JP2014241431A - Method of manufacturing light-emitting device - Google Patents

Method of manufacturing light-emitting device Download PDF

Info

Publication number
JP2014241431A
JP2014241431A JP2014158273A JP2014158273A JP2014241431A JP 2014241431 A JP2014241431 A JP 2014241431A JP 2014158273 A JP2014158273 A JP 2014158273A JP 2014158273 A JP2014158273 A JP 2014158273A JP 2014241431 A JP2014241431 A JP 2014241431A
Authority
JP
Japan
Prior art keywords
light emitting
emitting device
light
wavelength conversion
conversion member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014158273A
Other languages
Japanese (ja)
Inventor
美史 傳井
Yoshifumi Tsutai
美史 傳井
誉史 阿部
Takashi Abe
誉史 阿部
佐藤 豊
Yutaka Sato
豊 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTK Ceratec Co Ltd
Original Assignee
Nihon Ceratec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Ceratec Co Ltd filed Critical Nihon Ceratec Co Ltd
Priority to JP2014158273A priority Critical patent/JP2014241431A/en
Publication of JP2014241431A publication Critical patent/JP2014241431A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16195Flat cap [not enclosing an internal cavity]

Landscapes

  • Led Device Packages (AREA)
  • Luminescent Compositions (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a light-emitting device capable of achieving higher output and higher luminance by improving heat resistance.SOLUTION: A plurality of light-emitting elements 12 comprising LEDs are mounted on a substrate 11, and a wavelength conversion member 16 is arranged above the light-emitting elements 12 with a space 15 between itself and the light-emitting elements 12. The wavelength conversion member 16 contains a particulate phosphor material and a binder. The binder is obtained by subjecting a binder raw material containing at least one selected from a group consisting of an oxide precursor which becomes an oxide by hydrolysis or oxidation, a silicic acid compound, silica, and amorphous silica to either a reaction at room temperature or a heat treatment at a temperature of 500°C or lower.

Description

本発明は、蛍光体材料を用いた発光装置の製造方法に関する。   The present invention relates to a method for manufacturing a light emitting device using a phosphor material.

蛍光体を用いた発光装置としては、例えば、LEDまたはLDに接触するように、蛍光体をエポキシ樹脂またはシリコーン樹脂に分散させて配置したものが知られている(例えば、特許文献1から特許文献3参照)。しかし、この発光装置では、LEDまたはLDの高出力化やLEDまたはLDの発熱に伴い、エポキシ樹脂またはシリコーン樹脂が劣化したり、変形、剥離したりして、高出力化を図ることが難しいという問題があった。   As a light emitting device using a phosphor, for example, a device in which a phosphor is dispersed in an epoxy resin or a silicone resin so as to come into contact with an LED or an LD is known (for example, Patent Document 1 to Patent Document 1). 3). However, in this light emitting device, it is difficult to increase the output because the epoxy resin or silicone resin deteriorates, deforms, or peels off as the output of the LED or LD increases or the LED or LD generates heat. There was a problem.

その解決策として、エポキシ樹脂またはシリコーン樹脂に代えて、例えば、ガラスにより蛍光体を封止した発光装置が開発されている(例えば、特許文献4から特許文献6参照)。この発光装置によれば、分散媒に無機材料を用いることにより構造的な耐熱性を向上させることができる。しかし、一般的な低融点ガラスは、実質500℃以上で加熱しなければ蛍光体を分散させることができる程度に軟化させることは難しい(特許文献5実施例参照)。例えば、鉛などの重金属を加えることで低融点化することはできるものの、それらの元素が許容される用途は環境や人体への影響の観点から現在では極めて少ない。そのため、蛍光体によっては、熱の影響により性能が劣化してしまう場合があるという問題があった。   As a solution, a light emitting device in which a phosphor is sealed with glass instead of an epoxy resin or a silicone resin has been developed (see, for example, Patent Document 4 to Patent Document 6). According to this light-emitting device, structural heat resistance can be improved by using an inorganic material for the dispersion medium. However, it is difficult to soften a general low-melting glass to such an extent that the phosphor can be dispersed unless it is heated at substantially 500 ° C. or higher (see Examples in Patent Document 5). For example, although it is possible to lower the melting point by adding a heavy metal such as lead, there are very few applications where these elements are allowed from the viewpoint of the influence on the environment and the human body. Therefore, depending on the phosphor, there is a problem that the performance may deteriorate due to the influence of heat.

また、分散媒に樹脂を用いる場合には、LEDまたはLDに接触するように配置しても、樹脂特有の柔軟性から形状への追従性も良く、どの材質に対しても密着性が高いのに対して、無機材料は硬く、他材質との親和性にも乏しいため、熱膨張差などによる応力を蓄積しやすく密着性が得られにくい。従って、蛍光体を無機材料に分散させてLED素子、LD素子または基板に直接塗布し定着させることは非常に難しいという問題があった。しかも、無機材料を用いる場合には、製造過程において高温での熱処理が必要となるためLED素子またはLD素子と無機材料(特にガラス)を接着させることは製造上も現実的ではない。   In addition, when resin is used for the dispersion medium, even if it is arranged so as to be in contact with the LED or LD, the flexibility unique to the resin is good for following the shape, and the adhesion to any material is high. On the other hand, since inorganic materials are hard and have poor affinity with other materials, it is easy to accumulate stress due to a difference in thermal expansion or the like, and adhesion is difficult to obtain. Therefore, there is a problem that it is very difficult to disperse the phosphor in an inorganic material and apply and fix the phosphor directly on the LED element, LD element or substrate. In addition, when an inorganic material is used, heat treatment at a high temperature is required in the production process, and thus it is not realistic in production to bond the LED element or LD element and the inorganic material (particularly glass).

そこで、蛍光体を樹脂に分散し、発光と共に熱を発するLEDまたはLDと、LEDまたはLDの光を受けて波長変換を行う蛍光体とを距離を離して配置する方式の発光装置が開示されている(例えば、特許文献7参照)。この方式であれば、LED素子またはLD素子と蛍光体との距離を大きくとることにより、熱の影響を小さくすることができ、熱設計上の制約は少なくなる。   Therefore, a light emitting device of a type in which a phosphor is dispersed in a resin and LED or LD that emits heat together with light emission and a phosphor that performs wavelength conversion by receiving light from the LED or LD is arranged at a distance is disclosed. (For example, see Patent Document 7). With this method, the influence of heat can be reduced by increasing the distance between the LED element or LD element and the phosphor, and the thermal design restrictions are reduced.

特許第3364229号公報Japanese Patent No. 3364229 特許第3824917号公報Japanese Patent No. 38241717 特開2011−204718号公報JP 2011-204718 A 特開2009−91546号公報JP 2009-91546 A 特開2008−143978号公報JP 2008-143978 A 特開2008−115223号公報JP 2008-115223 A 特許第4562828号公報Japanese Patent No. 4562828

しかしながら、LED素子またはLD素子と蛍光体との距離を大きく離すとその分だけ空間が必要となる。そのため、LEDモジュールまたはLDモジュールが大型化し用途が限られてしまうという問題があった。LEDモジュールまたはLDモジュールを小型化するためには蛍光体をできるだけLED素子またはLD素子に近づける必要があるが、近づけると単位体積・単位面積当たりのエネルギー密度が高くなり熱の影響が排除できなくなる。すなわち、熱の影響を小さくし、かつ、LEDモジュールまたはLDモジュールを小型化することは難しかった。   However, if the distance between the LED element or LD element and the phosphor is greatly increased, a corresponding space is required. For this reason, there is a problem that the LED module or the LD module becomes large in size and uses are limited. In order to reduce the size of the LED module or LD module, it is necessary to bring the phosphor as close as possible to the LED element or LD element. However, if the phosphor is brought closer, the energy density per unit volume / unit area becomes higher and the influence of heat cannot be eliminated. That is, it has been difficult to reduce the influence of heat and downsize the LED module or the LD module.

本発明は、このような問題に基づきなされたものであり、耐熱性を向上させることができ、かつ、小型化することができる発光装置の製造方法を提供することを目的とする。   The present invention has been made based on such problems, and an object of the present invention is to provide a method for manufacturing a light-emitting device that can improve heat resistance and can be miniaturized.

