WO2015064046A1 - Wavelength conversion particle, method for producing same, wavelength conversion member, and light-emitting device - Google Patents

Wavelength conversion particle, method for producing same, wavelength conversion member, and light-emitting device Download PDF

Info

Publication number
WO2015064046A1
WO2015064046A1 PCT/JP2014/005297 JP2014005297W WO2015064046A1 WO 2015064046 A1 WO2015064046 A1 WO 2015064046A1 JP 2014005297 W JP2014005297 W JP 2014005297W WO 2015064046 A1 WO2015064046 A1 WO 2015064046A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength conversion
phosphor particles
coating
alkaline earth
particles
Prior art date
Application number
PCT/JP2014/005297
Other languages
French (fr)
Japanese (ja)
Inventor
真治 柴本
山崎 圭一
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2015064046A1 publication Critical patent/WO2015064046A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/77342Silicates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements

Definitions

  • the present invention relates to a wavelength conversion particle that emits light having a wavelength different from the absorbed light, a manufacturing method thereof, a wavelength conversion member having wavelength conversion particles, and a light emitting device having the wavelength conversion member.
  • LEDs Light emitting diodes
  • signal lights mobile phones
  • various electrical decorations in-vehicle displays
  • display devices various display devices, and the like.
  • light-emitting devices that combine LEDs and phosphor particles are widely used in the fields of illumination and display.
  • the LED is sealed with a translucent medium containing phosphor particles (see, for example, Patent Documents 1 and 2).
  • Patent Document 1 describes wavelength conversion particles in which phosphor particles are covered with a coating of aluminum oxide or magnesium oxide.
  • Patent Document 2 describes wavelength conversion particles obtained by treating the surface of phosphor particles containing an alkaline earth metal with fluoride.
  • the wavelength conversion particle of the present invention is selected from the group consisting of phosphor particles containing alkaline earth metal, the surface of the phosphor particles, and consisting of sulfate, borate and titanate of alkaline earth metal And a film having at least one of them as a main component. And the refractive index of a film is smaller than a fluorescent substance particle.
  • the incidence efficiency of light incident on the phosphor particles and the emission efficiency of light emitted from the phosphor particles can be increased.
  • FIG. 2A The figure which shows the scanning electron micrograph of the cross section of the wavelength conversion particle which concerns on embodiment of this invention.
  • the figure which shows the scanning electron micrograph of other wavelength conversion particles The figure which shows the partial enlarged photograph of FIG.
  • Patent Document 1 discloses wavelength conversion particles in which phosphor particles are covered with a coating made of aluminum oxide or the like. This coating suppresses the aggregation of the wavelength conversion particles and improves the dispersibility of the wavelength conversion particles in the translucent medium.
  • the refractive indexes of the phosphor particles and aluminum oxide are almost the same value. Therefore, the amount of reflected light at the interface between the phosphor particles and aluminum oxide is not large.
  • the refractive index of aluminum oxide is larger than the refractive index of the translucent medium. Due to the reflection, the emission efficiency of the light emitted from the phosphor particles is reduced.
  • Patent Document 2 discloses wavelength conversion particles in which a fluoride film is formed on phosphor particles for the purpose of improving moisture resistance.
  • the refractive index of fluoride is lower than the refractive index of phosphor particles. Therefore, the emission efficiency of light emitted from the phosphor particles is reduced.
  • fluoride materials generally require attention in handling, and may reduce the productivity of wavelength conversion particles.
  • the wavelength conversion particles of the present invention in which the phosphor particles are covered with a coating to improve the light incident and emission efficiency, and the moisture resistance is improved, will be described with reference to the drawings.
  • the dimension ratio of drawing is exaggerated on account of description, and may differ from an actual ratio.
  • FIG. 1 is a schematic cross-sectional view of a wavelength conversion member 5 including wavelength conversion particles 1 according to an embodiment of the present invention.
  • the wavelength conversion particle 1 is selected from the group consisting of phosphor particles 2 containing alkaline earth metal and the surface of the phosphor particle 2 and consisting of sulfate, borate and titanate of alkaline earth metal. And a film 3 containing at least one of them as a main component.
  • the refractive index of the coating 3 is smaller than the refractive index of the phosphor particles 2.
  • the phosphor particles absorb the incident excitation light and emit light having a longer wavelength than the excitation light.
  • phosphor particles are often used dispersed in a translucent medium.
  • the refractive index of the phosphor particles is, for example, 1.8
  • the refractive index of the translucent medium is, for example, 1.4.
  • Incident light and outgoing light are reflected at the interface between the phosphor particles and the translucent medium. If the refractive index difference between the two is large, these lights are likely to be reflected at the interface. When there is much reflected light, the conversion efficiency in a fluorescent substance particle will fall. Therefore, it is preferable to reduce the refractive index difference at the interface.
  • the refractive index of the phosphor particles 2 containing an alkaline earth metal is, for example, 1.8
  • the refractive index of the translucent medium 4 is, for example, 1.4
  • the refractive index of the coating 3 containing as a main component at least one selected from the group consisting of alkaline earth metal sulfates, borates and titanates is, for example, 1.4 to 1.8. That is, the refractive index of the coating 3 is preferably a value between the refractive index of the phosphor particles 2 and the refractive index of the translucent medium 4.
  • the refractive index of the coating 3 is preferably smaller than the refractive index of the phosphor particles 2.
  • the refractive index of the translucent medium 4 is preferably smaller than the refractive index of the coating 3.
  • alkaline earth metal sulfates, borates and titanates absorb little blue light, which is excitation light. Therefore, these are particularly suitable as the material for the coating 3.
  • phosphor particles containing an alkaline earth metal water vapor or moisture in the air decomposes the surface of the phosphor particles, and the characteristics of the phosphor particles are deteriorated. For this reason, when used in the atmosphere for a long time, the emission intensity of the phosphor particles may decrease or the emission color may change. However, even alkaline earth metals, sulfates, borates and titanates are hardly soluble compounds in water. By covering the surface of the phosphor particles 2 with the coating 3, the phosphor particles 2 can be prevented from coming into contact with moisture, and deterioration of the light emission characteristics of the phosphor particles 2 can be suppressed.
  • At least one selected from the group consisting of magnesium (Mg), calcium (Ca), strontium (Sr), and barium (Ba) can be used.
  • the phosphor particles 2 preferably contain an alkaline earth metal silicate.
  • the phosphor containing an alkaline earth metal silicate include a phosphor having a crystal structure of the base material substantially the same as the crystal structure of M 3 SiO 5 or M 2 SiO 4 .
  • M represents at least one selected from the group consisting of Mg, Ca, Sr and Ba.
  • M 3 The crystal structure substantially the same structure of SiO 5 or M 2 SiO 4, when measured by X-ray diffractometry, has a similar X-ray diffraction pattern with M 3 SiO 5 or M 2 SiO 4 Means.
  • Phosphor particles 2 containing an alkaline earth metal silicate include Fe, Mn, Cr, Bi, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm and Yb as activators. It is preferable to contain at least one element selected from the group consisting of Moreover, the phosphor particles 2 may contain a metal element other than the alkaline earth metal, for example, Zn, Ga, Al, Y, Gd, and Tb. Furthermore, the phosphor particles 2 may contain a small amount of a halogen element (for example, F, Cl, Br), sulfur (S), or phosphorus (P). One element may be used alone or two or more elements may be used in combination from metal elements other than alkaline earth metals, halogen elements, sulfur and phosphorus.
  • a halogen element for example, F, Cl, Br
  • S sulfur
  • P phosphorus
  • Examples of the material of the phosphor particles 2 containing an alkaline earth metal silicate include, for example, an orange phosphor having a composition as represented by the general formula (1) and an orange fluorescence having a composition as represented by the general formula (2).
  • the body etc. can be mentioned.
  • M is at least one metal selected from the group consisting of Ba, Ca, Mg, and Zn. Furthermore, 0 ⁇ x ⁇ 1.0 and 2.6 ⁇ y ⁇ 3.3.
  • M is at least one metal selected from the group consisting of Ba, Ca, Mg and Zn.
  • D is a halogen anion selected from the group consisting of F, Cl and Br. Furthermore, 0 ⁇ x ⁇ 1.0 and 2.6 ⁇ y ⁇ 3.3.
  • the phosphor include, for example, Sr 3 SiO 5 : Eu 2+ , (Sr 0.9 Mg 0.025 Ba 0.075 ) 3 SiO 5 : Eu 2+ , (Sr 0.9 Mg 0.05 Ba 0 .05 ) 2.7
  • An orange phosphor such as SiO 5 : Eu 2+ can be mentioned.
  • phosphors containing alkaline earth metal silicates include green or yellow phosphors having a composition of general formula (3) and greens having a composition of general formula (4). Or a yellow fluorescent substance etc. can be mentioned.
  • M is at least one metal selected from the group consisting of Ba, Ca, Mg, and Zn, 0 ⁇ x ⁇ 1.0, and 1.8 ⁇ y ⁇ 2.2.
  • M is at least one metal selected from the group consisting of Ba, Ca, Mg and Zn.
  • D is a halogen anion selected from the group consisting of F, Cl and Br. Furthermore, 0 ⁇ x ⁇ 1.0 and 1.8 ⁇ y ⁇ 2.2.
  • the phosphor for example, (Sr 0.4 Ba 0.6) 2SiO 4 : Eu 2+, (Sr 0.3 Ba 0.7) 2 SiO 4: Eu 2+, (Sr 0.2 Ba 0. 8) 2 SiO 4: Eu 2+ , (Sr 0.57 Ba 0.4 Mg 0.03) 2 SiO 4: can be mentioned Eu 2+ green phosphor, such as F.
  • Green phosphors such as (Sr 0.6 Ba 0.4 ) 2 SiO 4 : Eu 2+ Cl and (Ba, Sr, Ca) 2 (Mg, Zn) Si 2 O 7 : Eu 2+ are also included.
  • yellow phosphors such as (Sr 0.7 Ba 0.3 ) 2 SiO 4 : Eu 2+ F and (Sr 0.9 Ba 0.1 ) 2 SiO 4 : Eu 2+ can be mentioned. 0.72 [(Sr 1.025 Ba 0.925 Mg 0.05 ) Si 1.03 O 4 Eu 0.05 F 0.12 ] .0.28 [Sr 3 Si 1.02 O 5 Eu 0.6 And a yellow phosphor such as F 0.13 ]. Additionally, Ba 2 MgSi 2 O 7: Eu 2+, Ba 2 ZnSi 2 O 7: Eu2 + and the like blue phosphor.
  • the average particle diameter (median diameter, D 50 ) of the phosphor particles 2 is not particularly limited. However, the larger the average particle diameter of the phosphor particles 2, the smaller the defect density in the phosphor particles, and the less energy loss during light emission. Therefore, luminous efficiency is increased. From the viewpoint of improving luminous efficiency, the average particle diameter of the phosphor particles 2 is preferably 1 micrometer or more, and more preferably 5 micrometers or more. In particular, the average particle diameter of the phosphor particles 2 is preferably in the range of 8 micrometers or more and 50 micrometers or less. The average particle diameter of the phosphor particles 2 can be obtained by a laser diffraction / scattering method using a laser diffraction particle size distribution measuring apparatus.
  • alkaline earth metal sulfate that can be the main component of the coating 3 include barium sulfate (BaSO 4 , refractive index: 1.64) and strontium sulfate (SrSO 4 , refractive index: 1.63).
  • alkaline earth metal borate examples include barium metaborate (BaB 2 O 4 ) and strontium borate (SrB 2 O 4 ). These materials are transparent and have a refractive index of about 1.6. Therefore, by using these components as the main component of the film 3, it is possible to suppress light reflection at the interface between the film 3, the phosphor particles 2, and the translucent medium 4. Furthermore, these salts are sparingly soluble in water. Therefore, contact between the phosphor particles 2 and moisture can be prevented, and deterioration of the light emission characteristics of the phosphor particles 2 can be suppressed.
  • alkaline earth metal titanates that can be the main component of the coating 3 include barium titanate (BaTiO 3 ), strontium titanate (SrTiO 3 ), and barium strontium titanate ((Ba x Sr 1-x ) TiO 3 ).
  • barium titanate BaTiO 3
  • strontium titanate SrTiO 3
  • barium strontium titanate (Ba x Sr 1-x ) TiO 3 ).
  • an alkaline earth metal titanate may have a refractive index exceeding 2.0. If the coating 3 is made only of titanate, the refractive index of the coating 3 may not be a value between the refractive index of the phosphor particles 2 and the refractive index of the translucent medium 4.
  • the refractive index of the coating 3 is changed to the refractive index of the phosphor particles 2 and the translucent medium 4.
  • a value between the refractive indexes (for example, 1.4 to 1.8) can be used. Thereby, reflection of the light in the interface of the film 3, the fluorescent substance particle 2, and the translucent medium 4 can be suppressed.
  • the main component of the coating 3 in the wavelength conversion particle 1 is at least one of alkaline earth metal sulfate, borate and titanate. That is, the total content of the alkaline earth metal sulfate, borate and titanate in the coating 3 is 50 mol% or more.
  • other oxides may be mixed in addition to the alkaline earth metal sulfate, borate and titanate. Specifically, aluminum oxide (Al 2 O 3 ), yttrium oxide (Y 2 O 3 ), zirconium oxide (ZrO 2 ), and the like can be used in addition to sulfate, borate, and titanate.
  • tin oxide SnO 2
  • germanium oxide GeO 2
  • titanium oxide TiO 2
  • these oxides are used to form a film 3 having a refractive index intermediate between the phosphor particles 2 and the translucent medium 4. be able to.
  • the total content of the alkaline earth metal sulfate, borate and titanate in the coating 3 is 50 mol% or more. Preferably, it is 80 mol% or more, More preferably, it is 95 mol% or more.
  • alkaline earth metal sulfates, borates and titanates are compounds that are sparingly soluble in water. A higher content in the coating 3 is preferable because deterioration of the phosphor particles 2 due to moisture can be suppressed.
  • the coating 3 covers the surface of the phosphor particle 2 with a substantially uniform thickness.
  • the thickness t of the coating 3 is preferably 5 nm or more and 1000 nm or less, more preferably 10 nm or more and 500 nm or less.
  • the film thickness is 5 nm or more, even if irregularities exist on the surface of the phosphor particle 2, it can be coated almost uniformly.
  • a film thickness is 1000 nm or less, it becomes difficult to make a crack in the film 3, and it can suppress peeling. Therefore, it is possible to suppress a decrease in incident efficiency and emission efficiency of light.
  • the thickness t of the coating 3 is more preferably 20 nm or more and 500 nm or less, and particularly preferably 100 nm or more and 250 nm or less. By setting the thickness within this range, a substantially uniform film is formed, so that the light incident efficiency and the light extraction efficiency can be further improved.
  • the thickness of the coating 3 is measured by performing depth analysis (depth profile measurement) of sulfur (S), boron (B), or titanium (Ti), for example, by X-ray photoelectron spectroscopy (XPS). Can do.
  • the coating 3 covers the entire surface of the phosphor particles 2. However, it is preferable that the coating 3 covers at least 60% or more of the surface of the phosphor particles 2 from the viewpoint of improving light incident efficiency and extraction efficiency. Further, the coating 3 preferably covers 80% or more of the surface of the phosphor particle 2, and more preferably covers 90% or more. When the coverage of the coating 3 is 90% or more, the light incident efficiency and the light emission efficiency can be further improved. Note that the coverage of the coating 3 on the surface of the phosphor particles 2 is, for example, a wide range of sulfur (S), boron (B) or titanium (Ti) contained in the coating 3 by X-ray photoelectron spectroscopy (XPS). It can be measured by scanning analysis.
  • S sulfur
  • B boron
  • Ti titanium
  • wavelength conversion member 5 [Wavelength conversion member] Next, an example of the wavelength conversion member 5 of this embodiment will be described.
  • the shape of the wavelength conversion member shown in FIG. 1 is an example, and is not particularly limited.
  • the wavelength conversion member 5 has the wavelength conversion particles 1 and the translucent medium 4 as described above.
  • the refractive index of the coating 3 is preferably smaller than the refractive index of the phosphor particles 2.
  • the refractive index of the translucent medium 4 is preferably smaller than the refractive index of the coating 3.
  • the wavelength conversion particles 1 are dispersed inside the translucent medium 4.
  • the refractive index of the translucent medium 4 is preferably smaller than the refractive index of the phosphor particles 2.
  • a material for the translucent medium 4 it is preferable to use a silicon compound having a siloxane bond or glass. These materials are excellent in heat resistance and light resistance, particularly durability against light having a short wavelength such as blue to ultraviolet light. Therefore, even if the excitation light incident on the wavelength conversion particle 1 is light in a wavelength range from general blue light to ultraviolet light, deterioration of the translucent medium 4 can be suppressed.
  • silicon compounds examples include silicone resins, organosiloxane hydrolysis condensates, organosiloxane condensates, and the like. These are composite resins produced by crosslinking by a known polymerization technique. As the polymerization method, addition polymerization such as hydrosilylation or radical polymerization can be used.
