配線の剥がれあるいは「浮き」が発生したもの
(7) Adhesiveness between wiring and inorganic reflection layer For each of the produced wiring boards, wiring adhesiveness was evaluated according to the following criteria.
A: A soldering iron heated to 350 ° C is pressed against the wiring part for 1 minute, and there is no peeling of the wiring when the iron is released. B: A soldering iron heated to 350 ° C is pressed against the wiring part for 1 minute. When the soldering iron was released, the wiring was scratched. C: Soldering iron heated to 350 ° C was pressed against the wiring part for 1 minute. When the iron was released, the wiring peeled off or “floated”. What happened
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
〔実施例、比較例の評価〕
 実施例1~22は、OH基表面構造吸収係数が高く、耐電圧、熱伝導性に優れ、基板と無機反射層との密着性に優れ、配線と無機反射層との密着性にも優れている。
 実施例2は、アルミニウム基板が粗面化され、陽極酸化処理されているので基板と無機反射層との密着性にとくに優れている。
 実施例1,2、5~12、14~22の基板は陽極酸化処理皮膜を有するので基板と無機反射層との密着性に優れている。
 比較例1は、無機反射層の硬度が低く、加工時の取扱性に劣る。加熱水蒸気処理され、OH基表面構造吸収係数が高く、耐電圧、熱伝導性はよいが、無機反射層の無機粒子の平均粒子径が大きいので配線と無機反射層との密着性に劣る。
 比較例2は、無機反射層の後処理がされず、OH基表面構造吸収係数が低く、基板と無機反射層との密着性に劣り、配線と無機反射層との密着性にも劣っている。
 比較例3、4は、無機反射層の焼成温度が高いので、OH基表面構造吸収係数が低く、アルミ基板の熱膨張に無機反射層が追従できずクラックが入り耐電圧が低下する。基板と無機反射層との密着性に劣る。
 比較例5,6は、アルミナ粒子を結着するのに樹脂バインダーを使用しているので、耐熱性に劣り、耐光性にも劣り、経時劣化する。また、配線と反射層との密着性に劣る。
 比較例7は、バルブ金属上に陽極酸化皮膜層のみがあり、無機反射層がないが、加熱水蒸気処理され、OH基表面構造吸収係数が高く、耐電圧、熱伝導性はよいが、反射率に劣る。
[Evaluation of Examples and Comparative Examples]
Examples 1 to 22 have a high OH group surface structure absorption coefficient, excellent withstand voltage and thermal conductivity, excellent adhesion between the substrate and the inorganic reflective layer, and excellent adhesion between the wiring and the inorganic reflective layer. Yes.
In Example 2, since the aluminum substrate is roughened and anodized, the adhesion between the substrate and the inorganic reflective layer is particularly excellent.
Since the substrates of Examples 1, 2, 5 to 12, and 14 to 22 have an anodized film, the adhesion between the substrate and the inorganic reflective layer is excellent.
In Comparative Example 1, the hardness of the inorganic reflective layer is low, and the handleability during processing is poor. Heat-treated with steam and has a high OH-based surface structure absorption coefficient and good withstand voltage and thermal conductivity. However, since the average particle diameter of the inorganic particles in the inorganic reflective layer is large, the adhesion between the wiring and the inorganic reflective layer is poor.
In Comparative Example 2, the inorganic reflective layer is not post-treated, the OH group surface structure absorption coefficient is low, the adhesion between the substrate and the inorganic reflective layer is poor, and the adhesion between the wiring and the inorganic reflective layer is also poor. .
In Comparative Examples 3 and 4, since the firing temperature of the inorganic reflective layer is high, the OH group surface structure absorption coefficient is low, the inorganic reflective layer cannot follow the thermal expansion of the aluminum substrate, cracks occur, and the withstand voltage decreases. The adhesion between the substrate and the inorganic reflective layer is poor.
In Comparative Examples 5 and 6, since the resin binder is used to bind the alumina particles, the heat resistance is inferior, the light resistance is also inferior, and the aging is deteriorated. Moreover, it is inferior to the adhesiveness of wiring and a reflection layer.
Comparative Example 7 has only an anodized film layer on the valve metal and no inorganic reflection layer, but is heated with steam, has a high OH-based surface structure absorption coefficient, has a high withstand voltage, and good thermal conductivity, but has a reflectivity. Inferior to
 1、11 バルブ金属基材
 2 陽極酸化皮膜層
 3 無機反射層
 4 無機粒子
 5 無機結着剤
 6 微小空隙
 10 発光素子(LED)
 13 窪み
 18 ヒートシンク
 19 ワイヤボンディング
 20 金属配線層
 30 発光素子用反射基板(反射基板)
 100 白色系発光ダイオード装置
 110 発光素子
 150 蛍光体
 160 樹脂材料
DESCRIPTION OF SYMBOLS 1, 11 Valve metal base material 2 Anodized film layer 3 Inorganic reflecting layer 4 Inorganic particle 5 Inorganic binder 6 Micro gap 10 Light emitting element (LED)
13 Indentation 18 Heat sink 19 Wire bonding 20 Metal wiring layer 30 Reflective substrate for light emitting element (reflective substrate)
DESCRIPTION OF SYMBOLS 100 White light emitting diode apparatus 110 Light emitting element 150 Phosphor 160 Resin material