本発明の発光装置の製造方法は、発光素子と、この発光素子との間に空間を挟んで配置された波長変換部材とを備え、波長変換部材は、粒子状の蛍光体材料と、バインダとを含む発光装置を製造するものであって、波長変換部材は、形成基材の一面に、蛍光体材料とバインダ原料とを含む原料混合物を印刷法により塗布し、バインダ原料を常温で反応させるか、又は、500℃以下の温度で熱処理することにより形成し、バインダ原料は、加水分解あるいは酸化により酸化物となる酸化物前駆体、ケイ酸化合物、シリカ、及び、アモルファスシリカからなる群のうちの少なくとも1種を含むものである。   A method for manufacturing a light emitting device of the present invention includes a light emitting element and a wavelength conversion member disposed with a space between the light emitting element, the wavelength conversion member including a particulate phosphor material, a binder, The wavelength conversion member is formed by applying a raw material mixture containing a phosphor material and a binder raw material on one surface of a forming substrate by a printing method, and reacting the binder raw material at room temperature. Or formed by heat treatment at a temperature of 500 ° C. or less, and the binder raw material is selected from the group consisting of oxide precursors that become oxides by hydrolysis or oxidation, silicic acid compounds, silica, and amorphous silica It contains at least one kind.

本発明の発光装置の製造方法によれば、発光素子と波長変換部材とを間に空間を挟んで配置し、かつ、波長変換部材のバインダに主として無機材料を用いるようにしたので、発光素子から発生する熱に対する耐熱性を向上させることができ、高出力化及び高輝度化を図ることができると共に、小型化することができる。また、波長変換部材は、形成基材の一面に、蛍光体材料とバインダ原料とを含む原料混合物を印刷法により塗布し、バインダ原料を常温で反応させるか、又は、500℃以下の温度で熱処理することにより形成するようにしたので、低温でも形成することができ、高温で特性劣化する蛍光体材料の特性劣化を抑制することができる。   According to the method for manufacturing a light emitting device of the present invention, the light emitting element and the wavelength conversion member are arranged with a space in between, and an inorganic material is mainly used for the binder of the wavelength conversion member. The heat resistance against the generated heat can be improved, high output and high luminance can be achieved, and the size can be reduced. In addition, the wavelength conversion member is formed by applying a raw material mixture containing a phosphor material and a binder raw material on one surface of a forming substrate by a printing method and reacting the binder raw material at room temperature, or heat treatment at a temperature of 500 ° C. or less. Therefore, it can be formed even at a low temperature, and the characteristic deterioration of the phosphor material whose characteristics deteriorate at a high temperature can be suppressed.

また、発光素子と前記波長変換部材との間の距離を1mm以上とするようにすれば、発光素子から発生する熱の影響を効果的に小さくすることができる。   Further, if the distance between the light emitting element and the wavelength conversion member is 1 mm or more, the influence of heat generated from the light emitting element can be effectively reduced.

本発明の一実施の形態に係る発光装置の構成を表す図である。It is a figure showing the structure of the light-emitting device which concerns on one embodiment of this invention. 85℃、85%RHの高温高湿度環境下の曝露試験における輝度の経時変化を表す特性図である。It is a characteristic view showing the time-dependent change of the brightness | luminance in the exposure test in a high-temperature, high-humidity environment of 85 degreeC and 85% RH. 乾燥高温環境下の曝露試験における曝露温度と24時間後の発光輝度との関係を表す特性図である。It is a characteristic view showing the relationship between the exposure temperature in the exposure test in a dry high temperature environment, and the luminescent brightness after 24 hours. 150℃の乾燥高温環境下の曝露試験における輝度の経時変化を表す特性図である。It is a characteristic view showing the time-dependent change of the brightness | luminance in the exposure test in a 150 degreeC dry high temperature environment. 200℃の乾燥高温環境下の曝露試験における輝度の経時変化を表す特性図である。It is a characteristic view showing the time-dependent change of the brightness | luminance in the exposure test in a 200 degreeC dry high temperature environment.

以下、本発明の実施の形態について、図面を参照して詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本発明の一実施の形態に係る発光装置10の構成を表わすものである。この発光装置10は、例えば、基板11の上に、LEDよりなる複数の発光素子12が搭載されている。発光素子12には、例えば、励起光として紫外光、青色光、又は緑色光を発するものが用いられ、中でも、青色光を発するものが好ましい。容易に白色を得ることができると共に、紫外光は周囲の部材を劣化させる等の影響があるのに対して、青色光はそのような影響が小さいからである。発光素子12は、例えば、基板11の上に形成された図示しない配線とワイヤ13により電気的に接続されている。発光素子12の周りには、例えば、全体を囲むように、リフレクタ枠14が形成されている。   FIG. 1 shows a configuration of a light emitting device 10 according to an embodiment of the present invention. In the light emitting device 10, for example, a plurality of light emitting elements 12 made of LEDs are mounted on a substrate 11. For the light emitting element 12, for example, an element that emits ultraviolet light, blue light, or green light as excitation light is used, and among them, an element that emits blue light is preferable. This is because white can be easily obtained and ultraviolet light has an effect of deteriorating surrounding members, while blue light has a small effect. For example, the light emitting element 12 is electrically connected to a wiring (not shown) formed on the substrate 11 by a wire 13. For example, a reflector frame 14 is formed around the light emitting element 12 so as to surround the whole.

発光素子12の上には、例えば、発光素子12との間に空間15を挟んで波長変換部材16が配置されている。波長変換部材16は、例えば、形成基材17の一面に形成されており、形成基材17は、例えば、波長変換部材16が発光素子12の側となるように発光素子12の上に配設されている。発光素子12と波長変換部材16との間の距離は、例えば、1mm以上であることが好ましく、更に2mm以上であることが好ましい。発光素子12から発せられる熱の影響を効果的に小さくすることができるからである。また、発光素子12と波長変換部材16との間の距離は、例えば、50mm未満であることが好ましい。発光素子12から発せられる熱の影響は十分に小さくなり、逆に、装置が大型化してしまうからである。   On the light emitting element 12, for example, a wavelength conversion member 16 is disposed with a space 15 between the light emitting element 12. The wavelength conversion member 16 is formed on, for example, one surface of the forming substrate 17, and the forming substrate 17 is disposed on the light emitting element 12 so that the wavelength converting member 16 is on the light emitting element 12 side, for example. Has been. For example, the distance between the light emitting element 12 and the wavelength conversion member 16 is preferably 1 mm or more, and more preferably 2 mm or more. This is because the influence of heat generated from the light emitting element 12 can be effectively reduced. Moreover, it is preferable that the distance between the light emitting element 12 and the wavelength conversion member 16 is less than 50 mm, for example. This is because the influence of heat generated from the light emitting element 12 becomes sufficiently small, and conversely, the apparatus becomes large.

波長変換部材16は、例えば、粒子状の蛍光体材料と、この蛍光体材料を接着するバインダとを含んでおり、必要に応じて、フィラーを含んでいてもよい。   The wavelength conversion member 16 includes, for example, a particulate phosphor material and a binder that adheres the phosphor material, and may include a filler as necessary.