  • an organic / inorganic hybrid material or the like may be used as the translucent medium 4. These are formed, for example, by mixing and bonding an acrylic resin or an organic component and an inorganic component at the nanometer level or the molecular level.
  • the content of the wavelength conversion particle 1 in the wavelength conversion member 5 is determined in consideration of the types of the wavelength conversion particle 1 and the translucent medium 4, the dimensions of the wavelength conversion member 5, the wavelength conversion ability required for the wavelength conversion member 5, and the like. To be determined as appropriate. However, the content of the wavelength conversion particles 1 in the wavelength conversion member 5 is preferably in the range of 5% by mass to 30% by mass, for example.
  • the wavelength conversion particle 1 When the wavelength conversion member 5 is irradiated with excitation light from the outside, the wavelength conversion particle 1 absorbs the excitation light and emits fluorescence having a longer wavelength than the excitation light. Thereby, when the light passes through the wavelength conversion member 5, the wavelength of the light is converted by the phosphor particles 2 in the wavelength conversion particles 1. And when the wavelength conversion member 5 comprised in this way contains the wavelength conversion particle 1, the incident efficiency of the excitation light to the wavelength conversion particle 1 and the emission efficiency of the light from the wavelength conversion particle 1 improve. That is, the wavelength conversion efficiency of the wavelength conversion particle 1 is improved.
  • the formation method of the film 3 in the wavelength conversion particle 1 is not particularly limited. For example, it can be formed by chemically treating the surface of the phosphor particles 2.
  • phosphor particles 2 are dispersed in a dispersion medium to prepare a dispersion of phosphor particles.
  • at least one selected from the group consisting of sulfuric acid compounds, boric acid compounds and titanic acid compounds is added to the dispersion and stirred.
  • the reaction between the phosphor particles 2 and the sulfuric acid compound, boric acid compound and titanic acid compound may be performed at room temperature, or may be heated to increase the reactivity. Then, after the surface of the phosphor particle 2 reacts with a sulfuric acid compound and the like to form the coating 3, the wavelength conversion particle 1 can be obtained by isolating and drying the dispersion by filtration or the like.
  • Said manufacturing method is at least one selected from the group consisting of phosphor particles 2 containing an alkaline earth metal and a sulfuric acid compound, boric acid compound and titanic acid compound soluble in the dispersion medium in the dispersion.
  • the chemical reaction generated by mixing with one is used.
  • the alkaline earth metal is preferably at least one selected from the group consisting of magnesium, calcium, strontium and barium.
  • the sulfuric acid compound is not particularly limited as long as an alkaline earth metal sulfate film can be formed.
  • an alkaline earth metal sulfate film can be formed.
  • ammonium sulfate for example, sulfuric acid, aluminum sulfate, sodium sulfate, and ammonium hydrogen sulfate can be used.
  • the boric acid compound is not particularly limited as long as it can form a borate film of an alkaline earth metal. By treating the surface of the phosphor particles 2 with a boric acid compound, a borate film of an alkaline earth metal can be formed.
  • boric acid metaboric acid, and ammonium borate
  • the titanic acid compound is not particularly limited as long as a titanate film of an alkaline earth metal can be formed.
  • a coating of an alkaline earth metal titanate can be formed.
  • a titanium alkoxide or a titanium complex can be used.
  • the sulfuric acid compound, boric acid compound and titanic acid compound one compound may be used alone, or two or more compounds may be used in combination.
  • the dispersion medium for dispersing the phosphor particles 2 is not particularly limited as long as the sulfuric acid compound, boric acid compound and titanic acid compound are dissolved and the phosphor particles are not deteriorated.
  • a dispersion medium for example, alcohols such as methanol, ethanol and 2-propanol, and polyhydric alcohols such as ethylene glycol and glycerin can be used.
  • ammonium sulfate is used as the sulfuric acid compound, it is preferable to use, for example, ethylene glycol because ammonium sulfate has low solubility in alcohol.
  • aluminum sulfate is used as the sulfuric acid compound, methanol, ethanol, 2-propanol, or the like can be used because aluminum sulfate can be dissolved in alcohols.
  • the wavelength conversion particle 1 covers the surface of the phosphor particle 2 containing the alkaline earth metal and the phosphor particle 2, and is composed of the alkaline earth metal sulfate, borate and titanate. And a film 3 containing at least one selected from the group as a main component.
  • the refractive index of such a coating 3 is a value between the refractive indexes of the phosphor particles 2 and the translucent medium 4. From this, reflection of light at the interface between the coating 3 and the phosphor particles 2 and the translucent medium 4 is suppressed, and the incident efficiency of light to the phosphor particles 2 and the emission efficiency of light from the phosphor particles 2 are improved. Can be improved. Furthermore, since alkaline earth metal sulfates, borates, and titanates are hardly soluble in water, they prevent contact between the phosphor and moisture and suppress deterioration of the light emission characteristics of the phosphor particles 2. Can do.
  • the coating 3 can be formed by chemically treating the surface of the phosphor particles 2. Therefore, it can produce without using special production equipment.
  • the coating 3 is formed by a chemical reaction between an alkaline earth metal contained in the phosphor particles 2 and a sulfuric acid compound contained in the dispersion medium. Therefore, the reaction proceeds from the surface of the phosphor particles 2, so that the coating 3 having a uniform film thickness can be obtained.
  • the coating 3 is formed around the phosphor particles 2, but a second coating may be further formed around the coating 3.
  • the refractive index of a 2nd film is smaller than the refractive index of the film 3
  • the refractive index of the translucent medium 4 is smaller than the refractive index of a 2nd film, and also it is hardly soluble in water. It is preferable.
  • a film made of silica is preferable. Since the coating film made of silica has a refractive index of about 1.4, the reflection of light at the interface with the translucent medium 4 is suppressed, the light incidence efficiency to the phosphor particles and the light emission from the phosphor particles. Efficiency can be further improved. Further, since silica is hardly soluble in water, the moisture resistance of the phosphor is further improved, and deterioration of the phosphor can be suppressed.
  • the material of the phosphor particle 2 is a BOSE phosphor (europium activated barium / strontium / orthosilicate phosphor, (Sr 1 ⁇ x Ba x ) y SiO 4 : Eu 2+ (0 This will be described in more detail with an example using ⁇ x ⁇ 1.0, 1.8 ⁇ y ⁇ 2.2)).
  • BOSE phosphor europium activated barium / strontium / orthosilicate phosphor, (Sr 1 ⁇ x Ba x ) y SiO 4 : Eu 2+
  • the BOSE phosphor particles are dispersed in ethylene glycol as a dispersion medium. Further, ammonium sulfate is added to this dispersion and stirred for 10 minutes at room temperature (25 ° C.) using a magnetic stirrer. The coated phosphor slurry is suction filtered using a filter paper, and the coated phosphor particles are recovered. Further, in order to remove adhering water, the obtained coated phosphor is dried at 150 ° C. for 1 hour. In this way, the wavelength conversion particle 1 is prepared. This is designated as sample A.
  • Sample B is a wavelength conversion particle prepared without performing ammonium sulfate treatment on the BOSE phosphor particles used in Sample A.
  • Sample C is a wavelength conversion particle in which a silicon oxide particle (SiO 2 ) film is formed on the surface of the BOSE phosphor particles used in Sample A.
  • a method for preparing Sample C will be described below.
  • SiO 2 hydrolyzed solution ion-exchanged water and dilute hydrochloric acid (1N) are added to ethyl alcohol, and the mixture is stirred with a magnetic stirrer for 30 minutes. Thereby, a SiO 2 coating solution is prepared.
  • BOSE phosphor particles are dispersed in the coating solution and stirred with a magnetic stirrer for 3 hours.
  • the slurry of the coated phosphor particles is suction filtered using a filter paper, and the coated phosphor particles are recovered. Thereafter, in order to remove adhering water, the obtained coated phosphor particles are dried at 150 ° C. for 1 hour.
  • sample A wavelength conversion particle 1
  • sample B sample B
  • sample C sample C
  • Table 1 shows the results of measuring the external quantum efficiency, sample absorption rate (absorption efficiency), and internal quantum efficiency of samples A to C with a fluorescence spectrophotometer.
  • the excitation wavelength is 450 nm
  • the measurement wavelength range is 460 to 800 nm.
  • the sample A has an improved internal quantum efficiency although the sample absorptance is not changed as compared with the sample B, and the external quantum efficiency is improved accordingly. That is, in the sample A, it is presumed that the reflection of light at the interface between the coating 3 and the phosphor particles 2 is suppressed, and the emission efficiency of the light emitted from the phosphor particles 2 is improved.
  • FIGS. 2A to 3C [Microscopic evaluation] Scanning electron micrographs of Sample A and Sample B are shown in FIGS. 2A to 3C.
  • 2A shows Sample A
  • FIG. 2B is an enlarged photograph of FIG. 2A
  • FIG. 2C shows a cross section near the surface of Sample A.
  • 3A shows Sample B
  • FIG. 3B is an enlarged photograph of FIG. 3A.
  • 3C shows a cross section near the surface of Sample B.
  • a coating 3 having a uniform thickness is formed on the surface of the phosphor particles 2 of the sample A.
  • the wavelength conversion particles of sample B are only phosphor particles 2 and no coating is formed on the surface thereof.
  • FIGS. 4A and 4B The results of evaluating the surfaces of Sample A and Sample B by energy dispersive X-ray spectroscopy (EDX) are shown in FIGS. 4A and 4B, respectively.
  • EDX energy dispersive X-ray spectroscopy
  • the surface composition of Sample A and Sample B is analyzed using an energy dispersive X-ray analyzer.
  • FIG. 4A a peak derived from sulfur (S) can be confirmed in sample A, but a peak derived from sulfur cannot be confirmed in sample B as shown in FIG. 4B. That is, in sample A, the coating 3 made of sulfate is formed on the surface of the phosphor particles 2.
  • Table 2 shows the results of evaluation of the surface of Sample A by X-ray photoelectron spectroscopy (XPS). Specifically, the relationship between the depth of the coating 3 in the sample A and the surface coverage is measured using a photoelectron spectrometer. Table 2 shows the measurement results of the coating rate of the coating 3 when the depth from the surface of the wavelength conversion particle 1 is 5 nm, 10 nm, 20 nm, 50 nm, 100 nm, 250 nm, and 500 nm.
  • the surface coverage of the coating 3 decreases as the depth increases from the surface. However, at least at a depth of 20 nm from the surface, the surface coverage is 95% or more.
  • the external quantum efficiency of the sample A before the moisture-proof test is improved as compared with the sample B, and particularly the external quantum efficiency after the moisture-proof test is greatly improved. From this, it can be seen that the conversion efficiency is improved and the moisture resistance is improved by forming the coating 3 made of an alkaline earth metal sulfate on the surface of the phosphor particles 2. That is, the improvement of the moisture resistance of the coating film 3 by sulfate is recognized.
  • the sample C forms a film made of silicon oxide, the moisture resistance is improved.
  • the coating is made of silicon oxide, reflection of light at the interface between the coating and the phosphor particles cannot be suppressed, and the external quantum efficiency before the moisture-proof test is lower than that of the sample A.
  • the light emitting device 100 includes a substrate 110, a plurality of LEDs (light emitting elements) 120, and a plurality of sealing members 130.
  • the sealing member 130 corresponds to the wavelength conversion member 5 and includes the wavelength conversion particles 1. That is, the light emitting device 100 includes the LED 120 and the translucent medium 4 including the wavelength conversion particles 1.
  • the LED 120 is sealed with the translucent medium 4.
  • the refractive index of the translucent medium 4 is smaller than the refractive index of the coating 3.
  • the substrate 110 has, for example, a two-layer structure of an insulating layer such as a ceramic substrate or a heat conductive resin and a metal layer such as an aluminum plate.
  • the substrate 110 has a rectangular plate shape, and a width W1 in the short side direction (X-axis direction) of the substrate 110 is, for example, 12 to 30 mm, and a width W2 in the longitudinal direction (Y-axis direction) is, for example, 12 to 30 mm. .
  • the LED 120 is a GaN-based LED, for example, and has a substantially rectangular shape in plan view.
  • the LED 120 has a width W3 in the short side direction (X-axis direction) of, for example, 0.3 to 1.0 mm, a width W4 in the long side direction (Y-axis direction) of, for example, 0.3 to 1.0 mm, and a thickness (Z-axis direction). ) Is, for example, 0.08 to 0.30 mm.
  • the LEDs 120 are arranged so that the longitudinal direction of the substrate 110 coincides with the arrangement direction of the element rows of the LEDs 120.
  • the LED 120 constitutes an element row for each of the plurality of LEDs 120 arranged in a row, and these element rows are mounted in a plurality of rows along the short direction of the substrate 110.
  • 25 LEDs 120 are mounted in a matrix with 5 columns and 5 rows. That is, one element row is composed of five LEDs, and such element rows are mounted side by side.
  • the LEDs 120 are linearly arranged in the longitudinal direction (Y-axis direction).
  • the sealing member 130 for sealing the LEDs 120 can also be formed in a straight line.
  • Each element row is individually sealed by a long sealing member 130.
  • One element row and one sealing member 130 that seals the element row constitute one light emitting unit 101. Therefore, the light emitting device 100 includes five light emitting units 101.
  • the sealing member 130 is composed of the wavelength conversion particle 1 and the translucent medium 4.
  • a resin material such as a silicone resin, a fluororesin, a silicone / epoxy hybrid resin, or a urea resin can be used.
  • the sealing member 130 preferably has a width in the short direction of, for example, 0.8 to 3.0 mm, and a width in the longitudinal direction of, for example, 3.0 to 40.0 mm.
  • the maximum thickness (in the Z-axis direction) including the LED 120 is preferably 0.4 to 1.5 mm, for example, and the maximum thickness excluding the LED 120 is preferably 0.2 to 1.3 mm, for example.
  • the shape of the cross section along the short direction of the sealing member 130 is substantially semi-elliptical. Further, both end portions 131 and 132 in the longitudinal direction of the sealing member 130 are curved. Specifically, the shapes of both end portions 131 and 132 are substantially semicircular in plan view.
  • Each LED 120 is mounted epicide-up on the substrate 110.
  • the wiring pattern 140 formed on the substrate 110 is electrically connected to a lighting circuit unit (not shown) that supplies power to the LED 120.
  • the wiring pattern 140 includes a pair of power feeding lands 141 and 142 and a plurality of bonding lands 143 arranged at positions corresponding to the respective LEDs 120.
  • the LED 120 is electrically connected to the land 143 through a wire (for example, gold wire) 150 by wire bonding, for example.
  • a wire for example, gold wire
  • One end 151 of the wire 150 is bonded to the LED 120, and the other end 152 is bonded to the land 143.
  • Each wire 150 is arranged along an element row to which the LED 120 to be connected belongs. Furthermore, both end portions 151 and 152 of each wire 150 are also arranged along the element row. Since each wire 150 is sealed by the sealing member 130 together with the LED 120 and the land 143, the wire 150 is hardly deteriorated, and is insulated and highly safe.
  • substrate 110 is not limited to the above epi side up mounting, Epi side down mounting may be sufficient.
  • the five LEDs 120 belonging to the same element row are connected in series, and the five element rows are connected in parallel.
  • the connection form of LED120 is not limited to this, You may connect how regardless of an element row
  • a pair of lead wires of a lighting circuit unit (not shown) is connected to the lands 141 and 142, and power is supplied from the lighting circuit unit to the LEDs 120 via the lead wires, whereby each LED 120 emits light.
  • the light emitting device 100 can be widely used as an illumination light source, a backlight for a liquid crystal display, a light source for a display device, and the like. That is, as described above, the wavelength conversion particle 1 is excellent in terms of conversion efficiency and moisture resistance, and the light emitting device 100 also has high conversion efficiency and high moisture resistance.
  • the light emitting device 100 As such an illumination light source, the light emitting device 100, a lighting circuit for operating the light emitting device 100, and a connecting component for a lighting fixture such as a base can be combined. Moreover, if a lighting fixture is combined as needed, it will also comprise an illuminating device and an illumination system.
  • Wavelength conversion particles covering the surface of phosphor particles containing an alkaline earth metal with a film mainly composed of at least one selected from the group consisting of sulfates, borates and titanates improves conversion efficiency.
  • the moisture resistance can be improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)