Claims (15)

  1.  バルブ金属基材上の少なくとも一部に無機反射層を備え、前記無機反射層が、ビッカース硬度(Hv)1GPa以上、赤外分光法により測定した波数3000cm-1と波数1900cm-1の吸光度の差で示されるOH表面構造吸収係数が0.40以上であることを特徴とする発光素子用反射基板。 Comprising an inorganic reflective layer on at least a part of the valve metal substrate, wherein the inorganic reflective layer, Vickers hardness (Hv) 1 GPa or more, the difference in absorbance at wavenumber 3000 cm -1 and a wavenumber 1900 cm -1 as measured by infrared spectroscopy A reflection substrate for a light-emitting element, wherein the OH surface structure absorption coefficient represented by the formula is 0.40 or more.
  2.  前記バルブ金属基材と上記無機反射層との間にバルブ金属基材の陽極酸化皮膜層を有する請求項1に記載の発光素子用反射基板。 The reflective substrate for a light-emitting element according to claim 1, further comprising an anodized film layer of the valve metal base material between the valve metal base material and the inorganic reflective layer.
  3.  前記無機反射層が、リン酸アルミニウム、塩化アルミニウムおよびケイ酸ナトリウムからなる群から選択される少なくとも一つの無機結着剤と、屈折率1.5以上1.8以下、平均粒子径0.1μm以上5μm以下の無機粒子とを含有する請求項1または2に記載の発光素子用反射基板。 The inorganic reflective layer has at least one inorganic binder selected from the group consisting of aluminum phosphate, aluminum chloride and sodium silicate, a refractive index of 1.5 or more and 1.8 or less, and an average particle size of 0.1 μm or more. The reflective board | substrate for light emitting elements of Claim 1 or 2 containing the inorganic particle of 5 micrometers or less.
  4.  前記無機粒子は、酸化物、水酸化物、および無機塩からなる群から選択される少なくとも一つである請求項1~3のいずれか1項に記載の発光素子用反射基板。 The light emitting element reflective substrate according to any one of claims 1 to 3, wherein the inorganic particles are at least one selected from the group consisting of oxides, hydroxides, and inorganic salts.
  5.  前記無機粒子が硫酸バリウムおよび酸化アルミニウムからなる群から選択される少なくとも一つである請求項4のいずれか1項に記載の発光素子用反射基板。 The reflective substrate for light emitting element according to any one of claims 4 to 5, wherein the inorganic particles are at least one selected from the group consisting of barium sulfate and aluminum oxide.
  6.  前記バルブ金属が、アルミニウム、タンタル、ニオブ、チタン、ハフニウム、ジルコニウム、亜鉛、タングステン、ビスマスおよびアンチモンからなる群から選択される少なくとも1種の金属である請求項1~5のいずれか1項に記載の発光素子用反射基板。 6. The valve metal according to claim 1, wherein the valve metal is at least one metal selected from the group consisting of aluminum, tantalum, niobium, titanium, hafnium, zirconium, zinc, tungsten, bismuth and antimony. Reflective substrate for light emitting element.
  7.  前記バルブ金属基材の厚さが、0.1~2mmである請求項1~6のいずれか1項に記載の発光素子用反射基板。 The light emitting element reflective substrate according to any one of claims 1 to 6, wherein a thickness of the valve metal base is 0.1 to 2 mm.
  8.  前記バルブ金属が、アルミニウムである請求項1~7のいずれか1項に記載の発光素子用反射基板。 The light-emitting element reflective substrate according to any one of claims 1 to 7, wherein the bulb metal is aluminum.
  9.  前記発光素子用反射基板の引張強度が、30MPa以上100MPa以下である請求項1~8のいずれか1項に記載の発光素子用反射基板。 The light emitting element reflective substrate according to any one of claims 1 to 8, wherein the light emitting element reflective substrate has a tensile strength of 30 MPa to 100 MPa.