蛍光体材料は、例えば、蛍光体粒子を含んでおり、蛍光体粒子の表面に被覆層が形成されていてもよい。蛍光体粒子としては、例えば、BaMgAl1017:Eu、ZnS:Ag,Cl、BaAl:EuあるいはCaMgSi:Euなどの青色系蛍光体、ZnSiO:Mn、(Y,Gd)BO:Tb、ZnS:Cu,Al、(M1)SiO:Eu、(M1)(M2)S:Eu、(M3)Al12:Ce、SiAlON:Eu、CaSiAlON:Eu、(M1)SiN:Euあるいは(Ba,Sr,Mg)SiO:Eu,Mnなどの黄色または緑色蛍光体、(M1)SiO:Eu、(M1)S:Euあるいは(M1)(M2)S:Eu、(Y,Gd)BO:Eu,YS:Eu、(M1)Si:Eu、(M1)AlSiN:EuあるいはYPVO:Euなどの黄色、橙色または赤色系蛍光体が挙げられる。なお、上記化学式において、M1は、Ba,Ca,SrおよびMgからなる群のうちの少なくとも1つが含まれ、M2は、GaおよびAlのうちの少なくとも1つが含まれ、M3は、Y、Gd、LuおよびTeからなる群のうち少なくとも1つが含まれる。 The phosphor material includes, for example, phosphor particles, and a coating layer may be formed on the surface of the phosphor particles. Examples of the phosphor particles include blue phosphors such as BaMgAl 10 O 17 : Eu, ZnS: Ag, Cl, BaAl 2 S 4 : Eu or CaMgSi 2 O 6 : Eu, Zn 2 SiO 4 : Mn, (Y , Gd) BO 3 : Tb, ZnS: Cu, Al, (M1) 2 SiO 4 : Eu, (M1) (M2) 2 S: Eu, (M3) 3 Al 5 O 12 : Ce, SiAlON: Eu, CaSiAlON : Eu, (M1) Si 2 O 2 N: Eu or (Ba, Sr, Mg) 2 SiO 4 : Yellow or green phosphor such as Eu, Mn, (M1) 3 SiO 5 : Eu, (M1) S: Eu or (M1) (M2) 2 S: Eu, (Y, Gd) BO 3 : Eu, Y 2 O 2 S: Eu, (M1) 2 Si 5 N 8 : Eu, (M1) AlSiN 3 : Eu or YP O 4: yellow such as Eu, orange or red phosphor can be cited. In the above chemical formula, M1 includes at least one of the group consisting of Ba, Ca, Sr, and Mg, M2 includes at least one of Ga and Al, and M3 includes Y, Gd, At least one of the group consisting of Lu and Te is included.

中でも、蛍光体粒子は、(M3)Al12:Ce、SiAlON:Eu、CaSiAlON:Eu、(M1)SiN:Eu、(M1)Si:Eu、(M1)AlSiN:Eu、(M1)SiO:Eu、(M1)SiO:Eu、(M1)S:Euあるいは(M1)(M2)S:Euにより構成されることが好ましい。M1、M2およびM3は上述した通りである。蛍光体粒子は、発光素子12の種類等に応じて選択される。蛍光体材料には、1種または2種以上の蛍光体粒子が用いられ、複数種を用いる場合には、混合して用いてもよく、また、複数層に分けて積層するようにしてもよく、各蛍光体を並べて配置してもよい。蛍光体粒子の粒子径は、前方への散乱が多くなることから平均粒子径が5μmから20μm程度であることが好ましい。平均粒子径が5μmよりも小さいと全方向に散乱し易くなり、平均粒子径が20μmを超えると波長変換部材16を後述するように塗布により形成することが難しくなるからである。 Among them, the phosphor particles are (M3) 3 Al 5 O 12 : Ce, SiAlON: Eu, CaSiAlON: Eu, (M1) Si 2 O 2 N: Eu, (M1) 2 Si 5 N 8 : Eu, (M1 It is preferable that AlSiN 3 : Eu, (M1) 2 SiO 4 : Eu, (M1) 3 SiO 5 : Eu, (M1) S: Eu or (M1) (M2) 2 S: Eu. M1, M2 and M3 are as described above. The phosphor particles are selected according to the type of the light emitting element 12 and the like. As the phosphor material, one kind or two or more kinds of phosphor particles are used. When plural kinds of phosphor particles are used, they may be mixed and used, or may be laminated in a plurality of layers. The phosphors may be arranged side by side. The particle diameter of the phosphor particles is preferably about 5 to 20 μm because the forward scattering increases. This is because if the average particle diameter is smaller than 5 μm, scattering in all directions tends to occur, and if the average particle diameter exceeds 20 μm, it becomes difficult to form the wavelength conversion member 16 by coating as described later.

蛍光体粒子の被覆層は、例えば、希土類酸化物,酸化ジルコニウム,酸化チタン,酸化亜鉛,酸化アルミニウム,イットリウム・アルミニウム・ガーネットなどのイットリウムとアルミニウムの複合酸化物,酸化マグネシウム,およびMgAlなどのアルミニウムとマグネシウムの複合酸化物からなる群のうちの少なくとも1種の金属酸化物を主成分として含んでいることが好ましい。耐水性および耐紫外光などの特性を向上させることができるからである。中でも、希土類酸化物が好ましく、イットリウム,ガドリニウム,セリウムおよびランタンからなる群のうちの少なくとも1種の元素を含む希土類酸化物がより好ましく、特にYが望ましい。より高い効果を得ることができ、また、コストを抑制することができるからである。 Examples of the phosphor particle coating layer include rare earth oxides, zirconium oxides, titanium oxides, zinc oxides, aluminum oxides, yttrium / aluminum composite oxides such as yttrium / aluminum / garnet, magnesium oxide, and MgAl 2 O 4. It is preferable that at least one metal oxide selected from the group consisting of aluminum and magnesium composite oxides is contained as a main component. This is because characteristics such as water resistance and ultraviolet light resistance can be improved. Among these, rare earth oxides are preferable, rare earth oxides containing at least one element selected from the group consisting of yttrium, gadolinium, cerium and lanthanum are more preferable, and Y 2 O 3 is particularly preferable. This is because higher effects can be obtained and costs can be suppressed.

バインダは、加水分解あるいは酸化により酸化物となる酸化物前駆体、ケイ酸化合物、シリカ、及び、アモルファスシリカからなる群のうちの少なくとも1種を含むバインダ原料を、常温で反応させるか、又は、500℃以下の温度で熱処理することにより得られたものである。酸化物前駆体としては、例えば、ペルヒドロポリシラザン、エチルシリケート、メチルシリケート、リン酸アルミニウム、アルミニウムアセチルアセト、イットリウムアセチルアセト、アルミニウムアルコート、クエン酸イットリウムを主成分としたものが好ましく挙げられる。これらの酸化物前駆体は、常温あるいは熱処理における加水分解あるいは酸化により容易に酸化物となり、バインダとして機能させることができるからである。なお、バインダとしては、酸化物前駆体が反応して完全に酸化物となっている必要はなく、未反応部分や不完全反応部分を含んでいてもよい。   The binder is prepared by reacting a binder raw material containing at least one member selected from the group consisting of an oxide precursor that becomes an oxide by hydrolysis or oxidation, a silicic acid compound, silica, and amorphous silica at room temperature, or It was obtained by heat treatment at a temperature of 500 ° C. or lower. Preferable examples of the oxide precursor include perhydropolysilazane, ethyl silicate, methyl silicate, aluminum phosphate, aluminum acetylacetate, yttrium acetylacetate, aluminum alcoat, and yttrium citrate. This is because these oxide precursors are easily converted into oxides by hydrolysis or oxidation at room temperature or heat treatment, and can function as binders. Note that the binder does not have to be completely oxidized by the reaction of the oxide precursor, and may contain an unreacted part or an incompletely reacted part.

中でも、バインダとしては、加水分解あるいは酸化により酸化ケイ素となる酸化ケイ素前駆体、ケイ酸化合物、シリカ、及び、アモルファスシリカからなる群のうちの少なくとも1種を含むバインダ原料を、常温で反応させるか、又は、500℃以下の温度で熱処理することにより得られたものが好ましい。発行素子12からの光の透過率を高くすることができるからである。酸化ケイ素前駆体としては、例えば、ペルヒドロポリシラザン、エチルシリケート、メチルシリケートを主成分としたものが好ましく挙げられる。   Among them, as a binder, a binder raw material containing at least one member selected from the group consisting of a silicon oxide precursor that becomes silicon oxide by hydrolysis or oxidation, a silicate compound, silica, and amorphous silica is reacted at room temperature. Or what was obtained by heat-processing at the temperature of 500 degrees C or less is preferable. This is because the light transmittance from the issuing element 12 can be increased. As the silicon oxide precursor, for example, those mainly composed of perhydropolysilazane, ethyl silicate, and methyl silicate are preferable.