Abstract

The present invention pertains to: a wavelength conversion particle provided with a fluorescent body particle, which contains an alkaline earth metal, and a coating film that covers the surface of the fluorescent body particle, has at least one selected from the group consisting of an alkaline earth metal sulfate, borate, and titanate as the primary component, and has a lower refractive index than the fluorescent body particle; a method for producing the wavelength conversion particle; a wavelength conversion member having the wavelength conversion particle; and a light-emitting device having the wavelength conversion member. As a result of providing the coating film, it is possible to increase conversion efficiency and moisture resistance.

Description

波長変換粒子とその製造方法、波長変換部材及び発光装置Wavelength converting particle and method for producing the same, wavelength converting member and light emitting device
 本発明は、吸収した光とは異なる波長の光を放出する波長変換粒子とその製造方法、波長変換粒子を有する波長変換部材、及び波長変換部材を有する発光装置に関する。 The present invention relates to a wavelength conversion particle that emits light having a wavelength different from the absorbed light, a manufacturing method thereof, a wavelength conversion member having wavelength conversion particles, and a light emitting device having the wavelength conversion member.
 発光ダイオード(LED:Light Emitting Diode)は、信号灯や携帯電話機、各種の電飾、車載用表示器、各種の表示装置などに広く利用されている。また、LEDと蛍光体粒子とを組み合わせた発光装置は、照明やディスプレイの分野で多く使われている。 Light emitting diodes (LEDs) are widely used in signal lights, mobile phones, various electrical decorations, in-vehicle displays, various display devices, and the like. In addition, light-emitting devices that combine LEDs and phosphor particles are widely used in the fields of illumination and display.
 一般にこの種の発光装置において、LEDは蛍光体粒子を含有する透光性の媒体により封止されている(例えば、特許文献1及び2参照)。 Generally, in this type of light emitting device, the LED is sealed with a translucent medium containing phosphor particles (see, for example, Patent Documents 1 and 2).
 特許文献1には、蛍光体粒子を酸化アルミニウムや酸化マグネシウムの被膜で覆った波長変換粒子が記載されている。 Patent Document 1 describes wavelength conversion particles in which phosphor particles are covered with a coating of aluminum oxide or magnesium oxide.
 特許文献2には、アルカリ土類金属を含有する蛍光体粒子の表面をフッ化物で表面処理した波長変換粒子が記載されている。 Patent Document 2 describes wavelength conversion particles obtained by treating the surface of phosphor particles containing an alkaline earth metal with fluoride.
特開2008-150518号公報JP 2008-150518 A 特開2013-71987号公報JP 2013-71987
 本発明の波長変換粒子は、アルカリ土類金属を含有する蛍光体粒子と、蛍光体粒子の表面を覆い、かつ、アルカリ土類金属の硫酸塩、ホウ酸塩及びチタン酸塩からなる群より選ばれる少なくとも一つを主成分とする被膜とを有する。そして、被膜の屈折率は蛍光体粒子よりも小さい。 The wavelength conversion particle of the present invention is selected from the group consisting of phosphor particles containing alkaline earth metal, the surface of the phosphor particles, and consisting of sulfate, borate and titanate of alkaline earth metal And a film having at least one of them as a main component. And the refractive index of a film is smaller than a fluorescent substance particle.
 以上の構成により、蛍光体粒子へ入射する光の入射効率及び蛍光体粒子から出射される光の出射効率をすることができる。 With the above configuration, the incidence efficiency of light incident on the phosphor particles and the emission efficiency of light emitted from the phosphor particles can be increased.
本発明の実施形態に係る波長変換粒子及び波長変換部材を示す概略断面図The schematic sectional drawing which shows the wavelength conversion particle and wavelength conversion member which concern on embodiment of this invention 本発明の実施形態に係る波長変換粒子の走査型電子顕微鏡写真を示す図The figure which shows the scanning electron micrograph of the wavelength conversion particle which concerns on embodiment of this invention 図2Aの部分拡大写真を示す図The figure which shows the partial enlarged photograph of FIG. 2A 本発明の実施形態に係る波長変換粒子の断面の走査型電子顕微鏡写真を示す図The figure which shows the scanning electron micrograph of the cross section of the wavelength conversion particle which concerns on embodiment of this invention 他の波長変換粒子の走査型電子顕微鏡写真を示す図The figure which shows the scanning electron micrograph of other wavelength conversion particles 図3Aの部分拡大写真を示す図The figure which shows the partial enlarged photograph of FIG. 3A 他の波長変換粒子の断面の走査型電子顕微鏡写真を示す図The figure which shows the scanning electron micrograph of the cross section of other wavelength conversion particle | grains 本発明の実施形態に係る波長変換粒子の表面におけるエネルギー分散型X線分光法(EDX)の測定結果を示す図The figure which shows the measurement result of the energy dispersive X-ray spectroscopy (EDX) in the surface of the wavelength conversion particle concerning embodiment of this invention 他の波長変換粒子の表面におけるEDXの測定結果を示す図The figure which shows the measurement result of EDX in the surface of other wavelength conversion particles 本発明の実施形態に係る発光装置の斜視図The perspective view of the light-emitting device which concerns on embodiment of this invention.
 本発明の実施形態の説明に先立ち、関連の波長変換粒子(蛍光体粒子)における課題を説明する。 Prior to the description of the embodiment of the present invention, problems in related wavelength conversion particles (phosphor particles) will be described.
 特許文献1には、蛍光体粒子に酸化アルミニウム等からなる被膜で覆った波長変換粒子が開示されている。この被膜により波長変換粒子の凝集を抑制し、透光性媒体中における波長変換粒子の分散性を向上させている。蛍光体粒子と酸化アルミニウムの屈折率はほぼ同じ値である。そのため、蛍光体粒子と酸化アルミニウムの界面における光の反射量は大きくない。しかし、酸化アルミニウムで覆われた蛍光体粒子を、後述する透光性媒体に分散して使用する場合、酸化アルミニウムの屈折率が透光性媒体の屈折率よりも大きいため、両者の界面における光の反射により、蛍光体粒子から出射される光の出射効率の低下を招く。 Patent Document 1 discloses wavelength conversion particles in which phosphor particles are covered with a coating made of aluminum oxide or the like. This coating suppresses the aggregation of the wavelength conversion particles and improves the dispersibility of the wavelength conversion particles in the translucent medium. The refractive indexes of the phosphor particles and aluminum oxide are almost the same value. Therefore, the amount of reflected light at the interface between the phosphor particles and aluminum oxide is not large. However, when the phosphor particles covered with aluminum oxide are used dispersed in a translucent medium, which will be described later, the refractive index of aluminum oxide is larger than the refractive index of the translucent medium. Due to the reflection, the emission efficiency of the light emitted from the phosphor particles is reduced.
 特許文献2には、耐湿性改善を目的として、蛍光体粒子にフッ化物の被膜を形成した波長変換粒子が開示されている。フッ化物の屈折率は蛍光体粒子の屈折率よりも低い。そのため、蛍光体粒子から出射される光の出射効率の低下を招く。また、フッ化物材料は一般的に取扱に注意を要し、波長変換粒子の生産性を下げる恐れがある。 Patent Document 2 discloses wavelength conversion particles in which a fluoride film is formed on phosphor particles for the purpose of improving moisture resistance. The refractive index of fluoride is lower than the refractive index of phosphor particles. Therefore, the emission efficiency of light emitted from the phosphor particles is reduced. In addition, fluoride materials generally require attention in handling, and may reduce the productivity of wavelength conversion particles.
 以下、蛍光体粒子を被膜で覆うことにより、光入射、出射効率の向上し、合わせて、耐湿性を向上した本発明の波長変換粒子について図を参照して説明する。なお、図面の寸法比率は説明の都合上誇張されており、実際の比率とは異なる場合がある。 Hereinafter, the wavelength conversion particles of the present invention, in which the phosphor particles are covered with a coating to improve the light incident and emission efficiency, and the moisture resistance is improved, will be described with reference to the drawings. In addition, the dimension ratio of drawing is exaggerated on account of description, and may differ from an actual ratio.
 [波長変換粒子]
 図1は、本発明の実施形態に係る波長変換粒子1を含む波長変換部材5の概略断面図である。波長変換粒子1は、アルカリ土類金属を含有する蛍光体粒子2と、蛍光体粒子2の表面を覆い、かつ、アルカリ土類金属の硫酸塩、ホウ酸塩及びチタン酸塩からなる群より選ばれる少なくとも一つを主成分とする被膜3とを有する。被膜3の屈折率は蛍光体粒子2の屈折率よりも小さい。
[Wavelength conversion particles]
FIG. 1 is a schematic cross-sectional view of a wavelength conversion member 5 including wavelength conversion particles 1 according to an embodiment of the present invention. The wavelength conversion particle 1 is selected from the group consisting of phosphor particles 2 containing alkaline earth metal and the surface of the phosphor particle 2 and consisting of sulfate, borate and titanate of alkaline earth metal. And a film 3 containing at least one of them as a main component. The refractive index of the coating 3 is smaller than the refractive index of the phosphor particles 2.
 蛍光体粒子は、入射した励起光を吸収し、励起光よりも長波長の光を出射する。一般に蛍光体粒子は透光性媒体中に分散して使用されることが多い。蛍光体粒子の屈折率は、例えば1.8であり、透光性媒体の屈折率は例えば1.4である。蛍光体粒子と透光性媒体の界面で入射光及び出射光は反射する。両者の屈折率差が大きいと、これらの光は界面で反射されやすくなる。反射光が多いと、蛍光体粒子における変換効率が低下する。そのため、界面における屈折率差を小さくすることが好ましい。 The phosphor particles absorb the incident excitation light and emit light having a longer wavelength than the excitation light. In general, phosphor particles are often used dispersed in a translucent medium. The refractive index of the phosphor particles is, for example, 1.8, and the refractive index of the translucent medium is, for example, 1.4. Incident light and outgoing light are reflected at the interface between the phosphor particles and the translucent medium. If the refractive index difference between the two is large, these lights are likely to be reflected at the interface. When there is much reflected light, the conversion efficiency in a fluorescent substance particle will fall. Therefore, it is preferable to reduce the refractive index difference at the interface.
 被膜3で蛍光体粒子2を覆った波長変換粒子1を透光性媒体4中に分散して使用する場合について説明する。アルカリ土類金属を含有する蛍光体粒子2の屈折率は例えば1.8であり、透光性媒体4の屈折率は例えば1.4である。そして、アルカリ土類金属の硫酸塩、ホウ酸塩及びチタン酸塩からなる群より選ばれる少なくとも一つを主成分とする被膜3の屈折率は、例えば1.4~1.8である。すなわち、被膜3の屈折率は、蛍光体粒子2の屈折率と透光性媒体4の屈折率との間の値であることが好ましい。言い換えると、被膜3の屈折率は、蛍光体粒子2の屈折率よりも小さいことが好ましい。さらに、透光性媒体4の屈折率は被膜3の屈折率よりも小さいことが好ましい。このような構成により、蛍光体粒子2と被膜3との屈折率差、及び被膜3と透光性媒体4との屈折率差は、蛍光体粒子2と透光性媒体4との屈折率差よりも、それぞれ小さくすることができる。そのため、蛍光体粒子2と被膜3との界面及び、被膜3と透光性媒体4との界面における光の反射を抑制することができる。その結果、透光性媒体4から蛍光体粒子2への光の入射効率及び蛍光体粒子2から透光性媒体4への光の出射効率を向上させることができる。 The case where the wavelength conversion particles 1 in which the phosphor particles 2 are covered with the coating 3 are dispersed in the translucent medium 4 will be described. The refractive index of the phosphor particles 2 containing an alkaline earth metal is, for example, 1.8, and the refractive index of the translucent medium 4 is, for example, 1.4. The refractive index of the coating 3 containing as a main component at least one selected from the group consisting of alkaline earth metal sulfates, borates and titanates is, for example, 1.4 to 1.8. That is, the refractive index of the coating 3 is preferably a value between the refractive index of the phosphor particles 2 and the refractive index of the translucent medium 4. In other words, the refractive index of the coating 3 is preferably smaller than the refractive index of the phosphor particles 2. Furthermore, the refractive index of the translucent medium 4 is preferably smaller than the refractive index of the coating 3. With such a configuration, the refractive index difference between the phosphor particles 2 and the coating 3 and the refractive index difference between the coating 3 and the translucent medium 4 are different from those of the phosphor particles 2 and the translucent medium 4. Each can be made smaller. Therefore, reflection of light at the interface between the phosphor particles 2 and the coating 3 and the interface between the coating 3 and the translucent medium 4 can be suppressed. As a result, the incident efficiency of light from the translucent medium 4 to the phosphor particles 2 and the emission efficiency of light from the phosphor particles 2 to the translucent medium 4 can be improved.
 また、アルカリ土類金属の硫酸塩、ホウ酸塩及びチタン酸塩において、励起光である青色光の吸収は少ない。そのため、これらは、被膜3の材料として特に好適である。 In addition, alkaline earth metal sulfates, borates and titanates absorb little blue light, which is excitation light. Therefore, these are particularly suitable as the material for the coating 3.
 一般に、アルカリ土類金属を含有する蛍光体粒子において、空気中の水蒸気や水分が蛍光体粒子の表面を分解し、蛍光体粒子の特性が低下する。そのため、大気中で長期間使用すると、蛍光体粒子の発光強度が低下したり、発光色が変化する恐れがある。しかしながら、アルカリ土類金属であっても、硫酸塩、ホウ酸塩及びチタン酸塩は、水に難溶の化合物である。蛍光体粒子2の表面を被膜3で覆うことにより、蛍光体粒子2の水分との接触を防ぎ、蛍光体粒子2の発光特性の劣化を抑制することができる。 Generally, in phosphor particles containing an alkaline earth metal, water vapor or moisture in the air decomposes the surface of the phosphor particles, and the characteristics of the phosphor particles are deteriorated. For this reason, when used in the atmosphere for a long time, the emission intensity of the phosphor particles may decrease or the emission color may change. However, even alkaline earth metals, sulfates, borates and titanates are hardly soluble compounds in water. By covering the surface of the phosphor particles 2 with the coating 3, the phosphor particles 2 can be prevented from coming into contact with moisture, and deterioration of the light emission characteristics of the phosphor particles 2 can be suppressed.
 蛍光体粒子2及び被膜3に含有されるアルカリ土類金属として、マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)及びバリウム(Ba)からなる群より選ばれる少なくとも一つを用いることができる。 As the alkaline earth metal contained in the phosphor particles 2 and the coating 3, at least one selected from the group consisting of magnesium (Mg), calcium (Ca), strontium (Sr), and barium (Ba) can be used. .
 蛍光体粒子2は、アルカリ土類金属の珪酸塩を含有することが好ましい。アルカリ土類金属の珪酸塩を含有する蛍光体として、例えば、母体の結晶構造が、MSiO又はMSiOの結晶構造と実質的に同じ構造を有する蛍光体を挙げることができる。なお、MはMg、Ca、Sr及びBaからなる群より選ばれる少なくとも一種を表している。MSiO又はMSiOの結晶構造と実質的に同じ構造とは、X線回折法で測定した場合に、MSiO又はMSiOと同様なX線回折パターンを有することを意味する。 The phosphor particles 2 preferably contain an alkaline earth metal silicate. Examples of the phosphor containing an alkaline earth metal silicate include a phosphor having a crystal structure of the base material substantially the same as the crystal structure of M 3 SiO 5 or M 2 SiO 4 . M represents at least one selected from the group consisting of Mg, Ca, Sr and Ba. M 3 The crystal structure substantially the same structure of SiO 5 or M 2 SiO 4, when measured by X-ray diffractometry, has a similar X-ray diffraction pattern with M 3 SiO 5 or M 2 SiO 4 Means.
 アルカリ土類金属の珪酸塩を含有する蛍光体粒子2は、付活剤としてFe、Mn、Cr、Bi、Ce、Pr、Nd、Sm、Eu、Tb、Dy、Ho、Er、Tm及びYbからなる群より選ばれる少なくとも一種の元素を含有することが好ましい。また、蛍光体粒子2は、アルカリ土類金属以外の金属元素、例えば、Zn、Ga、Al、Y、Gd及びTbを含有してもよい。さらに蛍光体粒子2は、少量のハロゲン元素(例えば、F、Cl、Br)、硫黄(S)又はリン(P)を含有してもよい。アルカリ土類金属以外の金属元素、ハロゲン元素、硫黄及びリンから、一つの元素を単独で用いてもよく、二つ以上の元素を併用してもよい。 Phosphor particles 2 containing an alkaline earth metal silicate include Fe, Mn, Cr, Bi, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm and Yb as activators. It is preferable to contain at least one element selected from the group consisting of Moreover, the phosphor particles 2 may contain a metal element other than the alkaline earth metal, for example, Zn, Ga, Al, Y, Gd, and Tb. Furthermore, the phosphor particles 2 may contain a small amount of a halogen element (for example, F, Cl, Br), sulfur (S), or phosphorus (P). One element may be used alone or two or more elements may be used in combination from metal elements other than alkaline earth metals, halogen elements, sulfur and phosphorus.
 アルカリ土類金属の珪酸塩を含有する蛍光体粒子2の材料例として、例えば、一般式(1)のような組成を有する橙色蛍光体や、一般式(2)のような組成を有する橙色蛍光体等を挙げることができる。 Examples of the material of the phosphor particles 2 containing an alkaline earth metal silicate include, for example, an orange phosphor having a composition as represented by the general formula (1) and an orange fluorescence having a composition as represented by the general formula (2). The body etc. can be mentioned.
 (Sr1-xSiO:Eu2+ (1)