  10.  前記無機粒子が、2種類以上である請求項1~9のいずれか1項に記載の発光素子用反射基板。 The light emitting element reflective substrate according to any one of claims 1 to 9, wherein the inorganic particles include two or more kinds.
  11.  バルブ金属基材表面に上の少なくとも一部に設けたビッカース硬度(Hv)1GPa以上の無機反射層を加熱水蒸気処理または親水化処理して、赤外分光法により測定した波数3000cm-1と波数1900cm-1の吸光度の差で示されるOH表面構造吸収係数が0.40以上である無機反射層を形成する、発光素子用反射基板の製造方法。 An inorganic reflective layer having a Vickers hardness (Hv) of 1 GPa or more provided on at least a part of the surface of the valve metal substrate is subjected to a steam treatment or a hydrophilization treatment, and a wave number of 3000 cm −1 and a wave number of 1900 cm measured by infrared spectroscopy. A method for producing a reflective substrate for a light-emitting element, comprising forming an inorganic reflective layer having an OH surface structure absorption coefficient of 0.40 or more, which is indicated by a difference in absorbance of -1 .
  12.  前記無機反射層が、無機結着剤と無機粒子とを混合して前記バブル金属基材表面に塗布され、100℃~300℃の温度で低温焼成される請求項11に記載の発光素子用反射基板の製造方法。 The light-emitting element reflection according to claim 11, wherein the inorganic reflective layer is a mixture of an inorganic binder and inorganic particles, applied to the surface of the bubble metal substrate, and fired at a low temperature of 100 ° C to 300 ° C. A method for manufacturing a substrate.
  13.  前記バルブ金属基材表面を陽極酸化処理した後に前記陽極酸化処理層上に無機反射層を形成する請求項11または12に記載の発光素子用反射基板の製造方法。 The method for producing a reflective substrate for a light-emitting element according to claim 11 or 12, wherein an inorganic reflective layer is formed on the anodized layer after anodizing the surface of the valve metal substrate.
  14.  請求項11~13のいずれか1項に記載の工程を経た後、以下の(c)および(d)工程を任意の順序で行う、請求項11~13のいずれか1項に記載の発光素子用反射基板の製造方法:
     (c)発光素子への電気信号伝送のための金属配線層を形成し、上記金属配線層をパターン化する工程;
     (d)発光素子を実装する部分に相当する電極部に金属層を設ける工程。
    The light-emitting device according to any one of claims 11 to 13, wherein the following steps (c) and (d) are performed in an arbitrary order after the steps according to any one of claims 11 to 13. Method for manufacturing a reflective substrate:
    (C) forming a metal wiring layer for electric signal transmission to the light emitting element and patterning the metal wiring layer;
    (D) The process of providing a metal layer in the electrode part corresponded to the part which mounts a light emitting element.
  15.  請求項1~10のいずれか1項に記載の発光素子用反射基板の上に青色発光素子を有し、その周りおよび/または上部に蛍光発光体を備える白色系発光ダイオード装置。 A white light-emitting diode device having a blue light-emitting element on the light-emitting element reflective substrate according to any one of claims 1 to 10, and a fluorescent light-emitting body around and / or above the blue light-emitting element.
PCT/JP2012/075390 2011-09-30 2012-10-01 Reflective substrate for light-emitting element WO2013047874A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-218583 2011-09-30
JP2011218583 2011-09-30

Publications (1)

Publication Number Publication Date
WO2013047874A1 true WO2013047874A1 (en) 2013-04-04

Family

ID=47995897

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/075390 WO2013047874A1 (en) 2011-09-30 2012-10-01 Reflective substrate for light-emitting element

Country Status (2)