また、ケイ酸化合物としては、例えば、ケイ酸ナトリウムが好ましく挙げられる。ケイ酸化合物は、脱水状態のものを用いても、水和物を用いてもよい。シリカ又はアモルファスシリカとしては、例えば、ナノサイズの超微粒子粉末を用い、例えば、一次粒子径としての平均粒子径が5nm以上100nm以下の超微粒子粉末を用いることが好ましく、5nm以上50nm以下の超微粒子粉末を用いればより好ましい。これらケイ酸化合物、シリカ、又は、アモルファスシリカは、溶媒に溶解又は分散させて熱処理、乾燥させることにより固形化し、バインダとして機能させることができる。   Moreover, as a silicate compound, sodium silicate is mentioned preferably, for example. As the silicic acid compound, a dehydrated one or a hydrate may be used. As silica or amorphous silica, for example, nano-sized ultrafine particle powder is used. For example, it is preferable to use ultrafine particle powder having an average particle size of 5 nm or more and 100 nm or less as a primary particle size, and ultrafine particles of 5 nm or more and 50 nm or less. It is more preferable to use powder. These silicic acid compounds, silica, or amorphous silica can be solidified by dissolving or dispersing in a solvent, heat treatment and drying, and function as a binder.

バインダ原料の熱処理温度は、形成基材17及び蛍光体材料への熱的影響を小さくするために500℃以下とすることが好ましく、熱的影響をより小さくする必要がある場合には300℃以下とすればより好ましく、200℃以下とすれば更に好ましい。また、バインダ原料を常温で反応させるようにすれば、熱的影響がないのでより好ましい。用いる形成基材17及び蛍光体材料の耐熱特性に応じて、バインダ原料の種類を選択し、それによりバインダ原料を常温で反応させるのか、又は、何度で熱処理するのかを調節することが好ましい。また、熱処理の際の雰囲気は、蛍光体材料が熱により酸化して劣化しやすい場合には、窒素雰囲気などの非酸化雰囲気とすることが好ましい。このように、本実施の形態では、高温で特性劣化する蛍光体材料に対しても、低温でバインダの熱処理を行うことができ、更に、熱処理後は、蛍光体材料が酸化物により覆われることにより、蛍光体材料を高温状態に曝露しても特性劣化を抑制することができるようになっている。   The heat treatment temperature of the binder raw material is preferably 500 ° C. or less in order to reduce the thermal influence on the forming base material 17 and the phosphor material, and 300 ° C. or less when the thermal influence needs to be further reduced. It is more preferable if it is set to 200 ° C. or less. Further, it is more preferable that the binder raw material is reacted at room temperature because there is no thermal influence. It is preferable to select the type of the binder raw material according to the heat resistance characteristics of the forming substrate 17 and the phosphor material to be used, and thereby adjust whether the binder raw material is reacted at room temperature or how many times the heat treatment is performed. In addition, the atmosphere during the heat treatment is preferably a non-oxidizing atmosphere such as a nitrogen atmosphere when the phosphor material is easily oxidized and deteriorated by heat. As described above, in the present embodiment, it is possible to perform the heat treatment of the binder at a low temperature even for the phosphor material whose characteristics deteriorate at a high temperature, and further, the phosphor material is covered with the oxide after the heat treatment. Therefore, even if the phosphor material is exposed to a high temperature state, the deterioration of characteristics can be suppressed.

フィラーは、例えば、透光性を有する無機材料よりなるものが好ましく、酸化ケイ素粒子、酸化アルミニウム粒子、または、酸化ジルコニウム粒子などが挙げられる。より好ましくは酸化ケイ素粒子が好ましく、その形態は、結晶でもガラスでもよい。また、フィラーは、バインダと同質材料により構成すればより好ましい。バインダと屈折率が同じくなり、散乱を低減することができるからである。フィラーの平均粒子径は、蛍光体粒子の平均粒子径と同程度の10μmから20μm程度が好ましい。前方への散乱が多く、蛍光体粒子間距離を制御しやすいからである。   The filler is preferably made of a light-transmitting inorganic material, for example, silicon oxide particles, aluminum oxide particles, or zirconium oxide particles. More preferably, silicon oxide particles are preferable, and the form may be crystal or glass. Further, it is more preferable that the filler is made of the same material as the binder. This is because the refractive index is the same as that of the binder, and scattering can be reduced. The average particle diameter of the filler is preferably about 10 μm to 20 μm, which is the same as the average particle diameter of the phosphor particles. This is because the forward scattering is large and the distance between the phosphor particles is easily controlled.

波長変換部材16の膜厚は、例えば、30μm以上1mm以下であることが好ましく、50μm以上500μm以下であればより好ましく、50μm以上200μm以下であれば更に好ましい。30μmよりも薄い場合には、蛍光体材料の量が少なくなり、発光輝度が低下するからである。また、1mmよりも厚い場合には、光の散乱・吸収が増え、外部に光が取り出しにくくなってしまうからである。   The film thickness of the wavelength conversion member 16 is preferably, for example, from 30 μm to 1 mm, more preferably from 50 μm to 500 μm, and even more preferably from 50 μm to 200 μm. This is because when the thickness is smaller than 30 μm, the amount of the phosphor material is reduced and the light emission luminance is lowered. In addition, when the thickness is greater than 1 mm, light scattering / absorption increases, making it difficult to extract light to the outside.

形成基材17は、例えば、ガラスなどの透光性を有するものにより構成されている。ガラスの特性としては、例えば、400nmから800nmの波長域において光透過率が90%以上有していることが好ましい。なお、形成基材17は、どのような形でもよく、円形板状でも、四角板状でもよい。また、図1では平面状の場合を示したが、凹面状、凸面状、又は、電球形状でもよい。   The formation base material 17 is comprised by what has translucency, such as glass, for example. As a characteristic of glass, for example, it is preferable that the light transmittance is 90% or more in a wavelength range of 400 nm to 800 nm. The formation substrate 17 may have any shape, and may be a circular plate shape or a square plate shape. Moreover, although the planar shape was shown in FIG. 1, a concave shape, a convex shape, or a light bulb shape may be used.

波長変換部材16は、例えば、形成基材17の一面に、蛍光体材料と、バインダ原料とを含む原料混合物を塗布し、バインダ原料を常温で反応させるか、又は、500℃以下の温度で熱処理することにより形成される。具体的には、まず、例えば、1種又は2種以上の蛍光体材料と、バインダ原料と、必要に応じて希釈溶媒と、必要に応じてフィラーとを混合してペースト状の原料混合物とし、形成基材17の一面に、例えば、スクリーン印刷等の印刷法、ディスペンサ法、又は、スプレー法により塗布する。特に、印刷法であれば、対応できるスラリー粘度範囲が広いので好ましい。また、塗布は、必要な膜厚となるまで繰り返し行ってもよい。次いで、例えば、塗布した原料混合物を乾燥させて希釈溶媒を除去する。その際、必要に応じて500℃以下、より好ましくは300℃以下、更には200℃以下の範囲で加熱してもよい。これにより、バインダ原料が常温あるいは熱処理により反応し、又は、熱処理により固形化する。   The wavelength conversion member 16 is, for example, coated on one surface of the forming substrate 17 with a raw material mixture containing a phosphor material and a binder raw material, and the binder raw material is reacted at room temperature, or heat treated at a temperature of 500 ° C. or lower. It is formed by doing. Specifically, first, for example, one or two or more phosphor materials, a binder raw material, a dilution solvent as necessary, and a filler as necessary are mixed to form a paste-like raw material mixture, It is applied to one surface of the forming substrate 17 by, for example, a printing method such as screen printing, a dispenser method, or a spray method. In particular, the printing method is preferable because the slurry viscosity range that can be handled is wide. Moreover, you may repeat application | coating until it becomes a required film thickness. Next, for example, the applied raw material mixture is dried to remove the diluted solvent. In that case, you may heat in the range of 500 degrees C or less as needed, More preferably 300 degrees C or less, Furthermore, 200 degrees C or less. Thereby, a binder raw material reacts by normal temperature or heat processing, or solidifies by heat processing.