 式(1)中、MはBa、Ca、Mg及びZnからなる群より選ばれる少なくとも一種の金属である。さらに0≦x<1.0であり、2.6≦y≦3.3である。
(Sr 1-x M x ) y SiO 5 : Eu 2+ (1)
In formula (1), M is at least one metal selected from the group consisting of Ba, Ca, Mg, and Zn. Furthermore, 0 ≦ x <1.0 and 2.6 ≦ y ≦ 3.3.
 (Sr1-xSiO:Eu2+D (2)
 式(2)中、MはBa、Ca、Mg及びZnからなる群より選ばれる少なくとも一種の金属である。DはF、Cl及びBrからなる群より選ばれるハロゲンアニオンである。さらに0≦x<1.0であり、2.6≦y≦3.3である。
(Sr 1-x M x ) y SiO 5 : Eu 2+ D (2)
In formula (2), M is at least one metal selected from the group consisting of Ba, Ca, Mg and Zn. D is a halogen anion selected from the group consisting of F, Cl and Br. Furthermore, 0 ≦ x <1.0 and 2.6 ≦ y ≦ 3.3.
 上記蛍光体の具体例として、例えば、SrSiO:Eu2+、(Sr0.9Mg0.025Ba0.075SiO:Eu2+、(Sr0.9Mg0.05Ba0.052.7SiO:Eu2+等の橙色蛍光体を挙げることができる。また、(Sr0.9Mg0.025Ba0.075SiO:Eu2+、(Sr0.9Ba0.1SiO:Eu2+、Sr0.97SiO:Eu2+F等の橙色蛍光体を挙げることができる。(Sr0.9Mg0.12.9SiO:Eu2+F、(Sr0.9Ca0.1)3.0SiO:Eu2+Fの等の橙色蛍光体も挙げられる。 Specific examples of the phosphor include, for example, Sr 3 SiO 5 : Eu 2+ , (Sr 0.9 Mg 0.025 Ba 0.075 ) 3 SiO 5 : Eu 2+ , (Sr 0.9 Mg 0.05 Ba 0 .05 ) 2.7 An orange phosphor such as SiO 5 : Eu 2+ can be mentioned. Also, (Sr 0.9 Mg 0.025 Ba 0.075 ) 3 SiO 5 : Eu 2+ , (Sr 0.9 Ba 0.1 ) 3 SiO 5 : Eu 2+ , Sr 0.97 SiO 5 : Eu 2+ F An orange phosphor such as An orange phosphor such as (Sr 0.9 Mg 0.1 ) 2.9 SiO 5 : Eu 2+ F and (Sr 0.9 Ca0.1) 3.0 SiO 5 : Eu 2+ F is also included.
 また、アルカリ土類金属の珪酸塩を含有する蛍光体の他の例として、一般式(3)のような組成を有する緑色又は黄色蛍光体や、一般式(4)のような組成を有する緑色又は黄色蛍光体等を挙げることができる。 Other examples of phosphors containing alkaline earth metal silicates include green or yellow phosphors having a composition of general formula (3) and greens having a composition of general formula (4). Or a yellow fluorescent substance etc. can be mentioned.
 (Sr1-xSiO:Eu2+ (3)
 式(3)中、MはBa、Ca、Mg及びZnからなる群より選ばれる少なくとも一種の金属であり、0≦x<1.0であり、1.8≦y≦2.2である。
(Sr 1-x M x ) y SiO 4 : Eu 2+ (3)
In formula (3), M is at least one metal selected from the group consisting of Ba, Ca, Mg, and Zn, 0 ≦ x <1.0, and 1.8 ≦ y ≦ 2.2.
 (Sr1-xSiO:Eu2+D (4)
 式(4)中、MはBa、Ca、Mg及びZnからなる群より選ばれる少なくとも一種の金属である。DはF、Cl及びBrからなる群より選ばれるハロゲンアニオンである。さらに0≦x<1.0であり、1.8≦y≦2.2である。
(Sr 1-x M x ) y SiO 4 : Eu 2+ D (4)
In formula (4), M is at least one metal selected from the group consisting of Ba, Ca, Mg and Zn. D is a halogen anion selected from the group consisting of F, Cl and Br. Furthermore, 0 ≦ x <1.0 and 1.8 ≦ y ≦ 2.2.
 上記蛍光体の具体例として、例えば(Sr0.4Ba0.6)2SiO:Eu2+、(Sr0.3Ba0.7SiO:Eu2+、(Sr0.2Ba0.8SiO:Eu2+、(Sr0.57Ba0.4Mg0.03SiO:Eu2+F等の緑色蛍光体を挙げることができる。(Sr0.6Ba0.4SiO:Eu2+Cl、(Ba,Sr,Ca)(Mg,Zn)Si:Eu2+等の緑色蛍光体も挙げられる。さらに、(Sr0.7Ba0.3SiO:Eu2+F、(Sr0.9Ba0.1SiO:Eu2+等の黄色蛍光体を挙げることができる。0.72[(Sr1.025Ba0.925Mg0.05)Si1.03Eu0.050.12]・0.28[SrSi1.02Eu0.60.13]等の黄色蛍光体も挙げられる。加えて、BaMgSi:Eu2+、BaZnSi:Eu2+等の青色蛍光体を挙げることができる。 Specific examples of the phosphor, for example, (Sr 0.4 Ba 0.6) 2SiO 4 : Eu 2+, (Sr 0.3 Ba 0.7) 2 SiO 4: Eu 2+, (Sr 0.2 Ba 0. 8) 2 SiO 4: Eu 2+ , (Sr 0.57 Ba 0.4 Mg 0.03) 2 SiO 4: can be mentioned Eu 2+ green phosphor, such as F. Green phosphors such as (Sr 0.6 Ba 0.4 ) 2 SiO 4 : Eu 2+ Cl and (Ba, Sr, Ca) 2 (Mg, Zn) Si 2 O 7 : Eu 2+ are also included. Further, yellow phosphors such as (Sr 0.7 Ba 0.3 ) 2 SiO 4 : Eu 2+ F and (Sr 0.9 Ba 0.1 ) 2 SiO 4 : Eu 2+ can be mentioned. 0.72 [(Sr 1.025 Ba 0.925 Mg 0.05 ) Si 1.03 O 4 Eu 0.05 F 0.12 ] .0.28 [Sr 3 Si 1.02 O 5 Eu 0.6 And a yellow phosphor such as F 0.13 ]. Additionally, Ba 2 MgSi 2 O 7: Eu 2+, Ba 2 ZnSi 2 O 7: Eu2 + and the like blue phosphor.
 蛍光体粒子2の平均粒子径(メディアン径、D50)は特に限定されない。ただし、蛍光体粒子2の平均粒子径が大きい方が蛍光体粒子中の欠陥密度が小さくなり、発光時のエネルギー損失が少なくなる。そのため、発光効率が高くなる。発光効率を向上させる観点から、蛍光体粒子2の平均粒子径は1マイクロメータ以上であることが好ましく、5マイクロメータ以上であれば更に好ましい。特に蛍光体粒子2の平均粒子径は8マイクロメータ以上、50マイクロメータ以下の範囲であることが好ましい。なお、蛍光体粒子2の平均粒子径はレーザー回折式粒度分布測定装置を用いて、レーザー回折・散乱法により求めることができる。 The average particle diameter (median diameter, D 50 ) of the phosphor particles 2 is not particularly limited. However, the larger the average particle diameter of the phosphor particles 2, the smaller the defect density in the phosphor particles, and the less energy loss during light emission. Therefore, luminous efficiency is increased. From the viewpoint of improving luminous efficiency, the average particle diameter of the phosphor particles 2 is preferably 1 micrometer or more, and more preferably 5 micrometers or more. In particular, the average particle diameter of the phosphor particles 2 is preferably in the range of 8 micrometers or more and 50 micrometers or less. The average particle diameter of the phosphor particles 2 can be obtained by a laser diffraction / scattering method using a laser diffraction particle size distribution measuring apparatus.
 被膜3の主成分となり得るアルカリ土類金属の硫酸塩として、例えば硫酸バリウム(BaSO、屈折率:1.64)や硫酸ストロンチウム(SrSO、屈折率:1.63)などを挙げることができる。また、アルカリ土類金属のホウ酸塩として、メタホウ酸バリウム(BaB)やホウ酸ストロンチウム(SrB)などを挙げることができる。これらの材料は透明であり、さらに屈折率も1.6程度である。そのため、これらの成分を被膜3の主成分として使用することにより、被膜3と蛍光体粒子2及び透光性媒体4との界面における光の反射を抑制することができる。さらに、これらの塩は水に難溶である。そのため、蛍光体粒子2と水分との接触を防ぎ、蛍光体粒子2の発光特性の劣化を抑制することができる。 Examples of the alkaline earth metal sulfate that can be the main component of the coating 3 include barium sulfate (BaSO 4 , refractive index: 1.64) and strontium sulfate (SrSO 4 , refractive index: 1.63). . Examples of the alkaline earth metal borate include barium metaborate (BaB 2 O 4 ) and strontium borate (SrB 2 O 4 ). These materials are transparent and have a refractive index of about 1.6. Therefore, by using these components as the main component of the film 3, it is possible to suppress light reflection at the interface between the film 3, the phosphor particles 2, and the translucent medium 4. Furthermore, these salts are sparingly soluble in water. Therefore, contact between the phosphor particles 2 and moisture can be prevented, and deterioration of the light emission characteristics of the phosphor particles 2 can be suppressed.
 被膜3の主成分となり得るアルカリ土類金属のチタン酸塩として、チタン酸バリウム(BaTiO)やチタン酸ストロンチウム(SrTiO)、チタン酸バリウムストロンチウム((BaSr1-x)TiO)などを挙げることができる。これらの材料は透明であり、さらにこれらの塩は水に難溶であることから、蛍光体と水分との接触を防ぎ、蛍光体の劣化を抑制することができる。なお、アルカリ土類金属のチタン酸塩は、屈折率が2.0を超える場合がある。被膜3がチタン酸塩のみからなると、被膜3の屈折率が蛍光体粒子2の屈折率と透光性媒体4の屈折率との間の値とならない可能性がある。その場合、上述のアルカリ土類金属の硫酸塩若しくはホウ酸塩、又は後述する他の酸化物を混合することにより、被膜3の屈折率を蛍光体粒子2の屈折率と透光性媒体4の屈折率との間の値(例えば1.4~1.8)とすることができる。これにより、被膜3と蛍光体粒子2及び透光性媒体4との界面における光の反射を抑制することができる。 Examples of alkaline earth metal titanates that can be the main component of the coating 3 include barium titanate (BaTiO 3 ), strontium titanate (SrTiO 3 ), and barium strontium titanate ((Ba x Sr 1-x ) TiO 3 ). Can be mentioned. Since these materials are transparent and these salts are hardly soluble in water, contact between the phosphor and moisture can be prevented and deterioration of the phosphor can be suppressed. Note that an alkaline earth metal titanate may have a refractive index exceeding 2.0. If the coating 3 is made only of titanate, the refractive index of the coating 3 may not be a value between the refractive index of the phosphor particles 2 and the refractive index of the translucent medium 4. In that case, by mixing the alkaline earth metal sulfate or borate described above or another oxide described later, the refractive index of the coating 3 is changed to the refractive index of the phosphor particles 2 and the translucent medium 4. A value between the refractive indexes (for example, 1.4 to 1.8) can be used. Thereby, reflection of the light in the interface of the film 3, the fluorescent substance particle 2, and the translucent medium 4 can be suppressed.
 波長変換粒子1における被膜3の主成分は、アルカリ土類金属の硫酸塩、ホウ酸塩及びチタン酸塩の少なくとも一つである。つまり、被膜3におけるアルカリ土類金属の硫酸塩、ホウ酸塩及びチタン酸塩の合計含有量は50mol%以上である。被膜3の屈折率を最適化するために、アルカリ土類金属の硫酸塩、ホウ酸塩及びチタン酸塩以外に、他の酸化物を混合してもよい。具体的には、硫酸塩、ホウ酸塩及びチタン酸塩のほかに、酸化アルミニウム(Al)、酸化イットリウム(Y)、酸化ジルコニウム(ZrO)などを用いることができる。また、酸化スズ(SnO)、酸化ゲルマニウム(GeO)、酸化チタン(TiO)なども用いることができる。そして、アルカリ土類金属の硫酸塩、ホウ酸塩及びチタン酸塩に加え、これらの酸化物を用いることにより、蛍光体粒子2と透光性媒体4の中間の屈折率の被膜3を形成することができる。 The main component of the coating 3 in the wavelength conversion particle 1 is at least one of alkaline earth metal sulfate, borate and titanate. That is, the total content of the alkaline earth metal sulfate, borate and titanate in the coating 3 is 50 mol% or more. In order to optimize the refractive index of the coating 3, other oxides may be mixed in addition to the alkaline earth metal sulfate, borate and titanate. Specifically, aluminum oxide (Al 2 O 3 ), yttrium oxide (Y 2 O 3 ), zirconium oxide (ZrO 2 ), and the like can be used in addition to sulfate, borate, and titanate. Alternatively, tin oxide (SnO 2 ), germanium oxide (GeO 2 ), titanium oxide (TiO 2 ), or the like can be used. Then, in addition to the alkaline earth metal sulfate, borate and titanate, these oxides are used to form a film 3 having a refractive index intermediate between the phosphor particles 2 and the translucent medium 4. be able to.
 上述のように、被膜3において、アルカリ土類金属の硫酸塩、ホウ酸塩及びチタン酸塩の合計含有量は50mol%以上である。好ましくは、80mol%以上であり、より好ましくは、95mol%以上である。上述のように、アルカリ土類金属の硫酸塩、ホウ酸塩及びチタン酸塩は水に難溶な化合物である。被膜3中の含有量が多い方が蛍光体粒子2の水分による劣化を抑制できるため、好ましい。 As described above, the total content of the alkaline earth metal sulfate, borate and titanate in the coating 3 is 50 mol% or more. Preferably, it is 80 mol% or more, More preferably, it is 95 mol% or more. As described above, alkaline earth metal sulfates, borates and titanates are compounds that are sparingly soluble in water. A higher content in the coating 3 is preferable because deterioration of the phosphor particles 2 due to moisture can be suppressed.
 波長変換粒子1では、図1に示すように、被膜3が蛍光体粒子2の表面を略均一な厚みで覆っている。被膜3の厚みtは、5nm以上、1000nm以下が好ましく、10nm以上、500nm以下がさらに好ましい。膜厚が5nm以上の場合、蛍光体粒子2の表面に凹凸が存在しても、ほぼ均一に被覆することができる。また、膜厚が1000nm以下の場合、被膜3に亀裂が入り難くなり、剥離を抑制することができる。そのため、光の入射効率及び出射効率の低下を抑制することができる。 In the wavelength conversion particle 1, as shown in FIG. 1, the coating 3 covers the surface of the phosphor particle 2 with a substantially uniform thickness. The thickness t of the coating 3 is preferably 5 nm or more and 1000 nm or less, more preferably 10 nm or more and 500 nm or less. When the film thickness is 5 nm or more, even if irregularities exist on the surface of the phosphor particle 2, it can be coated almost uniformly. Moreover, when a film thickness is 1000 nm or less, it becomes difficult to make a crack in the film 3, and it can suppress peeling. Therefore, it is possible to suppress a decrease in incident efficiency and emission efficiency of light.
 被膜3の厚みtは、20nm以上、500nm以下が更に好ましく、100nm以上、250nm以下が特に好ましい。この範囲とすることにより略均一な被膜となるため、光の入射効率及び取り出し効率をさらに向上させることができる。なお、被膜3の厚みは、例えば、X線光電子分光法(XPS)により、硫黄(S)、ホウ素(B)又はチタン(Ti)の深さ分析(デプスプロファイル測定)を行うことにより測定することができる。 The thickness t of the coating 3 is more preferably 20 nm or more and 500 nm or less, and particularly preferably 100 nm or more and 250 nm or less. By setting the thickness within this range, a substantially uniform film is formed, so that the light incident efficiency and the light extraction efficiency can be further improved. The thickness of the coating 3 is measured by performing depth analysis (depth profile measurement) of sulfur (S), boron (B), or titanium (Ti), for example, by X-ray photoelectron spectroscopy (XPS). Can do.
 被膜3は、蛍光体粒子2の表面の全体を覆っていることが最も好ましい。ただし、光の入射効率及び取り出し効率の向上の観点から、被膜3は蛍光体粒子2の表面の少なくとも60%以上を被覆していることが好ましい。また、被膜3は、蛍光体粒子2の表面の80%以上を被覆していることが好ましく、90%以上を被覆していることがより好ましい。被膜3の被覆率が90%以上の場合、光の入射効率及び出射効率をさらに向上することができる。なお、蛍光体粒子2の表面における被膜3の被覆率は、例えば、X線光電子分光法(XPS)により、被膜3に含有される硫黄(S)、ホウ素(B)又はチタン(Ti)をワイドスキャン分析することにより測定することができる。 Most preferably, the coating 3 covers the entire surface of the phosphor particles 2. However, it is preferable that the coating 3 covers at least 60% or more of the surface of the phosphor particles 2 from the viewpoint of improving light incident efficiency and extraction efficiency. Further, the coating 3 preferably covers 80% or more of the surface of the phosphor particle 2, and more preferably covers 90% or more. When the coverage of the coating 3 is 90% or more, the light incident efficiency and the light emission efficiency can be further improved. Note that the coverage of the coating 3 on the surface of the phosphor particles 2 is, for example, a wide range of sulfur (S), boron (B) or titanium (Ti) contained in the coating 3 by X-ray photoelectron spectroscopy (XPS). It can be measured by scanning analysis.
 [波長変換部材]
 次に、本実施形態の波長変換部材5の一例について説明する。なお、図1に示す波長変換部材の形状は一例であり、特に制限されない。
[Wavelength conversion member]
Next, an example of the wavelength conversion member 5 of this embodiment will be described. In addition, the shape of the wavelength conversion member shown in FIG. 1 is an example, and is not particularly limited.
 波長変換部材5は、前述の通り、波長変換粒子1と、透光性媒体4とを有する。被膜3で蛍光体粒子2を覆った波長変換粒子1において、被膜3の屈折率は蛍光体粒子2の屈折率よりも小さいことが好ましい。また、透光性媒体4の屈折率は被膜3の屈折率より小さいことが好ましい。波長変換粒子1は、透光性媒体4の内部に分散されている。波長変換粒子1を透光性媒体4の内部に分散させることにより、透光性媒体4から蛍光体粒子2への光の入射効率及び蛍光体粒子2から透光性媒体4への光の出射効率を向上させることができる。つまり、蛍光体粒子2における、変換効率を高めることができる。さらに、蛍光体粒子2の化学的安定性及び耐熱性を向上させることができる。 The wavelength conversion member 5 has the wavelength conversion particles 1 and the translucent medium 4 as described above. In the wavelength conversion particle 1 in which the phosphor particles 2 are covered with the coating 3, the refractive index of the coating 3 is preferably smaller than the refractive index of the phosphor particles 2. The refractive index of the translucent medium 4 is preferably smaller than the refractive index of the coating 3. The wavelength conversion particles 1 are dispersed inside the translucent medium 4. By dispersing the wavelength conversion particles 1 in the translucent medium 4, the incident efficiency of light from the translucent medium 4 to the phosphor particles 2 and the emission of light from the phosphor particles 2 to the translucent medium 4 are achieved. Efficiency can be improved. That is, the conversion efficiency in the phosphor particles 2 can be increased. Furthermore, the chemical stability and heat resistance of the phosphor particles 2 can be improved.
 透光性媒体4の屈折率は、蛍光体粒子2の屈折率よりも小さいことが好ましい。透光性媒体4の材質として、シロキサン結合を有するケイ素化合物、ガラスを用いることが好ましい。これらの材質は、耐熱性及び耐光性、特に青色~紫外線等の短波長の光に対する耐久性に優れる。そのため、波長変換粒子1に入射される励起光が一般的な青色光から紫外光に亘る波長域の光であっても、透光性媒体4の劣化を抑制することができる。 The refractive index of the translucent medium 4 is preferably smaller than the refractive index of the phosphor particles 2. As a material for the translucent medium 4, it is preferable to use a silicon compound having a siloxane bond or glass. These materials are excellent in heat resistance and light resistance, particularly durability against light having a short wavelength such as blue to ultraviolet light. Therefore, even if the excitation light incident on the wavelength conversion particle 1 is light in a wavelength range from general blue light to ultraviolet light, deterioration of the translucent medium 4 can be suppressed.
 ケイ素化合物の例として、シリコーン樹脂、オルガノシロキサンの加水分解縮合物、オルガノシロキサンの縮合物などをあげることができる。これらは、公知の重合手法により架橋するにより生成される複合樹脂である。なお、重合手法として、ヒドロシリル化などの付加重合やラジカル重合などを用いることができる。 Examples of silicon compounds include silicone resins, organosiloxane hydrolysis condensates, organosiloxane condensates, and the like. These are composite resins produced by crosslinking by a known polymerization technique. As the polymerization method, addition polymerization such as hydrosilylation or radical polymerization can be used.