Country Link
JP (1) JP2013083002A (en)
WO (1) WO2013047874A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104651901A (en) * 2013-11-21 2015-05-27 纳米及先进材料研发院有限公司 Thermal resistant mirror-like coating
JP2020525325A (en) * 2017-07-06 2020-08-27 ゼネラル・エレクトリック・カンパニイ High temperature articles and related methods

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112993142B (en) * 2021-02-08 2021-11-30 华中科技大学 Three-dimensional high-thermal-conductivity white light LED and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003535359A (en) * 2000-05-23 2003-11-25 サン−ゴバン グラス フランス Diffusion layer
WO2006104061A1 (en) * 2005-03-29 2006-10-05 Kyocera Corporation Reflective member, light-emitting device using same and illuminating device
JP2009206294A (en) * 2008-02-28 2009-09-10 Panasonic Corp Package for semiconductor light emitting device
JP2011151395A (en) * 2009-12-25 2011-08-04 Showa Denko Kk Mounting substrate for light emitting element, method of manufacturing mounting substrate for light emitting element, light emitting device and method of manufacturing light emitting device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003535359A (en) * 2000-05-23 2003-11-25 サン−ゴバン グラス フランス Diffusion layer
WO2006104061A1 (en) * 2005-03-29 2006-10-05 Kyocera Corporation Reflective member, light-emitting device using same and illuminating device
JP2009206294A (en) * 2008-02-28 2009-09-10 Panasonic Corp Package for semiconductor light emitting device
JP2011151395A (en) * 2009-12-25 2011-08-04 Showa Denko Kk Mounting substrate for light emitting element, method of manufacturing mounting substrate for light emitting element, light emitting device and method of manufacturing light emitting device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104651901A (en) * 2013-11-21 2015-05-27 纳米及先进材料研发院有限公司 Thermal resistant mirror-like coating
EP2876188A3 (en) * 2013-11-21 2015-11-04 Nano And Advanced Materials Institute Limited Thermal resistant mirror-like coating
JP2020525325A (en) * 2017-07-06 2020-08-27 ゼネラル・エレクトリック・カンパニイ High temperature articles and related methods
JP7158120B2 (en) 2017-07-06 2022-10-21 ゼネラル・エレクトリック・カンパニイ High temperature articles and related methods
US11851581B2 (en) 2017-07-06 2023-12-26 General Electric Company Articles for high temperature service and related method

Also Published As

Publication number Publication date
JP2013083002A (en) 2013-05-09

Similar Documents

Publication Publication Date Title
WO2012133173A1 (en) Reflective substrate for light-emitting element and method for producing same
WO2013047876A1 (en) Light-emitting device
US20110267825A1 (en) Insulated light-reflective substrate
CN107004752B (en) Light emitting device substrate, light emitting device and lighting device
US20120039066A1 (en) Radiation reflection plate for led
CN103907211B (en) The manufacture method of light-emitting device, illuminator and light-emitting device
US20120256224A1 (en) Insulated substrate, process for production of insulated substrate, process for formation of wiring line, wiring substrate, and light-emitting element
KR20120101290A (en) Light reflecting substrate and process for manufacture thereof
WO2013005717A1 (en) Insulating reflective substrate and method for producing same
WO2013047874A1 (en) Reflective substrate for light-emitting element
JP2013062500A (en) Reflection substrate for led light-emitting element and led package
CN103022322A (en) Manufacturing method of light-emitting device
WO2012090824A1 (en) Light reflecting substrate
WO2013108547A1 (en) Reflecting substrate for led light-emitting element and led package
WO2013031987A1 (en) Insulating reflective substrate and led package
JP2012216748A (en) Wiring forming substrate, method for manufacturing the same, wiring board using the same, and electronic device
JP2015023244A (en) Reflection substrate for led light-emitting element, wiring board for led light-emitting element, led package, and method of manufacturing reflection substrate for led light-emitting element
JP2015012133A (en) Reflection substrate for light-emitting element, and white light-emitting diode device
JP2019125683A (en) LED module
JP2015041664A (en) Insulation reflecting substrate and led package
TW201638052A (en) Method of producing phosphor ceramic
JP2013016706A (en) Insulation reflection substrate for led
JP2011199233A (en) Insulated substrate and process for production of the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12837186

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12837186

Country of ref document: EP

Kind code of ref document: A1