このように本実施の形態によれば、発光素子12と波長変換部材16とを間に空間15を挟んで配置し、かつ、波長変換部材16のバインダに主として無機材料を用いるようにしたので、発光素子から発生する熱に対する耐熱性を向上させることができ、高出力化及び高輝度化を図ることができると共に、小型化することができる。また、波長変換部材16のバインダは、常温で反応又は500℃以下の温度で熱処理することにより得られるので、低温でも形成することができ、高温で特性劣化する蛍光体材料の特性劣化を抑制することができる。   As described above, according to the present embodiment, the light emitting element 12 and the wavelength conversion member 16 are arranged with the space 15 therebetween, and an inorganic material is mainly used for the binder of the wavelength conversion member 16. The heat resistance against heat generated from the light-emitting element can be improved, high output and high luminance can be achieved, and the size can be reduced. Further, since the binder of the wavelength conversion member 16 is obtained by reacting at normal temperature or heat-treating at a temperature of 500 ° C. or less, it can be formed even at low temperatures, and suppresses deterioration of the characteristics of the phosphor material whose characteristics deteriorate at high temperatures. be able to.

更に、波長変換部材16は、形成基材17の一面に、蛍光体材料とバインダ原料とを含む原料混合物を塗布し、バインダ原料を常温で反応させるか、又は、500℃以下の温度で熱処理するようにすれば、容易に低温で形成基材に接着させて形成することができる。   Furthermore, the wavelength conversion member 16 applies a raw material mixture containing a phosphor material and a binder raw material to one surface of the forming substrate 17 and reacts the binder raw material at room temperature or heat-treats it at a temperature of 500 ° C. or lower. By doing so, it can be easily formed by adhering to the forming substrate at a low temperature.

(実施例1〜4の発光装置の作製)
まず、蛍光体材料と、バインダ原料と、フィラーと、希釈溶媒とを混合し、原料混合物を作製した。蛍光体材料としては、平均粒子径が15μm程度のYAl12:Ceよりなる蛍光体粒子とCaSrS:Euよりなる蛍光体粒子とを用いた。バインダ原料としては、実施例1ではエチルシリケート、実施例2ではペルヒドロポリシラザン、実施例3ではケイ酸ナトリウムの水和物、又は、実施例4ではシリカあるいはアモルファスシリカの超微粒子粉末を溶剤で懸濁化したものをそれぞれ用いた。フィラーとしては、平均粒子径が15μm程度の二酸化ケイ素粒子を用いた。希釈溶媒としては、テルピネオールを用いた。次いで、透明なガラス板よりなる形成基材17の一面に、作製した原料混合物を印刷し、必要な厚みとなるように塗布した。そののち、150℃で乾燥させることにより、希釈溶媒を除去した。これにより得られた各波長変換部材16を用い、図1に示したような発光装置10をそれぞれ作製した。発光素子12には、青色LEDを用いた。
(Production of light-emitting devices of Examples 1 to 4)
First, a phosphor material, a binder raw material, a filler, and a dilution solvent were mixed to prepare a raw material mixture. As the phosphor material, phosphor particles made of Y 3 Al 5 O 12 : Ce having an average particle diameter of about 15 μm and phosphor particles made of CaSrS: Eu were used. As a binder raw material, ethyl silicate in Example 1, perhydropolysilazane in Example 2, sodium silicate hydrate in Example 3, or ultrafine powder of silica or amorphous silica in Example 4 was suspended with a solvent. Each turbid product was used. As the filler, silicon dioxide particles having an average particle diameter of about 15 μm were used. Terpineol was used as a dilution solvent. Subsequently, the produced raw material mixture was printed on one surface of the forming substrate 17 made of a transparent glass plate, and applied to a required thickness. After that, the diluted solvent was removed by drying at 150 ° C. Using each wavelength conversion member 16 obtained in this manner, the light emitting device 10 as shown in FIG. 1 was produced. A blue LED was used for the light emitting element 12.

(比較例1の発光装置の作製)
比較例1として、酸化ケイ素前駆体に変えてシリコーン樹脂を用い、蛍光体材料とシリコーン樹脂と混合して形成基材の一面に印刷により塗布し、乾燥させて波長変換部材を形成したことを除き、実施例1〜4と同様にして発光素子を作製した。
(Production of light-emitting device of Comparative Example 1)
As Comparative Example 1, except that a silicon resin was used instead of the silicon oxide precursor, a phosphor material and a silicone resin were mixed, applied to one surface of the forming substrate by printing, and dried to form a wavelength conversion member. A light emitting device was fabricated in the same manner as in Examples 1 to 4.

(評価方法1)
実施例1〜4及び比較例1で作製した波長変換部材16について、85℃、85%RHの高温高湿度環境下における曝露試験を行い、輝度の経時変化を調べた。得られた結果のうち実施例1及び比較例1の結果を図2に示す。図2において縦軸は、それぞれの初期輝度を100とした場合の相対的な輝度値である。輝度の定義は、青色LEDで励起され、波長変換部材16により波長変換された後の光のスペクトルのピーク高さの値とする。なお、図2には、実施例1の結果を代表して示したが、実施例2〜4についても同様の結果が得られた。
(Evaluation method 1)
About the wavelength conversion member 16 produced in Examples 1-4 and the comparative example 1, the exposure test in 85 degreeC and 85% RH high temperature high humidity environment was done, and the time-dependent change of the brightness | luminance was investigated. Of the obtained results, the results of Example 1 and Comparative Example 1 are shown in FIG. In FIG. 2, the vertical axis represents relative luminance values when the initial luminance is 100. The definition of luminance is a value of the peak height of the spectrum of light after being excited by the blue LED and wavelength-converted by the wavelength conversion member 16. In addition, in FIG. 2, although the result of Example 1 was shown as a representative, the same result was obtained also about Examples 2-4.

(評価結果1)
実施例1〜4については2000時間後も95%以上の輝度を維持していたのに対し、比較例1については20時間を過ぎたところから徐々に輝度維持率が低下し、2000時間後には83%まで輝度維持率が低下した。
(Evaluation result 1)
In Examples 1 to 4, the luminance of 95% or more was maintained after 2000 hours, whereas in Comparative Example 1, the luminance maintenance rate gradually decreased after 20 hours, and after 2000 hours. The luminance maintenance rate decreased to 83%.

(評価方法2)
実施例1〜4及び比較例1の波長変換部材16を大気オーブンで加熱し、100℃から500℃までの乾燥高温環境曝露試験を行い、輝度の経時変化を調べた。また、200℃を超える高温領域では波長変換部材16が破壊するなどの可能性があるため、目視での外観確認も同時に行った。各温度の曝露時間は24時間とし、実用温度域の上限に近い150℃、200℃のみ2000時間までの長期曝露を実施した。得られた結果のうち実施例1及び比較例1の結果を図3から図5に示す。図3は、24時間曝露後における曝露温度と発光輝度との関係を示すものであり、図4は、150℃における乾燥高温環境曝露試験の結果であり、図5は、200℃における乾燥高温環境曝露試験の結果である。図3から図5において縦軸は、それぞれの初期輝度を100とした場合の相対的な輝度値である。なお、図3から図5には、実施例1の結果を代表して示したが、実施例2〜4についても同様の結果が得られた。
(Evaluation method 2)
The wavelength conversion member 16 of Examples 1 to 4 and Comparative Example 1 was heated in an atmospheric oven, a dry high temperature environment exposure test from 100 ° C. to 500 ° C. was performed, and a change in luminance with time was examined. Further, since there is a possibility that the wavelength conversion member 16 breaks in a high temperature region exceeding 200 ° C., visual appearance confirmation was also performed at the same time. The exposure time at each temperature was 24 hours, and long-term exposure was performed up to 2000 hours only at 150 ° C. and 200 ° C. close to the upper limit of the practical temperature range. Of the obtained results, the results of Example 1 and Comparative Example 1 are shown in FIGS. FIG. 3 shows the relationship between the exposure temperature and the luminance after 24 hours exposure, FIG. 4 shows the results of a dry high temperature environment exposure test at 150 ° C., and FIG. 5 shows the dry high temperature environment at 200 ° C. It is the result of an exposure test. 3 to 5, the vertical axis represents relative luminance values when the initial luminance is 100. 3 to 5 show the results of Example 1 as representatives, but similar results were obtained for Examples 2 to 4.