 また、透光性媒体4として、有機・無機ハイブリッド材料などを用いてもよい。これらは、例えばアクリル樹脂や、有機成分と無機成分とが、ナノメートルレベル又は分子レベルで混合及び結合されることにより形成される。 Further, an organic / inorganic hybrid material or the like may be used as the translucent medium 4. These are formed, for example, by mixing and bonding an acrylic resin or an organic component and an inorganic component at the nanometer level or the molecular level.
 波長変換部材5中の波長変換粒子1の含有量は、波長変換粒子1及び透光性媒体4の種類、波長変換部材5の寸法、波長変換部材5に要求される波長変換能等を考慮して適宜決定される。ただし、波長変換部材5中の波長変換粒子1の含有量は、例えば5質量%~30質量%の範囲であることが好ましい。 The content of the wavelength conversion particle 1 in the wavelength conversion member 5 is determined in consideration of the types of the wavelength conversion particle 1 and the translucent medium 4, the dimensions of the wavelength conversion member 5, the wavelength conversion ability required for the wavelength conversion member 5, and the like. To be determined as appropriate. However, the content of the wavelength conversion particles 1 in the wavelength conversion member 5 is preferably in the range of 5% by mass to 30% by mass, for example.
 この波長変換部材5に外部から励起光が照射されると、波長変換粒子1が励起光を吸収して励起光よりも長波長の蛍光を発する。これにより、波長変換部材5を光が透過する際に、この光の波長が波長変換粒子1中の蛍光体粒子2によって変換される。そして、このように構成される波長変換部材5が波長変換粒子1を含むことにより、波長変換粒子1への励起光の入射効率及び波長変換粒子1からの光の出射効率が向上する。すなわち、波長変換粒子1の波長変換効率が向上する。 When the wavelength conversion member 5 is irradiated with excitation light from the outside, the wavelength conversion particle 1 absorbs the excitation light and emits fluorescence having a longer wavelength than the excitation light. Thereby, when the light passes through the wavelength conversion member 5, the wavelength of the light is converted by the phosphor particles 2 in the wavelength conversion particles 1. And when the wavelength conversion member 5 comprised in this way contains the wavelength conversion particle 1, the incident efficiency of the excitation light to the wavelength conversion particle 1 and the emission efficiency of the light from the wavelength conversion particle 1 improve. That is, the wavelength conversion efficiency of the wavelength conversion particle 1 is improved.
 [製造方法]
 次に、本発明の実施形態である波長変換粒子1の製造方法について説明する。波長変換粒子1における被膜3の形成方法は特に限定されない。例えば蛍光体粒子2の表面を化学処理することにより形成することができる。
[Production method]
Next, the manufacturing method of the wavelength conversion particle | grains 1 which is embodiment of this invention is demonstrated. The formation method of the film 3 in the wavelength conversion particle 1 is not particularly limited. For example, it can be formed by chemically treating the surface of the phosphor particles 2.
 化学処理について、具体的に説明する。蛍光体粒子2の母体が(Ba,Sr)SiOである場合、表面にアルカリ土類金属であるストロンチウム及びバリウムの水酸化物(Sr(OH),Ba(OH))が存在する。そして、このストロンチウム及びバリウムの水酸化物を例えば硫酸系化合物である硫酸アンモニウム((NHSO)で表面処理することにより、以下の反応式(5)及び(6)に示す反応が進行する。その結果、蛍光体粒子2の表面に硫酸バリウム、硫酸ストロンチウムの被膜3を形成することができる。 The chemical treatment will be specifically described. When the base of the phosphor particle 2 is (Ba, Sr) 2 SiO 4 , strontium and barium hydroxides (Sr (OH) 2 , Ba (OH) 2 ), which are alkaline earth metals, are present on the surface. . Then, by subjecting the strontium and barium hydroxides to surface treatment with, for example, ammonium sulfate ((NH 4 ) 2 SO 4 ), the reaction shown in the following reaction formulas (5) and (6) proceeds. To do. As a result, a coating 3 of barium sulfate and strontium sulfate can be formed on the surface of the phosphor particles 2.
 Sr(OH)+(NHSO→SrSO+2NH+2HO (5)
 Ba(OH)+(NHO4→BaSO+2NH+2HO (6)
 蛍光体粒子2の表面を化学処理し被膜3を形成する方法として特に限定されないが、例えば次のような方法を挙げることができる。まず、蛍光体粒子2を分散媒に分散させ、蛍光体粒子の分散液を調製する。次に、分散液に硫酸系化合物、ホウ酸系化合物及びチタン酸系化合物からなる群より選ばれる少なくとも一つを添加し、攪拌する。この際、蛍光体粒子2と硫酸系化合物、ホウ酸系化合物及びチタン酸系化合物との反応は室温で行ってもよく、反応性を高めるために加熱してもよい。そして、蛍光体粒子2の表面と硫酸系化合物等が反応し、被膜3が形成された後、分散液を濾過等して単離し乾燥することにより、波長変換粒子1を得ることができる。
Sr (OH) 2 + (NH 4 ) 2 SO 4 → SrSO 4 + 2NH 3 + 2H 2 O (5)
Ba (OH) 2 + (NH 4) 2 S 2 O4 → BaSO 4 + 2NH 3 + 2H 2 O (6)
Although it does not specifically limit as a method of forming the film 3 by chemically processing the surface of the fluorescent substance particle 2, For example, the following methods can be mentioned. First, phosphor particles 2 are dispersed in a dispersion medium to prepare a dispersion of phosphor particles. Next, at least one selected from the group consisting of sulfuric acid compounds, boric acid compounds and titanic acid compounds is added to the dispersion and stirred. At this time, the reaction between the phosphor particles 2 and the sulfuric acid compound, boric acid compound and titanic acid compound may be performed at room temperature, or may be heated to increase the reactivity. Then, after the surface of the phosphor particle 2 reacts with a sulfuric acid compound and the like to form the coating 3, the wavelength conversion particle 1 can be obtained by isolating and drying the dispersion by filtration or the like.
 上記の製造方法は、分散液中で、アルカリ土類金属を含有する蛍光体粒子2と、分散媒に可溶性の硫酸系化合物、ホウ酸系化合物及びチタン酸系化合物からなる群より選ばれる少なくとも一つとの混合することにより生じる化学反応を用いている。なお、アルカリ土類金属は、マグネシウム、カルシウム、ストロンチウム及びバリウムの群から選ばれる少なくとも一つであることが好ましい。 Said manufacturing method is at least one selected from the group consisting of phosphor particles 2 containing an alkaline earth metal and a sulfuric acid compound, boric acid compound and titanic acid compound soluble in the dispersion medium in the dispersion. The chemical reaction generated by mixing with one is used. The alkaline earth metal is preferably at least one selected from the group consisting of magnesium, calcium, strontium and barium.
 硫酸系化合物として、アルカリ土類金属の硫酸塩の被膜を形成することができれば特に限定されない。蛍光体粒子2の表面を硫酸系化合物で処理することにより、アルカリ土類金属の硫酸塩の被膜を形成することができる。上述の硫酸アンモニウムの他に、例えば硫酸、硫酸アルミニウム、硫酸ナトリウム、及び硫酸水素アンモニウム等を使用することができる。また、ホウ酸系化合物として、アルカリ土類金属のホウ酸塩の被膜を形成することができれば特に限定されない。蛍光体粒子2の表面をホウ酸系化合物で処理することにより、アルカリ土類金属のホウ酸塩の被膜を形成することができる。例えばホウ酸、メタホウ酸、及びホウ酸アンモニウムを使用することができる。チタン酸系化合物として、アルカリ土類金属のチタン酸塩の被膜を形成することができれば特に限定されない。蛍光体粒子2の表面をチタン酸系化合物で処理することにより、アルカリ土類金属のチタン酸塩の被膜を形成することができる。例えばチタンアルコキシドやチタン錯体を使用することができる。なお、硫酸系化合物、ホウ酸系化合物及びチタン酸系化合物は、一つの化合物を単独で用いてもよく、二つ以上の化合物を併用してもよい。 The sulfuric acid compound is not particularly limited as long as an alkaline earth metal sulfate film can be formed. By treating the surface of the phosphor particles 2 with a sulfuric acid compound, an alkaline earth metal sulfate film can be formed. In addition to the above-mentioned ammonium sulfate, for example, sulfuric acid, aluminum sulfate, sodium sulfate, and ammonium hydrogen sulfate can be used. The boric acid compound is not particularly limited as long as it can form a borate film of an alkaline earth metal. By treating the surface of the phosphor particles 2 with a boric acid compound, a borate film of an alkaline earth metal can be formed. For example, boric acid, metaboric acid, and ammonium borate can be used. The titanic acid compound is not particularly limited as long as a titanate film of an alkaline earth metal can be formed. By treating the surface of the phosphor particles 2 with a titanic acid compound, a coating of an alkaline earth metal titanate can be formed. For example, a titanium alkoxide or a titanium complex can be used. As the sulfuric acid compound, boric acid compound and titanic acid compound, one compound may be used alone, or two or more compounds may be used in combination.
 蛍光体粒子2を分散させる分散媒として、硫酸系化合物、ホウ酸系化合物及びチタン酸系化合物が溶解し、蛍光体粒子を劣化させないものであれば特に限定されない。このような分散媒として、例えば、メタノール、エタノール及び2-プロパノール等のアルコール類や、エチレングリコール及びグリセリン等の多価アルコールを使用することができる。具体的には、硫酸系化合物として硫酸アンモニウムを使用する場合、硫酸アンモニウムはアルコールへの溶解度が低いことから、例えばエチレングリコールを使用することが好ましい。また、硫酸系化合物として硫酸アルミニウムを使用する場合、硫酸アルミニウムはアルコール類にも溶解し得ることから、メタノール、エタノール及び2-プロパノール等を使用することができる。 The dispersion medium for dispersing the phosphor particles 2 is not particularly limited as long as the sulfuric acid compound, boric acid compound and titanic acid compound are dissolved and the phosphor particles are not deteriorated. As such a dispersion medium, for example, alcohols such as methanol, ethanol and 2-propanol, and polyhydric alcohols such as ethylene glycol and glycerin can be used. Specifically, when ammonium sulfate is used as the sulfuric acid compound, it is preferable to use, for example, ethylene glycol because ammonium sulfate has low solubility in alcohol. Further, when aluminum sulfate is used as the sulfuric acid compound, methanol, ethanol, 2-propanol, or the like can be used because aluminum sulfate can be dissolved in alcohols.
 このように、波長変換粒子1は、アルカリ土類金属を含有する蛍光体粒子2と、蛍光体粒子2の表面を覆い、かつ、アルカリ土類金属の硫酸塩、ホウ酸塩及びチタン酸塩からなる群より選ばれる少なくとも一つを主成分とする被膜3とを有する。このような被膜3の屈折率は蛍光体粒子2と透光性媒体4の各屈折率の間の値である。このことから、被膜3と蛍光体粒子2及び透光性媒体4との界面における光の反射を抑制し、蛍光体粒子2への光の入射効率及び蛍光体粒子2からの光の出射効率を向上することができる。さらに、アルカリ土類金属の硫酸塩、ホウ酸塩及びチタン酸塩は水に難溶であることから、蛍光体と水分との接触を防ぎ、蛍光体粒子2の発光特性の劣化を抑制することができる。 Thus, the wavelength conversion particle 1 covers the surface of the phosphor particle 2 containing the alkaline earth metal and the phosphor particle 2, and is composed of the alkaline earth metal sulfate, borate and titanate. And a film 3 containing at least one selected from the group as a main component. The refractive index of such a coating 3 is a value between the refractive indexes of the phosphor particles 2 and the translucent medium 4. From this, reflection of light at the interface between the coating 3 and the phosphor particles 2 and the translucent medium 4 is suppressed, and the incident efficiency of light to the phosphor particles 2 and the emission efficiency of light from the phosphor particles 2 are improved. Can be improved. Furthermore, since alkaline earth metal sulfates, borates, and titanates are hardly soluble in water, they prevent contact between the phosphor and moisture and suppress deterioration of the light emission characteristics of the phosphor particles 2. Can do.
 また、アルカリ土類金属の硫酸塩、ホウ酸塩及びチタン酸塩は比較的安全性が高い。さらに被膜3は、蛍光体粒子2の表面を化学処理することにより形成することができる。そのため、特殊な生産設備を用いずとも生産することができる。また、上記の製造方法は、蛍光体粒子2に含まれるアルカリ土類金属と分散媒に含まれる硫酸系化合物等との化学反応により被膜3を形成している。そのため、蛍光体粒子2の表面から反応が進むので、均一な膜厚の被膜3を得ることができる。なお、化学反応以外に、スパッタ技術などを用いて蛍光体粒子2の表面に被膜3を形成することも可能である。 Also, alkaline earth metal sulfates, borates and titanates are relatively safe. Further, the coating 3 can be formed by chemically treating the surface of the phosphor particles 2. Therefore, it can produce without using special production equipment. In the manufacturing method, the coating 3 is formed by a chemical reaction between an alkaline earth metal contained in the phosphor particles 2 and a sulfuric acid compound contained in the dispersion medium. Therefore, the reaction proceeds from the surface of the phosphor particles 2, so that the coating 3 having a uniform film thickness can be obtained. In addition to the chemical reaction, it is also possible to form the coating 3 on the surface of the phosphor particles 2 using a sputtering technique or the like.
 波長変換粒子1では、蛍光体粒子2の周囲に被膜3が形成されているが、被膜3の周囲にさらに第2の被膜を形成してもよい。なお、第2の被膜の屈折率は、被膜3の屈折率よりも小さく、透光性媒体4の屈折率は第2の被膜の屈折率よりも小さいことが好ましく、さらに水に難溶であることが好ましい。このような第2の被膜として、シリカによる被膜が好ましい。シリカによる被膜は屈折率が1.4程度であることから、透光性媒体4との界面における光の反射を抑制し、蛍光体粒子への光の入射効率及び蛍光体粒子からの光の出射効率をより向上させることができる。また、シリカは水に難溶であることから、蛍光体の防湿性がさらに向上し、蛍光体の劣化を抑制することができる。 In the wavelength conversion particles 1, the coating 3 is formed around the phosphor particles 2, but a second coating may be further formed around the coating 3. In addition, it is preferable that the refractive index of a 2nd film is smaller than the refractive index of the film 3, the refractive index of the translucent medium 4 is smaller than the refractive index of a 2nd film, and also it is hardly soluble in water. It is preferable. As such a second film, a film made of silica is preferable. Since the coating film made of silica has a refractive index of about 1.4, the reflection of light at the interface with the translucent medium 4 is suppressed, the light incidence efficiency to the phosphor particles and the light emission from the phosphor particles. Efficiency can be further improved. Further, since silica is hardly soluble in water, the moisture resistance of the phosphor is further improved, and deterioration of the phosphor can be suppressed.
 以下、本発明の波長変換粒子1について、蛍光体粒子2の材料にBOSE蛍光体(ユーロピウム付活バリウム・ストロンチウム・オルソシリケート蛍光体、(Sr1-xBaSiO:Eu2+ (0≦x<1.0、1.8≦y≦2.2))を用いた例により、さらに詳細に説明する。なお、本発明はこれら具体例に限定されるものではない。 Hereinafter, with respect to the wavelength conversion particle 1 of the present invention, the material of the phosphor particle 2 is a BOSE phosphor (europium activated barium / strontium / orthosilicate phosphor, (Sr 1−x Ba x ) y SiO 4 : Eu 2+ (0 This will be described in more detail with an example using ≦ x <1.0, 1.8 ≦ y ≦ 2.2)). The present invention is not limited to these specific examples.
 [試料の調製]
 まず、BOSE蛍光体粒子を分散媒であるエチレングリコール中に分散させる。さらに、この分散液に硫酸アンモニウムを添加し、マグネチックスターラーを用いて室温(25℃)で10分間攪拌する。そして被覆蛍光体スラリーを濾紙を用いて吸引濾過し、被覆蛍光体粒子を回収する。さらに付着水を除去するために、得られた被覆蛍光体を150℃で1時間乾燥する。このようにして波長変換粒子1を調製する。これを試料Aとする。
[Sample preparation]
First, the BOSE phosphor particles are dispersed in ethylene glycol as a dispersion medium. Further, ammonium sulfate is added to this dispersion and stirred for 10 minutes at room temperature (25 ° C.) using a magnetic stirrer. The coated phosphor slurry is suction filtered using a filter paper, and the coated phosphor particles are recovered. Further, in order to remove adhering water, the obtained coated phosphor is dried at 150 ° C. for 1 hour. In this way, the wavelength conversion particle 1 is prepared. This is designated as sample A.
 試料Aの被膜3の効果を確認するために、試料Aと比較するために、以下の試料Bと試料Cを調製する。 In order to confirm the effect of the coating 3 of the sample A, the following sample B and sample C are prepared for comparison with the sample A.
 試料Bは、試料Aで使用したBOSE蛍光体粒子への硫酸アンモニウム処理を行わずに調整した波長変換粒子である。 Sample B is a wavelength conversion particle prepared without performing ammonium sulfate treatment on the BOSE phosphor particles used in Sample A.
 試料Cは、試料Aで使用したBOSE蛍光体粒子の表面に酸化ケイ素粒子(SiO)被膜を形成した波長変換粒子である。試料Cの調製方法を以下に説明する。 Sample C is a wavelength conversion particle in which a silicon oxide particle (SiO 2 ) film is formed on the surface of the BOSE phosphor particles used in Sample A. A method for preparing Sample C will be described below.
 <コーティング液の調製>
 エチルアルコール中にSiO加水分解液、イオン交換水および希塩酸(1N)を添加し、マグネチックスターラーで30分間攪拌する。これにより、SiOコーティング液を調製する。
<Preparation of coating solution>
SiO 2 hydrolyzed solution, ion-exchanged water and dilute hydrochloric acid (1N) are added to ethyl alcohol, and the mixture is stirred with a magnetic stirrer for 30 minutes. Thereby, a SiO 2 coating solution is prepared.
 <蛍光体への被覆処理>
 BOSE蛍光体粒子を上記コーティング液中に分散し、マグネチックスターラーで3時間攪拌する。そして、被覆蛍光体粒子のスラリーを濾紙を用いて吸引濾過し、被覆蛍光体粒子を回収する。その後、付着水を除去するために、得られた被覆蛍光体粒子を150℃で1時間乾燥する。
<Coating treatment on phosphor>
BOSE phosphor particles are dispersed in the coating solution and stirred with a magnetic stirrer for 3 hours. The slurry of the coated phosphor particles is suction filtered using a filter paper, and the coated phosphor particles are recovered. Thereafter, in order to remove adhering water, the obtained coated phosphor particles are dried at 150 ° C. for 1 hour.
 <被覆蛍光体の熱処理>
 BOSE蛍光体粒子の周囲に形成されたSiO被膜を緻密にするために、電気炉を用いて400℃、1時間加熱する。このようにして試料Cの波長変換粒子を調製する。なお、走査型電子顕微鏡(SEM)で観察した結果、試料Cに形成されたSiO被膜の膜厚は100nmである。
<Heat treatment of coated phosphor>
In order to make the SiO 2 coating formed around the BOSE phosphor particles dense, heating is performed at 400 ° C. for 1 hour using an electric furnace. In this way, the wavelength conversion particles of Sample C are prepared. As a result of observation with a scanning electron microscope (SEM), the thickness of the SiO 2 film formed on the sample C is 100 nm.