(評価結果2)
図3に示したように、各温度における24時間曝露試験では、比較例1は、温度が高くなるにつれ輝度維持率が低下し、300℃以上では熱による化学変化により波長変換部材が粉々に剥離した。これに対して、実施例1〜4では、外観上の変化は無く、輝度維持率の低下も見られなかった。
(Evaluation result 2)
As shown in FIG. 3, in the 24-hour exposure test at each temperature, in Comparative Example 1, the luminance maintenance rate decreases as the temperature increases, and the wavelength conversion member peels off due to a chemical change due to heat at 300 ° C. or higher. did. On the other hand, in Examples 1 to 4, there was no change in appearance, and no decrease in luminance maintenance rate was observed.

図4及び図5に示したように、150℃及び200℃における1000時間までの長期曝露試験では、実施例1〜4は150℃、200℃共に変化が見られなかったのに対し、比較例1は、150℃では50時間後から徐々に輝度維持率の低下が見られ、2000時間後には87%まで輝度維持率が低下し、200℃では10時間後で輝度維持率の低下傾向が見られ1000時間後には67%まで輝度維持率が低下し、1200時間後の時点で外観確認を行ったところ熱による化学変化により波長変換部材が粉々に剥離した。   As shown in FIGS. 4 and 5, in the long-term exposure test up to 1000 hours at 150 ° C. and 200 ° C., Examples 1 to 4 showed no change in both 150 ° C. and 200 ° C., whereas the comparative example No. 1 shows a gradual decrease in luminance maintenance rate after 50 hours at 150 ° C., a decrease in luminance maintenance rate to 87% after 2000 hours, and a decrease in luminance maintenance rate after 10 hours at 200 ° C. After 1000 hours, the luminance maintenance rate decreased to 67%, and when the appearance was confirmed after 1200 hours, the wavelength conversion member peeled off due to a chemical change caused by heat.

(実施例5〜40,比較例2〜7)
まず、蛍光体材料と、バインダ原料と、場合により希釈溶媒と、場合によりフィラーとを混合し、原料混合物を作製した。各実施例及び各比較例における蛍光体材料の蛍光体粒子の材質・蛍光体粒子の平均粒子径(粒径)・添加量・被覆層の材質、フィラーの材質・平均粒子径(粒径)・添加量、バインダー原料の材質・添加量を表1〜4に示す。なお、蛍光体材料としては、蛍光体材料Aと蛍光体材料Bの両方、又は、どちらか一方を用いた。蛍光体材料Aは蛍光体粒子に被覆層を形成しておらず、蛍光体材料Bは蛍光体粒子に場合により被覆層を形成した。希釈溶媒としてはα-テルピネオールを用いた。
(Examples 5 to 40, Comparative Examples 2 to 7)
First, a phosphor material, a binder raw material, a dilution solvent in some cases, and a filler in some cases were mixed to produce a raw material mixture. The phosphor material of the phosphor material in each example and each comparative example, the average particle diameter (particle size) of the phosphor particles, the addition amount, the material of the coating layer, the material of the filler, the average particle diameter (particle diameter) Tables 1 to 4 show the addition amount and the material and addition amount of the binder raw material. As the phosphor material, both or one of the phosphor material A and the phosphor material B were used. The phosphor material A did not form a coating layer on the phosphor particles, and the phosphor material B optionally formed a coating layer on the phosphor particles. Α-Terpineol was used as a dilution solvent.

次に、ガラス板よりなる形成基材17の一面に、作製した原料混合物を塗布し、熱処理又は室温でバインダー原料を反応させて、所定の厚さの波長変換部材16を得た。各実施例及び各比較例における原料混合物の塗布法、熱処理温度、及び、波長変換部材16の厚みを表2,4に示す。波長変換部材16の厚みは、熱処理又は室温で反応させた後の厚みである。   Next, the prepared raw material mixture was applied to one surface of the forming substrate 17 made of a glass plate, and the binder raw material was reacted at a heat treatment or at room temperature to obtain the wavelength conversion member 16 having a predetermined thickness. Tables 2 and 4 show the coating method of the raw material mixture, the heat treatment temperature, and the thickness of the wavelength conversion member 16 in each Example and each Comparative Example. The thickness of the wavelength conversion member 16 is the thickness after heat treatment or reaction at room temperature.

Figure 2014241431
Figure 2014241431

Figure 2014241431
Figure 2014241431

Figure 2014241431
Figure 2014241431

Figure 2014241431
Figure 2014241431

これにより得られた各波長変換部材16について、初期特性として初期の発光輝度を調べた。また、高温高湿試験として、85℃、85%RHの高温高湿度環境下における曝露試験を行い、2000時間経過後の発光輝度の低下率を調べた。更に、乾燥高温試験として、150℃又は200℃の乾燥高温環境下における暴露試験を行い、2000時間経過後の発光輝度の低下率を調べた。各波長変換部材16の発光輝度は、図1に示したような発光装置10に各波長変換材16を設置して、300Wの青色LED素子より励起光を当て、その時の発光輝度をパワーメータにより測定した。波長変換部材16と発光素子12の距離は10mmとした。   With respect to each of the wavelength conversion members 16 thus obtained, initial light emission luminance was examined as an initial characteristic. In addition, as a high-temperature and high-humidity test, an exposure test was performed in a high-temperature and high-humidity environment of 85 ° C. and 85% RH, and the reduction rate of the emission luminance after 2000 hours was examined. Furthermore, as a dry high temperature test, an exposure test in a dry high temperature environment of 150 ° C. or 200 ° C. was performed, and the reduction rate of the emission luminance after 2000 hours was examined. The light emission luminance of each wavelength conversion member 16 is obtained by installing each wavelength conversion material 16 in the light emitting device 10 as shown in FIG. 1 and applying excitation light from a 300 W blue LED element, and the light emission luminance at that time is measured by a power meter. It was measured. The distance between the wavelength conversion member 16 and the light emitting element 12 was 10 mm.

得られた結果を表5,6に示す。表5,6において、初期特性の発光輝度は実施例14の発光輝度を100とした場合の相対発光輝度である。また、高温高湿試験及び乾燥高温試験における発光輝度の低下率は、各実施例及び各比較例における初期特性の発光輝度からの低下率である。   The obtained results are shown in Tables 5 and 6. In Tables 5 and 6, the light emission luminance of the initial characteristics is the relative light emission luminance when the light emission luminance of Example 14 is 100. Moreover, the reduction rate of the light emission luminance in the high temperature and high humidity test and the dry high temperature test is a reduction rate from the light emission luminance of the initial characteristics in each Example and each Comparative Example.

Figure 2014241431
Figure 2014241431

Figure 2014241431
Figure 2014241431

表5,6に示したように、本実施例によれば、初期特性としての相対発光輝度は80%以上であったが、550℃以上で熱処理した比較例3〜7では、70%以下と低かった。また、シリコーン樹脂を用いた比較例2では、高温高湿試験における発光輝度低下率が15%、150℃の高温乾燥試験における発光輝度低下率が12%、200℃の乾燥高温試験では1200時間後には波長変換部材が剥離し、1000時間後における発光輝度低下率が33%であった。これに対して、本実施例によれば、高温高湿試験、150℃の高温乾燥試験、及び、200℃の乾燥高温試験のいずれにおいても、発光輝度低下率は3%以下と大幅に改善することができた。   As shown in Tables 5 and 6, according to this example, the relative luminance as an initial characteristic was 80% or more, but in Comparative Examples 3 to 7 heat-treated at 550 ° C. or more, it was 70% or less. It was low. Further, in Comparative Example 2 using a silicone resin, the emission luminance decrease rate in the high temperature and high humidity test is 15%, the emission luminance decrease rate in the high temperature drying test at 150 ° C. is 12%, and in the drying high temperature test at 200 ° C. after 1200 hours. The wavelength conversion member was peeled off, and the reduction rate of light emission luminance after 1000 hours was 33%. On the other hand, according to this example, the emission luminance reduction rate is greatly improved to 3% or less in any of the high temperature and high humidity test, the high temperature drying test at 150 ° C., and the high temperature drying test at 200 ° C. I was able to.