 以下、試料A(波長変換粒子1)、試料B及び試料Cの特性評価について説明する。 Hereinafter, characteristic evaluation of sample A (wavelength conversion particle 1), sample B, and sample C will be described.
 [発光特性評価]
 試料AからCの外部量子効率、試料吸収率(吸収効率)及び内部量子効率を蛍光分光光度計で測定した結果を表1に示す。測定条件のうち、励起波長は450nm、測定波長範囲は460~800nmである。
[Light emission characteristic evaluation]
Table 1 shows the results of measuring the external quantum efficiency, sample absorption rate (absorption efficiency), and internal quantum efficiency of samples A to C with a fluorescence spectrophotometer. Among the measurement conditions, the excitation wavelength is 450 nm, and the measurement wavelength range is 460 to 800 nm.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、試料Aは、試料Bと比べ試料吸収率は変わらないものの内部量子効率が向上し、それに伴い外部量子効率も向上している。つまり、試料Aにおいて、被膜3と蛍光体粒子2との界面における光の反射が抑制され、蛍光体粒子2から出射される光の出射効率が向上したものと推測される。 As shown in Table 1, the sample A has an improved internal quantum efficiency although the sample absorptance is not changed as compared with the sample B, and the external quantum efficiency is improved accordingly. That is, in the sample A, it is presumed that the reflection of light at the interface between the coating 3 and the phosphor particles 2 is suppressed, and the emission efficiency of the light emitted from the phosphor particles 2 is improved.
 [顕微鏡評価]
 試料Aと試料Bの走査型電子顕微鏡写真を図2Aから図3Cに示す。図2Aは試料Aを示し、図2Bは図2Aの拡大写真であり、図2Cは試料Aにおける表面近傍の断面を示す。図3Aは試料Bを示し、図3Bは図3Aの拡大写真である。図3Cは試料Bにおける表面近傍の断面を示す。
[Microscopic evaluation]
Scanning electron micrographs of Sample A and Sample B are shown in FIGS. 2A to 3C. 2A shows Sample A, FIG. 2B is an enlarged photograph of FIG. 2A, and FIG. 2C shows a cross section near the surface of Sample A. 3A shows Sample B, and FIG. 3B is an enlarged photograph of FIG. 3A. 3C shows a cross section near the surface of Sample B. FIG.
 図2Cより、試料Aの蛍光体粒子2の表面には、厚さが均一な被膜3が形成されている。これに対し、図3Cより、試料Bの波長変換粒子では、蛍光体粒子2のみであり、その表面に被膜は形成されていない。 2C, a coating 3 having a uniform thickness is formed on the surface of the phosphor particles 2 of the sample A. On the other hand, from FIG. 3C, the wavelength conversion particles of sample B are only phosphor particles 2 and no coating is formed on the surface thereof.
 [EDX評価]
 試料Aと試料Bの表面を、エネルギー分散型X線分光法(EDX)により評価した結果をそれぞれ図4A、図4Bに示す。具体的には、エネルギー分散型X線分析装置を用い、試料Aと試料Bにおける表面の組成を分析する。図4Aに示すように試料Aでは硫黄(S)に由来するピークが確認できるが、図4Bに示すように試料Bでは硫黄に由来するピークが確認できない。つまり、試料Aでは、蛍光体粒子2の表面に硫酸塩による被膜3が形成されている。
[EDX evaluation]
The results of evaluating the surfaces of Sample A and Sample B by energy dispersive X-ray spectroscopy (EDX) are shown in FIGS. 4A and 4B, respectively. Specifically, the surface composition of Sample A and Sample B is analyzed using an energy dispersive X-ray analyzer. As shown in FIG. 4A, a peak derived from sulfur (S) can be confirmed in sample A, but a peak derived from sulfur cannot be confirmed in sample B as shown in FIG. 4B. That is, in sample A, the coating 3 made of sulfate is formed on the surface of the phosphor particles 2.
 [XPS評価]
 試料Aの表面を、X線光電子分光法(XPS)による評価結果を表2に示す。具体的には、光電子分光装置を用い、試料Aにおける被膜3の深さと表面被覆率との関係を測定する。表2では、波長変換粒子1の表面からの深さが5nm,10nm,20nm,50nm,100nm,250nm及び500nmにおける、被膜3の被覆率の測定結果を示す。
[XPS evaluation]
Table 2 shows the results of evaluation of the surface of Sample A by X-ray photoelectron spectroscopy (XPS). Specifically, the relationship between the depth of the coating 3 in the sample A and the surface coverage is measured using a photoelectron spectrometer. Table 2 shows the measurement results of the coating rate of the coating 3 when the depth from the surface of the wavelength conversion particle 1 is 5 nm, 10 nm, 20 nm, 50 nm, 100 nm, 250 nm, and 500 nm.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、試料Aは、表面から深くなるにつれて被膜3の表面被覆率が低下する。しかし、少なくとも表面から20nmの深さにおいて、表面被覆率は95%以上である。 As shown in Table 2, in the sample A, the surface coverage of the coating 3 decreases as the depth increases from the surface. However, at least at a depth of 20 nm from the surface, the surface coverage is 95% or more.
 [防湿試験]
 試料AからCに対する防湿試験について説明する。この試験では、試料AからCの粉末をそれぞれガラス容器に投入し、85℃、相対湿度85%の環境下で500時間放置する。そして、防湿試験前後の試料AからCに対し、上述と同様の方法で外部量子効率を測定する。外部量子効率の測定結果を表3に示す。なお表3では、防湿試験前における試料Bの外部量子効率を100%とした相対値を示す。
[Dampproof test]
The moisture-proof test for samples A to C will be described. In this test, the powders of Samples A to C are put into glass containers, respectively, and left in an environment of 85 ° C. and relative humidity 85% for 500 hours. And external quantum efficiency is measured by the method similar to the above with respect to the samples A to C before and after the moisture-proof test. Table 3 shows the measurement results of the external quantum efficiency. Table 3 shows relative values with the external quantum efficiency of Sample B before the moisture-proof test as 100%.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、試料Aは、試料Bと比べ防湿試験前の外部量子効率が向上し、特に防湿試験後の外部量子効率が大幅に向上している。このことから、蛍光体粒子2の表面にアルカリ土類金属の硫酸塩で形成される被膜3を形成することにより、変換効率が改善され、防湿性が向上がしていることが分かる。すなわち、硫酸塩による被膜3の防湿性の向上が認められる。 As shown in Table 3, the external quantum efficiency of the sample A before the moisture-proof test is improved as compared with the sample B, and particularly the external quantum efficiency after the moisture-proof test is greatly improved. From this, it can be seen that the conversion efficiency is improved and the moisture resistance is improved by forming the coating 3 made of an alkaline earth metal sulfate on the surface of the phosphor particles 2. That is, the improvement of the moisture resistance of the coating film 3 by sulfate is recognized.
 なお、試料Cは、酸化ケイ素からなる被膜を形成しているため防湿性は向上している。しかし、被膜が酸化ケイ素からなるため、被膜と蛍光体粒子との界面における光の反射を抑制できず、試料Aに比べ防湿試験前の外部量子効率が低下している。 In addition, since the sample C forms a film made of silicon oxide, the moisture resistance is improved. However, since the coating is made of silicon oxide, reflection of light at the interface between the coating and the phosphor particles cannot be suppressed, and the external quantum efficiency before the moisture-proof test is lower than that of the sample A.
 以上、具体例に沿って本発明の内容を説明したが、本発明はこれらの記載に限定されるものではなく、種々の変形及び改良が可能である。 As described above, the contents of the present invention have been described according to specific examples. However, the present invention is not limited to these descriptions, and various modifications and improvements can be made.
 [発光装置]
 以下、本実施形態の発光装置100を図5を参照して説明する。発光装置100は、基板110、複数のLED(発光素子)120、及び複数の封止部材130を有する。封止部材130は、波長変換部材5に相当し、波長変換粒子1を含む。すなわち、発光装置100は、LED120と、波長変換粒子1を含む透光性媒体4とを有する。LED120は、透光性媒体4により封止されている。透光性媒体4の屈折率は、被膜3の屈折率よりも小さい。基板110は、例えば、セラミック基板や熱伝導樹脂等の絶縁層とアルミ板等の金属層との二層構造を有する。基板110は方形の板状であって、基板110の短手方向(X軸方向)の幅W1が例えば12~30mmであり、長手方向(Y軸方向)の幅W2が例えば12~30mmである。
[Light emitting device]
Hereinafter, the light emitting device 100 of the present embodiment will be described with reference to FIG. The light emitting device 100 includes a substrate 110, a plurality of LEDs (light emitting elements) 120, and a plurality of sealing members 130. The sealing member 130 corresponds to the wavelength conversion member 5 and includes the wavelength conversion particles 1. That is, the light emitting device 100 includes the LED 120 and the translucent medium 4 including the wavelength conversion particles 1. The LED 120 is sealed with the translucent medium 4. The refractive index of the translucent medium 4 is smaller than the refractive index of the coating 3. The substrate 110 has, for example, a two-layer structure of an insulating layer such as a ceramic substrate or a heat conductive resin and a metal layer such as an aluminum plate. The substrate 110 has a rectangular plate shape, and a width W1 in the short side direction (X-axis direction) of the substrate 110 is, for example, 12 to 30 mm, and a width W2 in the longitudinal direction (Y-axis direction) is, for example, 12 to 30 mm. .
 LED120は、例えばGaN系のLEDであって、平面視形状が略長方形である。そしてLED120は、短手方向(X軸方向)の幅W3が例えば0.3~1.0mm、長手方向(Y軸方向)の幅W4が例えば0.3~1.0mm、厚み(Z軸方向)が例えば0.08~0.30mmである。 The LED 120 is a GaN-based LED, for example, and has a substantially rectangular shape in plan view. The LED 120 has a width W3 in the short side direction (X-axis direction) of, for example, 0.3 to 1.0 mm, a width W4 in the long side direction (Y-axis direction) of, for example, 0.3 to 1.0 mm, and a thickness (Z-axis direction). ) Is, for example, 0.08 to 0.30 mm.
 そしてLED120は、基板110の長手方向とLED120の素子列の配列方向とが一致するように配置されている。LED120は、一列に並んだ複数のLED120ごとに素子列を構成しており、それら素子列が基板110の短手方向に沿って複数列並べて実装されている。具体的には、例えば、25個のLED120が5列5行でマトリックス状に実装されている。すなわち、1つの素子列は5個のLEDで構成され、そのような素子列が5行並べて実装されている。 The LEDs 120 are arranged so that the longitudinal direction of the substrate 110 coincides with the arrangement direction of the element rows of the LEDs 120. The LED 120 constitutes an element row for each of the plurality of LEDs 120 arranged in a row, and these element rows are mounted in a plurality of rows along the short direction of the substrate 110. Specifically, for example, 25 LEDs 120 are mounted in a matrix with 5 columns and 5 rows. That is, one element row is composed of five LEDs, and such element rows are mounted side by side.
 各素子列では、LED120が長手方向(Y軸方向)に直線状に配列されている。このようにLED120を直線状に配列することによって、それらLED120を封止する封止部材130も直線状に形成することができる。 In each element row, the LEDs 120 are linearly arranged in the longitudinal direction (Y-axis direction). Thus, by arranging the LEDs 120 in a straight line, the sealing member 130 for sealing the LEDs 120 can also be formed in a straight line.
 各素子列は、それぞれ長尺状の封止部材130によって個別に封止されている。そして、1つの素子列とその素子列を封止する1つの封止部材130とが、1つの発光部101を構成している。したがって、発光装置100は5つの発光部101を有する。 Each element row is individually sealed by a long sealing member 130. One element row and one sealing member 130 that seals the element row constitute one light emitting unit 101. Therefore, the light emitting device 100 includes five light emitting units 101.
 封止部材130は、波長変換粒子1と透光性媒体4とで構成されている。透光性媒体4の材料として、例えば、シリコーン樹脂、フッ素樹脂、シリコーン・エポキシのハイブリッド樹脂、ユリア樹脂等の樹脂材料を用いることができる。 The sealing member 130 is composed of the wavelength conversion particle 1 and the translucent medium 4. As the material of the translucent medium 4, for example, a resin material such as a silicone resin, a fluororesin, a silicone / epoxy hybrid resin, or a urea resin can be used.
 封止部材130において、短手方向の幅が例えば0.8~3.0mm、長手方向の幅が例えば3.0~40.0mmであることが好ましい。また、LED120を含めた最大厚み(Z軸方向)が例えば0.4~1.5mm、LED120を含めない最大厚みが例えば0.2~1.3mmであることが好ましい。 The sealing member 130 preferably has a width in the short direction of, for example, 0.8 to 3.0 mm, and a width in the longitudinal direction of, for example, 3.0 to 40.0 mm. The maximum thickness (in the Z-axis direction) including the LED 120 is preferably 0.4 to 1.5 mm, for example, and the maximum thickness excluding the LED 120 is preferably 0.2 to 1.3 mm, for example.
 封止部材130の短手方向に沿った断面の形状は略半楕円形である。また、封止部材130の長手方向の両端部131,132は、曲面形状になっている。具体的には、両端部131,132の形状は、平面視における形状が略半円形である。 The shape of the cross section along the short direction of the sealing member 130 is substantially semi-elliptical. Further, both end portions 131 and 132 in the longitudinal direction of the sealing member 130 are curved. Specifically, the shapes of both end portions 131 and 132 are substantially semicircular in plan view.
 各々のLED120は、基板110にエピサイドアップ実装される。そして基板110に形成された配線パターン140によって、LED120に電力を供給する図示しない点灯回路ユニットと電気的に接続されている。配線パターン140は、一対の給電用のランド141,142と、各LED120に対応する位置に配置された複数のボンディング用のランド143とを有する。 Each LED 120 is mounted epicide-up on the substrate 110. The wiring pattern 140 formed on the substrate 110 is electrically connected to a lighting circuit unit (not shown) that supplies power to the LED 120. The wiring pattern 140 includes a pair of power feeding lands 141 and 142 and a plurality of bonding lands 143 arranged at positions corresponding to the respective LEDs 120.
 LED120は、例えば、ワイヤボンディングによりワイヤ(例えば、金ワイヤ)150を介してランド143と電気的に接続されている。ワイヤ150の一方の端部151はLED120と接合され、他方の端部152はランド143と接合されている。各ワイヤ150は、それぞれ接続対象であるLED120の属する素子列に沿って配置されている。さらに各ワイヤ150の両端部151,152も素子列に沿って配置されている。各ワイヤ150は、LED120やランド143と共に封止部材130により封止されているため劣化し難く、また絶縁されていて安全性も高い。なお、LED120の基板110への実装方法は、上記のようなエピサイドアップ実装に限定されず、エピサイドダウン実装であってもよい。 The LED 120 is electrically connected to the land 143 through a wire (for example, gold wire) 150 by wire bonding, for example. One end 151 of the wire 150 is bonded to the LED 120, and the other end 152 is bonded to the land 143. Each wire 150 is arranged along an element row to which the LED 120 to be connected belongs. Furthermore, both end portions 151 and 152 of each wire 150 are also arranged along the element row. Since each wire 150 is sealed by the sealing member 130 together with the LED 120 and the land 143, the wire 150 is hardly deteriorated, and is insulated and highly safe. In addition, the mounting method of LED120 to the board | substrate 110 is not limited to the above epi side up mounting, Epi side down mounting may be sufficient.
 同じ素子列に属する5個のLED120は直列に接続され、5つの素子列が並列に接続されている。なお、LED120の接続形態はこれに限定されず、素子列に関係なくどのように接続されていてもよい。ランド141,142には、図示しない点灯回路ユニットの一対のリード線が接続され、それらリード線を介して点灯回路ユニットから各LED120に電力が供給され、これにより各LED120が発光する。 The five LEDs 120 belonging to the same element row are connected in series, and the five element rows are connected in parallel. In addition, the connection form of LED120 is not limited to this, You may connect how regardless of an element row | line | column. A pair of lead wires of a lighting circuit unit (not shown) is connected to the lands 141 and 142, and power is supplied from the lighting circuit unit to the LEDs 120 via the lead wires, whereby each LED 120 emits light.
 発光装置100は、照明光源用や液晶ディスプレイのバックライト用、表示装置用の光源等に広く利用可能である。つまり上述のように、波長変換粒子1は、変換効率と耐湿性の面で優れており、発光装置100も高い変換効率と高い耐湿性を有する。 The light emitting device 100 can be widely used as an illumination light source, a backlight for a liquid crystal display, a light source for a display device, and the like. That is, as described above, the wavelength conversion particle 1 is excellent in terms of conversion efficiency and moisture resistance, and the light emitting device 100 also has high conversion efficiency and high moisture resistance.
 このような照明光源として、発光装置100と、発光装置100を動作させる点灯回路と、口金等の照明器具との接続部品とを組み合わせて構成することができる。また、必要に応じて照明器具を組み合わせれば、照明装置や照明システムを構成することにもなる。 As such an illumination light source, the light emitting device 100, a lighting circuit for operating the light emitting device 100, and a connecting component for a lighting fixture such as a base can be combined. Moreover, if a lighting fixture is combined as needed, it will also comprise an illuminating device and an illumination system.
 アルカリ土類金属を含有する蛍光体粒子の表面を硫酸塩、ホウ酸塩及びチタン酸塩からなる群より選ばれる少なくとも一つを主成分とする被膜で覆う波長変換粒子は、変換効率の向上と耐湿性の向上を図ることができる。 Wavelength conversion particles covering the surface of phosphor particles containing an alkaline earth metal with a film mainly composed of at least one selected from the group consisting of sulfates, borates and titanates improves conversion efficiency. The moisture resistance can be improved.
 1 波長変換粒子
 2 蛍光体粒子
 3 被膜
 4 透光性媒体
 5 波長変換部材
 100 発光装置
 120 LED
 130 封止部材
DESCRIPTION OF SYMBOLS 1 Wavelength conversion particle 2 Phosphor particle 3 Coating 4 Translucent medium 5 Wavelength conversion member 100 Light-emitting device 120 LED
130 Sealing member