更に、実施例5と比較例2の波長変換部材16について、更に、波長変換部材16と発光素子12の距離を1mm、2mm、5mm、又は、10mmと変化させて、図1に示したような発光装置10を作製し、5000時間連続発光させた後、初期特性の発光輝度からの相対発光輝度低下率を調べた。得られた結果を表7に示す。   Further, for the wavelength conversion member 16 of Example 5 and Comparative Example 2, the distance between the wavelength conversion member 16 and the light emitting element 12 was further changed to 1 mm, 2 mm, 5 mm, or 10 mm, as shown in FIG. After the light emitting device 10 was manufactured and light was continuously emitted for 5000 hours, the relative light emission luminance reduction rate from the light emission luminance of the initial characteristics was examined. The results obtained are shown in Table 7.

Figure 2014241431
Figure 2014241431

表7に示したように、実施例5によれば、波長変換部材16と発光素子12との距離を1mmとしても相対発光輝度低下率は2%であったのに対して、比較例2では、10mmまで離さないと相対発光輝度低下率を2%以下とすることはできなかった。   As shown in Table 7, according to Example 5, even when the distance between the wavelength conversion member 16 and the light emitting element 12 was 1 mm, the relative light emission luminance reduction rate was 2%, whereas in Comparative Example 2, Unless the distance was 10 mm, the relative light emission luminance reduction rate could not be reduced to 2% or less.

(まとめ)
以上の結果から、本実施例によれば、耐熱性を大幅に向上させることができることが分かった。
(Summary)
From the above results, it was found that the heat resistance can be greatly improved according to this example.

以上、実施の形態を挙げて本発明を説明したが、本発明は上記実施の形態に限定されるものではなく、種々変形可能である。例えば、上記実施の形態では、発光装置10の構造について具体的に説明したが、他の構造を有するように構成してもよい。また、上記実施の形態では、波長変換部材16を形成基材17の一面に塗布して形成する場合について説明したが、他の方法により形成してもよい。例えば、原料混合物を目的とする形状の型に入れて酸化させることにより波長変換部材16を形成し、型から取り出して配設するようにしてもよい。   The present invention has been described with reference to the embodiment. However, the present invention is not limited to the above embodiment, and various modifications can be made. For example, in the above-described embodiment, the structure of the light-emitting device 10 has been specifically described. However, the light-emitting device 10 may have another structure. Moreover, although the said embodiment demonstrated the case where the wavelength conversion member 16 was apply | coated and formed on one surface of the formation base material 17, you may form by another method. For example, the wavelength conversion member 16 may be formed by putting the raw material mixture in a mold having a desired shape and oxidizing it, and may be disposed after being removed from the mold.

LEDまたはLDなどの発光装置に用いることができる。   It can be used for light emitting devices such as LEDs or LDs.

10…発光装置、11…基盤、12…蛍光素子、13…ワイヤ、14…リフレクタ枠、15…空間、16…波長変換部材、17…形成基材   DESCRIPTION OF SYMBOLS 10 ... Light-emitting device, 11 ... Base | substrate, 12 ... Fluorescent element, 13 ... Wire, 14 ... Reflector frame, 15 ... Space, 16 ... Wavelength conversion member, 17 ... Formation base material

Claims (10)

発光素子と、この発光素子との間に空間を挟んで配置された波長変換部材とを備え、前記波長変換部材は、粒子状の蛍光体材料と、バインダとを含む発光装置の製造方法であって、
前記波長変換部材は、形成基材の一面に、前記蛍光体材料とバインダ原料とを含む原料混合物を印刷法により塗布し、前記バインダ原料を常温で反応させるか、又は、500℃以下の温度で熱処理することにより形成し、
前記バインダ原料は、加水分解あるいは酸化により酸化物となる酸化物前駆体、ケイ酸化合物、シリカ、及び、アモルファスシリカからなる群のうちの少なくとも1種を含む
ことを特徴とする発光装置の製造方法。
A light-emitting element and a wavelength conversion member disposed with a space between the light-emitting element, wherein the wavelength conversion member is a method for manufacturing a light-emitting device including a particulate phosphor material and a binder. And
The wavelength conversion member is formed by applying a raw material mixture containing the phosphor material and a binder raw material on one surface of a forming substrate by a printing method, and reacting the binder raw material at room temperature, or at a temperature of 500 ° C. or lower. Formed by heat treatment,
The binder raw material includes at least one member selected from the group consisting of an oxide precursor that becomes an oxide by hydrolysis or oxidation, a silicate compound, silica, and amorphous silica. .
前記発光素子と前記波長変換部材との間の距離は、1mm以上とすることを特徴とする請求項1記載の発光装置の製造方法。   The method for manufacturing a light emitting device according to claim 1, wherein a distance between the light emitting element and the wavelength conversion member is 1 mm or more. 前記発光素子と前記波長変換部材との間の距離は、2mm以上50mm以下とすることを特徴とする請求項1又は請求項2に記載の発光装置の製造方法。   The method for manufacturing a light emitting device according to claim 1 or 2, wherein a distance between the light emitting element and the wavelength conversion member is 2 mm or more and 50 mm or less. 前記蛍光体材料は蛍光体粒子を含み、この蛍光体粒子の平均粒子径は、5μmから20μmであることを特徴とする請求項1から請求項3のいずれか1に記載の発光装置の製造方法。   4. The method of manufacturing a light emitting device according to claim 1, wherein the phosphor material includes phosphor particles, and an average particle diameter of the phosphor particles is 5 μm to 20 μm. 5. . 前記波長変換部材の膜厚は、30μm以上1mm以下とすることを特徴とする請求項1から請求項4のいずれか1に記載の発光装置の製造方法。   5. The method for manufacturing a light emitting device according to claim 1, wherein the wavelength conversion member has a thickness of 30 μm to 1 mm. 前記蛍光体材料は、蛍光体粒子を含み、この蛍光体粒子の表面には被覆層が形成されていることを特徴とする請求項1から請求項5のいずれか1に記載の発光装置の製造方法。   The manufacturing method of the light-emitting device according to claim 1, wherein the phosphor material includes phosphor particles, and a coating layer is formed on a surface of the phosphor particles. Method. 前記被覆層は酸化イットリウムを含むことを特徴とする請求項6記載の発光装置の製造方法。   The method for manufacturing a light emitting device according to claim 6, wherein the coating layer contains yttrium oxide. 前記原料混合物には、更に、フィラーを含むことを特徴とする請求項1から請求項7のいずれか1に記載の発光装置の製造方法。   The method for manufacturing a light emitting device according to claim 1, wherein the raw material mixture further contains a filler. 前記フィラーは、前記バインダと同質材料であることを特徴とする請求項8記載の発光装置の製造方法。   The method for manufacturing a light emitting device according to claim 8, wherein the filler is made of the same material as the binder. 前記フィラーの平均粒子径は、10μmから20μmであることを特徴とする請求項8又は請求項9に記載の発光装置の製造方法。   The method for manufacturing a light emitting device according to claim 8 or 9, wherein the filler has an average particle size of 10 µm to 20 µm.
JP2014158273A 2013-05-16 2014-08-02 Method of manufacturing light-emitting device Pending JP2014241431A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014158273A JP2014241431A (en) 2013-05-16 2014-08-02 Method of manufacturing light-emitting device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013103835 2013-05-16
JP2013103835 2013-05-16
JP2014158273A JP2014241431A (en) 2013-05-16 2014-08-02 Method of manufacturing light-emitting device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014090301A Division JP2015038960A (en) 2013-05-16 2014-04-24 Light emitting device

Publications (1)

Publication Number Publication Date
JP2014241431A true JP2014241431A (en) 2014-12-25

Family

ID=52140504

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2014090301A Pending JP2015038960A (en) 2013-05-16 2014-04-24 Light emitting device
JP2014158273A Pending JP2014241431A (en) 2013-05-16 2014-08-02 Method of manufacturing light-emitting device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2014090301A Pending JP2015038960A (en) 2013-05-16 2014-04-24 Light emitting device

Country Status (2)

Country Link
JP (2) JP2015038960A (en)
TW (1) TWI685132B (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160143924A (en) * 2015-06-04 2016-12-15 엘지이노텍 주식회사 Composition for Manufacturing Ceramic Fluorescent Plate, Ceramic Fluorescent Plate and Light Emitting Apparatus
WO2017126441A1 (en) 2016-01-22 2017-07-27 日本特殊陶業株式会社 Wavelength conversion member and light-emitting device
WO2017126440A1 (en) 2016-01-22 2017-07-27 日本特殊陶業株式会社 Wavelength conversion member and light-emitting device
KR20180113573A (en) 2016-04-25 2018-10-16 니뽄 도쿠슈 도교 가부시키가이샤 Wavelength converting member, method of manufacturing the same, and light emitting device
JP2019159308A (en) * 2018-03-13 2019-09-19 日本電気硝子株式会社 Wavelength conversion member and light-emitting device having the same
WO2019176622A1 (en) * 2018-03-13 2019-09-19 日本電気硝子株式会社 Wavelength conversion member and light-emitting device using same
US10612762B2 (en) 2016-03-29 2020-04-07 Ngk Spark Plug Co., Ltd. Wavelength conversion member, manufacturing method therefor, and light-emitting device

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10797209B2 (en) 2016-02-05 2020-10-06 Maven Optronics Co., Ltd. Light emitting device with beam shaping structure and manufacturing method of the same
TWI583028B (en) * 2016-02-05 2017-05-11 行家光電股份有限公司 Light emitting device with beam shaping structure and manufacturing method of the same
CN109075236A (en) 2016-04-12 2018-12-21 松下知识产权经营株式会社 Wavelength converting member
WO2018154868A1 (en) * 2017-02-27 2018-08-30 パナソニックIpマネジメント株式会社 Wavelength conversion member
JP7019496B2 (en) * 2017-04-11 2022-02-15 日本特殊陶業株式会社 Wavelength conversion member and its manufacturing method
JP7268315B2 (en) * 2017-12-12 2023-05-08 日本電気硝子株式会社 WAVELENGTH CONVERSION MEMBER, MANUFACTURING METHOD THEREOF, AND LIGHT EMITTING DEVICE
US10804442B2 (en) 2018-01-29 2020-10-13 Nichia Corporation Light emitting device
CN113471350A (en) 2020-03-31 2021-10-01 日亚化学工业株式会社 Wavelength conversion member and method for manufacturing same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002089219A1 (en) * 2001-04-17 2002-11-07 Nichia Corporation Light-emitting apparatus
JP2004088013A (en) * 2002-08-29 2004-03-18 Nichia Chem Ind Ltd Light-emitting device and manufacturing method thereof
WO2011077548A1 (en) * 2009-12-25 2011-06-30 コニカミノルタオプト株式会社 Light-emitting device
JP2012031377A (en) * 2010-06-29 2012-02-16 Nihon Ceratec Co Ltd Phosphor material and light-emitting device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200831658A (en) * 2007-01-19 2008-08-01 Kismart Corp Wavelength converting structure and manufacture and use of the same
JP4974310B2 (en) * 2010-10-15 2012-07-11 三菱化学株式会社 White light emitting device and lighting apparatus
US9004705B2 (en) * 2011-04-13 2015-04-14 Intematix Corporation LED-based light sources for light emitting devices and lighting arrangements with photoluminescence wavelength conversion
JP2013041876A (en) * 2011-08-11 2013-02-28 Mitsubishi Chemicals Corp White light emitting device and semiconductor light emitting system
US9897276B2 (en) * 2011-08-26 2018-02-20 Cree, Inc. Reduced phosphor lighting devices

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002089219A1 (en) * 2001-04-17 2002-11-07 Nichia Corporation Light-emitting apparatus
JP2004088013A (en) * 2002-08-29 2004-03-18 Nichia Chem Ind Ltd Light-emitting device and manufacturing method thereof
WO2011077548A1 (en) * 2009-12-25 2011-06-30 コニカミノルタオプト株式会社 Light-emitting device
JP2012031377A (en) * 2010-06-29 2012-02-16 Nihon Ceratec Co Ltd Phosphor material and light-emitting device

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160143924A (en) * 2015-06-04 2016-12-15 엘지이노텍 주식회사 Composition for Manufacturing Ceramic Fluorescent Plate, Ceramic Fluorescent Plate and Light Emitting Apparatus
KR102394051B1 (en) 2015-06-04 2022-05-06 엘지이노텍 주식회사 Composition for Manufacturing Ceramic Fluorescent Plate, Ceramic Fluorescent Plate and Light Emitting Apparatus
WO2017126441A1 (en) 2016-01-22 2017-07-27 日本特殊陶業株式会社 Wavelength conversion member and light-emitting device
WO2017126440A1 (en) 2016-01-22 2017-07-27 日本特殊陶業株式会社 Wavelength conversion member and light-emitting device
KR20180083380A (en) 2016-01-22 2018-07-20 니뽄 도쿠슈 도교 가부시키가이샤 Wavelength converting member and light emitting device
KR20180095645A (en) 2016-01-22 2018-08-27 니뽄 도쿠슈 도교 가부시키가이샤 Wavelength converting member and light emitting device
US10707385B2 (en) 2016-01-22 2020-07-07 Ngk Spark Plug Co., Ltd. Wavelength conversion member and light-emitting device
US10508801B2 (en) 2016-01-22 2019-12-17 Ngk Spark Plug Co., Ltd. Wavelength conversion member and light-emitting device
US10612762B2 (en) 2016-03-29 2020-04-07 Ngk Spark Plug Co., Ltd. Wavelength conversion member, manufacturing method therefor, and light-emitting device
US10590341B2 (en) 2016-04-25 2020-03-17 Ngk Spark Plug Co., Ltd. Wavelength conversion member, production method therefor, and light emitting device
KR20180113573A (en) 2016-04-25 2018-10-16 니뽄 도쿠슈 도교 가부시키가이샤 Wavelength converting member, method of manufacturing the same, and light emitting device
WO2019176622A1 (en) * 2018-03-13 2019-09-19 日本電気硝子株式会社 Wavelength conversion member and light-emitting device using same
JP2019159308A (en) * 2018-03-13 2019-09-19 日本電気硝子株式会社 Wavelength conversion member and light-emitting device having the same
CN111448489A (en) * 2018-03-13 2020-07-24 日本电气硝子株式会社 Wavelength conversion member and light emitting device using the same
JP7469847B2 (en) 2018-03-13 2024-04-17 日本電気硝子株式会社 Wavelength conversion member and light emitting device using same

Also Published As

Publication number Publication date
TW201501367A (en) 2015-01-01
TWI685132B (en) 2020-02-11
JP2015038960A (en) 2015-02-26

Similar Documents

Publication Publication Date Title
JP2014241431A (en) Method of manufacturing light-emitting device
JP2015065425A (en) Light emitting device and manufacturing method of the same
JP5326182B2 (en) Light emitting device, phosphor for light emitting element, and method for manufacturing the same
TWI682021B (en) Coated narrow band green phosphor
KR20130099097A (en) Silicophosphate luminophores
TW200907025A (en) Process for the preparation of phosphors based on orthosilicates for pcLEDs
JP2015090887A (en) Light-emitting element and light-emitting device
KR20150083099A (en) Eu-activated luminophores
TWI667814B (en) Light emitting element, light emitting device and manufacturing method thereof
JP5107882B2 (en) Sheet for optical semiconductor encapsulation
TWI660526B (en) Light-emitting element, light-emitting device, and manufacturing method thereof
JP5819960B2 (en) Carbodiimide luminescent material
TW201245415A (en) Carbodiimide phosphors
JP4948015B2 (en) Aluminate blue phosphor and light emitting device using the same
JP6489543B2 (en) Wavelength conversion member, light emitting device, and method of manufacturing wavelength conversion member
JP6394742B2 (en) Method for manufacturing light emitting device
WO2023162445A1 (en) Wavelength conversion member and light emitting device
WO2013108782A1 (en) Oxynitride-based phosphor and light emitting device using same
KR20140135638A (en) Luminescent device
TWI464235B (en) Phosphor composition and light emitting diode device using the same
JP2013089769A (en) Light emitting module
WO2015064046A1 (en) Wavelength conversion particle, method for producing same, wavelength conversion member, and light-emitting device
JP2008081586A (en) Fluorophor particle and wavelength converter and light-emitting device
JP2023124367A (en) Wavelength conversion member, manufacturing method therefor, and light-emitting device
US8906264B2 (en) Silicate phosphors

Legal Events

Date Code Title Description
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20140930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141008

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141205

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150406

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150406

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150413

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20150508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151029