Claims (13)

  1.  アルカリ土類金属を含有する蛍光体粒子と、
     前記蛍光体粒子の表面を覆い、かつ、アルカリ土類金属の硫酸塩、ホウ酸塩及びチタン酸塩からなる群より選ばれる少なくとも一つを主成分とし、前記蛍光体粒子よりも屈折率の小さい被膜と、
     を備える波長変換粒子。
    Phosphor particles containing an alkaline earth metal;
    Covers the surface of the phosphor particles, and has at least one selected from the group consisting of alkaline earth metal sulfates, borates and titanates as a main component, and has a smaller refractive index than the phosphor particles. A coating;
    A wavelength converting particle comprising:
  2.  前記被膜は前記アルカリ土類金属として、マグネシウム、カルシウム、ストロンチウム及びバリウムからなる群より選ばれるすくなくとも一つを含む請求項1に記載の波長変換粒子。 The wavelength conversion particle according to claim 1, wherein the coating contains at least one selected from the group consisting of magnesium, calcium, strontium and barium as the alkaline earth metal.
  3.  前記蛍光体粒子は、アルカリ土類金属の珪酸塩を含有する
     請求項1又は2に記載の波長変換粒子。
    The wavelength conversion particle according to claim 1, wherein the phosphor particles contain an alkaline earth metal silicate.
  4.  前記蛍光体粒子の組成は、(Sr1-xSiO:Eu2+(MはBa、Ca、Mg及びZnからなる群より選ばれる少なくとも一種の金属、0≦x<1.0、2.6≦y≦3.3)である
     請求項3に記載の波長変換粒子。
    The composition of the phosphor particles is (Sr 1-x M x ) y SiO 5 : Eu 2+ (M is at least one metal selected from the group consisting of Ba, Ca, Mg and Zn, 0 ≦ x <1.0). The wavelength conversion particle according to claim 3, wherein 2.6 ≦ y ≦ 3.3).
  5.  前記蛍光体粒子の組成は、(Sr1-xSiO:Eu2+D (MはBa、Ca、Mg及びZnからなる群より選ばれる少なくとも一種の金属、DはF、Cl及びBrからなる群より選ばれるハロゲンアニオン、0≦x<1.0、2.6≦y≦3.3)である
     請求項3に記載の波長変換粒子。
    The composition of the phosphor particles is (Sr 1-x M x ) y SiO 5 : Eu 2+ D (M is at least one metal selected from the group consisting of Ba, Ca, Mg and Zn, D is F, Cl and The wavelength conversion particle according to claim 3, wherein a halogen anion selected from the group consisting of Br, 0 ≦ x <1.0, 2.6 ≦ y ≦ 3.3).
  6.  前記蛍光体粒子の組成は、(Sr1-xSiO:Eu2+ (MはBa、Ca、Mg及びZnからなる群より選ばれる少なくとも一種の金属であり、0≦x<1.0、1.8≦y≦2.2)である
     請求項3に記載の波長変換粒子。
    The composition of the phosphor particles is (Sr 1-x M x ) y SiO 4 : Eu 2+ (M is at least one metal selected from the group consisting of Ba, Ca, Mg and Zn, and 0 ≦ x <1 The wavelength conversion particles according to claim 3, wherein 0.0, 1.8 ≦ y ≦ 2.2).
  7.  前記蛍光体粒子の組成は、(Sr1-xBaSiO:Eu2+ (0≦x<1.0、1.8≦y≦2.2)である
     請求項6に記載の波長変換粒子。
    The wavelength according to claim 6, wherein the composition of the phosphor particles is (Sr 1-x Ba x ) y SiO 4 : Eu 2+ (0 ≦ x <1.0, 1.8 ≦ y ≦ 2.2). Conversion particles.
  8.  前記蛍光体粒子の組成は、(Sr1-xSiO:Eu2+D (MはBa、Ca、Mg及びZnからなる群より選ばれる少なくとも一種の金属、DはF、Cl及びBrからなる群より選ばれるハロゲンアニオン、0≦x<1.0、1.8≦y≦2.2)である
     請求項3に記載の波長変換粒子。
    The composition of the phosphor particles is (Sr 1-x M x ) y SiO 4 : Eu 2+ D (M is at least one metal selected from the group consisting of Ba, Ca, Mg and Zn, D is F, Cl and The wavelength conversion particle according to claim 3, wherein a halogen anion selected from the group consisting of Br, 0 ≦ x <1.0, 1.8 ≦ y ≦ 2.2).
  9.  前記被膜の厚みは、5nm以上、1000nm以下である請求項1から8のいずれか一項に記載の波長変換粒子。 The wavelength conversion particle according to any one of claims 1 to 8, wherein the thickness of the coating is 5 nm or more and 1000 nm or less.
  10.  分散媒中で、アルカリ土類金属を含有する蛍光体粒子と、前記分散媒に可溶性の硫酸系化合物、ホウ酸系化合物及びチタン酸系化合物からなる群より選ばれる少なくとも一つとを混合する波長変換粒子の製造方法。 Wavelength conversion for mixing phosphor particles containing an alkaline earth metal and at least one selected from the group consisting of sulfuric acid compounds, boric acid compounds and titanic acid compounds soluble in the dispersion medium in a dispersion medium Particle production method.
  11.  前記アルカリ土類金属は、マグネシウム、カルシウム、ストロンチウム及びバリウムの群から選ばれる少なくとも一つである請求項10に記載の波長変換粒子の製造方法。 The method for producing wavelength-converted particles according to claim 10, wherein the alkaline earth metal is at least one selected from the group consisting of magnesium, calcium, strontium and barium.
  12.  透光性媒体と、
     前記透光性媒体の内部に分散された請求項1から9のいずれか一項に記載の波長変換粒子と、
     を備え、
     前記透光性媒体の屈折率は前記被膜の屈折率よりも小さい波長変換部材。
    A translucent medium;
    The wavelength conversion particles according to any one of claims 1 to 9, dispersed in the translucent medium,
    With
    The wavelength conversion member, wherein the refractive index of the translucent medium is smaller than the refractive index of the coating film.
  13.  発光ダイオードと、
     請求項1から9のいずれか一項に記載の前記波長変換粒子を含み、前記被膜よりも屈折率の小さい透光性媒体と、
     を備え、
     前記発光ダイオードを前記透光性媒体で封止した発光装置。
    A light emitting diode;
    A translucent medium comprising the wavelength converting particles according to any one of claims 1 to 9, and having a refractive index smaller than that of the coating film,
    With
    A light-emitting device in which the light-emitting diode is sealed with the translucent medium.
PCT/JP2014/005297 2013-11-01 2014-10-20 Wavelength conversion particle, method for producing same, wavelength conversion member, and light-emitting device WO2015064046A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-228114 2013-11-01
JP2013228114A JP2016222743A (en) 2013-11-01 2013-11-01 Wavelength conversion particle, wavelength conversion member, and light emitting device

Publications (1)

Publication Number Publication Date
WO2015064046A1 true WO2015064046A1 (en) 2015-05-07

Family

ID=53003679

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/005297 WO2015064046A1 (en) 2013-11-01 2014-10-20 Wavelength conversion particle, method for producing same, wavelength conversion member, and light-emitting device

Country Status (2)

Country Link
JP (1) JP2016222743A (en)
WO (1) WO2015064046A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018055849A1 (en) * 2016-09-26 2018-03-29 パナソニックIpマネジメント株式会社 Phosphor, and wavelength conversion member and electronic device in which the phosphor is used

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58150294A (en) * 1982-03-03 1983-09-06 平手 孝士 Dispersion electric field light emitting element using fluorescent powder coated
JPH06200245A (en) * 1992-12-28 1994-07-19 Toyo Alum Kk Dielectric-coated material and its production
JPH11140439A (en) * 1997-11-07 1999-05-25 Nippon Chem Ind Co Ltd Luminous fluorescent substance
JP2000303065A (en) * 1999-04-16 2000-10-31 Kasei Optonix Co Ltd Phosphor for vacuum ultraviolet ray, phosphor paste composition and luminescent element excited by vacuum ultraviolet ray
JP2007324475A (en) * 2006-06-02 2007-12-13 Sharp Corp Wavelength conversion member and light emitting device
JP2011503266A (en) * 2007-11-12 2011-01-27 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング Coated phosphor particles with matched refractive index
JP2011074169A (en) * 2009-09-30 2011-04-14 Nichia Corp Phosphor and fluorescent lamp using the same
JP2012025803A (en) * 2010-07-20 2012-02-09 Mitsubishi Chemicals Corp Method for production of phosphor with coated surface, and phosphor
JP2012229373A (en) * 2011-04-27 2012-11-22 Panasonic Corp Coated fluorescent substance and light-emitting device
JP2013040236A (en) * 2011-08-11 2013-02-28 Sekisui Chem Co Ltd Method for producing surface-treated phosphor and surface-treated phosphor
JP2013071987A (en) * 2011-09-27 2013-04-22 Sekisui Chem Co Ltd Production method for surface-treated phosphor, surface-treated phosphor, composition containing surface-treated phosphor and led light-emitting device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58150294A (en) * 1982-03-03 1983-09-06 平手 孝士 Dispersion electric field light emitting element using fluorescent powder coated
JPH06200245A (en) * 1992-12-28 1994-07-19 Toyo Alum Kk Dielectric-coated material and its production
JPH11140439A (en) * 1997-11-07 1999-05-25 Nippon Chem Ind Co Ltd Luminous fluorescent substance
JP2000303065A (en) * 1999-04-16 2000-10-31 Kasei Optonix Co Ltd Phosphor for vacuum ultraviolet ray, phosphor paste composition and luminescent element excited by vacuum ultraviolet ray
JP2007324475A (en) * 2006-06-02 2007-12-13 Sharp Corp Wavelength conversion member and light emitting device
JP2011503266A (en) * 2007-11-12 2011-01-27 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング Coated phosphor particles with matched refractive index
JP2011074169A (en) * 2009-09-30 2011-04-14 Nichia Corp Phosphor and fluorescent lamp using the same
JP2012025803A (en) * 2010-07-20 2012-02-09 Mitsubishi Chemicals Corp Method for production of phosphor with coated surface, and phosphor
JP2012229373A (en) * 2011-04-27 2012-11-22 Panasonic Corp Coated fluorescent substance and light-emitting device
JP2013040236A (en) * 2011-08-11 2013-02-28 Sekisui Chem Co Ltd Method for producing surface-treated phosphor and surface-treated phosphor
JP2013071987A (en) * 2011-09-27 2013-04-22 Sekisui Chem Co Ltd Production method for surface-treated phosphor, surface-treated phosphor, composition containing surface-treated phosphor and led light-emitting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018055849A1 (en) * 2016-09-26 2018-03-29 パナソニックIpマネジメント株式会社 Phosphor, and wavelength conversion member and electronic device in which the phosphor is used

Also Published As

Publication number Publication date
JP2016222743A (en) 2016-12-28

Similar Documents

Publication Publication Date Title
CN101641425B (en) Luminophores made of doped garnet for pcLEDs
KR101970254B1 (en) Composite wavelength conversion powder, resin composition containing composite wavelength conversion powder, and light emitting device
KR101849806B1 (en) Silicophosphate luminophores
EP2603937B1 (en) Light emitting device having surface-modified silicate luminophores
TWI685132B (en) Light emitting device
JP5934955B1 (en) Method for manufacturing surface-treated phosphor, surface-treated phosphor, wavelength conversion member, and light-emitting device
JP5230594B2 (en) Phosphor, its manufacturing method, wavelength converter, light emitting device, and lighting device
JP2007126536A (en) Wavelength conversion member and light emitting device
JP2008150518A (en) Wavelength converting member and light-emitting device
KR20150083099A (en) Eu-activated luminophores
JP2007103818A (en) Light emitting device, phosphor for light emitting element and manufacturing method therefor
KR20130139858A (en) Aluminate luminescent substances
Trung et al. Single-composition Al 3+-singly doped ZnO phosphors for UV-pumped warm white light-emitting diode applications
US9080104B2 (en) Mn-activated phosphors
WO2015194180A1 (en) Method for manufacturing surface-treated phosphor, surface-treated phosphor, wavelength conversion member, and light emission device
KR20150055578A (en) Light emitting element, light emitting device and those manufacturing methods
CN109593526B (en) Light conversion material and preparation method and application thereof
TWI551667B (en) Carbodiimide phosphors
WO2015064046A1 (en) Wavelength conversion particle, method for producing same, wavelength conversion member, and light-emitting device
JP2016108496A (en) Alkaline earth metal phosphor, wavelength conversion member and light-emitting device
KR20140002792A (en) Red phosphor and light-emitting element
US8912561B2 (en) Phosphor composition and light emitting diode device using the same
TW202231834A (en) Phosphor particle, luminescence device, image displaying apparatus and method for manufacturing phosphor particle
KR20140135638A (en) Luminescent device
JP2009029894A (en) Green light-emitting phosphor and light-emitting module using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14858053

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 14858053

Country of ref document: EP

Kind code of ref document: A1